WorldWideScience

Sample records for serine recombinase catalytic

  1. Site-specific DNA Inversion by Serine Recombinases

    Science.gov (United States)

    2015-01-01

    Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized. PMID:25844275

  2. Chimeric TALE recombinases with programmable DNA sequence specificity.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Fuller, Roberta P; Barbas, Carlos F

    2012-11-01

    Site-specific recombinases are powerful tools for genome engineering. Hyperactivated variants of the resolvase/invertase family of serine recombinases function without accessory factors, and thus can be re-targeted to sequences of interest by replacing native DNA-binding domains (DBDs) with engineered zinc-finger proteins (ZFPs). However, imperfect modularity with particular domains, lack of high-affinity binding to all DNA triplets, and difficulty in construction has hindered the widespread adoption of ZFPs in unspecialized laboratories. The discovery of a novel type of DBD in transcription activator-like effector (TALE) proteins from Xanthomonas provides an alternative to ZFPs. Here we describe chimeric TALE recombinases (TALERs): engineered fusions between a hyperactivated catalytic domain from the DNA invertase Gin and an optimized TALE architecture. We use a library of incrementally truncated TALE variants to identify TALER fusions that modify DNA with efficiency and specificity comparable to zinc-finger recombinases in bacterial cells. We also show that TALERs recombine DNA in mammalian cells. The TALER architecture described herein provides a platform for insertion of customized TALE domains, thus significantly expanding the targeting capacity of engineered recombinases and their potential applications in biotechnology and medicine.

  3. In vivo and in vitro characterization of site-specific recombination of a novel serine integrase from the temperate phage EFC-1

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Bohyun; Kim, Inki; Nam, Ja-Ae [Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, 86 Asanbyeoungwon-gil, Songpa-gu, Seoul 138-736 (Korea, Republic of); Chang, Hyo-Ihl [College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Ha, Chang Hoon, E-mail: chhoonha@amc.seoul.kr [Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, 86 Asanbyeoungwon-gil, Songpa-gu, Seoul 138-736 (Korea, Republic of)

    2016-04-22

    EFC-1 integrase is a site-specific recombinase that belongs to the large family of serine recombinase. In previously study, we isolated the temperate phage EFC-1, and characterized its genomic sequence. Within its genome, Orf28 was predicted encode a 464 amino acid of a putative integrase gene. In this study, EFC-1 integrase was characterized in vitro and in vivo. In vitro assay was performed using purified His-tag fusion integrase. Also, to identify which serine is involved in the catalytic domain, we used site-directed mutagenesis and analyzed by a recombination assay in vitro. In vivo assay involved PCR and confocal microscopy in HEK293 cells, and determined the minimal lengths of attP and attB sites. According to our results, the EFC-1 integrase-mediated recombination was site-specific and unidirectional system in vitro and in vivo. Serine 21 of EFC-1 integrase plays a major role in the catalytic domain, and minimal sizes of attB and attP was defined 48 and 54 bp. Our finding may help develop a useful tool for gene therapy and gene delivery system. - Highlights: • EFC-1 integrase-mediated recombination was site-specific and unidirectional system. • Serine 21 of EFC-1 integrase plays a major role in the catalytic domain. • The functional minimal sizes of attB and attP was defined 48 and 54 bp.

  4. In vivo and in vitro characterization of site-specific recombination of a novel serine integrase from the temperate phage EFC-1

    International Nuclear Information System (INIS)

    Yoon, Bohyun; Kim, Inki; Nam, Ja-Ae; Chang, Hyo-Ihl; Ha, Chang Hoon

    2016-01-01

    EFC-1 integrase is a site-specific recombinase that belongs to the large family of serine recombinase. In previously study, we isolated the temperate phage EFC-1, and characterized its genomic sequence. Within its genome, Orf28 was predicted encode a 464 amino acid of a putative integrase gene. In this study, EFC-1 integrase was characterized in vitro and in vivo. In vitro assay was performed using purified His-tag fusion integrase. Also, to identify which serine is involved in the catalytic domain, we used site-directed mutagenesis and analyzed by a recombination assay in vitro. In vivo assay involved PCR and confocal microscopy in HEK293 cells, and determined the minimal lengths of attP and attB sites. According to our results, the EFC-1 integrase-mediated recombination was site-specific and unidirectional system in vitro and in vivo. Serine 21 of EFC-1 integrase plays a major role in the catalytic domain, and minimal sizes of attB and attP was defined 48 and 54 bp. Our finding may help develop a useful tool for gene therapy and gene delivery system. - Highlights: • EFC-1 integrase-mediated recombination was site-specific and unidirectional system. • Serine 21 of EFC-1 integrase plays a major role in the catalytic domain. • The functional minimal sizes of attB and attP was defined 48 and 54 bp.

  5. Short hydrogen bonds in the catalytic mechanism of serine proteases

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2008-04-01

    Full Text Available The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78–1.28 Å revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 Å long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short “low-barrier” hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the “low-barrier hydrogen bond” hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 Å long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the “low-barrier hydrogen bond” hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.

  6. Serine integrase chimeras with activity in E. coli and HeLa cells

    Directory of Open Access Journals (Sweden)

    Alfonso P. Farruggio

    2014-09-01

    Full Text Available In recent years, application of serine integrases for genomic engineering has increased in popularity. The factor-independence and unidirectionality of these large serine recombinases makes them well suited for reactions such as site-directed vector integration and cassette exchange in a wide variety of organisms. In order to generate information that might be useful for altering the specificity of serine integrases and to improve their efficiency, we tested a hybridization strategy that has been successful with several small serine recombinases. We created chimeras derived from three characterized members of the serine integrase family, phiC31, phiBT1, and TG1 integrases, by joining their amino- and carboxy-terminal portions. We found that several phiBT1-phiC31 (BC and phiC31-TG1 (CT hybrid integrases are active in E. coli. BC chimeras function on native att-sites and on att-sites that are hybrids between those of the two donor enzymes, while CT chimeras only act on the latter att-sites. A BC hybrid, BC{−1}, was also active in human HeLa cells. Our work is the first to demonstrate chimeric serine integrase activity. This analysis sheds light on integrase structure and function, and establishes a potentially tractable means to probe the specificity of the thousands of putative large serine recombinases that have been revealed by bioinformatics studies.

  7. Piv site-specific invertase requires a DEDD motif analogous to the catalytic center of the RuvC Holliday junction resolvases.

    Science.gov (United States)

    Buchner, John M; Robertson, Anne E; Poynter, David J; Denniston, Shelby S; Karls, Anna C

    2005-05-01

    Piv, a unique prokaryotic site-specific DNA invertase, is related to transposases of the insertion elements from the IS110/IS492 family and shows no similarity to the site-specific recombinases of the tyrosine- or serine-recombinase families. Piv tertiary structure is predicted to include the RNase H-like fold that typically encompasses the catalytic site of the recombinases or nucleases of the retroviral integrase superfamily, including transposases and RuvC-like Holliday junction resolvases. Analogous to the DDE and DEDD catalytic motifs of transposases and RuvC, respectively, four Piv acidic residues D9, E59, D101, and D104 appear to be positioned appropriately within the RNase H fold to coordinate two divalent metal cations. This suggests mechanistic similarity between site-specific inversion mediated by Piv and transposition or endonucleolytic reactions catalyzed by enzymes of the retroviral integrase superfamily. The role of the DEDD motif in Piv catalytic activity was addressed using Piv variants that are substituted individually or multiply at these acidic residues and assaying for in vivo inversion, intermolecular recombination, and DNA binding activities. The results indicate that all four residues of the DEDD motif are required for Piv catalytic activity. The DEDD residues are not essential for inv recombination site recognition and binding, but this acidic tetrad does appear to contribute to the stability of Piv-inv interactions. On the basis of these results, a working model for Piv-mediated inversion that includes resolution of a Holliday junction is presented.

  8. The Carboxy-Terminal ?N Helix of the Archaeal XerA Tyrosine Recombinase Is a Molecular Switch to Control Site-Specific Recombination

    OpenAIRE

    Serre, Marie-Claude; El Arnaout, Toufic; Brooks, Mark A.; Durand, Dominique; Lisboa, Johnny; Lazar, Noureddine; Raynal, Bertrand; van Tilbeurgh, Herman; Quevillon-Cheruel, Sophie

    2013-01-01

    Tyrosine recombinases are conserved in the three kingdoms of life. Here we present the first crystal structure of a full-length archaeal tyrosine recombinase, XerA from Pyrococcus abyssi, at 3.0 Å resolution. In the absence of DNA substrate XerA crystallizes as a dimer where each monomer displays a tertiary structure similar to that of DNA-bound Tyr-recombinases. Active sites are assembled in the absence of dif except for the catalytic Tyr, which is extruded and located equidistant from each ...

  9. New L-Serine Derivative Ligands as Cocatalysts for Diels-Alder Reaction

    Science.gov (United States)

    Sousa, Carlos A. D.; Rodríguez-Borges, José E.; Freire, Cristina

    2013-01-01

    New L-serine derivative ligands were prepared and tested as cocatalyst in the Diels-Alder reactions between cyclopentadiene (CPD) and methyl acrylate, in the presence of several Lewis acids. The catalytic potential of the in situ formed complexes was evaluated based on the reaction yield. Bidentate serine ligands showed good ability to coordinate medium strength Lewis acids, thus boosting their catalytic activity. The synthesis of the L-serine ligands proved to be highly efficient and straightforward. PMID:24383009

  10. Generation of chickens expressing Cre recombinase.

    Science.gov (United States)

    Leighton, Philip A; Pedersen, Darlene; Ching, Kathryn; Collarini, Ellen J; Izquierdo, Shelley; Jacob, Roy; van de Lavoir, Marie-Cecile

    2016-10-01

    Cre recombinase has been extensively used for genome engineering in transgenic mice yet its use in other species has been more limited. Here we describe the generation of transgenic chickens expressing Cre recombinase. Green fluorescent protein (GFP)-positive chicken primordial germ cells were stably transfected with β-actin-Cre-recombinase using phiC31 integrase and transgenic chickens were generated. Cre recombinase activity was verified by mating Cre birds to birds carrying a floxed transgene. Floxed sequences were only excised in offspring from roosters that inherited the Cre recombinase but were excised in all offspring from hens carrying the Cre recombinase irrespective of the presence of the Cre transgene. The Cre recombinase transgenic birds were healthy and reproductively normal. The Cre and GFP genes in two of the lines were closely linked whereas the genes segregated independently in a third line. These founders allowed development of GFP-expressing and non-GFP-expressing Cre recombinase lines. These lines of birds create a myriad of opportunities to study developmentally-regulated and tissue-specific expression of transgenes in chickens.

  11. Initial characterization of the Pf-Int recombinase from the malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Mehdi Ghorbal

    Full Text Available Genetic variation is an essential means of evolution and adaptation in many organisms in response to environmental change. Certain DNA alterations can be carried out by site-specific recombinases (SSRs that fall into two families: the serine and the tyrosine recombinases. SSRs are seldom found in eukaryotes. A gene homologous to a tyrosine site-specific recombinase has been identified in the genome of Plasmodium falciparum. The sequence is highly conserved among five other members of Plasmodia.The predicted open reading frame encodes for a ∼57 kDa protein containing a C-terminal domain including the putative tyrosine recombinase conserved active site residues R-H-R-(H/W-Y. The N-terminus has the typical alpha-helical bundle and potentially a mixed alpha-beta domain resembling that of λ-Int. Pf-Int mRNA is expressed differentially during the P. falciparum erythrocytic life stages, peaking in the schizont stage. Recombinant Pf-Int and affinity chromatography of DNA from genomic or synthetic origin were used to identify potential DNA targets after sequencing or micro-array hybridization. Interestingly, the sequences captured also included highly variable subtelomeric genes such as var, rif, and stevor sequences. Electrophoretic mobility shift assays with DNA were carried out to verify Pf-Int/DNA binding. Finally, Pf-Int knock-out parasites were created in order to investigate the biological role of Pf-Int.Our data identify for the first time a malaria parasite gene with structural and functional features of recombinases. Pf-Int may bind to and alter DNA, either in a sequence specific or in a non-specific fashion, and may contribute to programmed or random DNA rearrangements. Pf-Int is the first molecular player identified with a potential role in genome plasticity in this pathogen. Finally, Pf-Int knock-out parasite is viable showing no detectable impact on blood stage development, which is compatible with such function.

  12. The carboxy-terminal αN helix of the archaeal XerA tyrosine recombinase is a molecular switch to control site-specific recombination.

    Science.gov (United States)

    Serre, Marie-Claude; El Arnaout, Toufic; Brooks, Mark A; Durand, Dominique; Lisboa, Johnny; Lazar, Noureddine; Raynal, Bertrand; van Tilbeurgh, Herman; Quevillon-Cheruel, Sophie

    2013-01-01

    Tyrosine recombinases are conserved in the three kingdoms of life. Here we present the first crystal structure of a full-length archaeal tyrosine recombinase, XerA from Pyrococcus abyssi, at 3.0 Å resolution. In the absence of DNA substrate XerA crystallizes as a dimer where each monomer displays a tertiary structure similar to that of DNA-bound Tyr-recombinases. Active sites are assembled in the absence of dif except for the catalytic Tyr, which is extruded and located equidistant from each active site within the dimer. Using XerA active site mutants we demonstrate that XerA follows the classical cis-cleavage reaction, suggesting rearrangements of the C-terminal domain upon DNA binding. Surprisingly, XerA C-terminal αN helices dock in cis in a groove that, in bacterial tyrosine recombinases, accommodates in trans αN helices of neighbour monomers in the Holliday junction intermediates. Deletion of the XerA C-terminal αN helix does not impair cleavage of suicide substrates but prevents recombination catalysis. We propose that the enzymatic cycle of XerA involves the switch of the αN helix from cis to trans packing, leading to (i) repositioning of the catalytic Tyr in the active site in cis and (ii) dimer stabilisation via αN contacts in trans between monomers.

  13. The carboxy-terminal αN helix of the archaeal XerA tyrosine recombinase is a molecular switch to control site-specific recombination.

    Directory of Open Access Journals (Sweden)

    Marie-Claude Serre

    Full Text Available Tyrosine recombinases are conserved in the three kingdoms of life. Here we present the first crystal structure of a full-length archaeal tyrosine recombinase, XerA from Pyrococcus abyssi, at 3.0 Å resolution. In the absence of DNA substrate XerA crystallizes as a dimer where each monomer displays a tertiary structure similar to that of DNA-bound Tyr-recombinases. Active sites are assembled in the absence of dif except for the catalytic Tyr, which is extruded and located equidistant from each active site within the dimer. Using XerA active site mutants we demonstrate that XerA follows the classical cis-cleavage reaction, suggesting rearrangements of the C-terminal domain upon DNA binding. Surprisingly, XerA C-terminal αN helices dock in cis in a groove that, in bacterial tyrosine recombinases, accommodates in trans αN helices of neighbour monomers in the Holliday junction intermediates. Deletion of the XerA C-terminal αN helix does not impair cleavage of suicide substrates but prevents recombination catalysis. We propose that the enzymatic cycle of XerA involves the switch of the αN helix from cis to trans packing, leading to (i repositioning of the catalytic Tyr in the active site in cis and (ii dimer stabilisation via αN contacts in trans between monomers.

  14. Nucleic acid constructs containing orthogonal site selective recombinases (OSSRs)

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Joshua M.; Anderson, J. Christopher; Dueber, John E.

    2017-08-29

    The present invention provides for a recombinant nucleic acid comprising a nucleotide sequence comprising a plurality of constructs, wherein each construct independently comprises a nucleotide sequence of interest flanked by a pair of recombinase recognition sequences. Each pair of recombinase recognition sequences is recognized by a distinct recombinase. Optionally, each construct can, independently, further comprise one or more genes encoding a recombinase capable of recognizing the pair of recombinase recognition sequences of the construct. The recombinase can be an orthogonal (non-cross reacting), site-selective recombinase (OSSR).

  15. Crystal Structure of Serine Racemase that Produces Neurotransmitter font-variant:small-caps">d-Serine for Stimulation of the NMDA Receptor

    Science.gov (United States)

    Goto, Masaru

    font-variant:small-caps">d-Serine is an endogenous coagonist for the N-methyl-font-variant:small-caps">d-aspartate receptor and is involved in excitatory neurotransmission in the brain. Mammalian pyridoxal 5’-phosphate-dependent serine racemase, which is localized in the mammalian brain, catalyzes the racemization of font-variant:small-caps">l-serine to yield font-variant:small-caps">d-serine and vice versa. We have determined the structures of three forms of the mammalian enzyme homolog from Schizosaccharomyces pombe. Lys57 and Ser82 located on the protein and solvent sides, respectively, with respect to the cofactor plane, are acid-base catalysts that shuttle protons to the substrate. The modified enzyme, which has a unique lysino-font-variant:small-caps">d-alanyl residue at the active site, also binds the substrate serine in the active site, suggesting that the lysino-font-variant:small-caps">d-alanyl residue acts as a catalytic base in the same manner as Lys57 of the wild type enzyme.

  16. Single molecule TPM analysis of the catalytic pentad mutants of Cre and Flp site-specific recombinases: contributions of the pentad residues to the pre-chemical steps of recombination

    Science.gov (United States)

    Fan, Hsiu-Fang; Cheng, Yong-Song; Ma, Chien-Hui; Jayaram, Makkuni

    2015-01-01

    Cre and Flp site-specific recombinase variants harboring point mutations at their conserved catalytic pentad positions were characterized using single molecule tethered particle motion (TPM) analysis. The findings reveal contributions of these amino acids to the pre-chemical steps of recombination. They suggest functional differences between positionally conserved residues in how they influence recombinase-target site association and formation of ‘non-productive’, ‘pre-synaptic’ and ‘synaptic’ complexes. The most striking difference between the two systems is noted for the single conserved lysine. The pentad residues in Cre enhance commitment to recombination by kinetically favoring the formation of pre-synaptic complexes. These residues in Flp serve a similar function by promoting Flp binding to target sites, reducing non-productive binding and/or enhancing the rate of assembly of synaptic complexes. Kinetic comparisons between Cre and Flp, and between their derivatives lacking the tyrosine nucleophile, are consistent with a stronger commitment to recombination in the Flp system. The effect of target site orientation (head-to-head or head-to-tail) on the TPM behavior of synapsed DNA molecules supports the selection of anti-parallel target site alignment prior to the chemical steps. The integrity of the synapse, whose establishment/stability is fostered by strand cleavage in the case of Flp but not Cre, appears to be compromised by the pentad mutations. PMID:25765648

  17. Crystal structure and characterization of a novel L-serine ammonia-lyase from Rhizomucor miehei

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhen [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China); Yan, Qiaojuan [College of Engineering, China Agricultural University, Beijing 100083 (China); Ma, Qingjun [Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Jiang, Zhengqiang, E-mail: zhqjiang@cau.edu.cn [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China)

    2015-10-23

    L-serine ammonia-lyase, as a member of the β-family of pyridoxal-5′-phosphate (PLP) dependent enzymes, catalyzes the conversion of L-serine (L-threonine) to pyruvate (α-ketobutyrate) and ammonia. The crystal structure of L-serine ammonia-lyase from Rhizomucor miehei (RmSDH) was solved at 1.76 Å resolution by X-ray diffraction method. The overall structure of RmSDH had the characteristic β-family PLP dependent enzyme fold. It consisted of two distinct domains, both of which show the typical open twisted α/β structure. A PLP cofactor was located in the crevice between the two domains, which was attached to Lys52 by a Schiff-base linkage. Unique residue substitutions (Gly78, Pro79, Ser146, Ser147 and Thr312) were discovered at the catalytic site of RmSDH by comparison of structures of RmSDH and other reported eukaryotic L-serine ammonia-lyases. Optimal pH and temperature of the purified RmSDH were 7.5 and 40 °C, respectively. It was stable in the pH range of 7.0–9.0 and at temperatures below 40 °C. This is the first crystal structure of a fungal L-serine ammonia-lyase. It will be useful to study the catalytic mechanism of β-elimination enzymes and will provide a basis for further enzyme engineering. - Highlights: • The crystal structure of a fungal L-serine ammonia-lyase (RmSDH) was solved. • Five unique residue substitutions are found at the catalytic site of RmSDH. • RmSDH was expressed in Pichia. pastoris and biochemically characterized. • RmSDH has potential application in splitting D/L-serine.

  18. The identification and biochemical properties of the catalytic specificity of a serine peptidase secreted by Aspergillus fumigatus Fresenius.

    Science.gov (United States)

    da Silva, Ronivaldo Rodrigues; Caetano, Renato Cesar; Okamoto, Debora Nona; de Oliveira, Lilian Caroline Goncalves; Bertolin, Thiago Carlos; Juliano, Maria Aparecida; Juliano, Luiz; de Oliveira, Arthur H C; Rosae, Jose C; Cabral, Hamilton

    2014-07-01

    Aspergillus fumigatus is a saprophytic fungus as well as a so-called opportunist pathogen. Its biochemical potential and enzyme production justify intensive studies about biomolecules secreted by this microorganism. We describe the alkaline serine peptidase production, with optimum activity at 50°C and a pH of 7.5 and a reduction in proteolytic activity in the presence of the Al(+3) ions. When using intramolecularly quenched fluorogenic substrates, the highest catalytic efficiency was observed with the amino acid leucine on subsite S'(3) (60,000 mM(-1)s(-1)) and preference to non-polar amino acids on subsite S(3). In general, however, the peptidase shows non-specificity on other subsites studied. According to the biochemical characteristics, this peptidase may be an important biocatalyst for the hydrolysis of an enormous variety of proteins and can constitute an essential molecule for the saprophytic lifestyle or invasive action of the opportunistic pathogen. The peptidase described herein exhibits an estimated molecular mass of 33 kDa. Mass spectrometry analysis identified the sequence GAPWGLGSISHK displaying similarities to that of serine peptidase from Aspergillus fumigatus. These data may lead to a greater understanding of the advantageous biochemical potential, biotechnological interest, and trends of this fungus in spite of being an opportunist pathogen.

  19. The binding mechanism of a peptidic cyclic serine protease inhibitor

    DEFF Research Database (Denmark)

    Jiang, Longguang; Svane, Anna Sigrid P.; Sørensen, Hans Peter

    2011-01-01

    Serine proteases are classical objects for studies of catalytic and inhibitory mechanisms as well as interesting as therapeutic targets. Since small-molecule serine protease inhibitors generally suffer from specificity problems, peptidic inhibitors, isolated from phage-displayed peptide libraries......, have attracted considerable attention. Here, we have investigated the mechanism of binding of peptidic inhibitors to serine protease targets. Our model is upain-1 (CSWRGLENHRMC), a disulfide-bond-constrained competitive inhibitor of human urokinase-type plasminogen activator with a noncanonical...... inhibitory mechanism and an unusually high specificity. Using a number of modified variants of upain-1, we characterised the upain-1-urokinase-type plasminogen activator complex using X-ray crystal structure analysis, determined a model of the peptide in solution by NMR spectroscopy, and analysed binding...

  20. Cloning and sequence analysis of serine proteinase of Gloydius ussuriensis venom gland

    International Nuclear Information System (INIS)

    Sun Dejun; Liu Shanshan; Yang Chunwei; Zhao Yizhuo; Chang Shufang; Yan Weiqun

    2005-01-01

    Objective: To construct a cDNA library by using mRNA from Gloydius ussuriensis (G. Ussuriensis) venom gland, to clone and analyze serine proteinase gene from the cDNA library. Methods: Total RNA was isolated from venom gland of G. ussuriensis, mRNA was purified by using mRNA isolation Kit. The whole length cDNA was synthesized by means of smart cDNA synthesis strategy, and amplified by long distance PCR procedure, lately cDAN was cloned into vector pBluescrip-sk. The recombinant cDNA was transformed into E. coli DH5α. The cDNA of serine proteinase gene in the venom gland of G. ussuriensis was detected and amplified using the in situ hybridization. The cDNA fragment was inserted into pGEMT vector, cloned and its nucleotide sequence was determined. Results: The capacity of cDNA library of venom gland was above 2.3 x 10 6 . Its open reading frame was composed of 702 nucleotides and coded a protein pre-zymogen of 234 amino acids. It contained 12 cysteine residues. The sequence analysis indicated that the deduced amino acid sequence of the cDNA fragment shared high identity with the thrombin-like enzyme genes of other snakes in the GenBank. the query sequence exhibited strong amino acid sequence homology of 85% to the serine proteas of T. gramineus, thrombin-like serine proteinase I of D. acutus and serine protease catroxase II of C. atrox respectively. Based on the amino acid sequences of other thrombin-like enzymes, the catalytic residues and disulfide bridges of this thrombin-like enzyme were deduced as follows: catalytic residues, His 41 , Asp 86 , Ser 180 ; and six disulfide bridges Cys 7 -Cys 139 , Cys 26 -Cys 42 , Cys 74 -Cys 232 , Cys 118 -Cys 186 , Cys 150 -Cys 165 , Cys 176 -Cys 201 . Conclusion: The capacity of cDNA library of venom gland is above 2.3 x 10 6 , overtop the level of 10 5 capicity. The constructed cDNA library of G. ussuriensis venom gland would be helpful platform to detect new target genes and further gene manipulate. The cloned serine

  1. Conformational flexibility in the catalytic triad revealed by the high-resolution crystal structure of Streptomyces erythraeus trypsin in an unliganded state

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, Elise; Vukoti, Krishna [Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Miyagi, Masaru, E-mail: mxm356@cwru.edu [Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Lodowski, David T., E-mail: mxm356@cwru.edu [Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States)

    2014-03-01

    This work reports the first sub-angstrom resolution structure of S. erythraeus trypsin. The detailed model of a prototypical serine protease at a catalytically relevant pH with an unoccupied active site is presented and is compared with other high-resolution serine protease structures. With more than 500 crystal structures determined, serine proteases make up greater than one-third of all proteases structurally examined to date, making them among the best biochemically and structurally characterized enzymes. Despite the numerous crystallographic and biochemical studies of trypsin and related serine proteases, there are still considerable shortcomings in the understanding of their catalytic mechanism. Streptomyces erythraeus trypsin (SET) does not exhibit autolysis and crystallizes readily at physiological pH; hence, it is well suited for structural studies aimed at extending the understanding of the catalytic mechanism of serine proteases. While X-ray crystallographic structures of this enzyme have been reported, no coordinates have ever been made available in the Protein Data Bank. Based on this, and observations on the extreme stability and unique properties of this particular trypsin, it was decided to crystallize it and determine its structure. Here, the first sub-angstrom resolution structure of an unmodified, unliganded trypsin crystallized at physiological pH is reported. Detailed structural analysis reveals the geometry and structural rigidity of the catalytic triad in the unoccupied active site and comparison to related serine proteases provides a context for interpretation of biochemical studies of catalytic mechanism and activity.

  2. Conformational flexibility in the catalytic triad revealed by the high-resolution crystal structure of Streptomyces erythraeus trypsin in an unliganded state

    International Nuclear Information System (INIS)

    Blankenship, Elise; Vukoti, Krishna; Miyagi, Masaru; Lodowski, David T.

    2014-01-01

    This work reports the first sub-angstrom resolution structure of S. erythraeus trypsin. The detailed model of a prototypical serine protease at a catalytically relevant pH with an unoccupied active site is presented and is compared with other high-resolution serine protease structures. With more than 500 crystal structures determined, serine proteases make up greater than one-third of all proteases structurally examined to date, making them among the best biochemically and structurally characterized enzymes. Despite the numerous crystallographic and biochemical studies of trypsin and related serine proteases, there are still considerable shortcomings in the understanding of their catalytic mechanism. Streptomyces erythraeus trypsin (SET) does not exhibit autolysis and crystallizes readily at physiological pH; hence, it is well suited for structural studies aimed at extending the understanding of the catalytic mechanism of serine proteases. While X-ray crystallographic structures of this enzyme have been reported, no coordinates have ever been made available in the Protein Data Bank. Based on this, and observations on the extreme stability and unique properties of this particular trypsin, it was decided to crystallize it and determine its structure. Here, the first sub-angstrom resolution structure of an unmodified, unliganded trypsin crystallized at physiological pH is reported. Detailed structural analysis reveals the geometry and structural rigidity of the catalytic triad in the unoccupied active site and comparison to related serine proteases provides a context for interpretation of biochemical studies of catalytic mechanism and activity

  3. Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases.

    Science.gov (United States)

    Meziane-Cherif, Djalal; Stogios, Peter J; Evdokimova, Elena; Egorova, Olga; Savchenko, Alexei; Courvalin, Patrice

    2015-08-11

    Vancomycin resistance in Gram-positive bacteria results from the replacement of the D-alanyl-D-alanine target of peptidoglycan precursors with D-alanyl-D-lactate or D-alanyl-D-serine (D-Ala-D-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of D-Ala-D-Ser-terminating precursors by converting L-Ser to D-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in L-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5'-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for the L-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against L-Ser versus L-Ala implied that this enzyme relies on its membrane-bound domain for L-Ser transport to increase the overall rate of d-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria. Vancomycin is one of the drugs of last resort against Gram-positive antibiotic-resistant pathogens. However, bacteria have evolved a sophisticated mechanism which remodels the drug target, the D-alanine ending precursors in cell wall

  4. A new location to split Cre recombinase for protein fragment complementation.

    Science.gov (United States)

    Rajaee, Maryam; Ow, David W

    2017-11-01

    We have previously described a recombinase-mediated gene stacking system in which the Cre recombinase is used to remove lox-site flanked DNA no longer needed after each round of Bxb1 integrase-mediated site-specific integration. The Cre recombinase can be conveniently introduced by hybridization with a cre-expressing plant. However, maintaining an efficient cre-expressing line over many generations can be a problem, as high production of this DNA-binding protein might interfere with normal chromosome activities. To counter this selection against high Cre activity, we considered a split-cre approach, in which Cre activity is reconstituted after separate parts of Cre are brought into the same genome by hybridization. To insure that the recombinase-mediated gene stacking system retains its freedom to operate, we tested for new locations to split Cre into complementing fragments. In this study, we describe testing four new locations for splitting the Cre recombinase for protein fragment complementation and show that the two fragments of Cre split between Lys244 and Asn245 can reconstitute activity that is comparable to that of wild-type Cre. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Spontaneous recombinase activity of Cre-ERT2 in vivo.

    Science.gov (United States)

    Kristianto, Jasmin; Johnson, Michael G; Zastrow, Ryley K; Radcliff, Abigail B; Blank, Robert D

    2017-06-01

    Inducible Cre-ERT recombinase technology is widely used for gene targeting studies. The second generation of inducible Cre-ERT recombinase, hemizygous B6.129S-Tg(UBC-cre/ERT2)1Ejb/J (hereafter abbreviated as Cre-ERT2), a fusion of a mutated estrogen receptor and Cre recombinase, was engineered to be more efficient and specific than the original Cre-ERT. The putative mechanism of selective Cre-mediated recombination is Cre sequestration in the cytoplasm in the basal state with translocation to the nucleus only in the presence of tamoxifen. We utilized both a reporter mouse (B6.129 (Cg)-Gt(ROSA)26Sor tm4(ACTB-tdTomato,-EGFP)Luo /J) and endothelin converting enzyme-1 floxed transgenic mouse line to evaluate Cre-ERT2 activity. We observed spontaneous Cre activity in both settings. Unintended Cre activity is a confounding factor that has a potentially large impact on data interpretation. Thus, it is important to consider background Cre activity in experimental design.

  6. Structural investigations of the active-site mutant Asn156Ala of outer membrane phospholipase A: Function of the Asn-His interaction in the catalytic triad

    NARCIS (Netherlands)

    Snijder, H.J.; van Eerde, J.H.; Kalk, K.H.; Dekker, N.; Egmond, M.R.; Dijkstra, B.W.

    2010-01-01

    Outer membrane phospholipase A (OMPLA) from Escherichia coli is an integral-membrane enzyme with a unique His-Ser-Asn catalytic triad. In serine proteases and serine esterases usually an Asp occurs in the catalytic triad; its role has been the subject of much debate. Here the role of the uncharged

  7. Homologous Recombination in Protozoan Parasites and Recombinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Andrew A. Kelso

    2017-09-01

    Full Text Available Homologous recombination (HR is a DNA double-strand break (DSB repair pathway that utilizes a homologous template to fully repair the damaged DNA. HR is critical to maintain genome stability and to ensure genetic diversity during meiosis. A specialized class of enzymes known as recombinases facilitate the exchange of genetic information between sister chromatids or homologous chromosomes with the help of numerous protein accessory factors. The majority of the HR machinery is highly conserved among eukaryotes. In many protozoan parasites, HR is an essential DSB repair pathway that allows these organisms to adapt to environmental conditions and evade host immune systems through genetic recombination. Therefore, small molecule inhibitors, capable of disrupting HR in protozoan parasites, represent potential therapeutic options. A number of small molecule inhibitors were identified that disrupt the activities of the human recombinase RAD51. Recent studies have examined the effect of two of these molecules on the Entamoeba recombinases. Here, we discuss the current understandings of HR in the protozoan parasites Trypanosoma, Leishmania, Plasmodium, and Entamoeba, and we review the small molecule inhibitors known to disrupt human RAD51 activity.

  8. Modulation of Escherichia coli serine acetyltransferase catalytic activity in the cysteine synthase complex

    Czech Academy of Sciences Publication Activity Database

    Benoni, Roberto; De Bei, O.; Paredi, G.; Hayes, C. S.; Franko, N.; Mozzarelli, A.; Bettati, S.; Campanini, B.

    2017-01-01

    Roč. 591, č. 9 (2017), s. 1212-1224 ISSN 0014-5793 Institutional support: RVO:61388963 Keywords : cysteine synthase * protein - protein interaction * serine acetyltransferase Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.623, year: 2016

  9. Conserved amino acid motifs from the novel Piv/MooV family of transposases and site-specific recombinases are required for catalysis of DNA inversion by Piv.

    Science.gov (United States)

    Tobiason, D M; Buchner, J M; Thiel, W H; Gernert, K M; Karls, A C

    2001-02-01

    Piv, a site-specific invertase from Moraxella lacunata, exhibits amino acid homology with the transposases of the IS110/IS492 family of insertion elements. The functions of conserved amino acid motifs that define this novel family of both transposases and site-specific recombinases (Piv/MooV family) were examined by mutagenesis of fully conserved amino acids within each motif in Piv. All Piv mutants altered in conserved residues were defective for in vivo inversion of the M. lacunata invertible DNA segment, but competent for in vivo binding to Piv DNA recognition sequences. Although the primary amino acid sequences of the Piv/MooV recombinases do not contain a conserved DDE motif, which defines the retroviral integrase/transposase (IN/Tnps) family, the predicted secondary structural elements of Piv align well with those of the IN/Tnps for which crystal structures have been determined. Molecular modelling of Piv based on these alignments predicts that E59, conserved as either E or D in the Piv/MooV family, forms a catalytic pocket with the conserved D9 and D101 residues. Analysis of Piv E59G confirms a role for E59 in catalysis of inversion. These results suggest that Piv and the related IS110/IS492 transposases mediate DNA recombination by a common mechanism involving a catalytic DED or DDD motif.

  10. Excision of HIV-1 proviral DNA by recombinant cell permeable tre-recombinase.

    Directory of Open Access Journals (Sweden)

    Lakshmikanth Mariyanna

    Full Text Available Over the previous years, comprehensive studies on antiretroviral drugs resulted in the successful introduction of highly active antiretroviral therapy (HAART into clinical practice for treatment of HIV/AIDS. However, there is still need for new therapeutic approaches, since HAART cannot eradicate HIV-1 from the infected organism and, unfortunately, can be associated with long-term toxicity and the development of drug resistance. In contrast, novel gene therapy strategies may have the potential to reverse the infection by eradicating HIV-1. For example, expression of long terminal repeat (LTR-specific recombinase (Tre-recombinase has been shown to result in chromosomal excision of proviral DNA and, in consequence, in the eradication of HIV-1 from infected cell cultures. However, the delivery of Tre-recombinase currently depends on the genetic manipulation of target cells, a process that is complicating such therapeutic approaches and, thus, might be undesirable in a clinical setting. In this report we demonstrate that E.coli expressed Tre-recombinases, tagged either with the protein transduction domain (PTD from the HIV-1 Tat trans-activator or the translocation motif (TLM of the Hepatitis B virus PreS2 protein, were able to translocate efficiently into cells and showed significant recombination activity on HIV-1 LTR sequences. Tre activity was observed using episomal and stable integrated reporter constructs in transfected HeLa cells. Furthermore, the TLM-tagged enzyme was able to excise the full-length proviral DNA from chromosomal integration sites of HIV-1-infected HeLa and CEM-SS cells. The presented data confirm Tre-recombinase activity on integrated HIV-1 and provide the basis for the non-genetic transient application of engineered recombinases, which may be a valuable component of future HIV eradication strategies.

  11. Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease.

    Directory of Open Access Journals (Sweden)

    Lior Doron

    Full Text Available Fusobacterium nucleatum is an oral anaerobe associated with periodontal disease, adverse pregnancy outcomes and colorectal carcinoma. A serine endopeptidase of 61-65 kDa capable of damaging host tissue and of inactivating immune effectors was detected previously in F. nucleatum. Here we describe the identification of this serine protease, named fusolisin, in three oral F. nucleatum sub-species. Gel zymogram revealed fusobacterial proteolytic activity with molecular masses ranging from 55-101 kDa. All of the detected proteases were inhibited by the serine protease inhibitor PMSF. analysis revealed that all of the detected proteases are encoded by genes encoding an open reading frame (ORF with a calculated mass of approximately 115 kDa. Bioinformatics analysis of the identified ORFs demonstrated that they consist of three domains characteristic of autotransporters of the type Va secretion system. Our results suggest that the F. nucleatum fusolisins are derived from a precursor of approximately 115 kDa. After crossing the cytoplasmic membrane and cleavage of the leader sequence, the C-terminal autotransporter domain of the remaining 96-113 kDa protein is embedded in the outer membrane and delivers the N-terminal S8 serine protease passenger domain to the outer cell surface. In most strains the N-terminal catalytic 55-65 kDa domain self cleaves and liberates itself from the autotransporter domain after its transfer across the outer cell membrane. In F. nucleatum ATCC 25586 this autocatalytic activity is less efficient resulting in a full length membrane-anchored serine protease. The mature serine protease was found to cleave after Thr, Gly, Ala and Leu residues at the P1 position. Growth of F. nucleatum in complex medium was inhibited when serine protease inhibitors were used. Additional experiments are needed to determine whether fusolisin might be used as a target for controlling fusobacterial infections.

  12. Structure Determination of Mycobacterium tuberculosis Serine Protease Hip1 (Rv2224c)

    Energy Technology Data Exchange (ETDEWEB)

    Naffin-Olivos, Jacqueline L.; Daab, Andrew; White, Andre; Goldfarb, Nathan E.; Milne, Amy C.; Liu, Dali; Baikovitz, Jacqueline; Dunn, Ben M.; Rengarajan, Jyothi; Petsko, Gregory A.; Ringe, Dagmar

    2017-04-07

    The Mycobacterium tuberculosis (Mtb) serine protease Hip1 (hydrolase important for pathogenesis; Rv2224c) promotes tuberculosis (TB) pathogenesis by impairing host immune responses through proteolysis of a protein substrate, Mtb GroEL2. The cell surface localization of Hip1 and its immunomodulatory functions make Hip1 a good drug target for new adjunctive immune therapies for TB. Here, we report the crystal structure of Hip1 to a resolution of 2.6 Å and the kinetic studies of the enzyme against model substrates and the protein GroEL2. The structure shows a two-domain protein, one of which contains the catalytic residues that are the signature of a serine protease. Surprisingly, a threonine is located within the active site close enough to hydrogen bond with the catalytic residues Asp463 and His490. Mutation of this residue, Thr466, to alanine established its importance for function. Our studies provide insights into the structure of a member of a novel family of proteases. Knowledge of the Hip1 structure will aid in designing inhibitors that could block Hip1 activity

  13. Phosphorylation of mouse serine racemase regulates D-serine synthesis

    DEFF Research Database (Denmark)

    Foltyn, Veronika N; Zehl, Martin; Dikopoltsev, Elena

    2010-01-01

    Serine racemase (SR) catalyses the synthesis of the transmitter/neuromodulator D-serine, which plays a major role in synaptic plasticity and N-methyl D-aspartate receptor neurotoxicity. We now report that SR is phosphorylated at Thr71 and Thr227 as revealed by mass spectrometric analysis and in v...... with a phosphorylation-deficient SR mutant indicate that Thr71 phosphorylation increases SR activity, suggesting a novel mechanism for regulating D-serine production....

  14. Enzymatic engineering of the porcine genome with transposons and recombinases

    Directory of Open Access Journals (Sweden)

    Carlson Daniel F

    2007-07-01

    Full Text Available Abstract Background Swine is an important agricultural commodity and biomedical model. Manipulation of the pig genome provides opportunity to improve production efficiency, enhance disease resistance, and add value to swine products. Genetic engineering can also expand the utility of pigs for modeling human disease, developing clinical treatment methodologies, or donating tissues for xenotransplantation. Realizing the full potential of pig genetic engineering requires translation of the complete repertoire of genetic tools currently employed in smaller model organisms to practical use in pigs. Results Application of transposon and recombinase technologies for manipulation of the swine genome requires characterization of their activity in pig cells. We tested four transposon systems- Sleeping Beauty, Tol2, piggyBac, and Passport in cultured porcine cells. Transposons increased the efficiency of DNA integration up to 28-fold above background and provided for precise delivery of 1 to 15 transgenes per cell. Both Cre and Flp recombinase were functional in pig cells as measured by their ability to remove a positive-negative selection cassette from 16 independent clones and over 20 independent genomic locations. We also demonstrated a Cre-dependent genetic switch capable of eliminating an intervening positive-negative selection cassette and activating GFP expression from episomal and genome-resident transposons. Conclusion We have demonstrated for the first time that transposons and recombinases are capable of mobilizing DNA into and out of the porcine genome in a precise and efficient manner. This study provides the basis for developing transposon and recombinase based tools for genetic engineering of the swine genome.

  15. Serine biosynthesis and transport defects.

    Science.gov (United States)

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Single-Molecule Tethered Particle Motion: Stepwise Analyses of Site-Specific DNA Recombination

    Directory of Open Access Journals (Sweden)

    Hsiu-Fang Fan

    2018-05-01

    Full Text Available Tethered particle motion/microscopy (TPM is a biophysical tool used to analyze changes in the effective length of a polymer, tethered at one end, under changing conditions. The tether length is measured indirectly by recording the Brownian motion amplitude of a bead attached to the other end. In the biological realm, DNA, whose interactions with proteins are often accompanied by apparent or real changes in length, has almost exclusively been the subject of TPM studies. TPM has been employed to study DNA bending, looping and wrapping, DNA compaction, high-order DNA–protein assembly, and protein translocation along DNA. Our TPM analyses have focused on tyrosine and serine site-specific recombinases. Their pre-chemical interactions with DNA cause reversible changes in DNA length, detectable by TPM. The chemical steps of recombination, depending on the substrate and the type of recombinase, may result in a permanent length change. Single molecule TPM time traces provide thermodynamic and kinetic information on each step of the recombination pathway. They reveal how mechanistically related recombinases may differ in their early commitment to recombination, reversibility of individual steps, and in the rate-limiting step of the reaction. They shed light on the pre-chemical roles of catalytic residues, and on the mechanisms by which accessory proteins regulate recombination directionality.

  17. Human mast cell tryptase: Multiple cDNAs and genes reveal a multigene serine protease family

    International Nuclear Information System (INIS)

    Vanderslice, P.; Ballinger, S.M.; Tam, E.K.; Goldstein, S.M.; Craik, C.S.; Caughey, G.H.

    1990-01-01

    Three different cDNAs and a gene encoding human skin mast cell tryptase have been cloned and sequenced in their entirety. The deduced amino acid sequences reveal a 30-amino acid prepropeptide followed by a 245-amino acid catalytic domain. The C-terminal undecapeptide of the human preprosequence is identical in dog tryptase and appears to be part of a prosequence unique among serine proteases. The differences among the three human tryptase catalytic domains include the loss of a consensus N-glycosylation site in one cDNA, which may explain some of the heterogeneity in size and susceptibility to deglycosylation seen in tryptase preparations. All three tryptase cDNAs are distinct from a recently reported cDNA obtained from a human lung mast cell library. A skin tryptase cDNA was used to isolate a human tryptase gene, the exons of which match one of the skin-derived cDNAs. The organization of the ∼1.8-kilobase-pair tryptase gene is unique and is not closely related to that of any other mast cell or leukocyte serine protease. The 5' regulatory regions of the gene share features with those of other serine proteases, including mast cell chymase, but are unusual in being separated from the protein-coding sequence by an intron. High-stringency hybridization of a human genomic DNA blot with a fragment of the tryptase gene confirms the presence of multiple tryptase genes. These findings provide genetic evidence that human mast cell tryptases are the products of a multigene family

  18. Phosphorylation of SAF-A/hnRNP-U Serine 59 by Polo-Like Kinase 1 Is Required for Mitosis.

    Science.gov (United States)

    Douglas, Pauline; Ye, Ruiqiong; Morrice, Nicholas; Britton, Sébastien; Trinkle-Mulcahy, Laura; Lees-Miller, Susan P

    2015-08-01

    Scaffold attachment factor A (SAF-A), also called heterogenous nuclear ribonuclear protein U (hnRNP-U), is phosphorylated on serine 59 by the DNA-dependent protein kinase (DNA-PK) in response to DNA damage. Since SAF-A, DNA-PK catalytic subunit (DNA-PKcs), and protein phosphatase 6 (PP6), which interacts with DNA-PKcs, have all been shown to have roles in mitosis, we asked whether DNA-PKcs phosphorylates SAF-A in mitosis. We show that SAF-A is phosphorylated on serine 59 in mitosis, that phosphorylation requires polo-like kinase 1 (PLK1) rather than DNA-PKcs, that SAF-A interacts with PLK1 in nocodazole-treated cells, and that serine 59 is dephosphorylated by protein phosphatase 2A (PP2A) in mitosis. Moreover, cells expressing SAF-A in which serine 59 is mutated to alanine have multiple characteristics of aberrant mitoses, including misaligned chromosomes, lagging chromosomes, polylobed nuclei, and delayed passage through mitosis. Our findings identify serine 59 of SAF-A as a new target of both PLK1 and PP2A in mitosis and reveal that both phosphorylation and dephosphorylation of SAF-A serine 59 by PLK1 and PP2A, respectively, are required for accurate and timely exit from mitosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Using the Textpresso Site-Specific Recombinases Web server to identify Cre expressing mouse strains and floxed alleles.

    Science.gov (United States)

    Condie, Brian G; Urbanski, William M

    2014-01-01

    Effective tools for searching the biomedical literature are essential for identifying reagents or mouse strains as well as for effective experimental design and informed interpretation of experimental results. We have built the Textpresso Site Specific Recombinases (Textpresso SSR) Web server to enable researchers who use mice to perform in-depth searches of a rapidly growing and complex part of the mouse literature. Our Textpresso Web server provides an interface for searching the full text of most of the peer-reviewed publications that report the characterization or use of mouse strains that express Cre or Flp recombinase. The database also contains most of the publications that describe the characterization or analysis of strains carrying conditional alleles or transgenes that can be inactivated or activated by site-specific recombinases such as Cre or Flp. Textpresso SSR complements the existing online databases that catalog Cre and Flp expression patterns by providing a unique online interface for the in-depth text mining of the site specific recombinase literature.

  20. Traceless splicing enabled by substrate-induced activation of the Nostoc punctiforme Npu DnaE intein after mutation of a catalytic cysteine to serine.

    Science.gov (United States)

    Cheriyan, Manoj; Chan, Siu-Hong; Perler, Francine

    2014-12-12

    Inteins self-catalytically cleave out of precursor proteins while ligating the surrounding extein fragments with a native peptide bond. Much attention has been lavished on these molecular marvels with the hope of understanding and harnessing their chemistry for novel biochemical transformations including coupling peptides from synthetic or biological origins and controlling protein function. Despite an abundance of powerful applications, the use of inteins is still hampered by limitations in our understanding of their specificity (defined as flanking sequences that permit splicing) and the challenge of inserting inteins into target proteins. We examined the frequently used Nostoc punctiforme Npu DnaE intein after the C-extein cysteine nucleophile (Cys+1) was mutated to serine or threonine. Previous studies demonstrated reduced rates and/or splicing yields with the Npu DnaE intein after mutation of Cys+1 to Ser+1. In this study, genetic selection identified extein sequences with Ser+1 that enabled the Npu DnaE intein to splice with only a 5-fold reduction in rate compared to the wild-type Cys+1 intein and without mutation of the intein itself to activate Ser+1 as a nucleophile. Three different proteins spliced efficiently after insertion of the intein flanked by the selected sequences. We then used this selected specificity to achieve traceless splicing in a targeted enzyme at a location predicted by primary sequence similarity to only the selected C-extein sequence. This study highlights the latent catalytic potential of the Npu DnaE intein to splice with an alternative nucleophile and enables broader intein utility by increasing insertion site choices. Copyright © 2014. Published by Elsevier Ltd.

  1. Structure of a hexameric form of RadA recombinase from Methanococcus voltae

    International Nuclear Information System (INIS)

    Du, Liqin; Luo, Yu

    2012-01-01

    Hexameric rings of RadA recombinase from M. voltae have been crystallized. Structural comparisons suggest that homologues of RadA tend to form double-ringed assemblies. Archaeal RadA proteins are close homologues of eukaryal Rad51 and DMC1 proteins and are remote homologues of bacterial RecA proteins. For the repair of double-stranded breaks in DNA, these recombinases promote a pivotal strand-exchange reaction between homologous single-stranded and double-stranded DNA substrates. This DNA-repair function also plays a key role in the resistance of cancer cells to chemotherapy and radiotherapy and in the resistance of bacterial cells to antibiotics. A hexameric form of a truncated Methanococcus voltae RadA protein devoid of its small N-terminal domain has been crystallized. The RadA hexamers further assemble into two-ringed assemblies. Similar assemblies can be observed in the crystals of Pyrococcus furiosus RadA and Homo sapiens DMC1. In all of these two-ringed assemblies the DNA-interacting L1 region of each protomer points inward towards the centre, creating a highly positively charged locus. The electrostatic characteristics of the central channels can be utilized in the design of novel recombinase inhibitors

  2. Influence of Microheterogeneous Environments of Sodium Dodecyl Sulfate on the Kinetics of Oxidation of l-Serine by Chloro and Chlorohydroxo Complexes of Gold(III).

    Science.gov (United States)

    Maiti, Krishnendu; Sen, Pratik K; Barik, Anil K; Pal, Biswajit

    2018-06-21

    The oxidation of l-serine by chloro and chlorohydroxo complexes of gold(III) was spectrophotometrically investigated in acidic buffer media in the absence and presence of the anionic surfactant sodium dodecyl sulfate (SDS). The oxidation rate decreases with increase in either [H + ] or [Cl - ]. Gold(III) complex species react with the zwitterionic form of serine to yield acetaldehyde (principal reaction product) through oxidative decarboxylation and subsequent deamination processes. A reaction pathway involving one electron transfer from serine to Au(III) followed by homolytic cleavage of α-C-C bond with the concomitant formation of iminic cation intermediate has been proposed where Au(III) is initially reduced to Au(II). The surfactant in the submicellar region exhibits a catalytic effect on the reaction rate at [SDS] ≤ 4 mM; however, in the postmicellar region an inhibitory effect was prominent at [SDS] ≥ 4 mM. The catalytic effect below the critical micelle concentration (cmc) may be attributable to the electrostatic attraction between serine and SDS that, in turn, enhances the nucleophilicity of the carboxylate ion of the amino acid. The inhibition effect beyond cmc has been explained by considering the distribution of the reactant species between the aqueous and the micellar pseudophases that restricts the close association of the reactant species. The thermodynamic parameters Δ H 0 and Δ S 0 associated with the binding between serine and SDS micelle were calculated to be -14.4 ± 2 kJ mol -1 and -6.3 ± 0.5 J K -1 mol -1 , respectively. Water structure rearrangement and micelle-substrate binding play instrumental roles during the transfer of the reactant species from aqueous to micellar pseudophase.

  3. Method for the production of l-serine using genetically engineered microorganisms deficient in serine degradation pathways

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the microbiological industry, and specifically to the production of L-serine using genetically modified bacteria. The present invention provides genetically modified microorganisms, such as bacteria, wherein the expression of genes encoding for enzymes...... concentrations of serine. The present invention also provides methods for the production of L-serine or L-serine derivative using such genetically modified microorganisms....

  4. Neonatal disruption of serine racemase causes schizophrenia-like behavioral abnormalities in adulthood: clinical rescue by d-serine.

    Directory of Open Access Journals (Sweden)

    Hiroko Hagiwara

    Full Text Available D-Serine, an endogenous co-agonist of the N-methyl-D-aspartate (NMDA receptor, is synthesized from L-serine by serine racemase (SRR. Given the role of D-serine in both neurodevelopment and the pathophysiology of schizophrenia, we examined whether neonatal disruption of D-serine synthesis by SRR inhibition could induce behavioral abnormalities relevant to schizophrenia, in later life.Neonatal mice (7-9 days were injected with vehicle or phenazine methosulfate (Met-Phen: 3 mg/kg/day, an SRR inhibitor. Behavioral evaluations, such as spontaneous locomotion, novel object recognition test (NORT, and prepulse inhibition (PPI were performed at juvenile (5-6 weeks old and adult (10-12 weeks old stages. In addition, we tested the effects of D-serine on PPI deficits in adult mice after neonatal Met-Phen exposure. Finally, we assessed whether D-serine could prevent the onset of schizophrenia-like behavior in these mice. Neonatal Met-Phen treatment reduced D-serine levels in the brain, 24 hours after the final dose. Additionally, this treatment caused behavioral abnormalities relevant to prodromal symptoms in juveniles and to schizophrenia in adults. A single dose of D-serine improved PPI deficits in adult mice. Interestingly, chronic administration of D-serine (900 mg/kg/day from P35 to P70 significantly prevented the onset of PPI deficits after neonatal Met-Phen exposure.This study shows that disruption of D-serine synthesis during developmental stages leads to behavioral abnormalities relevant to prodromal symptoms and schizophrenia, in later life. Furthermore, early pharmacological intervention with D-serine may prevent the onset of psychosis in adult.

  5. Appearance and distribution of regioisomers in metallo- and serine-protease-catalysed acylation of sucrose in N,N-dimethylformamide

    DEFF Research Database (Denmark)

    Lie, Aleksander; Meyer, Anne S.; Pedersen, Lars Haastrup

    2014-01-01

    laurate was obtained in yields from 12 to 53% after 48 h under different catalytic conditions. The serine protease ALP-901, derived from a Streptomyces sp., produced the highest yield at this reaction time, while reaction with the zinc-protease thermolysin achieved the overall highest yield (63%) after 6...

  6. Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Toume, Moeko; Tani, Motohiro

    2014-09-01

    Syringomycin E is a cyclic lipodepsipeptide produced by strains of the plant bacterium Pseudomonas syringae pv. syringae. Genetic studies involving the yeast Saccharomyces cerevisiae have revealed that complex sphingolipids play important roles in the action of syringomycin E. Here, we found a novel mutation that confers resistance to syringomycin E on yeast; that is, a deletion mutant of ORM1 and ORM2, which encode negative regulators of serine palmitoyltransferase catalyzing the initial step of sphingolipid biosynthesis, exhibited resistance to syringomycin E. On the contrary, overexpression of Orm2 resulted in high sensitivity to the toxin. Moreover, overexpression of Lcb1 and Lcb2, catalytic subunits of serine palmitoyltransferase, causes resistance to the toxin, whereas partial repression of expression of Lcb1 had the opposite effect. Partial reduction of complex sphingolipids by repression of expression of Aur1, an inositol phosphorylceramide synthase, also resulted in high sensitivity to the toxin. These results suggested that an increase in sphingolipid biosynthesis caused by a change in the activity of serine palmitoyltransferase causes resistance to syringomycin E. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Cre recombinase expression can result in phenotypic aberrations in plants

    NARCIS (Netherlands)

    Coppoolse, E.; Vroomen, de M.J.; Roelofs, D.; Smit, J.; Gennip, van F.; Hersmus, B.J.M.; Nijkamp, H.J.J.; Haaren, van M.J.

    2003-01-01

    The cre recombinase gene was stably introduced and expressed in tomato, petunia and Nicotiana tabacum. Some plants expressing the cre gene driven by a CaMV 35S promoter displayed growth retardation and a distinct pattern of chlorosis in their leaves. Although no direct relation can be proven between

  8. Cre recombinase expression can result in phenotypic aberrations in plants

    NARCIS (Netherlands)

    Coppoolse, Eric R; de Vroomen, Marianne J; Roelofs, Dick; Smit, Jaap; van Gennip, Femke; Hersmus, Bart J M; Nijkamp, H John J; van Haaren, Mark J J

    The cre recombinase gene was stably introduced and expressed in tomato, petunia and Nicotiana tabacum. Some plants expressing the cre gene driven by a CaMV 35S promoter displayed growth retardation and a distinct pattern of chlorosis in their leaves. Although no direct relation can be proven between

  9. Marker Removal in Transgenic Plants Using Cre Recombinase Delivered with Potato Virus X.

    Science.gov (United States)

    Kopertekh, Lilya; Schiemann, Joachim

    2017-01-01

    In this chapter we present an alternative method to develop marker-free transgenic plants. It makes use of the Cre/loxP recombination system from bacteriophage P1 and consists of two essential components. The first component is the transgenic plant containing a loxP-flanked marker gene. The second component is a cre transient expression vector based on potato virus X. The great benefit of this transient delivery method consists in the avoidance of stable integration of the cre recombinase gene into the plant genome. Upon infection of the loxP-target plant with PVX-Cre, the virus spreads systemically through the plant and causes the recombinase-mediated excision of the marker gene. Marker-free transgenic loci can be transmitted to the progeny by plant regeneration from PVX-Cre systemically infected leaves or self-pollination of virus-infected plants. The protocol covers generation of loxP-target transgenic plants, PVX-mediated delivery of Cre recombinase protein, phenotypic and molecular analysis of recombination events, and transmission of marker-free transgenic loci to the next generation. The transient expression system described in this chapter can be adapted for marker gene removal in other plant species that are amenable for virus infection.

  10. Structure of XC6422 from Xanthomonas campestris at 1.6 Å resolution: a small serine α/β-hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chao-Yu; Chin, Ko-Hsin [Institute of Biochemistry, National Chung-Hsing University, Taichung 40227,Taiwan (China); Chou, Chia-Cheng; Wang, Andrew H.-J. [Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei,Taiwan (China); Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei,Taiwan (China); Chou, Shan-Ho, E-mail: shchou@nchu.edu.tw [Institute of Biochemistry, National Chung-Hsing University, Taichung 40227,Taiwan (China)

    2006-06-01

    The crystal structure of a conserved hypothetical protein from X. campestris has been determined to a resolution of 1.6 Å. The determined X. campestris structure shows that it belongs to the superfamily of serine α/β hydrolase, with an extra strand preceding the first β-strand to lead to extensive subunit interactions in the crystal. XC6422 is a conserved hypothetical protein from Xanthomonas campestris pathovar campestris (Xcc), a Gram-negative yellow-pigmented pathogenic bacterium that causes black rot, one of the major worldwide diseases of cruciferous crops. The protein consists of 220 amino acids and its structure has been determined to 1.6 Å resolution using the multi-wavelength anomalous dispersion (MAD) method. Although it has very low sequence identity to protein sequences in the PDB (less than 20%), the determined structure nevertheless shows that it belongs to the superfamily of serine α/β-hydrolases, with an active site that is fully accessible to solvent owing to the absence of a lid domain. Modelling studies with the serine esterase inhibitor E600 indicate that XC6422 adopts a conserved Ser-His-Asp catalytic triad common to this superfamily and has a preformed oxyanion hole for catalytic activation. These structural features suggest that XC6422 is most likely to be a hydrolase active on a soluble ester or a small lipid. An extra strand preceding the first β-strand in the canonical α/β-hydrolase fold leads to extensive subunit interactions between XC6422 monomers, which may explain why XC6422 crystals of good diffraction quality can grow to dimensions of up to 1.5 mm in a few days.

  11. Glycine serine interconversion in the rooster

    International Nuclear Information System (INIS)

    Sugahara, Michihiro; Kandatsu, Makoto

    1976-01-01

    Serine was isolated by the column chromatography from the hydrolyzates of proteins of the serum, the liver and the pectoral muscle which were obtained from the roosters fed a diet containing 2- 14 C glycine for 16 - 17 days. The carbon chain of serine was cut off by treating with sodium periodate. The specific activity of each carbon (as barium carbonate) was estimated. Carboxyl carbon had little radioactivity. The specific activity of hydroxymethyl carbon was 10 - 19% of that of methylene carbon. Glycine isolated from the same hydrolyzates was degraded by ninhydrin oxidation. Formaldehyde produced from 2-C was oxidized to carbon dioxide by treating with mercuric chloride. Carboxyl carbon had little radioactivity. The specific activities of 2-C of glycine and 2-C of serine in the same tissue protein were compared. The ratio of serine 2-C/glycine 2-C was between 0.7 - 1.5. These results seem to indicate that glycine directly converts to serine in the rooster. The quantitative significance of the pathways of glycine (serine) biosynthesis is discussed. (auth.)

  12. D-serine increases adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Sebastien eSultan

    2013-08-01

    Full Text Available Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. The neurogenic niche regulates the stem cell proliferation and the differentiation and survival of new neurons and a major contributor to the neurogenic niche are astrocytes. Among the molecules secreted by astrocytes, D-serine is an important gliotransmitter and is a co-agonist of the glutamate, N-methyl-D-aspartate (NMDA receptor. D-serine has been shown to enhance the proliferation of neural stem cells in vitro, but its effect on adult neurogenesis in vivo is unknown. Here, we tested the effect of exogenous administration of D-serine on adult neurogenesis in the mouse dentate gyrus. We found that 1 week of treatment with D-serine increased cell proliferation in vivo and in vitro and increased the density of neural stem cells and transit amplifying progenitors. Furthermore, D-serine increased the survival of newborn neurons. Together, these results indicate that D-serine treatment resulted in the improvement of several steps of adult neurogenesis in vivo.

  13. Sphingoid bases and the serine catabolic enzyme CHA1 define a novel feedforward/feedback mechanism in the response to serine availability.

    Science.gov (United States)

    Montefusco, David J; Newcomb, Benjamin; Gandy, Jason L; Brice, Sarah E; Matmati, Nabil; Cowart, L Ashley; Hannun, Yusuf A

    2012-03-16

    Targets of bioactive sphingolipids in Saccharomyces cerevisiae were previously identified using microarray experiments focused on sphingolipid-dependent responses to heat stress. One of these heat-induced genes is the serine deamidase/dehydratase Cha1 known to be regulated by increased serine availability. This study investigated the hypothesis that sphingolipids may mediate the induction of Cha1 in response to serine availability. The results showed that inhibition of de novo synthesis of sphingolipids, pharmacologically or genetically, prevented the induction of Cha1 in response to increased serine availability. Additional studies implicated the sphingoid bases phytosphingosine and dihydrosphingosine as the likely mediators of Cha1 up-regulation. The yeast protein kinases Pkh1 and Pkh2, known sphingoid base effectors, were found to mediate CHA1 up-regulation via the transcription factor Cha4. Because the results disclosed a role for sphingolipids in negative feedback regulation of serine metabolism, we investigated the effects of disrupting this mechanism on sphingolipid levels and on cell growth. Intriguingly, exposure of the cha1Δ strain to high serine resulted in hyperaccumulation of endogenous serine and in turn a significant accumulation of sphingoid bases and ceramides. Under these conditions, the cha1Δ strain displayed a significant growth defect that was sphingolipid-dependent. Together, this work reveals a feedforward/feedback loop whereby the sphingoid bases serve as sensors of serine availability and mediate up-regulation of Cha1 in response to serine availability, which in turn regulates sphingolipid levels by limiting serine accumulation.

  14. Understanding serine proteases implications on Leishmania spp lifecycle.

    Science.gov (United States)

    Alves, Carlos Roberto; Souza, Raquel Santos de; Charret, Karen Dos Santos; Côrtes, Luzia Monteiro de Castro; Sá-Silva, Matheus Pereira de; Barral-Veloso, Laura; Oliveira, Luiz Filipe Gonçalves; da Silva, Franklin Souza

    2018-01-01

    Serine proteases have significant functions over a broad range of relevant biological processes to the Leishmania spp lifecycle. Data gathered here present an update on the Leishmania spp serine proteases and the status of these enzymes as part of the parasite degradome. The serine protease genes (n = 26 to 28) in Leishmania spp, which encode proteins with a wide range of molecular masses (35 kDa-115 kDa), are described along with their degrees of chromosomal and allelic synteny. Amid 17 putative Leishmania spp serine proteases, only ∼18% were experimentally demonstrated, as: signal peptidases that remove the signal peptide from secretory pre-proteins, maturases of other proteins and with metacaspase-like activity. These enzymes include those of clans SB, SC and SF. Classical inhibitors of serine proteases are used as tools for the characterization and investigation of Leishmania spp. Endogenous serine protease inhibitors, which are ecotin-like, can act modulating host actions. However, crude or synthetic based-natural serine protease inhibitors, such as potato tuber extract, Stichodactyla helianthus protease inhibitor I, fukugetin and epoxy-α-lapachone act on parasitic serine proteases and are promising leishmanicidal agents. The functional interrelationship between serine proteases and other Leishmania spp proteins demonstrate essential functions of these enzymes in parasite physiology and therefore their value as targets for leishmaniasis treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Increased tolerance towards serine obtained by adaptive laboratory evolution

    DEFF Research Database (Denmark)

    Mundhada, Hemanshu; Seoane, Jose Miguel; Koza, Anna

    2014-01-01

    The amino acid serine has previously been identified as one of the top 30 candidates of value added chemicals, making the production of serine from glucose attractive. Production of serine have previously been attempted in E. coli and C. glutamicum, however, titers sufficient for commercial...... by glyA), the conversion of serine to pyruvate (encoded by sdaA, sdaB and tdcG) was also deleted. As expected, the resulting strain turned out to be susceptible to even low concentrations of serine in the media. In order to improve the tolerance of the strain towards serine, adaptive laboratory evolution....... During the evolution experiment, the serine tolerance was increased substantially. Genome re-sequencing was subsequently used to analyze the genotype of a number of selected strains. These results reveal insights towards the adaptation process as well as the mechanism of serine tolerance....

  16. Flexibility of cold- and heat-adapted subtilisin-like serine proteinases evaluated with fluorescence quenching and molecular dynamics

    DEFF Research Database (Denmark)

    Sigtryggsdóttir, Asta Rós; Papaleo, Elena; Thorbjarnardóttir, Sigríður H.

    2014-01-01

    activity of cold adapted enzymes when compared to homologues from thermophiles, reflects their higher molecular flexibility. To assess a potential difference in molecular flexibility between the two homologous proteinases, we have measured their Trp fluorescence quenching by acrylamide at different......The subtilisin-like serine proteinases, VPR, from a psychrotrophic Vibrio species and aqualysin I (AQUI) from the thermophile Thermus aquaticus, are structural homologues, but differ significantly with respect to stability and catalytic properties. It has been postulated that the higher catalytic...... to Trp (Y191W). A lower quenching effect of acrylamide on the intrinsic fluorescence of the thermophilic AQUI_Y191W was observed at all temperatures measured (10-55°C), suggesting that it possesses a more rigid structure than VPR. The MD analysis (Cα rmsf profiles) showed that even though VPR and AQUI...

  17. Crystal structure of the NADP+ and tartrate-bound complex of L-serine 3-dehydrogenase from the hyperthermophilic archaeon Pyrobaculum calidifontis.

    Science.gov (United States)

    Yoneda, Kazunari; Sakuraba, Haruhiko; Araki, Tomohiro; Ohshima, Toshihisa

    2018-05-01

    A gene encoding L-serine dehydrogenase (L-SerDH) that exhibits extremely low sequence identity to the Agrobacterium tumefaciens L-SerDH was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The predicted amino acid sequence showed 36% identity with that of Pseudomonas aeruginosa L-SerDH, suggesting that P. calidifontis L-SerDH is a novel type of L-SerDH, like Ps. aeruginosa L-SerDH. The overexpressed enzyme appears to be the most thermostable L-SerDH described to date, and no loss of activity was observed by incubation for 30 min at temperatures up to 100 °C. The enzyme showed substantial reactivity towards D-serine, in addition to L-serine. Two different crystal structures of P. calidifontis L-SerDH were determined using the Se-MAD and MR method: the structure in complex with NADP + /sulfate ion at 1.18 Å and the structure in complex with NADP + /L-tartrate (substrate analog) at 1.57 Å. The fold of the catalytic domain showed similarity with that of Ps. aeruginosa L-SerDH. However, the active site structure significantly differed between the two enzymes. Based on the structure of the tartrate, L- and D-serine and 3-hydroxypropionate molecules were modeled into the active site and the substrate binding modes were estimated. A structural comparison suggests that the wide cavity at the substrate binding site is likely responsible for the high reactivity of the enzyme toward both L- and D-serine enantiomers. This is the first description of the structure of the novel type of L-SerDH with bound NADP + and substrate analog, and it provides new insight into the substrate binding mechanism of L-SerDH. The results obtained here may be very informative for the creation of L- or D-serine-specific SerDH by protein engineering.

  18. The Plasmodium serine-type SERA proteases display distinct expression patterns and non-essential in vivo roles during life cycle progression of the malaria parasite.

    Science.gov (United States)

    Putrianti, Elyzana D; Schmidt-Christensen, Anja; Arnold, Iris; Heussler, Volker T; Matuschewski, Kai; Silvie, Olivier

    2010-06-01

    Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called 'serine repeat antigens' (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs.

  19. Antinociceptive Effect of Rat D-Serine Racemase Inhibitors, L-Serine-O-Sulfate, and L-Erythro-3-Hydroxyaspartate in an Arthritic Pain Model

    Directory of Open Access Journals (Sweden)

    Claudio Laurido

    2012-01-01

    Full Text Available N-methyl-D-aspartic acid receptor (NMDAr activation requires the presence of D-serine, synthesized from L-serine by a pyridoxal 5′-phosphate-dependent serine racemase (SR. D-serine levels can be lowered by inhibiting the racemization of L-serine. L-serine-O-sulfate (LSOS and L-erythro-3-hydroxyaspartate (LEHA, among others, have proven to be effective in reducing the D-serine levels in culture cells. It is tempting then to try these compounds in their effectiveness to decrease nociceptive levels in rat arthritic pain. We measured the C-reflex paradigm and wind-up potentiation in the presence of intrathecally injected LSOS (100 μg/10 μL and LEHA (100 μg/10 μL in normal and monoarthritic rats. Both compounds decreased the wind-up activity in normal and monoarthritic rats. Accordingly, all the antinociceptive effects were abolished when 300 μg/10 μL of D-serine were injected intrathecally. Since no in vivo results have been presented so far, this constitutes the first evidence that SR inhibitions lower the D-serine levels, thus decreasing the NMDAr activity and the consequent development and maintenance of chronic pain.

  20. Role of disulphide bonds in a thermophilic serine protease aqualysin I from Thermus aquaticus YT-1.

    Science.gov (United States)

    Sakaguchi, Masayoshi; Takezawa, Makoto; Nakazawa, Rie; Nozawa, Kazutaka; Kusakawa, Taro; Nagasawa, Takeshi; Sugahara, Yasusato; Kawakita, Masao

    2008-05-01

    A thermophilic serine protease, Aqualysin I, from Thermus aquaticus YT-1 has two disulphide bonds, which are also found in a psychrophilic serine protease from Vibrio sp. PA-44 and a proteinase K-like enzyme from Serratia sp. at corresponding positions. To understand the significance of these disulphide bonds in aqualysin I, we prepared mutants C99S, C194S and C99S/C194S (WSS), in which Cys69-Cys99, Cys163-Cys194 and both of these disulphide bonds, respectively, were disrupted by replacing Cys residues with Ser residues. All mutants were expressed stably in Escherichia coli. The C99S mutant was 68% as active as the wild-type enzyme at 40 degrees C in terms of k(cat) value, while C194S and WSS were only 6 and 3%, respectively, as active, indicating that disulphide bond Cys163-Cys194 is critically important for maintaining proper catalytic site conformation. Mutants C194S and WSS were less thermostable than wild-type enzyme, with a half-life at 90 degrees C of 10 min as compared to 45 min of the latter and with transition temperatures on differential scanning calorimetry of 86.7 degrees C and 86.9 degrees C, respectively. Mutant C99S was almost as stable as the wild-type aqualysin I. These results indicate that the disulphide bond Cys163-Cys194 is more important for catalytic activity and conformational stability of aqualysin I than Cys67-Cys99.

  1. Regulation of Cre recombinase by ligand-induced complementation of inactive fragments.

    Science.gov (United States)

    Jullien, Nicolas; Sampieri, François; Enjalbert, Alain; Herman, Jean-Paul

    2003-11-01

    Cre recombinase is extensively used to engineer the genome of experimental animals. However, its usefulness is still limited by the lack of an efficient temporal control over its activity. To overcome this, we have developed DiCre, a regulatable fragment complementation system for Cre. The enzyme was split into two moieties that were fused to FKBP12 (FK506-binding protein) and FRB (binding domain of the FKBP12-rapamycin-associated protein), respectively. These can be efficiently heterodimerized by rapamycin. Several variants, based on splitting Cre at different sites and using different linker peptides, were tested in an indicator cell line. The fusion proteins, taken separately, had no recombinase activity. Stable transformants, co-expressing complementing fragments based on splitting Cre between Asn59 and Asn60, displayed low background activity affecting 0.05-0.4% of the cells. Rapamycin induced a rapid recombination, reaching 100% by 48-72 h, with an EC50 of 0.02 nM. Thus, ligand-induced dimerization can efficiently regulate Cre, and should be useful to achieve a tight temporal control of its activity, such as in the case of the creation of conditional knock-out animals.

  2. Enantioselective syntheses and biological studies of aeruginosin 298-A and its analogs: application of catalytic asymmetric phase-transfer reaction.

    Science.gov (United States)

    Fukuta, Yuhei; Ohshima, Takashi; Gnanadesikan, Vijay; Shibuguchi, Tomoyuki; Nemoto, Tetsuhiro; Kisugi, Takaya; Okino, Tatsufumi; Shibasaki, Masakatsu

    2004-04-13

    Aeruginosin 298-A was isolated from the freshwater cyanobacterium Microcystis aeruginosa (NIES-298) and is an equipotent thrombin and trypsin inhibitor. A variety of analogs were synthesized to gain insight into the structure-activity relations. We developed a versatile synthetic process for aeruginosin 298-A as well as several attractive analogs, in which all stereocenters were controlled by catalytic asymmetric phase-transfer reaction promoted by two-center asymmetric catalysts and catalytic asymmetric epoxidation promoted by a lanthanide-BINOL complex. Furthermore, serine protease inhibitory activities of aeruginosin 298-A and its analogs were examined.

  3. Microbial Production of l-Serine from Renewable Feedstocks.

    Science.gov (United States)

    Zhang, Xiaomei; Xu, Guoqiang; Shi, Jinsong; Koffas, Mattheos A G; Xu, Zhenghong

    2018-07-01

    l-Serine is a non-essential amino acid that has wide and expanding applications in industry with a fast-growing market demand. Currently, extraction and enzymatic catalysis are the main processes for l-serine production. However, such approaches limit the industrial-scale applications of this important amino acid. Therefore, shifting to the direct fermentative production of l-serine from renewable feedstocks has attracted increasing attention. This review details the current status of microbial production of l-serine from renewable feedstocks. We also summarize the current trends in metabolic engineering strategies and techniques for the typical industrial organisms Corynebacterium glutamicum and Escherichia coli that have been developed to address and overcome major challenges in the l-serine production process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Construction of permanently inducible miRNA-based expression vectors using site-specific recombinases

    Directory of Open Access Journals (Sweden)

    Garwick-Coppens Sara E

    2011-11-01

    Full Text Available Abstract Background RNA interference (RNAi is a conserved gene silencing mechanism mediated by small inhibitory microRNAs (miRNAs. Promoter-driven miRNA expression vectors have emerged as important tools for delivering natural or artificially designed miRNAs to eukaryotic cells and organisms. Such systems can be used to query the normal or pathogenic functions of natural miRNAs or messenger RNAs, or to therapeutically silence disease genes. Results As with any molecular cloning procedure, building miRNA-based expression constructs requires a time investment and some molecular biology skills. To improve efficiency and accelerate the construction process, we developed a method to rapidly generate miRNA expression vectors using recombinases instead of more traditional cut-and-paste molecular cloning techniques. In addition to streamlining the construction process, our cloning strategy provides vectors with added versatility. In our system, miRNAs can be constitutively expressed from the U6 promoter, or inducibly expressed by Cre recombinase. We also engineered a built-in mechanism to destroy the vector with Flp recombinase, if desired. Finally, to further simplify the construction process, we developed a software package that automates the prediction and design of optimal miRNA sequences using our system. Conclusions We designed and tested a modular system to rapidly clone miRNA expression cassettes. Our strategy reduces the hands-on time required to successfully generate effective constructs, and can be implemented in labs with minimal molecular cloning expertise. This versatile system provides options that permit constitutive or inducible miRNA expression, depending upon the needs of the end user. As such, it has utility for basic or translational applications.

  5. A recombinase-mediated transcriptional induction system in transgenic plants

    DEFF Research Database (Denmark)

    Hoff, T; Schnorr, K M; Mundy, J

    2001-01-01

    We constructed and tested a Cre-loxP recombination-mediated vector system termed pCrox for use in transgenic plants. In this system, treatment of Arabidopsis under inducing conditions mediates an excision event that removes an intervening piece of DNA between a promoter and the gene to be expressed......-mediated GUS activation. Induction was shown to be possible at essentially any stage of plant growth. This single vector system circumvents the need for genetic crosses required by other, dual recombinase vector systems. The pCrox system may prove particularly useful in instances where transgene over...

  6. Serine protease inhibitors of parasitic helminths.

    Science.gov (United States)

    Molehin, Adebayo J; Gobert, Geoffrey N; McManus, Donald P

    2012-05-01

    Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships.

  7. Rearrangement of RAG-1 recombinase gene in radiation-sensitive ''wasted'' mice

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Weaver, P.

    1994-01-01

    The recent cloning and characterization of recombinase genes (RAG- 1/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice (wst). Our results revealed expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/sm-bullet mice). In thymus tissue, a small RAG-1 transcript was detected in wst/wst mice that was not evident in thymus from control mice. In wst/lg-bullet mice, a two-fold increase in RAG-1 mRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/sm-bullet and not from wst;/wst or parental control BCF 1 mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage

  8. Heterogeneity of D-Serine Distribution in the Human Central Nervous System

    Science.gov (United States)

    Suzuki, Masataka; Imanishi, Nobuaki; Mita, Masashi; Hamase, Kenji; Aiso, Sadakazu

    2017-01-01

    D-serine is an endogenous ligand for N-methyl-D-aspartate glutamate receptors. Accumulating evidence including genetic associations of D-serine metabolism with neurological or psychiatric diseases suggest that D-serine is crucial in human neurophysiology. However, distribution and regulation of D-serine in humans are not well understood. Here, we found that D-serine is heterogeneously distributed in the human central nervous system (CNS). The cerebrum contains the highest level of D-serine among the areas in the CNS. There is heterogeneity in its distribution in the cerebrum and even within the cerebral neocortex. The neocortical heterogeneity is associated with Brodmann or functional areas but is unrelated to basic patterns of cortical layer structure or regional expressional variation of metabolic enzymes for D-serine. Such D-serine distribution may reflect functional diversity of glutamatergic neurons in the human CNS, which may serve as a basis for clinical and pharmacological studies on D-serine modulation. PMID:28604057

  9. Identification and characterization of human polyserase-3, a novel protein with tandem serine-protease domains in the same polypeptide chain

    Directory of Open Access Journals (Sweden)

    Garabaya Cecilia

    2006-03-01

    Full Text Available Abstract Background We have previously described the identification and characterization of polyserase-1 and polyserase-2, two human serine proteases containing three different catalytic domains within the same polypeptide chain. Polyserase-1 shows a complex organization and it is synthesized as a membrane-bound protein which can generate three independent serine protease domains as a consequence of post-translational processing events. The two first domains are enzymatically active. By contrast, polyserase-2 is an extracellular glycosylated protein whose three protease domains remain embedded in the same chain, and only the first domain possesses catalytic activity. Results Following our interest in the study of the human degradome, we have cloned a human liver cDNA encoding polyserase-3, a new protease with tandem serine protease domains in the same polypeptide chain. Comparative analysis of polyserase-3 with the two human polyserases described to date, revealed that this novel polyprotein is more closely related to polyserase-2 than to polyserase-1. Thus, polyserase-3 is a secreted protein such as polyserase-2, but lacks additional domains like the type II transmembrane motif and the low-density lipoprotein receptor module present in the membrane-anchored polyserase-1. Moreover, analysis of post-translational mechanisms operating in polyserase-3 maturation showed that its two protease domains remain as integral parts of the same polypeptide chain. This situation is similar to that observed in polyserase-2, but distinct from polyserase-1 whose protease domains are proteolytically released from the original chain to generate independent units. Immunolocalization studies indicated that polyserase-3 is secreted as a non-glycosylated protein, thus being also distinct from polyserase-2, which is a heavily glycosylated protein. Enzymatic assays indicated that recombinant polyserase-3 degrades the α-chain of fibrinogen as well as pro

  10. Construction of Marker-Free Transgenic Strains of Chlamydomonas reinhardtii Using a Cre/loxP-Mediated Recombinase System.

    Science.gov (United States)

    Kasai, Yuki; Harayama, Shigeaki

    2016-01-01

    The Escherichia coli bacteriophage P1 encodes a site-specific recombinase called Cre and two 34-bp target sites of Cre recombinase called loxP. The Cre/loxP system has been used to achieve targeted insertion and precise deletion in many animal and plant genomes. The Cre/loxP system has particularly been used for the removal of selectable marker genes to create marker-free transgenic organisms. For the first time, we applied the Cre/loxP-mediated site-specific recombination system to Chlamydomonas reinhardtii to construct marker-free transgenic strains. Specifically, C. reinhardtii strains cc4350 and cc124 carrying an aphVIII expression cassette flanked by two direct repeats of loxP were constructed. Separately, a synthetic Cre recombinase gene (CrCRE), the codons of which were optimized for expression in C. reinhardtii, was synthesized, and a CrCRE expression cassette was introduced into strain cc4350 carrying a single copy of the loxP-flanked aphVIII expression cassette. Among 46 transformants carrying the CrCRE expression cassette stably, the excision of aphVIII by CrCre recombinase was observed only in one transformant. We then constructed an expression cassette of an in-frame fusion of ble to CrCRE via a short linker peptide. The product of ble (Ble) is a bleomycin-binding protein that confers resistance to bleomycin-related antibiotics such as Zeocin and localizes in the nucleus. Therefore, the ble-(linker)-CrCRE fusion protein is expected to localize in the nucleus. When the ble-(linker)-CrCRE expression cassette was integrated into the genome of strain cc4350 carrying a single copy of the loxP-flanked aphVIII expression cassette, CrCre recombinase-mediated excision of the aphVIII expression cassette was observed at a frequency higher than that in stable transformants of the CrCRE expression cassette. Similarly, from strain cc124 carrying a single loxP-flanked aphVIII expression cassette, the aphVIII expression cassette was successfully excised after

  11. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement.

    Science.gov (United States)

    Witten, Ilana B; Steinberg, Elizabeth E; Lee, Soo Yeun; Davidson, Thomas J; Zalocusky, Kelly A; Brodsky, Matthew; Yizhar, Ofer; Cho, Saemi L; Gong, Shiaoching; Ramakrishnan, Charu; Stuber, Garret D; Tye, Kay M; Janak, Patricia H; Deisseroth, Karl

    2011-12-08

    Currently there is no general approach for achieving specific optogenetic control of genetically defined cell types in rats, which provide a powerful experimental system for numerous established neurophysiological and behavioral paradigms. To overcome this challenge we have generated genetically restricted recombinase-driver rat lines suitable for driving gene expression in specific cell types, expressing Cre recombinase under the control of large genomic regulatory regions (200-300 kb). Multiple tyrosine hydroxylase (Th)::Cre and choline acetyltransferase (Chat)::Cre lines were produced that exhibited specific opsin expression in targeted cell types. We additionally developed methods for utilizing optogenetic tools in freely moving rats and leveraged these technologies to clarify the causal relationship between dopamine (DA) neuron firing and positive reinforcement, observing that optical stimulation of DA neurons in the ventral tegmental area (VTA) of Th::Cre rats is sufficient to support vigorous intracranial self-stimulation (ICSS). These studies complement existing targeting approaches by extending the generalizability of optogenetics to traditionally non-genetically-tractable but vital animal models. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. FLP recombinase-mediated site-specific recombination in silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Ding-Pei Long

    Full Text Available A comprehensive understanding of gene function and the production of site-specific genetically modified mutants are two major goals of genetic engineering in the post-genomic era. Although site-specific recombination systems have been powerful tools for genome manipulation of many organisms, they have not yet been established for use in the manipulation of the silkworm Bombyx mori genome. In this study, we achieved site-specific excision of a target gene at predefined chromosomal sites in the silkworm using a FLP/FRT site-specific recombination system. We first constructed two stable transgenic target silkworm strains that both contain a single copy of the transgene construct comprising a target gene expression cassette flanked by FRT sites. Using pre-blastoderm microinjection of a FLP recombinase helper expression vector, 32 G3 site-specific recombinant transgenic individuals were isolated from five of 143 broods. The average frequency of FLP recombinase-mediated site-specific excision in the two target strains genome was approximately 3.5%. This study shows that it is feasible to achieve site-specific recombination in silkworms using the FLP/FRT system. We conclude that the FLP/FRT system is a useful tool for genome manipulation in the silkworm. Furthermore, this is the first reported use of the FLP/FRT system for the genetic manipulation of a lepidopteran genome and thus provides a useful reference for the establishment of genome manipulation technologies in other lepidopteran species.

  13. D-serine : The right or wrong isoform?

    NARCIS (Netherlands)

    Fuchs, Sabine A; Berger, Ruud; de Koning, Tom J

    2011-01-01

    Only recently, d-amino acids have been identified in mammals. Of these, d-serine has been most extensively studied. d-Serine was found to play an important role as a neurotransmitter in the human central nervous system (CNS) by binding to the N-methyl-d-aspartate receptor (NMDAr), similar to

  14. Enhancement of L-Serine Production by Corynebacterium ...

    African Journals Online (AJOL)

    glutamicum SYPS-062 cultivation process for efficient production of L-serine on a large scale. ... central intermediate for a number of cellular .... impeller, oxygen and pH electrodes, under the ... equation. The yield of L-serine was regressed with respect to the medium ..... is not essential for activity but is required for inhibition.

  15. Serine:glyoxylate aminotransferase mutant of barley

    International Nuclear Information System (INIS)

    Blackwell, R.; Murray, A.; Joy, K.; Lea, P.

    1987-01-01

    A photorespiratory mutant of barley (LaPr 85/84), deficient in both of the major peaks of serine:glyoxylate aminotransferase activity detected in the wild type, also lacks serine:pyruvate and asparagine:glyoxylate aminotransferase activities. Genetic analysis of the mutation demonstrated that these three activities are all carried on the same enzyme. The mutant, when placed in air, accumulated a large pool of serine, showed the expected rate (50%) of ammonia release during photorespiration but produced CO 2 at twice the wild type rate when it was fed [ 14 C] glyoxylate. Compared with the wild type, LaPr 85/84 exhibited abnormal transient changes in chlorophyll a fluorescence when the CO 2 concentration of the air was altered, indicating that the rates of the fluorescence quenching mechanisms were affected in vivo by the lack of this enzyme

  16. Amperometric Self-Referencing Ceramic Based Microelectrode Arrays for D-Serine Detection.

    Science.gov (United States)

    Campos-Beltrán, Diana; Konradsson-Geuken, Åsa; Quintero, Jorge E; Marshall, Lisa

    2018-03-06

    D-serine is the major D-amino acid in the mammalian central nervous system. As the dominant co-agonist of the endogenous synaptic NMDA receptor, D-serine plays a role in synaptic plasticity, learning, and memory. Alterations in D-serine are linked to neuropsychiatric disorders including schizophrenia. Thus, it is of increasing interest to monitor the concentration of D-serine in vivo as a relevant player in dynamic neuron-glia network activity. Here we present a procedure for amperometric detection of D-serine with self-referencing ceramic-based microelectrode arrays (MEAs) coated with D-amino acid oxidase from the yeast Rhodotorula gracilis (RgDAAO). We demonstrate in vitro D-serine recordings with a mean sensitivity of 8.61 ± 0.83 pA/µM to D-serine, a limit of detection (LOD) of 0.17 ± 0.01 µM, and a selectivity ratio of 80:1 or greater for D-serine over ascorbic acid (mean ± SEM; n = 12) that can be used for freely moving studies.

  17. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    International Nuclear Information System (INIS)

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-01-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: → Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. → Bt-VSP activates prothrombin. → Bt-VSP directly degrades fibrinogen into fibrin degradation products. → Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  18. The ΦBT1 large serine recombinase catalyzes DNA integration at pseudo-attB sites in the genus Nocardia

    Directory of Open Access Journals (Sweden)

    Marion Herisse

    2018-05-01

    Full Text Available Plasmid vectors based on bacteriophage integrases are important tools in molecular microbiology for the introduction of foreign DNA, especially into bacterial species where other systems for genetic manipulation are limited. Site specific integrases catalyze recombination between phage and bacterial attachment sites (attP and attB, respectively and the best studied integrases in the actinomycetes are the serine integrases from the Streptomyces bacteriophages ΦC31 and ΦBT1. As this reaction is unidirectional and highly stable, vectors containing phage integrase systems have been used in a number of genetic engineering applications. Plasmids bearing the ΦBT1 integrase have been used to introduce DNA into Streptomyces and Amycolatopsis strains; however, they have not been widely studied in other actinobacterial genera. Here, we show that vectors based on ΦBT1 integrase can stably integrate into the chromosomes of a range of Nocardia species, and that this integration occurs despite the absence of canonical attB sites in these genomes. Furthermore, we show that a ΦBT1 integrase-based vector can insert at multiple pseudo-attB sites within a single strain and we determine the sequence of a pseudo-attB motif. These data suggest that ΦBT1 integrase-based vectors can be used to readily and semi-randomly introduce foreign DNA into the genomes of a range of Nocardia species. However, the precise site of insertion will likely require empirical determination in each species to avoid unexpected off-target effects.

  19. A cytotoxic serine proteinase isolated from mouse submandibular gland.

    Science.gov (United States)

    Shimamura, T; Nagumo, N; Ikigai, H; Murakami, K; Okubo, S; Toda, M; Ohnishi, R; Tomita, M

    1989-08-01

    We have isolated a novel cytotoxic factor from the submandibular glands of male BALB/c mice by Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. The cytotoxic factor is a serine proteinase, which belongs to the mouse glandular kallikrein (mGK) family, with an Mr of approximately 27,000. The purified serine proteinase showed cytotoxic activity against mouse thymocytes in a dose-dependent manner, and a serine proteinase inhibitor, diisopropyl fluorophosphate, blocked its cytotoxic activity.

  20. Identification of a minimal functional linker in human topoisomerase I by domain swapping with Cre recombinase

    DEFF Research Database (Denmark)

    Hougaard, Rikke Frøhlich; Juul, Sissel; Vinther, Maria

    2008-01-01

    . In this study we replace 86 amino acids including the linker domain of the cellular type IB topoisomerase, human topoisomerase I, with four, six, or eight amino acids from the corresponding short loop region in Cre recombinase. In vitro characterization of the resulting chimeras, denoted Cropos, reveals...

  1. Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo

    NARCIS (Netherlands)

    Pfeifer, A.; Brandon, E. P.; Kootstra, N.; Gage, F. H.; Verma, I. M.

    2001-01-01

    The Cre recombinase (Cre) from bacteriophage P1 is an important tool for genetic engineering in mammalian cells. We constructed lentiviral vectors that efficiently deliver Cre in vitro and in vivo. Surprisingly, we found a significant reduction in proliferation and an accumulation in the G(2)/M

  2. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering.

    Science.gov (United States)

    Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M Teresa; Buchholz, Frank

    2016-07-22

    Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets.

  3. ACTIVATION OF A CRYPTIC D-SERINE DEAMINASE (DSD) GENE FROM PSEUDOMONAS CEPACIA 17616

    Science.gov (United States)

    D-serine inhibits growth of P. cepacia 17616; however, resistant mutants able to express an ordinarily cryptic D-serine deaminase (dsd) gene were isolated readily. The resistant strains formed high levels of a D-serine deaminase active on D-threonine as well as D-serine. IS eleme...

  4. Rearrangement of RAG-1 recombinase gene in radiation-sensitive ''wasted'' mice

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Libertin, C.R.; Weaver, P.; Churchill, M.; Chang-Liu, C.M.

    1993-01-01

    Mice recessive for the autosomal gene ''wasted'' (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-1/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/· mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/· mice, a two-fold increase in RAG-1 MRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/· and not from wst/wst or parental control BCF 1 mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage

  5. Rearrangement of RAG-1 recombinase gene in radiation-sensitive ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E. [Argonne National Lab., IL (United States)]|[Loyola Univ., Maywood, IL (United States); Libertin, C.R.; Weaver, P. [Loyola Univ., Maywood, IL (United States); Churchill, M.; Chang-Liu, C.M. [Argonne National Lab., IL (United States)

    1993-09-01

    Mice recessive for the autosomal gene ``wasted`` (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-1/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/{center_dot} mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{center_dot} mice, a two-fold increase in RAG-1 MRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/{center_dot} and not from wst/wst or parental control BCF{sub 1} mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  6. The kinase domain residue serine 173 of Schizosaccharomyces pombe Chk1 kinase is critical for the response to DNA replication stress

    Directory of Open Access Journals (Sweden)

    Naomi Coulton

    2017-12-01

    Full Text Available While mammalian Chk1 kinase regulates replication origins, safeguards fork integrity and promotes fork progression, yeast Chk1 acts only in G1 and G2. We report here that the mutation of serine 173 (S173A in the kinase domain of fission yeast Chk1 abolishes the G1-M and S-M checkpoints with little impact on the G2-M arrest. This separation-of-function mutation strongly reduces the Rad3-dependent phosphorylation of Chk1 at serine 345 during logarithmic growth, but not when cells experience exogenous DNA damage. Loss of S173 lowers the restrictive temperature of a catalytic DNA polymerase epsilon mutant (cdc20.M10 and is epistatic with a mutation in DNA polymerase delta (cdc6.23 when DNA is alkylated by methyl-methanesulfate (MMS. The chk1-S173A allele is uniquely sensitive to high MMS concentrations where it displays a partial checkpoint defect. A complete checkpoint defect occurs only when DNA replication forks break in cells without the intra-S phase checkpoint kinase Cds1. Chk1-S173A is also unable to block mitosis when the G1 transcription factor Cdc10 (cdc10.V50 is impaired. We conclude that serine 173, which is equivalent to lysine 166 in the activation loop of human Chk1, is only critical in DNA polymerase mutants or when forks collapse in the absence of Cds1.

  7. Cerebrospinal fluid D-serine concentrations in major depressive disorder negatively correlate with depression severity.

    Science.gov (United States)

    Ishiwata, Sayuri; Hattori, Kotaro; Sasayama, Daimei; Teraishi, Toshiya; Miyakawa, Tomoko; Yokota, Yuuki; Matsumura, Ryo; Nishikawa, Toru; Kunugi, Hiroshi

    2018-01-15

    D-serine is an endogenous co-agonist of N-methyl-D-aspartate receptor (NMDAR) and plays an important role in glutamate neurotransmission. Several studies suggested the possible involvement of D-serine related in the pathophysiology of psychiatric disorders including major depression disorders (MDD). We tried to examine whether cerebrospinal fluid (CSF) or plasma D-serine concentrations are altered in MDD and whether D-serine concentrations correlated with disease severity. 26 MDD patients and 27 healthy controls matched for age, sex and ethnicity were enrolled. We measured amino acids in these samples using by high-performance liquid chromatography with fluorometric detection. D-serine and L-serine, precursor of D-serine, levels in CSF or plasma were not significantly different in patients of MDD compared to controls. Furthermore, a significant correlation between D-serine levels in CSF and Hamilton Depression Rating Scale (HAMD)-17 score was observed (r = -0.65, p = 0.006). Furthermore, we found a positive correlation between CSF D-serine and HVA concentrations in MDD patients (r = 0.54, p = 0.007). CSF D-serine concentrations were correlated with those of plasma in MDD (r = 0.61, p = 0.01) but not in controls. In CSF, we also confirmed a significant correlation between D-serine and L-serine levels in MDD (r = 0.72, p depression severity and HVA concentrations and further investigation were required to reveal the effect of medication and disease heterogeneity. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Development of a recombinase polymerase amplification assay for Vibrio parahaemolyticus detection with an internal amplification control.

    Science.gov (United States)

    Yang, Huan-Lan; Wei, Shuang; Gooneratne, Ravi; Mutukumira, Anthony N; Ma, Xue-Jun; Tang, Shu-Ze; Wu, Xi-Yang

    2018-04-01

    A novel RPA-IAC assay using recombinase polymerase and an internal amplification control (IAC) for Vibrio parahaemolyticus detection was developed. Specific primers were designed based on the coding sequence for the toxR gene in V. parahaemolyticus. The recombinase polymerase amplification (RPA) reaction was conducted at a constant low temperature of 37 °C for 20 min. Assay specificity was validated by using 63 Vibrio strains and 10 non-Vibrio bacterial species. In addition, a competitive IAC was employed to avoid false-negative results, which co-amplified simultaneously with the target sequence. The sensitivity of the assay was determined as 3 × 10 3 CFU/mL, which is decidedly more sensitive than the established PCR method. This method was then used to test seafood samples that were collected from local markets. Seven out of 53 different raw seafoods were detected as V. parahaemolyticus-positive, which were consistent with those obtained using traditional culturing method and biochemical assay. This novel RPA-IAC assay provides a rapid, specific, sensitive, and more convenient detection method for V. parahaemolyticus.

  9. Cross genome comparisons of serine proteases in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Sowdhamini R

    2006-08-01

    Full Text Available Abstract Background Serine proteases are one of the largest groups of proteolytic enzymes found across all kingdoms of life and are associated with several essential physiological pathways. The availability of Arabidopsis thaliana and rice (Oryza sativa genome sequences has permitted the identification and comparison of the repertoire of serine protease-like proteins in the two plant species. Results Despite the differences in genome sizes between Arabidopsis and rice, we identified a very similar number of serine protease-like proteins in the two plant species (206 and 222, respectively. Nearly 40% of the above sequences were identified as potential orthologues. Atypical members could be identified in the plant genomes for Deg, Clp, Lon, rhomboid proteases and species-specific members were observed for the highly populated subtilisin and serine carboxypeptidase families suggesting multiple lateral gene transfers. DegP proteases, prolyl oligopeptidases, Clp proteases and rhomboids share a significantly higher percentage orthology between the two genomes indicating substantial evolutionary divergence was set prior to speciation. Single domain architectures and paralogues for several putative subtilisins, serine carboxypeptidases and rhomboids suggest they may have been recruited for additional roles in secondary metabolism with spatial and temporal regulation. The analysis reveals some domain architectures unique to either or both of the plant species and some inactive proteases, like in rhomboids and Clp proteases, which could be involved in chaperone function. Conclusion The systematic analysis of the serine protease-like proteins in the two plant species has provided some insight into the possible functional associations of previously uncharacterised serine protease-like proteins. Further investigation of these aspects may prove beneficial in our understanding of similar processes in commercially significant crop plant species.

  10. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. [Argonne National Lab., IL (United States); Libertin, C.R. [Loyola Univ., Maywood, IL (United States)

    1992-11-01

    Mice recessive for the autosomal gene ``wasted`` (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{sm_bullet} mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/{sm_bullet} and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  11. Analysis of binding properties and specificity through identification of the interface forming residues (IFR for serine proteases in silico docked to different inhibitors

    Directory of Open Access Journals (Sweden)

    da Silveira Carlos H

    2010-10-01

    Full Text Available Abstract Background Enzymes belonging to the same super family of proteins in general operate on variety of substrates and are inhibited by wide selection of inhibitors. In this work our main objective was to expand the scope of studies that consider only the catalytic and binding pocket amino acids while analyzing enzyme specificity and instead, include a wider category which we have named the Interface Forming Residues (IFR. We were motivated to identify those amino acids with decreased accessibility to solvent after docking of different types of inhibitors to sub classes of serine proteases and then create a table (matrix of all amino acid positions at the interface as well as their respective occupancies. Our goal is to establish a platform for analysis of the relationship between IFR characteristics and binding properties/specificity for bi-molecular complexes. Results We propose a novel method for describing binding properties and delineating serine proteases specificity by compiling an exhaustive table of interface forming residues (IFR for serine proteases and their inhibitors. Currently, the Protein Data Bank (PDB does not contain all the data that our analysis would require. Therefore, an in silico approach was designed for building corresponding complexes The IFRs are obtained by "rigid body docking" among 70 structurally aligned, sequence wise non-redundant, serine protease structures with 3 inhibitors: bovine pancreatic trypsin inhibitor (BPTI, ecotine and ovomucoid third domain inhibitor. The table (matrix of all amino acid positions at the interface and their respective occupancy is created. We also developed a new computational protocol for predicting IFRs for those complexes which were not deciphered experimentally so far, achieving accuracy of at least 0.97. Conclusions The serine proteases interfaces prefer polar (including glycine residues (with some exceptions. Charged residues were found to be uniquely prevalent at the

  12. Analysis of binding properties and specificity through identification of the interface forming residues (IFR) for serine proteases in silico docked to different inhibitors.

    Science.gov (United States)

    Ribeiro, Cristina; Togawa, Roberto C; Neshich, Izabella A P; Mazoni, Ivan; Mancini, Adauto L; Minardi, Raquel C de Melo; da Silveira, Carlos H; Jardine, José G; Santoro, Marcelo M; Neshich, Goran

    2010-10-20

    Enzymes belonging to the same super family of proteins in general operate on variety of substrates and are inhibited by wide selection of inhibitors. In this work our main objective was to expand the scope of studies that consider only the catalytic and binding pocket amino acids while analyzing enzyme specificity and instead, include a wider category which we have named the Interface Forming Residues (IFR). We were motivated to identify those amino acids with decreased accessibility to solvent after docking of different types of inhibitors to sub classes of serine proteases and then create a table (matrix) of all amino acid positions at the interface as well as their respective occupancies. Our goal is to establish a platform for analysis of the relationship between IFR characteristics and binding properties/specificity for bi-molecular complexes. We propose a novel method for describing binding properties and delineating serine proteases specificity by compiling an exhaustive table of interface forming residues (IFR) for serine proteases and their inhibitors. Currently, the Protein Data Bank (PDB) does not contain all the data that our analysis would require. Therefore, an in silico approach was designed for building corresponding complexes. The IFRs are obtained by "rigid body docking" among 70 structurally aligned, sequence wise non-redundant, serine protease structures with 3 inhibitors: bovine pancreatic trypsin inhibitor (BPTI), ecotine and ovomucoid third domain inhibitor. The table (matrix) of all amino acid positions at the interface and their respective occupancy is created. We also developed a new computational protocol for predicting IFRs for those complexes which were not deciphered experimentally so far, achieving accuracy of at least 0.97. The serine proteases interfaces prefer polar (including glycine) residues (with some exceptions). Charged residues were found to be uniquely prevalent at the interfaces between the "miscellaneous-virus" subfamily

  13. Dermal Delivery of Constructs Encoding Cre Recombinase to Induce Skin Tumors in PtenLoxP/LoxP;BrafCA/+ Mice

    Directory of Open Access Journals (Sweden)

    Marcel A. Deken

    2016-12-01

    Full Text Available Current genetically-engineered mouse melanoma models are often based on Tyr::CreERT2-controlled MAPK pathway activation by the BRAFV600E mutation and PI3K pathway activation by loss of PTEN. The major drawback of these models is the occurrence of spontaneous tumors caused by leakiness of the Tyr::CreERT2 system, hampering long-term experiments. To address this problem, we investigated several approaches to optimally provide local delivery of Cre recombinase, including injection of lentiviral particles, DNA tattoo administration and particle-mediated gene transfer, to induce melanomas in PtenLoxP/LoxP;BrafCA/+ mice lacking the Tyr::CreERT2 allele. We found that dermal delivery of the Cre recombinase gene under the control of a non-specific CAG promoter induced the formation of melanomas, but also keratoacanthoma and squamous cell carcinomas. Delivery of Cre recombinase DNA under the control of melanocyte-specific promoters in PtenLoxP/LoxP;BrafCA/+ mice resulted in sole melanoma induction. The growth rate and histological features of the induced tumors were similar to 4-hydroxytamoxifen-induced tumors in Tyr::CreERT2;PtenLoxP/LoxP;BrafCA/+ mice, while the onset of spontaneous tumors was prevented completely. These novel induction methods will allow long-term experiments in mouse models of skin malignancies.

  14. [1-14C]Glycolate metabolism and serine biosynthesis in soybean plants

    International Nuclear Information System (INIS)

    Calmes, J.; Viala, G.; Latche, J.C.; Cavalie, G.

    1977-01-01

    [1- 14 C]Glycolate metabolism was examined in leafy shoots of soybean plants (Glycine max (L.) Merr., var. Adepta). Only small amounts of 14 C were incorporated into evolved carbon dioxide and glucidic compounds. Free and protein glycine was labelled but higher levels of radioactivity were found in free serine. Changes in the distribution of 14 C with time showed that metabolic conversion glycollate → glycine → serine occurred very early and serine biosynthesis was more important in the shoot than in the leaves. Carbon dioxide labelling was always slight compared to serine labelling. These data suggest strong relations between glycollate and nitrogen metabolism

  15. The VA, VCD, Raman and ROA spectra of tri-L-serine in aqueous solution

    DEFF Research Database (Denmark)

    Jürgensen, Vibeke Würtz; Jalkanen, Karl J.

    2006-01-01

    The structures of one conformer of the nonionic neutral and zwitterionic species of L-serinyl L-serinyl L-serine (SSS or tri-L-serine), together with its cationic and anionic species and the capped N-acetyl tri-L-serine N'-methylamide analog were optimized with density functional theory with the ......The structures of one conformer of the nonionic neutral and zwitterionic species of L-serinyl L-serinyl L-serine (SSS or tri-L-serine), together with its cationic and anionic species and the capped N-acetyl tri-L-serine N'-methylamide analog were optimized with density functional theory...

  16. Convergent synthesis of a deuterium-labeled serine dipeptide lipid for analysis of biological samples.

    Science.gov (United States)

    Dietz, Christopher; Clark, Robert B; Nichols, Frank C; Smith, Michael B

    2017-05-30

    Bacterial serine dipeptide lipids are known to promote inflammatory processes and are detected in human tissues associated with periodontal disease or atherosclerosis. Accurate quantification of bacterial serine lipid, specifically lipid 654 [((S)-15-methyl-3-((13-methyltetradecanoyl)oxy)hexadecanoyl)glycyl-l-serine, (3S)-l-serine] isolated from Porphyromonas gingivalis, in biological samples requires the preparation of a stable isotope internal standard for sample supplementation and subsequent mass spectrometric analysis. This report describes the convergent synthesis of a deuterium-substituted serine dipeptide lipid, which is an isotopically labeled homologue that represents a dominant form of serine dipeptide lipid recovered in bacteria. Copyright © 2017 John Wiley & Sons, Ltd.

  17. L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum.

    Science.gov (United States)

    Zhu, Qinjian; Zhang, Xiaomei; Luo, Yuchang; Guo, Wen; Xu, Guoqiang; Shi, Jinsong; Xu, Zhenghong

    2015-02-01

    The direct fermentative production of L-serine by Corynebacterium glutamicum from sugars is attractive. However, superfluous by-product accumulation and low L-serine productivity limit its industrial production on large scale. This study aimed to investigate metabolic and bioprocess engineering strategies towards eliminating by-products as well as increasing L-serine productivity. Deletion of alaT and avtA encoding the transaminases and introduction of an attenuated mutant of acetohydroxyacid synthase (AHAS) increased both L-serine production level (26.23 g/L) and its productivity (0.27 g/L/h). Compared to the parent strain, the by-products L-alanine and L-valine accumulation in the resulting strain were reduced by 87 % (from 9.80 to 1.23 g/L) and 60 % (from 6.54 to 2.63 g/L), respectively. The modification decreased the metabolic flow towards the branched-chain amino acids (BCAAs) and induced to shift it towards L-serine production. Meanwhile, it was found that corn steep liquor (CSL) could stimulate cell growth and increase sucrose consumption rate as well as L-serine productivity. With addition of 2 g/L CSL, the resulting strain showed a significant improvement in the sucrose consumption rate (72 %) and the L-serine productivity (67 %). In fed-batch fermentation, 42.62 g/L of L-serine accumulation was achieved with a productivity of 0.44 g/L/h and yield of 0.21 g/g sucrose, which was the highest production of L-serine from sugars to date. The results demonstrated that combined metabolic and bioprocess engineering strategies could minimize by-product accumulation and improve L-serine productivity.

  18. Rearrangement of RAG-1 recombinase gene in DNA-repair deficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Libertin, C.R.; Weaver, P. [Loyola Univ., Chicago, IL (United States); Churchill, M.; Chang-Liu, C.M. [Argonne National Lab., IL (United States)

    1993-11-01

    Mice recessive for the autosomal gene ``wasted`` wst display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-l/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/{center_dot}mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{center_dot}mice, a two-fold increase in RAG-1 mRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/{center_dot} and not from wst/wst or parental control BCF{sub 1} mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  19. Potent and Selective Peptidyl Boronic Acid Inhibitors of the Serine Protease Prostate-Specific Antigen

    Science.gov (United States)

    LeBeau, Aaron M.; Singh, Pratap; Isaacs, John T.; Denmeade, Samuel R.

    2012-01-01

    SUMMARY Prostate cancer cells produce high (microgram to milligram/milliliter) levels of the serine protease Prostate-Specific Antigen (PSA). PSA is enzymatically active in the extracellular fluid surrounding prostate cancers but is found at 1,000- to 10,000-fold lower concentrations in the circulation, where it is inactivated due to binding to abundant serum protease inhibitors. The exclusive presence of high levels of active PSA within prostate cancer sites makes PSA an attractive candidate for targeted imaging and therapeutics. A synthetic approach based on a peptide substrate identified first peptide aldehyde and then boronic acid inhibitors of PSA. The best of these had the sequence Cbz-Ser-Ser-Lys-Leu-(boro)Leu, with a Ki for PSA of 65 nM. The inhibitor had a 60-fold higher Ki for chymotrypsin. A validated model of PSA’s catalytic site confirmed the critical interactions between the inhibitor and residues within the PSA enzyme. PMID:18635003

  20. Recombinase-mediated reprogramming and dystrophin gene addition in mdx mouse induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Chunli Zhao

    Full Text Available A cell therapy strategy utilizing genetically-corrected induced pluripotent stem cells (iPSC may be an attractive approach for genetic disorders such as muscular dystrophies. Methods for genetic engineering of iPSC that emphasize precision and minimize random integration would be beneficial. We demonstrate here an approach in the mdx mouse model of Duchenne muscular dystrophy that focuses on the use of site-specific recombinases to achieve genetic engineering. We employed non-viral, plasmid-mediated methods to reprogram mdx fibroblasts, using phiC31 integrase to insert a single copy of the reprogramming genes at a safe location in the genome. We next used Bxb1 integrase to add the therapeutic full-length dystrophin cDNA to the iPSC in a site-specific manner. Unwanted DNA sequences, including the reprogramming genes, were then precisely deleted with Cre resolvase. Pluripotency of the iPSC was analyzed before and after gene addition, and ability of the genetically corrected iPSC to differentiate into myogenic precursors was evaluated by morphology, immunohistochemistry, qRT-PCR, FACS analysis, and intramuscular engraftment. These data demonstrate a non-viral, reprogramming-plus-gene addition genetic engineering strategy utilizing site-specific recombinases that can be applied easily to mouse cells. This work introduces a significant level of precision in the genetic engineering of iPSC that can be built upon in future studies.

  1. Molecular Basis for Enhancement of the Meiotic DMCI Recombinase by RAD51AP1

    Energy Technology Data Exchange (ETDEWEB)

    Dray, Eloise; Dunlop, Myun Hwa; Kauppi, Liisa; San Filippo, Joseph San; Wiese, Claudia; Tsai, Miaw-Sheue; Begovic, Sead; Schild, David; Jasin, Maria; Keeney, Scott; Sung, Patrick

    2010-11-05

    Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 Associated Protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional co-operation is dependent on complex formation between DMC1 and RAD51AP1, and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci co-localize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.

  2. Mosaic serine proteases in the mammalian central nervous system.

    Science.gov (United States)

    Mitsui, Shinichi; Watanabe, Yoshihisa; Yamaguchi, Tatsuyuki; Yamaguchi, Nozomi

    2008-01-01

    We review the structure and function of three kinds of mosaic serine proteases expressed in the mammalian central nervous system (CNS). Mosaic serine proteases have several domains in the proenzyme fragment, which modulate proteolytic function, and a protease domain at the C-terminus. Spinesin/TMPRSS5 is a transmembrane serine protease whose presynaptic distribution on motor neurons in the spinal cord suggests that it is significant for neuronal plasticity. Cell type-specific alternative splicing gives this protease diverse functions by modulating its intracellular localization. Motopsin/PRSS12 is a mosaic protease, and loss of its function causes mental retardation. Recent reports indicate the significance of this protease for cognitive function. We mention the fibrinolytic protease, tissue plasminogen activator (tPA), which has physiological and pathological functions in the CNS.

  3. Ketamine Metabolites Enantioselectively Decrease Intracellular D-Serine Concentrations in PC-12 Cells.

    Directory of Open Access Journals (Sweden)

    Nagendra S Singh

    Full Text Available D-Serine is an endogenous NMDA receptor co-agonist that activates synaptic NMDA receptors modulating neuronal networks in the cerebral cortex and plays a key role in long-term potentiation of synaptic transmission. D-serine is associated with NMDA receptor neurotoxicity and neurodegeneration and elevated D-serine concentrations have been associated with Alzheimer's and Parkinsons' diseases and amyotrophic lateral sclerosis. Previous studies have demonstrated that the ketamine metabolites (rac-dehydronorketamine and (2S,6S-hydroxynorketamine decrease intracellular D-serine concentrations in a concentration dependent manner in PC-12 cells. In the current study, PC-12 cells were incubated with a series of ketamine metabolites and the IC50 values associated with attenuated intracellular D-serine concentrations were determined. The results demonstrate that structural and stereochemical features of the studied compounds contribute to the magnitude of the inhibitory effect with (2S,6S-hydroxynorketamine and (2R,6R-hydroxynorketamine displaying the most potent inhibition with IC50 values of 0.18 ± 0.04 nM and 0.68 ± 0.09 nM. The data was utilized to construct a preliminary 3D-QSAR/pharmacophore model for use in the design of new and more efficient modulators of D-serine.

  4. Development of the recombinase-based in vivo expression technology in Streptococcus thermophilus and validation using the lactose operon promoter

    NARCIS (Netherlands)

    Junjua, M.; Galia, W.; Gaci, N.; Uriot, O.; Genay, M.; Bachmann, H.; Kleerebezem, M.; Dary, A.; Roussel, Y.

    2014-01-01


    Aims

    To construct and validate the recombinase-based in vivo expression technology (R-IVET) tool in Streptococcus thermophilus (ST).

    Methods and Results

    The R-IVET system we constructed in the LMD-9 strain includes the plasmid pULNcreB allowing transcriptional fusion

  5. Engineering of High Yield Production of L-serine in Escherichia coli

    DEFF Research Database (Denmark)

    Mundhada, Hemanshu; Schneider, Konstantin; Christensen, Hanne Bjerre

    2016-01-01

    by deletion of three L-serine deaminases sdaA, sdaB, and tdcG, as well as serine hydroxyl methyl transferase (SHMT) encoded by glyA. Upon overexpression of the serine production pathway, consisting of a feedback resistant version of serA along with serB and serC, this quadruple deletion strain showed a very...

  6. Transgenic mice for a tamoxifen-induced, conditional expression of the Cre recombinase in osteoclasts.

    Directory of Open Access Journals (Sweden)

    Maria Arantzazu Sanchez-Fernandez

    Full Text Available BACKGROUND: Studies on osteoclasts, the bone resorbing cells, have remained limited due to the lack of transgenic mice allowing the conditional knockout of genes in osteoclasts at any time during development or adulthood. METHODOLOGY/PRINCIPAL FINDING: We report here on the generation of transgenic mice which specifically express a tamoxifen-inducible Cre recombinase in osteoclasts. These mice, generated on C57BL/6 and FVB background, express a fusion Cre recombinase-ERT2 protein whose expression is driven by the promoter of cathepsin K (CtsK, a gene highly expressed in osteoclasts. We tested the cellular specificity of Cre activity in CtsKCreERT2 strains by breeding with Rosa26LacZ reporter mice. PCR and histological analyses of the CtsKCreERT2LacZ positive adult mice and E17.5 embryos show that Cre activity is restricted largely to bone tissue. In vitro, primary osteoclasts derived from the bone marrow of CtsKCreERT2+/-LacZ+/- adult mice show a Cre-dependent β-galactosidase activity after tamoxifen stimulation. CONCLUSIONS/SIGNIFICANCE: We have generated transgenic lines that enable the tamoxifen-induced, conditional deletion of loxP-flanked genes in osteoclasts, thus circumventing embryonic and postnatal gene lethality and avoiding gene deletion in other cell types. Such CtsKCreERT2 mice provide a convenient tool to study in vivo the different facets of osteoclast function in bone physiology during different developmental stages and adulthood of mice.

  7. Cytokeratin 19 promoter directs the expression of Cre recombinase in various epithelia of transgenic mice.

    Science.gov (United States)

    Zhao, Gui-Feng; Zhao, Shuang; Liu, Jia-Jie; Wu, Ji-Cheng; He, Hao-Yu; Ding, Xiao-Qing; Yu, Xue-Wen; Huang, Ke-Qiang; Li, Zhi-Jie; Zheng, Hua-Chuan

    2017-03-14

    Cytokeratin 19 (K19) is expressed in various differentiated cells, including gastric, intestinal and bronchial epithelial cells, and liver duct cells. Here, we generated a transgenic mouse line, K19-Cre, in which the expression of Cre recombinase was controlled by the promoter of K19. To test the tissue distribution and excision activity of Cre recombinase, K19-Cre transgenic mice were bred with Rosa26 reporter strain and a mouse strain that carries PTEN conditional alleles (PTENLoxp/Loxp). At mRNA level, Cre was strongly expressed in the stomach, lung and intestine, while in stomach, lung, and liver at protein level. The immunoreactivity to Cre was strongly observed the cytoplasm of gastric, bronchial and intestinal epithelial cells. Cre activity was detectable in gastric, bronchial and intestinal epithelial cells, according to LacZ staining. In K19-Cre/PTEN Loxp/Loxp mice, PTEN was abrogated in stomach, intestine, lung, liver and breast, the former two of which were verified by in situ PCR. There appeared breast cancer with PTEN loss. These data suggest that K19 promoter may be a useful tool to study the pathophysiological functions of cytokeratin 19-positive cells, especially gastrointestinal epithelial cells. Cell specificity of neoplasia is not completely attributable to the cell-specific expression of oncogenes and cell-specific loss of tumor suppressor genes.

  8. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient wasted'' mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. (Argonne National Lab., IL (United States)); Libertin, C.R. (Loyola Univ., Maywood, IL (United States))

    1992-01-01

    Mice recessive for the autosomal gene wasted'' (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/[sm bullet] mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/[sm bullet] and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  9. Cell Type-Specific Manipulation with GFP-Dependent Cre Recombinase

    Science.gov (United States)

    Tang, Jonathan C Y; Rudolph, Stephanie; Dhande, Onkar S; Abraira, Victoria E; Choi, Seungwon; Lapan, Sylvain; Drew, Iain R; Drokhlyansky, Eugene; Huberman, Andrew D; Regehr, Wade G; Cepko, Constance L

    2016-01-01

    Summary There are many transgenic GFP reporter lines that allow visualization of specific populations of cells. Using such lines for functional studies requires a method that transforms GFP into a molecule that enables genetic manipulation. Here we report the creation of a method that exploits GFP for gene manipulation, Cre Recombinase Dependent on GFP (CRE-DOG), a split component system that uses GFP and its derivatives to directly induce Cre/loxP recombination. Using plasmid electroporation and AAV viral vectors, we delivered CRE-DOG to multiple GFP mouse lines, leading to effective recombination selectively in GFP-labeled cells. Further, CRE-DOG enabled optogenetic control of these neurons. Beyond providing a new set of tools for manipulation of gene expression selectively in GFP+ cells, we demonstrate that GFP can be used to reconstitute the activity of a protein not known to have a modular structure, suggesting that this strategy might be applicable to a wide range of proteins. PMID:26258682

  10. Cell-type specific mechanisms of D-serine uptake and release in the brain

    Directory of Open Access Journals (Sweden)

    Magalie eMartineau

    2014-05-01

    Full Text Available Accumulating evidence during the last decade established that D-serine is a key signaling molecule utilized by neurons and astroglia in the mammalian central nervous system. D-serine is increasingly appreciated as the main physiological endogenous coagonist for synaptic NMDA receptors at central excitatory synapses; it is mandatory for long-term changes in synaptic strength, memory, learning, and social interactions. Alterations in the extracellular levels of D-serine leading to disrupted cell-cell signaling are a trademark of many chronic or acute neurological (i.e. Alzheimer disease, epilepsy, stroke and psychiatric (i.e. schizophrenia disorders, and are associated with addictive behavior (i.e. cocaine addiction. Indeed, fine tuning of the extracellular levels of D-serine, achieved by various molecular machineries and signaling pathways, is necessary for maintenance of accurate NMDA receptor functions. Here, we review the experimental data supporting the notion that astroglia and neurons use different pathways to regulate levels of extracellular D-serine.

  11. l-Serine Enhances Light-Induced Circadian Phase Resetting in Mice and Humans.

    Science.gov (United States)

    Yasuo, Shinobu; Iwamoto, Ayaka; Lee, Sang-Il; Ochiai, Shotaro; Hitachi, Rina; Shibata, Satomi; Uotsu, Nobuo; Tarumizu, Chie; Matsuoka, Sayuri; Furuse, Mitsuhiro; Higuchi, Shigekazu

    2017-12-01

    Background: The circadian clock is modulated by the timing of ingestion or food composition, but the effects of specific nutrients are poorly understood. Objective: We aimed to identify the amino acids that modulate the circadian clock and reset the light-induced circadian phase in mice and humans. Methods: Male CBA/N mice were orally administered 1 of 20 l-amino acids, and the circadian and light-induced phase shifts of wheel-running activity were analyzed. Antagonists of several neurotransmitter pathways were injected before l-serine administration, and light-induced phase shifts were analyzed. In addition, the effect of l-serine on the light-induced phase advance was investigated in healthy male students (mean ± SD age 22.2 ± 1.8 y) by using dim-light melatonin onset (DLMO) determined by saliva samples as an index of the circadian phase. Results: l-Serine administration enhanced light-induced phase shifts in mice (1.86-fold; P light-dark cycle by 6 h, l-serine administration slightly accelerated re-entrainment to the shifted cycle. In humans, l-serine ingestion before bedtime induced significantly larger phase advances of DLMO after bright-light exposure during the morning (means ± SEMs-l-serine: 25.9 ± 6.6 min; placebo: 12.1 ± 7.0 min; P light-induced phase resetting in mice and humans, and it may be useful for treating circadian disturbances. © 2017 American Society for Nutrition.

  12. Dosage compensation of serine-4 transfer RNA in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Birchler, J.A.; Owenby, R.K.; Jacobson, K.B.

    1982-01-01

    A dosage series of the X chromosome site for serine-4 transfer RNA consisting of one of three copies in females and one to two in males was constructed to test whether transfer RNA expression is governed by dosage compensation. A dosage effect on the level of the serine-4 isoacceptor was observed in both females and males when the structural locus was varied. However, in males, each dose had a relatively greater expression so the normal one dose was slightly greater than the total female value and the duplicated male had the highest relative expression of all the types examined. Serine-4 levels in males and females from an isogenic Oregon-R stock were similar. Thus the transfer RNA levels conform to the expectations of dosage compensation

  13. Intracellular APP Domain Regulates Serine-Palmitoyl-CoA Transferase Expression and Is Affected in Alzheimer's Disease

    Science.gov (United States)

    Grimm, Marcus O. W.; Grösgen, Sven; Rothhaar, Tatjana L.; Burg, Verena K.; Hundsdörfer, Benjamin; Haupenthal, Viola J.; Friess, Petra; Müller, Ulrike; Fassbender, Klaus; Riemenschneider, Matthias; Grimm, Heike S.; Hartmann, Tobias

    2011-01-01

    Lipids play an important role as risk or protective factors in Alzheimer's disease (AD), a disease biochemically characterized by the accumulation of amyloid beta peptides (Aβ), released by proteolytic processing of the amyloid precursor protein (APP). Changes in sphingolipid metabolism have been associated to the development of AD. The key enzyme in sphingolipid de novo synthesis is serine-palmitoyl-CoA transferase (SPT). In the present study we identified a new physiological function of APP in sphingolipid synthesis. The APP intracellular domain (AICD) was found to decrease the expression of the SPT subunit SPTLC2, the catalytic subunit of the SPT heterodimer, resulting in that decreased SPT activity. AICD function was dependent on Fe65 and SPTLC2 levels are increased in APP knock-in mice missing a functional AICD domain. SPTLC2 levels are also increased in familial and sporadic AD postmortem brains, suggesting that SPT is involved in AD pathology. PMID:21660213

  14. Evaluation of oxidative stress in D-serine induced nephrotoxicity

    International Nuclear Information System (INIS)

    Orozco-Ibarra, Marisol; Medina-Campos, Omar Noel; Sanchez-Gonzalez, Dolores Javier; Martinez-Martinez, Claudia Maria; Floriano-Sanchez, Esau; Santamaria, Abel; Ramirez, Victoria; Bobadilla, Norma A.; Pedraza-Chaverri, Jose

    2007-01-01

    It has been suggested that oxidative stress is involved in D-serine-induced nephrotoxicity. The purpose of this study was to assess if oxidative stress is involved in this experimental model using several approaches including (a) the determination of several markers of oxidative stress and the activity of some antioxidant enzymes in kidney and (b) the use of compounds with antioxidant or prooxidant effects. Rats were sacrificed at several periods of time (from 3 to 24 h) after a single i.p. injection of D-serine (400 mg/kg). Control rats were injected with L-serine (400 mg/kg) and sacrificed 24 h after. The following markers were used to assess the temporal aspects of renal damage: (a) urea nitrogen (BUN) and creatinine in blood serum, (b) kidney injury molecule (KIM-1) mRNA levels, and (c) tubular necrotic damage. In addition, creatinine clearance, proteinuria, and urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) were measured 24 h after D-serine injection. Protein carbonyl content, malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), fluorescent products of lipid peroxidation, reactive oxygen species (ROS), glutathione (GSH) content, and heme oxygenase-1 (HO-1) expression were measured as markers of oxidative stress in the kidney. Additional experiments were performed using the following compounds with antioxidant or pro-oxidant effects before D-serine injection: (a) α-phenyl-tert-butyl-nitrone (PBN), a spin trapping agent; (b) 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron(III) (FeTPPS), a soluble complex able to metabolize peroxynitrite; (c) aminotriazole (ATZ), a catalase (CAT) inhibitor; (d) stannous chloride (SnCl 2 ), an HO-1 inductor; (e) tin mesoporphyrin (SnMP), an HO inhibitor. In the time-course study, serum creatinine and BUN increased significantly on 15-24 and 20-24 h, respectively, and KIM-1 mRNA levels increased significantly on 6-24 h. Histological analyses revealed tubular necrosis at 12 h. The activity of antioxidant enzymes

  15. Rapid and sensitive detection of canine parvovirus type 2 by recombinase polymerase amplification.

    Science.gov (United States)

    Wang, Jianchang; Liu, Libing; Li, Ruiwen; Wang, Jinfeng; Fu, Qi; Yuan, Wanzhe

    2016-04-01

    A novel recombinase polymerase amplification (RPA)-based method for detection of canine parvovirus type 2 (CPV-2) was developed. Sensitivity analysis showed that the detection limit of RPA was 10 copies of CPV-2 genomic DNA. RPA amplified both CPV-2a and -2b DNA but did not amplify the template of other important dog viruses (CCoV, PRV or CDV), demonstrating high specificity. The method was further validated with 57 canine fecal samples. An outstanding advantage of RPA is that it is an isothermal reaction and can be performed in a water bath, making RPA a potential alternative method for CPV-2 detection in resource-limited settings.

  16. Development of a rapid diagnostic assay for the detection of tomato chlorotic dwarf viroid based on isothermal reverse-transcription-recombinase polymerase amplification

    Science.gov (United States)

    A molecular diagnostic assay utilizing reverse transcription-recombinase polymerase amplification (RT-RPA) at an isothermal constant temperature of 39 °C and target-specific primers and probe were developed for the rapid, sensitive, and specific detection of tomato chlorotic dwarf viroid (TCDVd) in ...

  17. Contribution of the D-Serine-dependent pathway to the cellular mechanisms underlying cognitive aging

    Directory of Open Access Journals (Sweden)

    Emilie Rouaud

    2010-02-01

    Full Text Available An association between age-related memory impairments and changes in functional plasticity in the aging brain has been under intense study within the last decade. In this article, we show that an impaired activation of the strychnine-insensitive glycine site of N-Methyl-D-Aspartate receptors (NMDA-R by its agonist D-serine contributes to deficits of synaptic plasticity in the hippocampus of memory-impaired aged rats. Supplementation with exogenous D-serine prevents the age-related deficits of isolated NMDA-R-dependent synaptic potentials as well as those of theta-burst-induced long-term potentiation and synaptic depotentiation. Endogenous levels of D-serine are reduced in the hippocampus with aging, that correlates with a weaker expression of serine racemase synthesizing the amino acid. On the contrary, the affinity of D-serine binding to NMDA-R is not affected by aging. These results point to a critical role for the D-serine-dependent pathway in the functional alterations of the brain underlying memory impairment and provide key information in the search for new therapeutic strategies for the treatment of memory deficits in the elderly.

  18. Targeting of Mesenchymal Stromal Cells by Cre-Recombinase Transgenes Commonly Used to Target Osteoblast Lineage Cells.

    Science.gov (United States)

    Zhang, Jingzhu; Link, Daniel C

    2016-11-01

    The targeting specificity of tissue-specific Cre-recombinase transgenes is a key to interpreting phenotypes associated with their use. The Ocn-Cre and Dmp1-Cre transgenes are widely used to target osteoblasts and osteocytes, respectively. Here, we used high-resolution microscopy of bone sections and flow cytometry to carefully define the targeting specificity of these transgenes. These transgenes were crossed with Cxcl12 gfp mice to identify Cxcl12-abundant reticular (CAR) cells, which are a perivascular mesenchymal stromal population implicated in hematopoietic stem/progenitor cell maintenance. We show that in addition to osteoblasts, Ocn-Cre targets a majority of CAR cells and arteriolar pericytes. Surprisingly, Dmp1-Cre also targets a subset of CAR cells, in which expression of osteoblast-lineage genes is enriched. Finally, we introduce a new tissue-specific Cre-recombinase, Tagln-Cre, which efficiently targets osteoblasts, a majority of CAR cells, and both venous sinusoidal and arteriolar pericytes. These data show that Ocn-Cre and Dmp1-Cre target broader stromal cell populations than previously appreciated and may aid in the design of future studies. Moreover, these data highlight the heterogeneity of mesenchymal stromal cells in the bone marrow and provide tools to interrogate this heterogeneity. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  19. The uropathogenic species Staphylococcus saprophyticus tolerates a high concentration of D-serine.

    Science.gov (United States)

    Sakinç, Türkân; Michalski, Nadine; Kleine, Britta; Gatermann, Sören G

    2009-10-01

    Human urine contains a relatively high concentration of d-serine, which is toxic to several nonuropathogenic bacteria, but can be utilized or detoxified by uropathogenic Escherichia coli (UPEC). The sequenced genome of uropathogenic Staphylococcus saprophyticus contains a gene with homology to the d-serine deaminase gene (dsdA) of UPEC. We found the gene in several clinical isolates of S. saprophyticus; however, the gene was absent in Staphylococcus xylosus and Staphylococcus cohnii, phylogenetically close relatives of S. saprophyticus, and could also not be detected in isolates of Staphylococcus aureus, Staphylococcus epidermidis and 13 other staphylococcal species. In addition, the genomes of other sequenced staphylococci do not harbor homologues of this operon. Interestingly, S. saprophyticus could grow in media supplemented with relatively high concentrations of d-serine, whereas S. aureus, S. epidermidis and other staphylococcal species could not. The association of the dsdA gene with growth in media including d-serine was proved by introducing the gene into S. aureus Newman. Given the fact that UPEC and S. saprophyticus tolerate this compound, d-serine utilization and detoxification may be a general property of uropathogenic bacteria. © 2009 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. D-Serine and Glycine Differentially Control Neurotransmission during Visual Cortex Critical Period.

    Directory of Open Access Journals (Sweden)

    Claire N J Meunier

    Full Text Available N-methyl-D-aspartate receptors (NMDARs play a central role in synaptic plasticity. Their activation requires the binding of both glutamate and d-serine or glycine as co-agonist. The prevalence of either co-agonist on NMDA-receptor function differs between brain regions and remains undetermined in the visual cortex (VC at the critical period of postnatal development. Here, we therefore investigated the regulatory role that d-serine and/or glycine may exert on NMDARs function and on synaptic plasticity in the rat VC layer 5 pyramidal neurons of young rats. Using selective enzymatic depletion of d-serine or glycine, we demonstrate that d-serine and not glycine is the endogenous co-agonist of synaptic NMDARs required for the induction and expression of Long Term Potentiation (LTP at both excitatory and inhibitory synapses. Glycine on the other hand is not involved in synaptic efficacy per se but regulates excitatory and inhibitory neurotransmission by activating strychnine-sensitive glycine receptors, then producing a shunting inhibition that controls neuronal gain and results in a depression of synaptic inputs at the somatic level after dendritic integration. In conclusion, we describe for the first time that in the VC both D-serine and glycine differentially regulate somatic depolarization through the activation of distinct synaptic and extrasynaptic receptors.

  1. Recombinase Activating Gene 1 Deficiencies Without Omenn Syndrome May Also Present With Eosinophilia and Bone Marrow Fibrosis

    OpenAIRE

    Ulusoy, Ezgi; Karaca, Neslihan Edeer; Azarsiz, Elif; Berdeli, Afig; Aksu, Guzide; Kutukculer, Necil

    2016-01-01

    Background Severe combined immunodeficiency (SCID) syndromes are a heterogenous group of diseases characterized by impairment in both cellular and humoral immunity with a range of genetic disorders. Complete recombinase activating gene (RAG) deficiency is associated with classical T-B-NK+ SCID which is the most common phenotype of Turkish SCID patients. There is a broad spectrum of hypomorfic RAG mutations including Omenn syndrome, leaky or atypical SCID with expansion of ?? T cells, autoimmu...

  2. Improvement in regional CBF by L-serine contributes to its neuroprotective effect in rats after focal cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Tao-Jie Ren

    Full Text Available To investigate the mechanisms underlying the neuroprotective effect of L-serine, permanent focal cerebral ischemia was induced by occlusion of the middle cerebral artery while monitoring cerebral blood flow (CBF. Rats were divided into control and L-serine-treated groups after middle cerebral artery occlusion. The neurological deficit score and brain infarct volume were assessed. Nissl staining was used to quantify the cortical injury. L-serine and D-serine levels in the ischemic cortex were analyzed with high performance liquid chromatography. We found that L-serine treatment: 1 reduced the neurological deficit score, infarct volume and cortical neuron loss in a dose-dependent manner; 2 improved CBF in the cortex, and this effect was inhibited in the presence of apamin plus charybdotoxin while the alleviation of both neurological deficit score and infarct volume was blocked; and 3 increased the amount of L-serine and D-serine in the cortex, and inhibition of the conversion of L-serine into D-serine by aminooxyacetic acid did not affect the reduction of neurological deficit score and infarct volume by L-serine. In conclusion, improvement in regional CBF by L-serine may contribute to its neuroprotective effect on the ischemic brain, potentially through vasodilation which is mediated by the small- and intermediate-conductance Ca(2+-activated K(+ channels on the cerebral blood vessel endothelium.

  3. Serine/Threonine Protein Phosphatase PstP of Mycobacterium tuberculosis Is Necessary for Accurate Cell Division and Survival of Pathogen*

    Science.gov (United States)

    Sharma, Aditya K.; Arora, Divya; Singh, Lalit K.; Gangwal, Aakriti; Sajid, Andaleeb; Molle, Virginie; Singh, Yogendra; Nandicoori, Vinay Kumar

    2016-01-01

    Protein phosphatases play vital roles in phosphorylation-mediated cellular signaling. Although there are 11 serine/threonine protein kinases in Mycobacterium tuberculosis, only one serine/threonine phosphatase, PstP, has been identified. Although PstP has been biochemically characterized and multiple in vitro substrates have been identified, its physiological role has not yet been elucidated. In this study, we have investigated the impact of PstP on cell growth and survival of the pathogen in the host. Overexpression of PstP led to elongated cells and partially compromised survival. We find that depletion of PstP is detrimental to cell survival, eventually leading to cell death. PstP depletion results in elongated multiseptate cells, suggesting a role for PstP in regulating cell division events. Complementation experiments performed with PstP deletion mutants revealed marginally compromised survival, suggesting that all of the domains, including the extracellular domain, are necessary for complete rescue. On the other hand, the catalytic activity of PstP is absolutely essential for the in vitro growth. Mice infection experiments establish a definitive role for PstP in pathogen survival within the host. Depletion of PstP from established infections causes pathogen clearance, indicating that the continued presence of PstP is necessary for pathogen survival. Taken together, our data suggest an important role for PstP in establishing and maintaining infection, possibly via the modulation of cell division events. PMID:27758870

  4. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    Directory of Open Access Journals (Sweden)

    Leah Theresa Sigle

    2013-09-01

    Full Text Available Sandflies (Diptera: Psychodidae are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2. Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania.

  5. Reprogramming One-Carbon Metabolic Pathways To Decouple l-Serine Catabolism from Cell Growth in Corynebacterium glutamicum.

    Science.gov (United States)

    Zhang, Yun; Shang, Xiuling; Lai, Shujuan; Zhang, Yu; Hu, Qitiao; Chai, Xin; Wang, Bo; Liu, Shuwen; Wen, Tingyi

    2018-02-16

    l-Serine, the principal one-carbon source for DNA biosynthesis, is difficult for microorganisms to accumulate due to the coupling of l-serine catabolism and microbial growth. Here, we reprogrammed the one-carbon unit metabolic pathways in Corynebacterium glutamicum to decouple l-serine catabolism from cell growth. In silico model-based simulation showed a negative influence on glyA-encoding serine hydroxymethyltransferase flux with l-serine productivity. Attenuation of glyA transcription resulted in increased l-serine accumulation, and a decrease in purine pools, poor growth and longer cell shapes. The gcvTHP-encoded glycine cleavage (Gcv) system from Escherichia coli was introduced into C. glutamicum, allowing glycine-derived 13 CH 2 to be assimilated into intracellular purine synthesis, which resulted in an increased amount of one-carbon units. Gcv introduction not only restored cell viability and morphology but also increased l-serine accumulation. Moreover, comparative proteomic analysis indicated that abundance changes of the enzymes involved in one-carbon unit cycles might be responsible for maintaining one-carbon unit homeostasis. Reprogramming of the one-carbon metabolic pathways allowed cells to reach a comparable growth rate to accumulate 13.21 g/L l-serine by fed-batch fermentation in minimal medium. This novel strategy provides new insights into the regulation of cellular properties and essential metabolite accumulation by introducing an extrinsic pathway.

  6. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum.

    Science.gov (United States)

    Zhang, Xin; Zhang, Xiaomei; Xu, Guoqiang; Zhang, Xiaojuan; Shi, Jinsong; Xu, Zhenghong

    2018-05-03

    L-Serine is widely used in the pharmaceutical, food, and cosmetics industries. Although direct fermentative production of L-serine from sugar in Corynebacterium glutamicum has been achieved, the L-serine yield remains relatively low. In this study, atmospheric and room temperature plasma (ARTP) mutagenesis was used to improve the L-serine yield based on engineered C. glutamicum ΔSSAAI strain. Subsequently, we developed a novel high-throughput screening method using a biosensor constructed based on NCgl0581, a transcriptional factor specifically responsive to L-serine, so that L-serine concentration within single cell of C. glutamicum can be monitored via fluorescence-activated cell sorting (FACS). Novel L-serine-producing mutants were isolated from a large library of mutagenized cells. The mutant strain A36-pDser was screened from 1.2 × 10 5 cells, and the magnesium ion concentration in the medium was optimized specifically for this mutant. C. glutamicum A36-pDser accumulated 34.78 g/L L-serine with a yield of 0.35 g/g sucrose, which were 35.9 and 66.7% higher than those of the parent C. glutamicum ΔSSAAI-pDser strain, respectively. The L-serine yield achieved in this mutant was the highest of all reported L-serine-producing strains of C. glutamicum. Moreover, the whole-genome sequencing identified 11 non-synonymous mutations of genes associated with metabolic and transport pathways, which might be responsible for the higher L-serine production and better cell growth in C. glutamicum A36-pDser. This study explored an effective mutagenesis strategy and reported a novel high-throughput screening method for the development of L-serine-producing strains.

  7. Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96.

    Science.gov (United States)

    Mavrodi, Olga V; Mavrodi, Dmitri V; Weller, David M; Thomashow, Linda S

    2006-11-01

    Pseudomonas fluorescens Q8r1-96 produces 2,4-diacetylphloroglucinol (2,4-DAPG), a polyketide antibiotic that suppresses a wide variety of soilborne fungal pathogens, including Gaeumannomyces graminis var. tritici, which causes take-all disease of wheat. Strain Q8r1-96 is representative of the D-genotype of 2,4-DAPG producers, which are exceptional because of their ability to aggressively colonize and maintain large populations on the roots of host plants, including wheat, pea, and sugar beet. In this study, three genes, an sss recombinase gene, ptsP, and orfT, which are important in the interaction of Pseudomonas spp. with various hosts, were investigated to determine their contributions to the unusual colonization properties of strain Q8r1-96. The sss recombinase and ptsP genes influence global processes, including phenotypic plasticity and organic nitrogen utilization, respectively. The orfT gene contributes to the pathogenicity of Pseudomonas aeruginosa in plants and animals and is conserved among saprophytic rhizosphere pseudomonads, but its function is unknown. Clones containing these genes were identified in a Q8r1-96 genomic library, sequenced, and used to construct gene replacement mutants of Q8r1-96. Mutants were characterized to determine their 2,4-DAPG production, motility, fluorescence, colony morphology, exoprotease and hydrogen cyanide (HCN) production, carbon and nitrogen utilization, and ability to colonize the rhizosphere of wheat grown in natural soil. The ptsP mutant was impaired in wheat root colonization, whereas mutants with mutations in the sss recombinase gene and orfT were not. However, all three mutants were less competitive than wild-type P. fluorescens Q8r1-96 in the wheat rhizosphere when they were introduced into the soil by paired inoculation with the parental strain.

  8. Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santiago-Felipe, S.; Tortajada-Genaro, L.A.; Puchades, R.; Maquieira, A., E-mail: amaquieira@qim.upv.es

    2014-02-06

    Graphical abstract: -- Highlights: •Recombinase polymerase amplification is a powerful DNA method operating at 40 °C. •The combination RPA–ELISA gives excellent performances for high-throughput analysis. •Screening of food safety threats has been done using standard laboratory equipment. •Allergens, GMOs, bacteria, and fungi have been successfully determined. -- Abstract: Polymerase chain reaction in conjunction with enzyme-linked immunosorbent assay (PCR–ELISA) is a well-established technique that provides a suitable rapid, sensitive, and selective method for a broad range of applications. However, the need for precise rapid temperature cycling of PCR is an important drawback that can be overcome by employing isothermal amplification reactions such as recombinase polymerase amplification (RPA). The RPA–ELISA combination is proposed for amplification at a low, constant temperature (40 °C) in a short time (40 min), for the hybridisation of labelled products to specific 5′-biotinylated probes/streptavidin in coated microtiter plates at room temperature, and for detection by colorimetric immunoassay. RPA–ELISA was applied to screen common safety threats in foodstuffs, such as allergens (hazelnut, peanut, soybean, tomato, and maize), genetically modified organisms (P35S and TNOS), pathogenic bacteria (Salmonella sp. and Cronobacter sp.), and fungi (Fusarium sp.). Satisfactory sensitivity and reproducibility results were achieved for all the targets. The RPA–ELISA technique does away with thermocycling and provides a suitable sensitive, specific, and cost-effective method for routine applications, and proves particularly useful for resource-limited settings.

  9. Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis

    International Nuclear Information System (INIS)

    Santiago-Felipe, S.; Tortajada-Genaro, L.A.; Puchades, R.; Maquieira, A.

    2014-01-01

    Graphical abstract: -- Highlights: •Recombinase polymerase amplification is a powerful DNA method operating at 40 °C. •The combination RPA–ELISA gives excellent performances for high-throughput analysis. •Screening of food safety threats has been done using standard laboratory equipment. •Allergens, GMOs, bacteria, and fungi have been successfully determined. -- Abstract: Polymerase chain reaction in conjunction with enzyme-linked immunosorbent assay (PCR–ELISA) is a well-established technique that provides a suitable rapid, sensitive, and selective method for a broad range of applications. However, the need for precise rapid temperature cycling of PCR is an important drawback that can be overcome by employing isothermal amplification reactions such as recombinase polymerase amplification (RPA). The RPA–ELISA combination is proposed for amplification at a low, constant temperature (40 °C) in a short time (40 min), for the hybridisation of labelled products to specific 5′-biotinylated probes/streptavidin in coated microtiter plates at room temperature, and for detection by colorimetric immunoassay. RPA–ELISA was applied to screen common safety threats in foodstuffs, such as allergens (hazelnut, peanut, soybean, tomato, and maize), genetically modified organisms (P35S and TNOS), pathogenic bacteria (Salmonella sp. and Cronobacter sp.), and fungi (Fusarium sp.). Satisfactory sensitivity and reproducibility results were achieved for all the targets. The RPA–ELISA technique does away with thermocycling and provides a suitable sensitive, specific, and cost-effective method for routine applications, and proves particularly useful for resource-limited settings

  10. LOCALIZATION OF POLYSOME-BOUND ALBUMIN AND SERINE DEHYDRATASE IN RAT LIVER CELL FRACTIONS

    Science.gov (United States)

    Ikehara, Yukio; Pitot, Henry C.

    1973-01-01

    The polysomes involved in albumin and serine dehydratase synthesis were identified and localized by the binding to rat liver polysomes of anti-rat serum albumin and anti-serine dehydratase [125I]Fab dimer and monomer. Techniques were developed for the isolation of undegraded free and membrane-bound polysomes and for the preparation of [125I]Fab monomers and dimers from the IgG obtained from the antisera to the two proteins, rat serum albumin and serine dehydratase. The distribution of anti-rat serum albumin [125I]Fab dimer in the polysome profile is in accordance with the size of polysomes that are expected to be synthesizing albumin. By direct precipitation, it has been demonstrated that nascent chains isolated from the membrane-bound polysomes by puromycin were precipitated by anti-rat serum albumin-IgG at a level of 5–6 times those released from free polysomes. Anti-rat serum albumin-[125I]Fab dimer reacted with membrane-bound polysomes almost exclusively compared to the binding of nonimmune, control [125I]Fab dimer; a significant degree of binding of anti-rat serum albumin-[125I]Fab to free polysomes was also obtained. The [125I]Fab dimer made from normal control rabbit serum does not react with polysomes from liver at all and this preparation will not interact with polysomes extracted from tissues that do not synthesize rat serum albumin. Both anti-serine dehydratase-[125I]Fab monomer and dimer react with free and bound polysomes from livers of animals fed a chow diet or those fed a high 90% protein diet and given glucagon. In the latter instance, however, it is clear that the majority of the binding occurs to the bound polysomes. Furthermore, the specificity of this reaction may be further shown by the use of kidney polysomes that do not normally synthesize serine dehydratase. When these latter polysomes are isolated, even after the addition of crude and purified serine dehydratase, no reaction with anti-serine dehydratase-Fab fragments could be

  11. Antibacterial activity of silver nanoparticles synthesized from serine

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, N. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); SRM Valliammai Engineering College, Department of Chemistry, Chennai 603 203 (India); Judith Vijaya, J., E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); John Kennedy, L. [Materials Division, School of Advanced Sciences, VIT University, Chennai Campus, Chennai 600 048 (India); Priadharsini, K.; Palani, P. [Department of Center for Advanced Study in Botany, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV–Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443 nm. The emission spectrum of Ag NPs showed an emission band at 484 nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO{sub 3} against Gram-positive and Gram-negative bacteria. - Highlights: • Microwave irradiation method is used to synthesize silver nanoparticles. • Highly stable silver nanoparticles are produced from serine. • A detailed study of antibacterial activities is discussed. • Formation mechanism of silver microspheres has been proposed.

  12. Random mutagenesis of human serine racemase reveals residues important for the enzymatic activity

    Czech Academy of Sciences Publication Activity Database

    Hoffman, Hillary Elizabeth; Jirásková, Jana; Zvelebil, M.; Konvalinka, Jan

    2010-01-01

    Roč. 75, č. 1 (2010), s. 59-79 ISSN 0010-0765 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : D-serine * serine racemase * random mutagenesis Subject RIV: CE - Biochemistry Impact factor: 0.853, year: 2010

  13. Intervention with Serine Protease Activity with Small Peptides

    DEFF Research Database (Denmark)

    Xu, Peng

    2015-01-01

    Serine proteases perform proteolytic reactions in many physiological and metabolic processes and have been certified as targets for therapeutics. Small peptides can be used as potent antagonists to target serine proteases and intervene with their activities. Urokinase-type plasminogen activator (u......PA) plays an important role in plasminogen activation system, which has many physiological and pathological functions and is closely associated with the metastasis of tumor cells. Based on a mono-cyclic peptidic inhibitor of murine uPA (muPA), mupain-1, which was screened out from a phage-display library...... before, we elucidated the binding and inhibitory mechanism by using multiple techniques, like X-ray crystallography, site-directed mutagenesis, isothermal titration calorimetry and surface plasmon resonance analysis. By studying the peptide-enzyme interaction, we discovered an unusual inhibitor...

  14. Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo

    DEFF Research Database (Denmark)

    Burgess, Rebecca C; Lisby, Michael; Altmannova, Veronika

    2009-01-01

    , and surprisingly, can form in the absence of Rad52 mediation. However, these Rad51 foci do not represent repair-proficient filaments, as determined by recombination assays. Antagonistic roles for Rad52 and Srs2 in Rad51 filament formation are also observed in vitro. Furthermore, we provide evidence that Srs2......Homologous recombination (HR), although an important DNA repair mechanism, is dangerous to the cell if improperly regulated. The Srs2 "anti-recombinase" restricts HR by disassembling the Rad51 nucleoprotein filament, an intermediate preceding the exchange of homologous DNA strands. Here, we...... removes Rad51 indiscriminately from DNA, while the Rad52 protein coordinates appropriate filament reformation. This constant breakdown and rebuilding of filaments may act as a stringent quality control mechanism during HR....

  15. Serine esterase and hemolytic activity in human cloned cytotoxic T lymphocytes

    OpenAIRE

    1988-01-01

    Target cell lysis by most murine cytotoxic T lymphocytes appears to be mediated by a complement (C9)-like protein called perforin, contained in high-density cytoplasmic granules. These granules also contain high levels of serine esterase activity, which may also play a role in cytolysis. Analysis of 17 cloned human cytotoxic T lymphocytes revealed the presence of serine esterase that is very similar to its murine counterpart in substrate and inhibitor specificities, pH optimum, and molecular ...

  16. Pnserpin: A Novel Serine Protease Inhibitor from Extremophile Pyrobaculum neutrophilum

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    2017-01-01

    Full Text Available Serine protease inhibitors (serpins are native inhibitors of serine proteases, constituting a large protein family with members spread over eukaryotes and prokaryotes. However, only very few prokaryotic serpins, especially from extremophiles, have been characterized to date. In this study, Pnserpin, a putative serine protease inhibitor from the thermophile Pyrobaculum neutrophilum, was overexpressed in Escherichia coli for purification and characterization. It irreversibly inhibits chymotrypsin-, trypsin-, elastase-, and subtilisin-like proteases in a temperature range from 20 to 100 °C in a concentration-dependent manner. The stoichiometry of inhibition (SI of Pnserpin for proteases decreases as the temperature increases, indicating that the inhibitory activity of Pnserpin increases with the temperature. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that Pnserpin inhibits proteases by forming a SDS-resistant covalent complex. Homology modeling and molecular dynamic simulations predicted that Pnserpin can form a stable common serpin fold. Results of the present work will help in understanding the structural and functional characteristics of thermophilic serpin and will broaden the current knowledge about serpins from extremophiles.

  17. Epigenetic Activation of ASCT2 in the Hippocampus Contributes to Depression-Like Behavior by Regulating D-Serine in Mice

    Directory of Open Access Journals (Sweden)

    Jiesi Wang

    2017-05-01

    Full Text Available The roles of D-serine in depression are raised concerned recently as an intrinsic co-agonist for the NMDA receptor. However, the mechanisms underlying its regulation are not fully elucidated. ASCT2 is a Na+-dependent D-serine transporter. We found that decreased D-serine and increased hippocampal ASCT2 levels correlated with chronic social defeat stress (CSDS in mice. Lentivirus-mediated shRNA-mediated knockdown of ASCT2 and the administration of exogenous D-serine in the hippocampus alleviated CSDS-induced social avoidance and immobility. In vivo and in vitro experiments revealed that upregulation of ASCT2 expression in CSDS was regulated through histone hyper-acetylation, not DNA methylation in its promoter region. Immunohistochemistry demonstrated the co-localization of ASCT2 and D-serine. Uptake of D-serine by ASCT2 was demonstrated by in vivo and in vitro experiments. Our results indicate that CSDS induces ASCT2 expression through epigenetic activation and decreases hippocampal D-serine levels, leading to social avoidance, and immobility. Thus, targeting D-serine transport represents an attractive new strategy for treating depression.

  18. FBXO22 Protein Is Required for Optimal Synthesis of the N-Methyl-d-Aspartate (NMDA) Receptor Coagonist d-Serine

    DEFF Research Database (Denmark)

    Dikopoltsev, Elena; Foltyn, Veronika N; Zehl, Martin

    2014-01-01

    d-Serine is a physiological activator of NMDA receptors (NMDARs) in the nervous system that mediates several NMDAR-mediated processes ranging from normal neurotransmission to neurodegeneration. d-Serine is synthesized from l-serine by serine racemase (SR), a brain-enriched enzyme. However, little......, SR interacts preferentially with free FBXO22 species. In vivo ubiquitination and SR half-life determination indicate that FBXO22 does not target SR to the proteasome system. FBXO22 primarily affects SR subcellular localization and seems to increase d-serine synthesis by preventing the association...... is known about the regulation of d-serine synthesis. We now demonstrate that the F-box only protein 22 (FBXO22) interacts with SR and is required for optimal d-serine synthesis in cells. Although FBXO22 is classically associated with the ubiquitin system and is recruited to the Skip1-Cul1-F-box E3 complex...

  19. The pro-coagulant fibrinogenolytic serine protease isoenzymes purified from Daboia russelii russelii venom coagulate the blood through factor V activation: role of glycosylation on enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Ashis K Mukherjee

    Full Text Available Proteases from Russell's viper venom (RVV induce a variety of toxic effects in victim. Therefore, four new RVV protease isoenzymes of molecular mass 32901.044 Da, 333631.179 Da, 333571.472 Da, and 34594.776 Da, were characterized in this study. The first 10 N-terminal residues of these serine protease isoenzymes showed significant sequence homology with N-terminal sequences of snake venom thrombin-like and factor V-activating serine proteases, which was reconfirmed by peptide mass fingerprinting analysis. These proteases were found to be different from previously reported factor V activators isolated from snake venoms. These proteases showed significantly different fibrinogenolytic, BAEE-esterase and plasma clotting activities but no fibrinolytic, TAME-esterase or amidolytic activity against the chromogenic substrate for trypsin, thrombin, plasmin and factor Xa. Their Km and Vmax values towards fibrinogen were determined in the range of 6.6 to 10.5 µM and 111.0 to 125.5 units/mg protein, respectively. On the basis of fibrinogen degradation pattern, they may be classified as A/B serine proteases isolated from snake venom. These proteases contain ∼ 42% to 44% of N-linked carbohydrates by mass whereas partially deglycosylated enzymes showed significantly less catalytic activity as compared to native enzymes. In vitro these protease isoenzymes induce blood coagulation through factor V activation, whereas in vivo they provoke dose-dependent defibrinogenation and anticoagulant activity in the mouse model. At a dose of 5 mg/kg, none of these protease isoenzymes were found to be lethal in mice or house geckos, suggesting therapeutic application of these anticoagulant peptides for the prevention of thrombosis.

  20. Protein kinase A phosphorylates serine 267 in the homeodomain of engrailed-2 leading to decreased DNA binding

    DEFF Research Database (Denmark)

    Hjerrild, Majbrit; Stensballe, Allan; Jensen, Ole N

    2004-01-01

    Engrailed-2 (En-2) belongs to an evolutionarily conserved family of DNA binding homeodomain-containing proteins that are expressed in mammalian brain during development. Here, we demonstrate that serine 267 in the homeodomain of En-2 is phosphorylated by protein kinase A (PKA) in forskolin......-treated COS-7 cells. Furthermore, we analyze the physiological function of En-2 phosphorylation by PKA. The nuclear localization of En-2 is not influenced by the phosphorylation of serine 267. However, substitution of serine 267 with alanine resulted in increased binding of En-2 to DNA, while replacing serine...

  1. Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs using PICS with proteome-derived peptide libraries.

    Directory of Open Access Journals (Sweden)

    Olivier Barré

    Full Text Available Type II transmembrane serine proteases (TTSPs are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors.To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS. Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin to simultaneously determine sequence preferences on the N-terminal non-prime (P and C-terminal prime (P' sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1' position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived.Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1' positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.

  2. Identification and purification of O-acetyl-L-serine sulphhydrylase in Penicillium chrysogenum

    DEFF Research Database (Denmark)

    østergaard, Simon; Theilgaard, Hanne Birgitte; Nielsen, Jens Bredal

    1998-01-01

    We have demonstrated that Penicillium chrysogenum possesses the L-cysteine biosynthetic enzyme O-acetyI-L-serine sulphhydrylase (EC 4.2.99.8) of the direct sulphhydrylation pathway. The finding of this enzyme, and thus the presence of the direct sulphhydrylation pathway in P. chrysogenum, creates...... the potential for increasing the overall yield in penicillin production by enhancing the enzymatic activity of this microorganism. Only O-acetyl-L-serine sulphhydrylase and O-acetyl-L-homoserine sulphhydrylase (EC 4.2.99.10) have been demonstrated to use O-acetyl-L-serine as substrate for the formation of L-cysteine....... The purified enzyme did not catalyse the formation of L-homocysteine from O-acetyl-L-homoserine and sulphide, excluding the possibility that the purified enzyme was O-acetyI-L-homoserine sulphhydrylase with multiple substrate specificity. The purification enhanced the enzymatic specific activity 93-fold...

  3. Hexokinase 2 from Saccharomyces cerevisiae: regulation of oligomeric structure by in vivo phosphorylation at serine-14.

    Science.gov (United States)

    Behlke, J; Heidrich, K; Naumann, M; Müller, E C; Otto, A; Reuter, R; Kriegel, T

    1998-08-25

    Homodimeric hexokinase 2 from Saccharomyces cerevisiae is known to have two sites of phosphorylation: for serine-14 the modification in vivo increases with glucose exhaustion [Kriegel et al. (1994) Biochemistry 33, 148-152], while for serine-157 it occurs in vitro with ATP in the presence of nonphosphorylateable five-carbon analogues of glucose [Heidrich et al. (1997) Biochemistry 36, 1960-1964]. We show now by site-directed mutagenesis and sedimentation analysis that serine-14 phosphorylation affects the oligomeric state of hexokinase, its substitution by glutamate causing complete dissociation; glutamate exchange for serine-157 does not. Phosphorylation of wild-type hexokinase at serine-14 likewise causes dissociation in vitro. In view of the higher glucose affinity of monomeric hexokinase and the high hexokinase concentration in yeast [Womack, F., and Colowick, S. P. (1978) Arch. Biochem. Biophys. 191, 742-747; Mayes, E. L., Hoggett, J. G., and Kellett, G. L. (1983) Eur. J. Biochem. 133, 127-134], we speculate that the in vivo phosphorylation at serine-14 as transiently occurring in glucose derepression might provide a mechanism to improve glucose utilization from low level and/or that nuclear localization of the monomer might be involved in the signal transduction whereby glucose causes catabolite repression.

  4. ATM-mediated Snail Serine 100 phosphorylation regulates cellular radiosensitivity

    International Nuclear Information System (INIS)

    Boohaker, Rebecca J.; Cui, Xiaoli; Stackhouse, Murray; Xu, Bo

    2013-01-01

    Purpose: Activation of the DNA damage responsive protein kinase ATM is a critical step for cellular survival in response to ionizing irradiation (IR). Direct targets of ATM regulating radiosensitivity remain to be fully investigated. We have recently reported that ATM phosphorylates the transcriptional repressor Snail on Serine 100. We aimed to further study the functional significance of ATM-mediated Snail phosphorylation in response to IR. Material and methods: We transfected vector-only, wild-type, the Serine 100 to alanine (S100A) or to glutamic acid (S100E) substitution of Snail into various cell lines. We assessed colony formation, γ-H2AX focus formation and the invasion index in the cells treated with or without IR. Results: We found that over-expression of the S100A mutant Snail in HeLa cells significantly increased radiosensitivity. Meanwhile the expression of S100E, a phospho-mimicking mutation, resulted in enhanced radio-resistance. Interestingly, S100E could rescue the radiosensitive phenotype in ATM-deficient cells. We also found that expression of S100E increased γ-H2AX focus formation and compromised inhibition of invasion in response to IR independent of cell survival. Conclusion: ATM-mediated Snail Serine 100 phosphorylation in response to IR plays an important part in the regulation of radiosensitivity

  5. Heme oxygenase-1 expression protects the heart from acute injury caused by inducible Cre recombinase.

    Science.gov (United States)

    Hull, Travis D; Bolisetty, Subhashini; DeAlmeida, Angela C; Litovsky, Silvio H; Prabhu, Sumanth D; Agarwal, Anupam; George, James F

    2013-08-01

    The protective effect of heme oxygenase-1 (HO-1) expression in cardiovascular disease has been previously demonstrated using transgenic animal models in which HO-1 is constitutively overexpressed in the heart. However, the temporal requirements for protection by HO-1 induction relative to injury have not been investigated, but are essential to employ HO-1 as a therapeutic strategy in human cardiovascular disease states. Therefore, we generated mice with cardiac-specific, tamoxifen (TAM)-inducible overexpression of a human HO-1 (hHO-1) transgene (myosin heavy chain (MHC)-HO-1 mice) by breeding mice with cardiac-specific expression of a TAM-inducible Cre recombinase (MHC-Cre mice), with mice containing an hHO-1 transgene preceded by a floxed-stop signal. MHC-HO-1 mice overexpress HO-1 mRNA and the enzymatically active protein following TAM administration (40 mg/kg body weight on 2 consecutive days). In MHC-Cre controls, TAM administration leads to severe, acute cardiac toxicity, cardiomyocyte necrosis, and 80% mortality by day 3. This cardiac toxicity is accompanied by a significant increase in inflammatory cells in the heart that are predominantly neutrophils. In MHC-HO-1 mice, HO-1 overexpression ameliorates the depression of cardiac function and high mortality rate observed in MHC-Cre mice following TAM administration and attenuates cardiomyocyte necrosis and neutrophil infiltration. These results highlight that HO-1 induction is sufficient to prevent the depression of cardiac function observed in mice with TAM-inducible Cre recombinase expression by protecting the heart from necrosis and neutrophil infiltration. These findings are important because MHC-Cre mice are widely used in cardiovascular research despite the limitations imposed by Cre-induced cardiac toxicity, and also because inflammation is an important pathological component of many human cardiovascular diseases.

  6. The serine protease inhibitor TLCK attenuates intrinsic death pathways in neurons upstream of mitochondrial demise.

    Science.gov (United States)

    Reuther, C; Ganjam, G K; Dolga, A M; Culmsee, C

    2014-11-01

    It is well-established that activation of proteases, such as caspases, calpains and cathepsins are essential components in signaling pathways of programmed cell death (PCD). Although these proteases have also been linked to mechanisms of neuronal cell death, they are dispensable in paradigms of intrinsic death pathways, e.g. induced by oxidative stress. However, emerging evidence implicated a particular role for serine proteases in mechanisms of PCD in neurons. Here, we investigated the role of trypsin-like serine proteases in a model of glutamate toxicity in HT-22 cells. In these cells glutamate induces oxytosis, a form of caspase-independent cell death that involves activation of the pro-apoptotic protein BH3 interacting-domain death agonist (Bid), leading to mitochondrial demise and ensuing cell death. In this model system, the trypsin-like serine protease inhibitor Nα-tosyl-l-lysine chloromethyl ketone hydrochloride (TLCK) inhibited mitochondrial damage and cell death. Mitochondrial morphology alterations, the impairment of the mitochondrial membrane potential and ATP depletion were prevented and, moreover, lipid peroxidation induced by glutamate was completely abolished. Strikingly, truncated Bid-induced cell death was not affected by TLCK, suggesting a detrimental activity of serine proteases upstream of Bid activation and mitochondrial demise. In summary, this study demonstrates the protective effect of serine protease inhibition by TLCK against oxytosis-induced mitochondrial damage and cell death. These findings indicate that TLCK-sensitive serine proteases play a crucial role in cell death mechanisms upstream of mitochondrial demise and thus, may serve as therapeutic targets in diseases, where oxidative stress and intrinsic pathways of PCD mediate neuronal cell death.

  7. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state.

    Science.gov (United States)

    Nicolas, A; Egmond, M; Verrips, C T; de Vlieg, J; Longhi, S; Cambillau, C; Martinez, C

    1996-01-16

    Cutinase from the fungus Fusarium solani pisi is a lipolytic enzyme able to hydrolyze both aggregated and soluble substrates. It therefore provides a powerful tool for probing the mechanisms underlying lipid hydrolysis. Lipolytic enzymes have a catalytic machinery similar to those present in serine proteinases. It is characterized by the triad Ser, His, and Asp (Glu) residues, by an oxyanion binding site that stabilizes the transition state via hydrogen bonds with two main chain amide groups, and possibly by other determinants. It has been suggested on the basis of a covalently bond inhibitor that the cutinase oxyanion hole may consist not only of two main chain amide groups but also of the Ser42 O gamma side chain. Among the esterases and the serine and the cysteine proteases, only Streptomyces scabies esterase, subtilisin, and papain, respectively, have a side chain residue which is involved in the oxyanion hole formation. The position of the cutinase Ser42 side chain is structurally conserved in Rhizomucor miehei lipase with Ser82 O gamma, in Rhizopus delemar lipase with Thr83 O gamma 1, and in Candida antartica B lipase with Thr40 O gamma 1. To evaluate the increase in the tetrahedral intermediate stability provided by Ser42 O gamma, we mutated Ser42 into Ala. Furthermore, since the proper orientation of Ser42 O gamma is directed by Asn84, we mutated Asn84 into Ala, Leu, Asp, and Trp, respectively, to investigate the contribution of this indirect interaction to the stabilization of the oxyanion hole. The S42A mutation resulted in a drastic decrease in the activity (450-fold) without significantly perturbing the three-dimensional structure. The N84A and N84L mutations had milder kinetic effects and did not disrupt the structure of the active site, whereas the N84W and N84D mutations abolished the enzymatic activity due to drastic steric and electrostatic effects, respectively.

  8. Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates

    Science.gov (United States)

    Brem, Jürgen; Cain, Ricky; Cahill, Samuel; McDonough, Michael A.; Clifton, Ian J.; Jiménez-Castellanos, Juan-Carlos; Avison, Matthew B.; Spencer, James; Fishwick, Colin W. G.; Schofield, Christopher J.

    2016-08-01

    β-Lactamases enable resistance to almost all β-lactam antibiotics. Pioneering work revealed that acyclic boronic acids can act as `transition state analogue' inhibitors of nucleophilic serine enzymes, including serine-β-lactamases. Here we report biochemical and biophysical analyses revealing that cyclic boronates potently inhibit both nucleophilic serine and zinc-dependent β-lactamases by a mechanism involving mimicking of the common tetrahedral intermediate. Cyclic boronates also potently inhibit the non-essential penicillin-binding protein PBP 5 by the same mechanism of action. The results open the way for development of dual action inhibitors effective against both serine- and metallo-β-lactamases, and which could also have antimicrobial activity through inhibition of PBPs.

  9. Catalytic recruitment in the inactivation of acetylcholinesterase by soman: temperature dependence of the solvent isotope effect

    International Nuclear Information System (INIS)

    Kovach, I.M.; Huber, J.H.A.; Schowen, R.L.

    1988-01-01

    3,3-Dimethyl-2-butyl methylphosphonofluoridate (soman) recruits at least 60-70% of the catalytic power of acetylcholinesterase during phosphonylation of the active-site serine, as compared with the acetylation by acetylcholine. The solvent isotope effect is 1.34 +/- 0.11 and is temperature independent within experimental error between 5 and 45 0 C. This observation is quite similar to what has been found for the reactions of aryl acetates and anilides. Average activation parameters for the same temperature range are ΔH* = 7.3 +/- 0.6 kcal/mol and ΔS* = -4 +/- 2 eu (H 2 O) and ΔH* = 7.1 +/- 0.4 kcal/mol and ΔS* = -6 +/- 1 eu (D 2 O). A rate-limiting process with 50% contribution of an induced-fit conformational change is supported by the data

  10. Gibbs Free Energy of Hydrolytic Water Molecule in Acyl-Enzyme Intermediates of a Serine Protease: A Potential Application for Computer-Aided Discovery of Mechanism-Based Reversible Covalent Inhibitors.

    Science.gov (United States)

    Masuda, Yosuke; Yamaotsu, Noriyuki; Hirono, Shuichi

    2017-01-01

    In order to predict the potencies of mechanism-based reversible covalent inhibitors, the relationships between calculated Gibbs free energy of hydrolytic water molecule in acyl-trypsin intermediates and experimentally measured catalytic rate constants (k cat ) were investigated. After obtaining representative solution structures by molecular dynamics (MD) simulations, hydration thermodynamics analyses using WaterMap™ were conducted. Consequently, we found for the first time that when Gibbs free energy of the hydrolytic water molecule was lower, logarithms of k cat were also lower. The hydrolytic water molecule with favorable Gibbs free energy may hydrolyze acylated serine slowly. Gibbs free energy of hydrolytic water molecule might be a useful descriptor for computer-aided discovery of mechanism-based reversible covalent inhibitors of hydrolytic enzymes.

  11. The Glycerate and Phosphorylated Pathways of Serine Synthesis in Plants: The Branches of Plant Glycolysis Linking Carbon and Nitrogen Metabolism.

    Science.gov (United States)

    Igamberdiev, Abir U; Kleczkowski, Leszek A

    2018-01-01

    Serine metabolism in plants has been studied mostly in relation to photorespiration where serine is formed from two molecules of glycine. However, two other pathways of serine formation operate in plants and represent the branches of glycolysis diverging at the level of 3-phosphoglyceric acid. One branch (the glycerate - serine pathway) is initiated in the cytosol and involves glycerate formation from 3-phosphoglycerate, while the other (the phosphorylated serine pathway) operates in plastids and forms phosphohydroxypyruvate as an intermediate. Serine formed in these pathways becomes a precursor of glycine, formate and glycolate accumulating in stress conditions. The pathways can be linked to GABA shunt via transamination reactions and via participation of the same reductase for both glyoxylate and succinic semialdehyde. In this review paper we present a hypothesis of the regulation of redox balance in stressed plant cells via participation of the reactions associated with glycerate and phosphorylated serine pathways. We consider these pathways as important processes linking carbon and nitrogen metabolism and maintaining cellular redox and energy levels in stress conditions.

  12. Recombinase, chromosomal translocations and lymphoid neoplasia: targeting mistakes and repair failures.

    Science.gov (United States)

    Marculescu, Rodrig; Vanura, Katrina; Montpellier, Bertrand; Roulland, Sandrine; Le, Trang; Navarro, Jean-Marc; Jäger, Ulrich; McBlane, Fraser; Nadel, Bertrand

    2006-09-08

    A large number of lymphoid malignancies is characterized by specific chromosomal translocations, which are closely linked to the initial steps of pathogenesis. The hallmark of these translocations is the ectopic activation of a silent proto-oncogene through its relocation at the vicinity of an active regulatory element. Due to the unique feature of lymphoid cells to somatically rearrange and mutate receptor genes, and to the corresponding strong activity of the immune enhancers/promoters at that stage of cell development, B- and T-cell differentiation pathways represent propitious targets for chromosomal translocations and oncogene activation. Recent progress in the understanding of the V(D)J recombination process has allowed a more accurate definition of the translocation mechanisms involved, and has revealed that V(D)J-mediated translocations result both from targeting mistakes of the recombinase, and from illegitimate repair of the V(D)J recombination intermediates. Surprisingly, V(D)J-mediated translocations turn out to be restricted to two specific sub-types of lymphoid malignancies, T-cell acute lymphoblastic leukemias, and a restricted set of mature B-cell Non-Hodgkin's lymphomas.

  13. Microstructure and nanomechanical properties of enamel remineralized with asparagine-serine-serine peptide

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hsiu-Ying, E-mail: hychung@mail.fcu.edu.tw; Li, Cheng Che

    2013-03-01

    A highly biocompatible peptide, triplet repeats of asparagine-serine-serine (3NSS) was designed to regulate mineral deposition from aqueous ions in saliva for the reconstruction of enamel lesions. Healthy human enamel was sectioned and acid demineralized to create lesions, then exposed to the 3NSS peptide solution, and finally immersed in artificial saliva for 24 h. The surface morphology and roughness were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. X-ray diffraction (XRD) was used to identify the phases and crystallinity of the deposited minerals observed on the enamel surface. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was used to quantitatively analyze the mineral variation by calculating the relative integrated-area of characteristic bands. Nanohardness and elastic modulus measured by nanoindentation at various treatment stages were utilized to evaluate the degree of recovery. Biomimetic effects were accessed according to the degree of nanohardness recovery and the amount of hydroxyapatite deposition. The charged segments in the 3NSS peptide greatly attracted aqueous ions from artificial saliva to form hydroxyapatite crystals to fill enamel caries, in particular the interrod areas, resulting in a slight reduction in overall surface roughness. Additionally, the deposited hydroxyapatites were of a small crystalline size in the presence of the 3NSS peptide, which effectively restrained the plastic deformations and thus resulted in greater improvements in nanohardness and elastic modulus. The degree of nanohardness recovery was 5 times greater for remineralized enamel samples treated with the 3NSS peptide compared to samples without peptide treatment. - Highlights: Black-Right-Pointing-Pointer The degree of nanohardness recovery of enamel was 4 times greater with the aid of 3NSS peptide. Black-Right-Pointing-Pointer 3NSS peptide promoted the formation of hydroxyapatites with

  14. Genome-wide identification and expression profiling of serine proteases and homologs in the diamondback moth, Plutella xylostella (L.).

    Science.gov (United States)

    Lin, Hailan; Xia, Xiaofeng; Yu, Liying; Vasseur, Liette; Gurr, Geoff M; Yao, Fengluan; Yang, Guang; You, Minsheng

    2015-12-10

    Serine proteases (SPs) are crucial proteolytic enzymes responsible for digestion and other processes including signal transduction and immune responses in insects. Serine protease homologs (SPHs) lack catalytic activity but are involved in innate immunity. This study presents a genome-wide investigation of SPs and SPHs in the diamondback moth, Plutella xylostella (L.), a globally-distributed destructive pest of cruciferous crops. A total of 120 putative SPs and 101 putative SPHs were identified in the P. xylostella genome by bioinformatics analysis. Based on the features of trypsin, 38 SPs were putatively designated as trypsin genes. The distribution, transcription orientation, exon-intron structure and sequence alignments suggested that the majority of trypsin genes evolved from tandem duplications. Among the 221 SP/SPH genes, ten SP and three SPH genes with one or more clip domains were predicted and designated as PxCLIPs. Phylogenetic analysis of CLIPs in P. xylostella, two other Lepidoptera species (Bombyx mori and Manduca sexta), and two more distantly related insects (Drosophila melanogaster and Apis mellifera) showed that seven of the 13 PxCLIPs were clustered with homologs of the Lepidoptera rather than other species. Expression profiling of the P. xylostella SP and SPH genes in different developmental stages and tissues showed diverse expression patterns, suggesting high functional diversity with roles in digestion and development. This is the first genome-wide investigation on the SP and SPH genes in P. xylostella. The characterized features and profiled expression patterns of the P. xylostella SPs and SPHs suggest their involvement in digestion, development and immunity of this species. Our findings provide a foundation for further research on the functions of this gene family in P. xylostella, and a better understanding of its capacity to rapidly adapt to a wide range of environmental variables including host plants and insecticides.

  15. Serine proteinase inhibitors from nematodes and the arms race between host and pathogen.

    Science.gov (United States)

    Zang, X; Maizels, R M

    2001-03-01

    Serine proteinase inhibitors are encoded by a large gene family of long evolutionary standing. Recent discoveries of parasite proteins that inhibit human serine proteinases, together with the complete genomic sequence from Caenorhabditis elegans, have provided a set of new serine proteinase inhibitors from more primitive metazoan animals such as nematodes. The structural features (e.g. reactive centre residues), gene organization (including intron arrangements) and inhibitory function and targets (e.g. inflammatory and coagulation pathway proteinase) all contribute important new insights into proteinase inhibitor evolution. Some parasite products have evolved that block enzymes in the mammalian host, but the human host responds with a significant immune response to the parasite inhibitors. Thus, infection produces a finely balanced conflict between host and pathogen at the molecular level, and this might have accelerated the evolution of these proteins in parasitic species as well as their hosts.

  16. Engineered disulfide bonds increase active-site local stability and reduce catalytic activity of a cold-adapted alkaline phosphatase.

    Science.gov (United States)

    Asgeirsson, Bjarni; Adalbjörnsson, Björn Vidar; Gylfason, Gudjón Andri

    2007-06-01

    Alkaline phosphatase is an extracellular enzyme that is membrane-bound in eukaryotes but resides in the periplasmic space of bacteria. It normally carries four cysteine residues that form two disulfide bonds, for instance in the APs of Escherichia coli and vertebrates. An AP variant from a Vibrio sp. has only one cysteine residue. This cysteine is second next to the nucleophilic serine in the active site. We have individually modified seven residues to cysteine that are on two loops predicted to be within a 5 A radius. Four of them formed a disulfide bond to the endogenous cysteine. Thermal stability was monitored by circular dichroism and activity measurements. Global stability was similar to the wild-type enzyme. However, a significant increase in heat-stability was observed for the disulfide-containing variants using activity as a measure, together with a large reduction in catalytic rates (k(cat)) and a general decrease in Km values. The results suggest that a high degree of mobility near the active site and in the helix carrying the endogenous cysteine is essential for full catalytic efficiency in the cold-adapted AP.

  17. Squash inhibitor family of serine proteinases

    International Nuclear Information System (INIS)

    Otlewski, J.; Krowarsch, D.

    1996-01-01

    Squash inhibitors of serine proteinases form an uniform family of small proteins. They are built of 27-33 amino-acid residues and cross-linked with three disulfide bridges. The reactive site peptide bond (P1-P1') is between residue 5 (Lys, Arg or Leu) and 6 (always Ile). High resolution X-ray structures are available for two squash inhibitors complexed with trypsin. NMR solution structures have also been determined for free inhibitors. The major structural motif is a distorted, triple-stranded antiparallel beta-sheet. A similar folding motif has been recently found in a number of proteins, including: conotoxins from fish-hunting snails, carboxypeptidase inhibitor from potato, kalata B1 polypeptide, and in some growth factors (e.g. nerve growth factor, transforming growth factor β2, platelet-derived growth factor). Squash inhibitors are highly stable and rigid proteins. They inhibit a number of serine proteinases: trypsin, plasmin, kallikrein, blood clotting factors: X a and XII a , cathepsin G. The inhibition spectrum can be much broadened if specific amino-acid substitutions are introduced, especially at residues which contact proteinase. Squash inhibitors inhibit proteinases via the standard mechanism. According to the mechanism, inhibitors are substrates which exhibit at neutral pH a high k cat /K m index for hydrolysis and resynthesis of the reactive site, and a low value of the hydrolysis constant. (author)

  18. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region.

    Science.gov (United States)

    Bellacosa, A; Testa, J R; Staal, S P; Tsichlis, P N

    1991-10-11

    The v-akt oncogene codes for a 105-kilodalton fusion phosphoprotein containing Gag sequences at its amino terminus. Sequence analysis of v-akt and biochemical characterization of its product revealed that it codes for a protein kinase C-related serine-threonine kinase whose cellular homolog is expressed in most tissues, with the highest amount found in thymus. Although Akt is a serine-threonine kinase, part of its regulatory region is similar to the Src homology-2 domain, a structural motif characteristic of cytoplasmic tyrosine kinases that functions in protein-protein interactions. This suggests that Akt may form a functional link between tyrosine and serine-threonine phosphorylation pathways.

  19. Decreased levels of free D-aspartic acid in the forebrain of serine racemase (Srr) knock-out mice.

    Science.gov (United States)

    Horio, Mao; Ishima, Tamaki; Fujita, Yuko; Inoue, Ran; Mori, Hisashi; Hashimoto, Kenji

    2013-05-01

    d-Serine, an endogenous co-agonist of the N-methyl-d-aspartate (NMDA) receptor is synthesized from l-serine by serine racemase (SRR). A previous study of Srr knockout (Srr-KO) mice showed that levels of d-serine in forebrain regions, such as frontal cortex, hippocampus, and striatum, but not cerebellum, of mutant mice are significantly lower than those of wild-type (WT) mice, suggesting that SRR is responsible for d-serine production in the forebrain. In this study, we attempted to determine whether SRR affects the level of other amino acids in brain tissue. We found that tissue levels of d-aspartic acid in the forebrains (frontal cortex, hippocampus and striatum) of Srr-KO mice were significantly lower than in WT mice, whereas levels of d-aspartic acid in the cerebellum were not altered. Levels of d-alanine, l-alanine, l-aspartic acid, taurine, asparagine, arginine, threonine, γ-amino butyric acid (GABA) and methionine, remained the same in frontal cortex, hippocampus, striatum and cerebellum of WT and mutant mice. Furthermore, no differences in d-aspartate oxidase (DDO) activity were detected in the forebrains of WT and Srr-KO mice. These results suggest that SRR and/or d-serine may be involved in the production of d-aspartic acid in mouse forebrains, although further detailed studies will be necessary to confirm this finding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Ozone-induced airway hyperresponsiveness in patients with asthma: role of neutrophil-derived serine proteinases.

    Science.gov (United States)

    Hiltermann, T J; Peters, E A; Alberts, B; Kwikkers, K; Borggreven, P A; Hiemstra, P S; Dijkman, J H; van Bree, L A; Stolk, J

    1998-04-01

    Proteinase inhibitors may be of potential therapeutic value in the treatment of respiratory diseases such as chronic obstructive pulmonary disease (COPD) or asthma. Our aim was to study the role of neutrophils, and neutrophil-derived serine proteinases in an acute model in patients with asthma. Exposure to ozone induces an acute neutrophilic inflammatory reaction accompanied by an increase in airway hyperresponsiveness. It is thought that these two effects of ozone are linked, and that neutrophil-derived serine proteinases (i.e. elastase) may play a role in the ozone-induced airway hyperresponsiveness. Therefore, we examined the effect of recombinant antileukoprotease (rALP), one of the major serine proteinase inhibitors in the lung, on ozone-induced changes in airway hyperresponsiveness in this model. We observed that 16 h after exposure to ozone, airway hyperresponsiveness to methacholine was increased both following placebo and rALP treatment. There was no significant difference between placebo and rALP treatment (change in area under the dose-response curve to methacholine: 117.3+/-59.0 vs 193.6+/-59.6 % fall x DD; p=.12). Moreover, the immediate decrease in FEV1 after ozone exposure was not significantly different between the two groups (placebo: -29.6+/-6.7%; rALP: -20.9+/-3.8%; p=.11). In addition, no significant differences were observed in plasma levels of fibrinogen degradation products generated by neutrophil serine proteinases before and after exposure to ozone. We conclude that neutrophil-derived serine proteinases are not important mediators for ozone-induced hyperresponsiveness.

  1. Anti-fibrinolytic and anti-microbial activities of a serine protease inhibitor from honeybee (Apis cerana) venom.

    Science.gov (United States)

    Yang, Jie; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Yoon, Hyung Joo; Jia, Jingming; Jin, Byung Rae

    2017-10-01

    Bee venom contains a variety of peptide constituents, including low-molecular-weight protease inhibitors. While the putative low-molecular-weight serine protease inhibitor Api m 6 containing a trypsin inhibitor-like cysteine-rich domain was identified from honeybee (Apis mellifera) venom, no anti-fibrinolytic or anti-microbial roles for this inhibitor have been elucidated. In this study, we identified an Asiatic honeybee (A. cerana) venom serine protease inhibitor (AcVSPI) that was shown to act as a microbial serine protease inhibitor and plasmin inhibitor. AcVSPI was found to consist of a trypsin inhibitor-like domain that displays ten cysteine residues. Interestingly, the AcVSPI peptide sequence exhibited high similarity to the putative low-molecular-weight serine protease inhibitor Api m 6, which suggests that AcVSPI is an allergen Api m 6-like peptide. Recombinant AcVSPI was expressed in baculovirus-infected insect cells, and it demonstrated inhibitory activity against trypsin, but not chymotrypsin. Additionally, AcVSPI has inhibitory effects against plasmin and microbial serine proteases; however, it does not have any detectable inhibitory effects on thrombin or elastase. Consistent with these inhibitory effects, AcVSPI inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products. AcVSPI also bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi as well as gram-positive and gram-negative bacteria. These findings demonstrate the anti-fibrinolytic and anti-microbial roles of AcVSPI as a serine protease inhibitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Fatal cerebral edema associated with serine deficiency in CSF

    NARCIS (Netherlands)

    Keularts, Irene M. L. W.; Leroy, Piet L. J. M.; Rubio-Gozalbo, Estela M.; Spaapen, Leo J. M.; Weber, Biene; Dorland, Bert; de Koning, Tom J.; Verhoeven-Duif, Nanda M.

    2010-01-01

    Two young girls without a notable medical history except for asthma presented with an acute toxic encephalopathy with very low serine concentrations both in plasma and cerebrospinal fluid (CSF) comparable to patients with 3-phosphoglycerate dehydrogenase (3-PGDH) deficiency. Clinical symptoms and

  3. Negative Role of RIG-I Serine 8 Phosphorylation in the Regulatin of Interferon-beta Production

    Energy Technology Data Exchange (ETDEWEB)

    E Nistal-Villan; M Gack; G Martinez-Delgado; N Maharaj; K Inn; H Yang; R Wang; A Aggarwal; J Jung; A Garcia-Sastre

    2011-12-31

    RIG-I (retinoic acid-inducible gene I) and TRIM25 (tripartite motif protein 25) have emerged as key regulatory factors to induce interferon (IFN)-mediated innate immune responses to limit viral replication. Upon recognition of viral RNA, TRIM25 E3 ligase binds the first caspase recruitment domain (CARD) of RIG-I and subsequently induces lysine 172 ubiquitination of the second CARD of RIG-I, which is essential for the interaction with downstream MAVS/IPS-1/CARDIF/VISA and, thereby, IFN-beta mRNA production. Although ubiquitination has emerged as a major factor involved in RIG-I activation, the potential contribution of other post-translational modifications, such as phosphorylation, to the regulation of RIG-I activity has not been addressed. Here, we report the identification of serine 8 phosphorylation at the first CARD of RIG-I as a negative regulatory mechanism of RIG-I-mediated IFN-beta production. Immunoblot analysis with a phosphospecific antibody showed that RIG-I serine 8 phosphorylation steady-state levels were decreased upon stimulation of cells with IFN-beta or virus infection. Substitution of serine 8 in the CARD RIG-I functional domain with phosphomimetic aspartate or glutamate results in decreased TRIM25 binding, RIG-I ubiquitination, MAVS binding, and downstream signaling. Finally, sequence comparison reveals that only primate species carry serine 8, whereas other animal species carry an asparagine, indicating that serine 8 phosphorylation may represent a primate-specific regulation of RIG-I activation. Collectively, these data suggest that the phosphorylation of RIG-I serine 8 operates as a negative switch of RIG-I activation by suppressing TRIM25 interaction, further underscoring the importance of RIG-I and TRIM25 connection in type I IFN signal transduction.

  4. Serine protease from midgut of Bombus terrestris males

    Czech Academy of Sciences Publication Activity Database

    Brabcová, Jana; Kindl, Jiří; Valterová, Irena; Pichová, Iva; Zarevúcka, Marie; Brabcová, J.; Jágr, Michal; Mikšík, Ivan

    2013-01-01

    Roč. 82, č. 3 (2013), s. 117-128 ISSN 0739-4462 R&D Projects: GA ČR GA203/09/1446; GA TA ČR TA01020969 Institutional support: RVO:61388963 ; RVO:67985823 Keywords : Bombus terrestris * midgut * serine protease * bumblebee Subject RIV: CE - Biochemistry; CE - Biochemistry (FGU-C) Impact factor: 1.160, year: 2013

  5. A study by nitrogen-15 nuclear magnetic resonance spectroscopy of the state of histidine in the catalytic triad of α-lytic protease

    International Nuclear Information System (INIS)

    Bachovchin, W.W.; Roberts, J.D.

    1978-01-01

    The ionization behaviour of the histidine of the catalytic triad of α-lytic protease using N-15 NMR spectroscopy is studied. This technique is especially informative about the protonation, hydrogen-bond formation, and tautomeric equilibrium of imidazole rings. The efficient and specific incorporation of N-15 labelled histidine into α-lytic protease was achieved by inducing and isolating an auxotroph of myxobacter 495 for which histidine is an essential amino acid. The results show that histidine of the catalytic triad of α-lytic protease appears to have a base strength which is essentially normal for an imidazole derivative but, in the pH range where the enzymatic activity is high, the histidine tautomer is favoured with the hydrogen located on N3 (π), as the result of hydrogen bonding to the asparate anion and possible the serine hydroxyl. Thus, the N-15 NMR shifts support the general geometry postulated for the ''charge-relay'' mechanism but not the idea of an unusually weakly basic histidine or an unusually strongly basic asparate carboxylate anion. (A.G.)

  6. Thermophysical property characterization of aqueous amino acid salt solution containing serine

    International Nuclear Information System (INIS)

    Navarro, Shanille S.; Leron, Rhoda B.; Soriano, Allan N.; Li, Meng-Hui

    2014-01-01

    Highlights: • Thermophysical properties of aqueous potassium and sodium salt solutions of serine were studied. • Density, viscosity, refractive index and electrolytic conductivity of the solution were measured. • The concentrations of amino acid salt ranges from x 1 = 0.009 to 0.07. • The temperature range studied was (298.15 to 343.15) K. • The measured data were represented satisfactorily by using the applied correlations. - Abstract: Thermophysical property characterization of aqueous potassium and sodium salt solutions containing serine was conducted in this study; specifically the system’s density, refractive index, electrical conductivity, and viscosity. Measurements were obtained over a temperature range of (298.15 to 343.15) K and at normal atmospheric pressure. Composition range from x 1 = 0.009 to 0.07 for aqueous potassium and sodium salt solutions containing serine was used. The sensitivity of the system’s thermophysical properties on temperature and composition variation were discussed and correlated based on the equations proposed for room temperature ionic liquids. The density, viscosity, and refractive index measurements of the aqueous systems were found to decrease as the temperature increases at fixed concentration and the values increase as the salt concentration increases (water composition decreases) at fixed temperature. Whereas, a different trend was observed for the electrical conductivity data; at fixed concentration, the conductivity values increase as the temperature increases and at fixed temperature, its value generally increases as the salt concentration increases but only to a certain level (specific concentration) wherein the conductivity of the solution starts to decrease when the concentration of the salt is further increased. Calculation results show that the applied models were satisfactory in representing the measured properties in the aqueous amino acid salt solution containing serine

  7. The C-terminal sequence of several human serine proteases encodes host defense functions.

    Science.gov (United States)

    Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Walse, Björn; Svensson, Bo; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur

    2011-01-01

    Serine proteases of the S1 family have maintained a common structure over an evolutionary span of more than one billion years, and evolved a variety of substrate specificities and diverse biological roles, involving digestion and degradation, blood clotting, fibrinolysis and epithelial homeostasis. We here show that a wide range of C-terminal peptide sequences of serine proteases, particularly from the coagulation and kallikrein systems, share characteristics common with classical antimicrobial peptides of innate immunity. Under physiological conditions, these peptides exert antimicrobial effects as well as immunomodulatory functions by inhibiting macrophage responses to bacterial lipopolysaccharide. In mice, selected peptides are protective against lipopolysaccharide-induced shock. Moreover, these S1-derived host defense peptides exhibit helical structures upon binding to lipopolysaccharide and also permeabilize liposomes. The results uncover new and fundamental aspects on host defense functions of serine proteases present particularly in blood and epithelia, and provide tools for the identification of host defense molecules of therapeutic interest. Copyright © 2011 S. Karger AG, Basel.

  8. D-serine plasma concentration is a potential biomarker of (R,S)-ketamine antidepressant response in subjects with treatment-resistant depression.

    Science.gov (United States)

    Moaddel, Ruin; Luckenbaugh, David A; Xie, Ying; Villaseñor, Alma; Brutsche, Nancy E; Machado-Vieira, Rodrigo; Ramamoorthy, Anuradha; Lorenzo, Maria Paz; Garcia, Antonia; Bernier, Michel; Torjman, Marc C; Barbas, Coral; Zarate, Carlos A; Wainer, Irving W

    2015-01-01

    (R,S)-ketamine is a rapid and effective antidepressant drug that produces a response in two thirds of patients with treatment-resistant depression (TRD). The underlying biochemical differences between a (R,S)-ketamine responder (KET-R) and non-responder (KET-NR) have not been definitively identified but may involve serine metabolism. The aim of the study was to examine the relationship between baseline plasma concentrations of D-serine and its precursor L-serine and antidepressant response to (R,S)-ketamine in TRD patients. Plasma samples were obtained from 21 TRD patients at baseline, 60 min before initiation of the (R,S)-ketamine infusion. Patients were classified as KET-Rs (n = 8) or KET-NRs (n = 13) based upon the difference in Montgomery-Åsberg Depression Rating Scale (MADRS) scores at baseline and 230 min after infusion, with response defined as a ≥50 % decrease in MADRS score. The plasma concentrations of D-serine and L-serine were determined using liquid chromatography-mass spectrometry. Baseline D-serine plasma concentrations were significantly lower in KET-Rs (3.02 ± 0.21 μM) than in KET-NRs (4.68 ± 0.81 μM), p < 0.001. A significant relationship between baseline D-serine plasma concentrations and percent change in MADRS at 230 min was determined using a Pearson correlation, r = 0.77, p < 0.001, with baseline D-serine explaining 60 % of the variance in (R,S)-ketamine response. The baseline concentrations of L-serine (L-Ser) in KET-Rs were also significantly lower than those measured in KET-NRs (66.2 ± 9.6 μM vs 242.9 ± 5.6 μM, respectively; p < 0.0001). The results demonstrate that the baseline D-serine plasma concentrations were significantly lower in KET-Rs than in KET-NRs and suggest that this variable can be used to predict an antidepressant response following (R,S)-ketamine administration.

  9. Site-specific and synergistic stimulation of methylation on the bacterial chemotaxis receptor Tsr by serine and CheW

    Directory of Open Access Journals (Sweden)

    Weis Robert M

    2005-03-01

    Full Text Available Abstract Background Specific glutamates in the methyl-accepting chemotaxis proteins (MCPs of Escherichia coli are modified during sensory adaptation. Attractants that bind to MCPs are known to increase the rate of receptor modification, as with serine and the serine receptor (Tsr, which contributes to an increase in the steady-state (adapted methylation level. However, MCPs form ternary complexes with two cytoplasmic signaling proteins, the kinase (CheA and an adaptor protein (CheW, but their influences on receptor methylation are unknown. Here, the influence of CheW on the rate of Tsr methylation has been studied to identify contributions to the process of adaptation. Results Methyl group incorporation was measured in a series of membrane samples in which the Tsr molecules were engineered to have one available methyl-accepting glutamate residue (297, 304, 311 or 493. The relative rates at these sites (0.14, 0.05, 0.05 and 1, respectively differed from those found previously for the aspartate receptor (Tar, which was in part due to sequence differences between Tar and Tsr near site four. The addition of CheW generated unexpectedly large and site-specific rate increases, equal to or larger than the increases produced by serine. The increases produced by serine and CheW (added separately were the largest at site one, ~3 and 6-fold, respectively, and the least at site four, no change and ~2-fold, respectively. The rate increases were even larger when serine and CheW were added together, larger than the sums of the increases produced by serine and CheW added separately (except site four. This resulted in substantially larger serine-stimulated increases when CheW was present. Also, CheW enhanced methylation rates when either two or all four sites were available. Conclusion The increase in the rate of receptor methylation upon CheW binding contributes significantly to the ligand specificity and kinetics of sensory adaptation. The synergistic effect of

  10. Serine proteinases and their inhibitors in fertilization

    Czech Academy of Sciences Publication Activity Database

    Jonáková, Věra; Jelínková-Slavíčková, Petra

    2004-01-01

    Roč. 8, 3,4 (2004), s. 108-110 ISSN 1211-8869. [Central European Conference on Human Tumor Markers /5./. Praha, 01.10.2004-03.10.2004] R&D Projects: GA ČR GA303/02/0433; GA ČR GP303/02/P069; GA ČR GP303/04/P070; GA MZd NJ7463 Institutional research plan: CEZ:AV0Z5052915 Keywords : serine proteinase * proteinase inhibitors * fertilization Subject RIV: CE - Biochemistry

  11. Structure of the catalytic domain of the Tannerella forsythia matrix metallopeptidase karilysin in complex with a tetrapeptidic inhibitor

    DEFF Research Database (Denmark)

    Guevara, Tibisay; Ksiazek, Miroslaw; Skottrup, Peter Durand

    2013-01-01

    -micromolar binding affinities. Subsequent refinement revealed that inhibition comparable to that of longer peptides could be achieved using the tetrapeptide SWFP. To analyze its binding, the high-resolution crystal structure of the complex between Kly18 and SWFP was determined and it was found that the peptide binds...... to the primed side of the active-site cleft in a substrate-like manner. The catalytic zinc ion is clamped by the α-amino group and the carbonyl O atom of the serine, thus distantly mimicking the general manner of binding of hydroxamate inhibitors to metallopeptidases and contributing, together with three zinc...... determinants of inhibition of karilysin and open the field for the design of novel inhibitory strategies aimed at the treatment of human periodontal disease based on a peptidic hit molecule....

  12. KSR1 is a functional protein kinase capable of serine autophosphorylation and direct phosphorylation of MEK1

    International Nuclear Information System (INIS)

    Goettel, Jeremy A.; Liang, Dongchun; Hilliard, Valda C.; Edelblum, Karen L.; Broadus, Matthew R.; Gould, Kathleen L.; Hanks, Steven K.; Polk, D. Brent

    2011-01-01

    The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway is a highly conserved signaling pathway that regulates diverse cellular processes including differentiation, proliferation, and survival. Kinase suppressor of Ras-1 (KSR1) binds each of the three ERK cascade components to facilitate pathway activation. Even though KSR1 contains a C-terminal kinase domain, evidence supporting the catalytic function of KSR1 remains controversial. In this study, we produced recombinant wild-type or kinase-inactive (D683A/D700A) KSR1 proteins in Escherichia coli to test the hypothesis that KSR1 is a functional protein kinase. Recombinant wild-type KSR1, but not recombinant kinase-inactive KSR1, underwent autophosphorylation on serine residue(s), phosphorylated myelin basic protein (MBP) as a generic substrate, and phosphorylated recombinant kinase-inactive MAPK/ERK kinase-1 (MEK1). Furthermore, FLAG immunoprecipitates from KSR1 -/- colon epithelial cells stably expressing FLAG-tagged wild-type KSR1 (+KSR1), but not vector (+vector) or FLAG-tagged kinase-inactive KSR1 (+D683A/D700A), were able to phosphorylate kinase-inactive MEK1. Since TNF activates the ERK pathway in colon epithelial cells, we tested the biological effects of KSR1 in the survival response downstream of TNF. We found that +vector and +D683A/D700A cells underwent apoptosis when treated with TNF, whereas +KSR1 cells were resistant. However, +KSR1 cells were sensitized to TNF-induced cell loss in the absence of MEK kinase activity. These data provide clear evidence that KSR1 is a functional protein kinase, MEK1 is an in vitro substrate of KSR1, and the catalytic activities of both proteins are required for eliciting cell survival responses downstream of TNF.

  13. Functional intersection of ATM and DNA-dependent protein kinase catalytic subunit in coding end joining during V(D)J recombination

    DEFF Research Database (Denmark)

    Lee, Baeck-Seung; Gapud, Eric J; Zhang, Shichuan

    2013-01-01

    V(D)J recombination is initiated by the RAG endonuclease, which introduces DNA double-strand breaks (DSBs) at the border between two recombining gene segments, generating two hairpin-sealed coding ends and two blunt signal ends. ATM and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) ar......V(D)J recombination is initiated by the RAG endonuclease, which introduces DNA double-strand breaks (DSBs) at the border between two recombining gene segments, generating two hairpin-sealed coding ends and two blunt signal ends. ATM and DNA-dependent protein kinase catalytic subunit (DNA......-PKcs) are serine-threonine kinases that orchestrate the cellular responses to DNA DSBs. During V(D)J recombination, ATM and DNA-PKcs have unique functions in the repair of coding DNA ends. ATM deficiency leads to instability of postcleavage complexes and the loss of coding ends from these complexes. DNA...... when ATM is present and its kinase activity is intact. The ability of ATM to compensate for DNA-PKcs kinase activity depends on the integrity of three threonines in DNA-PKcs that are phosphorylation targets of ATM, suggesting that ATM can modulate DNA-PKcs activity through direct phosphorylation of DNA...

  14. Specific membrane binding of factor VIII is mediated by O-phospho-L-serine, a moiety of phosphatidylserine.

    Science.gov (United States)

    Gilbert, G E; Drinkwater, D

    1993-09-21

    Phosphatidylserine, a negatively charged lipid, is exposed on the platelet membrane following cell stimulation, correlating with the expression of factor VIII receptors. We have explored the importance of the negative electrostatic potential of phosphatidylserine vs chemical moieties of phosphatidylserine for specific membrane binding of factor VIII. Fluorescein-labeled factor VIII bound to membranes containing 15% phosphatidic acid, a negatively charged phospholipid, with low affinity compared to phosphatidylserine-containing membranes. Binding was not specific as it was inhibited by other proteins in plasma. Factor VIII bound to membranes containing 10% phosphatidylserine in spite of a varying net charge provided by 0-15% stearylamine, a positively charged lipid. The soluble phosphatidylserine moiety, O-phospho-L-serine, inhibited factor VIII binding to phosphatidylserine-containing membranes with a Ki of 20 mM, but the stereoisomer, O-phospho-D-serine, was 5-fold less effective. Furthermore, binding of factor VIII to membranes containing synthetic phosphatidyl-D-serine was 5-fold less than binding to membranes containing phosphatidyl-L-serine. Membranes containing synthetic phosphatidyl-L-homoserine, differing from phosphatidylserine by a single methylene, supported high-affinity binding, but it was not specific as factor VIII was displaced by other plasma proteins. O-Phospho-L-serine also inhibited the binding of factor VIII to platelet-derived microparticles with a Ki of 20 mM, and the stereoisomer was 4-fold less effective. These results indicate that membrane binding of factor VIII is mediated by a stereoselective recognition O-phospho-L-serine of phosphatidylserine and that negative electrostatic potential is of lesser importance.

  15. ANTIOXIDANT EFFECTS OF L-SERINE AGAINST FATTY STREAK FORMATION IN HYPERCHOLESTEROLEMIC ANIMALS

    Directory of Open Access Journals (Sweden)

    Ahmad Movahedian

    2010-12-01

    Full Text Available   Abstract INTRODUCTION: Peroxidation of blood lipoproteins is regarded as a key event in the development of atherosclerosis. Evidence suggests that oxidative modification of amino acids in low-density lipoprotein (LDL particles leads to its convert into an atherogenic form, which is taken up by macrophages. Therefore the reduction of oxidative modification of lipoproteins by increasing plasma antioxidant capacity may prevent cardiovascular disease. methods: In this study, the antioxidant and anti-fatty streak effects of L-serine were investigated in hypercholesterolemic rabbits. Rabbits were randomly divided into three groups which were fed high-cholesterol diet (hypercholesterolemic control group, high-cholesterol + L-serine diet (treatment group, and normal diet (control for twelve weeks and then blood samples were obtained to measure plasma cholesterol, triglyceride (TG, high-density lipoprotein (HDL, low-density lipoprotein (LDL, antioxidant capacity (AC, malondialdehyde (MDA, and conjugated dienes (CDS. Right and left coronary arteries were also obtained for histological evaluation. results: No significant difference was observed in plasma cholesterol, TG, HDL, LDL and CDS levels between treatment and hypercholesterolemic control groups (P>0.05. The levels of plasma MDA and AC were 0.29‌ µM and 56%, respectively in the treatment group which showed a significant change in comparison with hypercholesterolemic control groups (P<0.05. The mean size of produced fatty streak also showed significant reduction in the treatment group compared to the hypercholesterolemic group (P<0.05. CONCLUSIONS: The results showed that L-serine has antioxidant and anti-fatty streak effects without any influence on plasma lipid levels in hypercholesterolemic rabbits.     Keywords: Atherosclerosis, cholesterol, L-serine, antioxidant, lipids, fatty streak.

  16. Serine Protease Zymography: Low-Cost, Rapid, and Highly Sensitive RAMA Casein Zymography.

    Science.gov (United States)

    Yasumitsu, Hidetaro

    2017-01-01

    To detect serine protease activity by zymography, casein and CBB stain have been used as a substrate and a detection procedure, respectively. Casein zymography has been using substrate concentration at 1 mg/mL and employing conventional CBB stain. Although ordinary casein zymography provides reproducible results, it has several disadvantages including time-consuming and relative low sensitivity. Improved casein zymography, RAMA casein zymography, is rapid and highly sensitive. RAMA casein zymography completes the detection process within 1 h after incubation and increases the sensitivity at least by tenfold. In addition to serine protease, the method also detects metalloprotease 7 (MMP7, Matrilysin) with high sensitivity.

  17. Steam reformer with catalytic combustor

    Science.gov (United States)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  18. Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria.

    Science.gov (United States)

    Ogawara, Hiroshi

    2016-09-01

    PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.

  19. Conserved water molecules in bacterial serine hydroxymethyltransferases.

    Science.gov (United States)

    Milano, Teresa; Di Salvo, Martino Luigi; Angelaccio, Sebastiana; Pascarella, Stefano

    2015-10-01

    Water molecules occurring in the interior of protein structures often are endowed with key structural and functional roles. We report the results of a systematic analysis of conserved water molecules in bacterial serine hydroxymethyltransferases (SHMTs). SHMTs are an important group of pyridoxal-5'-phosphate-dependent enzymes that catalyze the reversible conversion of l-serine and tetrahydropteroylglutamate to glycine and 5,10-methylenetetrahydropteroylglutamate. The approach utilized in this study relies on two programs, ProACT2 and WatCH. The first software is able to categorize water molecules in a protein crystallographic structure as buried, positioned in clefts or at the surface. The other program finds, in a set of superposed homologous proteins, water molecules that occur approximately in equivalent position in each of the considered structures. These groups of molecules are referred to as 'clusters' and represent structurally conserved water molecules. Several conserved clusters of buried or cleft water molecules were found in the set of 11 bacterial SHMTs we took into account for this work. The majority of these clusters were not described previously. Possible structural and functional roles for the conserved water molecules are envisaged. This work provides a map of the conserved water molecules helpful for deciphering SHMT mechanism and for rational design of molecular engineering experiments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Serine and alanine racemase activities of VanT: a protein necessary for vancomycin resistance in Enterococcus gallinarum BM4174.

    Science.gov (United States)

    Arias, C A; Weisner, J; Blackburn, J M; Reynolds, P E

    2000-07-01

    Vancomycin resistance in Enterococcus gallinarum results from the production of UDP-MurNAc-pentapeptide[D-Ser]. VanT, a membrane-bound serine racemase, is one of three proteins essential for this resistance. To investigate the selectivity of racemization of L-Ser or L-Ala by VanT, a strain of Escherichia coli TKL-10 that requires D-Ala for growth at 42 degrees C was used as host for transformation experiments using plasmids containing the full-length vanT from Ent. gallinarum or the alanine racemase gene (alr) of Bacillus stearothermophilus: both plasmids were able to complement E. coli TKL-10 at 42 degrees C. No alanine or serine racemase activities were detected in the host strain E. coli TKL-10 grown at 30, 34 or 37 degrees C. Serine and alanine racemase activities were found almost exclusively (96%) in the membrane fraction of E. coli TKL-10/pCA4(vanT): the alanine racemase activity of VanT was 14% of the serine racemase activity in both E. coli TKL-10/pCA4(vanT) and E. coli XL-1 Blue/pCA4(vanT). Alanine racemase activity was present mainly (95%) in the cytoplasmic fraction of E. coli TKL-10/pJW40(alr), with a trace (1.6%) of serine racemase activity. Additionally, DNA encoding the soluble domain of VanT was cloned and expressed in E. coli M15 as a His-tagged polypeptide and purified: this polypeptide also exhibited both serine and alanine racemase activities; the latter was approximately 18% of the serine racemase activity, similar to that of the full-length, membrane-bound enzyme. N-terminal sequencing of the purified His-tagged polypeptide revealed a single amino acid sequence, indicating that the formation of heterodimers between subunits of His-tagged C-VanT and endogenous alanine racemases from E. coli was unlikely. The authors conclude that the membrane-bound serine racemase VanT also has alanine racemase activity but is able to racemize serine more efficiently than alanine, and that the cytoplasmic domain is responsible for the racemase activity.

  1. Metabolism of serine in growing rats and chicks at various dietary protein levels

    International Nuclear Information System (INIS)

    Tanaka, Hideyuki; Yamaguchi, Michio; Kametaka, Masao

    1976-01-01

    The metabolic fate of the carbon skeleton of L-serine-U- 14 C has been investigated, in vivo and in vitro, in growing rats and chicks fed the diets with various protein calories percents (C %) at 410 kcal of metabolizable energy. The incorporation of 14 C into body protein at 12 hr after the injection of serine- 14 C was about 49% of the injected dose in rats fed the 10 or 15 PC% diet, though the value was reduced in rats fed lower and higher protein diets. The 14 CO 2 production was smaller in rats fed the 10 and 15 PC% diet, and it showed an inverse pattern to that of the 14 C incorporation into body protein. Urinary excretion of 14 C was higher in rats fed 10 and higher PC% diets, whose growth rate and net body protein retention were maximum. In contrast to the case of rats, the incorporation of 14 C into body protein of chicks at 6 hr after the injection was rather reduced in the 15 PC% group. The proportion of 14 C excreted as uric acid was remarkably increased above the 10 PC% group, and about 19% of the injected dose was recovered in the 50 PC% group. The catabolic rate of serine in the liver slices of rats and chicks was increased by high protein diets. These results support the concept that the nutritional significance of metabolism of the carbon skeleton of serine in growing rats and chicks is different from each other, especially at high protein diets. (auth.)

  2. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  3. Incorporation of glycine and serine into sporulating cells of Bacillus subtilis

    International Nuclear Information System (INIS)

    Mitani, Takahiko; Kadota, Hajime

    1976-01-01

    The changes during growth and sporulation in activities of cells of Bacillus subtilis to incorporate various amino acids were investigated with wild-type strain and its asporogenous mutant. In the case of wild type strain the uptake of valine, phenylalanine, and proline was largest during the logarithmic growth period. The uptake of these amino acids decreased rapidly during the early stationary phase. The uptake of valine and cysteine increased again to some extent just prior to the forespore stage. The uptake of glycine and serine, however, was largest at the forespore stage at which the formation of spore coat took place. From these observed phenomena it was assumed that the remarkable incorporation of glycine and serine into the wild type strain during sporulation was closely related to the formation of spore coat. (auth.)

  4. Dual function of a bee venom serine protease: prophenoloxidase-activating factor in arthropods and fibrin(ogen)olytic enzyme in mammals.

    Science.gov (United States)

    Choo, Young Moo; Lee, Kwang Sik; Yoon, Hyung Joo; Kim, Bo Yeon; Sohn, Mi Ri; Roh, Jong Yul; Je, Yeon Ho; Kim, Nam Jung; Kim, Iksoo; Woo, Soo Dong; Sohn, Hung Dae; Jin, Byung Rae

    2010-05-03

    Bee venom contains a variety of peptides and enzymes, including serine proteases. While the presence of serine proteases in bee venom has been demonstrated, the role of these proteins in bee venom has not been elucidated. Furthermore, there is currently no information available regarding the melanization response or the fibrin(ogen)olytic activity of bee venom serine protease, and the molecular mechanism of its action remains unknown. Here we show that bee venom serine protease (Bi-VSP) is a multifunctional enzyme. In insects, Bi-VSP acts as an arthropod prophenoloxidase (proPO)-activating factor (PPAF), thereby triggering the phenoloxidase (PO) cascade. Bi-VSP injected through the stinger induces a lethal melanization response in target insects by modulating the innate immune response. In mammals, Bi-VSP acts similarly to snake venom serine protease, which exhibits fibrin(ogen)olytic activity. Bi-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products, defining roles for Bi-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings provide a novel view of the mechanism of bee venom in which the bee venom serine protease kills target insects via a melanization strategy and exhibits fibrin(ogen)olytic activity.

  5. Assessment and partial purification of serine protease inhibitors from Rhipicephalus (Boophilus annulatuslarvae

    Directory of Open Access Journals (Sweden)

    Sedigheh Nabian

    Full Text Available Ticks are rich sources of serine protease inhibitors, particularly those that prevent blood clotting and inflammatory responses during blood feeding. The tick Rhipicephalus (Boophlus annulatusis an important ectoparasite of cattle. The aims of this study were to characterize and purify the serine protease inhibitors present in R. (B. annulatus larval extract. The inhibitors were characterized by means of one and two-dimensional reverse zymography, and purified using affinity chromatography on a trypsin-Sepharose column. The analysis on one and two-dimensional reverse zymography of the larval extract showed trypsin inhibitory activity at between 13 and 40 kDa. Through non-reducing SDS-PAGE and reverse zymography for proteins purified by trypsin-Sepharose affinity chromatography, some protein bands with molecular weights between 13 and 34 kDa were detected. Western blotting showed that five protein bands at 48, 70, 110, 130 and 250 kDa reacted positively with immune serum, whereas there was no positive reaction in the range of 13-40 kDa. Serine protease inhibitors from R. (B. annulatus have anti-trypsin activity similar to inhibitors belonging to several other hard tick species, thus suggesting that these proteins may be useful as targets in anti-tick vaccines.

  6. Regulation of calcium release from the endoplasmic reticulum by the serine hydrolase ABHD2.

    Science.gov (United States)

    Yun, Bogeon; Lee, HeeJung; Powell, Roger; Reisdorph, Nichole; Ewing, Heather; Gelb, Michael H; Hsu, Ku-Lung; Cravatt, Benjamin F; Leslie, Christina C

    2017-09-02

    The serine hydrolase inhibitors pyrrophenone and KT195 inhibit cell death induced by A23187 and H 2 O 2 by blocking the release of calcium from the endoplasmic reticulum and mitochondrial calcium uptake. The effect of pyrrophenone and KT195 on these processes is not due to inhibition of their known targets, cytosolic phospholipase A 2 and α/β-hydrolase domain-containing (ABHD) 6, respectively, but represent off-target effects. To identify targets of KT195, fibroblasts were treated with KT195-alkyne to covalently label protein targets followed by click chemistry with biotin azide, enrichment on streptavidin beads and tryptic peptide analysis by mass spectrometry. Although several serine hydrolases were identified, α/β-hydrolase domain-containing 2 (ABHD2) was the only target in which both KT195 and pyrrophenone competed for binding to KT195-alkyne. ABHD2 is a serine hydrolase with a predicted transmembrane domain consistent with its pull-down from the membrane proteome. Subcellular fractionation showed localization of ABHD2 to the endoplasmic reticulum but not to mitochondria or mitochondrial-associated membranes. Knockdown of ABHD2 with shRNA attenuated calcium release from the endoplasmic reticulum, mitochondrial calcium uptake and cell death in fibroblasts stimulated with A23187. The results describe a novel mechanism for regulating calcium transfer from the endoplasmic reticulum to mitochondria that involves the serine hydrolase ABHD2. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Serine racemase is expressed in islets and contributes to the regulation of glucose homeostasis.

    Science.gov (United States)

    Lockridge, Amber D; Baumann, Daniel C; Akhaphong, Brian; Abrenica, Alleah; Miller, Robert F; Alejandro, Emilyn U

    2016-11-01

    NMDA receptors (NMDARs) have recently been discovered as functional regulators of pancreatic β-cell insulin secretion. While these excitatory receptor channels have been extensively studied in the brain for their role in synaptic plasticity and development, little is known about how they work in β-cells. In neuronal cells, NMDAR activation requires the simultaneous binding of glutamate and a rate-limiting co-agonist, such as D-serine. D-serine levels and availability in most of the brain rely on endogenous synthesis by the enzyme serine racemase (Srr). Srr transcripts have been reported in human and mouse islets but it is not clear whether Srr is functionally expressed in β-cells or what its role in the pancreas might be. In this investigation, we reveal that Srr protein is highly expressed in primary human and mouse β-cells. Mice with whole body deletion of Srr (Srr KO) show improved glucose tolerance through enhanced insulin secretory capacity, possibly through Srr-mediated alterations in islet NMDAR expression and function. We observed elevated insulin sensitivity in some animals, suggesting Srr metabolic regulation in other peripheral organs as well. Srr expression in neonatal and embryonic islets, and adult deficits in Srr KO pancreas weight and islet insulin content, point toward a potential role for Srr in pancreatic development. These data reveal the first evidence that Srr may regulate glucose homeostasis in peripheral tissues and provide circumstantial evidence that D-serine may be an endogenous islet NMDAR co-agonist in β-cells.

  8. Identification and characterization of a novel serine protease, VvpS, that contains two functional domains and is essential for autolysis of Vibrio vulnificus.

    Science.gov (United States)

    Lim, Moon Sub; Kim, Jeong-A; Lim, Jong Gyu; Kim, Byoung Sik; Jeong, Kwang Cheol; Lee, Kyu-Ho; Choi, Sang Ho

    2011-08-01

    Little is known about the molecular mechanism for autolysis of Gram-negative bacteria. In the present study, we identified the vvpS gene encoding a serine protease, VvpS, from Vibrio vulnificus, a Gram-negative food-borne pathogen. The amino acid sequence predicted that VvpS consists of two functional domains, an N-terminal protease catalytic domain (PCD) and a C-terminal carbohydrate binding domain (CBD). A null mutation of vvpS significantly enhanced viability during stationary phase, as measured by enumerating CFU and differentially staining viable cells. The vvpS mutant reduced the release of cytoplasmic β-galactosidase and high-molecular-weight extracellular chromosomal DNA into the culture supernatants, indicating that VvpS contributes to the autolysis of V. vulnificus during stationary phase. VvpS is secreted via a type II secretion system (T2SS), and it exerts its effects on autolysis through intracellular accumulation during stationary phase. Consistent with this, a disruption of the T2SS accelerated intracellular accumulation of VvpS and thereby the autolysis of V. vulnificus. VvpS also showed peptidoglycan-hydrolyzing activity, indicating that the autolysis of V. vulnificus is attributed to the self-digestion of the cell wall by VvpS. The functions of the VvpS domains were assessed by C-terminal deletion analysis and demonstrated that the PCD indeed possesses a proteolytic activity and that the CBD is required for hydrolyzing peptidoglycan effectively. Finally, the vvpS mutant exhibited reduced virulence in the infection of mice. In conclusion, VvpS is a serine protease with a modular structure and plays an essential role in the autolysis and pathogenesis of V. vulnificus.

  9. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    Science.gov (United States)

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. Copyright © 2016. Published by Elsevier Inc.

  10. Detection and Characterization of Viral Species/Subspecies Using Isothermal Recombinase Polymerase Amplification (RPA) Assays.

    Science.gov (United States)

    Glais, Laurent; Jacquot, Emmanuel

    2015-01-01

    Numerous molecular-based detection protocols include an amplification step of the targeted nucleic acids. This step is important to reach the expected sensitive detection of pathogens in diagnostic procedures. Amplifications of nucleic acid sequences are generally performed, in the presence of appropriate primers, using thermocyclers. However, the time requested to amplify molecular targets and the cost of the thermocycler machines could impair the use of these methods in routine diagnostics. Recombinase polymerase amplification (RPA) technique allows rapid (short-term incubation of sample and primers in an enzymatic mixture) and simple (isothermal) amplification of molecular targets. RPA protocol requires only basic molecular steps such as extraction procedures and agarose gel electrophoresis. Thus, RPA can be considered as an interesting alternative to standard molecular-based diagnostic tools. In this paper, the complete procedures to set up an RPA assay, applied to detection of RNA (Potato virus Y, Potyvirus) and DNA (Wheat dwarf virus, Mastrevirus) viruses, are described. The proposed procedure allows developing species- or subspecies-specific detection assay.

  11. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics.

    Science.gov (United States)

    James, Ameh; Macdonald, Joanne

    2015-01-01

    Isothermal molecular diagnostics are bridging the technology gap between traditional diagnostics and polymerase chain reaction-based methods. These new techniques enable timely and accurate testing, especially in settings where there is a lack of infrastructure to support polymerase chain reaction facilities. Despite this, there is a significant lack of uptake of these technologies in developing countries where they are highly needed. Among these novel isothermal technologies, recombinase polymerase amplification (RPA) holds particular potential for use in developing countries. This rapid nucleic acid amplification approach is fast, highly sensitive and specific, and amenable to countries with a high burden of infectious diseases. Implementation of RPA technology in developing countries is critically required to assess limitations and potentials of the diagnosis of infectious disease, and may help identify impediments that prevent adoption of new molecular technologies in low resource- and low skill settings. This review focuses on approaching diagnosis of infectious disease with RPA.

  12. Characterization and modelling of VanT: a novel, membrane-bound, serine racemase from vancomycin-resistant Enterococcus gallinarum BM4174.

    Science.gov (United States)

    Arias, C A; Martín-Martinez, M; Blundell, T L; Arthur, M; Courvalin, P; Reynolds, P E

    1999-03-01

    Sequence determination of a region downstream from the vanXYc gene in Enterococcus gallinarum BM4174 revealed an open reading frame, designated vanT, that encodes a 698-amino-acid polypeptide with an amino-terminal domain containing 10 predicted transmembrane segments. The protein contained a highly conserved pyridoxal phosphate attachment site in the C-terminal domain, typical of alanine racemases. The protein was overexpressed in Escherichia coli, and serine racemase activity was detected in the membrane but not in the cytoplasmic fraction after centrifugation of sonicated cells, whereas alanine racemase activity was located almost exclusively in the cytoplasm. When the protein was overexpressed as a polypeptide lacking the predicted transmembrane domain, serine racemase activity was detected in the cytoplasm. The serine racemase activity was partially (64%) inhibited by D-cycloserine, whereas host alanine racemase activity was almost totally inhibited (97%). Serine racemase activity was also detected in membrane preparations of constitutively vancomycin-resistant E. gallinarum BM4174 but not in BM4175, in which insertional inactivation of the vanC-1 D-Ala:D-Ser ligase gene probably had a polar effect on expression of the vanXYc and vanT genes. Comparative modelling of the deduced C-terminal domain was based on the alignment of VanT with the Air alanine racemase from Bacillus stearothermophilus. The model revealed that almost all critical amino acids in the active site of Air were conserved in VanT, indicating that the C-terminal domain of VanT is likely to adopt a three-dimensional structure similar to that of Air and that the protein could exist as a dimer. These results indicate that the source of D-serine for peptidoglycan synthesis in vancomycin-resistant enterococci expressing the VanC phenotype involves racemization of L- to D-serine by a membrane-bound serine racemase.

  13. Optimization of the Conditions for Extraction of Serine Protease from Kesinai Plant (Streblus asper Leaves Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Md. Zaidul Islam Sarker

    2011-11-01

    Full Text Available Response surface methodology (RSM using a central composite design (CCD was employed to optimize the conditions for extraction of serine protease from kesinai (Streblus asper leaves. The effect of independent variables, namely temperature (42.5,47.5, X1, mixing time (2–6 min, X2, buffer content (0–80 mL, X3 and buffer pH (4.5–10.5, X4 on specific activity, storage stability, temperature and oxidizing agent stability of serine protease from kesinai leaves was investigated. The study demonstrated that use of the optimum temperature, mixing time, buffer content and buffer pH conditions protected serine protease during extraction, as demonstrated by low activity loss. It was found that the interaction effect of mixing time and buffer content improved the serine protease stability, and the buffer pH had the most significant effect on the specific activity of the enzyme. The most desirable conditions of 2.5 °C temperature, 4 min mixing time, 40 mL buffer at pH 7.5 was established for serine protease extraction from kesinai leaves.

  14. Non-thermal plasmas for non-catalytic and catalytic VOC abatement

    International Nuclear Information System (INIS)

    Vandenbroucke, Arne M.; Morent, Rino; De Geyter, Nathalie; Leys, Christophe

    2011-01-01

    Highlights: → We review the current status of catalytic and non-catalytic VOC abatement based on a vast number of research papers. → The underlying mechanisms of plasma-catalysis for VOC abatement are discussed. → Critical process parameters that determine the influent are discussed and compared. - Abstract: This paper reviews recent achievements and the current status of non-thermal plasma (NTP) technology for the abatement of volatile organic compounds (VOCs). Many reactor configurations have been developed to generate a NTP at atmospheric pressure. Therefore in this review article, the principles of generating NTPs are outlined. Further on, this paper is divided in two equally important parts: plasma-alone and plasma-catalytic systems. Combination of NTP with heterogeneous catalysis has attracted increased attention in order to overcome the weaknesses of plasma-alone systems. An overview is given of the present understanding of the mechanisms involved in plasma-catalytic processes. In both parts (plasma-alone systems and plasma-catalysis), literature on the abatement of VOCs is reviewed in close detail. Special attention is given to the influence of critical process parameters on the removal process.

  15. Catalytic distillation process

    Science.gov (United States)

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  16. Enhancement of the RAD51 Recombinase Activity by the Tumor Suppressor PALB2

    Energy Technology Data Exchange (ETDEWEB)

    Dray, Eloise; Etchin, Julia; Wiese, Claudia; Saro, Dorina; Williams, Gareth J.; Hammel, Michal; Yu, Xiong; Galkin, Vitold E.; Liu, Dongqing; Tsai, Miaw-Sheue; Sy, Shirley M-H.; Egelman, Edward; Chen, Junjie; Sung, Patrick; Schild, D.

    2010-08-24

    Homologous recombination mediated by the RAD51 recombinase helps eliminate chromosomal lesions, such as DNA double-stranded breaks induced by radiation or arising from injured DNA replication forks. The tumor suppressors BRCA2 and PALB2 act together to deliver RAD51 to chromosomal lesions to initiate repair. Here we document a new function of PALB2 in the enhancement of RAD51's ability to form the D-loop. We show that PALB2 binds DNA and physically interacts with RAD51. Importantly, while PALB2 alone stimulates D-loop formation, a cooperative effect is seen with RAD51AP1, an enhancer of RAD51. This stimulation stems from PALB2's ability to function with RAD51 and RAD51AP1 to assemble the synaptic complex. Our results help unveil a multi-faceted role of PALB2 in chromosome damage repair. Since PALB2 mutations can cause breast and other tumors or lead to Fanconi anemia, our findings are important for understanding the mechanism of tumor suppression in humans.

  17. Mast cells limit extracellular levels of IL-13 via a serglycin proteoglycan-serine protease axis.

    Science.gov (United States)

    Waern, Ida; Karlsson, Iulia; Thorpe, Michael; Schlenner, Susan M; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Åbrink, Magnus; Hellman, Lars; Pejler, Gunnar; Wernersson, Sara

    2012-12-01

    Mast cell (MC) granules contain large amounts of proteases of the chymase, tryptase and carboxypeptidase A (MC-CPA) type that are stored in complex with serglycin,a proteoglycan with heparin side chains. Hence, serglycinprotease complexes are released upon MC degranulation and may influence local inflammation. Here we explored the possibility that a serglycin-protease axis may regulate levels of IL-13, a cytokine involved in allergic asthma. Indeed, we found that wild-type MCs efficiently degraded exogenous or endogenously produced IL-13 upon degranulation,whereas serglycin −/− MCs completely lacked this ability.Moreover, MC-mediated IL-13 degradation was blocked both by a serine protease inhibitor and by a heparin antagonist,which suggests that IL-13 degradation is catalyzed by serglycin-dependent serine proteases and that optimal IL-13 degradation is dependent on both the serglycin and the protease component of the serglycin-protease complex.Moreover, IL-13 degradation was abrogated in MC-CPA −/−MC cultures, but was normal in cultures of MCs with an inactivating mutation of MC-CPA, which suggests that the IL-13-degrading serine proteases rely on MC-CPA protein.Together, our data implicate a serglycin-serine protease axis in the regulation of extracellular levels of IL-13. Reduction of IL-13 levels through this mechanism possibly can provide a protective function in the context of allergic inflammation.

  18. Rational redesign of glucose oxidase for improved catalytic function and stability.

    Directory of Open Access Journals (Sweden)

    J Todd Holland

    Full Text Available Glucose oxidase (GOx is an enzymatic workhorse used in the food and wine industries to combat microbial contamination, to produce wines with lowered alcohol content, as the recognition element in amperometric glucose sensors, and as an anodic catalyst in biofuel cells. It is naturally produced by several species of fungi, and genetic variants are known to differ considerably in both stability and activity. Two of the more widely studied glucose oxidases come from the species Aspergillus niger (A. niger and Penicillium amagasakiense (P. amag., which have both had their respective genes isolated and sequenced. GOx from A. niger is known to be more stable than GOx from P. amag., while GOx from P. amag. has a six-fold superior substrate affinity (K(M and nearly four-fold greater catalytic rate (k(cat. Here we sought to combine genetic elements from these two varieties to produce an enzyme displaying both superior catalytic capacity and stability. A comparison of the genes from the two organisms revealed 17 residues that differ between their active sites and cofactor binding regions. Fifteen of these residues in a parental A. niger GOx were altered to either mirror the corresponding residues in P. amag. GOx, or mutated into all possible amino acids via saturation mutagenesis. Ultimately, four mutants were identified with significantly improved catalytic activity. A single point mutation from threonine to serine at amino acid 132 (mutant T132S, numbering includes leader peptide led to a three-fold improvement in k(cat at the expense of a 3% loss of substrate affinity (increase in apparent K(M for glucose resulting in a specify constant (k(cat/K(M of 23.8 (mM(-1 · s(-1 compared to 8.39 for the parental (A. niger GOx and 170 for the P. amag. GOx. Three other mutant enzymes were also identified that had improvements in overall catalysis: V42Y, and the double mutants T132S/T56V and T132S/V42Y, with specificity constants of 31.5, 32.2, and 31.8 mM(-1 · s

  19. Cre recombinase expression or topical tamoxifen treatment do not affect retinal structure and function, neuronal vulnerability or glial reactivity in the mouse eye.

    Science.gov (United States)

    Boneva, S K; Groß, T R; Schlecht, A; Schmitt, S I; Sippl, C; Jägle, H; Volz, C; Neueder, A; Tamm, E R; Braunger, B M

    2016-06-14

    Mice with a constitutive or tamoxifen-induced Cre recombinase (Cre) expression are frequently used research tools to allow the conditional deletion of target genes via the Cre-loxP system. Here we analyzed for the first time in a comprehensive and comparative way, whether retinal Cre expression or topical tamoxifen treatment itself would cause structural or functional changes, including changes in the expression profiles of molecular markers, glial reactivity and photoreceptor vulnerability. To this end, we characterized the transgenic α-Cre, Lmop-Cre and the tamoxifen-inducible CAGG-CreER™ mouse lines, all having robust Cre expression in the neuronal retina. In addition, we characterized the effects of topical tamoxifen treatment itself in wildtype mice. We performed morphometric analyses, immunohistochemical staining, in vivo ERG and angiography analyses and realtime RT-PCR analyses. Furthermore, the influence of Cre recombinase or topical tamoxifen exposure on neuronal vulnerability was studied by using light damage as a model for photoreceptor degeneration. Taken together, neither the expression of Cre, nor topical tamoxifen treatment caused detectable changes in retinal structure and function, the expression profiles of investigated molecular markers, glial reactivity and photoreceptor vulnerability. We conclude that the Cre-loxP system and its induction through tamoxifen is a safe and reliable method to delete desired target genes in the neural retina. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Cell-specific cre recombinase expression allows selective ablation of glutamate receptors from mouse horizontal cells.

    Directory of Open Access Journals (Sweden)

    Sebastian Ströh

    Full Text Available In the mouse retina, horizontal cells form an electrically coupled network and provide feedback signals to photoreceptors and feedforward signals to bipolar cells. Thereby, horizontal cells contribute to gain control at the first visual synapse and to the antagonistic organization of bipolar and ganglion cell receptive fields. However, the nature of horizontal cell output remains a matter of debate, just as the exact contribution of horizontal cells to center-surround antagonism. To facilitate studying horizontal cell function, we developed a knockin mouse line which allows ablating genes exclusively in horizontal cells. This knockin line expresses a Cre recombinase under the promoter of connexin57 (Cx57, a gap junction protein only expressed in horizontal cells. Consistently, in Cx57+/Cre mice, Cre recombinase is expressed in almost all horizontal cells (>99% and no other retinal neurons. To test Cre activity, we crossbred Cx57+/Cre mice with a mouse line in which exon 11 of the coding sequence for the ionotropic glutamate receptor subunit GluA4 was flanked by two loxP sites (GluA4fl/fl. In GluA4fl/fl:Cx57+/Cre mice, GluA4 immunoreactivity was significantly reduced (∼ 50% in the outer retina where horizontal cells receive photoreceptor inputs, confirming the functionality of the Cre/loxP system. Whole-cell patch-clamp recordings from isolated horizontal cell somata showed a reduction of glutamate-induced inward currents by ∼ 75%, suggesting that the GluA4 subunit plays a major role in mediating photoreceptor inputs. The persistent current in GluA4-deficient cells is mostly driven by AMPA and to a very small extent by kainate receptors as revealed by application of the AMPA receptor antagonist GYKI52466 and concanavalin A, a potentiator of kainate receptor-mediated currents. In summary, the Cx57+/Cre mouse line provides a versatile tool for studying horizontal cell function. GluA4fl/fl:Cx57+/Cre mice, in which horizontal cells receive less

  1. Cell-Specific Cre Recombinase Expression Allows Selective Ablation of Glutamate Receptors from Mouse Horizontal Cells

    Science.gov (United States)

    Janssen-Bienhold, Ulrike; Schultz, Konrad; Cimiotti, Kerstin; Weiler, Reto; Willecke, Klaus; Dedek, Karin

    2013-01-01

    In the mouse retina, horizontal cells form an electrically coupled network and provide feedback signals to photoreceptors and feedforward signals to bipolar cells. Thereby, horizontal cells contribute to gain control at the first visual synapse and to the antagonistic organization of bipolar and ganglion cell receptive fields. However, the nature of horizontal cell output remains a matter of debate, just as the exact contribution of horizontal cells to center-surround antagonism. To facilitate studying horizontal cell function, we developed a knockin mouse line which allows ablating genes exclusively in horizontal cells. This knockin line expresses a Cre recombinase under the promoter of connexin57 (Cx57), a gap junction protein only expressed in horizontal cells. Consistently, in Cx57+/Cre mice, Cre recombinase is expressed in almost all horizontal cells (>99%) and no other retinal neurons. To test Cre activity, we crossbred Cx57+/Cre mice with a mouse line in which exon 11 of the coding sequence for the ionotropic glutamate receptor subunit GluA4 was flanked by two loxP sites (GluA4fl/fl). In GluA4fl/fl:Cx57+/Cre mice, GluA4 immunoreactivity was significantly reduced (∼50%) in the outer retina where horizontal cells receive photoreceptor inputs, confirming the functionality of the Cre/loxP system. Whole-cell patch-clamp recordings from isolated horizontal cell somata showed a reduction of glutamate-induced inward currents by ∼75%, suggesting that the GluA4 subunit plays a major role in mediating photoreceptor inputs. The persistent current in GluA4-deficient cells is mostly driven by AMPA and to a very small extent by kainate receptors as revealed by application of the AMPA receptor antagonist GYKI52466 and concanavalin A, a potentiator of kainate receptor-mediated currents. In summary, the Cx57+/Cre mouse line provides a versatile tool for studying horizontal cell function. GluA4fl/fl:Cx57+/Cre mice, in which horizontal cells receive less excitatory input

  2. Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor.

    Science.gov (United States)

    Bayguinov, Peter O; Ma, Yihe; Gao, Yu; Zhao, Xinyu; Jackson, Meyer B

    2017-09-20

    Genetically encoded voltage indicators create an opportunity to monitor electrical activity in defined sets of neurons as they participate in the complex patterns of coordinated electrical activity that underlie nervous system function. Taking full advantage of genetically encoded voltage indicators requires a generalized strategy for targeting the probe to genetically defined populations of cells. To this end, we have generated a mouse line with an optimized hybrid voltage sensor (hVOS) probe within a locus designed for efficient Cre recombinase-dependent expression. Crossing this mouse with Cre drivers generated double transgenics expressing hVOS probe in GABAergic, parvalbumin, and calretinin interneurons, as well as hilar mossy cells, new adult-born neurons, and recently active neurons. In each case, imaging in brain slices from male or female animals revealed electrically evoked optical signals from multiple individual neurons in single trials. These imaging experiments revealed action potentials, dynamic aspects of dendritic integration, and trial-to-trial fluctuations in response latency. The rapid time response of hVOS imaging revealed action potentials with high temporal fidelity, and enabled accurate measurements of spike half-widths characteristic of each cell type. Simultaneous recording of rapid voltage changes in multiple neurons with a common genetic signature offers a powerful approach to the study of neural circuit function and the investigation of how neural networks encode, process, and store information. SIGNIFICANCE STATEMENT Genetically encoded voltage indicators hold great promise in the study of neural circuitry, but realizing their full potential depends on targeting the sensor to distinct cell types. Here we present a new mouse line that expresses a hybrid optical voltage sensor under the control of Cre recombinase. Crossing this line with Cre drivers generated double-transgenic mice, which express this sensor in targeted cell types. In

  3. Functional analysis of a missense mutation in the serine protease inhibitor SPINT2 associated with congenital sodium diarrhea.

    Directory of Open Access Journals (Sweden)

    Nicolas Faller

    Full Text Available Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2, indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity of HAI-2.

  4. Apical serine protease activity is necessary for assembly of a high-resistance renal collecting duct epithelium

    DEFF Research Database (Denmark)

    Steensgaard, Mette; Svenningsen, Per; Tinning, Anne R

    2010-01-01

    Abstract AIM: We hypothesized that the serine protease prostasin is necessary for differentiation of a high resistance renal collecting duct epithelium governed by glucocorticoid. METHODS: Postnatal rat kidney and adult human kidney was used to study expression and localization of prostasin......-cadherin distribution did not change. CONCLUSION: Apical, GPI-anchored, lipid raft-associated serine protease activity, compatible with prostasin, is necessary for development of a high-resistance collecting duct epithelium....

  5. Bacillus thuringiensis Cry3Aa protoxin intoxication of Tenebrio molitor induces widespread changes in the expression of serine peptidase transcripts.

    Science.gov (United States)

    Oppert, Brenda; Martynov, Alexander G; Elpidina, Elena N

    2012-09-01

    The yellow mealworm, Tenebrio molitor, is a pest of stored grain products and is sensitive to the Bacillus thuringiensis (Bt) Cry3Aa toxin. As digestive peptidases are a determining factor in Cry toxicity and resistance, we evaluated the expression of peptidase transcripts in the midgut of T. molitor larvae fed either a control or Cry3Aa protoxin diet for 24 h (RNA-Seq), or in larvae exposed to the protoxin for 6, 12, or 24 h (microarrays). Cysteine peptidase transcripts (9) were similar to cathepsins B, L, and K, and their expression did not vary more than 2.5-fold in control and Cry3Aa-treated larvae. Serine peptidase transcripts (48) included trypsin, chymotrypsin and chymotrypsin-like, elastase 1-like, and unclassified serine peptidases, as well as homologs lacking functional amino acids. Highly expressed trypsin and chymotrypsin transcripts were severely repressed, and most serine peptidase transcripts were expressed 2- to 15-fold lower in Cry3Aa-treated larvae. Many serine peptidase and homolog transcripts were found only in control larvae. However, expression of a few serine peptidase transcripts was increased or found only in Cry3Aa-treated larvae. Therefore, Bt intoxication significantly impacted the expression of serine peptidases, potentially important in protoxin processing, while the insect maintained the production of critical digestive cysteine peptidases. Published by Elsevier Inc.

  6. Unlike pregnant adult women, pregnant adolescent girls cannot maintain glycine flux during late pregnancy because of decreased synthesis from serine.

    Science.gov (United States)

    Hsu, Jean W; Thame, Minerva M; Gibson, Raquel; Baker, Tameka M; Tang, Grace J; Chacko, Shaji K; Jackson, Alan A; Jahoor, Farook

    2016-03-14

    During pregnancy, glycine and serine become more important because they are the primary suppliers of methyl groups for the synthesis of fetal DNA, and more glycine is required for fetal collagen synthesis as pregnancy progresses. In an earlier study, we reported that glycine flux decreased by 39% from the first to the third trimester in pregnant adolescent girls. As serine is a primary precursor for glycine synthesis, the objective of this study was to measure and compare glycine and serine fluxes and inter-conversions in pregnant adolescent girls and adult women in the first and third trimesters. Measurements were made after an overnight fast by continuous intravenous infusions of 2H2-glycine and 15N-serine in eleven adolescent girls (17·4 (se 0·1) years of age) and in ten adult women (25·8 (se 0·5) years of age) for 4 h. Adolescent girls had significantly slower glycine flux and they made less glycine from serine in the third (Padolescent girls (P=0·04) and was significantly associated with third trimester glycine flux. These findings suggest that the pregnant adolescent cannot maintain glycine flux in late pregnancy compared with early pregnancy because of decreased synthesis from serine. It is possible that the inability to maintain glycine synthesis makes her fetus vulnerable to impaired cartilage synthesis, and thus linear growth.

  7. Identifying the functional part of heparin-binding protein (HBP) as a monocyte stimulator and the novel role of monocytes as HBP producers

    DEFF Research Database (Denmark)

    Schou, Morten; Djurup, René; Norris, Kjeld

    2011-01-01

    Heparin-binding protein (HBP), an evolutionary ancient and biologically highly important molecule in inflammation, is an inactive serine protease due to mutations in the catalytic triad. The histidine (position 41) in the conserved sequence TAAHC is mutated to serine and this sequence (TAASC) pla...

  8. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  9. Impact of Serine/Threonine Protein Kinases on the Regulation of Sporulation in Bacillus subtilis.

    Science.gov (United States)

    Pompeo, Frédérique; Foulquier, Elodie; Galinier, Anne

    2016-01-01

    Bacteria possess many kinases that catalyze phosphorylation of proteins on diverse amino acids including arginine, cysteine, histidine, aspartate, serine, threonine, and tyrosine. These protein kinases regulate different physiological processes in response to environmental modifications. For example, in response to nutritional stresses, the Gram-positive bacterium Bacillus subtilis can differentiate into an endospore; the initiation of sporulation is controlled by the master regulator Spo0A, which is activated by phosphorylation. Spo0A phosphorylation is carried out by a multi-component phosphorelay system. These phosphorylation events on histidine and aspartate residues are labile, highly dynamic and permit a temporal control of the sporulation initiation decision. More recently, another kind of phosphorylation, more stable yet still dynamic, on serine or threonine residues, was proposed to play a role in spore maintenance and spore revival. Kinases that perform these phosphorylation events mainly belong to the Hanks family and could regulate spore dormancy and spore germination. The aim of this mini review is to focus on the regulation of sporulation in B. subtilis by these serine and threonine phosphorylation events and the kinases catalyzing them.

  10. Characterization of a serine protease-mediated cell death program activated in human leukemia cells

    International Nuclear Information System (INIS)

    O'Connell, A.R.; Holohan, C.; Torriglia, A.; Lee, B.F.; Stenson-Cox, C.

    2006-01-01

    Tightly controlled proteolysis is a defining feature of apoptosis and caspases are critical in this regard. Significant roles for non-caspase proteases in cell death have been highlighted. Staurosporine causes a rapid induction of apoptosis in virtually all mammalian cell types. Numerous studies demonstrate that staurosporine can activate cell death under caspase-inhibiting circumstances. The aim of this study was to investigate the proteolytic mechanisms responsible for cell death under these conditions. To that end, we show that inhibitors of serine proteases can delay cell death in one such system. Furthermore, through profiling of proteolytic activation, we demonstrate, for the first time, that staurosporine activates a chymotrypsin-like serine protease-dependent cell death in HL-60 cells independently, but in parallel with the caspase controlled systems. Features of the serine protease-mediated system include cell shrinkage and apoptotic morphology, regulation of caspase-3, altered nuclear morphology, generation of an endonuclease and DNA degradation. We also demonstrate a staurosporine-induced activation of a putative 16 kDa chymotrypsin-like protein during apoptosis

  11. New catalytic roles for serine esterases: a 19F-NMR study of the interaction of 3,3,3-trifluoro-2,2-dihydroxy-1-phenyl-1-propanone with chicken liver carboxylesterase.

    Science.gov (United States)

    Bowles, M R; King, G J; Berndt, M C; Zerner, B

    1996-12-05

    The reactions of 3,3,3-trifluoro-2,2-dihydroxy-1-phenyl-1-propanone (TDPP) with chicken liver carboxylesterase have shown that this ketone hydrate is not only a potent inhibitor of the enzyme, but also a substrate for a number of enzyme-catalyzed reactions. The kinetics of inhibition are consistent with a mechanism in which the bound hydrate is initially dehydrated in a rate-limiting step catalyzed by the enzyme. Nucleophilic attack by the active-site serine on the parent ketone then produces a hemiketal adduct. However, the slow reactivation (by dialysis) of TDPP-inhibited enzyme indicates that the interaction with this inhibitor is more complex. At equilibrium, a dissociation constant of 2.4 pM was obtained for this interaction. 19F-NMR studies of the enzyme-TDPP complex show that after pre-equilibration, the major adduct is not the hemiketal adduct. It is proposed that this final adduct is a cross-linked adduct formed between TDPP, the active-site serine and the active-site histidine. 19F-NMR studies reveal that chicken liver carboxylesterase catalyses the cleavage of TDPP to yield either fluoride ion or trifluoroacetate, and also the benzilic acid rearrangement of TDPP to alpha-trifluoromethylmandelate. These products have also been identified in model studies of the reaction between TDPP and imidazole.

  12. Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors

    Directory of Open Access Journals (Sweden)

    Little Tom J

    2009-06-01

    Full Text Available Abstract Background Mosquitoes of the Anopheles gambiae species complex are the primary vectors of human malaria in sub-Saharan Africa. Many host genes have been shown to affect Plasmodium development in the mosquito, and so are expected to engage in an evolutionary arms race with the pathogen. However, there is little conclusive evidence that any of these mosquito genes evolve rapidly, or show other signatures of adaptive evolution. Methods Three serine protease inhibitors have previously been identified as candidate immune system genes mediating mosquito-Plasmodium interaction, and serine protease inhibitors have been identified as hot-spots of adaptive evolution in other taxa. Population-genetic tests for selection, including a recent multi-gene extension of the McDonald-Kreitman test, were applied to 16 serine protease inhibitors and 16 other genes sampled from the An. gambiae species complex in both East and West Africa. Results Serine protease inhibitors were found to show a marginally significant trend towards higher levels of amino acid diversity than other genes, and display extensive genetic structuring associated with the 2La chromosomal inversion. However, although serpins are candidate targets for strong parasite-mediated selection, no evidence was found for rapid adaptive evolution in these genes. Conclusion It is well known that phylogenetic and population history in the An. gambiae complex can present special problems for the application of standard population-genetic tests for selection, and this may explain the failure of this study to detect selection acting on serine protease inhibitors. The pitfalls of uncritically applying these tests in this species complex are highlighted, and the future prospects for detecting selection acting on the An. gambiae genome are discussed.

  13. Identification and Characterization of a Novel Serine Protease, VvpS, That Contains Two Functional Domains and Is Essential for Autolysis of Vibrio vulnificus ▿

    Science.gov (United States)

    Lim, Moon Sub; Kim, Jeong-A; Lim, Jong Gyu; Kim, Byoung Sik; Jeong, Kwang Cheol; Lee, Kyu-Ho; Choi, Sang Ho

    2011-01-01

    Little is known about the molecular mechanism for autolysis of Gram-negative bacteria. In the present study, we identified the vvpS gene encoding a serine protease, VvpS, from Vibrio vulnificus, a Gram-negative food-borne pathogen. The amino acid sequence predicted that VvpS consists of two functional domains, an N-terminal protease catalytic domain (PCD) and a C-terminal carbohydrate binding domain (CBD). A null mutation of vvpS significantly enhanced viability during stationary phase, as measured by enumerating CFU and differentially staining viable cells. The vvpS mutant reduced the release of cytoplasmic β-galactosidase and high-molecular-weight extracellular chromosomal DNA into the culture supernatants, indicating that VvpS contributes to the autolysis of V. vulnificus during stationary phase. VvpS is secreted via a type II secretion system (T2SS), and it exerts its effects on autolysis through intracellular accumulation during stationary phase. Consistent with this, a disruption of the T2SS accelerated intracellular accumulation of VvpS and thereby the autolysis of V. vulnificus. VvpS also showed peptidoglycan-hydrolyzing activity, indicating that the autolysis of V. vulnificus is attributed to the self-digestion of the cell wall by VvpS. The functions of the VvpS domains were assessed by C-terminal deletion analysis and demonstrated that the PCD indeed possesses a proteolytic activity and that the CBD is required for hydrolyzing peptidoglycan effectively. Finally, the vvpS mutant exhibited reduced virulence in the infection of mice. In conclusion, VvpS is a serine protease with a modular structure and plays an essential role in the autolysis and pathogenesis of V. vulnificus. PMID:21642466

  14. Catalytic bioreactors and methods of using same

    Science.gov (United States)

    Worden, Robert Mark; Liu, Yangmu Chloe

    2017-07-25

    Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.

  15. Distinct kinetics of serine and threonine dephosphorylation are essential for mitosis

    DEFF Research Database (Denmark)

    Hein, Jamin B; Hertz, Emil P T; Garvanska, Dimitriya H

    2017-01-01

    Protein phosphatase 2A (PP2A) in complex with B55 regulatory subunits reverses cyclin-dependent kinase 1 (Cdk1) phosphorylations at mitotic exit. Interestingly, threonine and serine residues phosphorylated by Cdk1 display distinct phosphorylation dynamics, but the biological significance remains ...

  16. Oxytocin analogues with O-glycosylated serine and threonine in position 4

    Czech Academy of Sciences Publication Activity Database

    Marcinkowska, A.; Borovičková, Lenka; Slaninová, Jiřina; Grzonka, Z.

    2007-01-01

    Roč. 81, č. 7 (2007), s. 1335-1344 ISSN 0137- 5083 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z90210515 Keywords : oxytocin * glycosylated serin * glycosylated threonin * position 4 Subject RIV: CE - Biochemistry Impact factor: 0.483, year: 2007

  17. AQP4 plasma membrane trafficking or channel gating is not significantly modulated by phosphorylation at C-terminal serine residues

    DEFF Research Database (Denmark)

    Assentoft, Mette; Larsen, Brian R; Olesen, Emma T B

    2014-01-01

    heterologous expression in Xenopus laevis oocytes (along with serine-to-aspartate mutants of the same residues to mimic a phosphorylation). None of the mutant AQP4 constructs displayed alterations in the unit water permeability. Thus phosphorylation of six different serine residues in the COOH terminus of AQP4....... Phosphorylation of aquaporins can regulate plasma membrane localization and, possibly, the unit water permeability via gating of the AQP channel itself. In vivo phosphorylation of six serine residues in the COOH terminus of AQP4 has been detected by mass spectrometry: Ser(276), Ser(285), Ser(315), Ser(316), Ser...

  18. Heterogeneous asymmetric recombinase polymerase amplification (haRPA) for rapid hygiene control of large-volume water samples.

    Science.gov (United States)

    Elsäßer, Dennis; Ho, Johannes; Niessner, Reinhard; Tiehm, Andreas; Seidel, Michael

    2018-04-01

    Hygiene of drinking water is periodically controlled by cultivation and enumeration of indicator bacteria. Rapid and comprehensive measurements of emerging pathogens are of increasing interest to improve drinking water safety. In this study, the feasibility to detect bacteriophage PhiX174 as a potential indicator for virus contamination in large volumes of water is demonstrated. Three consecutive concentration methods (continuous ultrafiltration, monolithic adsorption filtration, and centrifugal ultrafiltration) were combined to concentrate phages stepwise from 1250 L drinking water into 1 mL. Heterogeneous asymmetric recombinase polymerase amplification (haRPA) is applied as rapid detection method. Field measurements were conducted to test the developed system for hygiene online monitoring under realistic conditions. We could show that this system allows the detection of artificial contaminations of bacteriophage PhiX174 in drinking water pipelines. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Human plasma lecithin-cholesterol acyltransferase

    International Nuclear Information System (INIS)

    Jauhiainen, M.; Stevenson, K.J.; Dolphin, P.J.

    1988-01-01

    Lecithin-cholesterol acyltransferase (LCAT) is a plasma enzyme which catalyzes the transacylation of the fatty acid at the sn-2 position of lecithin to cholesterol forming lysolecithin and cholesteryl ester. The substrates for and products of this reaction are present within the plasma lipoproteins upon which the enzyme acts to form the majority of cholesteryl ester in human plasma. The authors proposed a covalent catalytic mechanism of action for LCAT in which serine and histidine residues mediate lecithin cleavage and two cysteine residues cholesterol esterification. With the aid of sulfhydryl reactive trivalent organoarsenical compounds which are specific for vicinal thiols they have probed the geometry of the catalytic site. They conclude that the two catalytic cysteine residues of LCAT (Cys 31 and Cys 184 ) are vicinal with a calculated distance between their sulfur atoms of 3.50-3.62 A. The additional residue alkylated by teh bifunctional reagent is within the catalytic site and may represent a previously identified catalytic serine or histidine residue

  20. Optimization of serine protease purification from mango (Mangifera indica cv. Chokanan) peel in polyethylene glycol/dextran aqueous two phase system.

    Science.gov (United States)

    Mehrnoush, Amid; Mustafa, Shuhaimi; Sarker, Md Zaidul Islam; Yazid, Abdul Manap Mohd

    2012-01-01

    Mango peel is a good source of protease but remains an industrial waste. This study focuses on the optimization of polyethylene glycol (PEG)/dextran-based aqueous two-phase system (ATPS) to purify serine protease from mango peel. The activity of serine protease in different phase systems was studied and then the possible relationship between the purification variables, namely polyethylene glycol molecular weight (PEG, 4000-12,000 g·mol(-1)), tie line length (-3.42-35.27%), NaCl (-2.5-11.5%) and pH (4.5-10.5) on the enzymatic properties of purified enzyme was investigated. The most significant effect of PEG was on the efficiency of serine protease purification. Also, there was a significant increase in the partition coefficient with the addition of 4.5% of NaCl to the system. This could be due to the high hydrophobicity of serine protease compared to protein contaminates. The optimum conditions to achieve high partition coefficient (84.2) purification factor (14.37) and yield (97.3%) of serine protease were obtained in the presence of 8000 g·mol(-1) of PEG, 17.2% of tie line length and 4.5% of NaCl at pH 7.5. The enzymatic properties of purified serine protease using PEG/dextran ATPS showed that the enzyme could be purified at a high purification factor and yield with easy scale-up and fast processing.

  1. Catalytic process for tritium exchange reaction

    International Nuclear Information System (INIS)

    Hansoo Lee; Kang, H.S.; Paek, S.W.; Hongsuk Chung; Yang Geun Chung; Sook Kyung Lee

    2001-01-01

    The catalytic activities for a hydrogen isotope exchange were measured through the reaction of a vapor and gas mixture. The catalytic activity showed to be comparable with the published data. Since the gas velocity is relatively low, the deactivation was not found clearly during the 5-hour experiment. Hydrogen isotope transfer experiments were also conducted through the liquid phase catalytic exchange reaction column that consisted of a catalytic bed and a hydrophilic bed. The efficiencies of both the catalytic and hydrophilic beds were higher than 0.9, implying that the column performance was excellent. (author)

  2. Characterization of a membrane-associated serine protease in Escherichia coli

    International Nuclear Information System (INIS)

    Palmer, S.M.; St John, A.C.

    1987-01-01

    Three membrane-associated proteolytic activities in Escherichia coli were resolved by DEAE-cellulose chromatography from detergent extracts of the total envelope fraction. On the basis of substrate specificity for the hydrolysis of chromogenic amino acid ester substrates, the first two eluting activities were determined previously to be protease V and protease IV, respectively. The third proteolytic activity eluting from the DEAE-cellulose column was further purified by affinity chromatography on benzamidine-Sepharose 6B. They termed this enzyme protease VI. Protease VI did not hydrolyze any of the chromogenic substrates used in the detection of protease IV and protease V. However, all three enzymes generated acid-soluble fragments from a mixture of E. coli membrane proteins which were biosynthetically labeled with radioactive amino acids. The activity of protease VI was sensitive to serine protease inhibitors. Using [ 3 H]diisopropylfluorophosphate as an active-site labeling reagent, they determined that protease VI has an apparent molecular weight of 43,000 in polyacrylamide gels. All three membrane-associated serine proteases were insensitive to inhibition by Ecotin, an endogenous, periplasmic inhibitor of trypsin

  3. Contributions to the theory of catalytic titrations-III Neutralization catalytic titrations.

    Science.gov (United States)

    Gaál, F F; Abramović, B F

    1985-07-01

    Neutralization catalytic titrations of weak monoprotic adds and bases with both volumetric and coulometric addition of the titrant (strong base/acid) have been simulated by taking into account the equilibrium concentration of the catalyst during the titration. The influence of several factors on the shape of the simulated catalytic titration curve has been investigated and is discussed.

  4. The Hunger Games: p53 regulates metabolism upon serine starvation.

    Science.gov (United States)

    Tavana, Omid; Gu, Wei

    2013-02-05

    Cancer cells reprogram their metabolism to support a high proliferative rate. A new study shows that, upon serine starvation, the tumor suppressor p53 activates p21 to shift metabolic flux from purine biosynthesis to glutathione production, which enhances cellular proliferation and viability by combating ROS (Maddocks et al., 2013). Copyright © 2013 Elsevier Inc. All rights reserved.

  5. A next-generation dual-recombinase system for time and host specific targeting of pancreatic cancer

    Science.gov (United States)

    Schachtler, Christina; Zukowska, Magdalena; Eser, Stefan; Feyerabend, Thorsten B.; Paul, Mariel C.; Eser, Philipp; Klein, Sabine; Lowy, Andrew M.; Banerjee, Ruby; Yang, Fangtang; Lee, Chang-Lung; Moding, Everett J.; Kirsch, David G.; Scheideler, Angelika; Alessi, Dario R.; Varela, Ignacio; Bradley, Allan; Kind, Alexander; Schnieke, Angelika E.; Rodewald, Hans-Reimer; Rad, Roland; Schmid, Roland M.; Schneider, Günter; Saur, Dieter

    2014-01-01

    Genetically engineered mouse models (GEMMs) have dramatically improved our understanding of tumor evolution and therapeutic resistance. However, sequential genetic manipulation of gene expression and targeting of the host is almost impossible using conventional Cre-loxP–based models. We have developed an inducible dual-recombinase system by combining flippase-FRT (Flp-FRT) and Cre-loxP recombination technologies to improve GEMMs of pancreatic cancer. This enables investigation of multistep carcinogenesis, genetic manipulation of tumor subpopulations (such as cancer stem cells), selective targeting of the tumor microenvironment and genetic validation of therapeutic targets in autochthonous tumors on a genome-wide scale. As a proof of concept, we performed tumor cell–autonomous and nonautonomous targeting, recapitulated hallmarks of human multistep carcinogenesis, validated genetic therapy by 3-phosphoinositide-dependent protein kinase inactivation as well as cancer cell depletion and show that mast cells in the tumor microenvironment, which had been thought to be key oncogenic players, are dispensable for tumor formation. PMID:25326799

  6. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer.

    Science.gov (United States)

    Schönhuber, Nina; Seidler, Barbara; Schuck, Kathleen; Veltkamp, Christian; Schachtler, Christina; Zukowska, Magdalena; Eser, Stefan; Feyerabend, Thorsten B; Paul, Mariel C; Eser, Philipp; Klein, Sabine; Lowy, Andrew M; Banerjee, Ruby; Yang, Fangtang; Lee, Chang-Lung; Moding, Everett J; Kirsch, David G; Scheideler, Angelika; Alessi, Dario R; Varela, Ignacio; Bradley, Allan; Kind, Alexander; Schnieke, Angelika E; Rodewald, Hans-Reimer; Rad, Roland; Schmid, Roland M; Schneider, Günter; Saur, Dieter

    2014-11-01

    Genetically engineered mouse models (GEMMs) have dramatically improved our understanding of tumor evolution and therapeutic resistance. However, sequential genetic manipulation of gene expression and targeting of the host is almost impossible using conventional Cre-loxP-based models. We have developed an inducible dual-recombinase system by combining flippase-FRT (Flp-FRT) and Cre-loxP recombination technologies to improve GEMMs of pancreatic cancer. This enables investigation of multistep carcinogenesis, genetic manipulation of tumor subpopulations (such as cancer stem cells), selective targeting of the tumor microenvironment and genetic validation of therapeutic targets in autochthonous tumors on a genome-wide scale. As a proof of concept, we performed tumor cell-autonomous and nonautonomous targeting, recapitulated hallmarks of human multistep carcinogenesis, validated genetic therapy by 3-phosphoinositide-dependent protein kinase inactivation as well as cancer cell depletion and show that mast cells in the tumor microenvironment, which had been thought to be key oncogenic players, are dispensable for tumor formation.

  7. Generation of an allelic series of knock-in mice using recombinase-mediated cassette exchange (RMCE).

    Science.gov (United States)

    Roebroek, Anton J M; Van Gool, Bart

    2014-01-01

    Molecular genetic strategies applying embryonic stem cell (ES cell) technologies to study the function of a gene in mice or to generate a mouse model for a human disease are continuously under development. Next to (conditional) inactivation of genes the application and importance of approaches to generate knock-in mutations are increasing. In this chapter the principle and application of recombinase-mediated cassette exchange (RMCE) are discussed as being a new emerging knock-in strategy, which enables easy generation of a series of different knock-in mutations within one gene. An RMCE protocol, which was used to generate a series of different knock-in mutations in the Lrp1 gene of ES cells, is described in detail as an example of how RMCE can be used to generate highly efficiently an allelic series of differently modified ES cell clones from a parental modified ES cell clone. Subsequently the differently modified ES cell clones can be used to generate an allelic series of mutant knock-in mice.

  8. Subcellular localization of an intracellular serine protease of 68 kDa in Leishmania (Leishmania amazonensis promastigotes

    Directory of Open Access Journals (Sweden)

    José Andrés Morgado-Díaz

    2005-07-01

    Full Text Available Here we report the subcellular localization of an intracellular serine protease of 68 kDa in axenic promastigotes of Leishmania (Leishmania amazonensis, using subcellular fractionation, enzymatic assays, immunoblotting, and immunocytochemistry. All fractions were evaluated by transmission electron microscopy and the serine protease activity was measured during the cell fractionation procedure using a-N-r-tosyl-L-arginine methyl ester (L-TAME as substrate, phenylmethylsulphone fluoride (PMSF and L-1-tosylamino-2-phenylethylchloromethylketone (TPCK as specific inhibitors. The enzymatic activity was detected mainly in a membranous vesicular fraction (6.5-fold enrichment relative to the whole homogenate, but also in a crude plasma membrane fraction (2.0-fold. Analysis by SDS-PAGE gelatin under reducing conditions demonstrated that the major proteolytic activity was found in a 68 kDa protein in all fractions studied. A protein with identical molecular weight was also recognized in immunoblots by a polyclonal antibody against serine protease (anti-SP, with higher immunoreactivity in the vesicular fraction. Electron microscopic immunolocalization using the same polyclonal antibody showed the enzyme present at the cell surface, as well as in cytoplasmic membranous compartments of the parasite. Our findings indicate that the internal location of this serine protease in L. amazonensis is mainly restricted to the membranes of intracellular compartments resembling endocytic/exocytic elements.

  9. Generation of serine/threonine check points in HN(C)N spectra

    Indian Academy of Sciences (India)

    Administrator

    ing to generate alanine. 6 and serine/threonine specific peak patterns. 7 have enhanced the speed of assign- ment quite substantially. These developments involved a simple modification to the pulse sequence. Continuing such efforts for rapid resonance as- signments, we have implemented here the tuning ideas.

  10. Deficiency in L-serine deaminase interferes with one-carbon metabolism and cell wall synthesis in Escherichia coli K-12.

    Science.gov (United States)

    Zhang, Xiao; El-Hajj, Ziad W; Newman, Elaine

    2010-10-01

    Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes L-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S L-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of L-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C(1) units and interferes with cell wall synthesis. We suggest that at high concentrations, L-serine decreases synthesis of UDP-N-acetylmuramate-L-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high L-serine is overcome in several ways: by a large concentration of L-alanine, by overproducing MurC together with a low concentration of L-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide.

  11. Molecular cloning and tissue-specific expression analysis of mouse spinesin, a type II transmembrane serine protease 5

    International Nuclear Information System (INIS)

    Watanabe, Yoshihisa; Okui, Akira; Mitsui, Shinichi; Kawarabuki, Kentaro; Yamaguchi, Tatsuyuki; Uemura, Hidetoshi; Yamaguchi, Nozomi

    2004-01-01

    We have previously reported novel serine proteases isolated from cDNA libraries of the human and mouse central nervous system (CNS) by PCR using degenerate oligodeoxyribonucleotide primers designed on the basis of the serine protease motifs, AAHC and DSGGP. Here we report a newly isolated serine protease from the mouse CNS. This protease is homologous (77.9% identical) to human spinesin type II transmembrane serine protease 5. Mouse spinesin (m-spinesin) is also composed of (from the N-terminus) a short cytoplasmic domain, a transmembrane domain, a stem region containing a scavenger-receptor-like domain, and a serine protease domain, as is h-spinesin. We also isolated type 1, type 2, and type 3 variant cDNAs of m-spinesin. Full-length spinesin (type 4) and type 3 contain all the domains, whereas type 1 and type 2 variants lack the cytoplasmic, transmembrane, and scavenger-receptor-like domains. Subcellular localization of the variant forms was analyzed using enhanced green fluorescent protein (EGFP) fusion proteins. EGFP-type 4 fusion protein was predominantly localized to the ER, Golgi apparatus, and plasma membrane, whereas EGFP-type 1 was localized to the cytoplasm, reflecting differential classification of m-spinesin variants into transmembrane and cytoplasmic types. We analyzed the distribution of m-spinesin variants in mouse tissues, using RT-PCR with variant-specific primer sets. Interestingly, transmembrane-type spinesin, types 3 and 4, was specifically expressed in the spinal cord, whereas cytoplasmic type, type 1, was expressed in multiple tissues, including the cerebrum and cerebellum. Therefore, m-spinesin variants may have distinct biological functions arising from organ-specific variant expression

  12. Structure of a filament of stacked octamers of human DMC1 recombinase

    International Nuclear Information System (INIS)

    Du, Liqin; Luo, Yu

    2013-01-01

    Octameric rings of DMC1 stacked into filaments in the crystal. Similar DMC1–DNA filaments have been observed previously using electron microscopy. Eukaryal DMC1 proteins play a central role in homologous recombination in meiosis by assembling at the sites of programmed DNA double-strand breaks and carrying out a search for allelic DNA sequences located on homologous chromatids. They are close homologs of eukaryal Rad51 and archaeal RadA proteins and are remote homologs of bacterial RecA proteins. These recombinases (also called DNA strand-exchange proteins) promote a pivotal strand-exchange reaction between homologous single-stranded and double-stranded DNA substrates. An octameric form of a truncated human DMC1 devoid of its small N-terminal domain (residues 1–83) has been crystallized. The structure of the truncated DMC1 octamer is similar to that of the previously reported full-length DMC1 octamer, which has disordered N-terminal domains. In each protomer, only the ATP cap regions (Asp317–Glu323) show a noticeable conformational difference. The truncated DMC1 octamers further stack with alternate polarity into a filament. Similar filamentous assemblies of DMC1 have been observed to form on DNA by electron microscopy

  13. Catalytic distillation structure

    Science.gov (United States)

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  14. Sol-gel immobilization of serine proteases for application in organic solvents

    NARCIS (Netherlands)

    van Unen, D.J.; Engbersen, Johannes F.J.; Reinhoudt, David

    2001-01-01

    The serine proteases α-chymotrypsin, trypsin, and subtilisin Carlsberg were immobilized in a sol-gel matrix and the effects on the enzyme activity in organic media are evaluated. The percentage of immobilized enzyme is 90% in the case of α-chymotrypsin and the resulting specific enzyme activity in

  15. Serine/threonine-protein phosphatase 1 α levels are paralleling olfactory memory formation in the CD1 mouse.

    Science.gov (United States)

    Winding, Christiana; Sun, Yanwei; Höger, Harald; Bubna-Littitz, Hermann; Pollak, Arnold; Schmidt, Peter; Lubec, Gert

    2011-06-01

    Although olfactory discrimination has already been studied in several mouse strains, data on protein levels linked to olfactory memory are limited. Wild mouse strains Mus musculus musculus, Mus musculus domesticus and CD1 laboratory outbred mice were tested in a conditioned odor preference task and trained to discriminate between two odors, Rose and Lemon, by pairing one odor with a sugar reward. Six hours following the final test, mice were sacrificed and olfactory bulbs (OB) were taken for gel-based proteomics analyses and immunoblotting. OB proteins were extracted, separated by 2-DE and quantified using specific software (Proteomweaver). Odor-trained mice showed a preference for the previously rewarded odor suggesting that conditioned odor preference occurred. In CD1 mice levels, one out of 482 protein spots was significantly increased in odor-trained mice as compared with the control group; it was in-gel digested by trypsin and chymotrypsin and analyzed by tandem mass spectrometry (nano-ESI-LC-MS/MS). The spot was unambiguously identified as serine/threonine-protein phosphatase PP1-α catalytic subunit (PP-1A) and differential levels observed in gel-based proteomic studies were verified by immunoblotting. PP-1A is a key signalling element in synaptic plasticity and memory processes and is herein shown to be paralleling olfactory discrimination representing olfactory memory. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Tie-1-directed expression of Cre recombinase in endothelial cells of embryoid bodies and transgenic mice

    DEFF Research Database (Denmark)

    Gustafsson, E; Brakebusch, C; Hietanen, K

    2001-01-01

    Tissue-specific gene inactivation using the Cre-loxP system has become an important tool to unravel functions of genes when the conventional null mutation is lethal. We report here the generation of a transgenic mouse line expressing Cre recombinase in endothelial cells. In order to avoid...... the production and screening of multiple transgenic lines we used embryonic stem cell and embryoid body technology to identify recombinant embryonic stem cell clones with high, endothelial-specific Cre activity. One embryonic stem cell clone that showed high Cre activity in endothelial cells was used to generate...... germline chimeras. The in vivo efficiency and specificity of the transgenic Cre was analysed by intercrossing the tie-1-Cre line with the ROSA26R reporter mice. At initial stages of vascular formation (E8-9), LacZ staining was detected in almost all cells of the forming vasculature. Between E10 and birth...

  17. Catalytic site identification—a web server to identify catalytic site structural matches throughout PDB

    Science.gov (United States)

    Kirshner, Daniel A.; Nilmeier, Jerome P.; Lightstone, Felice C.

    2013-01-01

    The catalytic site identification web server provides the innovative capability to find structural matches to a user-specified catalytic site among all Protein Data Bank proteins rapidly (in less than a minute). The server also can examine a user-specified protein structure or model to identify structural matches to a library of catalytic sites. Finally, the server provides a database of pre-calculated matches between all Protein Data Bank proteins and the library of catalytic sites. The database has been used to derive a set of hypothesized novel enzymatic function annotations. In all cases, matches and putative binding sites (protein structure and surfaces) can be visualized interactively online. The website can be accessed at http://catsid.llnl.gov. PMID:23680785

  18. A Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate.

    Science.gov (United States)

    Shrestha, Ritu; Lockless, Steve W; Sorg, Joseph A

    2017-06-23

    Clostridium difficile has become one of the most common bacterial pathogens in hospital-acquired infections in the United States. Although C. difficile is strictly anaerobic, it survives in aerobic environments and transmits between hosts via spores. C. difficile spore germination is triggered in response to certain bile acids and glycine. Although glycine is the most effective co-germinant, other amino acids can substitute with varying efficiencies. Of these, l-alanine is an effective co-germinant and is also a germinant for most bacterial spores. Many endospore-forming bacteria embed alanine racemases into their spore coats, and these enzymes are thought to convert the l-alanine germinant into d-alanine, a spore germination inhibitor. Although the C. difficile Alr2 racemase is the sixth most highly expressed gene during C. difficile spore formation, a previous study reported that Alr2 has little to no role in germination of C. difficile spores in rich medium. Here, we hypothesized that Alr2 could affect C. difficile l-alanine-induced spore germination in a defined medium. We found that alr2 mutant spores more readily germinate in response to l-alanine as a co-germinant. Surprisingly, d-alanine also functioned as a co-germinant. Moreover, we found that Alr2 could interconvert l- and d-serine and that Alr2 bound to l- and d-serine with ∼2-fold weaker affinity to that of l- and d-alanine. Finally, we demonstrate that l- and d-serine are also co-germinants for C. difficile spores. These results suggest that C. difficile spores can respond to a diverse set of amino acid co-germinants and reveal that Alr2 can accommodate serine as a substrate. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Creating Transgenic shRNA Mice by Recombinase-Mediated Cassette Exchange

    Science.gov (United States)

    Premsrirut, Prem K.; Dow, Lukas E.; Park, Youngkyu; Hannon, Gregory J.; Lowe, Scott W.

    2014-01-01

    RNA interference (RNAi) enables sequence-specific, experimentally induced silencing of virtually any gene by tapping into innate regulatory mechanisms that are conserved among most eukaryotes. The principles that enable transgenic RNAi in cell lines can also be used to create transgenic animals, which express short-hairpin RNAs (shRNAs) in a regulated or tissue-specific fashion. However, RNAi in transgenic animals is somewhat more challenging than RNAi in cultured cells. The activities of promoters that are commonly used for shRNA expression in cell culture can vary enormously in different tissues, and founder lines also typically vary in transgene expression due to the effects of their single integration sites. There are many ways to produce mice carrying shRNA transgenes and the method described here uses recombinase-mediated cassette exchange (RMCE). RMCE permits insertion of the shRNA transgene into a well-characterized locus that gives reproducible and predictable expression in each founder and enhances the probability of potent expression in many cell types. This procedure is more involved and complex than simple pronuclear injection, but if even a few shRNA mice are envisioned, for example, to probe the functions of several genes, the effort of setting up the processes outlined below are well worthwhile. Note that when creating a transgenic mouse, one should take care to use the most potent shRNA possible. As a rule of thumb, the sequence chosen should provide >90% knockdown when introduced into cultured cells at single copy (e.g., on retroviral infection at a multiplicity of ≤0.3). PMID:24003198

  20. Serine protease isoforms in Gloydius intermedius venom: Full sequences, molecular phylogeny and evolutionary implications.

    Science.gov (United States)

    Yang, Zhang-Min; Yu, Hui; Liu, Zhen-Zhen; Pei, Jian-Zhu; Yang, Yu-E; Yan, Su-Xian; Zhang, Cui; Zhao, Wen-Long; Wang, Zhe-Zhi; Wang, Ying-Ming; Tsai, Inn-Ho

    2017-07-05

    Nine distinct venom serine proteases (vSPs) of Gloydius intermedius were studied by transcriptomic, sub-proteomic and phylogenetic analyses. Their complete amino acid sequences were deduced after Expression Sequence Tag (EST) analyses followed by cDNA cloning and sequencing. These vSPs appear to be paralogs and contain the catalytic triads and 1-4 potential N-glycosylation sites. Their relative expression levels evaluated by qPCR were grossly consistent with their EST hit-numbers. The major vSPs were purified by HPLC and their N-terminal sequences matched well to the deduced sequences, while fragments of the minor vSPs were detected by LC-MS/MS identification. Specific amidolytic activities of the fractions from HPLC and anion exchange separation were assayed using four chromogenic substrates, respectively. Molecular phylogenetic tree based on the sequences of these vSPs and their orthologs revealed six major clusters, one of them covered four lineages of plasminogen activator like vSPs. N-glycosylation patterns and variations for the vSPs are discussed. The high sequence similarities between G. intermedius vSPs and their respective orthologs from American pitvipers suggest that most of the isoforms evolved before Asian pitvipers migrated to the New World. Our results also indicate that the neurotoxic venoms contain more kallikrein-like vSPs and hypotensive components than the hemorrhagic venoms. Full sequences and expression levels of nine paralogous serine proteases (designated as GiSPs) of Gloydius intermedius venom have been studied. A kallikrein-like enzyme is most abundant and four isoforms homologous to venom plasminogen-activators are also expressed in this venom. Taken together, the present and previous data demonstrate that the neurotoxic G. intermedius venoms contain more hypotensive vSPs relative to other hemorrhagic pitviper venoms and the pitviper vSPs are highly versatile and diverse. Their structure-function relationships remain to be explored and

  1. Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.

    Science.gov (United States)

    Ho, Joanne M; Reynolds, Noah M; Rivera, Keith; Connolly, Morgan; Guo, Li-Tao; Ling, Jiqiang; Pappin, Darryl J; Church, George M; Söll, Dieter

    2016-02-19

    Expansion of the genetic code through engineering the translation machinery has greatly increased the chemical repertoire of the proteome. This has been accomplished mainly by read-through of UAG or UGA stop codons by the noncanonical aminoacyl-tRNA of choice. While stop codon read-through involves competition with the translation release factors, sense codon reassignment entails competition with a large pool of endogenous tRNAs. We used an engineered pyrrolysyl-tRNA synthetase to incorporate 3-iodo-l-phenylalanine (3-I-Phe) at a number of different serine and leucine codons in wild-type Escherichia coli. Quantitative LC-MS/MS measurements of amino acid incorporation yields carried out in a selected reaction monitoring experiment revealed that the 3-I-Phe abundance at the Ser208AGU codon in superfolder GFP was 65 ± 17%. This method also allowed quantification of other amino acids (serine, 33 ± 17%; phenylalanine, 1 ± 1%; threonine, 1 ± 1%) that compete with 3-I-Phe at both the aminoacylation and decoding steps of translation for incorporation at the same codon position. Reassignments of different serine (AGU, AGC, UCG) and leucine (CUG) codons with the matching tRNA(Pyl) anticodon variants were met with varying success, and our findings provide a guideline for the choice of sense codons to be reassigned. Our results indicate that the 3-iodo-l-phenylalanyl-tRNA synthetase (IFRS)/tRNA(Pyl) pair can efficiently outcompete the cellular machinery to reassign select sense codons in wild-type E. coli.

  2. Deficiency in l-Serine Deaminase Interferes with One-Carbon Metabolism and Cell Wall Synthesis in Escherichia coli K-12▿

    Science.gov (United States)

    Zhang, Xiao; El-Hajj, Ziad W.; Newman, Elaine

    2010-01-01

    Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes l-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S l-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of l-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C1 units and interferes with cell wall synthesis. We suggest that at high concentrations, l-serine decreases synthesis of UDP-N-acetylmuramate-l-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high l-serine is overcome in several ways: by a large concentration of l-alanine, by overproducing MurC together with a low concentration of l-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide. PMID:20729359

  3. Method of fabricating a catalytic structure

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  4. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion

    International Nuclear Information System (INIS)

    Pozan, Gulin Selda

    2012-01-01

    Highlights: ► α-Al 2 O 3 , obtained from Bohmite, as a support for enhancing of the activity. ► The support material for catalytic oxidation. ► The manganese state and oxygen species effect on the catalytic combustion reaction. - Abstract: The aim of this work was to study combustion of toluene (1000 ppm) over MnO 2 modified with different supports. α-Al 2 O 3 and γ-Al 2 O 3 obtained from Boehmite, γ-Al 2 O 3 (commercial), SiO 2 , TiO 2 and ZrO 2 were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO 2 was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO 2 /α-Al 2 O 3 (B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289 °C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity.

  5. Histone H3 Serine 28 Is Essential for Efficient Polycomb-Mediated Gene Repression in Drosophila

    Directory of Open Access Journals (Sweden)

    Philip Yuk Kwong Yung

    2015-06-01

    Full Text Available Trimethylation at histone H3K27 is central to the polycomb repression system. Juxtaposed to H3K27 is a widely conserved phosphorylatable serine residue (H3S28 whose function is unclear. To assess the importance of H3S28, we generated a Drosophila H3 histone mutant with a serine-to-alanine mutation at position 28. H3S28A mutant cells lack H3S28ph on mitotic chromosomes but support normal mitosis. Strikingly, all methylation states of H3K27 drop in H3S28A cells, leading to Hox gene derepression and to homeotic transformations in adult tissues. These defects are not caused by active H3K27 demethylation nor by the loss of H3S28ph. Biochemical assays show that H3S28A nucleosomes are a suboptimal substrate for PRC2, suggesting that the unphosphorylated state of serine 28 is important for assisting in the function of polycomb complexes. Collectively, our data indicate that the conserved H3S28 residue in metazoans has a role in supporting PRC2 catalysis.

  6. Inhibition of serine palmitoyltransferase in vitro and long-chain base biosynthesis in intact Chinese hamster ovary cells by β-chloroalanine

    International Nuclear Information System (INIS)

    Medlock, K.A.; Merrill, A.H. Jr.

    1988-01-01

    The effects of β-chloroalanine (β-Cl-alanine) on the serine palmitoyltransferase activity and the de novo biosynthesis of sphinganine and sphingenine were investigated in vitro with rat liver microsomes and in vivo with intact Chinese hamster ovary (CHO) cells. The inhibition in vitro was rapid, irreversible, and concentration and time dependent and apparently involved the active site because inactivation only occurred with β-Cl-L-alanine and was blocked by L-serine. These are characteristics of mechanism-based (suicide) inhibition. Serine palmitoyltransferase (SPT) was also inhibited when intact CHO cells were incubated with β-Cl-alanine and this treatment inhibited [ 14 C]serine incorporation into long-chain bases by intact cells. The concentration dependence of the loss of SPT activity and of long-chain base synthesis was identical. The effects of β-Cl-alanine appeared to occur with little perturbation of other cell functions: the cells exhibited no loss in cell viability, [ 14 C]serine uptake was not blocked, total lipid biosynthesis from [ 14 C]acetic acid was not decreased (nor was the appearance of radiolabel in cholesterol and phosphatidylcholine), and [ 3 H]thymidine incorporation into DNA was not affected. There appeared to be little effect on protein synthesis based on the incorporation of [ 3 H]leucine, which was only decreased by 14%. Although β-Cl-L-alanine is known to inhibit other pyridoxal 5'-phosphate dependent enzymes, alanine and aspartate transaminases were not inhibited under these conditions. These results establish the close association between the activity of serine palmitoyltransferase and the cellular rate of long-chain base formation and indicate that β-Cl-alanine and other mechanism-based inhibitors might be useful to study alterations in cellular long-chain base synthesis

  7. Characterization of the Usage of the Serine Metabolic Network in Human Cancer

    Directory of Open Access Journals (Sweden)

    Mahya Mehrmohamadi

    2014-11-01

    Full Text Available The serine, glycine, one-carbon (SGOC metabolic network is implicated in cancer pathogenesis, but its general functions are unknown. We carried out a computational reconstruction of the SGOC network and then characterized its expression across thousands of cancer tissues. Pathways including methylation and redox metabolism exhibited heterogeneous expression indicating a strong context dependency of their usage in tumors. From an analysis of coexpression, simultaneous up- or downregulation of nucleotide synthesis, NADPH, and glutathione synthesis was found to be a common occurrence in all cancers. Finally, we developed a method to trace the metabolic fate of serine using stable isotopes, high-resolution mass spectrometry, and a mathematical model. Although the expression of single genes didn’t appear indicative of flux, the collective expression of several genes in a given pathway allowed for successful flux prediction. Altogether, these findings identify expansive and heterogeneous functions for the SGOC metabolic network in human cancer.

  8. Autocrine motility factor (neuroleukin, phosphohexose isomerase) induces cell movement through 12-lipoxygenase-dependent tyrosine phosphorylation and serine dephosphorylation events.

    Science.gov (United States)

    Timár, J; Tóth, S; Tóvári, J; Paku, S; Raz, A

    1999-01-01

    Autocrine motility factor (AMF) is one of the motility cytokines regulating tumor cell migration, therefore identification of the signaling pathway coupled with it has critical importance. Previous studies revealed several elements of this pathway predominated by lipoxygenase-PKC activations but the role for tyrosine kinases remained questionable. Motility cytokines frequently have mitogenic effect as well, producing activation of overlapping signaling pathways therefore we have used B16a melanoma cells as models where AMF has exclusive motility effect. Our studies revealed that in B16a cells AMF initiated rapid (1-5 min) activation of the protein tyrosine kinase (PTK) cascade inducing phosphorylation of 179, 125, 95 and 40/37 kD proteins which was mediated by upstream cyclo- and lipoxygenases. The phosphorylated proteins were localized to the cortical actin-stress fiber attachment zones in situ by confocal microscopy. On the other hand, AMF receptor activation induced significant decrease in overall serine-phosphorylation level of cellular proteins accompanied by serine phosphorylation of 200, 90, 78 and 65 kd proteins. The decrease in serine phosphorylation was independent of PTKs, PKC as well as cyclo- and lipoxygenases. However, AMF induced robust translocation of PKCalpha to the stress fibers and cortical actin suggesting a critical role for this kinase in the generation of the motility signal. Based on the significant decrease in serine phosphorylation after AMF stimulus in B16a cells we postulated the involvement of putative serine/threonine phosphatase(s) upstream lipoxygenase and activation of the protein tyrosine kinase cascade downstream cyclo- and lipoxygenase(s) in the previously identified autocrine motility signal.

  9. Establishment of recombinase polymerase amplification assay for five hemorrhagic fever-related viruses

    Directory of Open Access Journals (Sweden)

    Xue-feng CAO

    2017-08-01

    Full Text Available Objective To establish a one-step recombinase polymerase amplification (RPA method for pathogen screening and rapid detection in the field targeting for five hemorrhagic fever related viruses (Zaire ebola virus, Sudan ebola virus, Marburg virus, Lassa virus and Yellow fever virus. Methods The specific nucleic acid (NA fragments of each virus were selected as target genes by genome sequence analysis, and the primers and probes for RPA assays were designed according to the sequence. A series of diluted template genes were used for RPA detection to determine the sensitivity. The hemorrhagic fever-related viral nucleic acids were used for RPA detection to determine the specificity. The amplification experiments were carried out at different temperature ranging from 37℃ to 42℃ to validate the reaction temperature range. Results The RPA reaction systems of the five hemorrhagic fever viruses could effectively amplify the target genes, the sensitivities were between 1.5×102 and 1.5×103 copies. No cross reactions existed with the other hemorrhagic fever-related viral genes. Meanwhile, RPA assay could effectively amplify the target genes at 37-42℃. Conclusion The isothermal RPA assays of five hemorrhagic fever viruses are established, which may amply target genes fast and react at a wide temperature range, and be potentially useful for in field pathogens detection. DOI: 10.11855/j.issn.0577-7402.2017.06.09

  10. Analysis of L-serine-O-phosphate in cerebrospinal spinal fluid by derivatization-liquid chromatography/mass spectrometry.

    Science.gov (United States)

    McNaney, Colleen A; Benitex, Yulia; Luchetti, David; Labasi, Jeffrey M; Olah, Timothy V; Morgan, Daniel G; Drexler, Dieter M

    2014-05-01

    L-serine-O-phosphate (L-SOP), the precursor of L-serine, is a potent agonist against the group III metabotropic glutamate receptors (mGluRs) and, thus, is of interest as a potential biomarker for monitoring modulation of neurotransmitter release. So far, no reports are available on the analysis of L-SOP in cerebrospinal fluid (CSF). Here a novel method is presented to determine L-SOP levels in CSF employing precolumn derivatization with (5-N-succinimidoxy-5-oxopentyl)triphenylphosphonium bromide (SPTPP) coupled to liquid chromatography/mass spectrometry (derivatization-LC/MS, d-LC/MS). Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Recombinase Polymerase Amplification Assay for Rapid Diagnostics of Dengue Infection.

    Directory of Open Access Journals (Sweden)

    Ahmed Abd El Wahed

    Full Text Available Over 2.5 billion people are exposed to the risk of contracting dengue fever (DF. Early diagnosis of DF helps to diminish its burden on public health. Real-time reverse transcription polymerase amplification assays (RT-PCR are the standard method for molecular detection of the dengue virus (DENV. Real-time RT-PCR analysis is not suitable for on-site screening since mobile devices are large, expensive, and complex. In this study, two RT-recombinase polymerase amplification (RT-RPA assays were developed to detect DENV1-4.Using two quantitative RNA molecular standards, the analytical sensitivity of a RT-RPA targeting the 3´non-translated region of DENV1-4 was found to range from 14 (DENV4 to 241 (DENV1-3 RNA molecules detected. The assay was specific and did not cross detect other Flaviviruses. The RT-RPA assay was tested in a mobile laboratory combining magnetic-bead based total nucleic acid extraction and a portable detection device in Kedougou (Senegal and in Bangkok (Thailand. In Kedougou, the RT-RPA was operated at an ambient temperature of 38 °C with auxiliary electricity tapped from a motor vehicle and yielded a clinical sensitivity and specificity of 98% (n=31 and 100% (n=23, respectively. While in the field trial in Bangkok, the clinical sensitivity and specificity were 72% (n=90 and 100%(n=41, respectively.During the first 5 days of infection, the developed DENV1-4 RT-RPA assays constitute a suitable accurate and rapid assay for DENV diagnosis. Moreover, the use of a portable fluorescence-reading device broadens its application potential to the point-of-care for outbreak investigations.

  12. Fluorescently labeled inhibitors detect localized serine protease activities in Drosophila melanogaster pole cells, embryos, and ovarian egg chambers

    DEFF Research Database (Denmark)

    Jakobsen, Rasmus Kragh; Ono, S.; Powers, J. C.

    2005-01-01

    processes that they mediate. Until only recently, the tools to conveniently address the question of where and when serine proteases are active within complex tissues have been lacking. In order to detect spatially restricted serine protease activities in Drosophila embryos and ovaries we introduce...... activity localized to the oocyte-somatic follicle cell interface of the developing egg chamber. Our results suggest that this technique holds promise to identify new spatially restricted activities in adult Drosophila tissues and developing embryos....

  13. Site-specific recombination in the chicken genome using Flipase recombinase-mediated cassette exchange.

    Science.gov (United States)

    Lee, Hong Jo; Lee, Hyung Chul; Kim, Young Min; Hwang, Young Sun; Park, Young Hyun; Park, Tae Sub; Han, Jae Yong

    2016-02-01

    Targeted genome recombination has been applied in diverse research fields and has a wide range of possible applications. In particular, the discovery of specific loci in the genome that support robust and ubiquitous expression of integrated genes and the development of genome-editing technology have facilitated rapid advances in various scientific areas. In this study, we produced transgenic (TG) chickens that can induce recombinase-mediated gene cassette exchange (RMCE), one of the site-specific recombination technologies, and confirmed RMCE in TG chicken-derived cells. As a result, we established TG chicken lines that have, Flipase (Flp) recognition target (FRT) pairs in the chicken genome, mediated by piggyBac transposition. The transgene integration patterns were diverse in each TG chicken line, and the integration diversity resulted in diverse levels of expression of exogenous genes in each tissue of the TG chickens. In addition, the replaced gene cassette was expressed successfully and maintained by RMCE in the FRT predominant loci of TG chicken-derived cells. These results indicate that targeted genome recombination technology with RMCE could be adaptable to TG chicken models and that the technology would be applicable to specific gene regulation by cis-element insertion and customized expression of functional proteins at predicted levels without epigenetic influence. © FASEB.

  14. Cre recombinase activity is inhibited in vivo but not ex vivo by a mutation in the asymmetric spacer region of the distal loxP site.

    Science.gov (United States)

    Arguello, Tania; Moraes, Carlos T

    2015-11-01

    The cre/loxP recombination system is a valuable tool used to generate tissue specific genomic rearrangements in mouse models. The deletion of a region of interest flanked by two loxP sites is accomplished by the recombinase (cre) enzyme, which binds to the inverted repeat segments of two loxP sites and recognition of a conserved TA sequence in the asymmetric central spacer region "ATAACTTCGTATA -NNNTANNN-TATACGAAGTTAT. In vivo, we found that a single T to C mutation at position 4 of the central spacer region in the distal (3') loxP site, completely inhibited the recombination reaction in two conditional mouse models. These mice were generated using a mitochondrial methionyl-tRNA formyltransferase (Mtfmt) gene targeted construct and cre transgene under the control of tissue-specific promoters: calcium/calmodulin-dependent kinase II alpha (Camk2a-cre) and myosin light polypeptide 1 (Myl1-cre). Surprisingly, transient transfection of a plasmid expressing cre in dermal fibroblasts derived from the same mutant floxed Mtfmt((loxP/loxP)) mice line, successfully deleted the region of interest. This study demonstrates the sequence specificity required in vivo, the possibility of bypassing this limitation by expressing high levels of cre recombinase ex vivo and raises concerns related to the quality control of large scale production of gene targeted constructs and mice. genesis 53:695-700, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...... pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending......, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity...

  16. Mechanisms of proton relay and product release by Class A β-lactamase at ultrahigh resolution

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Eric M. [Department of Molecular Medicine, University of South Florida College of Medicine, Tampa FL USA; Lethbridge, Kathryn G. [Department of Molecular Medicine, University of South Florida College of Medicine, Tampa FL USA; Sanishvili, Ruslan [GMCA@APS, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, IL USA; Skiba, Joanna [Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Poland; Kowalski, Konrad [Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Poland; Chen, Yu [Department of Molecular Medicine, University of South Florida College of Medicine, Tampa FL USA

    2017-11-20

    The beta-lactam antibiotics inhibit penicillin-binding proteins (PBPs) by forming a stable, covalent, acyl-enzyme complex. During the evolution from PBPs to Class A beta-lactamases, the beta-lactamases acquired Glu166 to activate a catalytic water and cleave the acyl-enzyme bond. Here we present three product complex crystal structures of CTX-M-14 Class A beta-lactamase with a ruthenocene-conjugated penicillin-a 0.85 angstrom resolution structure of E166A mutant complexed with the penilloate product, a 1.30 angstrom resolution complex structure of the same mutant with the penicilloate product, and a 1.18 angstrom resolution complex structure of S70G mutant with a penicilloate product epimer-shedding light on the catalytic mechanisms and product inhibition of PBPs and Class A beta-lactamases. The E166A-penilloate complex captured the hydrogen bonding network following the protonation of the leaving group and, for the first time, unambiguously show that the ring nitrogen donates a proton to Ser130, which in turn donates a proton to Lys73. These observations indicate that in the absence of Glu166, the equivalent lysine would be neutral in PBPs and therefore capable of serving as the general base to activate the catalytic serine. Together with previous results, this structure suggests a common proton relay network shared by Class A beta-lactamases and PBPs, from the catalytic serine to the lysine, and ultimately to the ring nitrogen. Additionally, the E166A-penicilloate complex reveals previously unseen conformational changes of key catalytic residues during the release of the product, and is the first structure to capture the hydrolyzed product in the presence of an unmutated catalytic serine.

  17. Engineering of the Lactococcus lactis serine proteinase by construction of hybrid enzymes

    NARCIS (Netherlands)

    Boerrigter, Ingrid J.; Buist, Girbe; Haandrikman, Alfred J.; Nijhuis, Monique; Reuver, Marjon B. de; Siezen, Roland J.; Venema, Gerhardus; Vos, Willem M. de; Kok, Jan

    Plasmids containing wild-type and hybrid proteinase genes were constructed from DNA fragments of the prtP genes of Lactococcus lactis strains Wg2 and SK11. These plasmids were introduced into the plasmid-free strain L. lactis MG1363. The serine proteinases produced by these L. lactis strains were

  18. Single residue mutation in active site of serine acetyltransferase isoform 3 from Entamoeba histolytica assists in partial regaining of feedback inhibition by cysteine.

    Directory of Open Access Journals (Sweden)

    Sudhir Kumar

    Full Text Available The cysteine biosynthetic pathway is essential for survival of the protist pathogen Entamoeba histolytica, and functions by producing cysteine for countering oxidative attack during infection in human hosts. Serine acetyltransferase (SAT and O-acetylserine sulfhydrylase (OASS are involved in cysteine biosynthesis and are present in three isoforms each. While EhSAT1 and EhSAT2 are feedback inhibited by end product cysteine, EhSAT3 is nearly insensitive to such inhibition. The active site residues of EhSAT1 and of EhSAT3 are identical except for position 208, which is a histidine residue in EhSAT1 and a serine residue in EhSAT3. A combination of comparative modeling, multiple molecular dynamics simulations and free energy calculation studies showed a difference in binding energies of native EhSAT3 and of a S208H-EhSAT3 mutant for cysteine. Mutants have also been generated in vitro, replacing serine with histidine at position 208 in EhSAT3 and replacing histidine 208 with serine in EhSAT1. These mutants showed decreased affinity for substrate serine, as indicated by K(m, compared to the native enzymes. Inhibition kinetics in the presence of physiological concentrations of serine show that IC50 of EhSAT1 increases by about 18 folds from 9.59 µM for native to 169.88 µM for H208S-EhSAT1 mutant. Similar measurements with EhSAT3 confirm it to be insensitive to cysteine inhibition while its mutant (S208H-EhSAT3 shows a gain of cysteine inhibition by 36% and the IC50 of 3.5 mM. Histidine 208 appears to be one of the important residues that distinguish the serine substrate from the cysteine inhibitor.

  19. Identification of serine 348 on the apelin receptor as a novel regulatory phosphorylation site in apelin-13-induced G protein-independent biased signaling.

    Science.gov (United States)

    Chen, Xiaoyu; Bai, Bo; Tian, Yanjun; Du, Hui; Chen, Jing

    2014-11-07

    Phosphorylation plays vital roles in the regulation of G protein-coupled receptor (GPCR) functions. The apelin and apelin receptor (APJ) system is involved in the regulation of cardiovascular function and central control of body homeostasis. Here, using tandem mass spectrometry, we first identified phosphorylated serine residues in the C terminus of APJ. To determine the role of phosphorylation sites in APJ-mediated G protein-dependent and -independent signaling and function, we induced a mutation in the C-terminal serine residues and examined their effects on the interaction between APJ with G protein or GRK/β-arrestin and their downstream signaling. Mutation of serine 348 led to an elimination of both GRK and β-arrestin recruitment to APJ induced by apelin-13. Moreover, APJ internalization and G protein-independent ERK signaling were also abolished by point mutation at serine 348. In contrast, this mutant at serine residues had no demonstrable impact on apelin-13-induced G protein activation and its intracellular signaling. These findings suggest that mutation of serine 348 resulted in inactive GRK/β-arrestin. However, there was no change in the active G protein thus, APJ conformation was biased. These results provide important information on the molecular interplay and impact of the APJ function, which may be extrapolated to design novel drugs for cardiac hypertrophy based on this biased signal pathway. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  1. The Occurrence of Type S1A Serine Proteases in Sponge and Jellyfish

    Science.gov (United States)

    Rojas, Ana; Doolittle, Russell F.

    2003-01-01

    Although serine proteases are found in all kinds of cellular organisms and many viruses, the classic "chymotrypsin family" (Group S1A by th e 1998 Barrett nomenclature) has an unusual phylogenetic distribution , being especially common in animals, entirely absent from plants and protists, and rare among fungi. The distribution in Bacteria is larg ely restricted to the genus Streptomyces, although a few isolated occ urrences in other bacteria have been reported. The family may be enti rely absent from Archaea. Although more than a thousand sequences have been reported for enzymes of this type from animals, none of them ha ve been from early diverging phyla like Porifera or Cnidaria, We now report the existence of Group SlA serine proteases in a sponge (phylu m Porifera) and a jellyfish (phylum Cnidaria), making it safe to conc lude that all animal groups possess these enzymes.

  2. Kinetic and catalytic performance of a BI-porous composite material in catalytic cracking and isomerisation reactions

    KAUST Repository

    Al-Khattaf, S.

    2012-01-10

    Catalytic behaviour of pure zeolite ZSM-5 and a bi-porous composite material (BCM) were investigated in transformation of m-xylene, while zeolite HY and the bi-porous composite were used in the cracking of 1,3,5-triisopropylbenzene (TIPB). The micro/mesoporous material was used to understand the effect of the presence of mesopores on these reactions. Various characterisation techniques, that is, XRD, SEM, TGA, FT-IR and nitrogen sorption measurements were applied for complete characterisation of the catalysts. Catalytic tests using CREC riser simulator showed that the micro/mesoporous composite catalyst exhibited higher catalytic activity as compared with the conventional microporous ZSM-5 and HY zeolite for transformation of m-xylene and for the catalytic cracking of TIPB, respectively. The outstanding catalytic reactivity of m-xylene and TIPB molecules were mainly attributed to the easier access of active sites provided by the mesopores. Apparent activation energies for the disappearance of m-xylene and TIPB over all catalysts were found to decrease in the order: EBCM>EZSM-5 and EBCM>EHY, respectively. © 2012 Canadian Society for Chemical Engineering.

  3. Pathogenicity and proteome production of Isaria fumosorosea ...

    African Journals Online (AJOL)

    The predictions of catalytic triads (serine, histidine and asparagine) were also visualized in the peak level obtained in infra-red (IR) and H1 nuclear magnetic resonance (NMR) spectra. With this information it was suggested that, partial characterization of catalytic domain was predicted in the fungal isolates Ifr. Keywords: ...

  4. Isolation, expression and characterization of a novel dual serine protease inhibitor, OH-TCI, from king cobra venom.

    Science.gov (United States)

    He, Ying-Ying; Liu, Shu-Bai; Lee, Wen-Hui; Qian, Jin-Qiao; Zhang, Yun

    2008-10-01

    Snake venom Kunitz/BPTI members are good tools for understanding of structure-functional relationship between serine proteases and their inhibitors. A novel dual Kunitz/BPTI serine proteinase inhibitor named OH-TCI (trypsin- and chymotrypsin-dual inhibitor from Ophiophagus hannah) was isolated from king cobra venom by three chromatographic steps of gel filtration, trypsin affinity and reverse phase HPLC. OH-TCI is composed of 58 amino acid residues with a molecular mass of 6339Da. Successful expression of OH-TCI was performed as the maltose-binding fusion protein in E. coli DH5alpha. Much different from Oh11-1, the purified native and recombinant OH-TCI both had strong inhibitory activities against trypsin and chymotrypsin although the sequence identity (74.1%) between them is very high. The inhibitor constants (K(i)) of recombinant OH-TCI were 3.91 x 10(-7) and 8.46 x10(-8)M for trypsin and chymotrypsin, respectively. To our knowledge, it was the first report of Kunitz/BPTI serine proteinase inhibitor from snake venom that had equivalent trypsin and chymotrypsin inhibitory activities.

  5. Realizing Serine/Threonine Ligation: Scope and Limitations and Mechanistic Implication Thereof

    Directory of Open Access Journals (Sweden)

    Clarence T. T. Wong

    2014-05-01

    Full Text Available Serine/Threonine ligation (STL has emerged as an alternative tool for protein chemical synthesis, bioconjugations as well as macrocyclization of peptides of various sizes. Owning to the high abundance of Ser/Thr residues in natural peptides and proteins, STL is expected to find a wide range of applications in chemical biology research. Herein, we have fully investigated the compatibility of the serine/threonine ligation strategy for X-Ser/Thr ligation sites, where X is any of the 20 naturally occurring amino acids. Our studies have shown that 17 amino acids are suitable for ligation, while Asp, Glu, and Lys are not compatible. Among the working 17 C-terminal amino acids, the retarded reaction resulted from the bulky β-branched amino acid (Thr, Val and Ile is not seen under the current ligation condition. We have also investigated the chemoselectivity involving the amino group of the internal lysine which may compete with the N-terminal Ser/Thr for reaction with the C-terminal salicylaldehyde (SAL ester aldehyde group. The result suggested that the free internal amino group does not adversely slow down the ligation rate.

  6. Catalytic modification of cellulose and hemicellulose - Sugarefine

    Energy Technology Data Exchange (ETDEWEB)

    Repo, T. [Helsinki Univ. (Finland),Laboratory of Inorganic Chemistry], email: timo.repo@helsinki.fi

    2012-07-01

    The main goal of the project is to develop catalytic methods for the modification of lignocellulose-based saccharides in the biorefineries. The products of these reactions could be used for example as biofuel components, raw materials for the chemical industry, solvents and precursors for biopolymers. The catalyst development aims at creating efficient, selective and green catalytic methods for profitable use in biorefineries. The project is divided in three work packages: In WP1 (Catalytic dehydration of cellulose) the aim is at developing non-toxic, efficient methods for the catalytic dehydration of cellulose the target molecule being here 5-hydroxymethylfurfural (5-HMF). 5-HMF is an interesting platform chemical for the production of fuel additives, solvents and polymers. In WP2 (Catalytic reduction), the objective of the catalytic reduction studies is to produce commercially interesting monofunctional chemicals, such as 1-butanol or 2-methyltetrahydrofuran (2-MeTHF). In WP3 (Catalytic oxidation), the research focuses on developing a green and efficient oxidation method for producing acids. Whereas acetic and formic acids are bulk chemicals, diacids such as glucaric and xylaric acids are valuable specialty chemicals for detergent, polymer and food production.

  7. Promotion of Homologous Recombination and Genomic Stability byRAD51AP1 via RAD51 Recombinase Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Claudia; Dray, Eloise; Groesser, Torsten; San Filippo,Joseph; Shi, Idina; Collins, David W.; Tsai, Miaw-Sheue; Williams,Gareth; Rydberg, Bjorn; Sung, Patrick; Schild, David

    2007-04-11

    Homologous recombination (HR) repairs chromosome damage and is indispensable for tumor suppression in humans. RAD51 mediates the DNA strand pairing step in HR. RAD51AP1 (RAD51 Associated Protein 1) is a RAD51-interacting protein whose function has remained elusive. Knockdown of RAD51AP1 in human cells by RNA interference engenders sensitivity to different types of genotoxic stress. Moreover, RAD51AP1-depleted cells are impaired for the recombinational repair of a DNA double-strand break and exhibit chromatid breaks both spontaneously and upon DNA damaging treatment. Purified RAD51AP1 binds dsDNA and RAD51, and it greatly stimulates the RAD51-mediated D-loop reaction. Biochemical and cytological results show that RAD51AP1 functions at a step subsequent to the assembly of the RAD51-ssDNA nucleoprotein filament. Our findings provide the first evidence that RAD51AP1 helps maintain genomic integrity via RAD51 recombinase enhancement.

  8. Expression and Characterization of Coprothermobacter proteolyticus Alkaline Serine Protease

    Directory of Open Access Journals (Sweden)

    Tanveer Majeed

    2013-01-01

    Full Text Available A putative protease gene (aprE from the thermophilic bacterium Coprothermobacter proteolyticus was cloned and expressed in Bacillus subtilis. The enzyme was determined to be a serine protease based on inhibition by PMSF. Biochemical characterization demonstrated that the enzyme had optimal activity under alkaline conditions (pH 8–10. In addition, the enzyme had an elevated optimum temperature (60°C. The protease was also stable in the presence of many surfactants and oxidant. Thus, the C. proteolyticus protease has potential applications in industries such as the detergent market.

  9. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is ...

  10. Detection systems for carbapenemase gene identification should include the SME serine carbapenemase.

    Science.gov (United States)

    Bush, Karen; Pannell, Megan; Lock, John L; Queenan, Anne Marie; Jorgensen, James H; Lee, Ryan M; Lewis, James S; Jarrett, Deidre

    2013-01-01

    Carbapenemase detection has become a major problem in hospitals that encounter outbreaks of infections caused by carbapenem-resistant Gram-negative bacteria. Rapid detection systems have been reported using multiplex PCR analyses and DNA microarray assays. Major carbapenemases that are detected by these systems include the KPC and OXA serine carbapenemases, and the IMP, VIM and NDM families of metallo-β-lactamases. However, increasing numbers of the SME serine carbapenemase are being reported from Serratia marcescens, especially from North and South America. These organisms differ from many of the other carbapenemase-producing pathogens in that they are generally susceptible to the expanded-spectrum cephalosporins ceftazidime and cefepime while retaining resistance to almost all other β-lactam antibiotics. Thus, multiplex PCR assays or DNA microarray testing of carbapenem-resistant S. marcescens isolates should include analyses for production of the SME carbapenemase. Confirmation of the presence of this enzyme may provide reassurance that oxyimino-cephalosporins can be considered for treatment of infections caused by these carbapenem-resistant pathogens. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  11. The structure of Plasmodium falciparum serine hydroxymethyltransferase reveals a novel redox switch that regulates its activities

    Energy Technology Data Exchange (ETDEWEB)

    Chitnumsub, Penchit; Ittarat, Wanwipa; Jaruwat, Aritsara; Noytanom, Krittikar [National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Amornwatcharapong, Watcharee [Mahidol University, Bangkok (Thailand); Pornthanakasem, Wichai [National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Chaiyen, Pimchai [Mahidol University, Bangkok (Thailand); Yuthavong, Yongyuth; Leartsakulpanich, Ubolsree [National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 (Thailand)

    2014-06-01

    The crystal structure of P. falciparum SHMT revealed snapshots of an intriguing disulfide/sulfhydryl switch controlling the functional activity. Plasmodium falciparum serine hydroxymethyltransferase (PfSHMT), an enzyme in the dTMP synthesis cycle, is an antimalarial target because inhibition of its expression or function has been shown to be lethal to the parasite. As the wild-type enzyme could not be crystallized, protein engineering of residues on the surface was carried out. The surface-engineered mutant PfSHMT-F292E was successfully crystallized and its structure was determined at 3 Å resolution. The PfSHMT-F292E structure is a good representation of PfSHMT as this variant revealed biochemical properties similar to those of the wild type. Although the overall structure of PfSHMT is similar to those of other SHMTs, unique features including the presence of two loops and a distinctive cysteine pair formed by Cys125 and Cys364 in the tetrahydrofolate (THF) substrate binding pocket were identified. These structural characteristics have never been reported in other SHMTs. Biochemical characterization and mutation analysis of these two residues confirm that they act as a disulfide/sulfhydryl switch to regulate the THF-dependent catalytic function of the enzyme. This redox switch is not present in the human enzyme, in which the cysteine pair is absent. The data reported here can be further exploited as a new strategy to specifically disrupt the activity of the parasite enzyme without interfering with the function of the human enzyme.

  12. The structure of Plasmodium falciparum serine hydroxymethyltransferase reveals a novel redox switch that regulates its activities

    International Nuclear Information System (INIS)

    Chitnumsub, Penchit; Ittarat, Wanwipa; Jaruwat, Aritsara; Noytanom, Krittikar; Amornwatcharapong, Watcharee; Pornthanakasem, Wichai; Chaiyen, Pimchai; Yuthavong, Yongyuth; Leartsakulpanich, Ubolsree

    2014-01-01

    The crystal structure of P. falciparum SHMT revealed snapshots of an intriguing disulfide/sulfhydryl switch controlling the functional activity. Plasmodium falciparum serine hydroxymethyltransferase (PfSHMT), an enzyme in the dTMP synthesis cycle, is an antimalarial target because inhibition of its expression or function has been shown to be lethal to the parasite. As the wild-type enzyme could not be crystallized, protein engineering of residues on the surface was carried out. The surface-engineered mutant PfSHMT-F292E was successfully crystallized and its structure was determined at 3 Å resolution. The PfSHMT-F292E structure is a good representation of PfSHMT as this variant revealed biochemical properties similar to those of the wild type. Although the overall structure of PfSHMT is similar to those of other SHMTs, unique features including the presence of two loops and a distinctive cysteine pair formed by Cys125 and Cys364 in the tetrahydrofolate (THF) substrate binding pocket were identified. These structural characteristics have never been reported in other SHMTs. Biochemical characterization and mutation analysis of these two residues confirm that they act as a disulfide/sulfhydryl switch to regulate the THF-dependent catalytic function of the enzyme. This redox switch is not present in the human enzyme, in which the cysteine pair is absent. The data reported here can be further exploited as a new strategy to specifically disrupt the activity of the parasite enzyme without interfering with the function of the human enzyme

  13. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  14. Role of allosteric switch residue histidine 195 in maintaining active-site asymmetry in presynaptic filaments of bacteriophage T4 UvsX recombinase.

    Science.gov (United States)

    Farb, Joshua N; Morrical, Scott W

    2009-01-16

    Recombinases of the highly conserved RecA/Rad51 family play central roles in homologous recombination and DNA double-stranded break repair. RecA/Rad51 enzymes form presynaptic filaments on single-stranded DNA (ssDNA) that are allosterically activated to catalyze ATPase and DNA strand-exchange reactions. Information is conveyed between DNA- and ATP-binding sites, in part, by a highly conserved glutamine residue (Gln194 in Escherichia coli RecA) that acts as an allosteric switch. The T4 UvsX protein is a divergent RecA ortholog and contains histidine (His195) in place of glutamine at the allosteric switch position. UvsX and RecA catalyze similar strand-exchange reactions, but differ in other properties. UvsX produces both ADP and AMP as products of its ssDNA-dependent ATPase activity--a property that is unique among characterized recombinases. Details of the kinetics of ssDNA-dependent ATP hydrolysis reactions indicate that UvsX-ssDNA presynaptic filaments are asymmetric and contain two classes of ATPase active sites: one that generates ADP, and another that generates AMP. Active-site asymmetry is reduced by mutations at the His195 position, since UvsX-H195Q and UvsX-H195A mutants both exhibit stronger ssDNA-dependent ATPase activity, with lower cooperativity and markedly higher ADP/AMP product ratios, than wild-type UvsX. Reduced active-site asymmetry correlates strongly with reduced ssDNA-binding affinity and DNA strand-exchange activity in both H195Q and H195A mutants. These and other results support a model in which allosteric switch residue His195 controls the formation of an asymmetric conformation of UvsX-ssDNA filaments that is active in DNA strand exchange. The implications of our findings for UvsX recombination functions, and for RecA functions in general, are discussed.

  15. MHC-I-induced apoptosis in human B-lymphoma cells is dependent on protein tyrosine and serine/threonine kinases

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Johansen, B

    1999-01-01

    B lymphoma cells, is dependent on protein tyrosine kinases and the phosphatidylinositol 3 (PI-3) kinase. Functional studies showed that MHC-I crosslinking induced almost complete inhibition of the spontaneous proliferation of the B lymphoma cells as early as 6 h post-crosslinking and apoptosis 24 h...... post-crosslinking. Preincubation with either protein tyrosine kinase or protein serine/threonine kinase inhibitors reduced the MHC-I-induced apoptosis to background levels, whereas inhibition of PI-3 kinase had no effect. These data demonstrate a pivotal role for protein tyrosine and serine...

  16. Studies of Environmental Risk Factors in Amyotrophic Lateral Sclerosis (ALS) and a Phase I Clinical Trial of L-Serine.

    Science.gov (United States)

    Bradley, Walter G; Miller, R X; Levine, T D; Stommel, E W; Cox, P A

    2018-01-01

    β-N-Methylamino-L-alanine (BMAA) has been linked to Guam ALS/PDC and shown to produce neurodegeneration in vitro and in vivo (Drosophila, mice, rats, primates). BMAA misincorporation into neuroproteins produces protein misfolding and is inhibited by L-serine. Case-control studies in Northern New England indicate that living near to water-bodies with cyanobacterial blooms increases the risk of developing amyotrophic lateral sclerosis (ALS). The distribution of addresses of ALS cases in New Hampshire, Vermont, and Florida was compared to that of controls. Areas of statistically significantly increased numbers of ALS cases were examined for sources of environmental toxins. A phase I trial of oral L-serine was performed in 20 ALS patients (0.5 to 15 g twice daily). Safety and tolerability were assessed by comparing the rate of deterioration with 430 matched placebo controls. The distribution of residential addresses of ALS cases in New England and Florida revealed many areas where the age- and gender-adjusted frequency of ALS was greater than expected (P ALS patients suggests that residential exposure to environmental pollutants may play an important role in the etiology of ALS. L-Serine in doses up to 15 g twice daily appears to be safe in patients with ALS. Exploratory studies of efficacy suggested that L-serine might slow disease progression. A phase II trial is planned.

  17. Skeletal muscle PLIN3 and PLIN5 are serine phosphorylated at rest and following lipolysis during adrenergic or contractile stimulation

    Science.gov (United States)

    MacPherson, Rebecca E K; Vandenboom, Rene; Roy, Brian D; Peters, Sandra J

    2013-01-01

    In adipose tissue, access of adipose triglyceride and hormone-sensitive lipases (ATGL and HSL) to the lipid droplet depends on PLIN1 phosphorylation, however, PLIN1 is not expressed in skeletal muscle and the phosphorylation of the expressed PLINs has yet to be investigated. Further, direct interactions between skeletal muscle PLINs and HSL are unknown. We investigated the isolated and combined effects of epinephrine and contraction on PLIN-to-lipase interactions as well as phosphorylation. Isolated rat solei were assigned to one of four 30 min in vitro conditions (25°C): (1) rest; (2) intermittent tetanic stimulation (60 Hz for 150 msec; train rate 20/min); (3) 5 nmol/L epinephrine; (4) intermittent tetanic stimulation and 5 nmol/L epinephrine. Immunoprecipitation of serine phosphorylated proteins followed by Western blotting for PLIN2, PLIN3, PLIN5, revealed that only PLIN2 is not phosphorylated under any of the experimental conditions. This is the first study to show that in whole rat skeletal muscle PLIN3 and PLIN5 are serine phosphorylated. The degree of serine phosphorylation remained unchanged following adrenergic and/or contractile stimulation. Oil red O staining of muscle sections for lipid content shows a significant decrease following each condition, confirming lipolysis occurred (P < 0.05). PLIN2, 3, and 5 all interact with HSL and ATGL, but these interactions were unchanged following treatments. Our results show that in skeletal muscle, PLIN2 is not serine phosphorylated at rest or with lipolytic stimulation and that while PLIN3, PLIN5 are serine phosphorylated at rest, the degree of phosphorylation does not change with lipolytic stimulation. PMID:24303154

  18. Identification of B cell recognized linear epitopes in a snake venom serine proteinase from the central American bushmaster Lachesis stenophrys.

    Science.gov (United States)

    Madrigal, M; Alape-Girón, A; Barboza-Arguedas, E; Aguilar-Ulloa, W; Flores-Díaz, M

    2017-12-15

    Snake venom serine proteinases are toxins that perturb hemostasis acting on proteins from the blood coagulation cascade, the fibrinolytic or the kallikrein-kinin system. Despite the relevance of these enzymes in envenomations by viper bites, the characterization of the antibody response to these toxins at the molecular level has not been previously addressed. In this work surface-located B cell recognized linear epitopes from a Lachesis stenophrys venom serine proteinase (UniProt accession number Q072L7) were predicted using an artificial neuronal network at the ABCpred server, the corresponding peptides were synthesized and their immunoreactivity was analyzed against a panel of experimental and therapeutic antivenoms. A molecular model of the L. stenophrys enzyme was built using as a template the structure of the D. acutus Dav-PA serine proteinase (Q9I8X1), which displays the highest degree of sequence similarity to the L. stenophrys enzyme among proteins of known 3D structure, and the surface-located epitopes were identified in the protein model using iCn3D. A total of 13 peptides corresponding to the surface exposed predicted epitopes from L. stenophrys serine proteinase were synthesized and, their reactivity with a rabbit antiserum against the recombinant enzyme and a panel of antivenoms was evaluated by a capture ELISA. Some of the epitopes recognized by monospecific and polyspecific antivenoms comprise sequences overlapping motifs conserved in viper venom serine proteinases. The identification and characterization of relevant epitopes recognized by B cells in snake venom toxins may provide valuable information for the preparation of immunogens that help in the production of improved therapeutic antivenoms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Phosphomimetic mutation of the mitotically phosphorylated serine 1880 compromises the interaction of the transmembrane nucleoporin gp210 with the nuclear pore complex

    International Nuclear Information System (INIS)

    Onischenko, Evgeny A.; Crafoord, Ellinor; Hallberg, Einar

    2007-01-01

    The nuclear pore complexes (NPCs) reversibly disassemble and reassemble during mitosis. Disassembly of the NPC is accompanied by phosphorylation of many nucleoporins although the function of this is not clear. It was previously shown that in the transmembrane nucleoporin gp210 a single serine residue at position 1880 is specifically phosphorylated during mitosis. Using amino acid substitution combined with live cell imaging, time-lapse microscopy and FRAP, we investigated the role of serine 1880 in binding of gp210 to the NPC in vivo. An alanine substitution mutant (S1880A) was significantly more dynamic at the NPC compared to the wild-type protein, suggesting that serine 1880 is important for binding of gp210 to the NPC. Moreover a glutamate substitution (S1880E) closely mimicking phosphorylated serine specifically interfered with incorporation of gp210 into the NPC and compromised its post-mitotic recruitment to the nuclear envelope of daughter nuclei. Our findings are consistent with the idea that mitotic phosphorylation acts to dissociate gp210 from the structural elements of the NPC

  20. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    were characterized by infrared, electronic, electron paramagnetic resonance ... The catalytic oxidation property of ruthenium(III) complexes were also ... cies at room temperature. ..... aldehyde part of Schiff base ligands, catalytic activ- ity of new ...

  1. Duplex recombinase polymerase amplification assays incorporating competitive internal controls for bacterial meningitis detection.

    Science.gov (United States)

    Higgins, Owen; Clancy, Eoin; Forrest, Matthew S; Piepenburg, Olaf; Cormican, Martin; Boo, Teck Wee; O'Sullivan, Nicola; McGuinness, Claire; Cafferty, Deirdre; Cunney, Robert; Smith, Terry J

    2018-04-01

    Recombinase polymerase amplification (RPA) is an isothermal nucleic acid amplification technology that provides rapid and robust infectious disease pathogen detection, ideal for point-of-care (POC) diagnostics in disease-prevalent low-resource countries. We have developed and evaluated three duplex RPA assays incorporating competitive internal controls for the detection of leading bacterial meningitis pathogens. Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae singleplex RPA assays were initially developed and evaluated, demonstrating 100% specificity with limits of detection of 4.1, 8.5 and 3.9 genome copies per reaction, respectively. Each assay was further developed into internally controlled duplex RPA assays via the incorporation of internal amplification control templates. Clinical performance of each internally controlled duplex RPA assay was evaluated by testing 64 archived PCR-positive clinical samples. Compared to real-time PCR, all duplex RPA assays demonstrated 100% diagnostic specificity, with diagnostic sensitivities of 100%, 86.3% and 100% for the S. pneumoniae, N. meningitidis and H. influenzae assays, respectively. This study details the first report of internally controlled duplex RPA assays for the detection of bacterial meningitis pathogens: S. pneumoniae, N. meningitidis and H. influenzae. We have successfully demonstrated the clinical diagnostic utility of each duplex RPA assay, introducing effective diagnostic technology for POC bacterial meningitis identification in disease-prevalent developing countries. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. A recombinase polymerase amplification assay for rapid detection of Crimean-Congo Haemorrhagic fever Virus infection.

    Directory of Open Access Journals (Sweden)

    Laura C Bonney

    2017-10-01

    Full Text Available Crimean-Congo Haemorrhagic fever Virus (CCHFV is a rapidly emerging vector-borne pathogen and the cause of a virulent haemorrhagic fever affecting large parts of Europe, Africa, the Middle East and Asia.An isothermal recombinase polymerase amplification (RPA assay was successfully developed for molecular detection of CCHFV. The assay showed rapid (under 10 minutes detection of viral extracts/synthetic virus RNA of all 7 S-segment clades of CCHFV, with high target specificity. The assay was shown to tolerate the presence of inhibitors in crude preparations of mock field samples, indicating that this assay may be suitable for use in the field with minimal sample preparation. The CCHFV RPA was successfully used to screen and detect CCHFV positives from a panel of clinical samples from Tajikistan.The assay is a rapid, isothermal, simple-to-perform molecular diagnostic, which can be performed on a light, portable real-time detection device. It is ideally placed therefore for use as a field-diagnostic or in-low resource laboratories, for monitoring of CCHF outbreaks at the point-of-need, such as in remote rural regions in affected countries.

  3. Mechanisms of proton relay and product release by Class A β-lactamase at ultrahigh resolution.

    Science.gov (United States)

    Lewandowski, Eric M; Lethbridge, Kathryn G; Sanishvili, Ruslan; Skiba, Joanna; Kowalski, Konrad; Chen, Yu

    2018-01-01

    The β-lactam antibiotics inhibit penicillin-binding proteins (PBPs) by forming a stable, covalent, acyl-enzyme complex. During the evolution from PBPs to Class A β-lactamases, the β-lactamases acquired Glu166 to activate a catalytic water and cleave the acyl-enzyme bond. Here we present three product complex crystal structures of CTX-M-14 Class A β-lactamase with a ruthenocene-conjugated penicillin-a 0.85 Å resolution structure of E166A mutant complexed with the penilloate product, a 1.30 Å resolution complex structure of the same mutant with the penicilloate product, and a 1.18 Å resolution complex structure of S70G mutant with a penicilloate product epimer-shedding light on the catalytic mechanisms and product inhibition of PBPs and Class A β-lactamases. The E166A-penilloate complex captured the hydrogen bonding network following the protonation of the leaving group and, for the first time, unambiguously show that the ring nitrogen donates a proton to Ser130, which in turn donates a proton to Lys73. These observations indicate that in the absence of Glu166, the equivalent lysine would be neutral in PBPs and therefore capable of serving as the general base to activate the catalytic serine. Together with previous results, this structure suggests a common proton relay network shared by Class A β-lactamases and PBPs, from the catalytic serine to the lysine, and ultimately to the ring nitrogen. Additionally, the E166A-penicilloate complex reveals previously unseen conformational changes of key catalytic residues during the release of the product, and is the first structure to capture the hydrolyzed product in the presence of an unmutated catalytic serine. Structural data are available in the PDB database under the accession numbers 5TOP, 5TOY, and 5VLE. © 2017 Federation of European Biochemical Societies.

  4. Isothermal Recombinase Polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection.

    Science.gov (United States)

    Rosser, A; Rollinson, D; Forrest, M; Webster, B L

    2015-09-04

    Accurate diagnosis of urogenital schistosomiasis is vital for surveillance/control programs. Amplification of schistosome DNA in urine by PCR is sensitive and specific but requires infrastructure, financial resources and skilled personnel, often not available in endemic areas. Recombinase Polymerase Amplification (RPA) is an isothermal DNA amplification/detection technology that is simple, rapid, portable and needs few resources. Here a Schistosoma haematobium RPA assay was developed and adapted so that DNA amplicons could be detected using oligochromatographic Lateral Flow (LF) strips. The assay successfully amplified S. haematobium DNA at 30-45 °C in 10 mins and was sensitive to a lower limit of 100 fg of DNA. The assay was also successful with the addition of crude urine, up to 5% of the total reaction volume. Cross amplification occurred with other schistosome species but not with other common urine microorganisms. The LF-RPA assay developed here can amplify and detect low levels of S. haematobium DNA. Reactions are rapid, require low temperatures and positive reactions are interpreted using lateral flow strips, reducing the need for infrastructure and resources. This together with an ability to withstand inhibitors within urine makes RPA a promising technology for further development as a molecular diagnostic tool for urogenital schistosomiasis.

  5. Redesign of the monomer–monomer interface of Cre recombinase yields an obligate heterotetrameric complex

    Science.gov (United States)

    Zhang, Chi; Myers, Connie A.; Qi, Zongtai; Mitra, Robi D.; Corbo, Joseph C.; Havranek, James J.

    2015-01-01

    Cre recombinase catalyzes the cleavage and religation of DNA at loxP sites. The enzyme is a homotetramer in its functional state, and the symmetry of the protein complex enforces a pseudo-palindromic symmetry upon the loxP sequence. The Cre-lox system is a powerful tool for many researchers. However, broader application of the system is limited by the fixed sequence preferences of Cre, which are determined by both the direct DNA contacts and the homotetrameric arrangement of the Cre monomers. As a first step toward achieving recombination at arbitrary asymmetric target sites, we have broken the symmetry of the Cre tetramer assembly. Using a combination of computational and rational protein design, we have engineered an alternative interface between Cre monomers that is functional yet incompatible with the wild-type interface. Wild-type and engineered interface halves can be mixed to create two distinct Cre mutants, neither of which are functional in isolation, but which can form an active heterotetramer when combined. When these distinct mutants possess different DNA specificities, control over complex assembly directly discourages recombination at unwanted half-site combinations, enhancing the specificity of asymmetric site recombination. The engineered Cre mutants exhibit this assembly pattern in a variety of contexts, including mammalian cells. PMID:26365240

  6. Catalytic exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H

    1973-09-01

    Recent achievements and problems in the development of exhaust control devices in the USA are reviewed. To meet the 1976 emission standards, catalytic systems for the oxidation of carbon monoxide and hydrocarbons and for the reduction of nitrogen oxides to nitrogen and water are needed. While oxidizing catalysts using platinum, palladium, copper, vanadium, and chromium appplied on alumina or ceramic materials are more or less effective in emission control, there are no catalytic devices for the reduction of nitrogen oxides with the required useful life of 25,000 to 50,000 miles as yet available. In the case of platinum catalysts on monolithic supports, the operating temperature of 650 to 750/sup 0/C as required for the oxidation process may cause inactivation of the catalysts and fusion of the support material. The oxidation of CO and hydrocarbons is inhibited by high concentrations of CO, nitric oxide, and hydrocarbons. The use of catalytic converters requires the use of lead-free or low-lead gasoline. The nitrogen oxides conversion efficiency is considerably influenced by the oxygen-to-CO ratio of the exhaust gas, which makes limitation of this ratio necessary.

  7. Enhancement of catalytic activity of enzymes by heating in anhydrous organic solvents: 3D structure of a modified serine proteinase at high resolution.

    Science.gov (United States)

    Sharma, S; Tyagi, R; Gupta, M N; Singh, T P

    2001-01-01

    For the first time, it is demonstrated that exposure of an enzyme to anhydrous organic solvents at optimized high temperature enhances its catalytic power through local changes at the binding region. Six enzymes, namely, proteinase K, wheat germ acid phosphatase, alpha-amylase, beta-glucosidase, chymotrypsin and trypsin were exposed to acetonitrile at 70 degrees C for three hr. The activities of these enzymes were found to be considerably enhanced. In order to understand the basis of this change in the activity of these enzymes, proteinase K was analyzed in detail using X-ray diffraction method. The overall structure of the enzyme was found to be similar to the native structure in aqueous environment. The hydrogen bonding system of the catalytic triad remained intact after the treatment. However, the water structure in the substrate binding site underwent some rearrangement as some of the water molecules were either displaced or completely absent. The most striking observation concerning the water structure was the complete deletion of the water molecule which occupied the position at the so-called oxyanion hole in the active site of the native enzyme. Three acetonitrile molecules were found in the present structure. All the acetonitrile molecules were located in the recognition site. Interlinked through water molecules, the sites occupied by acetonitrile molecules were independent of water molecules. The acetonitrile molecules are involved in extensive interactions with the protein atoms. The methyl group of one of the acetonitrile molecules (CCN1) interacts simultaneously with the hydrophobic side chains of Leu 96, Ile 107 and Leu 133. The development of such a hydrophobic environment at the recognition site introduced a striking conformation change in Ile 107 by rotating its side chain about C alpha-C beta bond by 180 degrees to bring about the delta-methyl group within the range of attractive van der Waals interactions with the methyl group of CCN1. A similar

  8. Efficacy of Glutamate Modulators in Tic Suppression: A Double-Blind, Randomized Control Trial of D-serine and Riluzole in Tourette Syndrome.

    Science.gov (United States)

    Lemmon, Monica E; Grados, Marco; Kline, Tina; Thompson, Carol B; Ali, Syed F; Singer, Harvey S

    2015-06-01

    It has been hypothesized that glutamatergic transmission may be altered in Tourette syndrome. In this study, we explored the efficacy of a glutamate agonist (D-serine) and antagonist (riluzole) as tic-suppressing agents in children with Tourette syndrome. We performed a parallel three-arm, 8-week, double-blind, randomized placebo-controlled treatment study in children with Tourette syndrome. Each child received 6 weeks of treatment with D-serine (maximum dose 30 mg/kg/day), riluzole (maximum dose 200 mg/day), or placebo, followed by a 2-week taper. The primary outcome measure was effective tic suppression as determined by the differences in the Yale Global Tic Severity Scale score; specifically, the total tic score and the combined score (total tic score + global impairment) between treatment arms after 6 weeks of treatment. Mann-Whitney U tests were performed to analyze differences between each group and the placebo group. Twenty-four patients (males = 21, ages 9-18) enrolled in the study; one patient dropped out before completion. Combined Yale Global Tic Severity Scale score and total tic scores improved in all groups. The 6-week mean percent improvement of the riluzole (n = 10), D-serine (n = 9), and placebo (n = 5) groups in the combined Yale Global Tic Severity Scale score were 43.7, 39.5, and 30.2 and for total tic scores were 38.0, 25.0, and 34.0, respectively. There were no significant differences in Yale Global Tic Severity Scale score or total tic score, respectively, between the riluzole and placebo (P = 0.35, 0.85) or D-serine and placebo (P = 0.50, 0.69) groups. Tics diminished by comparable percentages in the riluzole, D-serine, and placebo groups. These preliminary data suggest that D-serine and riluzole are not effective in tic suppression. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Catalytic Wittig and aza-Wittig reactions

    Directory of Open Access Journals (Sweden)

    Zhiqi Lao

    2016-11-01

    Full Text Available This review surveys the literature regarding the development of catalytic versions of the Wittig and aza-Wittig reactions. The first section summarizes how arsenic and tellurium-based catalytic Wittig-type reaction systems were developed first due to the relatively easy reduction of the oxides involved. This is followed by a presentation of the current state of the art regarding phosphine-catalyzed Wittig reactions. The second section covers the field of related catalytic aza-Wittig reactions that are catalyzed by both phosphine oxides and phosphines.

  10. Efficient catalytic combustion in integrated micropellistors

    International Nuclear Information System (INIS)

    Bársony, I; Ádám, M; Fürjes, P; Dücső, Cs; Lucklum, R; Hirschfelder, M; Kulinyi, S

    2009-01-01

    This paper analyses two of the key issues of the development of catalytic combustion-type sensors: the selection and production of active catalytic particles on the micropellistor surface as well as the realization of a reliable thermal conduction between heater element and catalytic surface, for the sensing of temperature increase produced by the combustion. The report also demonstrates that chemical sensor product development by a MEMS process is a continuous struggle for elimination of all uncertainties influencing reliability and sensitivity of the final product

  11. Adsorbent catalytic nanoparticles and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  12. Cloning and chromosomal assignment of a human cDNA encoding a T cell- and natural killer cell-specific trypsin-like serine protease

    International Nuclear Information System (INIS)

    Gershenfeld, H.K.; Hershberger, R.J.; Shows, T.B.; Weissman, I.L.

    1988-01-01

    A cDNA clone encoding a human T cell- and natural killer cell-specific serine protease was obtained by screening a phage λgt10 cDNA library from phytohemagglutinin-stimulated human peripheral blood lymphocytes with the mouse Hanukah factor cDNA clone. In an RNA blot-hybridization analysis, this human Hanukah factor cDNA hybridized with a 1.3-kilobase band in allogeneic-stimulated cytotoxic T cells and the Jurkat cell line, but this transcript was not detectable in normal muscle, liver, tonsil, or thymus. By dot-blot hybridization, this cDNA hybridized with RNA from three cytolytic T-cell clones and three noncytolytic T-cell clones grown in vitro as well as with purified CD16 + natural killer cells and CD3 + , CD16 - T-cell large granular lymphocytes from peripheral blood lymphocytes (CD = cluster designation). The nucleotide sequence of this cDNA clone encodes a predicted serine protease of 262 amino acids. The active enzyme is 71% and 77% similar to the mouse sequence at the amino acid and DNA level, respectively. The human and mouse sequences conserve the active site residues of serine proteases--the trypsin-specific Asp-189 and all 10 cysteine residues. The gene for the human Hanukah factor serine protease is located on human chromosome 5. The authors propose that this trypsin-like serine protease may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells

  13. Bacterial Serine/Threonine Protein Kinases in Host-Pathogen Interactions*

    Science.gov (United States)

    Canova, Marc J.; Molle, Virginie

    2014-01-01

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection. PMID:24554701

  14. Bacterial serine/threonine protein kinases in host-pathogen interactions.

    Science.gov (United States)

    Canova, Marc J; Molle, Virginie

    2014-04-04

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection.

  15. Catalytic pyrolysis of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Vail' eva, N A; Buyanov, R A

    1979-01-01

    Catalytic pyrolysis of petroleum fractions (undecane) was performed with the object of clarifying such questions as the mechanism of action of the catalyst, the concepts of activity and selectivity of the catalyst, the role of transport processes, the temperature ranges and limitations of the catalytic process, the effect of the catalyst on secondary processes, and others. Catalysts such as quartz, MgO, Al/sub 2/O/sub 3/, were used. Analysis of the experimental findings and the fact that the distribution of products is independent of the nature of the surface, demonstrate that the pyrolysis of hydrocarbons in the presence of catalysts is based on the heterogeneous-homogeneous radical-chain mechanism of action, and that the role of the catalysts reduces to increasing the concentration of free radicals. The concept of selectivity cannot be applied to catalysts here, since they do not affect the mechanism of the unfolding of the process of pyrolysis and their role consists solely in initiating the process. In catalytic pyrolysis the concepts of kinetic and diffusive domains of unfolding of the catalytic reaction do not apply, and only the outer surface of the catalyst is engaged, whereas the inner surface merely promotes deletorious secondary processes reducing the selectivity of the process and the activity of the catalyst. 6 references, 2 figures.

  16. Inhibition of Human Serine Racemase, an Emerging Target for Medicinal Chemistry

    Czech Academy of Sciences Publication Activity Database

    Jirásková-Vaníčková, Jana; Ettrich, Rüdiger; Vorlová, Barbora; Hoffman, Hillary Elizabeth; Lepšík, Martin; Jansa, Petr; Konvalinka, Jan

    2011-01-01

    Roč. 12, č. 7 (2011), s. 1037-1055 ISSN 1389-4501 R&D Projects: GA MŠk 1M0508; GA ČR GA203/08/0114 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z60870520 Keywords : amino acid analogs * L-erythro-3-hydroxyaspartate (L-EHA) * D-serine * neurodegenerative diseases * NMDA receptors * pyridoxal-5´-phosphate (PLP) Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.553, year: 2011

  17. Catalytic cracking models developed for predictive control purposes

    Directory of Open Access Journals (Sweden)

    Dag Ljungqvist

    1993-04-01

    Full Text Available The paper deals with state-space modeling issues in the context of model-predictive control, with application to catalytic cracking. Emphasis is placed on model establishment, verification and online adjustment. Both the Fluid Catalytic Cracking (FCC and the Residual Catalytic Cracking (RCC units are discussed. Catalytic cracking units involve complex interactive processes which are difficult to operate and control in an economically optimal way. The strong nonlinearities of the FCC process mean that the control calculation should be based on a nonlinear model with the relevant constraints included. However, the model can be simple compared to the complexity of the catalytic cracking plant. Model validity is ensured by a robust online model adjustment strategy. Model-predictive control schemes based on linear convolution models have been successfully applied to the supervisory dynamic control of catalytic cracking units, and the control can be further improved by the SSPC scheme.

  18. Effect of inlet cone pipe angle in catalytic converter

    Science.gov (United States)

    Amira Zainal, Nurul; Farhain Azmi, Ezzatul; Arifin Samad, Mohd

    2018-03-01

    The catalytic converter shows significant consequence to improve the performance of the vehicle start from it launched into production. Nowadays, the geometric design of the catalytic converter has become critical to avoid the behavior of backpressure in the exhaust system. The backpressure essentially reduced the performance of vehicles and increased the fuel consumption gradually. Consequently, this study aims to design various models of catalytic converter and optimize the volume of fluid flow inside the catalytic converter by changing the inlet cone pipe angles. Three different geometry angles of the inlet cone pipe of the catalytic converter were assessed. The model is simulated in Solidworks software to determine the optimum geometric design of the catalytic converter. The result showed that by decreasing the divergence angle of inlet cone pipe will upsurge the performance of the catalytic converter.

  19. Catalytic burners in larger boiler appliances

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik; Persson, Mikael (Catator AB, Lund (Sweden))

    2009-02-15

    This project focuses on the scale up of a Catator's catalytic burner technology to enable retrofit installation in existing boilers and the design of new innovative combinations of catalytic burners and boilers. Different design approaches are discussed and evaluated in the report and suggestions are made concerning scale-up. Preliminary test data, extracted from a large boiler installation are discussed together with an accurate analysis of technical possibilities following an optimization of the boiler design to benefit from the advantages of catalytic combustion. The experimental work was conducted in close collaboration with ICI Caldaie (ICI), located in Verona, Italy. ICI is a leading European boiler manufacturer in the effect segment ranging from about 20 kWt to several MWt. The study shows that it is possibly to scale up the burner technology and to maintain low emissions. The boilers used in the study were designed around conventional combustion and were consequently not optimized for implementation of catalytic burners. From previous experiences it stands clear that the furnace volume can be dramatically decreased when applying catalytic combustion. In flame combustion, this volume is normally dimensioned to avoid flame impingement on cold surfaces and to facilitate completion of the gas-phase reactions. The emissions of nitrogen oxides can be reduced by decreasing the residence time in the furnace. Even with the over-dimensioned furnace used in this study, we easily reached emission values close to 35 mg/kWh. The emissions of carbon monoxide and unburned hydrocarbons were negligible (less than 5 ppmv). It is possible to decrease the emissions of nitrogen oxides further by designing the furnace/boiler around the catalytic burner, as suggested in the report. Simultaneously, the size of the boiler installation can be reduced greatly, which also will result in material savings, i.e. the production cost can be reduced. It is suggested to optimize the

  20. Serine Protease Variants Encoded by Echis ocellatus Venom Gland cDNA: Cloning and Sequencing Analysis

    Directory of Open Access Journals (Sweden)

    S. S. Hasson

    2010-01-01

    Full Text Available Envenoming by Echis saw-scaled viper is the leading cause of death and morbidity in Africa due to snake bite. Despite its medical importance, there have been few investigations into the toxin composition of the venom of this viper. Here, we report the cloning of cDNA sequences encoding four groups or isoforms of the haemostasis-disruptive Serine protease proteins (SPs from the venom glands of Echis ocellatus. All these SP sequences encoded the cysteine residues scaffold that form the 6-disulphide bonds responsible for the characteristic tertiary structure of venom serine proteases. All the Echis ocellatus EoSP groups showed varying degrees of sequence similarity to published viper venom SPs. However, these groups also showed marked intercluster sequence conservation across them which were significantly different from that of previously published viper SPs. Because viper venom SPs exhibit a high degree of sequence similarity and yet exert profoundly different effects on the mammalian haemostatic system, no attempt was made to assign functionality to the new Echis ocellatus EoSPs on the basis of sequence alone. The extraordinary level of interspecific and intergeneric sequence conservation exhibited by the Echis ocellatus EoSPs and analogous serine proteases from other viper species leads us to speculate that antibodies to representative molecules should neutralise (that we will exploit, by epidermal DNA immunization the biological function of this important group of venom toxins in vipers that are distributed throughout Africa, the Middle East, and the Indian subcontinent.

  1. Concentric catalytic combustor

    Science.gov (United States)

    Bruck, Gerald J [Oviedo, FL; Laster, Walter R [Oviedo, FL

    2009-03-24

    A catalytic combustor (28) includes a tubular pressure boundary element (90) having a longitudinal flow axis (e.g., 56) separating a first portion (94) of a first fluid flow (e.g., 24) from a second portion (95) of the first fluid flow. The pressure boundary element includes a wall (96) having a plurality of separate longitudinally oriented flow paths (98) annularly disposed within the wall and conducting respective portions (100, 101) of a second fluid flow (e.g., 26) therethrough. A catalytic material (32) is disposed on a surface (e.g., 102, 103) of the pressure boundary element exposed to at least one of the first and second portions of the first fluid flow.

  2. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion.

    Science.gov (United States)

    Pozan, Gulin Selda

    2012-06-30

    The aim of this work was to study combustion of toluene (1000ppm) over MnO(2) modified with different supports. α-Al(2)O(3) and γ-Al(2)O(3) obtained from Boehmite, γ-Al(2)O(3) (commercial), SiO(2), TiO(2) and ZrO(2) were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO(2) was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO(2)/α-Al(2)O(3)(B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289°C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Isolation and identification of an extracellular subtilisin-like serine protease secreted by the bat pathogen Pseudogymnoascus destructans.

    Directory of Open Access Journals (Sweden)

    Evan L Pannkuk

    Full Text Available White nose syndrome (WNS is a cutaneous fungal disease of bats. WNS is responsible for unprecedented mortalities in North American cave bat populations. There have been few descriptions of enzyme activities that may function in WNS host/pathogen interactions, while no study has isolated and described secreted proteases. To address the hypothesis that Pseudogymnoascus destructans secretes extracellular proteases that function in wing necrosis during WNS infection, the object of this study was to culture P. destructans on various media, then isolate and structurally identify those proteases accumulated stably in the culture medium. We found a single dominant protease activity on minimal nutrient broth enriched with protein substrates, which was strongly inhibited by phenylmethylsulfonyl fluoride. This P. destructans serine protease (PdSP1 was isolated by preparative isoelectric focusing and concanavalin A lectin affinity chromatography. PdSP1 showed a molecular weight 27,900 (estimated by SDS-PAGE, broad pH optimum 6-8, and temperature optimum 60°C. Structural characterization of PdSP1 by MALDI-TOF MS, Orbitrap MS/MS, and Edman amino-terminal peptide sequencing matched it directly to a hypothetical protein accession from the sequenced P. destructans genome that is further identified as a MEROPS family S8A subtilisin-like serine peptidase. Two additional isoforms, PdSP2 and PdSP3, were identified in the P. destructans genome with 90% and 53% homology, respectively. P. destructans S8A serine proteases showed closer sequence conservation to P. pannorum and plant pathogenic fungi than to human pathogenic dermatophytes. Peptide-specific polyclonal antibodies developed from the PdSP1 sequence detected the protein in western blots. These subtilisin-like serine proteases are candidates for further functional studies in WNS host-pathogen interaction.

  4. Isolation and identification of an extracellular subtilisin-like serine protease secreted by the bat pathogen Pseudogymnoascus destructans.

    Science.gov (United States)

    Pannkuk, Evan L; Risch, Thomas S; Savary, Brett J

    2015-01-01

    White nose syndrome (WNS) is a cutaneous fungal disease of bats. WNS is responsible for unprecedented mortalities in North American cave bat populations. There have been few descriptions of enzyme activities that may function in WNS host/pathogen interactions, while no study has isolated and described secreted proteases. To address the hypothesis that Pseudogymnoascus destructans secretes extracellular proteases that function in wing necrosis during WNS infection, the object of this study was to culture P. destructans on various media, then isolate and structurally identify those proteases accumulated stably in the culture medium. We found a single dominant protease activity on minimal nutrient broth enriched with protein substrates, which was strongly inhibited by phenylmethylsulfonyl fluoride. This P. destructans serine protease (PdSP1) was isolated by preparative isoelectric focusing and concanavalin A lectin affinity chromatography. PdSP1 showed a molecular weight 27,900 (estimated by SDS-PAGE), broad pH optimum 6-8, and temperature optimum 60°C. Structural characterization of PdSP1 by MALDI-TOF MS, Orbitrap MS/MS, and Edman amino-terminal peptide sequencing matched it directly to a hypothetical protein accession from the sequenced P. destructans genome that is further identified as a MEROPS family S8A subtilisin-like serine peptidase. Two additional isoforms, PdSP2 and PdSP3, were identified in the P. destructans genome with 90% and 53% homology, respectively. P. destructans S8A serine proteases showed closer sequence conservation to P. pannorum and plant pathogenic fungi than to human pathogenic dermatophytes. Peptide-specific polyclonal antibodies developed from the PdSP1 sequence detected the protein in western blots. These subtilisin-like serine proteases are candidates for further functional studies in WNS host-pathogen interaction.

  5. Systematic Survey of Serine Hydrolase Activity in Mycobacterium tuberculosis Defines Changes Associated with Persistence

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Corrie; Anderson, Lindsey N.; Frando, Andrew; Sadler, Natalie C.; Brown, Robert W.; Smith, Richard D.; Wright, Aaron T.; Grundner, Christoph

    2016-02-01

    The transition between replication and non-replication underlies much of Mycobacterium tuberculosis (Mtb) pathogenicity, as non- or slowly replicating Mtb are responsible for persistence and poor treatment outcomes. Therapeutic targeting of non-replicating, persistent populations is a priority for tuberculosis treatment, but only few drug targets in non-replicating Mtb are currently known. Here, we directly measure the activity of the highly diverse and druggable serine hydrolases (SHs) during active replication and non-replication by activity-based proteomics. We predict serine hydrolase activity for 78 proteins, including 27 proteins with previously unknown function, and identify 37 SHs that remain active even in the absence of replication, providing a set of candidate persistence targets. Non-replication was associated with large shifts in the activity of the majority of SHs. These activity changes were largely independent of SH abundance, indicating extensive post-translational regulation. By probing a large cross-section of druggable Mtb enzyme space during replication and non-replication, we identify new SHs and suggest new persistence targets.

  6. Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites.

    Science.gov (United States)

    Zelanis, André; Huesgen, Pitter F; Oliveira, Ana Karina; Tashima, Alexandre K; Serrano, Solange M T; Overall, Christopher M

    2015-01-15

    Many snake venom toxins are serine proteases but their specific in vivo targets are mostly unknown. Various act on components of the coagulation cascade, and fibrinolytic and kallikrein-kinin systems to trigger various pathological effects observed in the envenomation. Despite showing high similarity in terms of primary structure snake venom serine proteinases (SVSPs) show exquisite specificity towards macromolecular substrates. Therefore, the characterization of their peptide bond specificity is important for understanding the active site preference associated with effective proteolysis as well as for the design of peptide substrates and inhibitors. Bothrops jararaca contains various SVSPs among which Bothrops protease A is a specific fibrinogenolytic agent and PA-BJ is a platelet-activating enzyme. In this study we used proteome derived peptide libraries in the Proteomic Identification of protease Cleavage Sites (PICS) approach to explore the peptide bond specificity of Bothrops protease A and PA-BJ in order to determine their individual peptide cleavage sequences. A total of 371 cleavage sites (208 for Bothrops protease A and 163 for PA-BJ) were detected and both proteinases displayed a clear preference for arginine at the P1 position. Moreover, the analysis of the specificity profiles of Bothrops protease A and PA-BJ revealed subtle differences in the preferences along P6-P6', despite a common yet unusual preference for Pro at P2. Taken together, these results map the subsite specificity of both SVSPs and shed light in the functional differences between these proteinases. Proteolysis is key to various pathological effects observed upon envenomation by viperid snakes. The use of the Proteomic Identification of protease Cleavage Sites (PICS) approach for the easy mapping of proteinase subsite preferences at both the prime- and non-prime sides concurrently gives rise to a fresh understanding of the interaction of the snake venom serine proteinases with peptide and

  7. Factors influencing Recombinase polymerase amplification (RPA) assay outcomes at point of care.

    Science.gov (United States)

    Lillis, Lorraine; Siverson, Joshua; Lee, Arthur; Cantera, Jason; Parker, Mathew; Piepenburg, Olaf; Lehman, Dara A; Boyle, David S

    2016-04-01

    Recombinase Polymerase Amplification (RPA) can be used to detect pathogen-specific DNA or RNA in under 20 min without the need for complex instrumentation. These properties enable its potential use in resource limited settings. However, there are concerns that deviations from the manufacturer's protocol and/or storage conditions could influence its performance in low resource settings. RPA amplification relies upon viscous crowding agents for optimal nucleic acid amplification, and thus an interval mixing step after 3-6 min of incubation is recommended to distribute amplicons and improve performance. In this study we used a HIV-1 RPA assay to evaluate the effects of this mixing step on assay performance. A lack of mixing led to a longer time to amplification and inferior detection signal, compromising the sensitivity of the assay. However lowering the assay volume from 50 μL to 5 μL showed similar sensitivity with or without mixing. We present the first peer-reviewed study that assesses long term stability of RPA reagents without a cold chain. Reagents stored at -20 °C, and 25 °C for up to 12 weeks were able to detect 10 HIV-1 DNA copies. Reagents stored at 45 °C for up to 3 weeks were able to detect 10 HIV-1 DNA copies, with reduced sensitivity only after >3 weeks at 45 °C. Together our results show that reducing reaction volumes bypassed the need for the mixing step and that RPA reagents were stable even when stored for 3 weeks at very high temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange*

    Science.gov (United States)

    Borgogno, María V.; Monti, Mariela R.; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E.; Pezza, Roberto J.

    2016-01-01

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3′ end of the initiating DNA strand have a small effect, whereas most mismatches near the 5′ end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. PMID:26709229

  9. Catalytic models developed through social work

    DEFF Research Database (Denmark)

    Jensen, Mogens

    2015-01-01

    of adolescents placed in out-of-home care and is characterised using three situated cases as empirical data. Afterwards the concept of catalytic processes is briefly presented and then applied in an analysis of pedagogical treatment in the three cases. The result is a different conceptualisation of the social......The article develops the concept of catalytic processes in relation to social work with adolescents in an attempt to both reach a more nuanced understanding of social work and at the same time to develop the concept of catalytic processes in psychology. The social work is pedagogical treatment...

  10. A New Bacillus licheniformis Mutant Strain Producing Serine Protease Efficient for Hvdrolvqis of Sov Meal Proteins.

    Science.gov (United States)

    Kostyleva, E V; Sereda, A S; Velikoretskaya, I A; Nefedova, L I; Sharikov, A Yu; Tsurikova, N V; Lobanov, N S; Semenova, M V; Sinitsyn, A P

    2016-07-01

    Induced mutagenesis with y-irradiation of the industrial strain Bacillus licheniformis-60 VKM B-2366,D was used to obtain a new highly active producer of an extracellular serine protease, Bacillus licheni- formis7 145. Samples of dry.concentrated preparations of serine protease produced by the original and mutant strains were obtained, and identity of their protein composition was'established. Alkaline serine protease sub- tilisin DY was the main component of the preparations. The biochemical and physicochemical properties of the Protolkheterm-145 enzyme preparation obtained from the mutant strain were studied. It exhibited pro- teolytic activity (1.5 times higher than the preparation from the initial strain) within broad ranges of pH (5- 11) and temperature (30-70'C).-Efficient hydrolysis of extruded soy meal protein at high concentrations (2 to 50%) in-the reaction mixture was.the main advantage of the Protolikheterm 145 preparation. Compared to,. the preparation obtained using the initial strain, the new preparation with increased proteolytic-activity pro- vided for more complete hydrolysis of the main non-nutritious soy,proteins.(glycinin and 0-conglycinin) with the yield of soluble protein increased by 19-28%, which decreased the cost of bioconversion of the protein- aceous material and indicated promise of the new preparation in resource-saving technologies for processing soy meals and cakes.

  11. Differential gene expression for suicide-substrate serine proteinase inhibitors (serpins) in vegetative and grain tissues of barley

    DEFF Research Database (Denmark)

    Roberts, T.H.; Marttila, S.; Rasmussen, S.K.

    2003-01-01

    centres in vitro, were ubiquitous at low levels, but the protein could not be detected. EST analysis showed that expression of genes for serpins with BSZx-type reactive centres in vegetative tissues is widespread in the plant kingdom, suggesting a common regulatory function. For BSZ4 and BSZ7, expression...... their irreversible inhibitory mechanism in the inhibition of exogenous proteinases capable of breaking down seed storage proteins, and in the defence of specific cell types in vegetative tissues.......Proteins of the serpin superfamily (similar to43 kDa) from mature cereal grains are in vitro suicide-substrate inhibitors of specific mammalian serine proteinases of the chymotrypsin family. However, unlike the 'standard-mechanism' serine proteinase inhibitors (

  12. Imidazopyridine and Pyrazolopiperidine Derivatives as Novel Inhibitors of Serine Palmitoyl Transferase.

    Science.gov (United States)

    Genin, Michael J; Gonzalez Valcarcel, Isabel C; Holloway, William G; Lamar, Jason; Mosior, Marian; Hawkins, Eric; Estridge, Thomas; Weidner, Jeffrey; Seng, Thomas; Yurek, David; Adams, Lisa A; Weller, Jennifer; Reynolds, Vincent L; Brozinick, Joseph T

    2016-06-23

    To develop novel treatments for type 2 diabetes and dyslipidemia, we pursued inhibitors of serine palmitoyl transferase (SPT). To this end compounds 1 and 2 were developed as potent SPT inhibitors in vitro. 1 and 2 reduce plasma ceramides in rodents, have a slight trend toward enhanced insulin sensitization in DIO mice, and reduce triglycerides and raise HDL in cholesterol/cholic acid fed rats. Unfortunately these molecules cause a gastric enteropathy after chronic dosing in rats.

  13. Evidence for possible involvement of an elastolytic serine protease in aspergillosis.

    OpenAIRE

    Kolattukudy, P E; Lee, J D; Rogers, L M; Zimmerman, P; Ceselski, S; Fox, B; Stein, B; Copelan, E A

    1993-01-01

    A number of isolates of Aspergillus fumigatus obtained from the hospital environment produced extracellular elastolytic activity. This activity was found to be catalyzed by a single 33-kDa protein which was purified and characterized to be a serine protease. A. fumigatus, when grown on the insoluble structural material obtained from murine and bovine lung, produced the same extracellular 33-kDa elastolytic protease, indicating that this enzyme is likely to be produced when the organism infect...

  14. L-serine capped ZnS:Mn nanocrystals for plant cell biological studies and as a growth enhancing agent for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae)

    Science.gov (United States)

    Augustine, M. Sajimol; Mathew, Lizzy; Alex, Roselin; Deepa, G. D.; Jayalekshmi, S.

    2014-01-01

    In the present work, the prospects of ZnS:Mn nanocrystals capped with L- serine, a bio-compatible amino acid, synthesized by wet chemical route, as efficient fluorescent probes for plant cell biological studies have been investigated. The present synthesis route using bio-compatible material is a low cost and easy to control method. The colloidal stability of the capped nano crystals is very good as they remain stable without settling down for long time. It is observed that L- serine significantly modifies the structural and optical characteristics of the ZnS:Mn nanocrystals and hence is suitable as a bio-compatible capping agent. The structural properties of L- serine capped nanocrystals were investigated by XRD technique. The size of the L- serine capped ZnS:Mn nanocrystals is found to be around 2 nm . The optical characterization of the nanocrystals was carried out on the basis of photoluminescence (PL) spectroscopic studies. The intense photoluminescence emission observed around 597nm for L-serine capped ZnS:Mn offers high prospects of applications in bio-imaging fields. The unique optical properties of nanoparticles make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations. In the present study, L-serine capped ZnS:Mn nanocrystals were used as a staining dye in fluorescent microscope for observing cell division, cell structure etc. These nanocrystals were also incorporated into the culture media along with the normal auxin- cytokinin hormone combinations in Murashige and Skoog (MS) medium for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae), an Ayurvedic medicine. The results suggest that L-serine capped ZnS:Mn nanocrystals can act as efficient enhancers towards quick callusing and shoot proliferation.

  15. L-serine capped ZnS:Mn nanocrystals for plant cell biological studies and as a growth enhancing agent for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae)

    International Nuclear Information System (INIS)

    Augustine, M. Sajimol; Mathew, Lizzy; Alex, Roselin; Deepa, G. D.; Jayalekshmi, S.

    2014-01-01

    In the present work, the prospects of ZnS:Mn nanocrystals capped with L- serine, a bio-compatible amino acid, synthesized by wet chemical route, as efficient fluorescent probes for plant cell biological studies have been investigated. The present synthesis route using bio-compatible material is a low cost and easy to control method. The colloidal stability of the capped nano crystals is very good as they remain stable without settling down for long time. It is observed that L- serine significantly modifies the structural and optical characteristics of the ZnS:Mn nanocrystals and hence is suitable as a bio-compatible capping agent. The structural properties of L- serine capped nanocrystals were investigated by XRD technique. The size of the L- serine capped ZnS:Mn nanocrystals is found to be around 2 nm . The optical characterization of the nanocrystals was carried out on the basis of photoluminescence (PL) spectroscopic studies. The intense photoluminescence emission observed around 597nm for L-serine capped ZnS:Mn offers high prospects of applications in bio-imaging fields. The unique optical properties of nanoparticles make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations. In the present study, L-serine capped ZnS:Mn nanocrystals were used as a staining dye in fluorescent microscope for observing cell division, cell structure etc. These nanocrystals were also incorporated into the culture media along with the normal auxin- cytokinin hormone combinations in Murashige and Skoog (MS) medium for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae), an Ayurvedic medicine. The results suggest that L-serine capped ZnS:Mn nanocrystals can act as efficient enhancers towards quick callusing and shoot proliferation

  16. L-serine capped ZnS:Mn nanocrystals for plant cell biological studies and as a growth enhancing agent for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, M. Sajimol, E-mail: sajimollazar@gmail.com [Department of Physics, St.Teresa' s College , Kochi-11, Kerala (India); Mathew, Lizzy [Department of Botany, St.Teresa' s College , Kochi-11, Kerala (India); Alex, Roselin [Department of Biotechnology, Cochin University of Science and Technology, Kochi-22 (India); Deepa, G. D. [NCAAH, Cochin University of Science and Technology,Kochi-22, Kerala (India); Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in [Department of Physics, Cochin University of Science and Technology, Kochi-22 (India)

    2014-01-28

    In the present work, the prospects of ZnS:Mn nanocrystals capped with L- serine, a bio-compatible amino acid, synthesized by wet chemical route, as efficient fluorescent probes for plant cell biological studies have been investigated. The present synthesis route using bio-compatible material is a low cost and easy to control method. The colloidal stability of the capped nano crystals is very good as they remain stable without settling down for long time. It is observed that L- serine significantly modifies the structural and optical characteristics of the ZnS:Mn nanocrystals and hence is suitable as a bio-compatible capping agent. The structural properties of L- serine capped nanocrystals were investigated by XRD technique. The size of the L- serine capped ZnS:Mn nanocrystals is found to be around 2 nm . The optical characterization of the nanocrystals was carried out on the basis of photoluminescence (PL) spectroscopic studies. The intense photoluminescence emission observed around 597nm for L-serine capped ZnS:Mn offers high prospects of applications in bio-imaging fields. The unique optical properties of nanoparticles make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations. In the present study, L-serine capped ZnS:Mn nanocrystals were used as a staining dye in fluorescent microscope for observing cell division, cell structure etc. These nanocrystals were also incorporated into the culture media along with the normal auxin- cytokinin hormone combinations in Murashige and Skoog (MS) medium for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae), an Ayurvedic medicine. The results suggest that L-serine capped ZnS:Mn nanocrystals can act as efficient enhancers towards quick callusing and shoot proliferation.

  17. HOMOLOGY MODELING AND PROTEIN ENGINEERING STRATEGY OF SUBTILASES, THE FAMILY OF SUBTILISIN-LIKE SERINE PROTEINASES

    NARCIS (Netherlands)

    SIEZEN, RJ; DEVOS, WM; LEUNISSEN, JAM

    1991-01-01

    Subtilases are members of the family of subtilisin-like serine proteases. Presently, > 50 subtilases are known, > 40 of which with their complete amino acid sequences. We have compared these sequences and the available three-dimensional structures (subtilisin BPN', subtilisin Carlsberg, thermitase

  18. Catalytically favorable surface patterns in Pt-Au nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-01-01

    Motivated by recent experimental demonstrations of novel PtAu nanoparticles with highly enhanced catalytic properties, we present a systematic theoretical study that explores principal catalytic indicators as a function of the particle size and composition. We find that Pt electronic states in the vicinity of the Fermi level combined with a modified electron distribution in the nanoparticle due to Pt-to-Au charge transfer are the origin of the outstanding catalytic properties. From our model we deduce the catalytically favorable surface patterns that induce ensemble and ligand effects. © The Royal Society of Chemistry 2013.

  19. Purification, characterization and gene cloning of thermostable O-acetyl-L-serine sulfhydrylase forming β-cyano-L-alanine

    International Nuclear Information System (INIS)

    Omura, Hironori; Yoshida, Toyokazu; Nagasawa, Toru; Kobayashi, Michihiko; Shimizu, Sakayu

    2003-01-01

    A thermophilic and cyanide ion-tolerant bacterium, Bacillus stearothermophilus CN3 isolated from a hot spring in Japan, was found to produce thermostable β-cyano-L-alanine synthase. The enzyme catalyzes the synthesis of β-cyano-L-alanine from O-acetyl-L-serine and cyanide ions. The purified enzyme has a molecular mass of approximately 70 kDa and consists of two identical sub-units. It was stable in the pH range of 6.0 to 10.0 and up to 70degC. The enzyme also catalyzes the synthesis of various β-substituted-L-alanine derivatives from O-acetyl-L-serine and nucleophilic reagents. The gene encoding the β-cyano-L-alanine synthase was isolated from B. stearothermophilus CN3. Sequence homology analysis revealed that the β-cyano-L-alanine synthase of the bacterium is O-acetyl-L-serine sulfhydrylase. A recombinant plasmid, constructed by ligation of the cloned gene and an expression vector, pKK223-3, was introduced into E. coli JM109. The transformed E. coli cells overexpressed β-cyano-L-alanine synthase. Heat stable β-cyano-L-alanine synthase can be applied to the synthesis of [4- 11 C]L-2,4-diaminobutyric acid as a tracer for positron emission tomography. (author)

  20. Purification, characterization and gene cloning of thermostable O-acetyl-L-serine sulfhydrylase forming {beta}-cyano-L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Omura, Hironori; Yoshida, Toyokazu; Nagasawa, Toru [Gifu Univ. (Japan). Dept. of Biomolecular Science; Kuroda, Masako [Ikeda Food Research Co., Ltd., Fukuyama, Hiroshima (Japan); Kobayashi, Michihiko; Shimizu, Sakayu [Kyoto Univ. (Japan). Agricultural Sciences

    2003-10-01

    A thermophilic and cyanide ion-tolerant bacterium, Bacillus stearothermophilus CN3 isolated from a hot spring in Japan, was found to produce thermostable {beta}-cyano-L-alanine synthase. The enzyme catalyzes the synthesis of {beta}-cyano-L-alanine from O-acetyl-L-serine and cyanide ions. The purified enzyme has a molecular mass of approximately 70 kDa and consists of two identical sub-units. It was stable in the pH range of 6.0 to 10.0 and up to 70degC. The enzyme also catalyzes the synthesis of various {beta}-substituted-L-alanine derivatives from O-acetyl-L-serine and nucleophilic reagents. The gene encoding the {beta}-cyano-L-alanine synthase was isolated from B. stearothermophilus CN3. Sequence homology analysis revealed that the {beta}-cyano-L-alanine synthase of the bacterium is O-acetyl-L-serine sulfhydrylase. A recombinant plasmid, constructed by ligation of the cloned gene and an expression vector, pKK223-3, was introduced into E. coli JM109. The transformed E. coli cells overexpressed {beta}-cyano-L-alanine synthase. Heat stable {beta}-cyano-L-alanine synthase can be applied to the synthesis of [4-{sup 11}C]L-2,4-diaminobutyric acid as a tracer for positron emission tomography. (author)

  1. Crystallization and preliminary X-ray analysis of carnein, a serine protease from Ipomoea carnea.

    NARCIS (Netherlands)

    Patel, A.K.; Oosterwijk, N. van; Singh, V.K.; Rozeboom, H.J.; Kalk, K.H.; Siezen, R.J.; Jagannadham, M.V.; Dijkstra, B.W.

    2009-01-01

    Carnein is an 80 kDa subtilisin-like serine protease from the latex of the plant Ipomoea carnea which displays an exceptional resistance to chemical and thermal denaturation. In order to obtain the first crystal structure of a plant subtilisin and to gain insight into the structural determinants

  2. Mannan-binding lectin and mannan-binding lectin-associated serine protease 2 in acute pancreatitis

    DEFF Research Database (Denmark)

    Novovic, Srdan; Andersen, Anders; Ersbøll, Annette Kjær

    2011-01-01

    Complement activation may play a prominent role in acute pancreatitis (AP). Mannan-binding lectin (MBL) and MBL-associated serine protease 2 (MASP-2) participate in complement activation. The objective of the present study was to evaluate the role of MBL and MASP-2 as markers in AP with regard...

  3. D-Serine rescues the deficits of hippocampal long-term potentiation and learning and memory induced by sodium fluoroacetate.

    Science.gov (United States)

    Han, Huili; Peng, Yan; Dong, Zhifang

    2015-06-01

    It is well known that bidirectional glia-neuron interactions play important roles in the neurophysiological and neuropathological processes. It is reported that impairing glial functions with sodium fluoroacetate (FAC) impaired hippocampal long-term depression (LTD) and spatial memory retrieval. However, it remains unknown whether FAC impairs hippocampal long-term potentiation (LTP) and learning and/or memory, and if so, whether pharmacological treatment with exogenous d-serine can recuse the impairment. Here, we reported that systemic administration of FAC (3mg/kg, i.p.) before training resulted in dramatic impairments of spatial learning and memory in water maze and fear memory in contextual fear conditioning. Furthermore, the behavioral deficits were accompanied by impaired LTP induction in the hippocampal CA1 area of brain slices. More importantly, exogenous d-serine treatment succeeded in recusing the deficits of hippocampal LTP and learning and memory induced by FAC. Together, these results suggest that astrocytic d-serine may be essential for hippocampal synaptic plasticity and memory, and that alteration of its levels may be relevant to the induction and potentially treatment of psychiatric and neurological disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Purification and Characterization of a New Serine Protease (VLCII) Isolated from Vipera lebetina Venom: Its Role in Hemostasis.

    Science.gov (United States)

    Amel, Kadi-Saci; Fatima, Laraba-Djebari

    2015-08-01

    Snake venom serine proteinases (SVSPs) affect various physiological functions including blood coagulation, fibrinolysis, and platelet aggregation. Coagulant serine proteinase (VLCII) was purified from Vipera lebetina venom using three chromatographic steps: gel filtration on SephadexG-75, DEAE-Sephadex A-50, and reversed-phase high-performance liquid chromatography (RP-HPLC) on C8 column. VLCII appeared homogenous (60 kDa) when tested on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). VLCII as a thrombin-like enzyme was able to hydrolyze Nα-CBZ L-arginine-p-nitroanilide hydrochloride and could be a serine protease because it is inhibited by phenylmethylsulfonyl fluoride. The proteolytic activity of VLCII was not affected by ethylenediaminetetraacetic acid and 1.10-phenanthroline. It showed high coagulant activity against human plasma and cleaved both Aα chain and Bβ chain of bovine fibrinogen. The isolated VLCII displayed proaggregating effect on human platelet in a concentration-dependent manner with an absence of lag time. Clopidogrel P2Y12 adenosine diphosphate (ADP) receptor inhibitor reduced markedly the aggregating effect induced by VLCII than aspirin, indicating the involvement of ADP signaling pathway. © 2015 Wiley Periodicals, Inc.

  5. Turning goals into results: the power of catalytic mechanisms.

    Science.gov (United States)

    Collins, J

    1999-01-01

    Most executives have a big, hairy, audacious goal. They write vision statements, formalize procedures, and develop complicated incentive programs--all in pursuit of that goal. In other words, with the best of intentions, they install layers of stultifying bureaucracy. But it doesn't have to be that way. In this article, Jim Collins introduces the catalytic mechanism, a simple yet powerful managerial tool that helps translate lofty aspirations into concrete reality. Catalytic mechanisms are the crucial link between objectives and performance; they are a galvanizing, nonbureaucratic means to turn one into the other. What's the difference between catalytic mechanisms and most traditional managerial controls? Catalytic mechanisms share five characteristics. First, they produce desired results in unpredictable ways. Second, they distribute power for the benefit of the overall system, often to the discomfort of those who traditionally hold power. Third, catalytic mechanisms have teeth. Fourth, they eject "viruses"--those people who don't share the company's core values. Finally, they produce an ongoing effect. Catalytic mechanisms are just as effective for reaching individual goals as they are for corporate ones. To illustrate how catalytic mechanisms work, the author draws on examples of individuals and organizations that have relied on such mechanisms to achieve their goals. The same catalytic mechanism that works in one organization, however, will not necessarily work in another. Catalytic mechanisms must be tailored to specific goals and situations. To help readers get started, the author offers some general principles that support the process of building catalytic mechanisms effectively.

  6. Serine Proteolytic Pathway Activation Reveals an Expanded Ensemble of Wound Response Genes in Drosophila

    Science.gov (United States)

    Patterson, Rachel A.; Juarez, Michelle T.; Hermann, Anita; Sasik, Roman; Hardiman, Gary; McGinnis, William

    2013-01-01

    After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embryos, we have discovered that serine protease function is locally activated around wound sites, and is also required for localized activation of epidermal repair genes. The serine protease trypsin is sufficient to induce a striking global epidermal wound response without inflicting cell death or compromising the integrity of the epithelial barrier. We developed a trypsin wounding treatment as an amplification tool to more fully understand the changes in the Drosophila transcriptome that occur after epidermal injury. By comparing our array results with similar results on mammalian skin wounding we can see which evolutionarily conserved pathways are activated after epidermal wounding in very diverse animals. Our innovative serine protease-mediated wounding protocol allowed us to identify 8 additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair. Additionally, our data augments the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues. PMID:23637905

  7. Atomically Precise Metal Nanoclusters for Catalytic Application

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Rongchao [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-11-18

    The central goal of this project is to explore the catalytic application of atomically precise gold nanoclusters. By solving the total structures of ligand-protected nanoclusters, we aim to correlate the catalytic properties of metal nanoclusters with their atomic/electronic structures. Such correlation unravel some fundamental aspects of nanocatalysis, such as the nature of particle size effect, origin of catalytic selectivity, particle-support interactions, the identification of catalytically active centers, etc. The well-defined nanocluster catalysts mediate the knowledge gap between single crystal model catalysts and real-world conventional nanocatalysts. These nanoclusters also hold great promise in catalyzing certain types of reactions with extraordinarily high selectivity. These aims are in line with the overall goals of the catalytic science and technology of DOE and advance the BES mission “to support fundamental research to understand, predict, and ultimately control matter and energy at the level of electrons, atoms, and molecules”. Our group has successfully prepared different sized, robust gold nanoclusters protected by thiolates, such as Au25(SR)18, Au28(SR)20, Au38(SR)24, Au99(SR)42, Au144(SR)60, etc. Some of these nanoclusters have been crystallographically characterized through X-ray crystallography. These ultrasmall nanoclusters (< 2 nm diameter) exhibit discrete electronic structures due to quantum size effect, as opposed to quasicontinuous band structure of conventional metal nanoparticles or bulk metals. The available atomic structures (metal core plus surface ligands) of nanoclusters serve as the basis for structure-property correlations. We have investigated the unique catalytic properties of nanoclusters (i.e. not observed in conventional nanogold catalysts) and revealed the structure-selectivity relationships. Highlights of our

  8. RET Functions as a Dual-Specificity Kinase that Requires Allosteric Inputs from Juxtamembrane Elements

    Directory of Open Access Journals (Sweden)

    Iván Plaza-Menacho

    2016-12-01

    Full Text Available Receptor tyrosine kinases exhibit a variety of activation mechanisms despite highly homologous catalytic domains. Such diversity arises through coupling of extracellular ligand-binding portions with highly variable intracellular sequences flanking the tyrosine kinase domain and specific patterns of autophosphorylation sites. Here, we show that the juxtamembrane (JM segment enhances RET catalytic domain activity through Y687. This phospho-site is also required by the JM region to rescue an otherwise catalytically deficient RET activation-loop mutant lacking tyrosines. Structure-function analyses identified interactions between the JM hinge, αC helix, and an unconventional activation-loop serine phosphorylation site that engages the HRD motif and promotes phospho-tyrosine conformational accessibility and regulatory spine assembly. We demonstrate that this phospho-S909 arises from an intrinsic RET dual-specificity kinase activity and show that an equivalent serine is required for RET signaling in Drosophila. Our findings reveal dual-specificity and allosteric components for the mechanism of RET activation and signaling with direct implications for drug discovery.

  9. Serine protease inhibitors containing a Kunitz domain: their role in modulation of host inflammatory responses and parasite survival.

    Science.gov (United States)

    de Magalhães, Mariana T Q; Mambelli, Fábio S; Santos, Bruno P O; Morais, Suellen B; Oliveira, Sergio C

    2018-03-31

    Proteins containing a Kunitz domain have the typical serine protease inhibition function ranging from sea anemone to man. Protease inhibitors play major roles in infection, inflammation disorders and cancer. This review discusses the role of serine proteases containing a Kunitz domain in immunomodulation induced by helminth parasites. Helminth parasites are associated with protection from inflammatory conditions. Therefore, interest has raised whether worm parasites or their products hold potential as drugs for treatment of immunological disorders. Finally, we also propose the use of recombinant SmKI-1 from Schistosoma mansoni as a potential therapeutic molecule to treat inflammatory diseases. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. Identification, sequence analysis, and characterization of serine/threonine protein kinase 17A from Clonorchis sinensis.

    Science.gov (United States)

    Huang, Lisi; Lv, Xiaoli; Huang, Yan; Hu, Yue; Yan, Haiyan; Zheng, Minghui; Zeng, Hua; Li, Xuerong; Liang, Chi; Wu, Zhongdao; Yu, Xinbing

    2014-05-01

    This is the first report of a novel protein from Clonorchis sinensis (C. sinensis), serine/threonine protein kinase 17A (CsSTK17A), which belongs to a member of the death-associated protein kinase (DAPK) family known to regulate diverse biological processes. The full-length sequence encoding CsSTK17A was isolated from C. sinensis adult cDNA plasmid library. Two transcribed isoforms of the gene were identified from the genome of C. sinensis. CsSTK17A contains a kinase domain at the N-terminus that shares a degree of conservation with the DAPK families. Besides, the catalytic domain contains 11 subdomains conserved among STKs and shares the highest identity with STK from Schistosoma mansoni (55.9%). Three-dimensional structure of CsSTK17A displays the canonical STK fold, including the helix C, P-loop, and the activation loop. We obtained recombinant CsSTK17A (rCsSTK17A) and anti-rCsSTK17A IgG. The rCsSTK17A could be probed by anti-rCsSTK17A rat serum, C. sinensis-infected rat serum and the sera from rats immunized with C. sinensis excretory-secretory products, indicating that it is a circulating antigen possessing a strong immunocompetence. Moreover, quantitative RT-PCR and western blotting analyses revealed that CsSTK17A exhibited the highest mRNA and protein expression level in eggs, followed by metacercariae and adult worms. Intriguingly, in the immunolocalization assay, CsSTK17A was intensively localized to the operculum region of eggs in uterus, as well as the vitelline gland of both adult worm and metacercaria, implying that the protein was associated with the reproduction and development of C. sinensis. Overall, these fundamental studies might contribute to further researches on signaling systems of the parasite.

  11. Kinetic Parameters of Non-Isothermal Thermogravimetric Non-Catalytic and Catalytic Pyrolysis of Empty Fruit Bunch with Alumina by Kissinger and Ozawa Methods

    Science.gov (United States)

    Rahayu Mohamed, Alina; Li, Nurfahani; Sohaimi, Khairunissa Syairah Ahmad; Izzati Iberahim, Nur; Munirah Rohaizad, Nor; Hamzah, Rosniza

    2018-03-01

    The non-isothermal thermogravimetric non-catalytic and catalytic empty fruit bunch (EFB) pyrolysis with alumina were performed at different heating rates of 10, 15, 20, 25, 30 and 40 K/min under nitrogen atmosphere at a flow rate of 100 ml/min under dynamic conditions from 301 K to 1273 K. The activation energy were calculated based on Kissinger and Ozawa methods. Both reactions followed first order reactions. By Kissinger method, the activation energy and Ln A values for non-catalytic and catalytic EFB pyrolysis with alumina were 188.69 kJ mol-1 and 201.67 kJ/mol respectively. By Ozawa method, the activation energy values for non-catalytic and catalytic EFB pyrolysis with alumina were 189.13 kJ/mol and 201.44 kJ/mol respectively. The presence of catalyst increased the activation energy values for EFB pyrolysis as calculated by Kissinger and Ozawa methods.

  12. Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases

    NARCIS (Netherlands)

    Siezen, Roland J.; Vos, Willem M. de; Leunissen, Jack A.M.; Dijkstra, Bauke W.

    1991-01-01

    Subtilases are members of the family of subtilisin-like serine proteases. Presently, >50 subtilases are known, >40 of which with their complete amino acid sequences. We have compared these sequences and the available three-dimensional structures (subtilisin BPN', subtilisin Carlsberg, thermitase and

  13. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification.

    Directory of Open Access Journals (Sweden)

    David S Boyle

    Full Text Available Improved access to effective tests for diagnosing tuberculosis (TB has been designated a public health priority by the World Health Organisation. In high burden TB countries nucleic acid based TB tests have been restricted to centralised laboratories and specialised research settings. Requirements such as a constant electrical supply, air conditioning and skilled, computer literate operators prevent implementation of such tests in many settings. Isothermal DNA amplification technologies permit the use of simpler, less energy intensive detection platforms more suited to low resource settings that allow the accurate diagnosis of a disease within a short timeframe. Recombinase Polymerase Amplification (RPA is a rapid, low temperature isothermal DNA amplification reaction. We report here RPA-based detection of Mycobacterium tuberculosis complex (MTC DNA in <20 minutes at 39 °C. Assays for two MTC specific targets were investigated, IS6110 and IS1081. When testing purified MTC genomic DNA, limits of detection of 6.25 fg (IS6110 and 20 fg (IS1081were consistently achieved. When testing a convenience sample of pulmonary specimens from suspected TB patients, RPA demonstrated superior accuracy to indirect fluorescence microscopy. Compared to culture, sensitivities for the IS1081 RPA and microscopy were 91.4% (95%CI: 85, 97.9 and 86.1% (95%CI: 78.1, 94.1 respectively (n = 71. Specificities were 100% and 88.6% (95% CI: 80.8, 96.1 respectively. For the IS6110 RPA and microscopy sensitivities of 87.5% (95%CI: 81.7, 93.2 and 70.8% (95%CI: 62.9, 78.7 were obtained (n = 90. Specificities were 95.4 (95% CI: 92.3,98.1 and 88% (95% CI: 83.6, 92.4 respectively. The superior specificity of RPA for detecting tuberculosis was due to the reduced ability of fluorescence microscopy to distinguish Mtb complex from other acid fast bacteria. The rapid nature of the RPA assay and its low energy requirement compared to other amplification technologies suggest RPA-based TB

  14. Highly potent fibrinolytic serine protease from Streptomyces.

    Science.gov (United States)

    Uesugi, Yoshiko; Usuki, Hirokazu; Iwabuchi, Masaki; Hatanaka, Tadashi

    2011-01-05

    We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Thrombocytin, a serine protease from Bothrops atrox venom. 1. Purification and characterization of the enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, E.P. (Temple Univ. Health Sciences Center, Philadelphia, PA); Niewiarowski, S.; Stocker, K.; Kettner, C.; Shaw, E.; Brudzynsi, T.M.

    1979-08-07

    Thrombocytin, a platelet-activating enzyme from Bothrops atrox venom, has been purified to homogeneity by precipitation with sodium salicylate and chromatography on heparin-agarose. Thrombocytin is a single-chain glycoprotein with a molecular weight of 36,000 which contains 5.6% carbohydrate. It causes platelet aggregation, release of platelet serotonin, and activation of factor XIII. The most sensitive substrate for the amidolytic activity of thrombocytin was Tos-Gly-Pro-Arg-p-nitroanilide hydrochloride. The activity of thrombocytin on this substrate and on platelets was inhibited by diisopropyl fluorophosphate (DFP), soybean trypsin inhibitor, and several arginine chloromethyl ketones. Active site titration with nitrophenyl guanidinobenzoate demonstrated that approximately 86% of the preparation was in the active form. These experiments demonstrate the presence of serine and histidine in the active site of thrombocytin and suggest that thrombocytin is a classical serine protease with a platelet-activating activity similar to thrombin.

  16. Redesign of the monomer-monomer interface of Cre recombinase yields an obligate heterotetrameric complex.

    Science.gov (United States)

    Zhang, Chi; Myers, Connie A; Qi, Zongtai; Mitra, Robi D; Corbo, Joseph C; Havranek, James J

    2015-10-15

    Cre recombinase catalyzes the cleavage and religation of DNA at loxP sites. The enzyme is a homotetramer in its functional state, and the symmetry of the protein complex enforces a pseudo-palindromic symmetry upon the loxP sequence. The Cre-lox system is a powerful tool for many researchers. However, broader application of the system is limited by the fixed sequence preferences of Cre, which are determined by both the direct DNA contacts and the homotetrameric arrangement of the Cre monomers. As a first step toward achieving recombination at arbitrary asymmetric target sites, we have broken the symmetry of the Cre tetramer assembly. Using a combination of computational and rational protein design, we have engineered an alternative interface between Cre monomers that is functional yet incompatible with the wild-type interface. Wild-type and engineered interface halves can be mixed to create two distinct Cre mutants, neither of which are functional in isolation, but which can form an active heterotetramer when combined. When these distinct mutants possess different DNA specificities, control over complex assembly directly discourages recombination at unwanted half-site combinations, enhancing the specificity of asymmetric site recombination. The engineered Cre mutants exhibit this assembly pattern in a variety of contexts, including mammalian cells. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Regulation of Recombination between gtfB/gtfC Genes in Streptococcus mutans by Recombinase A

    Directory of Open Access Journals (Sweden)

    Satoko Inagaki

    2013-01-01

    Full Text Available Streptococcus mutans produces 3 types of glucosyltransferases (GTFs, whose cooperative action is essential for cellular adhesion. The recombinase A (RecA protein is required for homologous recombination. In our previous study, we isolated several strains with a smooth colony morphology and low GTF activity, characteristics speculated to be derived from the GTF fusions. The purpose of the present study was to investigate the mechanism of those fusions. S. mutans strain MT8148 was grown in the presence of recombinant RecA (rRecA protein, after which smooth colonies were isolated. The biological functions and sequences of the gtfB and gtfC genes of this as well as other clinical strains were determined. The sucrose-dependent adherence rates of those strains were reduced as compared to that of MT8148. Determination of the sequences of the gtfB and gtfC genes showed that an approximately 3500 bp region was deleted from the area between them. Furthermore, expression of the recA gene was elevated in those strains as compared to MT8148. These results suggest that RecA has an important role in fusions of gtfB and gtfC genes, leading to alteration of colony morphology and reduction in sucrose-dependent adhesion.

  18. New Fpg probe chemistry for direct detection of recombinase polymerase amplification on lateral flow strips.

    Science.gov (United States)

    Powell, Michael L; Bowler, Frank R; Martinez, Aurore J; Greenwood, Catherine J; Armes, Niall; Piepenburg, Olaf

    2018-02-15

    Rapid, cost-effective and sensitive detection of nucleic acids has the ability to improve upon current practices employed for pathogen detection in diagnosis of infectious disease and food testing. Furthermore, if assay complexity can be reduced, nucleic acid amplification tests could be deployed in resource-limited and home use scenarios. In this study, we developed a novel Fpg (Formamidopyrimidine DNA glycosylase) probe chemistry, which allows lateral flow detection of amplification in undiluted recombinase polymerase amplification (RPA) reactions. The prototype nucleic acid lateral flow chemistry was applied to a human genomic target (rs1207445), Campylobacter jejuni 16S rDNA and two genetic markers of the important food pathogen E. coli O157:H7. All four assays have an analytical sensitivity between 10 and 100 copies DNA per amplification. Furthermore, the assay is performed with fewer hands-on steps than using the current RPA Nfo lateral flow method as dilution of amplicon is not required for lateral flow analysis. Due to the simplicity of the workflow, we believe that the lateral flow chemistry for direct detection could be readily adapted to a cost-effective single-use consumable, ideal for use in non-laboratory settings. Copyright © 2017. Published by Elsevier Inc.

  19. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine.

    Science.gov (United States)

    Moozeh, Kimia; So, Soon Mog; Chin, Jik

    2015-08-03

    A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Review on Catalytic Membranes Production and Applications

    Directory of Open Access Journals (Sweden)

    Heba Abdallah

    2017-05-01

    Full Text Available The development of the chemical industry regarding reducing the production cost and obtaining a high-quality product with low environmental impact became the essential requirements of the world in these days. The catalytic membrane is considered as one of the new alternative solutions of catalysts problems in the industries, where the reaction and separation can be amalgamated in one unit. The catalytic membrane has numerous advantages such as breaking the thermodynamic equilibrium limitation, increasing conversion rate, reducing the recycle and separation costs. But the limitation or most disadvantages of catalytic membranes related to the high capital costs for fabrication or the fact that manufacturing process is still under development. This review article summarizes the most recent advances and research activities related to preparation, characterization, and applications of catalytic membranes. In this article, various types of catalytic membranes are displayed with different applications and explained the positive impacts of using catalytic membranes in various reactions. Copyright © 2017 BCREC Group. All rights reserved. Received: 1st April 2016; Revised: 14th February 2017; Accepted: 22nd February 2017 How to Cite: Abdallah, H. (2017. A Review on Catalytic Membranes Production and Applications. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 136-156 (doi:10.9767/bcrec.12.2.462.136-156 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.462.136-156

  1. Serine proteases as candidates for proteolytic processing of angiotensin-I converting enzyme.

    Science.gov (United States)

    Aragão, Danielle S; de Andrade, Maria Claudina C; Ebihara, Fabiana; Watanabe, Ingrid K M; Magalhães, Dayane C B P; Juliano, Maria Aparecida; Hirata, Izaura Yoshico; Casarini, Dulce Elena

    2015-01-01

    Somatic angiotensin-I converting enzyme (sACE) is a broadly distributed peptidase which plays a role in blood pressure and electrolyte homeostasis by the conversion of angiotensin I into angiotensin II. N-domain isoforms (nACE) with 65 and 90 kDa have been described in body fluids, tissues and mesangial cells (MC), and a 90 kDa nACE has been described only in spontaneously hypertensive rats. The aim of this study was to investigate the existence of proteolytic enzymes that may act in the hydrolysis of sACE generating nACEs in MC. After the confirmation of the presence of ACE sheddases in Immortalized MC (IMC), we purified and characterized these enzymes using fluorogenic substrates specifically designed for ACE sheddases. Purified enzyme identified as a serine protease by N-terminal sequence was able to generate nACE. In the present study, we described for the first time the presence of ACE sheddases in IMC, identified as serine proteases able to hydrolyze sACE in vitro. Further investigations are necessary to elucidate the mechanisms responsible for the expression and regulation of ACE sheddases in MC and their roles in the generation of nACEs, especially the 90 kDa form possibly related to hypertension. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Linear Discriminant Analysis for the in Silico Discovery of Mechanism-Based Reversible Covalent Inhibitors of a Serine Protease: Application of Hydration Thermodynamics Analysis and Semi-empirical Molecular Orbital Calculation.

    Science.gov (United States)

    Masuda, Yosuke; Yoshida, Tomoki; Yamaotsu, Noriyuki; Hirono, Shuichi

    2018-01-01

    We recently reported that the Gibbs free energy of hydrolytic water molecules (ΔG wat ) in acyl-trypsin intermediates calculated by hydration thermodynamics analysis could be a useful metric for estimating the catalytic rate constants (k cat ) of mechanism-based reversible covalent inhibitors. For thorough evaluation, the proposed method was tested with an increased number of covalent ligands that have no corresponding crystal structures. After modeling acyl-trypsin intermediate structures using flexible molecular superposition, ΔG wat values were calculated according to the proposed method. The orbital energies of antibonding π* molecular orbitals (MOs) of carbonyl C=O in covalently modified catalytic serine (E orb ) were also calculated by semi-empirical MO calculations. Then, linear discriminant analysis (LDA) was performed to build a model that can discriminate covalent inhibitor candidates from substrate-like ligands using ΔG wat and E orb . The model was built using a training set (10 compounds) and then validated by a test set (4 compounds). As a result, the training set and test set ligands were perfectly discriminated by the model. Hydrolysis was slower when (1) the hydrolytic water molecule has lower ΔG wat ; (2) the covalent ligand presents higher E orb (higher reaction barrier). Results also showed that the entropic term of hydrolytic water molecule (-TΔS wat ) could be used for estimating k cat and for covalent inhibitor optimization; when the rotational freedom of the hydrolytic water molecule is limited, the chance for favorable interaction with the electrophilic acyl group would also be limited. The method proposed in this study would be useful for screening and optimizing the mechanism-based reversible covalent inhibitors.

  3. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase.

    Directory of Open Access Journals (Sweden)

    Kellie Burnside

    2010-06-01

    Full Text Available Exotoxins, including the hemolysins known as the alpha (alpha and beta (beta toxins, play an important role in the pathogenesis of Staphylococcus aureus infections. A random transposon library was screened for S. aureus mutants exhibiting altered hemolysin expression compared to wild type. Transposon insertions in 72 genes resulting in increased or decreased hemolysin expression were identified. Mutations inactivating a putative cyclic di-GMP synthetase and a serine/threonine phosphatase (Stp1 were found to reduce hemolysin expression, and mutations in genes encoding a two component regulator PhoR, LysR family transcriptional regulator, purine biosynthetic enzymes and a serine/threonine kinase (Stk1 increased expression. Transcription of the hla gene encoding alpha toxin was decreased in a Deltastp1 mutant strain and increased in a Deltastk1 strain. Microarray analysis of a Deltastk1 mutant revealed increased transcription of additional exotoxins. A Deltastp1 strain is severely attenuated for virulence in mice and elicits less inflammation and IL-6 production than the Deltastk1 strain. In vivo phosphopeptide enrichment and mass spectrometric analysis revealed that threonine phosphorylated peptides corresponding to Stk1, DNA binding histone like protein (HU, serine-aspartate rich fibrinogen/bone sialoprotein binding protein (SdrE and a hypothetical protein (NWMN_1123 were present in the wild type and not in the Deltastk1 mutant. Collectively, these studies suggest that Stk1 mediated phosphorylation of HU, SrdE and NWMN_1123 affects S. aureus gene expression and virulence.

  4. On the Structural Context and Identification of Enzyme Catalytic Residues

    Directory of Open Access Journals (Sweden)

    Yu-Tung Chien

    2013-01-01

    Full Text Available Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The results show that catalytic residues have distinct structural features and context. Their neighboring residues, whether sequence or structure neighbors within specific range, are usually structurally more rigid than those of noncatalytic residues. The structural context feature is combined with support vector machine to identify catalytic residues from enzyme structure. The prediction results are better or comparable to those of recent structure-based prediction methods.

  5. Phosphorylation of protein kinase A (PKA) regulatory subunit RIα by protein kinase G (PKG) primes PKA for catalytic activity in cells.

    Science.gov (United States)

    Haushalter, Kristofer J; Casteel, Darren E; Raffeiner, Andrea; Stefan, Eduard; Patel, Hemal H; Taylor, Susan S

    2018-03-23

    cAMP-dependent protein kinase (PKAc) is a pivotal signaling protein in eukaryotic cells. PKAc has two well-characterized regulatory subunit proteins, RI and RII (each having α and β isoforms), which keep the PKAc catalytic subunit in a catalytically inactive state until activation by cAMP. Previous reports showed that the RIα regulatory subunit is phosphorylated by cGMP-dependent protein kinase (PKG) in vitro , whereupon phosphorylated RIα no longer inhibits PKAc at normal (1:1) stoichiometric ratios. However, the significance of this phosphorylation as a mechanism for activating type I PKA holoenzymes has not been fully explored, especially in cellular systems. In this study, we further examined the potential of RIα phosphorylation to regulate physiologically relevant "desensitization" of PKAc activity. First, the serine 101 site of RIα was validated as a target of PKGIα phosphorylation both in vitro and in cells. Analysis of a phosphomimetic substitution in RIα (S101E) showed that modification of this site increases PKAc activity in vitro and in cells, even without cAMP stimulation. Numerous techniques were used to show that although Ser 101 variants of RIα can bind PKAc, the modified linker region of the S101E mutant has a significantly reduced affinity for the PKAc active site. These findings suggest that RIα phosphorylation may be a novel mechanism to circumvent the requirement of cAMP stimulus to activate type I PKA in cells. We have thus proposed a model to explain how PKG phosphorylation of RIα creates a "sensitized intermediate" state that is in effect primed to trigger PKAc activity.

  6. The Contribution of Serine 194 Phosphorylation to Steroidogenic Acute Regulatory Protein Function

    OpenAIRE

    Sasaki, Goro; Zubair, Mohamad; Ishii, Tomohiro; Mitsui, Toshikatsu; Hasegawa, Tomonobu; Auchus, Richard J.

    2014-01-01

    The steroidogenic acute regulatory protein (StAR) facilitates the delivery of cholesterol to the inner mitochondrial membrane, where the cholesterol side-chain cleavage enzyme catalyzes the initial step of steroid hormone biosynthesis. StAR was initially identified in adrenocortical cells as a phosphoprotein, the expression and phosphorylation of which were stimulated by corticotropin. A number of in vitro studies have implicated cAMP-dependent phosphorylation at serine 194 (S194, S195 in hum...

  7. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  8. Purification and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease

    DEFF Research Database (Denmark)

    Studdert, C A; Herrera Seitz, M K; Plasencia, I

    2001-01-01

    A serine protease was purified from Natronococcus occultus stationary phase culture medium (328-fold, yield 19%) and characterized at the biochemical level. The enzyme has a native molecular mass of 130 kDa, has chymotrypsin-like activity, is stable and active in a broad pH range (5.5-12), is rat......A serine protease was purified from Natronococcus occultus stationary phase culture medium (328-fold, yield 19%) and characterized at the biochemical level. The enzyme has a native molecular mass of 130 kDa, has chymotrypsin-like activity, is stable and active in a broad pH range (5.......5-12), is rather thermophilic (optimal activity at 60 degrees C in 1-2 M NaCl) and is dependent on high salt concentrations for activity and stability (1-2 M NaCl or KCl). Polyclonal antibodies were raised against the purified protease. In Western blots, they presented no cross-reactivity with culture medium from...... other halobacteria nor with commercial proteases except subtilisin. The amino acid sequences of three tryptic peptides obtained from Natronococcus occultus protease did not show significant similarity to other known proteolytic enzymes. This fact, in addition to its high molecular mass suggests...

  9. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    Science.gov (United States)

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  10. Serine protease immunohistochemistry and lectin histochemistry in the small intestine of weaned and unweaned pigs

    DEFF Research Database (Denmark)

    Brown, P J; Poulsen, Steen Seier; Wells, M

    1991-01-01

    The distribution of goblet cells containing serine protease and of those binding the lectin Ulex europaeus agglutinin-1 (UEA-1) in the pig small intestine is altered during the period after weaning. Goblet cells exhibiting binding of other lectins were not altered. These alterations and other...

  11. The Effect of Serine Protease Inhibitors on Airway Inflammation in a Chronic Allergen-Induced Asthma Mouse Model

    Directory of Open Access Journals (Sweden)

    Chih-Che Lin

    2014-01-01

    Full Text Available Serine protease inhibitors reportedly attenuated airway inflammation and had antioxidant in multiorgan. However, the effects of the serine protease inhibitors nafamostat mesilate (FUT, gabexate mesilate (FOY, and ulinastatin (UTI on a long-term challenged mouse model of chronic asthma are unclear. BALB/c mice (6 mice/group were intratracheally inoculated with five doses of Dermatophagoides pteronyssinus (Der p; 50 μL, 1 mg/mL at one-week intervals. Therapeutic doses of FUT (0.0625 mg/kg, FOY (20 mg/kg, or UTI (10,000 U/kg were, respectively, injected intraperitoneally into these mice. Control mice received sterile PBS. At 3 days after the last challenge, mice were sacrificed to assess airway hyperresponsiveness (AHR, remodeling, and inflammation; lung histological features; and cytokine expression profiles. Compared with untreated controls, mice treated with FUT, FOY, and UTI had decreased AHR and goblet cell hyperplasia, decreased eosinophil and neutrophil infiltration, decreased Der p-induced IL-4 levels in serum and IL-5, IL-6, IL-13, and IL-17 levels in bronchoalveolar lavage fluid, and inhibited nuclear factor (NF-κB activity in lung tissues. The serine protease inhibitors FUT, FOY, and UTI have potential therapeutic benefits for treating asthma by downregulating Th2 cytokines and Th17 cell function and inhibiting NF-κB activation in lung tissue.

  12. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange.

    Science.gov (United States)

    Borgogno, María V; Monti, Mariela R; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E; Pezza, Roberto J

    2016-03-04

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3' end of the initiating DNA strand have a small effect, whereas most mismatches near the 5' end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. A cyclohexanecarboxamide derivative with inhibitory effects on Schistosoma mansoni cercarial serine protease and penetration of mice skin by the parasite.

    Science.gov (United States)

    Bahgat, Mahmoud; Aboul-Enein, Mohamed N; El Azzouny, Aida A; Maghraby, Amany; Ruppel, Andreas; Soliman, Wael M

    2009-01-01

    A cyclohexanecarboxamide derivative, N-phenyl-N-[1-(piperidine-1-carbonyl)cyclohexyl] benzamide (MNRC-5), was evaluated for its inhibitory effects on Schistosoma mansoni cercarial serine protease activity and cercarial penetration. MNRC-5 exerted an inhibitory effect on S. mansoni cercarial serine protease at serial concentrations of the specific chromogenic substrate Boc-Val-Leu-Gly-Arg-PNA for such enzyme family and the inhibitory coefficient (Ki) value was deduced. Moreover, topical treatment of mice tails with the most potent inhibitory concentration of MNRC-5 formulated in jojoba oil successfully blocked cercarial penetration as demonstrated by a significant reduction (75%; p jojoba oil base containing no MNRC-5. In addition, the IgM and IgG reactivities to crude S. mansoni cercarial, worm and egg antigens were generally lower in sera from treated infected mice than untreated infected mice. In conclusion, we report on a new serine protease inhibitor capable for blocking penetration of host skin by S. mansoni cercariae as measured by lowering worm burden and decrease in the levels of both IgM and IgG towards different bilharzial antigens upon topical treatment.

  14. Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53.

    Science.gov (United States)

    Riscal, Romain; Schrepfer, Emilie; Arena, Giuseppe; Cissé, Madi Y; Bellvert, Floriant; Heuillet, Maud; Rambow, Florian; Bonneil, Eric; Sabourdy, Frédérique; Vincent, Charles; Ait-Arsa, Imade; Levade, Thierry; Thibaut, Pierre; Marine, Jean-Christophe; Portais, Jean-Charles; Sarry, Jean-Emmanuel; Le Cam, Laurent; Linares, Laetitia K

    2016-06-16

    The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD(+)/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatin-bound MDM2 in cancer cell metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The Genomic Architecture of Novel Simulium damnosum Wolbachia Prophage Sequence Elements and Implications for Onchocerciasis Epidemiology

    Directory of Open Access Journals (Sweden)

    James L. Crainey

    2017-05-01

    Full Text Available Research interest in Wolbachia is growing as new discoveries and technical advancements reveal the public health importance of both naturally occurring and artificial infections. Improved understanding of the Wolbachia bacteriophages (WOs WOcauB2 and WOcauB3 [belonging to a sub-group of four WOs encoding serine recombinases group 1 (sr1WOs], has enhanced the prospect of novel tools for the genetic manipulation of Wolbachia. The basic biology of sr1WOs, including host range and mode of genomic integration is, however, still poorly understood. Very few sr1WOs have been described, with two such elements putatively resulting from integrations at the same Wolbachia genome loci, about 2 kb downstream from the FtsZ cell-division gene. Here, we characterize the DNA sequence flanking the FtsZ gene of wDam, a genetically distinct line of Wolbachia isolated from the West African onchocerciasis vector Simulium squamosum E. Using Roche 454 shot-gun and Sanger sequencing, we have resolved >32 kb of WO prophage sequence into three contigs representing three distinct prophage elements. Spanning ≥36 distinct WO open reading frame gene sequences, these prophage elements correspond roughly to three different WO modules: a serine recombinase and replication module (sr1RRM, a head and base-plate module and a tail module. The sr1RRM module contains replication genes and a Holliday junction recombinase and is unique to the sr1 group WOs. In the extreme terminal of the tail module there is a SpvB protein homolog—believed to have insecticidal properties and proposed to have a role in how Wolbachia parasitize their insect hosts. We propose that these wDam prophage modules all derive from a single WO genome, which we have named here sr1WOdamA1. The best-match database sequence for all of our sr1WOdamA1-predicted gene sequences was annotated as of Wolbachia or Wolbachia phage sourced from an arthropod. Clear evidence of exchange between sr1WOdamA1 and other Wolbachia

  16. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior.

    Science.gov (United States)

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H; Muyldermans, Serge; Declerck, Paul J; Huang, Mingdong; Andreasen, Peter A; Ngo, Jacky Chi Ki

    2016-07-15

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior*

    Science.gov (United States)

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H.; Muyldermans, Serge; Declerck, Paul J.; Huang, Mingdong; Andreasen, Peter A.; Ngo, Jacky Chi Ki

    2016-01-01

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30–40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. PMID:27226628

  18. Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.

    Science.gov (United States)

    Collins, Gillian; Holmes, Justin D

    2016-07-01

    Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A clip domain serine protease involved in moulting in the silkworm, Bombyx mori: cloning, characterization, expression patterns and functional analysis.

    Science.gov (United States)

    Liu, H-W; Wang, L-L; Meng, Z; Tang, X; Li, Y-S; Xia, Q-Y; Zhao, P

    2017-10-01

    Clip domain serine proteases (CLIPs), characterized by one or more conserved clip domains, are essential components of extracellular signalling cascades in various biological processes, especially in innate immunity and the embryonic development of insects. Additionally, CLIPs may have additional non-immune functions in insect development. In the present study, the clip domain serine protease gene Bombyx mori serine protease 95 (BmSP95), which encodes a 527-residue protein, was cloned from the integument of B. mori. Bioinformatics analysis indicated that BmSP95 is a typical CLIP of the subfamily D and possesses a clip domain at the N terminus, a trypsin-like serine protease (tryp_spc) domain at the C terminus and a conserved proline-rich motif between these two domains. At the transcriptional level, BmSP95 is expressed in the integument during moulting and metamorphosis, and the expression pattern is consistent with the fluctuating 20-hydroxyecdysone (20E) titre in B. mori. At the translational level, BmSP95 protein is synthesized in the epidermal cells, secreted as a zymogen and activated in the moulting fluid. Immunofluorescence revealed that BmSP95 is distributed into the old endocuticle in the moulting stage. The expression of BmSP95 was upregulated by 20E. Moreover, expression of BmSP95 was downregulated by pathogen infection. RNA interference-mediated silencing of BmSP95 led to delayed moulting from pupa to moth. These results suggest that BmSP95 is involved in integument remodelling during moulting and metamorphosis. © 2017 The Royal Entomological Society.

  20. Hydrocarbon conversion with an attenuated superactive multimetallic catalytic composite

    International Nuclear Information System (INIS)

    Antos, G.J.

    1981-01-01

    Hydrocarbons are converted by contacting them at hydrocarbon conversion conditions with a novel attenuated superactive multimetallic catalytic composite comprising a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of a platinum group component, which is maintained in the elemental metallic state during the incorporation and pyrolysis of the rhenium carbonyl component, and of an iron component. In a highly preferred embodiment, this novel catalytic composite also contains a catalytically effective amount of a halogen component. The platinum group component, pyrolyzed rhenium carbonyl component, iron component and optional halogen component are preferably present in the multimetallic catalytic composite in amounts, calculated on an elemental basis, corresponding to about 0.01 to about 2 wt. % platinum group metal, about 0.01 to about 5 wt. % rhenium, about 0.005 to about 4 wt. % iron and about 0.1 to about 5 wt. % halogen. A key feature associated with the preparation of the subject catalytic composite is reaction of a rhenium carbonyl complex with a porous carrier material containing a uniform dispersion of an iron component and of a platinum group component maintained in the elemental state, whereby the interaction of the rhenium moiety with the platinum group moiety is maximized due to the platinophilic (i.e., platinum-seeking) propensities of the carbon monoxide ligands associated with the rhenium reagent. A specific example of the type of hydrocarbon conversion process disclosed herein is a process for the catalytic reforming of a low octane gasoline fraction wherein the gasoline fraction and a hydrogen stream are contacted with the attenuated superactive multimetallic catalytic composite at reforming conditions

  1. Catalytic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bindley, W T.R.

    1931-04-18

    An apparatus is described for the catalytic treatment of liquids, semi-liquids, and gases comprising a vessel into which the liquid, semi-liquid, or gas to be treated is introduced through a common inlet to a chamber within the vessel whence it passes to contact with a catalyst through radially arranged channels or passages to a common outlet chamber.

  2. Catalytic cleavage activities of 10–23 DNAzyme analogs functionalized with an amino group in its catalytic core

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2012-02-01

    Full Text Available Functionalization of the catalytic loop of 10–23 DNAzyme with an amino group was performed by incorporation of 7-(3-aminopropyl-8-aza-7-deaza-2′-deoxyadenosine in different single positions. Among the nine modified positions in the catalytic loop, A9 is the unique position with positive contribution by such modification. These results indicated that more efficient deoxyribozymes remain to be explored by introduction of exogenous functional groups in an appropriate position in the catalytic loop of 10–23 DNAzyme, such as the combination of 7-functional group substituted 8-aza-7-deaza-2′-deoxyadenosine analogs and A9 position.

  3. Discovery of an Unexplored Protein Structural Scaffold of Serine Protease from Big Blue Octopus (Octopus cyanea): A New Prospective Lead Molecule.

    Science.gov (United States)

    Panda, Subhamay; Kumari, Leena

    2017-01-01

    Serine proteases are a group of enzymes that hydrolyses the peptide bonds in proteins. In mammals, these enzymes help in the regulation of several major physiological functions such as digestion, blood clotting, responses of immune system, reproductive functions and the complement system. Serine proteases obtained from the venom of Octopodidae family is a relatively unexplored area of research. In the present work, we tried to effectively utilize comparative composite molecular modeling technique. Our key aim was to propose the first molecular model structure of unexplored serine protease 5 derived from big blue octopus. The other objective of this study was to analyze the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis with the aid of different bioinformatic tools. In the present study, molecular model has been generated with the help of I-TASSER suite. Afterwards the refined structural model was validated with standard methods. For functional annotation of protein molecule we used Protein Information Resource (PIR) database. Serine protease 5 of big blue octopus was analyzed with different bioinformatical algorithms for the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis. The functionally critical amino acids and ligand- binding site (LBS) of the proteins (modeled) were determined using the COACH program. The molecular model data in cooperation to other pertinent post model analysis data put forward molecular insight to proteolytic activity of serine protease 5, which helps in the clear understanding of procoagulant and anticoagulant characteristics of this natural lead molecule. Our approach was to investigate the octopus

  4. Efficient Recombinase-Mediated Cassette Exchange in hPSCs to Study the Hepatocyte Lineage Reveals AAVS1 Locus-Mediated Transgene Inhibition

    Directory of Open Access Journals (Sweden)

    Laura Ordovás

    2015-11-01

    Full Text Available Tools for rapid and efficient transgenesis in “safe harbor” loci in an isogenic context remain important to exploit the possibilities of human pluripotent stem cells (hPSCs. We created hPSC master cell lines suitable for FLPe recombinase-mediated cassette exchange (RMCE in the AAVS1 locus that allow generation of transgenic lines within 15 days with 100% efficiency and without random integrations. Using RMCE, we successfully incorporated several transgenes useful for lineage identification, cell toxicity studies, and gene overexpression to study the hepatocyte lineage. However, we observed unexpected and variable transgene expression inhibition in vitro, due to DNA methylation and other unknown mechanisms, both in undifferentiated hESC and differentiating hepatocytes. Therefore, the AAVS1 locus cannot be considered a universally safe harbor locus for reliable transgene expression in vitro, and using it for transgenesis in hPSC will require careful assessment of the function of individual transgenes.

  5. A Mycobacterium avium subsp. paratuberculosis predicted serine protease is associated with acid stress and intraphagosomal survival

    Directory of Open Access Journals (Sweden)

    Abirami Kugadas

    2016-08-01

    Full Text Available AbstractThe ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP, the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophage and MAC-T cells and coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc2 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increase bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5 conditions. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted.

  6. An investigation into the applicability of the semiempirical method PM7 for modeling the catalytic mechanism in the enzyme chymotrypsin.

    Science.gov (United States)

    Stewart, James J P

    2017-05-01

    The catalytic cycle for the serine protease α-chymotrypsin was investigated in an attempt to determine the suitability of using the semiempirical method PM7 in the program MOPAC for investigating enzyme-catalyzed reactions. All six classical intermediates were modeled using standard methods, and were characterized as stable minima on the potential energy surface. Using a modified saddle point optimization method, five transition states were located and verified both by vibrational and by intrinsic reaction coordinate analysis. Some individual features, such as the hydrogen bonds in the oxyanion hole, the nature of various electrostatic interactions, and the role of Met192, were examined. This involved designing and running computational experiments to model mutations that would allow features of interest, in particular the energies involved, to be isolated. Three features within the enzyme were examined in detail: the reaction site itself, where covalent bonds were made and broken, the electrostatic effects of the buried aspartate anion, a passive but essential component of the catalytic triad, and the oxyanion hole, where hydrogen bonds help stabilize charged intermediates. With one minor exception, all phenomena investigated agreed with previously-reported descriptions. This result, along with the fact that all the techniques used were relatively straightforward, leads to the recommendation that PM7 and related methods, such as PM6-D3H4, are appropriate for modeling similar enzyme-catalyzed reactions. Graphical abstract Fifth of six transition states, showing water splitting into hydroxyl anion and a proton, to form the second tetrahedral intermediate and histidinium ion. Atoms of the water molecule involved in the hydrolysis are indicated by halos.

  7. Progress in catalytic naphtha reforming process: A review

    International Nuclear Information System (INIS)

    Rahimpour, Mohammad Reza; Jafari, Mitra; Iranshahi, Davood

    2013-01-01

    Catalytic naphtha reforming process is a vital process for refineries due to the production of high-octane components, which is intensely demanded in our modern life. The significance of this industrial process induced researchers to investigate different aspects of catalytic naphtha reforming process intensively. Some of the investigators try to improve this process by representing more effective catalysts, while others try to elucidate its kinetic and deactivation mechanisms and design more efficient reactor setups. The amount of these established papers is so much that may confuse some of the researchers who want to find collective information about catalytic naphtha reforming process. In the present paper, the published studies from 1949 until now are categorized into three main groups including finding suitable catalyst, revealing appropriate kinetic and deactivation model, and suggesting efficient reactor configuration and mode of operation. These studies are reviewed separately, and a suitable reference is provided for those who want to have access to generalized information about catalytic naphtha reforming process. Finally, various suggestions for revamping the catalytic naphtha reforming process have been proposed as a guideline for further investigations

  8. Enhancement of catalytic efficiency of enzymes through exposure to anhydrous organic solvent at 70 degrees C. Three-dimensional structure of a treated serine proteinase at 2.2 A resolution.

    Science.gov (United States)

    Gupta, M N; Tyagi, R; Sharma, S; Karthikeyan, S; Singh, T P

    2000-05-15

    The enzyme behavior in anhydrous media has important applications in biotechnology. So far chemical modifications and protein engineering have been used to alter the catalytic power of the enzymes. For the first time, it is demonstrated that an exposure of enzyme to anhydrous organic solvents at optimized high temperature enhances its catalytic power through local changes at the binding region. Six enzymes: proteinase K, wheat germ acid phosphatase, alpha-amylase, beta-glucosidase, chymotrypsin and trypsin have been exposed to acetonitrile at 70 degrees C for three hours. The activities of these enzymes were found to be considerably enhanced. In order to understand the basis of this change in the activity of these enzymes, the structure of one of these treated enzymes, proteinase K has been analyzed in detail using X-ray diffraction method. The overall structure of the enzyme is similar to the native structure in aqueous environment. The hydrogen bonding system of the catalytic triad is intact after the treatment. However, the water structure in the substrate binding site undergoes some rearrangement as some of the water molecules are either displaced or completely absent. The most striking observation concerning the water structure pertains to the complete deletion of the water molecule which occupied the position at the so-called oxyanion hole in the active site of the native enzyme. Three acetonitrile molecules were found in the present structure. All the acetonitrile molecules are located in the recognition site. The sites occupied by acetonitrile molecules are independent of water molecules. The acetonitrile molecules are involved in extensive interactions with the protein atoms. All of them are interlinked through water molecules. The methyl group of one of the acetonitrile molecules (CCN1) interacts simultaneously with the hydrophobic side chains of Leu-96, Ile-107, and Leu-133. The development of such a hydrophobic environment at the recognition site

  9. Catalytically favorable surface patterns in Pt-Au nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2013-01-01

    Motivated by recent experimental demonstrations of novel PtAu nanoparticles with highly enhanced catalytic properties, we present a systematic theoretical study that explores principal catalytic indicators as a function of the particle size

  10. Catalytic Aminohalogenation of Alkenes and Alkynes.

    Science.gov (United States)

    Chemler, Sherry R; Bovino, Michael T

    2013-06-07

    Catalytic aminohalogenation methods enable the regio- and stereoselective vicinal difunctionalization of alkynes, allenes and alkenes with amine and halogen moieties. A range of protocols and reaction mechanisms including organometallic, Lewis base, Lewis acid and Brønsted acid catalysis have been disclosed, enabling the regio- and stereoselective synthesis of halogen-functionalized acyclic amines and nitrogen heterocycles. Recent advances including aminofluorination and catalytic enantioselective aminohalogenation reactions are summarized in this review.

  11. Interaction of protein C inhibitor with the type II transmembrane serine protease enteropeptidase.

    Directory of Open Access Journals (Sweden)

    Thomas A Prohaska

    Full Text Available The serine protease inhibitor protein C inhibitor (PCI is expressed in many human tissues and exhibits broad protease reactivity. PCI binds glycosaminoglycans and certain phospholipids, which modulate its inhibitory activity. Enteropeptidase (EP is a type II transmembrane serine protease mainly found on the brush border membrane of epithelial cells in the duodenum, where it activates trypsinogen to initiate the digestion of food proteins. Some active EP is also present in duodenal fluid and has been made responsible for causing pancreatitis in case of duodeno-pancreatic reflux. Together with its substrate trypsinogen, EP is furthermore present in the epidermis and in some cancer cells. In this report, we show that PCI inhibited EP with an apparent 2nd order rate constant of 4.48 × 10(4 M(-1 s(-1. Low molecular weight (LMWH and unfractionated heparin (UFH slightly reduced the inhibitory effect of PCI. The SI (stoichiometry of inhibition value for the inhibition of EP by PCI was 10.8 in the absence and 17.9 in the presence of UFH (10 U/ml. By inhibiting trypsin, chymotrypsin, and additionally EP, PCI might play a role in the protection of the pancreas from autodigestion. Furthermore the interaction of PCI with EP may influence the regulation of epithelial differentiation.

  12. Identification and activity of a lower eukaryotic serine proteinase inhibitor (serpin) from Cyanea capillata: analysis of a jellyfish serpin, jellypin.

    Science.gov (United States)

    Cole, Elisabeth B; Miller, David; Rometo, David; Greenberg, Robert M; Brömme, Dieter; Cataltepe, Sule; Pak, Stephen C; Mills, David R; Silverman, Gary A; Luke, Cliff J

    2004-09-21

    Delineating the phylogenetic relationships among members of a protein family can provide a high degree of insight into the evolution of domain structure and function relationships. To identify an early metazoan member of the high molecular weight serine proteinase inhibitor (serpin) superfamily, we initiated a cDNA library screen of the cnidarian, Cyanea capillata. We identified one serpin cDNA encoding for a full-length serpin, jellypin. Phylogenetic analysis using the deduced amino acid sequence showed that jellypin was most similar to the platyhelminthe Echinococcus multiocularis serpin and the clade P serpins, suggesting that this serpin evolved approximately 1000 million years ago (MYA). Modeling of jellypin showed that it contained all the functional elements of an inhibitory serpin. In vitro biochemical analysis confirmed that jellypin was an inhibitor of the S1 clan SA family of serine proteinases. Analysis of the interactions between the human serine proteinases, chymotrypsin, cathepsin G, and elastase, showed that jellypin inhibited these enzymes in the classical serpin manner, forming a SDS stable enzyme/inhibitor complex. These data suggest that the coevolution of serpin structure and inhibitory function date back to at least early metazoan evolution, approximately 1000 MYA.

  13. Crystallization and preliminary crystallographic analysis of two Streptococcus agalactiae proteins: the family II inorganic pyrophosphatase and the serine/threonine phosphatase

    International Nuclear Information System (INIS)

    Rantanen, Mika K.; Lehtiö, Lari; Rajagopal, Lakshmi; Rubens, Craig E.; Goldman, Adrian

    2006-01-01

    Two S. agalactiae proteins, the inorganic pyrophosphatase and the serine/threonine phosphatase, were crystallized and diffraction data were collected and processed from these crystals. The data from the two protein crystals extended to 2.80 and 2.65 Å, respectively. Streptococcus agalactiae, which infects human neonates and causes sepsis and meningitis, has recently been shown to possess a eukaryotic-like serine/threonine protein phosphorylation signalling cascade. Through their target proteins, the S. agalactiae Ser/Thr kinase and Ser/Thr phosphatase together control the growth as well as the morphology and virulence of this organism. One of the targets is the S. agalactiae family II inorganic pyrophosphatase. The inorganic pyrophosphatase and the serine/threonine phosphatase have therefore been purified and crystallized and diffraction data have been collected from their crystals. The data were processed using XDS. The inorganic pyrosphosphatase crystals diffracted to 2.80 Å and the Ser/Thr phosphatase crystals to 2.65 Å. Initial structure-solution experiments indicate that structure solution will be successful in both cases. Solving the structure of the proteins involved in this cascade is the first step towards understanding this phenomenon in atomic detail

  14. Crystallization and preliminary crystallographic analysis of two Streptococcus agalactiae proteins: the family II inorganic pyrophosphatase and the serine/threonine phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Rantanen, Mika K.; Lehtiö, Lari [Institute of Biotechnology, University of Helsinki, PO Box 65, FIN-00014, Helsinki (Finland); Rajagopal, Lakshmi; Rubens, Craig E. [Division of Infectious Disease, Children’s Hospital and Regional Medical Center, Seattle, Washington 98105 (United States); Goldman, Adrian, E-mail: adrian.goldman@helsinki.fi [Institute of Biotechnology, University of Helsinki, PO Box 65, FIN-00014, Helsinki (Finland)

    2006-09-01

    Two S. agalactiae proteins, the inorganic pyrophosphatase and the serine/threonine phosphatase, were crystallized and diffraction data were collected and processed from these crystals. The data from the two protein crystals extended to 2.80 and 2.65 Å, respectively. Streptococcus agalactiae, which infects human neonates and causes sepsis and meningitis, has recently been shown to possess a eukaryotic-like serine/threonine protein phosphorylation signalling cascade. Through their target proteins, the S. agalactiae Ser/Thr kinase and Ser/Thr phosphatase together control the growth as well as the morphology and virulence of this organism. One of the targets is the S. agalactiae family II inorganic pyrophosphatase. The inorganic pyrophosphatase and the serine/threonine phosphatase have therefore been purified and crystallized and diffraction data have been collected from their crystals. The data were processed using XDS. The inorganic pyrosphosphatase crystals diffracted to 2.80 Å and the Ser/Thr phosphatase crystals to 2.65 Å. Initial structure-solution experiments indicate that structure solution will be successful in both cases. Solving the structure of the proteins involved in this cascade is the first step towards understanding this phenomenon in atomic detail.

  15. A novel tetratricopeptide repeat (TPR containing PP5 serine/threonine protein phosphatase in the malaria parasite, Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Adams Brian

    2001-11-01

    Full Text Available Abstract Background The malarial parasite, Plasmodium falciparum (Pf, is responsible for nearly 2 million deaths worldwide. However, the mechanisms of cellular signaling in the parasite remain largely unknown. Recent discovery of a few protein kinases and phosphatases point to a thriving reversible phosphorylation system in the parasite, although their function and regulation need to be determined. Results We provide biochemical and sequence evidence for a protein serine/threonine phosphatase type PP5 in Plasmodium falciparum, and named it PfPP5. The 594-amino acid polypeptide was encoded by a 1785 nucleotide long intronless gene in the parasite. The recombinant protein, expressed in bacteria, was indistinguishable from native PfPP5. Sequencing comparison indicated that the extra-long N-terminus of PfPP5 outside the catalytic core contained four tetratricopeptide repeats (TPRs, compared to three such repeats in other PP5 phosphatases. The PfPP5 N-terminus was required for stimulation of the phosphatase activity by polyunsaturated fatty acids. Co-immunoprecipitation demonstrated an interaction between native PfPP5 and Pf heat shock protein 90 (hsp90. PfPP5 was expressed in all the asexual erythrocytic stages of the parasite, and was moderately sensitive to okadaic acid. Conclusions This is the first example of a TPR-domain protein in the Apicomplexa family of parasites. Since TPR domains play important roles in protein-protein interaction, especially relevant to the regulation of PP5 phosphatases, PfPP5 is destined to have a definitive role in parasitic growth and signaling pathways. This is exemplified by the interaction between PfPP5 and the cognate chaperone hsp90.

  16. Antiviral activity of a serine protease from the digestive juice of Bombyx mori larvae against nucleopolyhedrovirus

    International Nuclear Information System (INIS)

    Nakazawa, Hiroshi; Tsuneishi, Eiko; Ponnuvel, Kangayam M.; Furukawa, Seiichi; Asaoka, Ai; Tanaka, Hiromitsu; Ishibashi, Jun; Yamakawa, Minoru

    2004-01-01

    A protein showing strong antiviral activity against Bombyx mori nucleopolyhedrovirus (BmNPV) was purified from the digestive juice of B. mori larvae. The molecular mass of this protein was 24 271 Da. Partial N-terminal amino acid sequence of the protein was determined and cDNA was cloned based on the amino acid sequence. A homology search of the deduced amino acid sequence of the cDNA showed 94% identity with B. mori serine protease so the protein was designated B. mori serine protease-2 (BmSP-2). Analysis of BmSP-2 gene expression showed that this gene is expressed in the midgut but not in other tissues. In addition, BmSP-2 gene was shown to not be expressed in the molting and wandering stages, indicating that the gene is hormonally regulated. Our results suggest that BmSP-2, an insect digestive enzyme, can be a potential antiviral factor against BmNPV at the initial site of viral infection

  17. Molecular cloning, expression and characterization of a serine proteinase inhibitor gene from Entamoeba histolytica.

    Science.gov (United States)

    Riahi, Yael; Siman-Tov, Rama; Ankri, Serge

    2004-02-01

    Serine proteinase inhibitors (serpins) are irreversible suicide inhibitors of proteinases that regulate a wide range of biological processes, including pathogen evasion of the host defence system. We report the cloning and characterization of a gene encoding a serpin from the protozoan parasite Entamoeba histolytica (Ehserp) that may function in this manner. The protein encoded by Ehserp contains 371 amino acids with a predicted mass of 42.6 kDa. Antibodies to a 42 kDa recombinant Ehserp react specifically with two bands of 42 and 49 kDa in trophozoite extracts. Ehserp has a cytoplasmic localization and is secreted by trophozoites incubated in the presence of mammalian cells, but not by resting trophozoites. A panel of mammalian serine proteinases was screened, but none of them was inhibited by the recombinant Ehserp. In contrast, the 49 kDa Ehserp present in the secretion product (SP) of activated macrophages interacted with human neutrophil cathepsin G to form a complex resistant to sodium dodecyl sulphate. We discuss the nature of the 42 and 49 kDa Ehserp and the possible roles that Ehserp may play in the survival of the parasite inside the host.

  18. Two novel pyrrolooxazole pigments formed by the Maillard reaction between glucose and threonine or serine.

    Science.gov (United States)

    Noda, Kyoko; Murata, Masatsune

    2017-02-01

    Pyrrolothiazolate formed by the Maillard reaction between l-cysteine and d-glucose has a pyrrolothiazole skeleton as a chromophore. We searched for a Maillard pigment having a pyrrolooxazole skeleton formed from l-threonine or l-serine instead of l-cysteine in the presence of d-glucose. As a result, two novel yellow pigments, named pyrrolooxazolates A and B, were isolated from model solutions of the Maillard reaction containing l-threonine and d-glucose, and l-serine and d-glucose, respectively, and identified as (2R,3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-2,5,7a-trimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid and (3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-5,7a-dimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid by instrumental analyses. These compounds were pyrrolooxazole derivatives carrying a carboxy group, and showed the absorption maxima at 300-360 nm under acidic and neutral conditions and at 320-390 nm under alkaline conditions.

  19. Novel Metal Nanomaterials and Their Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Jiaqing Wang

    2015-09-01

    Full Text Available In the rapidly developing areas of nanotechnology, nano-scale materials as heterogeneous catalysts in the synthesis of organic molecules have gotten more and more attention. In this review, we will summarize the synthesis of several new types of noble metal nanostructures (FePt@Cu nanowires, Pt@Fe2O3 nanowires and bimetallic Pt@Ir nanocomplexes; Pt-Au heterostructures, Au-Pt bimetallic nanocomplexes and Pt/Pd bimetallic nanodendrites; Au nanowires, CuO@Ag nanowires and a series of Pd nanocatalysts and their new catalytic applications in our group, to establish heterogeneous catalytic system in “green” environments. Further study shows that these materials have a higher catalytic activity and selectivity than previously reported nanocrystal catalysts in organic reactions, or show a superior electro-catalytic activity for the oxidation of methanol. The whole process might have a great impact to resolve the energy crisis and the environmental crisis that were caused by traditional chemical engineering. Furthermore, we hope that this article will provide a reference point for the noble metal nanomaterials’ development that leads to new opportunities in nanocatalysis.

  20. Molecular cloning, sequence and structural analysis of dehairing Mn(2+) dependent alkaline serine protease (MASPT) of Bacillus pumilus TMS55.

    Science.gov (United States)

    Ibrahim, Kalibulla Syed; Muniyandi, Jeyaraj; Pandian, Shunmugiah Karutha

    2011-10-01

    Leather industries release a large amount of pollution-causing chemicals which creates one of the major industrial pollutions. The development of enzyme based processes as a potent alternative to pollution-causing chemicals is useful to overcome this issue. Proteases are enzymes which have extensive applications in leather processing and in several bioremediation processes due to their high alkaline protease activity and dehairing efficacy. In the present study, we report cloning, characterization of a Mn2+ dependent alkaline serine protease gene (MASPT) of Bacillus pumilus TMS55. The gene encoding the protease from B. pumilus TMS55 was cloned and its nucleotide sequence was determined. This gene has an open reading frame (ORF) of 1,149 bp that encodes a polypeptide of 383 amino acid residues. Our analysis showed that this polypeptide is composed of 29 residues N-terminal signal peptide, a propeptide of 79 residues and a mature protein of 275 amino acids. We performed bioinformatics analysis to compare MASPT enzyme with other proteases. Homology modeling was employed to model three dimensional structure for MASPT. Structural analysis showed that MASPT structure is composed of nine α-helices and nine β-strands. It has 3 catalytic residues and 14 metal binding residues. Docking analysis showed that residues S223, A260, N263, T328 and S329 interact with Mn2+. This study allows initial inferences about the structure of the protease and will allow the rational design of its derivatives for structure-function studies and also for further improvement of the enzyme.

  1. Viral kinetics in patients with chronic hepatitis C treated with the serine protease inhibitor BILN 2061

    NARCIS (Netherlands)

    Herrmann, Eva; Zeuzem, Stefan; Sarrazin, Christoph; Hinrichsen, Holger; Benhamou, Yves; Manns, Michael P.; Reiser, Markus; Reesink, Henk; Calleja, José L.; Forns, Xavier; Steinmann, Gerhard G.; Nehmiz, Gerhard

    2006-01-01

    We analysed viral kinetics from a 2-day treatment with BILN 2061, a serine protease inhibitor of hepatitis C virus, in patients chronically infected with genotype 1 hepatitis C virus. The efficiency (E), describing inhibition of viral production, was above 99.45% in all patients with minor or

  2. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  3. Modeling and simulation of heterogeneous catalytic processes

    CERN Document Server

    Dixon, Anthony

    2014-01-01

    Heterogeneous catalysis and mathematical modeling are essential components of the continuing search for better utilization of raw materials and energy, with reduced impact on the environment. Numerical modeling of chemical systems has progressed rapidly due to increases in computer power, and is used extensively for analysis, design and development of catalytic reactors and processes. This book presents reviews of the state-of-the-art in modeling of heterogeneous catalytic reactors and processes. Reviews by leading authorities in the respective areas Up-to-date reviews of latest techniques in modeling of catalytic processes Mix of US and European authors, as well as academic/industrial/research institute perspectives Connections between computation and experimental methods in some of the chapters.

  4. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  5. IDENTIFICATION OF SERINE CARBAPENEMASE AND METALLOCARBAPENEMASE ENZYMES IN PSEUDOMONAS AERUGINOSA IN GEMS MEDICAL COLLEGE, RAGOLU, SRIKAKULAM

    Directory of Open Access Journals (Sweden)

    Radhika

    2016-06-01

    Full Text Available Various carbapenems have been reported in Pseudomonas aeruginosa such as VIM, NDM & OXA-48, etc. In addition, carbapenemase producers are usually associated with many other non–β-lactam resistance determinants which give rise to multidrug and pan drug resistant isolates. Detection of these enzymes in infected patients and in carriers are the two main approaches for prevention of their spread. Potential carbapenemase producers are currently screened first by susceptibility testing, using breakpoint values for carbapenems. However, many carbapenemase producers do not confer obvious resistance levels to carbapenems. So there is need for Laboratories to search for carbapenemase producers. In such instance, phenotypic based test such as Modified Hodge Test (MHT is very much useful in confirming in vitro production of carbapenemase enzymes. But this test does not differentiate serine carbapenemase enzyme (i.e. Ambler class A & C from metallocarbapenemase (i.e. Ambler class B. To differentiate these two enzymes, MHT positive isolates can be subjected to Disc Synergy test. These two tests are highly sensitive and specific and adaptable to any laboratory in the world. Out of 100 ceftazidime resistant Pseudomonas aeruginosa, 75(75% were sensitive, 7(7% were intermediate sensitive and 18(18% were resistant to imipenem. When the 18 imipenem resistant strains were subjected to Modified Hodge test, 15 gave positive results. When the 15 MHT positive strains subjected to disc synergy test, 8 were positive and 7 were negative showing that 8 were producing metallocarbapenemases and 7 were producing serine carbapenemases. Out of 7 intermediately imipenem sensitive isolates, 2 were producing metallocarbapenemase and 3 were producing serine carbapenemase. Hence, total number of imipenem resistant Pseudomonas aeruginosa isolates were 23.

  6. Characterization of DegQVh, a serine protease and a protective immunogen from a pathogenic Vibrio harveyi strain.

    Science.gov (United States)

    Zhang, Wei-wei; Sun, Kun; Cheng, Shuang; Sun, Li

    2008-10-01

    Vibrio harveyi is an important marine pathogen that can infect a number of aquaculture species. V. harveyi degQ (degQ(Vh)), the gene encoding a DegQ homologue, was cloned from T4, a pathogenic V. harveyi strain isolated from diseased fish. DegQ(Vh) was closely related to the HtrA family members identified in other Vibrio species and could complement the temperature-sensitive phenotype of an Escherichia coli strain defective in degP. Expression of degQ(Vh) in T4 was modulated by temperature, possibly through the sigma(E)-like factor. Enzymatic analyses demonstrated that the recombinant DegQ(Vh) protein expressed in and purified from E. coli was an active serine protease whose activity required the integrity of the catalytic site and the PDZ domains. The optimal temperature and pH of the recombinant DegQ(Vh) protein were 50 degrees C and pH 8.0. A vaccination study indicated that the purified recombinant DegQ(Vh) was a protective immunogen that could confer protection upon fish against infection by V. harveyi. In order to improve the efficiency of DegQ(Vh) as a vaccine, a genetic construct in the form of the plasmid pAQ1 was built, in which the DNA encoding the processed DegQ(Vh) protein was fused with the DNA encoding the secretion region of AgaV, an extracellular beta-agarase. The E. coli strain harboring pAQ1 could express and secrete the chimeric DegQ(Vh) protein into the culture supernatant. Vaccination of fish with viable E. coli expressing chimeric degQ(Vh) significantly (P < 0.001) enhanced the survival of fish against V. harveyi challenge, which was possibly due to the relatively prolonged exposure of the immune system to the recombinant antigen produced constitutively, albeit at a gradually decreasing level, by the carrier strain.

  7. A novel Cre recombinase imaging system for tracking lymphotropic virus infection in vivo.

    Directory of Open Access Journals (Sweden)

    Bernadette M Dutia

    2009-08-01

    Full Text Available Detection, isolation, and identification of individual virus infected cells during long term infection are critical to advance our understanding of mechanisms of pathogenesis for latent/persistent viruses. However, current approaches to study these viruses in vivo have been hampered by low sensitivity and effects of cell-type on expression of viral encoded reporter genes. We have designed a novel Cre recombinase (Cre-based murine system to overcome these problems, and thereby enable tracking and isolation of individual in vivo infected cells.Murine gammaherpesvirus 68 (MHV-68 was used as a prototypic persistent model virus. A Cre expressing recombinant virus was constructed and characterised. The virus is attenuated both in lytic virus replication, producing ten-fold lower lung virus titres than wild type virus, and in the establishment of latency. However, despite this limitation, when the sEGFP7 mouse line containing a Cre-activated enhanced green fluorescent protein (EGFP was infected with the Cre expressing virus, sites of latent and persistent virus infection could be identified within B cells and macrophages of the lymphoid system on the basis of EGFP expression. Importantly, the use of the sEGFP7 mouse line which expresses high levels of EGFP allowed individual virus positive cells to be purified by FACSorting. Virus gene expression could be detected in these cells. Low numbers of EGFP positive cells could also be detected in the bone marrow.The use of this novel Cre-based virus/mouse system allowed identification of individual latently infected cells in vivo and may be useful for the study and long-term monitoring of other latent/persistent virus infections.

  8. Kinetic catalytic studies of scorpion's hemocyanin

    International Nuclear Information System (INIS)

    Queinnec, E.; Vuillaume, M.; Gardes-Albert, M.; Ferradini, C.; Ducancel, F.

    1991-01-01

    Hemocyanins are copper proteins which function as oxygen carriers in the haemolymph of Molluscs and Arthropods. They possess enzymatic properties: peroxidatic and catalatic activities, although they have neither iron nor porphyrin ring at the active site. The kinetics of the catalytic reaction is described. The reaction of superoxide anion with hemocyanin has been studied using pulse radiolysis at pH 9. The catalytic rate constant is 3.5 X 10 7 mol -1 .l.s -1 [fr

  9. The solvation of L-serine in mixtures of water with some aprotic solvents at 298.15 K

    Science.gov (United States)

    Mezhevoi, I. N.; Badelin, V. G.

    2009-03-01

    The integral enthalpies of solution Δsol H m of L-serine in mixtures of water with acetonitrile, 1,4-dioxane, dimethylsulfoxide (DMSO), and acetone were measured by solution calorimetry at organic component concentrations up to 0.31 mole fractions. The standard enthalpies of solution (Δsol H°), transfer (Δtr H°), and solvation (Δsolv H°) of L-serine from water into mixed solvents were calculated. The dependences of Δsol H°, Δsolv H°, and Δtr H° on the composition of aqueous-organic solvents contained extrema. The calculated enthalpy coefficients of pair interactions of the amino acid with cosolvent molecules were positive and increased in the series acetonitrile, 1,4-dioxane, DMSO, acetone. The results obtained were interpreted from the point of view of various types of interactions in solutions and the influence of the nature of organic solvents on the thermochemical characteristics of solutions.

  10. Tunable preparation of ruthenium nanoparticles with superior size-dependent catalytic hydrogenation properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuan; Luo, Yaodong; Yang, Xuan; Yang, Yaxin; Song, Qijun, E-mail: qsong@jiangnan.edu.cn

    2017-06-15

    Highlights: • A facile and efficient strategy is firstly developed for the synthesis of Ru NPs. • Ru NPs are stable and uniform with the controllable sizes from 2.6 to 51.5 nm. • Ru NPs exhibit size-dependent and superior catalytic hydrogenation activity. - Abstract: Ruthenium (Ru) featured with an unusual catalytic behavior is of great significance in several heterogeneous and electro-catalytic reactions. The preparation of tractable Ru nanocatalysts and the building of highly active catalytic system at ambient temperature remains a grand challenge. Herein, a facile strategy is developed for the controllable preparation of Ru nanoparticles (NPs) with the sizes ranging from 2.6 to 51.5 nm. Ru NPs show superior size-dependent catalytic performance with the best kinetic rate constant as high as −1.52 min{sup −1}, which could far surpass the other traditional noble metals. Ru NPs exert exceedingly efficient low-temperature catalytic activity and good recyclability in the catalytic reduction of nitroaromatic compounds (NACs) and azo dyes. The developed catalytic system provides a distinguishing insight for the artificial preparation of Ru NPs with desired sizes, and allows for the development of rational design rules for exploring catalysts with superior catalytic performances, potentially broadening the applications of metallic NP-enabled catalytic analysis.

  11. Orion EFT-1 Catalytic Tile Experiment Overview and Flight Measurements

    Science.gov (United States)

    Salazar, Giovanni; Amar, Adam; Hyatt, Andrew; Rezin, Marc D.

    2016-01-01

    This paper describes the design and results of a surface catalysis flight experiment flown on the Orion Multipurpose Crew Vehicle during Exploration Flight Test 1 (EFT1). Similar to previous Space Shuttle catalytic tile experiments, the present test consisted of a highly catalytic coating applied to an instrumented TPS tile. However, the present catalytic tile experiment contained significantly more instrumentation in order to better resolve the heating overshoot caused by the change in surface catalytic efficiency at the interface between two distinct materials. In addition to collecting data with unprecedented spatial resolution of the "overshoot" phenomenon, the experiment was also designed to prove if such a catalytic overshoot would be seen in turbulent flow in high enthalpy regimes. A detailed discussion of the results obtained during EFT1 is presented, as well as the challenges associated with data interpretation of this experiment. Results of material testing carried out in support of this flight experiment are also shown. Finally, an inverse heat conduction technique is employed to reconstruct the flight environments at locations upstream and along the catalytic coating. The data and analysis presented in this work will greatly contribute to our understanding of the catalytic "overshoot" phenomenon, and have a significant impact on the design of future spacecraft.

  12. Networks of high mutual information define the structural proximity of catalytic sites: implications for catalytic residue identification.

    Directory of Open Access Journals (Sweden)

    Cristina Marino Buslje

    Full Text Available Identification of catalytic residues (CR is essential for the characterization of enzyme function. CR are, in general, conserved and located in the functional site of a protein in order to attain their function. However, many non-catalytic residues are highly conserved and not all CR are conserved throughout a given protein family making identification of CR a challenging task. Here, we put forward the hypothesis that CR carry a particular signature defined by networks of close proximity residues with high mutual information (MI, and that this signature can be applied to distinguish functional from other non-functional conserved residues. Using a data set of 434 Pfam families included in the catalytic site atlas (CSA database, we tested this hypothesis and demonstrated that MI can complement amino acid conservation scores to detect CR. The Kullback-Leibler (KL conservation measurement was shown to significantly outperform both the Shannon entropy and maximal frequency measurements. Residues in the proximity of catalytic sites were shown to be rich in shared MI. A structural proximity MI average score (termed pMI was demonstrated to be a strong predictor for CR, thus confirming the proposed hypothesis. A structural proximity conservation average score (termed pC was also calculated and demonstrated to carry distinct information from pMI. A catalytic likeliness score (Cls, combining the KL, pC and pMI measures, was shown to lead to significantly improved prediction accuracy. At a specificity of 0.90, the Cls method was found to have a sensitivity of 0.816. In summary, we demonstrate that networks of residues with high MI provide a distinct signature on CR and propose that such a signature should be present in other classes of functional residues where the requirement to maintain a particular function places limitations on the diversification of the structural environment along the course of evolution.

  13. Networks of high mutual information define the structural proximity of catalytic sites: implications for catalytic residue identification.

    Science.gov (United States)

    Marino Buslje, Cristina; Teppa, Elin; Di Doménico, Tomas; Delfino, José María; Nielsen, Morten

    2010-11-04

    Identification of catalytic residues (CR) is essential for the characterization of enzyme function. CR are, in general, conserved and located in the functional site of a protein in order to attain their function. However, many non-catalytic residues are highly conserved and not all CR are conserved throughout a given protein family making identification of CR a challenging task. Here, we put forward the hypothesis that CR carry a particular signature defined by networks of close proximity residues with high mutual information (MI), and that this signature can be applied to distinguish functional from other non-functional conserved residues. Using a data set of 434 Pfam families included in the catalytic site atlas (CSA) database, we tested this hypothesis and demonstrated that MI can complement amino acid conservation scores to detect CR. The Kullback-Leibler (KL) conservation measurement was shown to significantly outperform both the Shannon entropy and maximal frequency measurements. Residues in the proximity of catalytic sites were shown to be rich in shared MI. A structural proximity MI average score (termed pMI) was demonstrated to be a strong predictor for CR, thus confirming the proposed hypothesis. A structural proximity conservation average score (termed pC) was also calculated and demonstrated to carry distinct information from pMI. A catalytic likeliness score (Cls), combining the KL, pC and pMI measures, was shown to lead to significantly improved prediction accuracy. At a specificity of 0.90, the Cls method was found to have a sensitivity of 0.816. In summary, we demonstrate that networks of residues with high MI provide a distinct signature on CR and propose that such a signature should be present in other classes of functional residues where the requirement to maintain a particular function places limitations on the diversification of the structural environment along the course of evolution.

  14. Trypsin- and Chymotrypsin-Like Serine Proteases in Schistosoma mansoni - 'The Undiscovered Country'

    Czech Academy of Sciences Publication Activity Database

    Horn, Martin; Fajtová, Pavla; Arreola, L. R.; Ulrychová, Lenka; Bartošová-Sojková, Pavla; Franta, Zdeněk; Protasio, A. V.; Opavský, David; Vondrášek, Jiří; McKerrow, J. H.; Mareš, Michael; Caffrey, C. R.; Dvořák, Jan

    2014-01-01

    Roč. 8, č. 3 (2014), e2766/1-e2766/13 ISSN 1935-2735 R&D Projects: GA ČR(CZ) GAP302/11/1481; GA MŠk(CZ) ME10011 EU Projects: European Commission(XE) 248642 - SCHISTOSOMA PROTEASE Institutional support: RVO:61388963 ; RVO:68378050 ; RVO:60077344 Keywords : schistosomiasis * blood fluke * serine protease Subject RIV: CE - Biochemistry; EB - Genetics ; Molecular Biology (UMG-J); FN - Epidemiology, Contagious Diseases ; Clinical Immunology (BC-A) Impact factor: 4.446, year: 2014 http://www.plosntds.org/article/info%3Adoi%2F10.1371%2Fjournal.pntd.0002766

  15. Heterogeneous catalytic degradation of polyacrylamide solution | Hu ...

    African Journals Online (AJOL)

    Modified with trace metal elements, the catalytic activity of Fe2O3/Al2O3 could be changed greatly. Among various trace metal elements, Fe2O3/Al2O3 catalysts modified with Co and Cu showed great increase on catalytic activity. International Journal of Engineering, Science and Technology, Vol. 2, No. 7, 2010, pp. 110- ...

  16. Phosphorylation of the leukemic oncoprotein EVI1 on serine 196 modulates DNA binding, transcriptional repression and transforming ability.

    Directory of Open Access Journals (Sweden)

    Daniel J White

    Full Text Available The EVI1 (ecotropic viral integration site 1 gene at 3q26 codes for a transcriptional regulator with an essential role in haematopoiesis. Overexpression of EVI1 in acute myeloid leukaemia (AML is frequently associated with 3q26 rearrangements and confers extremely poor prognosis. EVI1 mediates transcriptional regulation, signalling, and epigenetic modifications by interacting with DNA, proteins and protein complexes. To explore to what extent protein phosphorylation impacts on EVI1 functions, we analysed endogenous EVI1 protein from a high EVI1 expressing Fanconi anaemia (FA derived AML cell line. Mass spectrometric analysis of immunoprecipitated EVI1 revealed phosphorylation at serine 196 (S196 in the sixth zinc finger of the N-terminal zinc finger domain. Mutated EVI1 with an aspartate substitution at serine 196 (S196D, which mimics serine phosphorylation of this site, exhibited reduced DNA-binding and transcriptional repression from a gene promotor selectively targeted by the N-terminal zinc finger domain. Forced expression of the S196D mutant significantly reduced EVI1 mediated transformation of Rat1 fibroblasts. While EVI1-mediated serial replating of murine haematopoietic progenitors was maintained by EVI1-S196D, this was associated with significantly higher Evi1-trancript levels compared with WT-EVI1 or EVI1-S196A, mimicking S196 non-phosphorylated EVI1. These data suggest that EVI1 function is modulated by phosphorylation of the first zinc finger domain.

  17. SHORT COMMUNICATION CATALYTIC KINETIC ...

    African Journals Online (AJOL)

    IV) catalyzes the discoloring reaction of DBS-arsenazo oxidized by potassium bromate, a new catalytic kinetic spectrophotometric method for the determination of trace titanium (IV) was developed. The linear range of the determination of ...

  18. Catalytic Kinetic Resolution of Biaryl Compounds.

    Science.gov (United States)

    Ma, Gaoyuan; Sibi, Mukund P

    2015-08-10

    Biaryl compounds with axial chirality are very common in synthetic chemistry, especially in catalysis. Axially chiral biaryls are important due to their biological activities and extensive applications in asymmetric catalysis. Thus the development of efficient enantioselective methods for their synthesis has attracted considerable attention. This Minireview discusses the progress made in catalytic kinetic resolution of biaryl compounds and chronicles significant advances made recently in catalytic kinetic resolution of biaryl scaffolds. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. synthesis, characterization, electrical and catalytic studies of some

    African Journals Online (AJOL)

    B. S. Chandravanshi

    catalytic activity of the VO(IV) and Mn(III) complexes have been tested in the epoxidation reaction of styrene ... Vanadyl sulfate pentahydrate, chromium chloride hexahydrate, anhydrous ferric ..... The catalytic oxidation of styrene gives the products styrene oxide, benzaldehyde, benzoic acid, ... bond via a radical mechanism.

  20. Malonate-based inhibitors of mammalian serine racemase: Kinetic characterization and structure-based computational study

    Czech Academy of Sciences Publication Activity Database

    Vorlová, Barbora; Nachtigallová, Dana; Jirásková-Vaníčková, Jana; Ajani, Haresh; Jansa, Petr; Řezáč, Jan; Fanfrlík, Jindřich; Otyepka, M.; Hobza, Pavel; Konvalinka, Jan; Lepšík, Martin

    2015-01-01

    Roč. 89, Jan 7 (2015), s. 189-197 ISSN 0223-5234 R&D Projects: GA ČR GBP208/12/G016 Grant - others:GA MŠk(CZ) ED2.1.00/03.0058 Program:ED Institutional support: RVO:61388963 Keywords : NMDA receptor * pyridoxal-5 '-phosphate-dependent enzyme * human/mouse serine racemase * malonate-based inhibitors * semiempirical quantum mechanical calculations Subject RIV: CE - Biochemistry Impact factor: 3.902, year: 2015

  1. Mutations in serine protease inhibitor Kazal type 1 are strongly associated with chronic pancreatitis

    OpenAIRE

    Drenth, J P H; te Morsche, R; Jansen, J B M J

    2002-01-01

    Background: Although chronic pancreatitis is associated with risk factors such as alcoholism, hyperparathyroidism, and hypertriglyceridaemia, little is known of the actual aetiology of the disease. It is thought that inappropriate activation of trypsinogen causes pancreatitis, and indeed in cases of hereditary pancreatitis mutations of cationic trypsinogen (PRSS1) have been described. As serine protease inhibitor Kazal type 1 (SPINK1) is a potent natural inhibitor of pancreatic trypsin activi...

  2. Purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis (X5B).

    Science.gov (United States)

    Ghafoori, Hossein; Askari, Mansoure; Sarikhan, Sajjad

    2016-03-01

    This study reports the purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis, strain X5B. The enzyme was purified to homogeneity by acetone precipitation, ultrafiltration and carboxymethyl (CM) cation exchange chromatography, respectively. The purified protease was a monomeric enzyme with a relative molecular mass of 48-50 kDa and it was inhibited by PMSF indicating that it is a serine-protease. The optimum pH, temperature and NaCl concentration were 9.5, 35 °C and 0.98 M, respectively. The enzyme showed a significant tolerance to salt and alkaline pH. It retained approximately 50% of activity at 2.5 M NaCl and about 70% of activity at highly alkaline pH of 11.0; therefore, it was a moderately halophilic and also can be activated by metals, especially by Ca(2+). The specific activity of the purified protease was measured to be 425.23 μmol of tyrosine/min per mg of protein using casein as a substrate. The apparent K m and V max values were 0.126 mM and 0.523 mM/min, respectively and the accurate value of k cat was obtained as 3.284 × 10(-2) s(-1). These special and important characteristics make this serine protease as valuable tool for industrial applications.

  3. CATALYTIC KINETIC SPECTROPHOTOMETRIC DETERMINATION ...

    African Journals Online (AJOL)

    Preferred Customer

    acetylchlorophosphonazo(CPApA) by hydrogen peroxide in 0.10 M phosphoric acid. A novel catalytic kinetic-spectrophotometric method is proposed for the determination of copper based on this principle. Copper(II) can be determined spectrophotometrically ...

  4. Pest protection conferred by a Beta vulgaris serine proteinase inhibitor gene.

    Directory of Open Access Journals (Sweden)

    Ann C Smigocki

    Full Text Available Proteinase inhibitors provide a means of engineering plant resistance to insect pests. A Beta vulgaris serine proteinase inhibitor gene (BvSTI was fused to the constitutive CaMV35S promoter for over-expression in Nicotiana benthamiana plants to study its effect on lepidopteran insect pests. Independently derived BvSTI transgenic tobacco T2 homozygous progeny were shown to have relatively high BvSTI gene transcript levels. BvSTI-specific polyclonal antibodies cross-reacted with the expected 30 kDA recombinant BvSTI protein on Western blots. In gel trypsin inhibitor activity assays revealed a major clear zone that corresponded to the BvSTI proteinase inhibitor that was not detected in the untransformed control plants. BvSTI-transgenic plants were bioassayed for resistance to five lepidopteran insect pests. Spodoptera frugiperda, S. exigua and Manduca sexta larvae fed BvSTI leaves had significant reductions in larval weights as compared to larvae fed on untransformed leaves. In contrast, larval weights increased relative to the controls when Heliothis virescens and Agrotis ipsilon larvae were fed on BvSTI leaves. As the larvae entered the pupal stage, pupal sizes reflected the overall larval weights. Some developmental abnormalities of the pupae and emerging moths were noted. These findings suggest that the sugar beet BvSTI gene may prove useful for effective control of several different lepidopteran insect pests in genetically modified tobacco and other plants. The sugar beet serine proteinase inhibitor may be more effective for insect control because sugar beet is cropped in restricted geographical areas thus limiting the exposure of the insects to sugar beet proteinase inhibitors and build up of non-sensitive midgut proteases.

  5. Spatial and temporal lineage analysis of a Pitx3-driven Cre-recombinase knock-in mouse model.

    Directory of Open Access Journals (Sweden)

    Marten P Smidt

    Full Text Available Development and function of mesodiencephalic dopaminergic (mdDA neurons has received a lot of scientific interest since these neurons are critically involved in neurological diseases as Parkinson and psychiatric diseases as schizophrenia, depression and attention deficit hyperactivity disorder (ADHD. The understanding of the molecular processes that lead to normal development and function of mdDA neurons has provided insight in the pathology and provided critical information on new treatment paradigms. In order to be able to study specific genetic ablation in mdDA neurons a new tools was developed that drives Cre-recombinase under the control of the Pitx3 locus. The Pitx3 gene is well known for its specific expression in mdDA neurons and is present at the onset of terminal differentiation. Analysis of newly generated Pitx3-Cre knock-in mice shows that Cre expression, measured through the activation of eYfp by removal of a "Stop" signal (LoxP-Stop-LoxP-eYfp reporter mouse, is present at the onset of terminal differentiation and mimics closely the native Pitx3 expression domain. In conclusion, we present here a new Cre-driver mouse model to be used in the restricted ablation of interesting genes in mdDA neurons in order to improve our understanding of the underlying molecular programming.

  6. Bimetallic Nanoparticles in Alternative Solvents for Catalytic Purposes

    Directory of Open Access Journals (Sweden)

    Trung Dang-Bao

    2017-07-01

    Full Text Available Bimetallic nanoparticles represent attractive catalytic systems thanks to the synergy between both partners at the atomic level, mainly induced by electronic effects which in turn are associated with the corresponding structures (alloy, core-shell, hetero-dimer. This type of engineered material can trigger changes in the kinetics of catalyzed processes by variations on the electrophilicity/nucleophilicity of the metal centers involved and also promote cooperative effects to foster organic transformations, including multi-component and multi-step processes. Solvents become a crucial factor in the conception of catalytic processes, not only due to their environmental impact, but also because they can preserve the bimetallic structure during the catalytic reaction and therefore increase the catalyst life-time. In this frame, the present review focuses on the recent works described in the literature concerning the synthesis of bimetallic nanoparticles in non-conventional solvents, i.e., other than common volatile compounds, for catalytic applications.

  7. Molecular mechanism of serine/threonine protein phosphatase 1 (PP1cα-PP1r7) in spermatogenesis of Toxocara canis.

    Science.gov (United States)

    Ma, Guang Xu; Zhou, Rong Qiong; Song, Zhen Hui; Zhu, Hong Hong; Zhou, Zuo Yong; Zeng, Yuan Qin

    2015-09-01

    Toxocariasis is one of the most important, but neglected, zoonoses, which is mainly caused by Toxocara canis. To better understand the role of serine/threonine protein phosphatase 1 (PP1) in reproductive processes of male adult T. canis, differential expression analysis was used to reveal the profiles of PP1 catalytic subunit α (PP1cα) gene Tc-stp-1 and PP1 regulatory subunit 7 (PP1r7) gene TcM-1309. Indirect fluorescence immunocytochemistry was carried out to determine the subcellular distribution of PP1cα. Double-stranded RNA interference (RNAi) assays were employed to illustrate the function and mechanism of PP1cα in male adult reproduction. Real-time quantitative PCR (qPCR) showed transcriptional consistency of Tc-stp-1 and TcM-1309 in sperm-producing germline tissues and localization research showed cytoplasmic distribution of PP1cα in sf9 cells, which indicated relevant involvements of PP1cα and PP1r7 in spermatogenesis. Moreover, spatiotemporal transcriptional differences of Tc-stp-1 were determined by gene knockdown analysis, which revealed abnormal morphologies and blocked meiotic divisions of spermatocytes by phenotypic aberration scanning, thereby highlighting the crucial involvement of PP1cα in spermatogenesis. These results revealed a PP1cα-PP1r7 mechanism by which PP1 regulates kinetochore-microtubule interactions in spermatogenesis and provided important clues to identify novel drug or vaccine targets for toxocariasis control. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Catalytic methanol dissociation

    International Nuclear Information System (INIS)

    Alcinikov, Y.; Fainberg, V.; Garbar, A.; Gutman, M.; Hetsroni, G.; Shindler, Y.; Tatrtakovsky, L.; Zvirin, Y.

    1998-01-01

    Results of the methanol dissociation study on copper/potassium catalyst with alumina support at various temperatures are presented. The following gaseous and liquid products at. The catalytic methanol dissociation is obtained: hydrogen, carbon monoxide, carbon dioxide, methane, and dimethyl ether. Formation rates of these products are discussed. Activation energies of corresponding reactions are calculated

  9. Selection and characterization of camelid nanobodies towards urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Kaczmarek, Jakub; Skottrup, Peter Durand

    2015-01-01

    Urokinase-type plasminogen activator (uPA) is a trypsin-like serine protease that plays a vital role in extracellular conversion of inactive plasminogen into catalytically active plasmin. Activated plasmin facilitates the release of several proteolytic enzymes, which control processes like perice...

  10. Tri-domain Bifunctional Inhibitor of Metallocarboxypeptidases A and Serine Proteases Isolated from Marine Annelid Sabellastarte magnifica*

    Science.gov (United States)

    Alonso-del-Rivero, Maday; Trejo, Sebastian A.; Reytor, Mey L.; Rodriguez-de-la-Vega, Monica; Delfin, Julieta; Diaz, Joaquin; González-González, Yamile; Canals, Francesc; Chavez, Maria Angeles; Aviles, Francesc X.

    2012-01-01

    This study describes a novel bifunctional metallocarboxypeptidase and serine protease inhibitor (SmCI) isolated from the tentacle crown of the annelid Sabellastarte magnifica. SmCI is a 165-residue glycoprotein with a molecular mass of 19.69 kDa (mass spectrometry) and 18 cysteine residues forming nine disulfide bonds. Its cDNA was cloned and sequenced by RT-PCR and nested PCR using degenerated oligonucleotides. Employing this information along with data derived from automatic Edman degradation of peptide fragments, the SmCI sequence was fully characterized, indicating the presence of three bovine pancreatic trypsin inhibitor/Kunitz domains and its high homology with other Kunitz serine protease inhibitors. Enzyme kinetics and structural analyses revealed SmCI to be an inhibitor of human and bovine pancreatic metallocarboxypeptidases of the A-type (but not B-type), with nanomolar Ki values. SmCI is also capable of inhibiting bovine pancreatic trypsin, chymotrypsin, and porcine pancreatic elastase in varying measures. When the inhibitor and its nonglycosylated form (SmCI N23A mutant) were overproduced recombinantly in a Pichia pastoris system, they displayed the dual inhibitory properties of the natural form. Similarly, two bi-domain forms of the inhibitor (recombinant rSmCI D1-D2 and rSmCI D2-D3) as well as its C-terminal domain (rSmCI-D3) were also overproduced. Of these fragments, only the rSmCI D1-D2 bi-domain retained inhibition of metallocarboxypeptidase A but only partially, indicating that the whole tri-domain structure is required for such capability in full. SmCI is the first proteinaceous inhibitor of metallocarboxypeptidases able to act as well on another mechanistic class of proteases (serine-type) and is the first of this kind identified in nature. PMID:22411994

  11. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei

    2015-01-01

    -ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation......Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X...

  12. Including lateral interactions into microkinetic models of catalytic reactions

    DEFF Research Database (Denmark)

    Hellman, Anders; Honkala, Johanna Karoliina

    2007-01-01

    In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three differ...... different approximations are investigated: site, mean-field, and quasichemical approximations. The obtained results are compared to accurate Monte Carlo numbers. In the end, we apply the approximations to a real catalytic reaction, namely, ammonia synthesis....

  13. Recombinase polymerase amplification (RPA) of CaMV-35S promoter and nos terminator for rapid detection of genetically modified crops.

    Science.gov (United States)

    Xu, Chao; Li, Liang; Jin, Wujun; Wan, Yusong

    2014-10-10

    Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37-42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S) promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos) terminator, which are widely incorporated in genetically modified (GM) crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15-25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean). With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops.

  14. Recombinase Polymerase Amplification (RPA of CaMV-35S Promoter and nos Terminator for Rapid Detection of Genetically Modified Crops

    Directory of Open Access Journals (Sweden)

    Chao Xu

    2014-10-01

    Full Text Available Recombinase polymerase amplification (RPA is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37–42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos terminator, which are widely incorporated in genetically modified (GM crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15–25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean. With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops.

  15. Characterization of Toxoplasma DegP, a rhoptry serine protease crucial for lethal infection in mice.

    Directory of Open Access Journals (Sweden)

    Gaelle Lentini

    Full Text Available During the infection process, Apicomplexa discharge their secretory organelles called micronemes, rhoptries and dense granules to sustain host cell invasion, intracellular replication and to modulate host cell pathways and immune responses. Herein, we describe the Toxoplasma gondii Deg-like serine protein (TgDegP, a rhoptry protein homologous to High temperature requirement A (HtrA or Deg-like family of serine proteases. TgDegP undergoes processing in both types I and II strains as most of the rhoptries proteins. We show that genetic disruption of the degP gene does not impact the parasite lytic cycle in vitro but affects virulence in mice. While in a type I strain DegPI appears dispensable for the establishment of an infection, removal of DegPII in a type II strain dramatically impairs the virulence. Finally, we show that KO-DegPII parasites kill immunodeficient mice as efficiently as the wild-type strain indicating that the protease might be involved in the complex crosstalk that the parasite engaged with the host immune response. Thus, this study unravels a novel rhoptry protein in T. gondii important for the establishment of lethal infection.

  16. Processing and structural characterization of porous reforming catalytic films

    International Nuclear Information System (INIS)

    Hou Xianghui; Williams, Jey; Choy, Kwang-Leong

    2006-01-01

    Nickel-based catalysts are often used to reform methanol into hydrogen. The preparation and installation of these catalysts are costly and laborious. As an alternative, directly applying catalytic films onto the separator components can improve the manufacturing efficiency. This paper reports the successful deposition of adherent porous NiO-Al 2 O 3 -based catalytic films with well-controlled stoichiometry, using a single-step Aerosol Assisted Chemical Vapour Deposition (AACVD) method. The microstructure, composition and crystalline phase of the as-deposited catalytic films are characterized using a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared (FTIR) Spectrometer. The results have demonstrated the capability of AACVD to produce porous NiO-Al 2 O 3 -based catalytic films

  17. Catalytic conversion of ethanol on H-Y zeolite

    Directory of Open Access Journals (Sweden)

    Čegar Nedeljko

    2005-01-01

    Full Text Available The catalytic activity of the H-form of synthetic zeolite NaY was examined in this study. The catalytic activity was determined according to the rate of ethanol conversion in a gas phase in the static system. In the conversion of ethanol on synthetic NaY zeolite at 585, 595, and 610 K, on which the reaction develops at an optimal rate, ethene and diethyl ether are evolved in approximately the same quantity. After transforming the NaY zeolite into the H-form, its catalytic activity was extremely increases so, the reaction develops at a significantly lower temperature with a very large increase in the reaction rate. The distribution of the products also changes, so that at lower temperatures diethyl ether is elvolved in most cases, and the development of ethene is favored at higher ones, and after a certain period of time there is almost complete conversion of ethanol into ethene. The increase in catalytic activity, as well as the change of selectivity of conversion of ethanol on the H-form of zeolite, is the result of removing Na+ cations in the NaY zeolite, so that more acidic catalyst is obtained which contains a number of acidic catalytically active centers, as well as a more powerful one compared to the original NaY zeolite.

  18. Catalytic characterization of bi-functional catalysts derived from Pd ...

    Indian Academy of Sciences (India)

    Unknown

    1995; Lyubovsky and Pfefferle 1999; Sales et al 1999;. Hill et al 2000). ... For a catalytic system, whose activity ... catalytic systems containing Pd, supported on various acid- ..... Further studies are needed to optimize a balance between.

  19. Instant, Visual, and Instrument-Free Method for On-Site Screening of GTS 40-3-2 Soybean Based on Body-Heat Triggered Recombinase Polymerase Amplification.

    Science.gov (United States)

    Wang, Rui; Zhang, Fang; Wang, Liu; Qian, Wenjuan; Qian, Cheng; Wu, Jian; Ying, Yibin

    2017-04-18

    On-site monitoring the plantation of genetically modified (GM) crops is of critical importance in agriculture industry throughout the world. In this paper, a simple, visual and instrument-free method for instant on-site detection of GTS 40-3-2 soybean has been developed. It is based on body-heat recombinase polymerase amplification (RPA) and followed with naked-eye detection via fluorescent DNA dye. Combining with extremely simplified sample preparation, the whole detection process can be accomplished within 10 min and the fluorescent results can be photographed by an accompanied smart phone. Results demonstrated a 100% detection rate for screening of practical GTS 40-3-2 soybean samples by 20 volunteers under different ambient temperatures. This method is not only suitable for on-site detection of GM crops but also demonstrates great potential to be applied in other fields.

  20. Catalytic membrane in reduction of aqueous nitrates: operational principles and catalytic performance

    NARCIS (Netherlands)

    Ilinitch, O.M.; Cuperus, F.P.; Nosova, L.V.; Gribov, E.N.

    2000-01-01

    The catalytic membrane with palladium-copper active component supported over the macroporous ceramic membrane, and a series of γ-Al 2O 3 supported Pd-Cu catalysts were prepared and investigated. In reduction of nitrate ions by hydrogen in water at ambient temperature, pronounced internal diffusion

  1. Hydrogen Production From catalytic reforming of greenhouse gases ...

    African Journals Online (AJOL)

    ADOWIE PERE

    a fixed bed stainless steel reactor. The 20wt%. ... catalytic activity for hydrogen production with the highest yield and selectivity of 32.5% and 17.6% respectively. © JASEM ... CO2 reforming of methane is however not fully developed ..... Design and preparation of .... catalytic nickel membrane for gas to liquid (GTL) process.

  2. A diverse family of serine proteinase genes expressed in cotton boll weevil (Anthonomus grandis): implications for the design of pest-resistant transgenic cotton plants.

    Science.gov (United States)

    Oliveira-Neto, Osmundo B; Batista, João A N; Rigden, Daniel J; Fragoso, Rodrigo R; Silva, Rodrigo O; Gomes, Eliane A; Franco, Octávio L; Dias, Simoni C; Cordeiro, Célia M T; Monnerat, Rose G; Grossi-De-Sá, Maria F

    2004-09-01

    Fourteen different cDNA fragments encoding serine proteinases were isolated by reverse transcription-PCR from cotton boll weevil (Anthonomus grandis) larvae. A large diversity between the sequences was observed, with a mean pairwise identity of 22% in the amino acid sequence. The cDNAs encompassed 11 trypsin-like sequences classifiable into three families and three chymotrypsin-like sequences belonging to a single family. Using a combination of 5' and 3' RACE, the full-length sequence was obtained for five of the cDNAs, named Agser2, Agser5, Agser6, Agser10 and Agser21. The encoded proteins included amino acid sequence motifs of serine proteinase active sites, conserved cysteine residues, and both zymogen activation and signal peptides. Southern blotting analysis suggested that one or two copies of these serine proteinase genes exist in the A. grandis genome. Northern blotting analysis of Agser2 and Agser5 showed that for both genes, expression is induced upon feeding and is concentrated in the gut of larvae and adult insects. Reverse northern analysis of the 14 cDNA fragments showed that only two trypsin-like and two chymotrypsin-like were expressed at detectable levels. Under the effect of the serine proteinase inhibitors soybean Kunitz trypsin inhibitor and black-eyed pea trypsin/chymotrypsin inhibitor, expression of one of the trypsin-like sequences was upregulated while expression of the two chymotrypsin-like sequences was downregulated. Copyright 2004 Elsevier Ltd.

  3. Enhanced propylene production in FCC by novel catalytic materials

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, C.P.; Harris, D.; Xu, M.; Fu, J. [BASF Catalyst LLC, Iselin, NJ (United States)

    2007-07-01

    Fluid catalytic cracking is expected to increasingly supply the additional incremental requirements for propylene. The most efficient route to increase propylene yield from an FCC unit is through the use of medium pore zeolites such as ZSM-5. ZSM-5 zeolite cracks near linear olefins in the gasoline range to LPG olefins such as propylene and butylenes. This paper will describe catalytic approaches to increase gasoline range olefins and the chemistry of ZSM-5 to crack those olefins. The paper will also describe novel catalytic materials designed to increase propylene. (orig.)

  4. A study on naphtha catalytic reforming reactor simulation and analysis.

    Science.gov (United States)

    Liang, Ke-min; Guo, Hai-yan; Pan, Shi-wei

    2005-06-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation unit data.

  5. A study on naphtha catalytic reforming reactor simulation and analysis

    OpenAIRE

    Liang, Ke-min; Guo, Hai-yan; Pan, Shi-wei

    2005-01-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation uni...

  6. Catalytic hydrogen recombination for nuclear containments

    International Nuclear Information System (INIS)

    Koroll, G.W.; Lau, D.W.P.; Dewit, W.A.; Graham, W.R.C.

    1994-01-01

    Catalytic recombiners appear to be a credible option for hydrogen mitigation in nuclear containments. The passive operation, versatility and ease of back fitting are appealing for existing stations and new designs. Recently, a generation of wet-proofed catalyst materials have been developed at AECL which are highly specific to H 2 -O 2 , are active at ambient temperatures and are being evaluated for containment applications. Two types of catalytic recombiners were evaluated for hydrogen removal in containments based on the AECL catalyst. The first is a catalytic combustor for application in existing air streams such as provided by fans or ventilation systems. The second is an autocatalytic recombiner which uses the enthalpy of reaction to produce natural convective flow over the catalyst elements. Intermediate-scale results obtained in 6 m 3 and 10 m 3 spherical and cylindrical vessels are given to demonstrate self-starting limits, operating limits, removal capacity, scaling parameters, flow resistance, mixing behaviour in the vicinity of an operating recombiner and sensitivity to poisoning, fouling and radiation. (author). 13 refs., 10 figs

  7. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Zhang Xinhai; Ma Qingliang; Wang Bo

    2009-01-01

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  8. Electrochemical catalytic treatment of phenol wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongzhu, E-mail: hzmachem@snnu.edu.cn [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Zhang Xinhai [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Ma Qingliang [Department of Applied Physics, College of Sciences, Taiyuan University of Technology, 030024 Taiyuan (China); Wang Bo [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2009-06-15

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  9. Syntheses of sulphurated amino-acids from cystein, serine and phosphoserine using pyridoxal and a metal as catalysts (1961)

    International Nuclear Information System (INIS)

    Ratsisalovanina, O.; Chapeville, F.; Fromageot, P.

    1961-01-01

    Pyridoxal or pyridoxal phosphate in the presence of certain metals catalyzes the substitution of the -SH, -OH, or -O-PO 3 H 2 groups of cysteine, serine or phosphoserine by a -SH or -SO 3 H group brought by mineral sulfide or sulfite. (authors) [fr

  10. Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; DeLaRiva, Andrew T.; Challa, Sivakumar R.

    2013-01-01

    deactivation, is an important mechanism for the loss of catalyst activity. This is especially true for high temperature catalytic processes, such as steam reforming, automotive exhaust treatment, or catalytic combustion. With dwindling supplies of precious metals and increasing demand, fundamental...

  11. Catalytic synthesis of ammonia using vibrationally excited nitrogen molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Henriksen, Niels Engholm; Billing, Gert D.

    1992-01-01

    The dissociation of nitrogen is the rate-limiting step in the catalytic synthesis of ammonia. Theoretical calculations have shown that the dissociative sticking probability of molecular nitrogen on catalytic active metal surfaces is enhanced by orders of magnitude when the molecules...

  12. The Serine Protease Inhibitor Neuroserpin Is Required for Normal Synaptic Plasticity and Regulates Learning and Social Behavior

    Science.gov (United States)

    Reumann, Rebecca; Vierk, Ricardo; Zhou, Lepu; Gries, Frederice; Kraus, Vanessa; Mienert, Julia; Romswinkel, Eva; Morellini, Fabio; Ferrer, Isidre; Nicolini, Chiara; Fahnestock, Margaret; Rune, Gabriele; Glatzel, Markus; Galliciotti, Giovanna

    2017-01-01

    The serine protease inhibitor neuroserpin regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin expression is particularly prominent at late stages of neuronal development in most regions of the central nervous system (CNS), whereas it is restricted to regions related to learning and memory in the…

  13. O-acetylation of the serine-rich repeat glycoprotein GspB is coordinated with accessory Sec transport.

    Directory of Open Access Journals (Sweden)

    Ravin Seepersaud

    2017-08-01

    Full Text Available The serine-rich repeat (SRR glycoproteins are a family of adhesins found in many Gram-positive bacteria. Expression of the SRR adhesins has been linked to virulence for a variety of infections, including streptococcal endocarditis. The SRR preproteins undergo intracellular glycosylation, followed by export via the accessory Sec (aSec system. This specialized transporter is comprised of SecA2, SecY2 and three to five accessory Sec proteins (Asps that are required for export. Although the post-translational modification and transport of the SRR adhesins have been viewed as distinct processes, we found that Asp2 of Streptococcus gordonii also has an important role in modifying the SRR adhesin GspB. Biochemical analysis and mass spectrometry indicate that Asp2 is an acetyltransferase that modifies N-acetylglucosamine (GlcNAc moieties on the SRR domains of GspB. Targeted mutations of the predicted Asp2 catalytic domain had no effect on transport, but abolished acetylation. Acetylated forms of GspB were only detected when the protein was exported via the aSec system, but not when transport was abolished by secA2 deletion. In addition, GspB variants rerouted to export via the canonical Sec pathway also lacked O-acetylation, demonstrating that this modification is specific to export via the aSec system. Streptococci expressing GspB lacking O-acetylated GlcNAc were significantly reduced in their ability bind to human platelets in vitro, an interaction that has been strongly linked to virulence in the setting of endocarditis. These results demonstrate that Asp2 is a bifunctional protein involved in both the post-translational modification and transport of SRR glycoproteins. In addition, these findings indicate that these processes are coordinated during the biogenesis of SRR glycoproteins, such that the adhesin is optimally modified for binding. This requirement for the coupling of modification and export may explain the co-evolution of the SRR

  14. Catalytic Wastewater Treatment Using Pillared Clays

    Science.gov (United States)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  15. An Epithelial Serine Protease, AgESP, Is Required for Plasmodium Invasion in the Mosquito Anopheles gambiae

    Czech Academy of Sciences Publication Activity Database

    Rodrigues, J.; Oliveira, G. A.; Kotsyfakis, Michalis; Dixit, R.; Molina-Cruz, A.; Jochim, R.; Barillas-Mury, C.

    2012-01-01

    Roč. 7, č. 4 (2012), e35210 E-ISSN 1932-6203 Institutional support: RVO:60077344 Keywords : malaria * mosquito * serine protease * sporozoites * ookinetes * gene silencing * midgut * salivary glands * Plasmodium falciparum * Anopheles gambiae Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0035210

  16. Urinary serine proteases and activation of ENaC in kidney

    DEFF Research Database (Denmark)

    Svenningsen, Per; Andersen, Henrik; Nielsen, Lise Hald

    2015-01-01

    with albuminuria compatible with impaired renal Na(+) excretion: hypertension and volume retention is secondary to proteinuria in, e.g., preeclampsia and nephrotic syndrome; plasma concentrations of renin, angiotensin II, and aldosterone are frequently suppressed in proteinuric conditions, e.g., preeclampsia......Serine proteases, both soluble and cell-attached, can activate the epithelial sodium channel (ENaC) proteolytically through release of a putative 43-mer inhibitory tract from the ectodomain of the γ-subunit. ENaC controls renal Na(+) excretion and loss-of-function mutations lead to low blood...... pressure, while gain-of-function mutations lead to impaired Na(+) excretion, hypertension, and hypokalemia. We review an emerging pathophysiological concept that aberrant glomerular filtration of plasma proteases, e.g., plasmin, prostasin, and kallikrein, contributes to proteolytic activation of ENaC, both...

  17. Reactivity of organic compounds in catalytic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Minachev, Kh M; Bragin, O V

    1978-01-01

    A comprehensive review of 1976 Soviet research on catalysis delivered to the 1977 annual session of the USSR Academy of Science Council on Catalysis (Baku 6/16-20/77) covers hydrocarbon reactions, including hydrogenation and hydrogenolysis, dehydrogenation, olefin dimerization and disproportionation, and cyclization and dehydrocyclization (e.g., piperylene cyclization and ethylene cyclotrimerization); catalytic and physicochemical properties of zeolites, including cracking, dehydrogenation, and hydroisomerization catalytic syntheses and conversion of heterocyclic and functional hydrocarbon derivatives, including partial and total oxidation (e.g., of o-xylene to phthalic anhydride); syntheses of thiophenes from alkanes and hydrogen sulfide over certain dehydrogenation catalysts; catalytic syntheses involving carbon oxides ( e.g., the development of a new heterogeneous catalyst for hydroformylation of olefins), and of Co-MgO zeolitic catalysts for synthesis of aliphatic hydrocarbons from carbon dioxide and hydrogen, and fabrication of high-viscosity lubricating oils over bifunctional aluminosilicate catalysts.

  18. Component Development to Accelerate Commercial Implementation of Ultra-Low Emissions Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, Jon; Berry, Brian; Lundberg, Kare; Anson, Orris

    2003-03-31

    This final report describes a 2000-2003 program for the development of components and processes to enhance the commercialization of ultra-low emissions catalytic combustion in industrial gas turbines. The range of project tasks includes: development of more durable, lower-cost catalysts and catalytic combustor components; development and design of a catalytic pre-burner and a catalytic pilot burner for gas turbines, and on-site fuel conversion processing for utilization of liquid fuel.

  19. A novel serine protease with human fibrino(geno)lytic activities from Artocarpus heterophyllus latex.

    Science.gov (United States)

    Siritapetawee, Jaruwan; Thumanu, Kanjana; Sojikul, Punchapat; Thammasirirak, Sompong

    2012-07-01

    A protease was isolated and purified from Artocarpus heterophyllus (jackfruit) latex and designated as a 48-kDa antimicrobial protease (AMP48) in a previous publication. In this work, the enzyme was characterized for more biochemical and medicinal properties. Enzyme activity of AMP48 was strongly inhibited by phenylmethanesulfonyl fluoride and soybean trypsin inhibitor, indicating that the enzyme was a plant serine protease. The N-terminal amino acid sequences (A-Q-E-G-G-K-D-D-D-G-G) of AMP48 had no sequence similarity matches with any sequence databases of BLAST search and other plant serine protease. The secondary structure of this enzyme was composed of high α-helix (51%) and low β-sheet (9%). AMP48 had fibrinogenolytic activity with maximal activity between 55 and 60°C at pH 8. The enzyme efficiently hydrolyzed α followed by partially hydrolyzed β and γ subunits of human fibrinogen. In addition, the fibrinolytic activity was observed through the degradation products by SDS-PAGE and emphasized its activity by monitoring the alteration of secondary structure of fibrin clot after enzyme digestion using ATR-FTIR spectroscopy. This study presented the potential role to use AMP48 as antithrombotic for treatment thromboembolic disorders such as strokes, pulmonary emboli and deep vein thrombosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Catalytic Conversion of Biofuels

    DEFF Research Database (Denmark)

    Jørgensen, Betina

    This thesis describes the catalytic conversion of bioethanol into higher value chemicals. The motivation has been the unavoidable coming depletion of the fossil resources. The thesis is focused on two ways of utilising ethanol; the steam reforming of ethanol to form hydrogen and the partial oxida...

  1. Direct catalytic hydrothermal liquefaction of spirulina to biofuels with hydrogen

    Science.gov (United States)

    Zeng, Qin; Liao, Hansheng; Zhou, Shiqin; Li, Qiuping; Wang, Lu; Yu, Zhihao; Jing, Li

    2018-01-01

    We report herein on acquiring biofuels from direct catalytic hydrothermal liquefaction of spirulina. The component of bio-oil from direct catalytic hydrothermal liquefaction was similar to that from two independent processes (including liquefaction and upgrading of biocrude). However, one step process has higher carbon recovery, due to the less loss of carbons. It was demonstrated that the yield and HHV of bio-oil from direct catalytic algae with hydrothermal condition is higher than that from two independent processes.

  2. A step toward the reactivation of aged cholinesterases-crystal structure of ligands binding to aged human butyrylcholinesterase

    NARCIS (Netherlands)

    Wandhammer, M.; Koning, M. de; Grol, M. van; Loiodice, M.; Saurel, L.; Noort, D.; Goeldner, M.; Nachon, F.

    2013-01-01

    Organophosphorus nerve agents irreversibly inhibit cholinesterases. Phosphylation of the catalytic serine can be reversed by the mean of powerful nucleophiles like oximes. But the phosphyl adduct can undergo a rapid spontaneous reaction leading to an aged enzyme, i.e., a conjugated enzyme that is no

  3. Synthesis of block copolymers derived from N-trityl-(S)-serine and pyrene end-labeled poly(methyl methacrylate) or poly(N-isopropylacrylamide) via ATRP

    International Nuclear Information System (INIS)

    Buruiana, Emil C.; Podasca, Viorica; Buruiana, Tinca

    2012-01-01

    A new monomer bearing N-trityl-L-serine methyl ester in structure, methacryloyloxyethyl carbamoyloxy–N-trityl methyl serine (MTS), was prepared to be further polymerized by atom transfer radical polymerization (ATRP) with pyrene-endcapped poly(methyl methacrylate) (Py–PMMA–Br) or poly(N-isopropylacrylamide) (Py–PNIPA–Br). The resulting block copolymers, poly(methyl methacrylate–block–methacryloyloxyethyl carbamoyloxy–N-trityl methyl serine) (Py–PMMA–b–PMTS) and poly(N-isopropylacrylamide–block–methacryloyloxyethyl carbamoyloxy–N-trityl methyl serine (Py–PNIPA–b–PMTS) were characterized by 1 H ( 13 C) NMR, ultraviolet, FTIR and fluorescence spectroscopy, thermal analysis, differential scanning calorimetry (DSC), atomic force microscopy (AFM), scanning electron microscopy (SEM), and gel permeation chromatography (GPC) measurements. The chemical composition in Py–PMMA–b–PMTS was estimated from the 1 H NMR analysis that indicated a ratio of the repeating units of 46:19 (MMA:MTS). For the Py–PNIPA–b–PMTS the composition rate in the copolymer was 61:25 (NIPA:MTS). Quenching of the pyrene species with N,N-diethylaniline, nitrobenzene, nitrophenol, potassium iodide, p-nitrotoluene and tetracyanoquinodimethane (TCNQ) in DMF solution excited at 348 nm was evidenced, more efficiently being nitrophenol and TCNQ. In this case, the monomer emission at 388–409 nm underwent a significant decrease caused of an electron transfer from the electron-reach photoexcited pyrene molecule to the electron-deficient quenchers. - Highlights: ► Diblock copolymers combine the fluorescence of pyrene–PMMA (PNIPA) with the characteristics of PMTS. ► Such copolymers could be used for nitroderivatives detecting. ► UV/vis and fluorescence measurements give a good correlation for LCST of Py–PNIPA–Br.

  4. Synthesis of block copolymers derived from N-trityl-(S)-serine and pyrene end-labeled poly(methyl methacrylate) or poly(N-isopropylacrylamide) via ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, Emil C., E-mail: emilbur@icmpp.ro [Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley 700487, Iasi (Romania); Podasca, Viorica; Buruiana, Tinca [Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley 700487, Iasi (Romania)

    2012-10-15

    A new monomer bearing N-trityl-L-serine methyl ester in structure, methacryloyloxyethyl carbamoyloxy-N-trityl methyl serine (MTS), was prepared to be further polymerized by atom transfer radical polymerization (ATRP) with pyrene-endcapped poly(methyl methacrylate) (Py-PMMA-Br) or poly(N-isopropylacrylamide) (Py-PNIPA-Br). The resulting block copolymers, poly(methyl methacrylate-block-methacryloyloxyethyl carbamoyloxy-N-trityl methyl serine) (Py-PMMA-b-PMTS) and poly(N-isopropylacrylamide-block-methacryloyloxyethyl carbamoyloxy-N-trityl methyl serine (Py-PNIPA-b-PMTS) were characterized by {sup 1}H ({sup 13}C) NMR, ultraviolet, FTIR and fluorescence spectroscopy, thermal analysis, differential scanning calorimetry (DSC), atomic force microscopy (AFM), scanning electron microscopy (SEM), and gel permeation chromatography (GPC) measurements. The chemical composition in Py-PMMA-b-PMTS was estimated from the {sup 1}H NMR analysis that indicated a ratio of the repeating units of 46:19 (MMA:MTS). For the Py-PNIPA-b-PMTS the composition rate in the copolymer was 61:25 (NIPA:MTS). Quenching of the pyrene species with N,N-diethylaniline, nitrobenzene, nitrophenol, potassium iodide, p-nitrotoluene and tetracyanoquinodimethane (TCNQ) in DMF solution excited at 348 nm was evidenced, more efficiently being nitrophenol and TCNQ. In this case, the monomer emission at 388-409 nm underwent a significant decrease caused of an electron transfer from the electron-reach photoexcited pyrene molecule to the electron-deficient quenchers. - Highlights: Black-Right-Pointing-Pointer Diblock copolymers combine the fluorescence of pyrene-PMMA (PNIPA) with the characteristics of PMTS. Black-Right-Pointing-Pointer Such copolymers could be used for nitroderivatives detecting. Black-Right-Pointing-Pointer UV/vis and fluorescence measurements give a good correlation for LCST of Py-PNIPA-Br.

  5. Small serine recombination systems ParA-MRS and CinH-RS2 perform precise excision of plastid DNA

    Science.gov (United States)

    Selectable marker genes (SMGs) are necessary for selection of transgenic plants. However, once stable transformants have been identified, the marker gene is no longer needed. In this study, we demonstrate the use of the small serine recombination systems, ParA-MRS and CinH-RS2, to precisely excise ...

  6. Biochemical Aspects of a Serine Protease from Caesalpinia echinata Lam. (Brazilwood Seeds: A Potential Tool to Access the Mobilization of Seed Storage Proteins

    Directory of Open Access Journals (Sweden)

    Priscila Praxedes-Garcia

    2012-01-01

    Full Text Available Several proteins have been isolated from seeds of leguminous, but this is the first report that a protease was obtained from seeds of Caesalpinia echinata Lam., a tree belonging to the Fabaceae family. This enzyme was purified to homogeneity by hydrophobic interaction and anion exchange chromatographies and gel filtration. This 61-kDa serine protease (CeSP hydrolyses H-D-prolyl-L-phenylalanyl-L-arginine-p-nitroanilide (Km 55.7 μM in an optimum pH of 7.1, and this activity is effectively retained until 50∘C. CeSP remained stable in the presence of kosmotropic anions (PO4 3−, SO4 2−, and CH3COO− or chaotropic cations (K+ and Na+. It is strongly inhibited by TLCK, a serine protease inhibitor, but not by E-64, EDTA or pepstatin A. The characteristics of the purified enzyme allowed us to classify it as a serine protease. The role of CeSP in the seeds cannot be assigned yet but is possible to infer that it is involved in the mobilization of seed storage proteins.

  7. Highly efficient catalytic systems based on Pd-coated microbeads

    Science.gov (United States)

    Lim, Jin Hyun; Cho, Ahyoung; Lee, Seung Hwan; Park, Bumkyo; Kang, Dong Woo; Koo, Chong Min; Yu, Taekyung; Park, Bum Jun

    2018-01-01

    The efficiency of two prototype catalysis systems using palladium (Pd)-coated microparticles was investigated with regard to the recovery and recyclability of the catalytic particles. One such system was the interface-adsorption method, in which polymer particles coated with Pd nanoparticles strongly and irreversibly attach to the oil-water interface. Due to the irreversible adsorption of the catalytic particles to the interface, particle loss was completely prevented while mixing the aqueous solution and while collecting the products. The other system was based on the magnetic field-associated particle recovery method. The use of polymeric microparticles containing Pd nanoparticles and magnetite nanoparticles accelerated the sedimentation of the particles in the aqueous phase by applying a strong magnetic field, consequently suppressing drainage of the particles from the reactor along the product stream. Upon multiple runs of the catalytic reactions, it was found that conversion does not change significantly, demonstrating the excellent recyclability and performance efficiency in the catalytic processes.

  8. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels

    International Nuclear Information System (INIS)

    Babich, I.V.; Hulst, M. van der; Lefferts, L.; Moulijn, J.A.; O'Connor, P.; Seshan, K.

    2011-01-01

    The pyrolytic conversion of chlorella algae to liquid fuel precursor in presence of a catalyst (Na 2 CO 3 ) has been studied. Thermal decomposition studies of the algae samples were performed using TGA coupled with MS. Liquid oil samples were collected from pyrolysis experiments in a fixed-bed reactor and characterized for water content and heating value. The oil composition was analyzed by GC-MS. Pretreatment of chlorella with Na 2 CO 3 influences the primary conversion of chlorella by shifting the decomposition temperature to a lower value. In the presence of Na 2 CO 3 , gas yield increased and liquid yield decreased when compared with non-catalytic pyrolysis at the same temperatures. However, pyrolysis oil from catalytic runs carries higher heating value and lower acidity. Lower content of acids in the bio-oil, higher aromatics, combined with higher heating value show promise for production of high-quality bio-oil from algae via catalytic pyrolysis, resulting in energy recovery in bio-oil of 40%. -- Highlights: → The pyrolytic catalytic conversion of chlorella algae to liquid fuel precursor. → Na 2 CO 3 as a catalyst for the primary conversion of chlorella. → Pyrolysis oil from catalytic runs carries higher heating value and lower acidity. → High-quality bio-oil from algae via catalytic pyrolysis with energy recovery in bio-oil of 40%.

  9. Multi-Stage Selective Catalytic Reduction of NOx in Lean-Burn Engine Exhaust

    National Research Council Canada - National Science Library

    Penetrante, B

    1997-01-01

    .... A plasma can also be used to oxidize NO to NO2. This paper compares the multi-stage catalytic scheme with the plasma-assisted catalytic scheme for reduction of NOx in lean-burn engine exhausts. The advantages of plasma oxidation over catalytic oxidation are presented.

  10. [Effect of inhibitors serine/threonine protein kinases and protein phosphatases on mitosis progression of synchronized tobacco by-2 cells].

    Science.gov (United States)

    Sheremet, Ia A; Emets, A I; Azmi, A; Vissenberg, K; Verbelen, J-P; Blium, Ia B

    2012-01-01

    In order to investigate the role of various serine/ threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells the influence of cyclin-dependent (olomoucine) and Ca2+ -calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine) and protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin dependent protein kinases and protein kinase C causes prophase delay, reduces the mitotic index and displaces of mitotic peak as compare with control cells. Inhibition of Ca2+ -calmodulin dependent protein kinases enhances the cell entry into prophase and delays their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances of synchronized BY-2 cells entering into all phases of mitosis.

  11. Green technology for conversion of renewable hydrocarbon based on plasma-catalytic approach

    Science.gov (United States)

    Fedirchyk, Igor; Nedybaliuk, Oleg; Chernyak, Valeriy; Demchina, Valentina

    2016-09-01

    The ability to convert renewable biomass into fuels and chemicals is one of the most important steps on our path to green technology and sustainable development. However, the complex composition of biomass poses a major problem for established conversion technologies. The high temperature of thermochemical biomass conversion often leads to the appearance of undesirable byproducts and waste. The catalytic conversion has reduced yield and feedstock range. Plasma-catalytic reforming technology opens a new path for biomass conversion by replacing feedstock-specific catalysts with free radicals generated in the plasma. We studied the plasma-catalytic conversion of several renewable hydrocarbons using the air plasma created by rotating gliding discharge. We found that plasma-catalytic hydrocarbon conversion can be conducted at significantly lower temperatures (500 K) than during the thermochemical ( 1000 K) and catalytic (800 K) conversion. By using gas chromatography, we determined conversion products and found that conversion efficiency of plasma-catalytic conversion reaches over 85%. We used obtained data to determine the energy yield of hydrogen in case of plasma-catalytic reforming of ethanol and compared it with other plasma-based hydrogen-generating systems.

  12. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks have been identified.

  13. Janus droplet as a catalytic micromotor

    Science.gov (United States)

    Shklyaev, Sergey

    2015-06-01

    Self-propulsion of a Janus droplet in a solution of surfactant, which reacts on a half of a drop surface, is studied theoretically. The droplet acts as a catalytic motor creating a concentration gradient, which generates its surface-tension-driven motion; the self-propulsion speed is rather high, 60 μ \\text{m/s} and more. This catalytic motor has several advantages over other micromotors: simple manufacturing, easily attained neutral buoyancy. In contrast to a single-fluid droplet, which demonstrates a self-propulsion as a result of symmetry breaking instability, for the Janus one no stability threshold exists; hence, the droplet radius can be scaled down to micrometers.

  14. Maintained activity of glycogen synthase kinase-3β despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model

    International Nuclear Information System (INIS)

    Lim, Yong-Whan; Yoon, Seung-Yong; Choi, Jung-Eun; Kim, Sang-Min; Lee, Hui-Sun; Choe, Han; Lee, Seung-Chul; Kim, Dong-Hou

    2010-01-01

    Glycogen synthase kinase-3β (GSK3β) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3β. However, the inactive form of GSK3β which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3β substrates, such as β-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly, OA also induces phosphorylation of GSK3β at serine-9 and other substrates including tau, β-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3β inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3β may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3β inhibitors could be a valuable drug candidate in AD.

  15. The TriTryp Phosphatome: analysis of the protein phosphatase catalytic domains

    Directory of Open Access Journals (Sweden)

    Huxley-Jones Julie

    2007-11-01

    Full Text Available Abstract Background The genomes of the three parasitic protozoa Trypanosoma cruzi, Trypanosoma brucei and Leishmania major are the main subject of this study. These parasites are responsible for devastating human diseases known as Chagas disease, African sleeping sickness and cutaneous Leishmaniasis, respectively, that affect millions of people in the developing world. The prevalence of these neglected diseases results from a combination of poverty, inadequate prevention and difficult treatment. Protein phosphorylation is an important mechanism of controlling the development of these kinetoplastids. With the aim to further our knowledge of the biology of these organisms we present a characterisation of the phosphatase complement (phosphatome of the three parasites. Results An ontology-based scan of the three genomes was used to identify 86 phosphatase catalytic domains in T. cruzi, 78 in T. brucei, and 88 in L. major. We found interesting differences with other eukaryotic genomes, such as the low proportion of tyrosine phosphatases and the expansion of the serine/threonine phosphatase family. Additionally, a large number of atypical protein phosphatases were identified in these species, representing more than one third of the total phosphatase complement. Most of the atypical phosphatases belong to the dual-specificity phosphatase (DSP family and show considerable divergence from classic DSPs in both the domain organisation and sequence features. Conclusion The analysis of the phosphatome of the three kinetoplastids indicates that they possess orthologues to many of the phosphatases reported in other eukaryotes, including humans. However, novel domain architectures and unusual combinations of accessory domains, suggest distinct functional roles for several of the kinetoplastid phosphatases, which await further experimental exploration. These distinct traits may be exploited in the selection of suitable new targets for drug development to prevent

  16. Hydrogen production via catalytic processing of renewable feedstocks

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Ali T-Raissi

    2006-01-01

    Landfill gas (LFG) and biogas can potentially become important feedstocks for renewable hydrogen production. The objectives of this work were: (1) to develop a catalytic process for direct reforming of CH 4 -CO 2 gaseous mixture mimicking LFG, (2) perform thermodynamic analysis of the reforming process using AspenPlus chemical process simulator, (3) determine operational conditions for auto-thermal (or thermo-neutral) reforming of a model CH 4 -CO 2 feedstock, and (4) fabricate and test a bench-scale hydrogen production unit. Experimental data obtained from catalytic reformation of the CH 4 -CO 2 and CH 4 -CO 2 -O 2 gaseous mixtures using Ni-catalyst were in a good agreement with the simulation results. It was demonstrated that catalytic reforming of LFG-mimicking gas produced hydrogen with the purity of 99.9 vol.%. (authors)

  17. Heterogeneous-catalytic redox reactions in nitrate - formate systems

    International Nuclear Information System (INIS)

    Ananiev, A.V.; Shilov, V.P.; Tananaev, I.G.; Brossard, Ph.; Broudic, J.Ch.

    2000-01-01

    It was found that an intensive destruction of various organic and mineral substances - usual components of aqueous waste solutions (oxalic acid, complexones, urea, hydrazine, ammonium nitrate, etc.) takes place under the conditions of catalytic denitration. Kinetics and mechanisms of urea and ammonium nitrate decomposition in the system HNO 3 - HCOOH - Pt/SiO 2 are comprehensively investigated. The behaviour of uranium, neptunium and plutonium under the conditions of catalytic denitration is studied. It is shown, that under the certain conditions the formic acid is an effective reducer of the uranium (VI), neptunium (VI, V) and plutonium (VI, IV) ions. Kinetics of heterogeneous-catalytic red-ox reactions of uranium (VI), neptunium (VI, V) and plutonium (VI, IV) with formic acid are investigated. The mechanisms of the appropriate reactions are evaluated. (authors)

  18. Crystal structure of homoserine O-acetyltransferase from Leptospira interrogans

    International Nuclear Information System (INIS)

    Wang Mingzhu; Liu Lin; Wang Yanli; Wei Zhiyi; Zhang Ping; Li Yikun; Jiang Xiaohua; Xu Hang; Gong Weimin

    2007-01-01

    Homoserine O-acetyltransferase (HTA, EC 2.3.1.31) initiates methionine biosynthesis pathway by catalyzing the transfer of acetyl group from acetyl-CoA to homoserine. This study reports the crystal structure of HTA from Leptospira interrogans determined at 2.2 A resolution using selenomethionyl single-wavelength anomalous diffraction method. HTA is modular and consists of two structurally distinct domains-a core α/β domain containing the catalytic site and a helical bundle called the lid domain. Overall, the structure fold belongs to α/β hydrolase superfamily with the characteristic 'catalytic triad' residues in the active site. Detailed structure analysis showed that the catalytic histidine and serine are both present in two conformations, which may be involved in the catalytic mechanism for acetyl transfer

  19. Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts

    NARCIS (Netherlands)

    Ali Imran, A.; Bramer, Eduard A.; Seshan, Kulathuiyer; Brem, Gerrit

    2016-01-01

    Catalytic pyrolysis of wood with impregnated vegetable oil was investigated and compared with catalytic pyrolysis of jatropha cake making use of sodium based catalysts to produce a high quality bio-oil. The catalytic pyrolysis was carried out in two modes: in-situ catalytic pyrolysis and post

  20. Structural analysis of Staphylococcus aureus serine/threonine kinase PknB.

    Directory of Open Access Journals (Sweden)

    Sonja Rakette

    Full Text Available Effective treatment of infections caused by the bacterium Staphylococcus aureus remains a worldwide challenge, in part due to the constant emergence of new strains that are resistant to antibiotics. The serine/threonine kinase PknB is of particular relevance to the life cycle of S. aureus as it is involved in the regulation of purine biosynthesis, autolysis, and other central metabolic processes of the bacterium. We have determined the crystal structure of the kinase domain of PknB in complex with a non-hydrolyzable analog of the substrate ATP at 3.0 Å resolution. Although the purified PknB kinase is active in solution, it crystallized in an inactive, autoinhibited state. Comparison with other bacterial kinases provides insights into the determinants of catalysis, interactions of PknB with ligands, and the pathway of activation.

  1. Recombinase Polymerase Amplification Compared to Real-Time Polymerase Chain Reaction Test for the Detection of Fasciola hepatica in Human Stool

    Science.gov (United States)

    Cabada, Miguel M.; Malaga, Jose L.; Castellanos-Gonzalez, Alejandro; Bagwell, Kelli A.; Naeger, Patrick A.; Rogers, Hayley K.; Maharsi, Safa; Mbaka, Maryann; White, A. Clinton

    2017-01-01

    Fasciola hepatica is the most widely distributed trematode infection in the world. Control efforts may be hindered by the lack of diagnostic capacity especially in remote endemic areas. Polymerase chain reaction (PCR)–based methods offer high sensitivity and specificity but require expensive technology. However, the recombinase polymerase amplification (RPA) is an efficient isothermal method that eliminates the need for a thermal cycler and has a high deployment potential to resource-limited settings. We report on the characterization of RPA and PCR tests to detect Fasciola infection in clinical stool samples with low egg burdens. The sensitivity of the RPA and PCR were 87% and 66%, respectively. Both tests were 100% specific showing no cross-reactivity with trematode, cestode, or nematode parasites. In addition, RPA and PCR were able to detect 47% and 26% of infections not detected by microscopy, respectively. The RPA adapted to a lateral flow platform was more sensitive than gel-based detection of the reaction products. In conclusion, the Fasciola RPA is a highly sensitive and specific test to diagnose chronic infection using stool samples. The Fasciola RPA lateral flow has the potential for deployment to endemic areas after further characterization. PMID:27821691

  2. Catalytic copyrolysis of cork oak and bio-oil distillation residue

    Science.gov (United States)

    Lee, Yejin; Oh, Daejun; Kim, Young-Min; Jae, Jungho; Jung, Sang-Chul; Jeon, Jong-Ki; Kim, Sang Chai; Park, Young-Kwon

    2018-01-01

    The atmospheric distillation residue (ADR) of cork oak (CO) pyrolysis oil was used as the co-feeding material for the catalytic pyrolysis of CO over HZSM-5 catalysts to improve the formation of aromatic hydrocarbons. Although the non-catalytic copyrolysis of CO and ADR did not improve the formation of aromatic hydrocarbons, the catalytic copyrolysis of CO and ADR promoted the synergistic formation of aromatic hydrocarbons. HZSM-5(30), having a lower SiO2/Al2O3(30), showed better performance for the formation of aromatic hydrocarbons than HZSM-5(80) because of its higher acidity. The catalytic copyrolysis of CO and ADR also decreased the formation of coke. The largest quantity of aromatic hydrocarbons was obtained from the catalytic copyrolysis of CO and ADR over HZSM-5 (30) at 600 °C, whereas the lowest coke yield was achieved at 700 °C. When the catalyst to sample ratio was increased from 2:1 to 5:1, the synergistic formation of aromatic hydrocarbons was limited, resulting in a lower experimental yield of aromatic hydrocarbons than the theoretical yield. A lower coke yield was also achieved at a high catalyst to sample ratio (5:1).

  3. Cellobiohydrolase I enzymes

    Science.gov (United States)

    Adney, William S; Himmel, Michael E; Decker, Stephen R; Knoshaug, Eric P; Nimlos, Mark R; Crowley, Michael F; Jeoh, Tina

    2014-01-28

    Provided herein is an isolated Cel7A polypeptide comprising mutations in the catalytic domain of the polypeptide relative to the catalytic domain of a wild type Cel7A polypeptide, wherein the mutations reduce N-linked glycosylation of the isolated polypeptide relative to the wild type polypeptide. Also provided herein is an isolated Cel7A polypeptide comprising increased O-linked glycosylation of the linker domain relative to a linker domain of a wild type Cel7A polypeptide. The increased O-linked glycosylation is a result of the addition of and/or substitution of one or more serine and/or threonine residues to the linker domain relative to the linker domain of the wild type polypeptide. In some embodiments, the isolated Cel7A polypeptide comprising mutations in the catalytic domain of the polypeptide relative to the catalytic domain of a wild type Cel7A polypeptide further comprises increased O-linked glycosylation of the linker domain relative to a linker domain of a wild type Cel7A polypeptide. The mutations in the catalytic domain reduce N-linked glycosylation of the isolated polypeptide relative to the wild type polypeptide. The addition of and/or substitution of one or more serine and/or threonine residues to the linker domain relative to the linker domain of the wild type polypeptide increases O-linked glycosylation of the isolated polypeptide. Further provided are compositions comprising such polypeptides and nucleic acids encoding such polypeptides. Still further provided are methods for making such polypeptides.

  4. Thermal and catalytic pyrolysis of plastic waste

    Directory of Open Access Journals (Sweden)

    Débora Almeida

    2016-02-01

    Full Text Available Abstract The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolites can be used as catalysts in catalytic pyrolysis and influence the final products obtained.

  5. Using electron beams to investigate catalytic materials

    International Nuclear Information System (INIS)

    Zhang, Bingsen; Su, Dang Sheng

    2014-01-01

    Transmission Electron microscopy (TEM) enables us, not only to reveal the morphology, but also to provide structural, chemical and electronic information about solid catalysts at the atomic level, providing a dramatic driving force for the development of heterogeneous catalysis. Almost all catalytic materials have been studied with TEM in order to obtain information about their structures, which can help us to establish the synthesis-structure-property relationships and to design catalysts with new structures and desired properties. Herein, several examples will be reviewed to illustrate the investigation of catalytic materials by using electron beams. (authors)

  6. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    126, No. 2, March 2014, pp. 341–351. c Indian Academy of Sciences. ... enhancement was realized by catalyst design, appropriate choice of reactor, better injection and .... Gas–liquid and liquid–solid transport processes in catalytic reactors.5.

  7. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  8. Catalytic enantioselective Reformatsky reaction with ketones

    NARCIS (Netherlands)

    Fernandez-Ibanez, M. Angeles; Macia, Beatriz; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    Chiral tertiary alcohols were obtained with good yields and enantioselectivities via a catalytic Reformatsky reaction with ketones, including the challenging diaryl ketones, using chiral BINOL derivatives.

  9. Prevention of pulmonary vascular and myocardial remodeling by the combined tyrosine and serine-/threonine kinase inhibitor, sorafenib, in pulmonary hypertension and right heart failure

    Directory of Open Access Journals (Sweden)

    M. Klein

    2008-06-01

    Full Text Available Inhibition of tyrosine kinases can reverse pulmonary hypertension but little is known about the role of serine-/threonine kinases in vascular and myocardial remodeling. We investigated the effects of sorafenib, an inhibitor of the tyrosine kinases VEGFR, PDGFR and c-kit as well as the serine-/threonine kinase Raf-1, in pulmonary hypertension and right ventricular (RV pressure overload. In monocrotaline treated rats, sorafenib (10 mg·kg–1·d–1 p.o. reduced pulmonary arterial pressure, pulmonary artery muscularization and RV hypertrophy, and improved systemic hemodynamics (table 1. Sorafenib prevented phosphorylation of Raf-1 and suppressed activation of downstream signaling pathways (Erk 1/2. After pulmonary banding, sorafenib, but not the PDGFR/c-KIT/ABL-inhibitor imatinib reduced RV mass and RV filling pressure significantly. Congruent with these results, sorafenib only prevented ERK phosphorylation and vasopressin induced hypertrophy of the cardiomyocyte cell line H9c2 dose dependently (IC50 = 300 nM. Combined inhibition of tyrosine and serine-/threonine kinases by sorafenib prevents vascular and cardiac remodeling in pulmonary hypertension, which is partly mediated via inhibition of the Raf kinase pathway.

  10. Novel Serine 176 Phosphorylation of YBX1 Activates NF-κB in Colon Cancer.

    Science.gov (United States)

    Martin, Matthew; Hua, Laiqing; Wang, Benlian; Wei, Han; Prabhu, Lakshmi; Hartley, Antja-Voy; Jiang, Guanglong; Liu, Yunlong; Lu, Tao

    2017-02-24

    Y box protein 1 (YBX1) is a well known oncoprotein that has tumor-promoting functions. YBX1 is widely considered to be an attractive therapeutic target in cancer. To develop novel therapeutics to target YBX1, it is of great importance to understand how YBX1 is finely regulated in cancer. Previously, we have shown that YBX1 could function as a tumor promoter through phosphorylation of its Ser-165 residue, leading to the activation of the NF-κB signaling pathway (1). In this study, using mass spectrometry analysis, we discovered a distinct phosphorylation site, Ser-176, on YBX1. Overexpression of the YBX1-S176A (serine-to-alanine) mutant in either HEK293 cells or colon cancer HT29 cells showed dramatically reduced NF-κB-activating ability compared with that of WT-YBX1, confirming that Ser-176 phosphorylation is critical for the activation of NF-κB by YBX1. Importantly, the mutant of Ser-176 and the previously reported Ser-165 sites regulate distinct groups of NF-κB target genes, suggesting the unique and irreplaceable function of each of these two phosphorylated serine residues. Our important findings could provide a novel cancer therapy strategy by blocking either Ser-176 or Ser-165 phosphorylation or both of YBX1 in colon cancer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Catalytic dehydration of ethanol using transition metal oxide catalysts.

    Science.gov (United States)

    Zaki, T

    2005-04-15

    The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.

  12. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  13. Catalytic Reactor for Inerting of Aircraft Fuel Tanks

    Science.gov (United States)

    1974-06-01

    Aluminum Panels After Triphase Corrosion Test 79 35 Inerting System Flows in Various Flight Modes 82 36 High Flow Reactor Parametric Data 84 37 System...AD/A-000 939 CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS George H. McDonald, et al AiResearch Manufacturing Company Prepared for: Air Force...190th Street 2b. GROUP Torrance, California .. REPORT TITLE CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS . OESCRIP TIVE NOTEs (Thpe of refpoft

  14. Aerobic, catalytic oxidation of alcohols in ionic liquids

    Directory of Open Access Journals (Sweden)

    Souza Roberto F. de

    2006-01-01

    Full Text Available An efficient and simple catalytic system based on RuCl3 dissolved in ionic liquids has been developed for the oxidation of alcohols into aldehydes and ketones under mild conditions. A new fluorinated ionic liquid, 1-n-butyl-3-methylimidazolium pentadecafluorooctanoate, was synthesized and demonstrated better performance that the other ionic liquids employed. Moreover this catalytic system utilizes molecular oxygen as an oxidizing agent, producing water as the only by-product.

  15. Differential 3-bromopyruvate inhibition of cytosolic and mitochondrial human serine hydroxymethyltransferase isoforms, key enzymes in cancer metabolic reprogramming.

    Science.gov (United States)

    Paiardini, Alessandro; Tramonti, Angela; Schirch, Doug; Guiducci, Giulia; di Salvo, Martino Luigi; Fiascarelli, Alessio; Giorgi, Alessandra; Maras, Bruno; Cutruzzolà, Francesca; Contestabile, Roberto

    2016-11-01

    The cytosolic and mitochondrial isoforms of serine hydroxymethyltransferase (SHMT1 and SHMT2, respectively) are well-recognized targets of cancer research, since their activity is critical for purine and pyrimidine biosynthesis and because of their prominent role in the metabolic reprogramming of cancer cells. Here we show that 3-bromopyruvate (3BP), a potent novel anti-tumour agent believed to function primarily by blocking energy metabolism, differentially inactivates human SHMT1 and SHMT2. SHMT1 is completely inhibited by 3BP, whereas SHMT2 retains a significant fraction of activity. Site directed mutagenesis experiments on SHMT1 demonstrate that selective inhibition relies on the presence of a cysteine residue at the active site of SHMT1 (Cys204) that is absent in SHMT2. Our results show that 3BP binds to SHMT1 active site, forming an enzyme-3BP complex, before reacting with Cys204. The physiological substrate l-serine is still able to bind at the active site of the inhibited enzyme, although catalysis does not occur. Modelling studies suggest that alkylation of Cys204 prevents a productive binding of l-serine, hampering interaction between substrate and Arg402. Conversely, the partial inactivation of SHMT2 takes place without the formation of a 3BP-enzyme complex. The introduction of a cysteine residue in the active site of SHMT2 by site directed mutagenesis (A206C mutation), at a location corresponding to that of Cys204 in SHMT1, yields an enzyme that forms a 3BP-enzyme complex and is completely inactivated. This work sets the basis for the development of selective SHMT1 inhibitors that target Cys204, starting from the structure and reactivity of 3BP. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Catalytic applications of bio-inspired nanomaterials

    Science.gov (United States)

    Pacardo, Dennis Kien Balaong

    The biomimetic synthesis of Pd nanoparticles was presented using the Pd4 peptide, TSNAVHPTLRHL, isolated from combinatorial phage display library. Using this approach, nearly monodisperse and spherical Pd nanoparticles were generated with an average diameter of 1.9 +/- 0.4 nm. The peptide-based nanocatalyst were employed in the Stille coupling reaction under energy-efficient and environmentally friendly reaction conditions of aqueous solvent, room temperature and very low catalyst loading. To this end, the Pd nanocatalyst generated high turnover frequency (TOF) value and quantitative yields using ≥ 0.005 mol% Pd as well as catalytic activities with different aryl halides containing electron-withdrawing and electron-donating groups. The Pd4-capped Pd nanoparticles followed the atom-leaching mechanism and were found to be selective with respect to substrate identity. On the other hand, the naturally-occurring R5 peptide (SSKKSGSYSGSKGSKRRIL) was employed in the synthesis of biotemplated Pd nanomaterials which showed morphological changes as a function of Pd:peptide ratio. TOF analysis for hydrogenation of olefinic alcohols showed similar catalytic activity regardless of nanomorphology. Determination of catalytic properties of these bio-inspired nanomaterials are important as they serve as model system for alternative green catalyst with applications in industrially important transformations.

  17. Vapor-Driven Propulsion of Catalytic Micromotors

    Science.gov (United States)

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-08-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors.

  18. MBL-associated serine proteases (MASPs) and infectious diseases.

    Science.gov (United States)

    Beltrame, Marcia H; Boldt, Angelica B W; Catarino, Sandra J; Mendes, Hellen C; Boschmann, Stefanie E; Goeldner, Isabela; Messias-Reason, Iara

    2015-09-01

    The lectin pathway of the complement system has a pivotal role in the defense against infectious organisms. After binding of mannan-binding lectin (MBL), ficolins or collectin 11 to carbohydrates or acetylated residues on pathogen surfaces, dimers of MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2) activate a proteolytic cascade, which culminates in the formation of the membrane attack complex and pathogen lysis. Alternative splicing of the pre-mRNA encoding MASP-1 results in two other products, MASP-3 and MAp44, which regulate activation of the cascade. A similar mechanism allows the gene encoding MASP-2 to produce the truncated MAp19 protein. Polymorphisms in MASP1 and MASP2 genes are associated with protein serum levels and functional activity. Since the first report of a MASP deficiency in 2003, deficiencies in lectin pathway proteins have been associated with recurrent infections and several polymorphisms were associated with the susceptibility or protection to infectious diseases. In this review, we summarize the findings on the role of MASP polymorphisms and serum levels in bacterial, viral and protozoan infectious diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Simulation on Toxic Gases in Vehicle Exhaust Equipped with Modified Catalytic Converter : A Review

    Directory of Open Access Journals (Sweden)

    Leman A.M.

    2016-01-01

    Full Text Available Air pollution and global warming is a major issue nowadays. One of the main contributors to be the emission of harmful gases produced by vehicle exhausts lines. The harmful gases like NOx, CO, unburned HC and particulate matter increases the global warming, so catalytic converter plays a vital role in reducing harmful gases. Catalytic converters are used on most vehicles on the road today. This research deals with the gas emission flow in the catalytic converter involving the heat transfer, velocity flow, back pressure and others chemical reaction in the modified catalytic converter by using FeCrAl as a substrate that is treated using the ultrasonic bath and electroplating techniques. The objective of this study is to obtain a quantitative description of the gas emission in the catalytic converter system of automobile exhaust gas using ANSYS Software. The description of the gas emission in the catalytic converter system of automobile exhaust gas using ANSYS Software was simulated in this research in order to provide better efficiency and ease the reusability of the catalytic converter by comparing experimental data with software analysing data. The result will be expected to demonstrate a good approximation of gas emission in the modified catalytic converter simulation data compared to experimental data in order to verify the effectiveness of modified catalytic converter. Therefore studies on simulation of flow through the modified catalytic converter are very important to increase the accuracy of the obtained emission result.

  20. Ionic Liquids: The Synergistic Catalytic Effect in the Synthesis of Cyclic Carbonates

    Directory of Open Access Journals (Sweden)

    Flora T.T. Ng

    2013-10-01

    Full Text Available This review presents the synergistic effect in the catalytic system of ionic liquids (ILs for the synthesis of cyclic carbonate from carbon dioxide and epoxide. The emphasis of this review is on three aspects: the catalytic system of metal-based ionic liquids, the catalytic system of hydrogen bond-promoted ionic liquids and supported ionic liquids. Metal and ionic liquids show a synergistic effect on the cycloaddition reactions of epoxides. The cations and anions of ionic liquids show a synergistic effect on the cycloaddition reactions. The functional groups in cations or supports combined with the anions have a synergistic effect on the cycloaddition reactions. Synergistic catalytic effects of ILs play an important role of promoting the cycloaddition reactions of epoxides. The design of catalytic system of ionic liquids will be possible if the synergistic effect on a molecular level is understood.

  1. Oscillatory behaviour of catalytic properties, structure and temperature during the catalytic partial oxidation of methane on Pd/Al2O3

    DEFF Research Database (Denmark)

    Kimmerle, B.; Baiker, A.; Grunwaldt, Jan-Dierk

    2010-01-01

    Pd/Al2O3 catalysts showed an oscillatory behaviour during the catalytic partial oxidation (CPO) of methane, which was investigated simultaneously by IR-thermography, X-ray absorption spectroscopy, and online mass-spectrometry to correlate the temperature, state of the catalyst and catalytic...... to self-reduction leading to extinction of the process. The latter was the key driver for the oscillations and thus gave additional insight into the mechanism of partial methane oxidation....

  2. Activation of the zymogen to urokinase-type plasminogen activator is associated with increased interdomain flexibility

    DEFF Research Database (Denmark)

    Behrens, Manja A; Bøtkjær, Kenneth Alrø; Goswami, Sumit

    2011-01-01

    A key regulatory step for serine proteases of the trypsin clan is activation of the initially secreted zymogens, leading to an increase in activity by orders of magnitude. Zymogen activation occurs by cleavage of a single peptide bond near the N-terminus of the catalytic domain. Besides the catal...

  3. Interconversion of Active and Inactive Conformations of Urokinase-Type Plasminogen Activator

    DEFF Research Database (Denmark)

    Liu, Zhuo; Kromann-Hansen, Tobias; Lund, Ida K

    2012-01-01

    The catalytic activity of serine proteases depends on a salt-bridge between the amino group of residue 16 and the side chain of Asp194. The salt-bridge stabilizes the oxyanion hole and the S1 specificity pocket of the protease. Some serine proteases exist in only partially active forms, in which...... the amino group of residue 16 is exposed to the solvent. Such a partially active state is assumed by a truncated form of the murine urokinase-type plasminogen activator (muPA), consisting of residues 16-243. Here we investigated the allosteric interconversion between partially active states and the fully...

  4. Polo-like kinase 2-dependent phosphorylation of NPM/B23 on serine 4 triggers centriole duplication.

    Directory of Open Access Journals (Sweden)

    Annekatrin Krause

    Full Text Available Duplication of the centrosome is well controlled during faithful cell division while deregulation of this process leads to supernumary centrosomes, chromosome missegregation and aneuploidy, a hallmark of many cancer cells. We previously reported that Polo-like kinase 2 (Plk2 is activated near the G1/S phase transition, and regulates the reproduction of centrosomes. In search for Plk2 interacting proteins we have identified NPM/B23 (Nucleophosmin as a novel Plk2 binding partner. We find that Plk2 and NPM/B23 interact in vitro in a Polo-box dependent manner. An association between both proteins was also observed in vivo. Moreover, we show that Plk2 phosphorylates NPM/B23 on serine 4 in vivo in S-phase. Notably, expression of a non-phosphorylatable NPM/B23 S4A mutant interferes with centriole reduplication in S-phase arrested cells and leads to a dilution of centriole numbers in unperturbed U2OS cells. The corresponding phospho-mimicking mutants have the opposite effect and their expression leads to the accumulation of centrioles. These findings suggest that NPM/B23 is a direct target of Plk2 in the regulation of centriole duplication and that phosphorylation on serine 4 can trigger this process.

  5. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  6. Surface composition of carburized tungsten trioxide and its catalytic activity

    International Nuclear Information System (INIS)

    Nakazawa, M.; Okamoto, H.

    1985-01-01

    The surface composition and electronic structure of carburized tungsten trioxide are investigated using x-ray photoelectron spectroscopy (XPS). The relationship between the surface composition and the catalytic activity for methanol electro-oxidation is clarified. The tungsten carbide concentration in the surface layer increases with the carburization time. The formation of tungsten carbide enhances the catalytic activity. On the other hand, the presence of free carbon or tungsten trioxide in the surface layer reduces the activity remarkably. It is also shown that, the higher the electronic density of states near the Fermi level, the higher the catalytic activity

  7. Poisoning of bubble propelled catalytic micromotors: the chemical environment matters.

    Science.gov (United States)

    Zhao, Guanjia; Sanchez, Samuel; Schmidt, Oliver G; Pumera, Martin

    2013-04-07

    Self-propelled catalytic microjets have attracted considerable attention in recent years and these devices have exhibited the ability to move in complex media. The mechanism of propulsion is via the Pt catalysed decomposition of H2O2 and it is understood that the Pt surface is highly susceptible to poisoning by sulphur-containing molecules. Here, we show that important extracellular thiols as well as basic organic molecules can significantly hamper the motion of catalytic microjet engines. This is due to two different mechanisms: (i) molecules such as dimethyl sulfoxide can quench the hydroxyl radicals produced at Pt surfaces and reduce the amount of oxygen gas generated and (ii) molecules containing -SH, -SSR, and -SCH3 moieties can poison the catalytically active platinum surface, inhibiting the motion of the jet engines. It is essential that the presence of such molecules in the environment be taken into consideration for future design and operation of catalytic microjet engines. We show this effect on catalytic micromotors prepared by both rolled-up and electrodeposition approaches, demonstrating that such poisoning is universal for Pt catalyzed micromotors. We believe that our findings will contribute significantly to this field to develop alternative systems or catalysts for self-propulsion when practical applications in the real environment are considered.

  8. Selective inhibition reveals cyclin-dependent kinase 2 as another kinase that phosphorylates the androgen receptor at serine 81

    Czech Academy of Sciences Publication Activity Database

    Jorda, Radek; Bučková, Zuzana; Řezníčková, Eva; Bouchal, J.; Kryštof, Vladimír

    2018-01-01

    Roč. 1865, č. 2 (2018), s. 354-363 ISSN 0167-4889 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk(CZ) LO1304 Institutional support: RVO:61389030 Keywords : Androgen receptor * Cyclin-dependent kinase * Inhibitor * Phosphorylation * Serine 81 Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 4.521, year: 2016

  9. Catalytic Fast Pyrolysis: A Review

    Directory of Open Access Journals (Sweden)

    Theodore Dickerson

    2013-01-01

    Full Text Available Catalytic pyrolysis is a promising thermochemical conversion route for lignocellulosic biomass that produces chemicals and fuels compatible with current, petrochemical infrastructure. Catalytic modifications to pyrolysis bio-oils are geared towards the elimination and substitution of oxygen and oxygen-containing functionalities in addition to increasing the hydrogen to carbon ratio of the final products. Recent progress has focused on both hydrodeoxygenation and hydrogenation of bio-oil using a variety of metal catalysts and the production of aromatics from bio-oil using cracking zeolites. Research is currently focused on developing multi-functional catalysts used in situ that benefit from the advantages of both hydrodeoxygenation and zeolite cracking. Development of robust, highly selective catalysts will help achieve the goal of producing drop-in fuels and petrochemical commodities from wood and other lignocellulosic biomass streams. The current paper will examine these developments by means of a review of existing literature.

  10. Chemically-modified cellulose paper as a microstructured catalytic reactor.

    Science.gov (United States)

    Koga, Hirotaka; Kitaoka, Takuya; Isogai, Akira

    2015-01-15

    We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  11. Chemically-Modified Cellulose Paper as a Microstructured Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Hirotaka Koga

    2015-01-01

    Full Text Available We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  12. Human ribosomal protein L37 has motifs predicting serine/threonine phosphorylation and a zinc-finger domain.

    Science.gov (United States)

    Barnard, G F; Staniunas, R J; Puder, M; Steele, G D; Chen, L B

    1994-08-02

    Ribosomal protein L37 mRNA is overexpressed in colon cancer. The nucleotide sequences of human L37 from several tumor and normal, colon and liver cDNA sources were determined to be identical. L37 mRNA was approximately 375 nucleotides long encoding 97 amino acids with M(r) = 11,070, pI = 12.6, multiple potential serine/threonine phosphorylation sites and a zinc-finger domain. The human sequence is compared to other species.

  13. Oxyfuel combustion using a catalytic ceramic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiaoyao; Li, K. [Department of Chemical Engineering, Imperial College London, University of London, South Kensington, London SW7 2AZ (United Kingdom); Thursfield, A.; Metcalfe, I.S. [School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2008-02-29

    Membrane catalytic combustion (MCC) is an environmentally friendly technique for heat and power generation from methane. This work demonstrates the performances of a MCC perovskite hollow fibre membrane reactor for the catalytic combustion of methane. The ionic-electronic La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{alpha}} (LSCF6428) mixed conductor, in the form of an oxygen-permeable hollow fibre membrane, has been prepared successfully by means of a phase-inversion spinning/sintering technique. For this process polyethersulfone (PESf) was used as a binder, N-methyl-2-pyrrollidone (NMP) as solvent and polyvinylpyrrolidone (PVP, K16-18) as an additive. With the prepared LSCF6428 hollow fibre membranes packed with catalyst, hollow fibre membrane reactors (HFMRs) have been assembled to perform the catalytic combustion of methane. A simple mathematical model that combines the local oxygen permeation rate with approximate catalytic reaction kinetics has been developed and can be used to predict the performance of the HFMRs for methane combustion. The effects of operating temperature and methane and air feed flow rates on the performance of the HFMR have been investigated both experimentally and theoretically. Both the methane conversion and oxygen permeation rate can be improved by means of coating platinum on the air side of the hollow fibre membranes. (author)

  14. COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER; FINAL

    International Nuclear Information System (INIS)

    Phillip E. Savage

    1999-01-01

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, we examined the oxidation of phenol over a commercial catalyst and over bulk MnO(sub 2), bulk TiO(sub 2), and CuO supported on Al(sub 2) O(sub 3). We used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which we can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO(sub 2) yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that we could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, we performed experiments with bulk transition metal oxides. The bulk MnO(sub 2) and TiO(sub 2) catalysts enhance both the phenol disappearance and CO(sub 2) formation rates during SCWO. MnO(sub 2) does not affect the selectivity to CO(sub 2), or to the phenol dimers at a given phenol conversion. However, the selectivities to CO(sub 2) are increased and the selectivities to phenol dimers are decreased in the presence of TiO(sub 2) , which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of

  15. Catalytic destruction of tar in biomass derived producer gas

    International Nuclear Information System (INIS)

    Zhang Ruiqin; Brown, Robert C.; Suby, Andrew; Cummer, Keith

    2004-01-01

    The purpose of this study is to investigate catalytic destruction of tar formed during gasification of biomass, with the goal of improving the quality of the producer gas. This work focuses on nickel based catalysts treated with alkali in an effort to promote steam gasification of the coke that deposits on catalyst surfaces. A tar conversion system consisting of a guard bed and catalytic reactor was designed to treat the producer gas from an air blown, fluidized bed biomass gasifier. The guard bed used dolomite to crack the heavy tars. The catalytic reactor was used to evaluate three commercial steam reforming catalysts. These were the ICI46-1 catalyst from Imperial Chemical Industry and Z409 and RZ409 catalysts from Qilu Petrochemical Corp. in China. A 0.5-3 l/min slipstream from a 5 tpd biomass gasifier was used to test the tar conversion system. Gas and tar were sampled before and after the tar conversion system to evaluate the effectiveness of the system. Changes in gas composition as functions of catalytic bed temperature, space velocity and steam/TOC (total organic carbon) ratio are presented. Structural changes in the catalysts during the tests are also described

  16. Catalytic Activity Control via Crossover between Two Different Microstructures

    KAUST Repository

    Zhou, Yuheng

    2017-09-08

    Metal nanocatalysts hold great promise for a wide range of heterogeneous catalytic reactions, while the optimization strategy of catalytic activity is largely restricted by particle size or shape control. Here, we demonstrate that a reversible microstructural control through the crossover between multiply-twinned nanoparticle (MTP) and single crystal (SC) can be readily achieved by solvent post-treatment on gold nanoparticles (AuNPs). Polar solvents (e.g. water, methanol) direct the transformation from MTP to SC accompanied by the disappearance of twinning and stacking faults. A reverse transformation from SC to MTP is achieved in non-polar solvent (e.g. toluene) mixed with thiol ligands. The transformation between two different microstructures is directly observed by in-situ TEM and leads to a drastic modulation of catalytic activity towards the gas-phase selective oxidation of alcohols. There is a quasi-linear relationship between TOFs and MTP concentrations. Based on the combined experimental and theoretical investigations of alcohol chemisorption on these nanocatalysts, we propose that the exposure of {211}-like microfacets associated with twin boundaries and stack faults accounts for the strong chemisorption of alcohol molecules on MTP AuNPs and thus the exceptionally high catalytic activity.

  17. Evolutionary Loss of Activity in De-Ubiquitylating Enzymes of the OTU Family.

    Directory of Open Access Journals (Sweden)

    Marcell Louis

    Full Text Available Understanding function and specificity of de-ubiquitylating enzymes (DUBs is a major goal of current research, since DUBs are key regulators of ubiquitylation events and have been shown to be mutated in human diseases. Most DUBs are cysteine proteases, relying on a catalytic triad of cysteine, histidine and aspartate to cleave the isopeptide bond between two ubiquitin units in a poly-ubiquitin chain. We have discovered that the two Drosophila melanogaster homologues of human OTUD4, CG3251 and Otu, contain a serine instead of a cysteine in the catalytic OTU (ovarian tumor domain. DUBs that are serine proteases instead of cysteine- or metallo-proteases have not been described. In line with this, neither CG3251 nor Otu protein were active to cleave ubiquitin chains. Re-introduction of a cysteine in the catalytic center did not render the enzymes active, indicating that further critical features for ubiquitin binding or cleavage have been lost in these proteins. Sequence analysis of OTUD4 homologues from various other species showed that within this OTU subfamily, loss of the catalytic cysteine has occurred frequently in presumably independent events, as well as gene duplications or triplications, suggesting DUB-independent functions of OTUD4 proteins. Using an in vivo RNAi approach, we show that CG3251 might function in the regulation of Inhibitor of Apoptosis (IAP-antagonist-induced apoptosis, presumably in a DUB-independent manner.

  18. Identity and functions of CxxC-derived motifs.

    Science.gov (United States)

    Fomenko, Dmitri E; Gladyshev, Vadim N

    2003-09-30

    Two cysteines separated by two other residues (the CxxC motif) are employed by many redox proteins for formation, isomerization, and reduction of disulfide bonds and for other redox functions. The place of the C-terminal cysteine in this motif may be occupied by serine (the CxxS motif), modifying the functional repertoire of redox proteins. Here we found that the CxxC motif may also give rise to a motif, in which the C-terminal cysteine is replaced with threonine (the CxxT motif). Moreover, in contrast to a view that the N-terminal cysteine in the CxxC motif always serves as a nucleophilic attacking group, this residue could also be replaced with threonine (the TxxC motif), serine (the SxxC motif), or other residues. In each of these CxxC-derived motifs, the presence of a downstream alpha-helix was strongly favored. A search for conserved CxxC-derived motif/helix patterns in four complete genomes representing bacteria, archaea, and eukaryotes identified known redox proteins and suggested possible redox functions for several additional proteins. Catalytic sites in peroxiredoxins were major representatives of the TxxC motif, whereas those in glutathione peroxidases represented the CxxT motif. Structural assessments indicated that threonines in these enzymes could stabilize catalytic thiolates, suggesting revisions to previously proposed catalytic triads. Each of the CxxC-derived motifs was also observed in natural selenium-containing proteins, in which selenocysteine was present in place of a catalytic cysteine.

  19. PINGU: PredIction of eNzyme catalytic residues usinG seqUence information.

    Directory of Open Access Journals (Sweden)

    Priyadarshini P Pai

    Full Text Available Identification of catalytic residues can help unveil interesting attributes of enzyme function for various therapeutic and industrial applications. Based on their biochemical roles, the number of catalytic residues and sequence lengths of enzymes vary. This article describes a prediction approach (PINGU for such a scenario. It uses models trained using physicochemical properties and evolutionary information of 650 non-redundant enzymes (2136 catalytic residues in a support vector machines architecture. Independent testing on 200 non-redundant enzymes (683 catalytic residues in predefined prediction settings, i.e., with non-catalytic per catalytic residue ranging from 1 to 30, suggested that the prediction approach was highly sensitive and specific, i.e., 80% or above, over the incremental challenges. To learn more about the discriminatory power of PINGU in real scenarios, where the prediction challenge is variable and susceptible to high false positives, the best model from independent testing was used on 60 diverse enzymes. Results suggested that PINGU was able to identify most catalytic residues and non-catalytic residues properly with 80% or above accuracy, sensitivity and specificity. The effect of false positives on precision was addressed in this study by application of predicted ligand-binding residue information as a post-processing filter. An overall improvement of 20% in F-measure and 0.138 in Correlation Coefficient with 16% enhanced precision could be achieved. On account of its encouraging performance, PINGU is hoped to have eventual applications in boosting enzyme engineering and novel drug discovery.

  20. The role of DNA dependent protein kinase in synapsis of DNA ends

    NARCIS (Netherlands)

    E.P.W.C. Weterings (Eric); N.S. Verkaik (Nicole); H.T. Brüggenwirth (Hennie); D.C. van Gent (Dik); J.H.J. Hoeijmakers (Jan)

    2003-01-01

    textabstractDNA dependent protein kinase (DNA-PK) plays a central role in the non-homologous end-joining pathway of DNA double strand break repair. Its catalytic subunit (DNA-PK(CS)) functions as a serine/threonine protein kinase. We show that DNA-PK forms a stable complex at DNA termini that blocks