WorldWideScience

Sample records for sequestering anthropogenic co2

  1. Anthropogenic CO2 in the ocean

    Directory of Open Access Journals (Sweden)

    Tsung-Hung Peng

    2005-06-01

    Full Text Available The focus of this review article is on the anthropogenic CO2 taken up by the ocean. There are several methods of identifying the anthropogenic CO2 signal and quantifying its inventory in the ocean. The ?C* method is most frequently used to estimate the global distribution of anthropogenic CO2 in the ocean. Results based on analysis of the dataset obtained from the comprehensive surveys of inorganic carbon distribution in the world oceans in the 1990s are given. These surveys were jointly conducted during the World Ocean Circulation Experiment (WOCE and the Joint Global Ocean Flux Study (JGOFS. This data set consists of 9618 hydrographic stations from a total of 95 cruises, which represents the most accurate and comprehensive view of the distribution of inorganic carbon in the global ocean available today. The increase of anthropogenic CO2 in the ocean during the past few decades is also evaluated using direct comparison of results from repeat surveys and using statistical method of Multi-parameter Linear Regression (MLR. The impact of increasing oceanic anthropogenic CO2 on the calcium carbonate system in the ocean is reviewed briefly as well. Extensive studies of CaCO3 dissolution as a result of increasing anthropogenic CO2 in the ocean have revealed several distinct oceanic regions where the CaCO3 undersaturation zone has expanded.

  2. FINAL TOPICAL REPORT FOR NOVEL SYSTEMS SEQUESTERING AND UTILIZATION OF CO2

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson

    1999-04-30

    Atmospheric CO{sub 2} concentrations are increasing by about 0.5% each year, and there is serious concern that this will cause adverse climate change via the ''greenhouse effect.'' The principal sources of the increase are the utilization of fossil fuels and the deforestation of land. The capture of CO{sub 2} from flue gas or process streams has been demonstrated using chemical absorption with an ethanolamine solvent. However, the cost of releasing the CO{sub 2} by thermal stripping and recovering the solvent is very high, resulting in an energy penalty of 27% to 37 %, depending on the type of power plant (1). Alternatives that would result in energy penalties of 15% have been investigated. Sequestering schemes for CO{sub 2} produced from fossil fuels conversion to energy in utility plants could instead yield useful polymer products. Relatively concentrated CO{sub 2} by-product streams from fermentation of cellulose to fuel ethanol will also be available for conversion to useful polymers. As shown in Figure 1, this project offers two opportunities for mitigating the emission of CO{sub 2} to the atmosphere, depending on the source configuration and economic feasibility of the proposed processes: CO{sub 2} in a conventional utility-produced flue gas could be sequestered to form a reactive monomer using an amine (such as ethanolamine) that reacts with an aldehyde to form an amine intermediate, which subsequently copolymerizes with the CO{sub 2} to give a copolyurethane. Using a tertiary amine to trap the CO{sub 2} is also proposed. In this case the tertiary ammonium carbonate is reacted with the aldehyde to form the copolycarbonate, regenerating the tertiary amine. In an alternate scheme, a concentrated CO{sub 2} stream from an advanced energy system could be directly polymerized with aldehyde and catalyst to Polymer 2. Sources of concentrated CO{sub 2} include the water-gas shift reaction in an IGCC (integrated gasification combined-cycle) device

  3. Sequestering CO2 by mineralization into useful nesquehonite-based products

    Directory of Open Access Journals (Sweden)

    Fredrik Paul Glasser

    2016-02-01

    Full Text Available The precipitation of magnesium hydroxy-carbonate hydrates has been suggested as a route to sequester CO2 into solids. We report the development of self-cementing compositions based on nesquehonite, MgCO3·3H2O, that are made from CO2-containing gas streams, the CO2 being separated from other gases by its high solubility in alkaline water, while magnesium is typically provided by waste desalination brines. Precipitation conditions are adjusted to optimize the formation of nesquehonite and the crystalline solid can readily be washed free of chloride. Products can be prepared to achieve self-cementation following two routes: (i thermal activation of the nesquehonite then rehydration of the precursor or (ii direct curing of a slurry of nesquehonite. The products thus obtained contain ~ 30 wt% CO2 and could form the basis for a new generation of lightweight, thermally insulating boards, blocks and panels, with sufficient strength for general construction.

  4. Implications of overestimated anthropogenic CO2 emissions on East Asian and global land CO2 flux inversion

    Science.gov (United States)

    Saeki, Tazu; Patra, Prabir K.

    2017-12-01

    Measurement and modelling of regional or country-level carbon dioxide (CO2) fluxes are becoming critical for verification of the greenhouse gases emission control. One of the commonly adopted approaches is inverse modelling, where CO2 fluxes (emission: positive flux, sink: negative flux) from the terrestrial ecosystems are estimated by combining atmospheric CO2 measurements with atmospheric transport models. The inverse models assume anthropogenic emissions are known, and thus the uncertainties in the emissions introduce systematic bias in estimation of the terrestrial (residual) fluxes by inverse modelling. Here we show that the CO2 sink increase, estimated by the inverse model, over East Asia (China, Japan, Korea and Mongolia), by about 0.26 PgC year-1 (1 Pg = 1012 g) during 2001-2010, is likely to be an artifact of the anthropogenic CO2 emissions increasing too quickly in China by 1.41 PgC year-1. Independent results from methane (CH4) inversion suggested about 41% lower rate of East Asian CH4 emission increase during 2002-2012. We apply a scaling factor of 0.59, based on CH4 inversion, to the rate of anthropogenic CO2 emission increase since the anthropogenic emissions of both CO2 and CH4 increase linearly in the emission inventory. We find no systematic increase in land CO2 uptake over East Asia during 1993-2010 or 2000-2009 when scaled anthropogenic CO2 emissions are used, and that there is a need of higher emission increase rate for 2010-2012 compared to those calculated by the inventory methods. High bias in anthropogenic CO2 emissions leads to stronger land sinks in global land-ocean flux partitioning in our inverse model. The corrected anthropogenic CO2 emissions also produce measurable reductions in the rate of global land CO2 sink increase post-2002, leading to a better agreement with the terrestrial biospheric model simulations that include CO2-fertilization and climate effects.

  5. Use of hydrate for sequestering CO{sub 2} in the deep ocean

    Energy Technology Data Exchange (ETDEWEB)

    North, W.J.; Morgan, J.J. [California Inst. of Technology, Pasadena, CA (United States); Spencer, D.F. [Electric Power Research Inst., Palo Alto, CA (United States)] [and others

    1993-12-31

    Tremendous amounts of CO{sub 2} are accumulating annually in the atmosphere (ca 3 gigatons of carbon per year at present). Prevention or significant amelioration of this atmospheric buildup will obviously require a grand scale corrective activity. A potential solution to the problem might involve sequestering CO{sub 2} in an alternate reservoir. The ocean immediately comes to mind as a reservoir of appropriate magnitude to accommodate the huge quantities of CO{sub 2} involved. Presumably there would be a trade-off: we would achieve a semi-clean atmosphere for an as- yet-to-be-determined impact in the ocean. Minimizing any oceanic impacts would enhance attractiveness of the trade-off.

  6. Sequestering CO{sub 2} by Mineralization into Useful Nesquehonite-Based Products

    Energy Technology Data Exchange (ETDEWEB)

    Glasser, Fredrik Paul, E-mail: f.p.glasser@abdn.ac.uk; Jauffret, Guillaume; Morrison, Jennie [Department of Chemistry, University of Aberdeen, Aberdeen (United Kingdom); Galvez-Martos, Jose-Luis; Patterson, Naomi; Imbabi, Mohammed Salah-Eldin [School of Engineering, University of Aberdeen, Aberdeen (United Kingdom)

    2016-02-11

    The precipitation of magnesium hydroxy-carbonate hydrates has been suggested as a route to sequester CO{sub 2} into solids. We report the development of self-cementing compositions based on nesquehonite, MgCO{sub 3}⋅3H{sub 2}O, that are made from CO{sub 2}-containing gas streams, the CO{sub 2} being separated from other gases by its high solubility in alkaline water, while magnesium is typically provided by waste desalination brines. Precipitation conditions are adjusted to optimize the formation of nesquehonite and the crystalline solid can readily be washed free of chloride. Products can be prepared to achieve self-cementation following two routes: (i) thermal activation of the nesquehonite then rehydration of the precursor or (ii) direct curing of a slurry of nesquehonite. The products thus obtained contain ~30 wt% CO{sub 2} and could form the basis for a new generation of lightweight, thermally insulating boards, blocks, and panels, with sufficient strength for general construction.

  7. Microalgal CO2 sequestering – Modeling microalgae production costs

    International Nuclear Information System (INIS)

    Bilanovic, Dragoljub; Holland, Mark; Armon, Robert

    2012-01-01

    Highlights: ► Microalgae production costs were modeled as a function of specific expenses. ► The effects of uncontrollable expenses/factors were incorporated into the model. ► Modeled microalgae production costs were in the range $102–1503 t −1 ha −1 y −1 . - Abstract: Microalgae CO 2 sequestering facilities might become an industrial reality if microalgae biomass could be produced at cost below $500.00 t −1 . We develop a model for estimation of total production costs of microalgae as a function of known production-specific expenses, and incorporate into the model the effects of uncontrollable factors which affect known production-specific expenses. Random fluctuations were intentionally incorporated into the model, consequently into generated cost/technology scenarios, because each and every logically interconnected equipment/operation that is used in design/construction/operation/maintenance of a production process is inevitably subject to random cost/price fluctuations which can neither be eliminated nor a priori controlled. A total of 152 costs/technology scenarios were evaluated to find 44 scenarios in which predicted total production costs of microalgae (PTPCM) was in the range $200–500 t −1 ha −1 y −1 . An additional 24 scenarios were found with PTCPM in the range of $102–200 t −1 ha −1 y −1 . These findings suggest that microalgae CO 2 sequestering and the production of commercial compounds from microalgal biomass can be economically viable venture even today when microalgae production technology is still far from its optimum.

  8. Seasonal and mesoscale variability of oceanic transport of anthropogenic CO2

    Directory of Open Access Journals (Sweden)

    J.-C. Dutay

    2009-11-01

    Full Text Available Estimates of the ocean's large-scale transport of anthropogenic CO2 are based on one-time hydrographic sections, but the temporal variability of this transport has not been investigated. The aim of this study is to evaluate how the seasonal and mesoscale variability affect data-based estimates of anthropogenic CO2 transport. To diagnose this variability, we made a global anthropogenic CO2 simulation using an eddy-permitting version of the coupled ocean sea-ice model ORCA-LIM. As for heat transport, the seasonally varying transport of anthropogenic CO2 is largest within 20° of the equator and shows secondary maxima in the subtropics. Ekman transport generally drives most of the seasonal variability, but the contribution of the vertical shear becomes important near the equator and in the Southern Ocean. Mesoscale variabilty contributes to the annual-mean transport of both heat and anthropogenic CO2 with strong poleward transport in the Southern Ocean and equatorward transport in the tropics. This "rectified" eddy transport is largely baroclinic in the tropics and barotropic in the Southern Ocean due to a larger contribution from standing eddies. Our analysis revealed that most previous hydrographic estimates of meridional transport of anthropogenic CO2 are severely biased because they neglect temporal fluctuations due to non-Ekman velocity variations. In each of the three major ocean basins, this bias is largest near the equator and in the high southern latitudes. In the subtropical North Atlantic, where most of the hydrographic-based estimates have been focused, this uncertainty represents up to 20% and 30% of total meridional transport of heat and CO2. Generally though, outside the tropics and Southern Ocean, there are only small variations in meridional transport due to seasonal variations in tracer fields and time variations in eddy transport. For the North Atlantic, eddy variability accounts for up to 10% and 15% of the total transport of

  9. CO2 sequestration in two mediterranean dune areas subjected to a different level of anthropogenic disturbance

    Science.gov (United States)

    Bonito, Andrea; Ricotta, Carlo; Iberite, Mauro; Gratani, Loretta; Varone, Laura

    2017-09-01

    Coastal sand dunes are among the most threatened habitats, especially in the Mediterranean Basin, where the high levels of human pressure impair the presence of plant species, putting at risk the maintenance of the ecosystem services, such as CO2 sequestration provided by these habitats. The aim of this study was to analyze how disturbance-induced changes in plant species abundance patterns account for variations in annual CO2 sequestration flow (CS) of Mediterranean sand dune areas. Two sites characterized by a high (site HAD) and a lower (site LAD) anthropogenic disturbance level were selected. At both sites, plant species number, cover, height and CS based on net photosynthesis measurements were sampled. At the plant species level, our results highlighted that Ammophila arenaria and Pancratium maritimum, had a key role in CS. Moreover, the results revealed a patchy species assemblage in both sites. In particular, HAD was characterized by a higher extension of the anthropogenic aphytoic zone (64% of the total transect length) than LAD. In spite of the observed differences in plant species composition, there were not significant differences between HAD and LAD in structural and functional traits, such as plant height and net photosynthesis. As a consequence, HAD and LAD had a similar CS (443 and 421 Mg CO2 ha-1 y-1, respectively). From a monetary point of view, our estimates based on the social costs of carbon revealed that the flow of sequestered CO2 valued on an average 3181 ± 114 ha-1 year-1 (mean value for the two sites). However, considering also the value of the CO2 negative flow related to loss of vegetated area, the annual net benefit arising from CO2 sequestration amounted to 1641 and 1772 for HAD and LAD, respectively. Overall, the results highlighted the importance to maximize the efforts to preserve dune habitats by applying an effective management policy, which could allow maintaining also a regulatory ecosystem service such as CO2 sequestration.

  10. Sequestering CO2 in the Ocean: Options and Consequences

    Science.gov (United States)

    Rau, G. H.; Caldeira, K.

    2002-12-01

    The likelihood of negative climate and environmental impacts associated with increasing atmospheric CO2 has prompted serious consideration of various CO2 mitigation strategies. Among these are methods of capturing and storing of CO2 in the ocean. Two approaches that have received the most attention in this regard have been i) ocean fertilization to enhanced biological uptake and fixation of CO2, and ii) the chemical/mechanical capture and injection of CO2 into the deep ocean. Both methods seek to enhance or speed up natural mechanisms of CO2 uptake and storage by the ocean, namely i) the biological CO2 "pump" or ii) the passive diffusion of CO2 into the surface ocean and subsequent mixing into the deep sea. However, as will be reviewed, concerns about the capacity and effectiveness of either strategy in long-term CO2 sequestration have been raised. Both methods are not without potentially significant environmental impacts, and the costs of CO2 capture and injection (option ii) are currently prohibitive. An alternate method of ocean CO2 sequestration would be to react and hydrate CO2 rich waste gases (e.g., power plant flue gas) with seawater and to subsequently neutralize the resulting carbonic acid with limestone to produce calcium and bicarbonate ions in solution. This approach would simply speed up the CO2 uptake and sequestration that naturally (but very slowly) occurs via global carbonate weathering. This would avoid much of the increased acidity associated with direct CO2 injection while obviating the need for costly CO2 separation and capture. The addition of the resulting bicarbonate- and carbonate-rich solution to the ocean would help to counter the decrease in pH and carbonate ion concentration, and hence loss of biological calcification that is presently occurring as anthropogenic CO2 invades the ocean from the atmosphere. However, as with any approach to CO2 mitigation, the costs, impacts, risks, and benefits of this method need to be better understood

  11. Interpreting plant-sampled ¿14CO2 to study regional anthropogenic CO2 signals in Europe

    OpenAIRE

    Bozhinova, D.N.

    2015-01-01

    "Interpreting plant-sampled Δ14CO2 to study regional anthropogenic CO2 signals in Europe" Author: Denica Bozhinova This thesis investigates the quantitative interpretation of plant-sampled ∆14CO2 as an indicator of fossil fuel CO2 recently added to the atmosphere. We present a methodology to calculate the ∆14CO2 that has accumulated in a plant over its growing period, based on a modeling framework consisting of a plant growth model (SUCROS) and an atmospheric transport model (WRF-Chem). We ve...

  12. Anthropogenic CO2 emissions from a megacity in the Yangtze River Delta of China.

    Science.gov (United States)

    Hu, Cheng; Liu, Shoudong; Wang, Yongwei; Zhang, Mi; Xiao, Wei; Wang, Wei; Xu, Jiaping

    2018-06-03

    Anthropogenic CO 2 emissions from cities represent a major source contributing to the global atmospheric CO 2 burden. Here, we examined the enhancement of atmospheric CO 2 mixing ratios by anthropogenic emissions within the Yangtze River Delta (YRD), China, one of the world's most densely populated regions (population greater than 150 million). Tower measurements of CO 2 mixing ratios were conducted from March 2013 to August 2015 and were combined with numerical source footprint modeling to help constrain the anthropogenic CO 2 emissions. We simulated the CO 2 enhancements (i.e., fluctuations superimposed on background values) for winter season (December, January, and February). Overall, we observed mean diurnal variation of CO 2 enhancement of 23.5~49.7 μmol mol -1 , 21.4~52.4 μmol mol -1 , 28.1~55.4 μmol mol -1 , and 29.5~42.4 μmol mol -1 in spring, summer, autumn, and winter, respectively. These enhancements were much larger than previously reported values for other countries. The diurnal CO 2 enhancements reported here showed strong similarity for all 3 years of the study. Results from source footprint modeling indicated that our tower observations adequately represent emissions from the broader YRD area. Here, the east of Anhui and the west of Jiangsu province contributed significantly more to the anthropogenic CO 2 enhancement compared to the other sectors of YRD. The average anthropogenic CO 2 emission in 2014 was 0.162 (± 0.005) mg m -2  s -1 and was 7 ± 3% higher than 2010 for the YRD. Overall, our emission estimates were significantly smaller (9.5%) than those estimated (0.179 mg m -2  s -1 ) from the EDGAR emission database.

  13. Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    J. Palmiéri

    2015-02-01

    Full Text Available Constraints on the Mediterranean Sea's storage of anthropogenic CO2 are limited, coming only from data-based approaches that disagree by more than a factor of two. Here we simulate this marginal sea's anthropogenic carbon storage by applying a perturbation approach in a high-resolution regional model. Our model simulates that, between 1800 and 2001, basin-wide CO2 storage by the Mediterranean Sea has increased by 1.0 Pg C, a lower limit based on the model's weak deep-water ventilation, as revealed by evaluation with CFC-12. Furthermore, by testing a data-based approach (transit time distribution in our model, comparing simulated anthropogenic CO2 to values computed from simulated CFC-12 and physical variables, we conclude that the associated basin-wide storage of 1.7 Pg, published previously, must be an upper bound. Out of the total simulated storage of 1.0 Pg C, 75% comes from the air–sea flux into the Mediterranean Sea and 25% comes from net transport from the Atlantic across the Strait of Gibraltar. Sensitivity tests indicate that the Mediterranean Sea's higher total alkalinity, relative to the global-ocean mean, enhances the Mediterranean's total inventory of anthropogenic carbon by 10%. Yet the corresponding average anthropogenic change in surface pH does not differ significantly from the global-ocean average, despite higher total alkalinity. In Mediterranean deep waters, the pH change is estimated to be between −0.005 and −0.06 pH units.

  14. A review of marine anthropogenic CO2 definitions: introducing a thermodynamic approach based on observations

    International Nuclear Information System (INIS)

    Friis, Karsten

    2006-01-01

    A review of existing methods that define anthropogenic CO 2 as deduced from total inorganic carbon is presented. A refined approach to define anthropogenic CO 2 is introduced that has a stronger thermodynamic orientation than current methods, and is based on a back-calculation technique by Chen and Millero and Poisson and Chen. Anthropogenic CO 2 results of the new technique are compared with results from the original technique as well as with results of the technique of Gruber et al. The new technique is furthermore applied to three time-separated data sets in the subpolar North Atlantic and shows consistent results with regard to available data quality and anthropogenic CO 2 quantities. The difference between the new thermodynamic approach and the anthropogenic CO 2 definition of Gruber et al., which is termed mechanistic, is discussed. Here likely changes in the CO 2 solubility pump are a thermodynamic property of this definition, whereas it is a separate phenomenon in the mechanistic definition. The thermodynamic approach is not without caveats, but points to improvements by the synergistic use of model results and those from observations. Future improvements are considered for the initial saturation state of oxygen and CO 2 , at the instant the surface water loses contact with the atmosphere and for variations in the Redfield ratio

  15. Anthropogenic CO2 distribution in the North Pacific ocean

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C [National Sun Yat-Sen University, Kaohsiung (Taiwan, Province of China)

    1993-06-01

    This paper discusses the penetration depth of anthropogenic CO2 in the North Pacific Ocean based on carbonate data in the literature. The carbonate data in the literature were used to supplement the tracer data showing oceanic mixing features for waters formed in the last 140 years. The deepest penetration over 2,000m was found in the northwest North Pacific. On the other hand, the shallowest penetration to less than 400m was found in the eastern equatorial Pacific. Consequently, it was suggested that penetration depth of anthropogenic CO2 has been controlled by such factors as deep water formation in the Northwest Pacific, upwelling in the equatorial Pacific, and vertical mixing in the western boundary areas. It was revealed that these results are in harmony well with results implied from tritium, C-14, and freons distributions. The total inventory of excess carbon in the North Pacific was 14.7[plus minus]4[times]10[sup 15]g around 1980. 48 refs., 10 figs.

  16. Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases 1990-2020

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data in these Appendices to the Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases (1990-2020) report provide historical and projected estimates of...

  17. Atmospheric verification of anthropogenic CO2 emission trends

    Science.gov (United States)

    Francey, Roger J.; Trudinger, Cathy M.; van der Schoot, Marcel; Law, Rachel M.; Krummel, Paul B.; Langenfelds, Ray L.; Paul Steele, L.; Allison, Colin E.; Stavert, Ann R.; Andres, Robert J.; Rödenbeck, Christian

    2013-05-01

    International efforts to limit global warming and ocean acidification aim to slow the growth of atmospheric CO2, guided primarily by national and industry estimates of production and consumption of fossil fuels. Atmospheric verification of emissions is vital but present global inversion methods are inadequate for this purpose. We demonstrate a clear response in atmospheric CO2 coinciding with a sharp 2010 increase in Asian emissions but show persisting slowing mean CO2 growth from 2002/03. Growth and inter-hemispheric concentration difference during the onset and recovery of the Global Financial Crisis support a previous speculation that the reported 2000-2008 emissions surge is an artefact, most simply explained by a cumulative underestimation (~ 9PgC) of 1994-2007 emissions; in this case, post-2000 emissions would track mid-range of Intergovernmental Panel on Climate Change emission scenarios. An alternative explanation requires changes in the northern terrestrial land sink that offset anthropogenic emission changes. We suggest atmospheric methods to help resolve this ambiguity.

  18. Coral reefs - sources or sinks of atmospheric CO[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J R; Smith, S V; Reakakudla, M L [Hawaii University, Honolulu, HI (USA). Dept. of Oceanography

    1992-09-01

    Because the precipitation of calcium carbonate results in the sequestering of carbon, it frequently has been thought that coral reefs function as sinks of global atmospheric CO[sub 2]. However, the precipitation of calcium carbonate is accompanied by a shift of pH that results in the release of CO[sub 2]. This release of CO[sub 2] is less in buffered sea water than fresh water systems; nevertheless, coral reefs are sources, not sinks, of atmospheric carbon. Using estimated rates of coral reef carbonate production, we compute that coral reefs release 0.02 to 0.08 Gt C as CO[sub 2] annually. This is approximately 0.4% to 1.4% of the current anthropogenic CO[sub 2] production due to fossil fuel combustion.

  19. The role of ocean transport in the uptake of anthropogenic CO2

    Directory of Open Access Journals (Sweden)

    I. Totterdell

    2009-03-01

    Full Text Available We compare modeled oceanic carbon uptake in response to pulse CO2 emissions using a suite of global ocean models and Earth system models. In response to a CO2 pulse emission of 590 Pg C (corresponding to an instantaneous doubling of atmospheric CO2 from 278 to 556 ppm, the fraction of CO2 emitted that is absorbed by the ocean is: 37±8%, 56±10%, and 81±4% (model mean ±2σ in year 30, 100, and 1000 after the emission pulse, respectively. Modeled oceanic uptake of pulse CO2 on timescales from decades to about a century is strongly correlated with simulated present-day uptake of chlorofluorocarbons (CFCs and CO2 across all models, while the amount of pulse CO2 absorbed by the ocean from a century to a millennium is strongly correlated with modeled radiocarbon in the deep Southern and Pacific Ocean. However, restricting the analysis to models that are capable of reproducing observations within uncertainty, the correlation is generally much weaker. The rates of surface-to-deep ocean transport are determined for individual models from the instantaneous doubling CO2 simulations, and they are used to calculate oceanic CO2 uptake in response to pulse CO2 emissions of different sizes pulses of 1000 and 5000 Pg C. These results are compared with simulated oceanic uptake of CO2 by a number of models simulations with the coupling of climate-ocean carbon cycle and without it. This comparison demonstrates that the impact of different ocean transport rates across models on oceanic uptake of anthropogenic CO2 is of similar magnitude as that of climate-carbon cycle feedbacks in a single model, emphasizing the important role of ocean transport in the uptake of anthropogenic CO2.

  20. Apparatus for extracting and sequestering carbon dioxide

    Science.gov (United States)

    Rau, Gregory H [Castro Valley, CA; Caldeira, Kenneth G [Livermore, CA

    2010-02-02

    An apparatus and method associated therewith to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said apparatus hydrates CO.sub.2 and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  1. Method for Extracting and Sequestering Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Rau, Gregory H.; Caldeira, Kenneth G.

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO2) from a stream or volume of gas wherein said method and apparatus hydrates CO2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO2 from a gaseous environment.

  2. Modeling climatic effects of anthropogenic CO2 emissions: Unknowns and uncertainties

    Science.gov (United States)

    Soon, W.; Baliunas, S.; Idso, S.; Kondratyev, K. Ya.; Posmentier, E. S.

    2001-12-01

    A likelihood of disastrous global environmental consequences has been surmised as a result of projected increases in anthropogenic greenhouse gas emissions. These estimates are based on computer climate modeling, a branch of science still in its infancy despite recent, substantial strides in knowledge. Because the expected anthropogenic climate forcings are relatively small compared to other background and forcing factors (internal and external), the credibility of the modeled global and regional responses rests on the validity of the models. We focus on this important question of climate model validation. Specifically, we review common deficiencies in general circulation model calculations of atmospheric temperature, surface temperature, precipitation and their spatial and temporal variability. These deficiencies arise from complex problems associated with parameterization of multiply-interacting climate components, forcings and feedbacks, involving especially clouds and oceans. We also review examples of expected climatic impacts from anthropogenic CO2 forcing. Given the host of uncertainties and unknowns in the difficult but important task of climate modeling, the unique attribution of observed current climate change to increased atmospheric CO2 concentration, including the relatively well-observed latest 20 years, is not possible. We further conclude that the incautious use of GCMs to make future climate projections from incomplete or unknown forcing scenarios is antithetical to the intrinsically heuristic value of models. Such uncritical application of climate models has led to the commonly-held but erroneous impression that modeling has proven or substantiated the hypothesis that CO2 added to the air has caused or will cause significant global warming. An assessment of the positive skills of GCMs and their use in suggesting a discernible human influence on global climate can be found in the joint World Meteorological Organisation and United Nations

  3. Acceleration of modern acidification in the South China Sea driven by anthropogenic CO2

    Science.gov (United States)

    Liu, Yi; Peng, Zicheng; Zhou, Renjun; Song, Shaohua; Liu, Weiguo; You, Chen-Feng; Lin, Yen-Po; Yu, Kefu; Wu, Chung-Che; Wei, Gangjian; Xie, Luhua; Burr, George S.; Shen, Chuan-Chou

    2014-01-01

    Modern acidification by the uptake of anthropogenic CO2 can profoundly affect the physiology of marine organisms and the structure of ocean ecosystems. Centennial-scale global and regional influences of anthropogenic CO2 remain largely unknown due to limited instrumental pH records. Here we present coral boron isotope-inferred pH records for two periods from the South China Sea: AD 1048–1079 and AD 1838–2001. There are no significant pH differences between the first period at the Medieval Warm Period and AD 1830–1870. However, we find anomalous and unprecedented acidification during the 20th century, pacing the observed increase in atmospheric CO2. Moreover, pH value also varies in phase with inter-decadal changes in Asian Winter Monsoon intensity. As the level of atmospheric CO2 keeps rising, the coupling global warming via weakening the winter monsoon intensity could exacerbate acidification of the South China Sea and threaten this expansive shallow water marine ecosystem. PMID:24888785

  4. Sequestering CO2 in the Built Environment

    Science.gov (United States)

    Constantz, B. R.

    2009-12-01

    Calera’s Carbonate Mineralization by Aqueous Precipitation (CMAP) technology with beneficial reuse has been called, “game-changing” by Carl Pope, Director of the Sierra Club. Calera offers a solution to the scale of the carbon problem. By capturing carbon into the built environment through carbonate mineralization, Calera provides a sound and cost-effective alternative to Geologic Sequestration and Terrestrial Sequestration. The CMAP technology permanently converts carbon dioxide into a mineral form that can be stored above ground, or used as a building material. The process produces a suite of carbonate-containing minerals of various polymorphic forms. Calera product can be substituted into blends with ordinary Portland cements and used as aggregate to produce concrete with reduced carbon, carbon neutral, or carbon negative footprints. For each ton of product produced, approximately half a ton of carbon dioxide can be sequestered using the Calera process. Coal and natural gas are composed of predominately istopically light carbon, as the carbon in the fuel is plant-derived. Thus, power plant CO2 emissions have relatively low δ13C values.The carbon species throughout the CMAP process are identified through measuring the inorganic carbon content, δ13C values of the dissolved carbonate species, and the product carbonate minerals. Measuring δ13C allows for tracking the flue gas CO2 throughout the capture process. Initial analysis of the capture of propane flue gas (δ13C ˜ -25 ‰) with seawater (δ13C ˜ -10 ‰) and industrial brucite tailings from a retired magnesium oxide plant in Moss Landing, CA (δ13C ˜ -7 ‰ from residual calcite) produced carbonate mineral products with a δ13C value of ˜ -20 ‰. This isotopically light carbon, transformed from flue gas to stable carbonate minerals, can be transferred and tracked through the capture process, and finally to the built environment. CMAP provides an economical solution to global warming by producing

  5. Role of mesoscale eddies in the global ocean uptake of anthropogenic CO2

    International Nuclear Information System (INIS)

    Zouhair, Lachkar

    2007-02-01

    Mesoscale eddies play a fundamental role in ocean dynamics particularly in the Southern Ocean. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of anthropogenic CO 2 , CFC-11 and bomb Δ 14 C. We made global anthropogenic transient tracer simulations in coarse-resolution, ORCA2, and eddy-permitting, ORCA05 and ORCA025, versions of the ocean modelling system NEMO. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on bomb Δ 14 C uptake and storage. Yet for CFC-11 and anthropogenic CO 2 , increased eddy activity reduces southern extra-tropical uptake by 28% and 25% respectively, thereby providing better agreement with observations. It is shown that the discrepancies in the equilibration times between the three tracers determine their respective sensitivities to the model horizontal resolution. Applying Gent and McWilliams (1990) (GM) parameterization of eddies in the non-eddying version of the model does improve results, but not enough. An in-depth investigation of the mechanisms by which eddies affect the uptake of the transient tracers shows that including mesoscale eddies leads to an overall reduction in the Antarctic Intermediate Water (AAIW) ventilation, and modifies substantially the spatial distribution of their source regions. This investigation reveals also that the GM parameterization still overestimates the ventilation and the subduction of AAIW in the Indian Ocean where the simulated mixed layer is particularly deep during the winter. This work suggests that most current coarse-resolution models may overestimate the ventilation of AAIW in the Indian sector of the Southern Ocean. This study shows also that the use of the GM parameterization may be of limited utility where mixed layer is relatively deep and confirms the general need for a more adequate

  6. Separation of anthropogenic CO{sub 2} in the North Atlantic - methodological developments and measurements; Separation von anthropogenem CO{sub 2} im Nordatlantik - Methodische Entwicklungen und Messungen

    Energy Technology Data Exchange (ETDEWEB)

    Friis, K.

    2001-07-01

    The foci for this thesis were: (1) the development of a fully automated pH-system, and (2) the identification of anthropogenic CO{sub 2} in the subpolar North Atlantic based on measurements using this system. A spectrophotometric pH-system for discrete sea water sample analysis was developed. For the detection of the temporal increase in anthropogenic CO{sub 2}, the statistical method of Wallace (1995) was tested for its applicability in the subpolar gyre. The original method is based on a comparison of historical and recent data sets. For one of the data sets a predictive equation for C{sub T} is derived by multiple linear regression (MLR) based on several independent chemical and hydrographic parameters. The difference between a C{sub T} value measured at a later or earlier time with the C{sub T} value predicted using the MLR-equation can potentially give a measure of the anthropogenic CO{sub 2}-increase between the two sampling periods, independent of hydrographic or biologically-mediated changes within the water column.

  7. Rapid invasion of anthropogenic CO2 into the deep circulation of the Weddell Gyre

    NARCIS (Netherlands)

    van Heuven, Steven M. A. C.; Hoppema, Mario; Jones, Elisabeth Marie; de Baar, Henricus

    2014-01-01

    Data are presented for total carbon dioxide (TCO2), oxygen and nutrients from 14 cruises covering two repeat sections across the Weddell Gyre, from 1973 to 2010. Assessments of the rate of increase in anthropogenic CO2 (C-ant) are made at three locations. Along the Prime Meridian, TCO2 is observed

  8. Potentiel des méthodes de séparation et stockage du CO2 dans la lutte contre l'effet de serreThe role of CO2 capture and sequestration in mitigation of climate change

    Science.gov (United States)

    Jean-Baptiste, Philippe; Ducroux, René

    2003-06-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2. Technical solutions exist to reduce CO 2 emission and stabilise atmospheric CO 2 concentration, including energy saving and energy efficiency, switch to lower carbon content fuels like natural gas and to energy sources that operate with zero CO 2 emissions such as renewable or nuclear energy, enhance the natural sinks for CO 2 (forests, soils, etc.), and last but not least, sequester CO 2 from fossil fuels combustion. The purpose of this paper is to provide an overview of the technology and cost for capture and storage of CO 2. Some of the factors that will influence application, including environmental impact, cost and efficiency, are also discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology; however, substantial R&D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to more than 30% of the global anthropogenic CO 2 emission, it represents a valuable tool in the battle against global warming. To cite this article: P. Jean-Baptiste, R. Ducroux, C. R. Geoscience 335 (2003).

  9. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Steven M. Masutani

    2001-08-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  10. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-03-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  11. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-01-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report is the summary first year report covering the reporting period 1 October 2000 to 30 September 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  12. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    International Nuclear Information System (INIS)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-01-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO(sub 2) from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO(sub 2) sequestration. University of Hawaii initiated effort on system optimization of the CO(sub 2) sequestration system

  13. On the origin and magnitude of pre-industrial anthropogenic CO[sub 2] and CH[sub 4] emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kammen, D.M.; Marino, B.D. (Harvard University, Cambridge, MA (USA). Dept. of Physics)

    Little is known of the origin and magnitude of anthropogenic non-fossil emissions, although this activity currently contributes up to 40% of the global CO[sub 2] emissions. Here we provide estimates of CO[sub 2] and CH[sub 4] emissions resulting from pre-industrial societies by combining historical demographic and archaeological data. Combustion of non-fossil carbon for domestic needs, small-scale industrial/craft activities and resulting from agricultural land management was significant, reaching about 1 Gt of carbon (Gtc) as CO[sub 2] yr[sup -1] and 10 g Tg of carbon CH[sub 4] yr[sup -1] by 1800 A.D. This data implies a significant anthropogenic source of pre-industrial atmospheric greenhouse gases, consistent with estimates derived from carbon cycle model. We illustrate the contribution of archaeological data with two case studies: (1) estimates of CH[sub 4] emissions from agricultural activity from the Maya Lowlands; and (2) evidence of correlations between climatic and socio-economic conditions in North Atlanic Norse settlements. 47 refs., 3 figs., 2 tabs.

  14. Impact of elevated CO_2 concentrations on carbonate mineral precipitation ability of sulfate-reducing bacteria and implications for CO_2 sequestration

    International Nuclear Information System (INIS)

    Paul, Varun G.; Wronkiewicz, David J.; Mormile, Melanie R.

    2017-01-01

    Interest in anthropogenic CO_2 release and associated global climatic change has prompted numerous laboratory-scale and commercial efforts focused on capturing, sequestering or utilizing CO_2 in the subsurface. Known carbonate mineral precipitating microorganisms, such as the anaerobic sulfate-reducing bacteria (SRB), could enhance the rate of conversion of CO_2 into solid minerals and thereby improve long-term storage of captured gasses. The ability of SRB to induce carbonate mineral precipitation, when exposed to atmospheric and elevated pCO_2, was investigated in laboratory scale tests with bacteria from organic-rich sediments collected from hypersaline Lake Estancia, New Mexico. The enriched SRB culture was inoculated in continuous gas flow and batch reactors under variable headspace pCO_2 (0.0059 psi to 20 psi). Solution pH, redox conditions, sulfide, calcium and magnesium concentrations were monitored in the reactors. Those reactors containing SRB that were exposed to pCO_2 of 14.7 psi or less showed Mg-calcite precipitation. Reactors exposed to 20 psi pCO_2 did not exhibit any carbonate mineralization, likely due to the inhibition of bacterial metabolism caused by the high levels of CO_2. Hydrogen, lactate and formate served as suitable electron donors for the SRB metabolism and related carbonate mineralization. Carbon isotopic studies confirmed that ∼53% of carbon in the precipitated carbonate minerals was derived from the CO_2 headspace, with the remaining carbon being derived from the organic electron donors, and the bicarbonate ions available in the liquid medium. The ability of halotolerant SRB to induce the precipitation of carbonate minerals can potentially be applied to the long-term storage of anthropogenic CO_2 in saline aquifers and other ideal subsurface rock units by converting the gas into solid immobile phases. - Highlights: • SRB under study are capable of precipitating calcite up to 14.7 psi pCO_2. • At 20 psi pCO_2, bacterial activity

  15. Tagging CO2 to Enable Quantitative Inventories of Geological Carbon Storage

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Klaus; Matter, Juerg; Park, Ah-Hyung; Stute, Martin; Carson, Cantwell; Ji, Yinghuang

    2014-06-30

    In the wake of concerns about the long term integrity and containment of sub-surface CO2 sequestration reservoirs, many efforts have been made to improve the monitoring, verification, and accounting methods for geo-sequestered CO2. Our project aimed to demonstrate the feasibility of a system designed to tag CO2 with carbon isotope 14C immediately prior to sequestration to a level that is normal on the surface (one part per trillion). Because carbon found at depth is naturally free of 14C, this tag would easily differentiate pre-existing carbon from anthropogenic injected carbon and provide an excellent handle for monitoring its whereabouts in the subsurface. It also creates an excellent handle for adding up anthropogenic carbon inventories. Future inventories in effect count 14C atoms. Accordingly, we have developed a 14C tagging system suitable for use at the part-per-trillion level. This system consists of a gas-exchange apparatus to make disposable cartridges ready for controlled injection into a fast flowing stream of pressurized CO2. We built a high-pressure injection and tagging system, and a 14C detection system. The disposable cartridge and injection system have been successfully demonstrated in the lab with a high-pressure flow reactor, as well as in the field at the CarbFix CO2 sequestration site in Iceland. The laser-based 14C detection system originally conceived has been shown to possess inadequate sensitivity for ambient levels. Alternative methods for detecting 14C, such as saturated cavity absorption ringdown spectroscopy and scintillation counting, may still be suitable. KEYWORDS

  16. Climatic significance of stable isotope characteristics of air-CO2 and rainfall in Delhi area water-plant-air system

    International Nuclear Information System (INIS)

    Datta, P.S.; Tyagi, S.K.

    2002-01-01

    In recent years, there is a global concern on the role of carbon dioxide in atmosphere in affecting the climate. The present models of global atmospheric circulation suggest that oceans sequester about one-third of the CO 2 released by anthropogenic activities, and biospheric productivity is the primary cause of the interannual fluctuations in the atmospheric CO 2 . However, most of the times, the excess of CO 2 in air is associated with the presence of anthropogenic pollutants from urbanised centres. Therefore, the studies on the pattern of local variations in the isotopic composition of air CO 2 and rainfall in urban areas are expected to provide important information on the atmospheric circulation processes which affect the climate on a regional scale. Internationally, aspects of climate change have been so far demonstrated using isotopic data mainly from temperate climates, and there is limited understanding of the factors controlling stable isotopic composition of air-CO 2 and rainfall in tropical regions. In this context, to assess the magnitude of the above mentioned effects, analysis of the data on the variations in the 13 C/ 12 C and 18 O/ 16 O signatures of air-CO 2 in Delhi area water-plant-air system is presented here

  17. Preliminary investigations on the carbon dioxide sequestering potential of the ultramafic rock

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Guthrie, G.; Counce, D.; Kluk, E.; Bergfeld, D.; Snow, M.

    1997-08-01

    Fossil fuels continue to provide major sources of energy to the modern world even though global emissions of CO{sub 2} are presently at levels of 19 Gt/yr. Future antipollution measures may include sequestering of waste CO{sub 2} as magnesite (MgCO{sub 3}) by processing ultramafic rocks to obtain reactable Mg. Huge ultramafic deposits consisting of relatively pure Mg-rich silicates exist throughout much of the world in ophiolites and layered intrusions. Peridotites (especially dunites) and serpentinites comprise the best ores because they contain the most Mg by weight and are relatively reactive to hot acids such as HCl. Although mining such deposits on a large scale would have environmental impacts, the sequestering process could provide Cr, Ni, and other metals as byproducts and could dispose of existing waste (white) asbestos. Small ultramafic bodies ({approximately} 1 km{sup 3}) can potentially sequester about 1 Gt of CO{sub 2} or about 20% of annual US emissions. A single large deposit of dunite ({approximately} 30 km{sup 3}) could dispose of about 20 yr of current US CO{sub 2} emissions. The cost and environmental impact of mining these deposits must be weighed against the increased costs of energy and benefits to the atmosphere and climate.

  18. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle

    Science.gov (United States)

    McNeil, Ben I.; Sasse, Tristan P.

    2016-01-01

    High carbon dioxide (CO2) concentrations in sea-water (ocean hypercapnia) can induce neurological, physiological and behavioural deficiencies in marine animals. Prediction of the onset and evolution of hypercapnia in the ocean requires a good understanding of annual variations in oceanic CO2 concentration, but there is a lack of relevant global observational data. Here we identify global ocean patterns of monthly variability in carbon concentration using observations that allow us to examine the evolution of surface-ocean CO2 levels over the entire annual cycle under increasing atmospheric CO2 concentrations. We predict that the present-day amplitude of the natural oscillations in oceanic CO2 concentration will be amplified by up to tenfold in some regions by 2100, if atmospheric CO2 concentrations continue to rise throughout this century (according to the RCP8.5 scenario of the Intergovernmental Panel on Climate Change). The findings from our data are broadly consistent with projections from Earth system climate models. Our predicted amplification of the annual CO2 cycle displays distinct global patterns that may expose major fisheries in the Southern, Pacific and North Atlantic oceans to hypercapnia many decades earlier than is expected from average atmospheric CO2 concentrations. We suggest that these ocean ‘CO2 hotspots’ evolve as a combination of the strong seasonal dynamics of CO2 concentration and the long-term effective storage of anthropogenic CO2 in the oceans that lowers the buffer capacity in these regions, causing a nonlinear amplification of CO2 concentration over the annual cycle. The onset of ocean hypercapnia (when the partial pressure of CO2 in sea-water exceeds 1,000 micro-atmospheres) is forecast for atmospheric CO2 concentrations that exceed 650 parts per million, with hypercapnia expected in up to half the surface ocean by 2100, assuming a high-emissions scenario (RCP8.5). Such extensive ocean hypercapnia has detrimental implications for

  19. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-12-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  20. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Takashi Nakamura

    2003-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  1. Evaluation and Optimization of China's Anthropogenic CO2 Emissions using Observations from Northern China (2005-2009).

    Science.gov (United States)

    Dayalu, A.; Munger, J. W.; Wang, Y.; Wofsy, S.; Zhao, Y.; Nielsen, C. P.; Nehrkorn, T.; McElroy, M. B.; Chang, R.

    2017-12-01

    China has pledged to peak carbon emissions by 2030, but there continues to be significant uncertainty in estimates of its anthropogenic carbon dioxide (CO2) emissions. In this study, we evaluate the performance of three anthropogenic CO2 inventories, two global and one regional, using five years of continuous hourly observations from a site in Northern China. We model five years of continuous hourly observations (2005 to 2009) using the Stochastic Time-Inverted Lagrangian Transport Model (STILT) run in backward time mode driven by high resolution meteorology from the Weather Research and Forecasting Model version 3.6.1 (WRF) with vegetation fluxes prescribed by a simple biosphere model. We calculate regional enhancements to advected background CO2 derived from NOAA CarbonTracker on seasonal and annual bases and use observations to optimize emissions inventories within the site's influence region at these timescales. Finally, we use annual enhancements to examine carbon intensity of provinces in and adjacent to Northern China as CO2 per unit of the region's GDP to evaluate the effects of local and global economic events on CO2 emissions. With the exception of peak growing season where discrepancies are confounded by errors in the vegetation model, we find the regional inventory agrees significantly better with observations than the global inventories at all timescales. Here we use a single measurement site; significant improvements in inventory optimizations can be achieved with a network of measurements stations. This study highlights the importance of China-specific data over global averages in emissions evaluation and demonstrates the value of top-down studies in independently evaluating inventory performance. We demonstrate the framework's ability to resolve differences of at least 20% among inventories, establishing a benchmark for ongoing efforts to decrease uncertainty in China's reported CO2 emissions estimates.

  2. Method of detecting leakage from geologic formations used to sequester CO.sub.2

    Science.gov (United States)

    White, Curt [Pittsburgh, PA; Wells, Arthur [Bridgeville, PA; Diehl, J Rodney [Pittsburgh, PA; Strazisar, Brian [Venetia, PA

    2010-04-27

    The invention provides methods for the measurement of carbon dioxide leakage from sequestration reservoirs. Tracer moieties are injected along with carbon dioxide into geological formations. Leakage is monitored by gas chromatographic analyses of absorbents. The invention also provides a process for the early leak detection of possible carbon dioxide leakage from sequestration reservoirs by measuring methane (CH.sub.4), ethane (C.sub.2H.sub.6), propane (C.sub.3H.sub.8), and/or radon (Rn) leakage rates from the reservoirs. The invention further provides a method for branding sequestered carbon dioxide using perfluorcarbon tracers (PFTs) to show ownership.

  3. Can greening of aquaculture sequester blue carbon?

    Science.gov (United States)

    Ahmed, Nesar; Bunting, Stuart W; Glaser, Marion; Flaherty, Mark S; Diana, James S

    2017-05-01

    Globally, blue carbon (i.e., carbon in coastal and marine ecosystems) emissions have been seriously augmented due to the devastating effects of anthropogenic pressures on coastal ecosystems including mangrove swamps, salt marshes, and seagrass meadows. The greening of aquaculture, however, including an ecosystem approach to Integrated Aquaculture-Agriculture (IAA) and Integrated Multi-Trophic Aquaculture (IMTA) could play a significant role in reversing this trend, enhancing coastal ecosystems, and sequestering blue carbon. Ponds within IAA farming systems sequester more carbon per unit area than conventional fish ponds, natural lakes, and inland seas. The translocation of shrimp culture from mangrove swamps to offshore IMTA could reduce mangrove loss, reverse blue carbon emissions, and in turn increase storage of blue carbon through restoration of mangroves. Moreover, offshore IMTA may create a barrier to trawl fishing which in turn could help restore seagrasses and further enhance blue carbon sequestration. Seaweed and shellfish culture within IMTA could also help to sequester more blue carbon. The greening of aquaculture could face several challenges that need to be addressed in order to realize substantial benefits from enhanced blue carbon sequestration and eventually contribute to global climate change mitigation.

  4. Possible use of Fe/CO2 fuel cells for CO2 mitigation plus H2 and electricity production

    International Nuclear Information System (INIS)

    Rau, Greg H.

    2004-01-01

    The continuous oxidation of scrap iron in the presence of a constant CO 2 -rich waste gas stream and water is evaluated as a means of sequestering anthropogenic CO 2 as well as generating hydrogen gas and electricity. The stoichiometry of the net reaction, Fe 0 + CO 2 + H 2 O → FeCO 3 + H 2 , and assumptions about reaction rates, reactant and product prices/values and overhead costs suggest that CO 2 might be mitigated at a net profit in excess of $30/tonne CO 2 . The principle profit center of the process would be hydrogen production, alone providing a gross income of >$160/tonne CO 2 reacted. However, the realization of such fuel cell economics depends on a number of parameters including: (1) the rate at which the reaction can be sustained, (2) the areal and volumetric density with which H 2 and electricity can be produced, (3) the purity of the H 2 produced, (4) the transportation costs of the reactants (Fe, CO 2 and H 2 O) and products (FeCO 3 or Fe(HCO 3 ) 2 ) to/from the cells and (5) the cost/benefit trade-offs of optimizing the preceding variables in a given market and regulatory environment. Because of the carbon intensity of conventional iron metal production, a net carbon sequestration benefit for the process can be realized only when waste (rather than new) iron and steel are used as electrodes and/or when Fe(HCO 3 ) 2 is the end product. The used electrolyte could also provide a free source of Fe 2+ ions for enhancing iron-limited marine photosynthesis and, thus, greatly increasing the CO 2 sequestration potential of the process. Alternatively, the reaction of naturally occurring iron oxides (iron ore) with CO 2 can be considered for FeCO 3 formation and sequestration, but this foregoes the benefits of hydrogen and electricity production. Use of Fe/CO 2 fuel cells would appear to be particularly relevant for fossil fuel gasification/steam reforming systems given the highly concentrated CO 2 they generate and given the existing infrastructure they

  5. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. C.L. Senior

    2001-03-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period from 1 October to 31 December 2000. During this period planning of chemostat experiments at Aquasearch was initiated. These experiments will be used to select microalgae for the photobioreactor demonstrations. An initial survey of techniques for removing CO{sub 2} from coal-fired flue gas was begun. Chemical adsorption using MEA is the most mature technology and looks to be the most economically viable in the near future.

  6. Geomechanical issues of anthropogenic CO2 sequestration in exploited gas fields

    International Nuclear Information System (INIS)

    Ferronato, Massimiliano; Gambolati, Giuseppe; Janna, Carlo; Teatini, Pietro

    2010-01-01

    Anthropogenic CO 2 sequestration in deep geological formations may represent a viable option to fulfil the requirements of the 1997 Kyoto protocol on the reduction of greenhouse gas emissions. Scenarios of CO 2 sequestration through three injection wells in an exploited gas field located in the Po sedimentary basin (Italy) are simulated with the final target to understand the geomechanical consequences of the injection of carbon dioxide. Investigated scenarios include, as a hypothetical case, the long-term injection of CO 2 until the initial reservoir pressure is exceeded by as much as 40% over a period of about 100 years. The process is analyzed from the geomechanical point of view using a finite element-interface element (FE-IE) model with the following main issues addressed: (1) prediction of the possible land vertical uplift and corresponding impact on the ground infrastructures; (2) evaluation of the stress state induced in the reservoir formation with the possible generation of fractures and (3) a risk analysis for the activation of existing faults. The geomechanical constitutive law of the Northern Adriatic basin relying on the radioactive marker interpretation is implemented into the FE model, while an elasto-plastic relationship based on the Mohr-Coulomb criterion is used for the IE reproducing the fault behaviour. The in situ stress prior to the gas field exploitation is compressive with the principal horizontal stress in the direction perpendicular to the major faults equal to the vertical stress. The results show that the ground surface rebound due to the overpressure generated by the CO 2 sequestration partially mitigates the land subsidence experienced by the area because of the previous gas field depletion with differential displacements that are confined within the safety bounds suggested in the literature for the surface infrastructures. Activation of a few faults lying close to the northern reservoir boundary points to a slip of a couple of

  7. Effect of biochar addition on short-term N2O and CO2 emissions during repeated drying and wetting of an anthropogenic alluvial soil.

    Science.gov (United States)

    Yang, Fang; Lee, Xinqing; Theng, Benny K G; Wang, Bing; Cheng, Jianzhong; Wang, Qian

    2017-06-01

    Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO 2 and N 2 O emissions. Under both drying-wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO 2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N 2 O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.

  8. Analysis of Urban Forest Needs as Anthropogenic (CO2) Gas Absorbent in Semarang City

    Science.gov (United States)

    Febriani, Anisa Putri; Retnaningsih Soeprobowati, Tri; Maryono

    2018-02-01

    Green open space in cities in significant needs to maintenance environment quality. On of the critical function is to absorb increasing number of gas CO2. Therefore, developing urban forest in cities is very importance. The objective of the study is to determine the area of urban forest as CO2 gas anthropogenic absorb which is formed from fuel, diesel fuel, liquid petroleum gas. The study consists of (1) Analyzing the number of CO2 gas emission by calculating the needs of petroleum and gas based on the number of population, (2) Analyzing the power of gas absorption, (3) Measuring the air concentration of CO2 gas ambient based on daily traffic activities. This study shown that from year 2013 to year 2017, the increasing of urban forest is not so significant. For year 2013 the green open space in Semarang City are 373.67 hectares (7.5 percent from Semarang City area), consists of 239 parks, 11 public cemeteries, production forests, community forests, and urban forests, however the area of urban forest is not increase. The study assess that Antidesmabunius is one of the green species which high absorb capacity planted for Semarang. This trees produce 31,31 ton annually. This study proposed to fostering Antidesmabunius as one principle threes in Semarang urban forest.

  9. The Influence of CO2 Solubility in Brine on Simulation of CO2 Injection into Water Flooded Reservoir and CO2 WAG

    DEFF Research Database (Denmark)

    Yan, Wei; Stenby, Erling Halfdan

    2010-01-01

    Injection of CO2 into depleted oil reservoirs is not only a traditional way to enhance oil recovery but also a relatively cheaper way to sequester CO2 underground since the increased oil production can offset some sequestration cost. CO2 injection process is often applied to water flooded...... simulations were made for seven oil samples within a wide range of temperature, pressure and salinity. The results were analyzed in terms of the change in oil recovery due to different phase equilibrium descriptions, the delay in breakthrough and the CO2 lost to the aqueous phase. The influence of different...

  10. Simulating the integrated summertime Δ14CO2 signature from anthropogenic emissions over Western Europe

    Directory of Open Access Journals (Sweden)

    D. Bozhinova

    2014-07-01

    Full Text Available Radiocarbon dioxide (14CO2, reported in Δ14CO2 can be used to determine the fossil fuel CO2 addition to the atmosphere, since fossil fuel CO2 no longer contains any 14C. After the release of CO2 at the source, atmospheric transport causes dilution of strong local signals into the background and detectable gradients of Δ14CO2 only remain in areas with high fossil fuel emissions. This fossil fuel signal can moreover be partially masked by the enriching effect that anthropogenic emissions of 14CO2 from the nuclear industry have on the atmospheric Δ14CO2 signature. In this paper, we investigate the regional gradients in 14CO2 over the European continent and quantify the effect of the emissions from nuclear industry. We simulate the emissions and transport of fossil fuel CO2 and nuclear 14CO2 for Western Europe using the Weather Research and Forecast model (WRF-Chem for a period covering 6 summer months in 2008. We evaluate the expected CO2 gradients and the resulting Δ14CO2 in simulated integrated air samples over this period, as well as in simulated plant samples. We find that the average gradients of fossil fuel CO2 in the lower 1200 m of the atmosphere are close to 15 ppm at a 12 km × 12 km horizontal resolution. The nuclear influence on Δ14CO2 signatures varies considerably over the domain and for large areas in France and the UK it can range from 20 to more than 500% of the influence of fossil fuel emissions. Our simulations suggest that the resulting gradients in Δ14CO2 are well captured in plant samples, but due to their time-varying uptake of CO2, their signature can be different with over 3‰ from the atmospheric samples in some regions. We conclude that the framework presented will be well-suited for the interpretation of actual air and plant 14CO2 samples.

  11. Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    T. Nakamura; C.L. Senior

    2005-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October 2000 to 31 March 2005 in which PSI, Aquasearch and University of Hawaii conducted their tasks. This report discusses results of the work pertaining to five tasks: Task 1--Supply of CO2 from Power Plant Flue Gas to Photobioreactor; Task 2--Selection of Microalgae; Task 3--Optimization and Demonstration of Industrial Scale Photobioreactor; Task 4--Carbon Sequestration System Design; and Task 5--Economic Analysis. Based on the work conducted in each task summary conclusion is presented.

  12. Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific

    Science.gov (United States)

    Vay, S. A.; Woo, J.-H.; Anderson, B. E.; Thornhill, K. L.; Blake, D. R.; Westberg, D. J.; Kiley, C. M.; Avery, M. A.; Sachse, G. W.; Streets, D. G.; Tsutsumi, Y.; Nolf, S. R.

    2003-10-01

    We report here airborne measurements of atmospheric CO2 over the western North Pacific during the March-April 2001 Transport and Chemical Evolution over the Pacific (TRACE-P) mission. The CO2 spatial distributions were notably influenced by cyclogenesis-triggered transport of regionally polluted continental air masses. Examination of the CO2 to C2H2/CO ratio indicated rapid outflow of combustion-related emissions in the free troposphere below 8 km. Although the highest CO2 mixing ratios were measured within the Pacific Rim region, enhancements were also observed further east over the open ocean at locations far removed from surface sources. Near the Asian continent, discrete plumes encountered within the planetary boundary layer contained up to 393 ppmv of CO2. Coincident enhancements in the mixing ratios of C2Cl4, C2H2, and C2H4 measured concurrently revealed combustion and industrial sources. To elucidate the source distributions of CO2, an emissions database for Asia was examined in conjunction with the chemistry and 5-day backward trajectories that revealed the WNW/W sector of northeast Asia was a major contributor to these pollution events. Comparisons of NOAA/CMDL and JMA surface data with measurements obtained aloft showed a strong latitudinal gradient that peaked between 35° and 40°N. We estimated a net CO2 flux from the Asian continent of approximately 13.93 Tg C day-1 for late winter/early spring with the majority of the export (79%) occurring in the lower free troposphere (2-8 km). The apportionment of the flux between anthropogenic and biospheric sources was estimated at 6.37 Tg C day-1 and 7.56 Tg C day-1, respectively.

  13. Simulations of the global carbon cycle and anthropogenic CO2 transient

    International Nuclear Information System (INIS)

    Sarmiento, J.L.

    1994-01-01

    This research focuses on improving the understanding of the anthropogenic carbon dioxide transient using observations and models of the past and present. In addition, an attempt is made to develop an ability to predict the future of the carbon cycle in response to continued anthropogenic perturbations and climate change. Three aspects of the anthropogenic carbon budget were investigated: (1) the globally integrated budget at the present time; (2) the time history of the carbon budget; and (3) the spatial distribution of carbon fluxes. One of the major activities of this study was the participation in the model comparison study of Enting, et al. [1994] carried out in preparation for the IPCC 1994 report

  14. Elution of Uranium and Transition Metals from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Horng-Bin; Kuo, Li-Jung; Wai, Chien M.; Miyamoto, Naomi; Joshi, Ruma; Wood, Jordana R.; Strivens, Jonathan E.; Janke, Christopher J.; Oyola, Yatsandra; Das, Sadananda; Mayes, Richard T.; Gill, Gary A.

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na2CO3-H2O2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure in real seawater. The Na2CO3-H2O2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater.

  15. Geochemical monitoring for potential environmental impacts of geologic sequestration of CO2

    Science.gov (United States)

    Kharaka, Yousif K.; Cole, David R.; Thordsen, James J.; Gans, Kathleen D.; Thomas, Randal B.

    2013-01-01

    Carbon dioxide sequestration is now considered an important component of the portfolio of options for reducing greenhouse gas emissions to stabilize their atmospheric levels at values that would limit global temperature increases to the target of 2 °C by the end of the century (Pacala and Socolow 2004; IPCC 2005, 2007; Benson and Cook 2005; Benson and Cole 2008; IEA 2012; Romanak et al. 2013). Increased anthropogenic emissions of CO2 have raised its atmospheric concentrations from about 280 ppmv during pre-industrial times to ~400 ppmv today, and based on several defined scenarios, CO2 concentrations are projected to increase to values as high as 1100 ppmv by 2100 (White et al. 2003; IPCC 2005, 2007; EIA 2012; Global CCS Institute 2012). An atmospheric CO2 concentration of 450 ppmv is generally the accepted level that is needed to limit global temperature increases to the target of 2 °C by the end of the century. This temperature limit likely would moderate the adverse effects related to climate change that could include sea-level rise from the melting of alpine glaciers and continental ice sheets and from the ocean warming; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; and changes in the amount, timing, and distribution of rain, snow, and runoff (IPCC 2007; Sundquist et al. 2009; IEA 2012). Rising atmospheric CO2 concentrations are also increasing the amount of CO2 dissolved in ocean water lowering its pH from 8.1 to 8.0, with potentially disruptive effects on coral reefs, plankton and marine ecosystems (Adams and Caldeira 2008; Schrag 2009; Sundquist et al. 2009). Sedimentary basins in general and deep saline aquifers in particular are being investigated as possible repositories for the large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes (Hitchon 1996; Benson and Cole 2008; Verma and Warwick 2011).

  16. Statistical partitioning of a three-year time series of direct urban net CO2 flux measurements into biogenic and anthropogenic components

    Science.gov (United States)

    Menzer, Olaf; McFadden, Joseph P.

    2017-12-01

    Eddy covariance flux measurements are increasingly used to quantify the net carbon dioxide exchange (FC) in urban areas. FC represents the sum of anthropogenic emissions, biogenic carbon release from plant and soil respiration, and carbon uptake by plant photosynthesis. When FC is measured in natural ecosystems, partitioning into respiration and photosynthesis is a well-established procedure. In contrast, few studies have partitioned FC at urban flux tower sites due to the difficulty of accounting for the temporal and spatial variability of the multiple sources and sinks. Here, we partitioned a three-year time series of flux measurements from a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA. We segregated FC into one subset that captured fluxes from a residential neighborhood and into another subset that covered a golf course. For both land use types we modeled anthropogenic flux components based on winter data and extrapolated them to the growing season, to estimate gross primary production (GPP) and ecosystem respiration (Reco) at half-hourly, daily, monthly and annual scales. During the growing season, GPP had the largest magnitude (up to - 9.83 g C m-2 d-1) of any component CO2 flux, biogenic or anthropogenic, and both GPP and Reco were more dynamic seasonally than anthropogenic fluxes. Owing to the balancing of Reco against GPP, and the limitations of the growing season in a cold temperate climate zone, the net biogenic flux was only 1.5%-4.5% of the anthropogenic flux in the dominant residential land use type, and between 25%-31% of the anthropogenic flux in highly managed greenspace. Still, the vegetation sink at our site was stronger than net anthropogenic emissions on 16-20 days over the residential area and on 66-91 days over the recreational area. The reported carbon flux sums and dynamics are a critical step toward developing models of urban CO2 fluxes within and across cities that differ in vegetation cover.

  17. Sequestering in string theory

    International Nuclear Information System (INIS)

    Kachru, Shamit; McAllister, Liam; Sundrum, Raman

    2007-01-01

    We study sequestering, a prerequisite for flavor-blind supersymmetry breaking in several high-scale mediation mechanisms, in compactifications of type IIB string theory. We find that although sequestering is typically absent in unwarped backgrounds, strongly warped compactifications do readily sequester. The AdS/CFT dual description in terms of conformal sequestering plays an important role in our analysis, and we establish how sequestering works both on the gravity side and on the gauge theory side. We pay special attention to subtle compactification effects that can disrupt sequestering. Our result is a step toward realizing an appealing pattern of soft terms in a KKLT compactification

  18. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from CO2

    Data.gov (United States)

    National Aeronautics and Space Administration — Oxygen recovery from respiratory CO2 is an important aspect of human spaceflight. Methods exist to sequester the CO2­, but production of oxygen needs further...

  19. CO2 capture by ionic liquids - an answer to anthropogenic CO2 emissions?

    Science.gov (United States)

    Sanglard, Pauline; Vorlet, Olivier; Marti, Roger; Naef, Olivier; Vanoli, Ennio

    2013-01-01

    Ionic liquids (ILs) are efficient solvents for the selective removal of CO2 from flue gas. Conventional, offthe-shelf ILs are limited in use to physisorption, which restricts their absorption capacity. After adding a chemical functionality like amines or alcohols, absorption of CO2 occurs mainly by chemisorption. This greatly enhances CO2 absorption and makes ILs suitable for potential industrial applications. By carefully choosing the anion and the cation of the IL, equimolar absorption of CO2 is possible. This paper reviews the current state of the art of CO2 capture by ILs and presents the current research in this field performed at the ChemTech Institute of the Ecole d'Ingénieurs et d'Architectes de Fribourg.

  20. Ocean CO{sub 2} disposal

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Yuji; Hakuta, Toshikatsu [National Inst. of Materials and Chemical Research, AIST, MITI, Higashi, Tsukuba, Ibaraki (Japan)

    1993-12-31

    Most countries in the world will continue to depend on fossil fuels for their main energy at least for half a country, even in the confrontation with the threat of global warming. This indicates that the development of CO{sub 2} removal technologies such as recovering CO{sub 2} from flue gases and sequestering it of in the deep oceans or subterranean sites is necessary, at least until non-fossil fuel dependent society is developed. Ocean CO{sub 2} disposal is one of the promising options for the sequestration of CO{sub 2} recovered from flue gases. Oceans have sufficient capacity to absorb all the CO{sub 2} emitted in the world. It is very significant to research and develop the technologies for ocean CO{sub 2} disposal.

  1. Constraining CO2 tower measurements in an inhomogeneous area with anthropogenic emissions using a combination of car-mounted instrument campaigns, aircraft profiles, transport modeling and neural networks

    Science.gov (United States)

    Schmidt, A.; Rella, C.; Conley, S. A.; Goeckede, M.; Law, B. E.

    2013-12-01

    The NOAA CO2 observation network in Oregon has been enhanced by 3 new towers in 2012. The tallest tower in the network (270 m), located in Silverton in the Willamette Valley is affected by anthropogenic emissions from Oregon's busiest traffic routes and urban centers. In summer 2012, we conducted a measurement campaign using a car-mounted PICARRO CRDS CO2/CO analyzer. Over 3 days, the instrument was driven over 1000 miles throughout the northwestern portion of Oregon measuring the CO/ CO2 ratios on main highways, back roads in forests, agricultural sites, and Oregon's biggest urban centers. By geospatial analyses we obtained ratios of CO/ CO2 over distinct land cover types divided into 10 classes represented in the study area. Using the coupled WRF-STILT transport model we calculated the footprints of nearby CO/ CO2 observation towers for the corresponding days of mobile road measurements. Spatiotemporally assigned source areas in combination with the land use classification were then used to calculate specific ratios of CO (anthropogenic origins) and CO2 to separate the anthropogenic portion of CO2 from the mixing ratio time series measured at the tower in Silverton. The WRF modeled boundary layer heights used in out study showed some differences compared to the boundary layer heights derived from profile data of wind, temperature, and humidity measured with an airplane in August, September, and November 2012, repeatedly over 5 tower locations. A Bayesian Regularized Artificial Neural Network (BRANN) was used to correct the boundary layer height calculated with WRF with a temporal resolution of 20 minutes and a horizontal resolution of 4 km. For that purpose the BRANN was trained using height profile data from the flight campaigns and spatiotemporally corresponding meteorological data from WRF. Our analyses provide information needed to run inverse modeling of CO2 exchange in an area that is affected by sources that cannot easily be considered by biospheric models

  2. High Fidelity Computational Analysis of CO2 Trapping at Pore Scales

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod

    2013-07-13

    With an alarming rise in carbon dioxide (CO2) emission from anthropogenic sources, CO2 sequestration has become an attractive choice to mitigate the emission. Some popular storage media for CO{sub 2} are oil reservoirs, deep coal-bed, and deep oceanic-beds. These have been used for the long term CO{sub 2} storage. Due to special lowering viscosity and surface tension property of CO{sub 2}, it has been widely used for enhanced oil recovery. The sites for CO{sub 2} sequestration or enhanced oil recovery mostly consist of porous rocks. Lack of knowledge of molecular mobility under confinement and molecule-surface interactions between CO2 and natural porous media results in generally governed by unpredictable absorption kinetics and total absorption capacity for injected fluids, and therefore, constitutes barriers to the deployment of this technology. Therefore, it is important to understand the flow dynamics of CO{sub 2} through the porous microstructures at the finest scale (pore-scale) to accurately predict the storage potential and long-term dynamics of the sequestered CO{sub 2}. This report discusses about pore-network flow modeling approach using variational method and analyzes simulated results this method simulations at pore-scales for idealized network and using Berea Sandstone CT scanned images. Variational method provides a promising way to study the kinetic behavior and storage potential at the pore scale in the presence of other phases. The current study validates variational solutions for single and two-phase Newtonian and single phase non-Newtonian flow through angular pores for special geometries whose analytical and/or empirical solutions are known. The hydraulic conductance for single phase flow through a triangular duct was also validated against empirical results derived from lubricant theory.

  3. The imprint of anthropogenic CO2 emissions on Atlantic bluefin tuna otoliths

    Science.gov (United States)

    Fraile, Igaratza; Arrizabalaga, Haritz; Groeneveld, Jeroen; Kölling, Martin; Santos, Miguel Neves; Macías, David; Addis, Piero; Dettman, David L.; Karakulak, Saadet; Deguara, Simeon; Rooker, Jay R.

    2016-06-01

    Otoliths of Atlantic bluefin tuna (Thunnus thynnus) collected from the Mediterranean Sea and North Atlantic Ocean were analyzed to evaluate changes in the seawater isotopic composition over time. We report an annual otolith δ13C record that documents the magnitude of the δ13C depletion in the Mediterranean Sea between 1989 and 2010. Atlantic bluefin tuna in our sample (n = 632) ranged from 1 to 22 years, and otolith material corresponding to the first year of life (back-calculated birth year) was used to reconstruct seawater isotopic composition. Otolith δ18O remained relatively stable between 1989 and 2010, whereas a statistically significant decrease in δ13C was detected across the time interval investigated, with a rate of decline of 0.05‰ yr- 1 (- 0.94‰ depletion throughout the recorded period). The depletion in otolith δ13C over time was associated with the oceanic uptake of anthropogenically derived CO2.

  4. [Research on soil bacteria under the impact of sealed CO2 leakage by high-throughput sequencing technology].

    Science.gov (United States)

    Tian, Di; Ma, Xin; Li, Yu-E; Zha, Liang-Song; Wu, Yang; Zou, Xiao-Xia; Liu, Shuang

    2013-10-01

    Carbon dioxide Capture and Storage has provided a new option for mitigating global anthropogenic CO2 emission with its unique advantages. However, there is a risk of the sealed CO2 leakage, bringing a serious threat to the ecology system. It is widely known that soil microorganisms are closely related to soil health, while the study on the impact of sequestered CO2 leakage on soil microorganisms is quite deficient. In this study, the leakage scenarios of sealed CO2 were constructed and the 16S rRNA genes of soil bacteria were sequenced by Illumina high-throughput sequencing technology on Miseq platform, and related biological analysis was conducted to explore the changes of soil bacterial abundance, diversity and structure. There were 486,645 reads for 43,017 OTUs of 15 soil samples and the results of biological analysis showed that there were differences in the abundance, diversity and community structure of soil bacterial community under different CO, leakage scenarios while the abundance and diversity of the bacterial community declined with the amplification of CO2 leakage quantity and leakage time, and some bacteria species became the dominant bacteria species in the bacteria community, therefore the increase of Acidobacteria species would be a biological indicator for the impact of sealed CO2 leakage on soil ecology system.

  5. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can

  6. Utility of multiple tracer distributions in calibrating models for uptake of anthropogenic CO2 by the ocean thermocline

    International Nuclear Information System (INIS)

    Peng, T.H.; Broecker, W.S.

    1985-01-01

    Two-dimensional thermocline ventilation models for the temperate North Atlantic with differing circulation patterns were calibrated to yield a tritium distribution similar to that observed during the GEOSECS survey. These models were then run for 3 He, bomb-produced 14 C, radiokrypton, and freons. They were also run for the uptake of fossil fuel CO 2 . While the models differ significantly in their ability to match the observed 3 He and 14 C distributions, these differences are not large enough to clearly single out one model as superior. This insensitivity of tracer-to-tracer ratio to model design is reflected by the near identity of the fossil fuel CO 2 uptake by the various models. This result suggests that the uptake of CO 2 by the sea is limited more by the rates of physical mixing within the sea than by gas exchange across the sea surface. If so, then the hope that models employing outcropping isopycnals will enhance the CO 2 uptake by the sea and thereby lead to a narrowing in the gap that exists for anthropogenic CO 2 budgets is not well founded. The interim strategy of using reservoir models calibrated by tracer distributions appears to be sound. 20 references, 19 figures, 5 tables

  7. Achieving Negative CO2 Emissions by Protecting Ocean Chemistry

    Science.gov (United States)

    Cannara, A.

    2016-12-01

    Industrial Age CO2 added 1.8 trillion tons to the atmosphere. About ¼ has dissolved in seas. The rest still dissolves, bolstered by present emissions of >30 gigatons/year. Airborne & oceanic CO2 have induced sea warming & ocean acidification*. This paper suggests a way to induce a negative CO2-emissions environment for climate & oceans - preserve the planet`s dominant CO2-sequestration system ( 1 gigaton/year via calcifying sea life**) by promptly protecting ocean chemistry via expansion of clean power for both lime production & replacement of CO2-emitting sources. Provide natural alkali (CaO, MgO…) to oceans to maintain average pH above 8.0, as indicated by marine biologists. That alkali (lime) is available from past calcifying life's limestone deposits, so can be returned safely to seas once its CO2 is removed & permanently sequestered (Carbfix, BSCP, etc.***). Limestone is a dense source of CO2 - efficient processing per mole sequestered. Distribution of enough lime is possible via cargo-ship transits - 10,000 tons lime/transit, 1 million transits/year. New Panamax ships carry 120,000 tons. Just 10,000/transit allows gradual reduction of present & past CO2 emissions effects, if coupled with combustion-power reductions. CO2 separation from limestone, as in cement plants, consumes 400kWHrs of thermal energy per ton of output lime (or CO2). To combat yearly CO2 dissolution in seas, we must produce & distribute about 10gigatons of lime/year. Only nuclear power produces the clean energy (thousands of terawatt hours) to meet this need - 1000 dedicated 1GWe reactors, processing 12 cubic miles of limestone/year & sequestering CO2 into a similar mass of basalt. Basalt is common in the world. Researchers*** report it provides good, mineralized CO2 sequestration. The numbers above allow gradual CO2 reduction in air and seas, if we return to President Kennedy's energy path: http://tinyurl.com/6xgpkfa We're on an environmental precipice due to failure to eliminate

  8. A Novel Miniature Culture System to Screen CO2-Sequestering Microalgae

    Directory of Open Access Journals (Sweden)

    Xiaoling Miao

    2012-11-01

    Full Text Available In this study, a novel 96-well microplate swivel system (M96SS was built for high-throughput screening of microalgal strains for CO2 fixation. Cell growth under different CO2 supply conditions (0.2, 0.4, 0.8, and 1.2 g L−1 d−1, residual nitrate, and pH value of Chlorella sp. SJTU-3, Chlorella pyrenoidosa SJTU-2, and Scenedesmus obliquus SJTU-3 were examined in the M96SS and traditional flask cultures. The dynamic data showed there was a good agreement between the systems. Two critical problems in miniature culture systems (intra-well mixing and evaporation loss were improved by sealed vertical mixing of the M96SS. A sample screen of six microalgal species (Chlorella sp. SJTU-3, Chlorella pyrenoidosa SJTU-2, Selenastrum capricornutum, Scenedesmus obliquus SJTU-3, Chlamydomonas sajao, Dunaliella primolecta was carried out in flasks and the M96SS. Chlamydomonas sajao appeared to be a robust performer (highest cell density: 1.437 g L−1 in anaerobic pond water with 0.8, and 1.2 g L−1 d−1 CO2. The reliability and efficiency of the M96SS were verified through a comparison of traditional flask culture, M96SS, Lukavský’s system, and a microplate shaker.

  9. Conformal sequestering simplified

    International Nuclear Information System (INIS)

    Schmaltz, Martin; Sundrum, Raman

    2006-01-01

    Sequestering is important for obtaining flavor-universal soft masses in models where supersymmetry breaking is mediated at high scales. We construct a simple and robust class of hidden sector models which sequester themselves from the visible sector due to strong and conformally invariant hidden dynamics. Masses for hidden matter eventually break the conformal symmetry and lead to supersymmetry breaking by the mechanism recently discovered by Intriligator, Seiberg and Shih. We give a unified treatment of subtleties due to global symmetries of the CFT. There is enough review for the paper to constitute a self-contained account of conformal sequestering

  10. The millennial atmospheric lifetime of anthropogenic CO2

    International Nuclear Information System (INIS)

    Archer, D.

    2008-01-01

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO 2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ocean carbon cycle, which we review here. The largest fraction of the CO 2 recovery will take place on time scales of centuries, as CO 2 invades the ocean, but a significant fraction of the fossil fuel CO 2 , ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO 2 in the atmosphere

  11. Release of Dissolved CO2 from Water in Laboratory Porous Media Following Rapid Depressurization

    Science.gov (United States)

    Crews, J. B.; Cooper, C. A.

    2011-12-01

    A bench-top laboratory study is undertaken to investigate the effects of seismic shocks on brine aquifers into which carbon dioxide has been injected for permanent storage. Long-term storage in deep saline aquifers has been proposed and studied as one of the most viable near-term options for sequestering fossil fuel-derived carbon dioxide from the atmosphere to curb anthropogenic climate change. Upon injection into the subsurface, it is expected that CO2, as either a gas or supercritical fluid, will mix convectively with the formation water. The possibility exists, however, that dissolved CO2 will come out of solution as a result of an earthquake. The effect is similar to that of slamming an unsealed container of carbonated beverage on a table; previously dissolved CO2 precipitates, forms bubbles, and rises due to buoyancy. In this study, we measure the change in gas-phase CO2 concentration as a function of the magnitude of the shock and the initial concentration of CO2. In addition, we investigate and seek to characterize the nucleation and transport of CO2 bubbles in a porous medium after a seismic shock. Experiments are conducted using a Hele-Shaw cell and a CCD camera to quantify the fraction of dissolved CO2 that comes out of solution as a result of a sharp mechanical impulse. The data are used to identify and constrain the conditions under which CO2 comes out of solution and, further, to understand the end-behavior of the precipitated gas-phase CO2 as it moves through or is immobilized in a porous medium.

  12. Economic Analysis of Sequestering Carbon in Green Ash Forests in the Lower Mississippi River Valley

    Directory of Open Access Journals (Sweden)

    Ching-Hsun Huang

    2003-01-01

    Full Text Available Since the U.S. is the largest emitter of carbon dioxide (CO2, it has become crucial to develop options that are both cost effective and supportive of sustainable development to reduce atmospheric CO2. Electric utility companies have the options of reducing their use of fossil fuels, switching to alternative energy sources, increasing efficiency, or offsetting carbon emissions. This study determined the cost and profitability of sequestering carbon in green ash plantations, and the number of tons of carbon that can be sequestered. The profitability of green ash is $2,342 and $3,645 per acre on site indices (measurement of soil quality 65 and 105 land, respectively, calculated with a 2.5% alternative rate of return (ARR. These figures shift to –$248 and –$240 calculated with a 15.0% ARR. If landowners who have an ARR of 2.5% can sell carbon credits for $10 per ton of carbon, profits will increase by $107 per acre on poor sites and $242 on good sites. Over one rotation (cutting cycle, 38.56 net tons of carbon can be sequestered on an acre of poor quality land and 51.35 tons on good quality land. The cost of sequestering carbon, without including revenues from timber production and carbon credits, ranges from a high of $15.20 per ton on poor sites to $14.41 on good sites, calculated with a 2.5% ARR; to a high of $8.51 per ton on poor sites to $7.63 on good sites, calculated with a 15.0% ARR. The cost of storing carbon can be reduced significantly if the trees can be sold for wood products.

  13. Role of mesoscale eddies in the global ocean uptake of anthropogenic CO{sub 2}; Role des tourbillons de meso-echelle oceaniques dans la distribution et les flux air-mer de CO{sub 2} anthropique a l'echelle globale

    Energy Technology Data Exchange (ETDEWEB)

    Zouhair, Lachkar

    2007-02-15

    Mesoscale eddies play a fundamental role in ocean dynamics particularly in the Southern Ocean. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of anthropogenic CO{sub 2}, CFC-11 and bomb {delta}{sup 14}C. We made global anthropogenic transient tracer simulations in coarse-resolution, ORCA2, and eddy-permitting, ORCA05 and ORCA025, versions of the ocean modelling system NEMO. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on bomb {delta}{sup 14}C uptake and storage. Yet for CFC-11 and anthropogenic CO{sub 2}, increased eddy activity reduces southern extra-tropical uptake by 28% and 25% respectively, thereby providing better agreement with observations. It is shown that the discrepancies in the equilibration times between the three tracers determine their respective sensitivities to the model horizontal resolution. Applying Gent and McWilliams (1990) (GM) parameterization of eddies in the non-eddying version of the model does improve results, but not enough. An in-depth investigation of the mechanisms by which eddies affect the uptake of the transient tracers shows that including mesoscale eddies leads to an overall reduction in the Antarctic Intermediate Water (AAIW) ventilation, and modifies substantially the spatial distribution of their source regions. This investigation reveals also that the GM parameterization still overestimates the ventilation and the subduction of AAIW in the Indian Ocean where the simulated mixed layer is particularly deep during the winter. This work suggests that most current coarse-resolution models may overestimate the ventilation of AAIW in the Indian sector of the Southern Ocean. This study shows also that the use of the GM parameterization may be of limited utility where mixed layer is relatively deep and confirms the general need for a

  14. Satellite assisted aerosol correlation in a sequestered CO2 leakage controlled site

    Science.gov (United States)

    Landulfo, Eduardo; da Silva Lopes, Fábio J.; Nakaema, Walter M.; de Medeiros, José A. G.; Moreira, Andrea

    2014-10-01

    Currently one of the main challenges in CO2 storage research is to grant the development, testing and validation of accurate and efficient Measuring, Monitoring and Verification (MMV) techniques to be deployed at the final storage site, targeting maximum storage efficiency at the minimal leakage risk levels. For such task a mimetic sequestration site has been deployed in Florianopolis, Brazil, in order to verify the performance of monitoring plataforms to detect and quantify leakages of ground injected CO2, namely a Cavity Ring Down System (CRDS) - Los Gatos Research - an Eddy Covariance System (Campbell Scientific and Irgason) and meteorological tower for wind, humidity, precipitation and temperature monitoring onsite. The measurement strategy for detecting CO2 leakages can be very challenging since environmental and phytogenic influence can be very severe and play a role on determining if the values measured are unambiguous or not. One external factor to be considered is the amount of incoming solar radiation which will be the driving force for the whole experimental setup and following this reasoning the amount of aerosols in the atmospheric column can be a determinant factor influencing the experimental results. Thus the investigation of measured fluxes CO2 and its concentration with the aforementioned experimental instruments and their correlation with the aerosol data should be taken into account by means of satellite borne systems dedicated to measure aerosol vertical distribution and its optical properties, in this study we have selected CALIPSO and MODIS instrumentation to help on deriving the aerosol properties and CO2 measurements.

  15. Risk Assessment and Monitoring of Stored CO2 in Organic Rocks Under Non-Equilibrium Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Vivak

    2014-06-30

    The USA is embarking upon tackling the serious environmental challenges posed to the world by greenhouse gases, especially carbon dioxide (CO2). The dimension of the problem is daunting. In fact, according to the Energy Information Agency, nearly 6 billion metric tons of CO2 were produced in the USA in 2007 with coal-burning power plants contributing about 2 billion metric tons. To mitigate the concerns associated with CO2 emission, geological sequestration holds promise. Among the potential geological storage sites, unmineable coal seams and shale formations in particular show promise because of the probability of methane recovery while sequestering the CO2. However. the success of large-scale sequestration of CO2 in coal and shale would hinge on a thorough understanding of CO2's interactions with host reservoirs. An important parameter for successful storage of CO2 reservoirs would be whether the pressurized CO2 would remain invariant in coal and shale formations under reasonable internal and/or external perturbations. Recent research has brought to the fore the potential of induced seismicity, which may result in caprock compromise. Therefore, to evaluate the potential risks involved in sequestering CO2 in Illinois bituminous coal seams and shale, we studied: (i) the mechanical behavior of Murphysboro (Illinois) and Houchin Creek (Illinois) coals, (ii) thermodynamic behavior of Illinois bituminous coal at - 100oC ≤ T ≤ 300oC, (iii) how high pressure CO2 (up to 20.7 MPa) modifies the viscosity of the host, (iv) the rate of emission of CO2 from Illinois bituminous coal and shale cores if the cores, which were pressurized with high pressure (≤ 20.7 MPa) CO2, were exposed to an atmospheric pressure, simulating the development of leakage pathways, (v) whether there are any fractions of CO2 stored in these hosts which are resistance to emission by simply exposing the cores to atmospheric pressure, and (vi) how compressive shockwaves applied to the coal and

  16. Estimate of total CO2 output from desertified sandy land in China

    International Nuclear Information System (INIS)

    Duan Zhenghu; Lanzhou University; Xiao Honglang; Dong Zhibao; He Xingdong; Wang Gang

    2001-01-01

    Soil is an important factor in regional and global carbon budgets because it serves as a reservoir of large amount of organic carbon. In our study, using remote sensing data of different periods we analyzed the development and reversion of desertification in China, calculated the variations of organic carbon contents of the desertified lands in China. The results showed that the total storage of organic carbon in 0-50cm soil layer of the desertified lands is 855Mt. In recent 40yr, the total CO 2 amount released by land desertification processes to the atmosphere was 150Mt, while the CO 2 amount sequestered by desertification reversing processes corresponded to 59MtC. Hence, the net CO 2 amount released from desertified lands of China corresponded to 91MtC, about 68.42% of the 133MtC of annual CO 2 release in the global temperate and frigid zones. Simultaneously, it indicated that CO 2 amount sequestered by desertification reversing processes in desertified land had greater potential than the other soils. (Author)

  17. Simulations of the global carbon cycle and anthropogenic CO{sub 2} transient. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, J.L.

    1994-07-01

    This research focuses on improving the understanding of the anthropogenic carbon dioxide transient using observations and models of the past and present. In addition, an attempt is made to develop an ability to predict the future of the carbon cycle in response to continued anthropogenic perturbations and climate change. Three aspects of the anthropogenic carbon budget were investigated: (1) the globally integrated budget at the present time; (2) the time history of the carbon budget; and (3) the spatial distribution of carbon fluxes. One of the major activities of this study was the participation in the model comparison study of Enting, et al. [1994] carried out in preparation for the IPCC 1994 report.

  18. Hierarchical saturation of soil carbon pools near a natural CO2 spring

    NARCIS (Netherlands)

    Kool, D.M.; Chung, H.; Tate, K.R.; Ross, D.J.; Newton, P.C.D.; Six, J.

    2007-01-01

    Soil has been identified as a possible carbon (C) sink to mitigate increasing atmospheric CO2 concentration. However, several recent studies have suggested that the potential of soil to sequester C is limited and that soil may become saturated with C under increasing CO2 levels. To test this concept

  19. The millennial atmospheric lifetime of anthropogenic CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Archer, D. [University of Chicago, IL (United States). Department of the Geophysical Sciences; Brovkin, V. [Potsdam Institute for Climate Impact Research (Germany)

    2008-10-15

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO{sub 2} release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ocean carbon cycle, which we review here. The largest fraction of the CO{sub 2} recovery will take place on time scales of centuries, as CO{sub 2} invades the ocean, but a significant fraction of the fossil fuel CO{sub 2}, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO{sub 2} in the atmosphere.

  20. Role of mesoscale eddies in the global ocean uptake of anthropogenic CO{sub 2}; Role des tourbillons de meso-echelle oceaniques dans la distribution et les flux air-mer de CO{sub 2} anthropique a l'echelle globale

    Energy Technology Data Exchange (ETDEWEB)

    Zouhair, Lachkar

    2007-02-15

    Mesoscale eddies play a fundamental role in ocean dynamics particularly in the Southern Ocean. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of anthropogenic CO{sub 2}, CFC-11 and bomb {delta}{sup 14}C. We made global anthropogenic transient tracer simulations in coarse-resolution, ORCA2, and eddy-permitting, ORCA05 and ORCA025, versions of the ocean modelling system NEMO. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on bomb {delta}{sup 14}C uptake and storage. Yet for CFC-11 and anthropogenic CO{sub 2}, increased eddy activity reduces southern extra-tropical uptake by 28% and 25% respectively, thereby providing better agreement with observations. It is shown that the discrepancies in the equilibration times between the three tracers determine their respective sensitivities to the model horizontal resolution. Applying Gent and McWilliams (1990) (GM) parameterization of eddies in the non-eddying version of the model does improve results, but not enough. An in-depth investigation of the mechanisms by which eddies affect the uptake of the transient tracers shows that including mesoscale eddies leads to an overall reduction in the Antarctic Intermediate Water (AAIW) ventilation, and modifies substantially the spatial distribution of their source regions. This investigation reveals also that the GM parameterization still overestimates the ventilation and the subduction of AAIW in the Indian Ocean where the simulated mixed layer is particularly deep during the winter. This work suggests that most current coarse-resolution models may overestimate the ventilation of AAIW in the Indian sector of the Southern Ocean. This study shows also that the use of the GM parameterization may be of limited utility where mixed layer is relatively deep and confirms the general need for a

  1. RISING ATMOSPHERIC CO2 AND CARBON SEQUESTRATION IN FORESTS

    Science.gov (United States)

    Rising CO2 concentrations in the Earth's atmosphere could alter Earth's climate system, but it is thought that higher concentrations may improve plant growth by way of the fertilization effect. Forests, an important part of the Earth's carbon cycle, are postulated to sequester a...

  2. A Cluster of CO2 Change Characteristics with GOSAT Observations for Viewing the Spatial Pattern of CO2 Emission and Absorption

    Directory of Open Access Journals (Sweden)

    Da Liu

    2015-11-01

    Full Text Available Satellite observations can be used to detect the changes of CO2 concentration at global and regional scales. With the column-averaged CO2 dry-air mole fraction (Xco2 data derived from satellite observations, the issue is how to extract and assess these changes, which are related to anthropogenic emissions and biosphere absorptions. We propose a k-means cluster analysis to extract the temporally changing features of Xco2 in the Central-Eastern Asia using the data from 2009 to 2013 obtained by Greenhouse Gases Observing Satellite (GOSAT, and assess the effects of anthropogenic emissions and biosphere absorptions on CO2 changes combining with the data of emission and vegetation net primary production (NPP. As a result, 14 clusters, which are 14 types of Xco2 seasonal changing patterns, are obtained in the study area by using the optimal clustering parameters. These clusters are generally in agreement with the spatial pattern of underlying anthropogenic emissions and vegetation absorptions. According to correlation analysis with emission and NPP, these 14 clusters are divided into three groups: strong emission, strong absorption, and a tendency of balancing between emission and absorption. The proposed clustering approach in this study provides us with a potential way to better understand how the seasonal changes of CO2 concentration depend on underlying anthropogenic emissions and vegetation absorptions.

  3. Potential to sequester carbon in Canadian forests: Some economic considerations

    International Nuclear Information System (INIS)

    Kooten, G.C. van; Arthur, L.M.; Wilson, W.R.

    1992-01-01

    The potential role of reforestation policies in reducing Canada's contribution to atmospheric CO 2 is examined. The results indicate sequestering carbon by reforestation of forest lands may be a cost-effective means for Canada to offset domestic emissions of CO 2 from other sources, and that planting forests on marginal agricultural lands also warrants consideration. But these policies need to be compared with alternatives for reducing CO 2 emissions to determine their relative cost-effectiveness. It is found that reforestation is more costly than policies to increase the fuel efficiency of automobiles, but economically more efficient than converting vehicles to natural gas. Forestation can make an important contribution to reduced atmospheric accumulation of carbon after the more cost-effective strategy, replacing less fuel-efficient automobiles, is exhausted (i.e. when the marginal costs of automobile emissions increase beyond those of forestation alternatives). Finally, it is demonstrated that, because of its vast forests, Canada is a net carbon sink. 26 refs., 2 figs., 4 tabs

  4. Modeling the transformation of atmospheric CO2 into microalgal biomass.

    Science.gov (United States)

    Hasan, Mohammed Fahad; Vogt, Frank

    2017-10-23

    Marine phytoplankton acts as a considerable sink of atmospheric CO 2 as it sequesters large quantities of this greenhouse gas for biomass production. To assess microalgae's counterbalancing of global warming, the quantities of CO 2 they fix need to be determined. For this task, it is mandatory to understand which environmental and physiological parameters govern this transformation from atmospheric CO 2 to microalgal biomass. However, experimental analyses are challenging as it has been found that the chemical environment has a major impact on the physiological properties of the microalgae cells (diameter typ. 5-20 μm). Moreover, the cells can only chemically interact with their immediate vicinity and thus compound sequestration needs to be studied on a microscopic spatial scale. Due to these reasons, computer simulations are a more promising approach than the experimental studies. Modeling software has been developed that describes the dissolution of atmospheric CO 2 into oceans followed by the formation of HCO 3 - which is then transported to individual microalgae cells. The second portion of this model describes the competition of different cell species for this HCO 3 - , a nutrient, as well as its uptake and utilization for cell production. Two microalgae species, i.e. Dunaliella salina and Nannochloropsis oculata, were cultured individually and in a competition situation under different atmospheric CO 2 conditions. It is shown that this novel model's predictions of biomass production are in very good agreement with the experimental flow cytometry results. After model validation, it has been applied to long-term prediction of phytoplankton generation. These investigations were motivated by the question whether or not cell production slows down as cultures grow. This is of relevance as a reduced cell production rate means that the increase in a culture's CO 2 -sinking capacity slows down as well. One implication resulting from this is that an increase in

  5. Influence of natural and anthropogenic factors on the dynamics of CO2 emissions from chernozems soil

    Science.gov (United States)

    Syabruk, Olesia

    2017-04-01

    Twentieth century marked a significant expansion of agricultural production. Soil erosion caused by human activity, conversion of forests and grasslands to cropland, desertification, burning nutrient residues, drainage, excessive cultivation led to intense oxidation of soil carbon to the atmosphere and allocation of additional amounts of CO2. According to the UN Intergovernmental Panel on Climate Change, agriculture is one of the main sources of greenhouse gases emissions to the atmosphere. The thesis reveals main patterns of the impact of natural and anthropogenic factors on CO2 emissions in the chernozems typical and podzolized in a Left-bank Forest-Steppe of Ukraine, seasonal and annual dynamics. New provisions for conducting monitoring CO2 emissions from soil were developed by combining observations in natural and controlled conditions, which allows isolating the impact of hydrological, thermal and trophic factors. During the research, the methods for operational monitoring of emission of carbon losses were improved, using a portable infrared gas analyzer, which allows receiving information directly in the field. It was determined that the volumes of emission losses of carbon chernozems typical and podzolized Left-bank Forest-Steppe of Ukraine during the growing season are 480-910 kg/ha and can vary depending on the soil treatment ±( 4,0 - 6,0) % and fertilizer systems ± (3,8 - 7,1) %. The significant impact of long application of various fertilizer systems and soil treatment on the intensity of carbon dioxide emissions was investigated. It was found that most emission occurs in organic- mineral fertilizers systems with direct seeding. The seasonal dynamics of the potential capacity of the soil to produce CO2 were researched. Under identical conditions of humidity and temperature it has maximum in June and July and the gradual extinction of the autumn. It was determined that the intensity of the CO2 emission from the surface of chernozem fluctuates daily from

  6. Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India

    Science.gov (United States)

    Chandra, Naveen; Lal, Shyam; Venkataramani, S.; Patra, Prabir K.; Sheel, Varun

    2016-05-01

    About 70 % of the anthropogenic carbon dioxide (CO2) is emitted from the megacities and urban areas of the world. In order to draw effective emission mitigation policies for combating future climate change as well as independently validating the emission inventories for constraining their large range of uncertainties, especially over major metropolitan areas of developing countries, there is an urgent need for greenhouse gas measurements over representative urban regions. India is a fast developing country, where fossil fuel emissions have increased dramatically in the last three decades and are predicted to continue to grow further by at least 6 % per year through to 2025. The CO2 measurements over urban regions in India are lacking. To overcome this limitation, simultaneous measurements of CO2 and carbon monoxide (CO) have been made at Ahmedabad, a major urban site in western India, using a state-of-the-art laser-based cavity ring down spectroscopy technique from November 2013 to May 2015. These measurements enable us to understand the diurnal and seasonal variations in atmospheric CO2 with respect to its sources (both anthropogenic and biospheric) and biospheric sinks. The observed annual average concentrations of CO2 and CO are 413.0 ± 13.7 and 0.50 ± 0.37 ppm respectively. Both CO2 and CO show strong seasonality with lower concentrations (400.3 ± 6.8 and 0.19 ± 0.13 ppm) during the south-west monsoon and higher concentrations (419.6 ± 22.8 and 0.72 ± 0.68 ppm) during the autumn (SON) season. Strong diurnal variations are also observed for both the species. The common factors for the diurnal cycles of CO2 and CO are vertical mixing and rush hour traffic, while the influence of biospheric fluxes is also seen in the CO2 diurnal cycle. Using CO and CO2 covariation, we differentiate the anthropogenic and biospheric components of CO2 and found significant contributions of biospheric respiration and anthropogenic emissions in the late night (00:00-05:00 h, IST

  7. Mesoscale modelling of atmospheric CO2 across Denmark

    DEFF Research Database (Denmark)

    Lansø, Anne Sofie

    2016-01-01

    of the simulated atmospheric CO2 across Denmark was, in particular, affected by the Danish terrestrial surface exchanges and its temporal variability. This study urges all future modelling studies of air–sea CO2 to include short-term variability in pCO2. To capture the full heterogeneity of the surface exchanges......It is scientifically well-established that the increase of atmospheric CO2 affects the entire globe and will lead to higher surface temperatures. Although anthropogenic CO2is emitted straight into the atmosphere, it does not all contribute to the existing atmospheric CO2 reservoir. Approximately 29......% is taken up by the global oceans, due to under-saturation of CO2 in the surface waters, while another 33 % is taken up by the terrestrial biosphere, via photosynthesis. In order to estimate the effects of increasing anthropogenic emissions of CO2 more accurately in the future, it is essential to understand...

  8. The non-steady state oceanic CO2 signal: its importance, magnitude and a novel way to detect it

    Directory of Open Access Journals (Sweden)

    B. I. McNeil

    2013-04-01

    Full Text Available The role of the ocean has been pivotal in modulating rising atmospheric CO2 levels since the industrial revolution, sequestering nearly half of all fossil-fuel derived CO2 emissions. Net oceanic uptake of CO2 has roughly doubled between the 1960s (~1 Pg C yr−1 and 2000s (~2 Pg C yr−1, with expectations that it will continue to absorb even more CO2 with rising future atmospheric CO2 levels. However, recent CO2 observational analyses along with numerous model predictions suggest the rate of oceanic CO2 uptake is already slowing, largely as a result of a natural decadal-scale outgassing signal. This recent CO2 outgassing signal represents a significant shift in our understanding of the oceans role in modulating atmospheric CO2. Current tracer-based estimates for the ocean storage of anthropogenic CO2 assume the ocean circulation and biology is in steady state, thereby missing the new and potentially important "non-steady state" CO2 outgassing signal. By combining data-based techniques that assume the ocean is in a steady state, with techniques that constrain the net oceanic CO2 uptake signal, we show how to extract the non-steady state CO2 signal from observations. Over the entire industrial era, the non-steady state CO2 outgassing signal (~13 ± 10 Pg C is estimated to represent about 9% of the total net CO2 inventory change (~142 Pg C. However, between 1989 and 2007, the non-steady state CO2 outgassing signal (~6.3 Pg C has likely increased to be ~18% of net oceanic CO2 storage over that period (~36 Pg C. The present uncertainty of our data-based techniques for oceanic CO2 uptake limit our capacity to quantify the non-steady state CO2 signal, however with more data and better certainty estimates across a range of diverse methods, this important and growing CO2 signal could be better constrained in the future.

  9. Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India

    Directory of Open Access Journals (Sweden)

    N. Chandra

    2016-05-01

    Full Text Available About 70 % of the anthropogenic carbon dioxide (CO2 is emitted from the megacities and urban areas of the world. In order to draw effective emission mitigation policies for combating future climate change as well as independently validating the emission inventories for constraining their large range of uncertainties, especially over major metropolitan areas of developing countries, there is an urgent need for greenhouse gas measurements over representative urban regions. India is a fast developing country, where fossil fuel emissions have increased dramatically in the last three decades and are predicted to continue to grow further by at least 6 % per year through to 2025. The CO2 measurements over urban regions in India are lacking. To overcome this limitation, simultaneous measurements of CO2 and carbon monoxide (CO have been made at Ahmedabad, a major urban site in western India, using a state-of-the-art laser-based cavity ring down spectroscopy technique from November 2013 to May 2015. These measurements enable us to understand the diurnal and seasonal variations in atmospheric CO2 with respect to its sources (both anthropogenic and biospheric and biospheric sinks. The observed annual average concentrations of CO2 and CO are 413.0 ± 13.7 and 0.50 ± 0.37 ppm respectively. Both CO2 and CO show strong seasonality with lower concentrations (400.3 ± 6.8 and 0.19 ± 0.13 ppm during the south-west monsoon and higher concentrations (419.6 ± 22.8 and 0.72 ± 0.68 ppm during the autumn (SON season. Strong diurnal variations are also observed for both the species. The common factors for the diurnal cycles of CO2 and CO are vertical mixing and rush hour traffic, while the influence of biospheric fluxes is also seen in the CO2 diurnal cycle. Using CO and CO2 covariation, we differentiate the anthropogenic and biospheric components of CO2 and found significant contributions of biospheric respiration and anthropogenic

  10. Role of the circulation on the anthropogenic CO2 inventory in the North-East Atlantic: A climatological analysis

    Science.gov (United States)

    Carracedo, L. I.; Pérez, F. F.; Gilcoto, M.; Velo, A.; Padín, A.; Rosón, G.

    2018-02-01

    Climatology-based storage rate of anthropogenic CO2 (Cant, referred to year 2000) in the North-East Atlantic (53 ± 9 kmol s-1, 0.020 ± 0.003 Pg-C yr-1) is described on annual mean terms. Cant advection (32 ± 14 kmol s-1) occurs mostly in the upper 1800 m and contributes to 60% of the Cant storage rate. The Azores and Portugal Currents act as 'Cant streams' importing 389 ± 90 kmol s-1, most of which recirculates southwards with the Canary Current (-214 ± 34 kmol s-1). The Azores Counter Current (-79 ± 36 kmol s-1) and the northward-flowing Mediterranean Water advective branch (-31 ± 12 kmol s-1) comprise secondary Cant export routes. By means of Cant transport decomposition, we find horizontal circulation to represent 11% of the Cant storage rate, while overturning circulation is the main driver (48% of the Cant storage rate). Within the domain of this study, overturning circulation is a key mechanism by which Cant in the upper layer (0-500 dbar) is drawdown (74 ± 14 kmol s-1) to intermediate levels (500-2000 dbar), and entrained (37 ± 7 kmol s-1) into the Mediterranean Outflow Water to form Mediterranean Water. This newly formed water mass partly exports Cant to the North Atlantic at a rate of -39 ± 9 kmol s-1 and partly contributes to the Cant storage in the North-East Atlantic (with up to 0.015 ± 0.006 Pg-C yr-1). Closing the Cant budget, 40% of the Cant storage in the North-East Atlantic is attributable to anthropogenic CO2 uptake from the atmosphere (21 ± 10 kmol s-1).

  11. Intensive management modifies soil CO2 efflux in 6-year-old Pinus taeda L. stands

    Science.gov (United States)

    Lisa J. Samuelson; Kurt Johnsen; Tom Stokes; Weinlang Lu

    2004-01-01

    Intensive forestry may reduce net CO2 emission into atmosphere by storing carbon in living biomass, dead organic matter and soil, and durable wood products. Because quantification of belowground carbon dynamics is important for reliable estimation of the carbon sequestered by intensively managed plantations, we examined soil CO2...

  12. Total soil C and N sequestration in a grassland following 10 years of free air CO2 enrichment

    NARCIS (Netherlands)

    Kessel, van C.; Boots, B.; Graaff, de M.A.; Harris, D.; Blum, H.; Six, J.

    2006-01-01

    Soil C sequestration may mitigate rising levels of atmospheric CO2. However, it has yet to be determined whether net soil C sequestration occurs in N-rich grasslands exposed to long-term elevated CO2. This study examined whether N-fertilized grasslands exposed to elevated CO2 sequestered additional

  13. Viewing the effects of anthropogenic emission control from the change of CO2 concentration observed by GOSAT in China during the 2014 APEC summit

    Science.gov (United States)

    Lei, L.; Zhong, H.; Liu, L.; Yang, S., Sr.

    2016-12-01

    The growth of the global anthropogenic carbon emission stalled in 2014, according to data from International Energy Agency (IEA). This paper presents a practical application of satellite observation for detecting the regional enhancement of CO2 induced by underlying anthropogenic CO2 emissions especially during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We collected the column averaged dry air mole fraction (XCO2) data from Greenhouse Observation SATellite (GOSAT) from Jan. 2010 to Dec. 2015, which are provided by Japan GOSAT project team. The spatial change of the 5-year averaged XCO2 derived by gap filling [Zeng et al., TGRS, 2014], as shown in Fig.1, demonstrated that high XCO2prefer to correspond to the most intensive power plants. We calculated the regional contrasts between source and almost without emission (Fig.2), which are defined based on emission and potential temperature. The source, which is defined around Beijing, has many big power plants (Fig.1). The regional contrast showed 1-3 ppm with large seasonal variations while it is the lowest in summer due to influence of biospheric fluxes and especially show abnormal fluctuation in autumn 2014 (Fig.3). XCO2 fell from 398.9 ppm in 15-30 Oct. before APEC to 395.7 ppm during 1-11 Nov. 2014 APEC in source area around Beijing, and the contrast decreased from 4.5 ppm to 1.0 ppm (Table 1). This abnormal decline of XCO2 likely indicate the effects of controlling action for strong local source emissions such as closed many small inefficient coal-fired power plants from the beginning of 2014, banned on burning straw, especially in addition to temporally shut down the big coal-power plants and limiting the number of vehicles running during the APEC summit within the large zone covering the six provinces around Beijing. The large reduction was reported in aerosol of 50% above during the APEC summit (Sun et al., Sci. report, 2016). Our results agree to the potential of satellite observations to

  14. Massive CO2 Ice Deposits Sequestered in the South Polar Layered Deposits of Mars

    Science.gov (United States)

    Phillips, Roger J.; Davis, Brian J.; Tanaka, Kenneth L.; Byrne, Shane; Mellon, Michael T.; Putzig, Nathaniel E.; Haberle, Robert M.; Kahre, Melinda A.; Campbell, Bruce A.; Carter, Lynn M.; Smith, Isaac B.; Holt, John W.; Smrekar, Suzanne E.; Nunes, Daniel C.; Plaut, Jeffrey J.; Egan, Anthony F.; Titus, Timothy N.; Seu, Roberto

    2011-01-01

    Shallow Radar soundings from the Mars Reconnaissance Orbiter reveal a buried deposit of carbon dioxide (CO2) ice within the south polar layered deposits of Mars with a volume of 9500 to 12,500 cubic kilometers, about 30 times that previously estimated for the south pole residual cap. The deposit occurs within a stratigraphic unit that is uniquely marked by collapse features and other evidence of interior CO2 volatile release. If released into the atmosphere at times of high obliquity, the CO2 reservoir would increase the atmospheric mass by up to 80%, leading to more frequent and intense dust storms and to more regions where liquid water could persist without boiling.

  15. Leakage Risk Assessment for a Potential CO2 Storage Project in Saskatchewan, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Houseworth, J.E.; Oldenburg, C.M.; Mazzoldi, A.; Gupta, A.K.; Nicot, J.-P.; Bryant, S.L.

    2011-05-01

    A CO{sub 2} sequestration project is being considered to (1) capture CO{sub 2} emissions from the Consumers Cooperative Refineries Limited at Regina, Saskatchewan and (2) geologically sequester the captured CO{sub 2} locally in a deep saline aquifer. This project is a collaboration of several industrial and governmental organizations, including the Petroleum Technology Research Centre (PTRC), Sustainable Development Technology Canada (SDTC), SaskEnvironment Go Green Fund, SaskPower, CCRL, Schlumberger Carbon Services, and Enbridge. The project objective is to sequester 600 tonnes CO{sub 2}/day. Injection is planned to start in 2012 or 2013 for a period of 25 years for a total storage of approximately 5.5 million tonnes CO{sub 2}. This report presents an assessment of the leakage risk of the proposed project using a methodology known as the Certification Framework (CF). The CF is used for evaluating CO{sub 2} leakage risk associated with geologic carbon sequestration (GCS), as well as brine leakage risk owing to displacement and pressurization of brine by the injected CO{sub 2}. We follow the CF methodology by defining the entities (so-called Compartments) that could be impacted by CO{sub 2} leakage, the CO{sub 2} storage region, the potential for leakage along well and fault pathways, and the consequences of such leakage. An understanding of the likelihood and consequences of leakage forms the basis for understanding CO{sub 2} leakage risk, and forms the basis for recommendations of additional data collection and analysis to increase confidence in the risk assessment.

  16. Why Southern Ocean uptake of anthropogenic CO2 may be decreasing

    CSIR Research Space (South Africa)

    Mongwe, P

    2012-10-01

    Full Text Available to the warm surface water and its influence on CO2 solubility (Figures 2 and 3). The decline is DIC with depth correlates with the decrease in temperature (Figures 2 and 3), as colder water holds more CO2. The Southern Ocean has particularly high DIC... southwards, upwelling is also expected move more southwards, which may result in more intense CO2 outgassing. The emitted CO2 contributes to green house gases, which alter the heat balance and result in increased average temperatures. REFERENCES Le...

  17. Carbon Dioxide Sequestering Using Microalgal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Stepan; Richard E. Shockey; Thomas A. Moe; Ryan Dorn

    2002-02-01

    This project evaluated key design criteria, the technical feasibility, and the preliminary economic viability of a CO{sub 2}-sequestering system integrated with a coal-fired power plant based on microalgae biofixation. A review of relevant literature was conducted, and a bench-scale algal-based sequestration system was constructed and operated to verify algal growth capabilities using a simulated flue gas stream. The bench-scale system was a 20-gallon glass aquarium with a 16-gallon operating volume and was direct-sparged with a simulated flue gas. The flue gas composition was based on flue gas analyses for a 550-MW Coal Creek Power Station boiler in Underwood, North Dakota, which averaged 12.1% CO{sub 2}, 5.5% O{sub 2}, 423 ppm SO{sub 2}, 124 ppm NO{sub x}, and an estimated 50 mg/m{sup 3} fly ash loading. The algae were grown in Bold's basal growth medium. Lighting was provided using a two-tube fluorescent ''grow-light'' bulb fixture mounted directly above the tank. Algal growth appeared to be inhibited in the presence of SO{sub 2} using mixed cultures of green and blue-green cultures of algae. Samples of Monoraphidium strain MONOR02 and Nannochloropsis NANNO02 algal samples were obtained from the University of Hawaii Culture Collection. These samples did not exhibit inhibited growth in the presence of all the simulated flue gas constituents, but growth rates were somewhat lower than those expected, based on the review of literature. Samples of harvested algae were analyzed for protein, lipid, and carbohydrate content. A lipid content of 26% appeared to be fairly normal for algae, and it did not appear that large amounts of nitrogen were being fixed and promoting growth, nor were the algae starved for nitrogen. Proteins made up 41% of the total mass, and carbohydrates were assumed to be 33% (by difference). A preliminary economic analysis showed the costs of an integrated system based on microalgae biofixation to sequester 25% of the CO

  18. The system-wide economics of a carbon dioxide capture, utilization, and storage network: Texas Gulf Coast with pure CO2-EOR flood

    Science.gov (United States)

    King, Carey W.; Gülen, Gürcan; Cohen, Stuart M.; Nuñez-Lopez, Vanessa

    2013-09-01

    This letter compares several bounding cases for understanding the economic viability of capturing large quantities of anthropogenic CO2 from coal-fired power generators within the Electric Reliability Council of Texas electric grid and using it for pure CO2 enhanced oil recovery (EOR) in the onshore coastal region of Texas along the Gulf of Mexico. All captured CO2 in excess of that needed for EOR is sequestered in saline formations at the same geographic locations as the oil reservoirs but at a different depth. We analyze the extraction of oil from the same set of ten reservoirs within 20- and five-year time frames to describe how the scale of the carbon dioxide capture, utilization, and storage (CCUS) network changes to meet the rate of CO2 demand for oil recovery. Our analysis shows that there is a negative system-wide net present value (NPV) for all modeled scenarios. The system comes close to breakeven economics when capturing CO2 from three coal-fired power plants to produce oil via CO2-EOR over 20 years and assuming no CO2 emissions penalty. The NPV drops when we consider a larger network to produce oil more quickly (21 coal-fired generators with CO2 capture to produce 80% of the oil within five years). Upon applying a CO2 emissions penalty of 602009/tCO2 to fossil fuel emissions to ensure that coal-fired power plants with CO2 capture remain in baseload operation, the system economics drop significantly. We show near profitability for the cash flow of the EOR operations only; however, this situation requires relatively cheap electricity prices during operation.

  19. Evaluating the climate benefits of CO2-enhanced oil recovery using life cycle analysis.

    Science.gov (United States)

    Cooney, Gregory; Littlefield, James; Marriott, Joe; Skone, Timothy J

    2015-06-16

    This study uses life cycle analysis (LCA) to evaluate the greenhouse gas (GHG) performance of carbon dioxide (CO2) enhanced oil recovery (EOR) systems. A detailed gate-to-gate LCA model of EOR was developed and incorporated into a cradle-to-grave boundary with a functional unit of 1 MJ of combusted gasoline. The cradle-to-grave model includes two sources of CO2: natural domes and anthropogenic (fossil power equipped with carbon capture). A critical parameter is the crude recovery ratio, which describes how much crude is recovered for a fixed amount of purchased CO2. When CO2 is sourced from a natural dome, increasing the crude recovery ratio decreases emissions, the opposite is true for anthropogenic CO2. When the CO2 is sourced from a power plant, the electricity coproduct is assumed to displace existing power. With anthropogenic CO2, increasing the crude recovery ratio reduces the amount of CO2 required, thereby reducing the amount of power displaced and the corresponding credit. Only the anthropogenic EOR cases result in emissions lower than conventionally produced crude. This is not specific to EOR, rather the fact that carbon-intensive electricity is being displaced with captured electricity, and the fuel produced from that system receives a credit for this displacement.

  20. Making carbon dioxide sequestration feasible: Toward federal regulation of CO2 sequestration pipelines

    International Nuclear Information System (INIS)

    Mack, Joel; Endemann, Buck

    2010-01-01

    As the United States moves closer to a national climate change policy, it will have to focus on a variety of factors affecting the manner in which the country moves toward a future with a substantially lower carbon footprint. In addition to encouraging renewable energy, smart grid, clean fuels and other technologies, the United States will need to make substantial infrastructure investments in a variety of industries. Among the significant contributors to the current carbon footprint in the United States is the use of coal as a major fuel for the generation of electricity. One of the most important technologies that the United States can employ to reduce its carbon footprint is to sequester the carbon dioxide ('CO 2 ') from coal-fired power plants. This article focuses on the legal and policy issues surrounding a critical piece of the necessary sequestration infrastructure: CO 2 pipelines that will carry CO 2 from where it is removed from fuel or waste gas streams to where it will be sequestered. Ultimately, this article recommends developing a federally regulated CO 2 pipeline program to foster the implementation of carbon sequestration technology.

  1. Phenomenology of supersymmetry with scalar sequestering

    International Nuclear Information System (INIS)

    Perez, Gilad; Roy, Tuhin S.; Schmaltz, Martin

    2009-01-01

    The defining feature of scalar sequestering is that the minimal supersymmetric standard model squark and slepton masses as well as all entries of the scalar Higgs mass matrix vanish at some high scale. This ultraviolet boundary condition--scalar masses vanish while gaugino and Higgsino masses are unsuppressed--is independent of the supersymmetry breaking mediation mechanism. It is the result of renormalization group scaling from approximately conformal strong dynamics in the hidden sector. We review the mechanism of scalar sequestering and prove that the same dynamics which suppresses scalar soft masses and the B μ term also drives the Higgs soft masses to -|μ| 2 . Thus the supersymmetric contribution to the Higgs mass matrix from the μ term is exactly canceled by the soft masses. Scalar sequestering has two tell-tale predictions for the superpartner spectrum in addition to the usual gaugino mediation predictions: Higgsinos are much heavier (μ > or approx. TeV) than scalar Higgses (m A ∼few hundred GeV), and third generation scalar masses are enhanced because of new positive contributions from Higgs loops.

  2. The 'Risk' of Implementing New Regulations on Game-Changing Technology: Sequestering CO2 in the Built Environment.

    Science.gov (United States)

    Constantz, B.

    2009-05-01

    Calera's Carbon Capture and Conversion (CCC) technology with beneficial reuse has been called, "game- changing" by Carl Pope, Director of the Sierra Club. Calera offers a solution to the scale of the carbon problem. By capturing carbon into the built environment, Calera provides a sound and cost-effective alternative to Geologic Sequestration and Terrestrial Sequestration. By chemically bonding carbon dioxide into carbonate minerals, this CCC technology permanently converts CO2 into a mineral form which can be stored above- ground, on the floor of the ocean, or used as a building material. The process produces a suite of carbonate containing minerals of various polymorphic forms and crystallographic characteristics, which can be substituted into blends with portland cements to produce concretes with reduced carbon, carbon neutral, and negative carbon footprints. For each ton of product produced, approximately half a ton of carbon dioxide is sequestered using the Calera process. A number of different technologies have been proposed for trapping CO2 into a permanent mineral form. One such process utilizes flue gas from power plants, cement plants, foundries, etc. as a feedstock for production of carbonate mineral forms which can be used as cements and aggregates for making concrete. The carbonate materials produced are essentially forms of limestone, which have morphologies which allow them to glue themselves together when mixed with water, just as conventional portland cement does. The result is a cemented limestone product, which has the permanent structure and stability of the limestone, which forms 10% of the earth's crust. A significant advantage of this process is that it does not require the separation of CO2 from the flue gas, a highly cost and energy intensive step. By producing a usable product, CCC also provides an economical solution to global warming. While the cost of this process may, in some cases, exceed the selling price of the resultant materials

  3. Energy efficiency and reduction of CO2 emissions from campsites management in a protected area.

    Science.gov (United States)

    Del Moretto, Deny; Branca, Teresa Annunziata; Colla, Valentina

    2018-06-02

    Campsites can be a pollution source, mainly due to the energy consumption. In addition, the green areas, thanks to the direct CO 2 sequestration and the shading, indirectly prevent the CO 2 emissions related to energy consumption. The methodology presented in this paper allowed assessing the annual CO 2 emissions directly related to the campsite management and the consequent environmental impact in campsite clusters in Tuscany. The software i-Tree Canopy was exploited, enabling to evaluate in terms of "canopy" the tonnes of CO 2 sequestered by the vegetation within each campsite. Energy and water consumptions from 2012 to 2015 were assessed for each campsite. As far as the distribution of sequestered CO 2 is concerned, the campsites ranking was in accordance to their size. According to the indicator "T-Tree" or canopy cover, a larger area of the canopy cover allows using less outdoor areas covered by trees for the sequestration of the remaining amount of pollutants. The analysis shows that the considered campsites, that are located in a highly naturalistic Park, present significant positive aspects both in terms of CO 2 emission reductions and of energy efficiency. However, significant margins of improvement are also possible and they were analysed in the paper. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Novel process concept for cryogenic CO2 capture

    NARCIS (Netherlands)

    Tuinier, M.J.

    2011-01-01

    Carbon capture and storage (CCS) is generally considered as one of the necessary methods to mitigate anthropogenic CO2 emissions to combat climate change. The costs of CCS can for a large extent be attributed to the capture process. Several post-combustion CO2 capture processes have been developed,

  5. Genome Sequence of Carbon Dioxide-Sequestering Serratia sp. Strain ISTD04 Isolated from Marble Mining Rocks

    OpenAIRE

    Kumar, Manish; Gazara, Rajesh Kumar; Verma, Sandhya; Kumar, Madan; Verma, Praveen Kumar; Thakur, Indu Shekhar

    2016-01-01

    The Serratia sp. strain ISTD04 has been identified as a carbon dioxide (CO2)-sequestering bacterium isolated from marble mining rocks in the Umra area, Rajasthan, India. This strain grows chemolithotrophically on media that contain sodium bicarbonate (NaHCO3) as the sole carbon source. Here, we report the genome sequence of 5.07?Mb Serratia sp. ISTD04.

  6. Numerical modeling of injection and mineral trapping of CO2 withH2S and SO2 in a Sandstone Formation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Apps, John A.; Pruess, Karsten; Yamamoto, Hajime

    2004-09-07

    Carbon dioxide (CO{sub 2}) injection into deep geologic formations could decrease the atmospheric accumulation of this gas from anthropogenic sources. Furthermore, by co-injecting H{sub 2}S or SO{sub 2}, the products respectively of coal gasification or combustion, with captured CO{sub 2}, problems associated with surface disposal would be mitigated. We developed models that simulate the co-injection of H{sub 2}S or SO{sub 2} with CO{sub 2} into an arkose formation at a depth of about 2 km and 75 C. The hydrogeology and mineralogy of the injected formation are typical of those encountered in Gulf Coast aquifers of the United States. Six numerical simulations of a simplified 1-D radial region surrounding the injection well were performed. The injection of CO{sub 2} alone or co-injection with SO{sub 2} or H{sub 2}S results in a concentrically zoned distribution of secondary minerals surrounding a leached and acidified region adjacent to the injection well. Co-injection of SO{sub 2} with CO{sub 2} results in a larger and more strongly acidified zone, and alteration differs substantially from that caused by the co-injection of H{sub 2}S or injection of CO{sub 2} alone. Precipitation of carbonates occurs within a higher pH (pH > 5) peripheral zone. Significant quantities of CO{sub 2} are sequestered by ankerite, dawsonite, and lesser siderite. The CO{sub 2} mineral-trapping capacity of the formation can attain 40-50 kg/m{sup 3} medium for the selected arkose. In contrast, secondary sulfates precipitate at lower pH (pH < 5) within the acidified zone. Most of the injected SO{sub 2} is transformed and immobilized through alunite precipitation with lesser amounts of anhydrite and minor quantities of pyrite. The dissolved CO{sub 2} increases with time (enhanced solubility trapping). The mineral alteration induced by injection of CO{sub 2} with either SO{sub 2} or H{sub 2}S leads to corresponding changes in porosity. Significant increases in porosity occur in the acidified

  7. The European land and inland water CO2, CO, CH4 and N2O balance between 2001 and 2005

    NARCIS (Netherlands)

    Luyssaert, S.; Abril, G.; Andres, R.; Bastviken, D.; Bellassen, V.; Bergamaschi, P.; Bousquet, P.; Chevallier, F.; Ciais, P.; Corazza, M.; Dechow, R.; Erb, K.H.; Etiope, G.; Fortems-Cheiney, A.; Grassi, G.; Hartmann, J.; Jung, M.; Lathiere, J.; Lohila, A.; Mayorga, E.; Moosdorf, N.; Njakou, D.S.; Otto, J.; Papale, D.; Peters, W.; Peylin, P.; Raymond, P.; Rodenbeck, C.; Saarnio, S.; Schulze, E.D.; Szopa, S.; Thompson, R.; Verkerk, P.J.; Vuichard, N.; Wang, R.; Wattenbach, M.; Zaehle, S.

    2012-01-01

    Globally, terrestrial ecosystems have absorbed about 30% of anthropogenic greenhouse gas emissions over the period 2000-2007 and inter-hemispheric gradients indicate that a significant fraction of terrestrial carbon sequestration must be north of the Equator. We present a compilation of the CO2, CO,

  8. Carbon recycling by cyanobacteria: improving CO2 fixation through chemical production.

    Science.gov (United States)

    Zhang, Angela; Carroll, Austin L; Atsumi, Shota

    2017-09-01

    Atmospheric CO2 levels have reached an alarming level due to industrialization and the burning of fossil fuels. In order to lower the level of atmospheric carbon, strategies to sequester excess carbon need to be implemented. The CO2-fixing mechanism in photosynthetic organisms enables integration of atmospheric CO2 into biomass. Additionally, through exogenous metabolic pathways in these photosynthetic organisms, fixed CO2 can be routed to produce various commodity chemicals that are currently produced from petroleum. This review will highlight studies and modifications to different components of cyanobacterial CO2-fixing systems, as well as the application of these systems toward CO2-derived chemical production. 2,3-Butanediol is given particular focus as one of the most thoroughly studied systems for conversion of CO2 to a bioproduct. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Confined release of CO{sub 2} into the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Adams, E.E.; Zhang, X.Y.; Herzog, H.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)] [and others

    1993-12-31

    To help reduce global warming, it has been proposed to sequester some CO{sub 2} in the deep ocean. However, current pipe technology is limited to about 600-650 m{sup 4}, so deeper transport requires other means. Recently, it was suggested that CO{sub 2} could be released at depths of 200 - 400 m as a concentrated seawater solution. The dense solution would form a negatively buoyant gravity current and sink to greater depth. In the following we expand our previous calculations showing that an unconfined release of CO{sub 2} will not create sufficient concentration or negative buoyancy. However, release of either compressed gaseous or liquid CO{sub 2} into an appropriately designed confinement vessel could produce sufficient concentration to transport the current to deeper water. Furthermore, such a scheme may facilitate formation of CO{sub 2} hydrate particles that are heavier than seawater, causing further sinking. A recently completed Research Needs assessment study which we conducted for DOE concludes that shallow water disposal of CO{sub 2} may be the most promising CO{sub 2} disposal option.

  10. Detecting the anthropogenic influences on recent changes in ocean carbon uptake

    International Nuclear Information System (INIS)

    Seferian, Roland; Ribes, Aurelien; Bopp, Laurent

    2014-01-01

    Anthropogenic greenhouse gas emissions have modified the rate at which oceans have absorbed atmospheric CO 2 over the last centuries through rising atmospheric CO 2 and modifications in climate. However, there are still missing pieces in our understanding of the recent evolution of air-sea CO 2 exchanges related to the magnitude of their response to anthropogenic forcing versus that controlled by the internal variability. Here, to detect and attribute anthropogenic influences on oceanic CO 2 uptake between 1960 and 2005, we compare an ensemble of Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model simulations forced by individual drivers to ocean-only model reconstructions. We demonstrate that the evolution of the global oceanic carbon sink over the last decades can be understood without invoking climate change, attributing rising atmospheric CO 2 as prominent driver of the oceanic sink. Nonetheless, at regional scale, the influence of climate change on air-sea CO 2 exchanges seems to emerge from the internal variability within the low-latitude oceans. (authors)

  11. Geological Sequestration of CO2 by Hydrous Carbonate Formation with Reclaimed Slag

    Energy Technology Data Exchange (ETDEWEB)

    Von L. Richards; Kent Peaslee; Jeffrey Smith

    2008-02-06

    The concept of this project is to develop a process that improves the kinetics of the hydrous carbonate formation reaction enabling steelmakers to directly remove CO2 from their furnace exhaust gas. It is proposed to bring the furnace exhaust stream containing CO2 in contact with reclaimed steelmaking slag in a reactor that has an environment near the unit activity of water resulting in the production of carbonates. The CO2 emissions from the plant would be reduced by the amount sequestered in the formation of carbonates. The main raw materials for the process are furnace exhaust gases and specially prepared slag.

  12. Is there a decrease in the sink of atmospheric CO2 in the Nordic seas?

    International Nuclear Information System (INIS)

    Olsen, Are; Anderson, Leif G.

    2002-01-01

    It is well known that the seas off Norway sink a lot of carbon dioxide from the atmosphere, mainly because of the large heat loss from the sea in the area, which makes CO 2 more soluble in the water. Whether this sink has increased after the industrial revolution and thereby contributes to slowing down the increase of atmospheric CO 2 is uncertain. That is, it is uncertain whether there is a sink of anthropogenic CO 2 . There are indications that the opposite is true, that the sink of CO 2 in this area has slowed down along with the rise in the concentration of atmospheric CO 2 . Storing of anthropogenic CO 2 , however, takes place at higher latitudes where deep-water formation occurs, such as in the Nordic seas, where water that is saturated with anthropogenic CO 2 is transported down in the deep sea and becomes shielded from the atmosphere. Model calculations show that increased CO 2 in the atmosphere will reduce the sink of this gas in the Nordic seas. This conclusion is supported by observations from the Barents Sea

  13. MODEL SIMULASI EMISI DAN PENYERAPAN CO2 DI KOTA BOGOR

    Directory of Open Access Journals (Sweden)

    Rizka Permatayakti Rasyidta Nur

    2015-04-01

    Full Text Available Most of the urban pollution is the result of carbon dioxide (CO2 emission from human activities. This research identified CO2 emission and absorption in Bogor, and also the alternatives to solve the emission problem by system model and simulation. CO2 emission and absorption system model was created using software Stella 9.0.2 based on loss-gain emission concept for 30 years prediction. Human activities that contribute to CO2 emission are transportation, industries, energy consumption such as fuel or electricity, house hold waste, and farms, while the decrease factor is green open spaces as CO2 sequester. The alternatives to solve emission problem in Bogor is created based on green city concept by including the environmental aspects in every urban activity. The result of this research, the CO2 emission of Bogor reached 20.027.878 tons and the absorption reached 93.843 tons in 2042. Combined mitigation alternatives in several sectors could reduce CO2 emission by 2.797.667 tons in 2042 and CO2 emission could be neutralized by reforestation in 2036.

  14. Retrieval of average CO2 fluxes by combining in situ CO2 measurements and backscatter lidar information

    Science.gov (United States)

    Gibert, Fabien; Schmidt, Martina; Cuesta, Juan; Ciais, Philippe; Ramonet, Michel; Xueref, IrèNe; Larmanou, Eric; Flamant, Pierre Henri

    2007-05-01

    The present paper deals with a boundary layer budgeting method which makes use of observations from various in situ and remote sensing instruments to infer regional average net ecosystem exchange (NEE) of CO2. Measurements of CO2 within and above the atmospheric boundary layer (ABL) by in situ sensors, in conjunction with a precise knowledge of the change in ABL height by lidar and radiosoundings, enable to infer diurnal and seasonal NEE variations. Near-ground in situ CO measurements are used to discriminate natural and anthropogenic contributions of CO2 diurnal variations in the ABL. The method yields mean NEE that amounts to 5 μmol m-2 s-1 during the night and -20 μmol m-2 s-1 in the middle of the day between May and July. A good agreement is found with the expected NEE accounting for a mixed wheat field and forest area during winter season, representative of the mesoscale ecosystems in the Paris area according to the trajectory of an air column crossing the landscape. Daytime NEE is seen to follow the vegetation growth and the change in the ratio diffuse/direct radiation. The CO2 vertical mixing flux during the rise of the atmospheric boundary layer is also estimated and seems to be the main cause of the large decrease of CO2 mixing ratio in the morning. The outcomes on CO2 flux estimate are compared to eddy-covariance measurements on a barley field. The importance of various sources of error and uncertainty on the retrieval is discussed. These errors are estimated to be less than 15%; the main error resulted from anthropogenic emissions.

  15. Reducing CO2 flux by decreasing tillage in Ohio: overcoming conjecture with data

    Science.gov (United States)

    Soil could become an important sink for atmospheric carbon dioxide (CO2) as global agricultural greenhouse gas emissions continue to grow, but data to support this conjecture are few. Sequestering soil carbon (C) depends upon many factors including soil type, climate, crop, tillage, nitrogen fertili...

  16. Accelerated weathering of limestone for CO2 mitigation: Opportunities for the stone and cement industries

    Science.gov (United States)

    Langer, William H.; San, Juan A.; Rau, Greg H.; Caldeira, Ken

    2009-01-01

    Large amounts of limestone fines co-produced during the processing of crushed limestone may be useful in the sequestration of carbon dioxide (CO2). Accelerated weathering of limestone (AWL) is proposed as a low-tech method to capture and sequester CO2 from fossil fuel-fired power plants and other point sources such as cement manufacturing. AWL reactants are readily available, inexpensive and environmentally benign. Waste CO2 is hydrated with water to produce carbonic acid. This reacts with and is neutralized by limestone fines, thus converting CO2 gas to dissolved calcium bicarbonate.

  17. Genome Sequence of Carbon Dioxide-Sequestering Serratia sp. Strain ISTD04 Isolated from Marble Mining Rocks.

    Science.gov (United States)

    Kumar, Manish; Gazara, Rajesh Kumar; Verma, Sandhya; Kumar, Madan; Verma, Praveen Kumar; Thakur, Indu Shekhar

    2016-10-20

    The Serratia sp. strain ISTD04 has been identified as a carbon dioxide (CO 2 )-sequestering bacterium isolated from marble mining rocks in the Umra area, Rajasthan, India. This strain grows chemolithotrophically on media that contain sodium bicarbonate (NaHCO 3 ) as the sole carbon source. Here, we report the genome sequence of 5.07 Mb Serratia sp. ISTD04. Copyright © 2016 Kumar et al.

  18. Carboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Gordon C.; Heinhorst, Sabine; Kerfeld, Cheryl A.

    2010-06-23

    Cyanobacteria and some chemoautotrophic bacteria are able to grow in environments with limiting CO2 concentrations by employing a CO2-concentrating mechanism (CCM) that allows them to accumulate inorganic carbon in their cytoplasm to concentrations several orders of magnitude higher than that on the outside. The final step of this process takes place in polyhedral protein microcompartments known as carboxysomes, which contain the majority of the CO2-fixing enzyme, RubisCO. The efficiency of CO2 fixation by the sequestered RubisCO is enhanced by co-localization with a specialized carbonic anhydrase that catalyzes dehydration of the cytoplasmic bicarbonate and ensures saturation of RubisCO with its substrate, CO2. There are two genetically distinct carboxysome types that differ in their protein composition and in the carbonic anhydrase(s) they employ. Here we review the existing information concerning the genomics, structure and enzymology of these uniquely adapted carbonic anhydrases, which are of fundamental importance in the global carbon cycle.

  19. CO2 Sequestration short course

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  20. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers

    Science.gov (United States)

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter D.; Drake, Ronald; McCray, John E.

    2016-01-01

    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination

  1. Coupled nutrient cycling determines tropical forest trajectory under elevated CO2.

    Science.gov (United States)

    Bouskill, N.; Zhu, Q.; Riley, W. J.

    2017-12-01

    Tropical forests have a disproportionate capacity to affect Earth's climate relative to their areal extent. Despite covering just 12 % of land surface, tropical forests account for 35 % of global net primary productivity and are among the most significant of terrestrial carbon stores. As atmospheric CO2 concentrations increase over the next century, the capacity of tropical forests to assimilate and sequester anthropogenic CO2 depends on limitation by multiple factors, including the availability of soil nutrients. Phosphorus availability has been considered to be the primary factor limiting metabolic processes within tropical forests. However, recent evidence points towards strong spatial and temporal co-limitation of tropical forests by both nitrogen and phosphorus. Here, we use the Accelerated Climate Modeling for Energy (ACME) Land Model (ALMv1-ECA-CNP) to examine how nutrient cycles interact and affect the trajectory of the tropical forest carbon sink under, (i) external nutrient input, (ii) climate (iii) elevated CO2, and (iv) a combination of 1-3. ALMv1 includes recent theoretical advances in representing belowground competition between roots, microbes and minerals for N and P uptake, explicit interactions between the nitrogen and phosphorus cycles (e.g., phosphatase production and nitrogen fixation), the dynamic internal allocation of plant N and P resources, and the integration of global datasets of plant physiological traits. We report nutrient fertilization (N, P, N+P) predictions for four sites in the tropics (El Verde, Puerto Rico, Barro Colorado Island, Panama, Manaus, Brazil and the Osa Peninsula, Coast Rica) to short-term nutrient fertilization (N, P, N+P), and benchmarking of the model against a meta-analysis of forest fertilization experiments. Subsequent simulations focus on the interaction of the carbon, nitrogen, and phosphorus cycles across the tropics with a focus on the implications of coupled nutrient cycling and the fate of the tropical

  2. Anthropogenic nitrogen deposition in boreal forests has a minor impact on the global carbon cycle.

    Science.gov (United States)

    Gundale, Michael J; From, Fredrik; Bach, Lisbet H; Nordin, Annika

    2014-01-01

    It is proposed that increases in anthropogenic reactive nitrogen (Nr ) deposition may cause temperate and boreal forests to sequester a globally significant quantity of carbon (C); however, long-term data from boreal forests describing how C sequestration responds to realistic levels of chronic Nr deposition are scarce. Using a long-term (14-year) stand-scale (0.1 ha) N addition experiment (three levels: 0, 12.5, and 50 kg N ha(-1)  yr(-1) ) in the boreal zone of northern Sweden, we evaluated how chronic N additions altered N uptake and biomass of understory communities, and whether changes in understory communities explained N uptake and C sequestration by trees. We hypothesized that understory communities (i.e. mosses and shrubs) serve as important sinks for low-level N additions, with the strength of these sinks weakening as chronic N addition rates increase, due to shifts in species composition. We further hypothesized that trees would exhibit nonlinear increases in N acquisition, and subsequent C sequestration as N addition rates increased, due to a weakening understory N sink. Our data showed that understory biomass was reduced by 50% in response to the high N addition treatment, mainly due to reduced moss biomass. A (15) N labeling experiment showed that feather mosses acquired the largest fraction of applied label, with this fraction decreasing as the chronic N addition level increased. Contrary to our hypothesis, the proportion of label taken up by trees was equal (ca. 8%) across all three N addition treatments. The relationship between N addition and C sequestration in all vegetation pools combined was linear, and had a slope of 16 kg C kg(-1)  N. While canopy retention of Nr deposition may cause C sequestration rates to be slightly different than this estimate, our data suggest that a minor quantity of annual anthropogenic CO2 emissions are sequestered into boreal forests as a result of Nr deposition. © 2013 John Wiley & Sons Ltd.

  3. Quantifying global fossil-fuel CO2 emissions: from OCO-2 to optimal observing designs

    Science.gov (United States)

    Ye, X.; Lauvaux, T.; Kort, E. A.; Oda, T.; Feng, S.; Lin, J. C.; Yang, E. G.; Wu, D.; Kuze, A.; Suto, H.; Eldering, A.

    2017-12-01

    Cities house more than half of the world's population and are responsible for more than 70% of the world anthropogenic CO2 emissions. Therefore, quantifications of emissions from major cities, which are only less than a hundred intense emitting spots across the globe, should allow us to monitor changes in global fossil-fuel CO2 emissions, in an independent, objective way. Satellite platforms provide favorable temporal and spatial coverage to collect urban CO2 data to quantify the anthropogenic contributions to the global carbon budget. We present here the optimal observation design for future NASA's OCO-2 and Japanese GOSAT missions, based on real-data (i.e. OCO-2) experiments and Observing System Simulation Experiments (OSSE's) to address different error components in the urban CO2 budget calculation. We identify the major sources of emission uncertainties for various types of cities with different ecosystems and geographical features, such as urban plumes over flat terrains, accumulated enhancements within basins, and complex weather regimes in coastal areas. Atmospheric transport errors were characterized under various meteorological conditions using the Weather Research and Forecasting (WRF) model at 1-km spatial resolution, coupled to the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emissions. We propose and discuss the optimized urban sampling strategies to address some difficulties from the seasonality in cloud cover and emissions, vegetation density in and around cities, and address the daytime sampling bias using prescribed diurnal cycles. These factors are combined in pseudo data experiments in which we evaluate the relative impact of uncertainties on inverse estimates of CO2 emissions for cities across latitudinal and climatological zones. We propose here several sampling strategies to minimize the uncertainties in target mode for tracking urban fossil-fuel CO2 emissions over the globe for future satellite missions, such as OCO-3 and future

  4. SUSY Unparticle and Conformal Sequestering

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Yu; Nakayama, Yu

    2007-07-17

    We investigate unparticle physics with supersymmetry (SUSY). The SUSY breaking effects due to the gravity mediation induce soft masses for the SUSY unparticles and hence break the conformal invariance. The unparticle physics observable in near future experiments is only consistent if the SUSY breakingeffects from the hidden sector to the standard model sector are dominated by the gauge mediation, or if the SUSY breaking effects to the unparticle sector are sufficiently sequestered. We argue that the natural realization of the latter possibility is the conformal sequestering scenario.

  5. Downhole fluid injection systems, CO2 sequestration methods, and hydrocarbon material recovery methods

    Science.gov (United States)

    Schaef, Herbert T.; McGrail, B. Peter

    2015-07-28

    Downhole fluid injection systems are provided that can include a first well extending into a geological formation, and a fluid injector assembly located within the well. The fluid injector assembly can be configured to inject a liquid CO2/H2O-emulsion into the surrounding geological formation. CO2 sequestration methods are provided that can include exposing a geological formation to a liquid CO2/H2O-emulsion to sequester at least a portion of the CO2 from the emulsion within the formation. Hydrocarbon material recovery methods are provided that can include exposing a liquid CO2/H2O-emulsion to a geological formation having the hydrocarbon material therein. The methods can include recovering at least a portion of the hydrocarbon material from the formation.

  6. Novel process concept for cryogenic CO2 capture

    OpenAIRE

    Tuinier, M.J.

    2011-01-01

    Carbon capture and storage (CCS) is generally considered as one of the necessary methods to mitigate anthropogenic CO2 emissions to combat climate change. The costs of CCS can for a large extent be attributed to the capture process. Several post-combustion CO2 capture processes have been developed, such as scrubbing, membrane processes and pressure swing adsorption. Amine scrubbing is currently the state of the art technology, in which CO2 is being removed by contacting the flue gas with a so...

  7. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Takashi Nakamura

    2004-11-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run further, pilot and full scale, carbon sequestration tests with actual propane combustion gases utilizing two different strains of microalgae. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns. Aquasearch also tested an alternative cell separation technology. University of Hawaii performed experiments at the Mera Pharmaceuticals facility in Kona in mid June to obtain data on the carbon venting rate out of the photobioreactor; gas venting rates were measured with an orifice flow meter and gas samples were collected for GC analysis to determine the carbon content of the vented gases.

  8. Anthropogenic Biomes of the World, Version 2: 1700

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1700 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  9. Anthropogenic Biomes of the World, Version 2: 1900

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1900 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  10. Anthropogenic Biomes of the World, Version 2: 1800

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1800 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  11. Anthropogenic Biomes of the World, Version 2: 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 2000 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  12. Specific sequestering agents for the actinides: Pt. 10

    International Nuclear Information System (INIS)

    Ren Hongyu; Wang Huicai

    1991-01-01

    In this article, ten new and four known polyaminocarboxy-licphenolic sequestering agents have been synthesized. The result of animal screening of ten of these sequestering agents indicates: six of all, at a dose of 50 μmol/kg can excrete liver Am·Va (N, N'-di(2-hydroxybenzyl)-diethylenetriamine-N 1 , N 4 , N 7 -triacetic acid) is the most effective, it can excrete liver Am, skeleten Am and kidney Am. But all are less effective than DTPA. The structure-activity relationship has been discussed, ligand with more aminocarboxylic acid groups showed a better result than the ligand with more phenolic groups

  13. Challenges for present and future estimates of anthropogenic carbon in the Indian Ocean

    Science.gov (United States)

    Goyet, C.; Touratier, F.

    One of the main challenges we face today is to determine the evolution of the penetration of anthropogenic CO2 into the Indian Ocean and its impacts on marine and human life. Anthropogenic CO2 reaches the ocean via air-sea interactions as well as riverine inputs. It is then stored in the ocean and follows the oceanic circulation. As the carbon dioxide from the atmosphere penetrates into the sea, it reacts with water and acidifies the ocean. Consequently, the whole marine ecosystem is perturbed, thus potentially affecting the food web, which has, in turn, a direct impact on seafood supply for humans. Naturally, this will mainly affect the growing number of people living in coastal areas. Although anthropogenic CO2 in the ocean is identical with natural CO2 and therefore cannot be detected alone, many approaches are available today to estimate it. Since most of the results of these methods are globally in agreement, here we chose one of these methods, the tracer using oxygen, total inorganic carbon, and total alkalinity (TrOCA) approach, to compute the 3-D distribution of the anthropogenic CO2 concentrations throughout the Indian Ocean. The results of this distribution clearly illustrate the contrast between the Arabian Sea and the Bay of Bengal. They further show the importance of the southern part of this ocean that carries some anthropogenic CO2 at great depths. In order to determine the future anthropogenic impacts on the Indian Ocean, it is urgent and necessary to understand the present state. As the seawater temperature increases, how and how fast will the ocean circulation change? What will the impacts on seawater properties be? Many people are living on the bordering coasts, how will they be affected?

  14. Framing Climate Goals in Terms of Cumulative CO2-Forcing-Equivalent Emissions

    Science.gov (United States)

    Jenkins, S.; Millar, R. J.; Leach, N.; Allen, M. R.

    2018-03-01

    The relationship between cumulative CO2 emissions and CO2-induced warming is determined by the Transient Climate Response to Emissions (TCRE), but total anthropogenic warming also depends on non-CO2 forcing, complicating the interpretation of emissions budgets based on CO2 alone. An alternative is to frame emissions budgets in terms of CO2-forcing-equivalent (CO2-fe) emissions—the CO2 emissions that would yield a given total anthropogenic radiative forcing pathway. Unlike conventional "CO2-equivalent" emissions, these are directly related to warming by the TCRE and need to fall to zero to stabilize warming: hence, CO2-fe emissions generalize the concept of a cumulative carbon budget to multigas scenarios. Cumulative CO2-fe emissions from 1870 to 2015 inclusive are found to be 2,900 ± 600 GtCO2-fe, increasing at a rate of 67 ± 9.5 GtCO2-fe/yr. A TCRE range of 0.8-2.5°C per 1,000 GtC implies a total budget for 0.6°C of additional warming above the present decade of 880-2,750 GtCO2-fe, with 1,290 GtCO2-fe implied by the Coupled Model Intercomparison Project Phase 5 median response, corresponding to 19 years' CO2-fe emissions at the current rate.

  15. Impact of elevated CO2 on a Florida Scrub-oak Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Bert G

    2013-01-01

    Since May of 1996, we have conducted an experiment in Florida Scrub Oak to determine the impact of elevated atmospheric CO2 and climate change on carbon, water, and nutrient cycling in this important terrestrial ecosystem. Florida scrub oak is the name for a collective of species occupying much of the Florida peninsula. The dominant tree species are oaks and the dwarf structure of this community makes it an excellent system in which to test hypotheses regarding the potential capacity of woody ecosystems to assimilate and sequester anthropogenic carbon. Scrub oak is fire dependent with a return cycle of 10-15 years, a time which would permit an experiment to follow the entire cycle. Our site is located on Cape Canaveral at the Kennedy Space Center, Florida. After burning in 1995, we built 16 open top chambers, half of which have been fumigated with pure CO2 sufficient to raise the concentration around the plants to 350 ppm above ambient. In the intervening 10 years we have non destructively measured biomass of shoots and roots, ecosystem gas exchange using chambers and eddy flux, leaf photosynthesis and respiration, soil respiration, and relevant environmental factors such as soil water availability, temperature, light, etc. The overwhelming result from analysis of our extensive data base is that elevated CO2 has had a profound impact on this ecosystem that, overall, has resulted in increased carbon accumulation in plant shoots, roots and litter. Our measurements of net ecosystem gas exchange also indicate that the ecosystem has accumulated carbon much in excess of the increased biomass or soil carbon suggesting a substantial export of carbon through the porous, sandy soil into the water table several meters below the surface. A major discovery is the powerful interaction between the stimulation of growth, photosynthesis, and respiration by elevated CO2 and other environmental factors particularly precipitation and nitrogen. Our measurements focused attention on

  16. Revised budget for the oceanic uptake of anthropogenic carbon dioxide

    Science.gov (United States)

    Sarmiento, J.L.; Sundquist, E.T.

    1992-01-01

    TRACER-CALIBRATED models of the total uptake of anthropogenic CO2 by the world's oceans give estimates of about 2 gigatonnes carbon per year1, significantly larger than a recent estimate2 of 0.3-0.8 Gt C yr-1 for the synoptic air-to-sea CO2 influx. Although both estimates require that the global CO2 budget must be balanced by a large unknown terrestrial sink, the latter estimate implies a much larger terrestrial sink, and challenges the ocean model calculations on which previous CO2 budgets were based. The discrepancy is due in part to the net flux of carbon to the ocean by rivers and rain, which must be added to the synoptic air-to-sea CO2 flux to obtain the total oceanic uptake of anthropogenic CO2. Here we estimate the magnitude of this correction and of several other recently proposed adjustments to the synoptic air-sea CO2 exchange. These combined adjustments minimize the apparent inconsistency, and restore estimates of the terrestrial sink to values implied by the modelled oceanic uptake.

  17. Anthropogenically enhanced chemical weathering and carbon evasion in the Yangtze Basin

    Science.gov (United States)

    Guo, Jingheng; Wang, Fushun; Vogt, Rolf David; Zhang, Yuhang; Liu, Cong-Qiang

    2015-01-01

    Chemical weathering is a fundamental geochemical process regulating the atmosphere-land-ocean fluxes and earth’s climate. It is under natural conditions driven primarily by weak carbonic acid that originates from atmosphere CO2 or soil respiration. Chemical weathering is therefore assumed as positively coupled with its CO2 consumption in contemporary geochemistry. Strong acids (i.e. sulfuric- and nitric acid) from anthropogenic sources have been found to influence the weathering rate and CO2 consumption, but their integrated effects remain absent in the world largest river basins. By interpreting the water chemistry and overall proton budget in the Yangtze Basin, we found that anthropogenic acidification had enhanced the chemical weathering by 40% during the past three decades, leading to an increase of 30% in solute discharged to the ocean. Moreover, substitution of carbonic acid by strong acids increased inorganic carbon evasion, offsetting 30% of the CO2 consumption by carbonic weathering. Our assessments show that anthropogenic loadings of sulfuric and nitrogen compounds accelerate chemical weathering but lower its CO2 sequestration. These findings have significant relevance to improving our contemporary global biogeochemical budgets. PMID:26150000

  18. Correlations among atmospheric CO[sub 2], CH[sub 4] and CO in the Arctic, March 1989

    Energy Technology Data Exchange (ETDEWEB)

    Conway, T.J.; Steele, L.P.; Novelli, P.C. (NOAA Climate Monitoring and Diagnostics Lab., Boulder, CO (United States))

    1993-12-01

    During six aircraft flights conducted as part of the third Arctic Gas and Aerosol Sampling Program (AGASP III, March 1989), 189 air samples were collected throughout the Arctic troposphere and lower stratosphere for analysis of CO[sub 2], CH[sub 4] and CO. The mixing ratios of the three gases varied significantly both horizontally and vertically. Elevated concentrations were found in layers with high anthropogenic aerosol concentrations (Arctic Haze). The mixing ratios of CO[sub 2], CH[sub 4] and CO were highly correlated on all flights. A linear regression of CH[sub 4] vs CO[sub 2] for pooled data from all flights yielded a correlation coefficient (r[sup 2]) of 0.88 and a slope of 13.5 ppb CH[sub 4]/ppm CO[sub 2] (n 186). For CO vs CO[sub 2] a pooled linear regression gave r[sup 2] 0.91 and a slope of 15.8 ppb CO/ppm CO[sub 2] (n 182). Carbon dioxide CH[sub 4] and CO also exhibited mean vertical gradients with slopes of 0.37, -4.4 and -4.2 ppb km[sup -1], respectively. Since the carbon dioxide variations observed in the Arctic atmosphere during winter are due primarily to variations in the emissions and transport of anthropogenic CO[sub 2] from Europe and Asia, the strong correlations that we have found suggest that a similar interpretation applies to CH[sub 4] and CO. Using reliable estimates of CO[sub 2] emissions for the source regions and the measured CH[sub 4]/CO[sub 2] and CO/CO[sub 2] ratios, we estimate a regional European CH[sub 4] source of 47[+-] 6 Tg CH[sub 4] yr[sup -1] that may be associated with fossil fuel combustion. A similar calculation for CO results in an estimated regional CO source of 82[+-]2 Tg CO yr[sup -1]. 31 refs., 7 figs., 4 tabs.

  19. CO/sub 2/ carbon cycle and climate interactions

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H; Maier-Reimer, E; Degens, E T; Kempe, S; Spitzy, A

    1984-03-01

    Past and expected emissions of anthropogenic CO/sub 2/ stimulate carbon cycle and climate research. Prognoses of future CO/sub 2/ levels depend on energy scenarios and on the reaction of the biosphere and hydrosphere to elevated atmospheric CO/sub 2/ concentrations. The reaction of the reservoirs vegetation, freshwater and oceans to disturbances of the carbon cycle is reviewed. For the oceans first results of a simple carbon cycle model implanted in a three-dimensional general circulation model are presented. This model allows experiments not possible with previous box models.

  20. CO2 substitution potential and CO2 reduction costs of an energetic exploitation of solid biomasses in Germany

    International Nuclear Information System (INIS)

    Becher, S.

    1995-01-01

    For the reduction of the anthropogenic greenhouse effect, the CO 2 , emissions are clearly to be reduced in future, according to the resolution made by the Federal Republic. Against the background of this objective, possible contributions of the biogenous solid fuels for the reduction of the CO 2 release of fossil origin are presented and discussed. For that, first the existing potentials of biomass in Germany and their present use are shown. Based on this, the CO 2 emissions by the present use already avoided, as well as the existing unexploited potentials of the CO 2 reduction potentials still to be exploited are determined. In accordance with an 'integral' starting point, thereby all pre- and post-positioned processes are considered. Finally, the specific CO 2 reduction costs are analysed and compared with other options. (orig.) [de

  1. Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO2

    Science.gov (United States)

    Donald R. Zak; Kurt S. Pregitzer; Mark E. Kubiske; Andrew J. Burton

    2011-01-01

    The accumulation of anthropogenic CO2 in the Earth's atmosphere, and hence the rate of climate warming, is sensitive to stimulation of plant growth by higher concentrations of atmospheric CO2. Here, we synthesise data from a field experiment in which three developing northern forest communities have been exposed to...

  2. Anthropogenic Carbon Pump in an Urbanized Estuary

    Science.gov (United States)

    Park, J. H.; Yoon, T. K.; Jin, H.; Begum, M. S.

    2015-12-01

    The importance of estuaries as a carbon source has been increasingly recognized over the recent decades. However, constraining sources of CO2 evasion from urbanized estuaries remains incomplete, particularly in densely populated river systems receiving high loads of organic carbon from anthropogenic sources. To account for major factors regulating carbon fluxes the tidal reach of the Han River estuary along the metropolitan Seoul, characterization of organic carbon in the main stem and major urban tributaries were combined with continuous, submersible sensor measurements of pCO2 at a mid-channel location over a year and continuous underway measurements using a submersible sensor and two equilibrator sytems across the estuarine section receiving urban streams. Single-site continuous measurements exhibited large seasonal and diurnal variations in pCO2, ranging from sub-ambient air levels to exceptionally high values approaching 10,000 ppm. Diurnal variations of pCO2 were pronounced in summer and had an inverse relationship with dissolved oxygen, pointing to a potential role of day-time algal consumption of CO2. Cruise measurements displayed sharp pCO2 pulses along the confluences of urban streams as compared with relatively low values along the upper estuary receiving low-CO2 outflows from upstream dams. Large downstream increases in pCO2, concurrent with increases in DOC concentrations and fluorescence intensities indicative of microbially processed organic components, imply a translocation and subsequent dilution of CO2 carried by urban streams and/or fast transformations of labile C during transit along downstream reaches. The unique combination of spatial and temporal continuous measurements of pCO2 provide insights on estuarine CO2 pulses that might have resulted from the interplay between high loads of CO2 and organic C of anthropogenic origin and their priming effects on estuarine microbial processing of terrigenous and algal organic matter.

  3. System-level modeling for geological storage of CO2

    OpenAIRE

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO2) from industrial sources into deep geological formations such as brine formations or depleted oil or gas reservoirs. Research has and is being conducted to improve understanding of factors affecting particular aspects of geological CO2 storage, such as performance, capacity, and health, safety and environmental (HSE) issues, as well as to lower the cost of CO2 capture and related p...

  4. Environmental impacts of ocean disposal of CO2

    International Nuclear Information System (INIS)

    Adams, E.; Herzog, H.; Auerbach, D.

    1995-01-01

    One option to reduce atmospheric CO 2 levels is to capture and sequester power plant CO 2 Commercial CO 2 capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO 2 is highly uncertain. The deep ocean is one of only a few possible CO 2 disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO 2 . The term disposal is really a misnomer because the atmosphere and ocean eventually equilibrate on a timescale of 1000 years regardless of where the CO 2 is originally discharged. However, peak atmospheric CO 2 concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO 2 injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO 2 will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. Our project has been examining these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. The end-product will be a report issued during the summer of 1996 consisting of two volumes an executive summary (Vol I) and a series of six, individually authored topical reports (Vol II). A workshop with invited participants from the U.S. and abroad will review the draft findings in January, 1996

  5. CO2 emission calculations and trends

    International Nuclear Information System (INIS)

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-01-01

    Evidence that the atmospheric CO 2 concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO 2 is believed to result from CO 2 releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO 2 concentration and its potential impact on climate. One of the convention's stated objectives was the ''stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. '' Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO 2 as a greenhouse gas, the relationship between CO 2 emissions and increases in atmospheric CO 2 levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO 2 emissions records be compiled, maintained, updated, and documented

  6. Energy consumption and net CO2 sequestration of aqueous mineral carbonation

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Ruijg, G.J.; Comans, R.N.J.; Witkamp, G.J.

    2006-12-01

    Aqueous mineral carbonation is a potentially attractive sequestration technology to reduce CO2 emissions. The energy consumption of this technology, however, reduces the net amount of CO2 sequestered. Therefore, the energetic CO2 sequestration efficiency of aqueous mineral carbonation was studied in dependence of various process variables using either wollastonite (CaSiO3) or steel slag as feedstock. For wollastonite, the maximum energetic CO2 sequestration efficiency within the ranges of process conditions studied was 75% at 200C, 20 bar CO2, and a particle size of <38μm. The main energy-consuming process steps were the grinding of the feedstock and the compression of the CO2 feed. At these process conditions, a significantly lower efficiency was determined for steel slag (69%), mainly because of the lower Ca content of the feedstock. The CO2 sequestration efficiency might be improved substantially for both types of feedstock by, e.g., reducing the amount of process water applied and further grinding of the feedstock. The calculated energetic efficiencies warrant a further assessment of the (energetic) feasibility of CO2 sequestration by aqueous mineral carbonation on the basis of a pilot-scale process

  7. Continuous CO2 capture and MSWI fly ash stabilization, utilizing novel dynamic equipment

    International Nuclear Information System (INIS)

    Jiang Jianguo; Du Xuejuan; Chen Maozhe; Zhang Chang

    2009-01-01

    Novel dynamic equipment with gas in and out continuously was developed to study the capture capacity of CO 2 . Municipal solid waste incineration (MSWI) fly ash has a high capture rate of CO 2 in CO 2 -rich gas. Fly ash can sequester pure CO 2 rapidly, and its capacity is 16.3 g CO 2 /100 g fly ash with no water added and 21.4 g CO 2 /100 g fly ash with 20% water added. For simulated incineration gas containing 12% CO 2 , the capture rate decreased and the capacity was 13.2 g CO 2 /100 g fly ash with no water added and 18.5 g CO 2 /100 g fly ash with 20% water added. After accelerated carbonation, the C and O contents increased, indicating CO 2 capture in the fly ash; CO 2 combines with Ca(OH) 2 to form CaCO 3 , which increased the CaCO 3 content from 12.5 to 54.3%. The leaching of Pb markedly decreased from 24.48 to 0.111 mg/L. - Novel dynamic equipment designed to capture CO 2 by fly ash is more suitable for engineering application.

  8. Interdisciplinary Investigation of CO2 Sequestration in Depleted Shale Gas Formations

    Energy Technology Data Exchange (ETDEWEB)

    Zoback, Mark D. [Stanford Univ., CA (United States); Kovscek, Anthony R. [Stanford Univ., CA (United States); Wilcox, Jennifer [Stanford Univ., CA (United States)

    2013-09-30

    This project investigates the feasibility of geologic sequestration of CO2 in depleted shale gas reservoirs from an interdisciplinary viewpoint. It is anticipated that over the next two decades, tens of thousands of wells will be drilled in the 23 states in which organic-rich shale gas deposits are found. This research investigates the feasibility of using these formations for sequestration. If feasible, the number of sites where CO2 can be sequestered increases dramatically. The research embraces a broad array of length scales ranging from the ~10 nanometer scale of the pores in the shale formations to reservoir scale through a series of integrated laboratory and theoretical studies.

  9. The Early Anthropogenic Hypothesis: Top-Down and Bottom-up Evidence

    Science.gov (United States)

    Ruddiman, W. F.

    2014-12-01

    Two complementary lines of evidence support the early anthropogenic hypothesis. Top-down evidence comes from comparing Holocene greenhouse-gas trends with those during equivalent intervals of previous interglaciations. The increases in CO2 and CH4 during the late Holocene are anomalous compared to the decreasing trends in a stacked average of previous interglaciations, thereby supporting an anthropogenic origin. During interglacial stage 19, the closest Holocene insolation analog, CO2 fell to 245 ppm by the time equivalent to the present, in contrast to the observed pre-industrial rise to 280-285 ppm. The 245-ppm level measured in stage 19 falls at the top of the natural range predicted by the original anthropogenic hypothesis of Ruddiman (2003). Bottom-up evidence comes from a growing list of archeological and other compilations showing major early anthropogenic transformations of Earth's surface. Key examples include: efforts by Dorian Fuller and colleagues mapping the spread of irrigated rice agriculture across southern Asia and its effects on CH4 emissions prior to the industrial era; an additional effort by Fuller showing the spread of methane-emitting domesticated livestock across Asia and Africa (coincident with the spread of fertile crescent livestock across Europe); historical compilations by Jed Kaplan and colleagues documenting very high early per-capita forest clearance in Europe, thus underpinning simulations of extensive pre-industrial clearance and large CO2 emissions; and wide-ranging studies by Erle Ellis and colleagues of early anthropogenic land transformations in China and elsewhere.

  10. CO{sub 2} control technologies: ALSTOM Power approach

    Energy Technology Data Exchange (ETDEWEB)

    Stamatelopoulos, G.N.; Marion, J.L.; Nsakala, N.; Griffin, T.; Bill, A. [ALSTOM Power Boiler GmbH, Stuttgart (Germany)

    2002-07-01

    ALSTOM Power is one of the largest providers of power generation equipment, turnkey power plants and services in the world. The Company is aware of the present scientific concerns regarding greenhouse gas emissions and the role of fossil fuels used in power generation. ALSTOM Power R&D laboratories run various programs aiming to find options that reduce greenhouse gas emissions through: Increasing the efficiency of power generation equipment by implementing the most modern technologies. Application of technologies to remove and sequester carbon dioxide created in power plants in an environmentally and economically favorable manner. In this paper an overview of ALSTOM's on-going CO{sub 2} mitigation development activities will be presented. First, energy efficiency improvements for both new and existing fossil fuel power plants are reviewed for both coal and natural gas fuels. Second, the development of novel power generation processes, including those involving combustion in O{sub 2}/CO{sub 2} atmospheres using pure or enriched oxygen for the purpose of CO{sub 2} capture is discussed. And finally, novel chemical-looping CO{sub 2} capture process technologies are introduced. The major challenge in CO{sub 2} capture techniques is the efficient separation and capture of CO{sub 2}. Conclusions are drawn herein regarding the technical feasibility, the resultant efficiency penalties, and the CO{sub 2} mitigation costs for the various options under study and development within ALSTOM Power. 7 refs., 8 figs.

  11. Monitoring underground migration of sequestered CO2 using self-potential methods

    Science.gov (United States)

    Ishido, T.; Pritchett, J.; Tosha, T.; Nishi, Y.; Nakanishi, S.

    2013-12-01

    An appropriate monitoring program is indispensable for an individual geologic storage project to aid in answering various operational questions by detecting changes within the reservoir and to provide early warning of potential CO2 leakage through the caprock. Such a program is also essential to reduce uncertainties associated with reservoir parameters and to improve the predictive capability of reservoir models. Repeat geophysical measurements performed at the earth surface show particular promise for monitoring large subsurface volumes. To appraise the utility of geophysical techniques, Ishido et al. carried out numerical simulations of an aquifer system underlying a portion of Tokyo Bay and calculated the temporal changes in geophysical observables caused by changing underground conditions as computed by reservoir simulation (Energy Procedia, 2011). They used 'geophysical postprocessors' to calculate the resulting temporal changes in the earth-surface distributions of microgravity, self-potential (SP), apparent resistivity (from MT surveys) and seismic observables. The applicability of any particular method is likely to be highly site-specific, but these calculations indicate that none of these techniques should be ruled out altogether. Some survey techniques (gravity, MT resistivity) appear to be suitable for characterizing long-term changes, whereas others (seismic reflection, SP) are quite responsive to short term disturbances. The self-potential postprocessor calculates changes in subsurface electrical potential induced by pressure disturbances through electrokinetic coupling (Ishido & Pritchett, JGR 1999). In addition to electrokinetic coupling, SP anomalies may be generated by various other mechanisms such as thermoelectric coupling, electrochemical diffusion potential, etc. In particular, SP anomalies of negative polarity, which are frequently observed near wells, appear to be caused by an underground electrochemical mechanism similar to a galvanic cell

  12. Simulated 21st century's increase in oceanic suboxia by CO2-enhanced biotic carbon export

    Science.gov (United States)

    Oschlies, Andreas; Schulz, Kai G.; Riebesell, Ulf; Schmittner, Andreas

    2008-12-01

    The primary impacts of anthropogenic CO2 emissions on marine biogeochemical cycles predicted so far include ocean acidification, global warming induced shifts in biogeographical provinces, and a possible negative feedback on atmospheric CO2 levels by CO2-fertilized biological production. Here we report a new potentially significant impact on the oxygen-minimum zones of the tropical oceans. Using a model of global climate, ocean circulation, and biogeochemical cycling, we extrapolate mesocosm-derived experimental findings of a pCO2-sensitive increase in biotic carbon-to-nitrogen drawdown to the global ocean. For a simulation run from the onset of the industrial revolution until A.D. 2100 under a "business-as-usual" scenario for anthropogenic CO2 emissions, our model predicts a negative feedback on atmospheric CO2 levels, which amounts to 34 Gt C by the end of this century. While this represents a small alteration of the anthropogenic perturbation of the carbon cycle, the model results reveal a dramatic 50% increase in the suboxic water volume by the end of this century in response to the respiration of excess organic carbon formed at higher CO2 levels. This is a significant expansion of the marine "dead zones" with severe implications not only for all higher life forms but also for oxygen-sensitive nutrient recycling and, hence, for oceanic nutrient inventories.

  13. Prediction of CO2 leakage during sequestration into marine sedimentary strata

    International Nuclear Information System (INIS)

    Li, Qi; Wu Zhishen; Li Xiaochun

    2009-01-01

    Deep ocean storage of CO 2 could help reduce the atmospheric level of greenhouse gas as part of a climate change mitigation strategy. In this paper, a multiphase flow model of CO 2 sequestration into deep ocean sediments was designed associated with the formation of CO 2 hydrates. A simplified assumption was proposed to predict the critical time of CO 2 leakage from marine sedimentary strata into seawater. Moreover, some principal parameters, which include the permeability, anisotropy, total injection amount, and length of the injection part of wellbores, were investigated by numerical simulations. The numerical estimates are used to assess the feasibility and effectiveness of CO 2 storage in deep ocean sediments. Accurately predicting the actual fate of liquid CO 2 sequestered into the marine sedimentary strata at depths greater than 500 m is complicated by uncertainties associated with not only the chemical-physical behavior of CO 2 under such conditions but also the geo-environment of disposal sites. Modeling results have shown some implications that the effectiveness of CO 2 ocean sequestration depends mainly on the injection conditions (such as injection rate, total injection amount, and the depth of injection), the site geology (such as permeability and anisotropy of disposal formations), and the chemical-physical behavior of CO 2 in marine environment

  14. Changes in anthropogenic carbon storage in the Northeast Pacific in the last decade

    Science.gov (United States)

    Chu, Sophie N.; Wang, Zhaohui Aleck; Doney, Scott C.; Lawson, Gareth L.; Hoering, Katherine A.

    2016-07-01

    In order to understand the ocean's role as a sink for anthropogenic carbon dioxide (CO2), it is important to quantify changes in the amount of anthropogenic CO2 stored in the ocean interior over time. From August to September 2012, an ocean acidification cruise was conducted along a portion of the P17N transect (50°N 150°W to 33.5°N 135°W) in the Northeast Pacific. These measurements are compared with data from the previous occupation of this transect in 2001 to estimate the change in the anthropogenic CO2 inventory in the Northeast Pacific using an extended multiple linear regression (eMLR) approach. Maximum increases in the surface waters were 11 µmol kg-1 over 11 years near 50°N. Here, the penetration depth of anthropogenic CO2 only reached ˜300 m depth, whereas at 33.5°N, penetration depth reached ˜600 m. The average increase of the depth-integrated anthropogenic carbon inventory was 0.41 ± 0.12 mol m-2 yr-1 across the transect. Lower values down to 0.20 mol m-2 yr-1 were observed in the northern part of the transect near 50°N and increased up to 0.55 mol m-2 yr-1 toward 33.5°N. This increase in anthropogenic carbon in the upper ocean resulted in an average pH decrease of 0.002 ± 0.0003 pH units yr-1 and a 1.8 ± 0.4 m yr-1 shoaling rate of the aragonite saturation horizon. An average increase in apparent oxygen utilization of 13.4 ± 15.5 µmol kg-1 centered on isopycnal surface 26.6 kg m-3 from 2001 to 2012 was also observed.

  15. Carbon dioxide (CO2) capture and storage : Canadian market development

    International Nuclear Information System (INIS)

    Hendriks, A.

    2006-01-01

    Carbon dioxide (CO 2 ) enhanced oil recovery (EOR) is used to extend the life of light oil reservoirs in Canada. An additional 13 per cent of original oil in place is typically recovered using CO 2 flooding processes. However, a carbon capture and storage (CCS) market is needed in order to commercialize CO 2 flooding technologies. CO 2 can be obtained from naturally-occurring accumulations in underground reservoirs, electrical and coal-fired generation plants, petrochemical facilities, and upstream oil and gas processing facilities. CO 2 is sequestered in EOR processes, in sour gas disposal processes, solvent recovery processes, and in coalbed methane (CBM) extraction. It is also disposed in depleted fields and aquifers. While CCS technologies are mature, project economics remain marginal. However, CCS in EOR is commercially feasible at current high oil prices. No transportation infrastructure is in place to transport sources of CO 2 in the high volumes needed to establish a market. While governments have created a favourable public policy environment for CCS, governments will need to address issues related to infrastructure, public perception of CCS, and stakeholder engagement with CCS projects. It was concluded that CCS and CO 2 flooding techniques have the capacity to reduce greenhouse gas (GHG) emissions while helping to sustain light oil production. tabs., figs

  16. Holiday CO2: Inference from the Salt Lake City data

    Science.gov (United States)

    Ryoo, J.; Fung, I. Y.; Ehleringer, J. R.; Stephens, B. B.

    2013-12-01

    A network of high-frequency CO2 sensors has been established in Salt Lake City (SLC), Utah (http://co2.utah.edu/), and the annual/monthly pattern of CO2 variability is consistent with a priori estimates of CO2 fluxes (McKain et al., 2012). Here we ask if short-term changes in anthropogenic sources can be detected, and present a case study of Thanksgiving holiday, when traffic and energy use patterns are expected to be different from that during the rest of the month. CO2 mole fraction is much higher during the Thanksgiving holidays than the other days in November 2008 for all 5 sites in SLC, and a similar pattern is found in other years. Taking into account that the wind speed is relatively low in downtown SLC compared to the other SLC sites, the downtown site is further investigated to minimize the meteorological influence on CO2. In order to understand the relative contributions to the high level of CO2 during the Thanksgiving holidays, we carried out a multiple linear regression (MLR) analysis of the rate of CO2 change against various sources. Mobile CO2 sources are assumed to be proportional to local traffic data and residential CO2 sources are assumed to depend exponentially on temperature. Vulcan data were used to specify the other anthropogenic sources (commercial, industrial, nonroad, electricity, aircraft, and cement). The MLR analysis shows that during the Thanksgiving holidays CO2 contributions from residential and commercial CO2 are larger than that during the rest of November, and mobile sources represent only a relatively small contribution. The study demonstrates the feasibility of detecting changes in urban source contributions using high-frequency measurements in combination with daily PBL height and local traffic volume data.

  17. Monitoring Exchange of CO2 - A KISS Workshop Report 2009

    Science.gov (United States)

    Miller, Charles; Wennberg, Paul

    2009-01-01

    The problem and context: Can top-down estimates of carbon dioxide (CO2) fluxes resolve the anthropogenic emissions of China, India, the United States, and the European Union with an accuracy of +/-10% or better?The workshop "Monitoring Exchange of Carbon Dioxide" was convened at the Keck Institute for Space Studies in Pasadena, California in February 2010 to address this question. The Workshop brought together an international, interdisciplinary group of 24 experts in carbon cycle science, remote sensing, emissions inventory estimation, and inverse modeling. The participants reviewed the potential of space-based and sub-orbital observational and modeling approaches to monitor anthropogenic CO2 emissions in the presence of much larger natural fluxes from the exchange of CO2 between the land, atmosphere, and ocean. This particular challenge was motivated in part by the NRC Report "Verifying Greenhouse Gas Emissions" [Pacala et al., 2010]. This workshop report includes several recommendations for improvements to observing strategies and modeling frameworks for optimal and cost-effective monitoring of carbon exchange

  18. The carbon fertilization effect over a century of anthropogenic CO2 emissions: higher intracellular CO2 and more drought resistance among invasive and native grass species contrasts with increased water use efficiency for woody plants in the US Southwest.

    Science.gov (United States)

    Drake, Brandon L; Hanson, David T; Lowrey, Timothy K; Sharp, Zachary D

    2017-02-01

    From 1890 to 2015, anthropogenic carbon dioxide emissions have increased atmospheric CO 2 concentrations from 270 to 400 mol mol -1 . The effect of increased carbon emissions on plant growth and reproduction has been the subject of study of free-air CO 2 enrichment (FACE) experiments. These experiments have found (i) an increase in internal CO 2 partial pressure (c i ) alongside acclimation of photosynthetic capacity, (ii) variable decreases in stomatal conductance, and (iii) that increases in yield do not increase commensurate with CO 2 concentrations. Our data set, which includes a 115-year-long selection of grasses collected in New Mexico since 1892, is consistent with an increased c i as a response to historical CO 2 increase in the atmosphere, with invasive species showing the largest increase. Comparison with Palmer Drought Sensitivity Index (PDSI) for New Mexico indicates a moderate correlation with Δ 13 C (r 2  = 0.32, P < 0.01) before 1950, with no correlation (r 2  = 0.00, P = 0.91) after 1950. These results indicate that increased c i may have conferred some drought resistance to these grasses through increased availability of CO 2 in the event of reduced stomatal conductance in response to short-term water shortage. Comparison with C 3 trees from arid environments (Pinus longaeva and Pinus edulis in the US Southwest) as well as from wetter environments (Bromus and Poa grasses in New Mexico) suggests differing responses based on environment; arid environments in New Mexico see increased intrinsic water use efficiency (WUE) in response to historic elevated CO 2 while wetter environments see increased c i . This study suggests that (i) the observed increases in c i in FACE experiments are consistent with historical CO 2 increases and (ii) the CO 2 increase influences plant sensitivity to water shortage, through either increased WUE or c i in arid and wet environments, respectively. © 2016 John Wiley & Sons Ltd.

  19. Investigation of the potential of coal combustion fly ash for mineral sequestration of CO2 by accelerated carbonation

    International Nuclear Information System (INIS)

    Ukwattage, N.L.; Ranjith, P.G.; Wang, S.H.

    2013-01-01

    Mineral carbonation of alkaline waste materials is being studied extensively for its potential as a way of reducing the increased level of CO 2 in the atmosphere. Carbonation converts CO 2 into minerals which are stable over geological time scales. This process occurs naturally but slowly, and needs to be accelerated to offset the present rate of emissions from power plants and other emission sources. The present study attempts to identify the potential of coal fly ash as a source for carbon storage (sequestration) through ex-situ accelerated mineral carbonation. In the study, two operational parameters that could affect the reaction process were tested to investigate their effect on mineralization. Coal fly ash was mixed with water to different water-to-solid ratios and samples were carbonated in a pressure vessel at different initial CO 2 pressures. Temperature was kept constant at 40 °C. According to the results, one ton of Hazelwood fly ash could sequester 7.66 kg of CO 2 . The pressure of CO 2 inside the vessel has an effect on the rate of CO 2 uptake and the water-to-solid ratio affects the weight gain after the carbonation of fly ash. The results confirm the possibility of the manipulation of process parameters in enhancing the carbonation reaction. - Highlights: ► Mineral sequestration CO 2 by of coal fly ash is a slow process under ambient conditions. ► It can be accelerated by manipulating the process parameters inside a reactor. ► Initial CO 2 pressure and water to solid mixing ratio inside the reactor are two of those operational parameters. ► According to the test results higher CO 2 initial pressure gives higher on rates of CO 2 sequestration. ► Water to fly ash mixing ratio effect on amount of CO 2 sequestered into fly ash

  20. Geological storage of CO2 : Mechanical and chemical effects on host and seal formations

    NARCIS (Netherlands)

    Hangx, Suzanne

    2009-01-01

    The socio-economic impact of global warming resulting from anthropogenic CO2 emissions has lead to much attention for carbon mitigation strategies in recent years. One of the most promising ways of disposing of CO2 is through Carbon Capture and Storage (CCS), entailing CO2 capture at source,

  1. An equivalence factor between CO2 avoided emissions and sequestration. Description and applications in forestry

    International Nuclear Information System (INIS)

    Costa, P.M.; Wilson, C.

    2000-01-01

    Concern about the issue of permanence and reversibility of the effects of carbon sequestration has led to the need to devise accounting methods that quantify the temporal value of storing carbon that has been actively sequestered or removed from the atmosphere, as compared to carbon stored as a result of activities taken to avoid emissions. This paper describes a method for accounting for the atmospheric effects of sequestration-based land-use projects in relation to the duration of carbon storage. Firstly, the time period over which sequestered carbon should be stored in order to counteract the radiative forcing effect of carbon emissions was calculated, based on the residence time and decay pattern of atmospheric CO2, its Absolute Global Warming Potential. This time period was called the equivalence time, and was calculated to be approximately 55 years. From this equivalence time, the effect of storage of 1 t CO2 for 1 year was derived, and found to be similar to preventing the effect of the emission of 0.0182 t CO2. Potential applications of this tonne.year figure, here called the equivalence factor, are then discussed in relation to the estimation of atmospheric benefits over time of sequestration-based land use projects. 15 refs

  2. Foamed Cement Interactions with CO2

    Energy Technology Data Exchange (ETDEWEB)

    Verba, Circe [National Energy Technology Lab. (NETL), Albany, OR (United States); Montross, Scott [National Energy Technology Lab. (NETL), Albany, OR (United States); Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Spaulding, Richard [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Dalton, Laura [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Crandall, Dustin [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Moore, Johnathan [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Glosser, Deborah [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Huerta, Nik [National Energy Technology Lab. (NETL), Albany, OR (United States); Kutchko, Barb [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2017-02-02

    Geologic carbon storage (GCS) is a potentially viable strategy to reduce greenhouse emissions. Understanding the risks to engineered and geologic structures associated with GCS is an important first step towards developing practices for safe and effective storage. The widespread utilization of foamed cement in wells may mean that carbon dioxide (CO2)/brine/foamed cement reactions may occur within these GCS sites. Characterizing the difference in alteration rates as well as the physical and mechanical impact of CO2/brine/foamed cement is an important preliminary step to ensuring offshore and onshore GCS is a prudent anthropogenic CO2 mitigation choice.

  3. The relationship between peak warming and cumulative CO2 emissions, and its use to quantify vulnerabilities in the carbon-climate-human system

    International Nuclear Information System (INIS)

    Raupach, Michael; Canadell, Josep G.; Ciais, Philippe; Friedlingstein, Pierre; Rayner, Peter J.; Trudinger, Catherine M.

    2011-01-01

    Interactions between the carbon cycle, climate and human societies are subject to several major vulnerabilities, broadly defined as factors contributing to the risk of harm from human-induced climate change. We assess five vulnerabilities: (1) effects of increasing CO 2 on the partition of anthropogenic carbon between atmospheric, land and ocean reservoirs; (2) effects of climate change (quantified by temperature) on CO 2 fluxes; (3) uncertainty in climate sensitivity; (4) non-CO 2 radiative forcing and (5) anthropogenic CO 2 emissions. Our analysis uses a physically based expression for Tp(Qp), the peak warming Tp associated with a cumulative anthropogenic CO 2 emission Qp to the time of peak warming. The approximations in this expression are evaluated using a non-linear box model of the carbon-climate system, forced with capped emissions trajectories described by an analytic form satisfying integral and smoothness constraints. The first four vulnerabilities appear as parameters that influence Tp(Qp), whereas the last appears through the independent variable. In terms of likely implications for Tp(Qp), the decreasing order of the first four vulnerabilities is: uncertainties in climate sensitivity, effects of non-CO 2 radiative forcing, effects of climate change on CO 2 fluxes and effects of increasing CO 2 on the partition of anthropogenic carbon. (authors)

  4. CO{sub 2} emission calculations and trends

    Energy Technology Data Exchange (ETDEWEB)

    Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [Alaska Univ., Fairbanks, AK (United States). Inst. of Northern Engineering

    1995-12-31

    Evidence that the atmospheric CO{sub 2} concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO{sub 2} is believed to result from CO{sub 2} releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO{sub 2} concentration and its potential impact on climate. One of the convention`s stated objectives was the ``stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. `` Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO{sub 2} as a greenhouse gas, the relationship between CO{sub 2} emissions and increases in atmospheric CO{sub 2} levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO{sub 2} emissions records be compiled, maintained, updated, and documented.

  5. CO{sub 2} Emission Calculations and Trends

    Science.gov (United States)

    Boden, T. A.; Marland, G.; Andres, R. J.

    1995-06-01

    Evidence that the atmospheric CO{sub 2}concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO{sub 2} is believed to result from CO{sub 2} releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO{sub 2} concentration and its potential impact on climate. One of the convention`s stated objectives was the stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO{sub 2} as a greenhouse gas, the relationship between CO{sub 2} emissions and increases in atmospheric CO{sub 2} levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO{sub 2} emissions records be compiled, maintained, updated, and documented.

  6. Global Anthropogenic Carbon Dioxide Emission in 2005: Environmental Kuznets Curve Hypothesis and Implications for Policy

    Directory of Open Access Journals (Sweden)

    T. S. Krishnan

    2016-05-01

    Full Text Available Environmental Kuznets Curve (EKC hypothesis provides support for public policies that emphasize economic growth at the expense of environmental degradation. This hypothesis postulates an inverted U-shaped relationship between economic growth and environmental degradation with plausible explanations. We contribute to the discussion on EKC hypothesis by focusing on anthropogenic carbon dioxide (CO2 emission (a greenhouse gas during an extreme year. In the year 2005, concentration of anthropogenic CO2 became higher than the natural range observed over the last 650,000 years. Using econometric modeling of data from 122 countries for the year 2005, we study the key question: Does EKC hypothesis hold for anthropogenic CO2 emission after controlling for energy consumption and environmental governance? We do not find statistical support for EKC hypothesis. But, we find that improvements in environmental governance reduces CO2 emission. This suggests support for environmental policies that specifically promote CO2 emission reduction and does not emphasize economic growth at the expense of environmental degradation.INTERNATIONAL JOURNAL OF ENVIRONMENTVolume-5, Issue-2, March-May 2016, Page: 48-60

  7. Anthropogenic and natural CO2 exchange through the Strait of Gibraltar

    Directory of Open Access Journals (Sweden)

    J. Ruíz

    2009-04-01

    Full Text Available The exchange of both anthropogenic and natural inorganic carbon between the Atlantic Ocean and the Mediterranean Sea through Strait of Gibraltar was studied for a period of two years under the frame of the CARBOOCEAN project. A comprehensive sampling program was conducted, which was design to collect samples at eight fixed stations located in the Strait in successive cruises periodically distributed through the year in order to ensure a good spatial and temporal coverage. As a result of this monitoring, a time series namely GIFT (GIbraltar Fixed Time series has been established, allowing the generation of an extensive data set of the carbon system parameters in the area. Data acquired during the development of nine campaigns were analyzed in this work. Total inorganic carbon concentration (CT was calculated from alkalinity-pHT pairs and appropriate thermodynamic relationships, with the concentration of anthropogenic carbon (CANT being also computed using two methods, the ΔC* and the TrOCA approach. Applying a two-layer model of water mass exchange through the Strait and using a value of −0.85 Sv for the average transport of the outflowing Mediterranean water recorded in situ during the considered period, a net export of inorganic carbon from the Mediterranean Sea to the Atlantic was obtained, which amounted to 25±0.6 Tg C yr−1. A net alkalinity output of 16±0.6 Tg C yr−1 was also observed to occur through the Strait. In contrast, the Atlantic water was found to contain a higher concentration of anthropogenic carbon than the Mediterranean water, resulting in a net flux of CANT towards the Mediterranean basin of 4.20±0.04 Tg C yr−1 by using the ΔC* method, which constituted the most adequate approach for this environment. A carbon balance in the Mediterranean was assessed and fluxes through the Strait are discussed in relation to the highly diverse estimates available in the literature for the area and the different approaches

  8. Fossil Fuel (CO2) Emission Verification Capability07-ERD-064Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Guilderson, T. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cameron-Smith, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lucas, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-04-26

    This work focused exclusively on designing a system for California as a test-bed. Fossil fuel CO2 emissions account for ~96% of the total California anthropogenic CO2 emissions (CEC GHG Inventory, 2006).

  9. Anthropogenic CO2 in the oceans estimated using transit time distributions

    International Nuclear Information System (INIS)

    Waugh, D.W.; McNeil, B.I.

    2006-01-01

    The distribution of anthropogenic carbon (Cant) in the oceans is estimated using the transit time distribution (TTD) method applied to global measurements of chlorofluorocarbon-12 (CFC12). Unlike most other inference methods, the TTD method does not assume a single ventilation time and avoids the large uncertainty incurred by attempts to correct for the large natural carbon background in dissolved inorganic carbon measurements. The highest concentrations and deepest penetration of anthropogenic carbon are found in the North Atlantic and Southern Oceans. The estimated total inventory in 1994 is 134 Pg-C. To evaluate uncertainties the TTD method is applied to output from an ocean general circulation model (OGCM) and compared the results to the directly simulated Cant. Outside of the Southern Ocean the predicted Cant closely matches the directly simulated distribution, but in the Southern Ocean the TTD concentrations are biased high due to the assumption of 'constant disequilibrium'. The net result is a TTD overestimate of the global inventory by about 20%. Accounting for this bias and other centred uncertainties, an inventory range of 94-121 Pg-C is obtained. This agrees with the inventory of Sabine et al., who applied the DeltaC* method to the same data. There are, however, significant differences in the spatial distributions: The TTD estimates are smaller than DeltaC* in the upper ocean and larger at depth, consistent with biases expected in DeltaC* given its assumption of a single parcel ventilation time

  10. Natural CO2 Analogs for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Scott H. Stevens; B. Scott Tye

    2005-07-31

    The report summarizes research conducted at three naturally occurring geologic CO{sub 2} fields in the US. The fields are natural analogs useful for the design of engineered long-term storage of anthropogenic CO{sub 2} in geologic formations. Geologic, engineering, and operational databases were developed for McElmo Dome in Colorado; St. Johns Dome in Arizona and New Mexico; and Jackson Dome in Mississippi. The three study sites stored a total of 2.4 billion t (46 Tcf) of CO{sub 2} equivalent to 1.5 years of power plant emissions in the US and comparable in size with the largest proposed sequestration projects. The three CO{sub 2} fields offer a scientifically useful range of contrasting geologic settings (carbonate vs. sandstone reservoir; supercritical vs. free gas state; normally pressured vs. overpressured), as well as different stages of commercial development (mostly undeveloped to mature). The current study relied mainly on existing data provided by the CO{sub 2} field operator partners, augmented with new geochemical data. Additional study at these unique natural CO{sub 2} accumulations could further help guide the development of safe and cost-effective design and operation methods for engineered CO{sub 2} storage sites.

  11. Impact of thermal processes on CO2 injectivity into a coal seam

    International Nuclear Information System (INIS)

    Qu, H Y; Liu, J S; Pan, Z J; Connell, L

    2010-01-01

    The objective of this study is to investigate how thermal gradients, caused by CO2 injection, expansion and adsorption, affect the permeability and adsorption capacity of coal during CO2 sequestration. A new permeability model is developed in which the concept of elastic modulus reduction ratio is introduced to partition the effective strain between coal matrix and fracture. This model is implemented into a fully coupled mechanical deformation, gas flow and heat transport finite element simulator. To predict the amount of CO2 sequested, the extended Langmuir sorption model is used, with parameters values taken from the literature. The coupled heat and gas flow equations, are solved in COMSOL using the finite element method. The simulation results for a constant volume reservoir demostrate that thermal strain acts to significantly reduce both CO2 injectivity and adsorption capacity. These impacts need to be considered in the calculation of the optimum injection rate and the total sequestration capacity.

  12. Environmental impacts of ocean disposal of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Adams, E.; Herzog, H.; Auerbach, D. [and others

    1995-11-01

    One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2} Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. The term disposal is really a misnomer because the atmosphere and ocean eventually equilibrate on a timescale of 1000 years regardless of where the CO{sub 2} is originally discharged. However, peak atmospheric CO{sub 2} concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO{sub 2} injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. Our project has been examining these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. The end-product will be a report issued during the summer of 1996 consisting of two volumes an executive summary (Vol I) and a series of six, individually authored topical reports (Vol II). A workshop with invited participants from the U.S. and abroad will review the draft findings in January, 1996.

  13. Geologic CO2 Sequestration: Predicting and Confirming Performance in Oil Reservoirs and Saline Aquifers

    Science.gov (United States)

    Johnson, J. W.; Nitao, J. J.; Newmark, R. L.; Kirkendall, B. A.; Nimz, G. J.; Knauss, K. G.; Ziagos, J. P.

    2002-05-01

    Reducing anthropogenic CO2 emissions ranks high among the grand scientific challenges of this century. In the near-term, significant reductions can only be achieved through innovative sequestration strategies that prevent atmospheric release of large-scale CO2 waste streams. Among such strategies, injection into confined geologic formations represents arguably the most promising alternative; and among potential geologic storage sites, oil reservoirs and saline aquifers represent the most attractive targets. Oil reservoirs offer a unique "win-win" approach because CO2 flooding is an effective technique of enhanced oil recovery (EOR), while saline aquifers offer immense storage capacity and widespread distribution. Although CO2-flood EOR has been widely used in the Permian Basin and elsewhere since the 1980s, the oil industry has just recently become concerned with the significant fraction of injected CO2 that eludes recycling and is therefore sequestered. This "lost" CO2 now has potential economic value in the growing emissions credit market; hence, the industry's emerging interest in recasting CO2 floods as co-optimized EOR/sequestration projects. The world's first saline aquifer storage project was also catalyzed in part by economics: Norway's newly imposed atmospheric emissions tax, which spurred development of Statoil's unique North Sea Sleipner facility in 1996. Successful implementation of geologic sequestration projects hinges on development of advanced predictive models and a diverse set of remote sensing, in situ sampling, and experimental techniques. The models are needed to design and forecast long-term sequestration performance; the monitoring techniques are required to confirm and refine model predictions and to ensure compliance with environmental regulations. We have developed a unique reactive transport modeling capability for predicting sequestration performance in saline aquifers, and used it to simulate CO2 injection at Sleipner; we are now

  14. Use of Chlorella vulgaris for CO{sub 2} mitigation in a photobioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Keffer, J.E.; Kleinheinz, G.T.

    2002-07-01

    One of the most understudied methods for CO{sub 2} mitigation is the use of biological processes in engineered systems such as photobioreactors. This research project describes the effectiveness of Chlorella vulgaris, used in a photobioreactor with a very short gas residence time, in sequestering CO{sub 2} from an elevated CO{sub 2} airstream. We evaluated a flow-through photobioreactor's operational parameters, as well as the growth characteristics of the C. vulgaris inoculum when exposed to an airstream with over 1850 ppm CO{sub 2}. When using dry weight, chlorophyll, and direct microscopic measurements, it was apparent that the photobioreactor's algal inoculum responded well to the elevated CO{sub 2} levels and there was no build-up of CO{sub 2} or carbonic acid in the photobioreactor. The photobioreactor, with a gas residence time of approximately 2 s, was able to remove up to 74% of the CO{sub 2} in the airstream to ambient levels. This corresponded to a 63.9-g/m(3)/h bulk removal for the experimental photobioreactor. Consequently, this photobioreactor shows that biological processes may have some promise for treating point source emissions of CO{sub 2} and deserve further study.

  15. Influence of methane in CO2 transport and storage for CCS technology.

    Science.gov (United States)

    Blanco, Sofía T; Rivas, Clara; Fernández, Javier; Artal, Manuela; Velasco, Inmaculada

    2012-12-04

    CO(2) Capture and Storage (CCS) is a good strategy to mitigate levels of atmospheric greenhouse gases. The type and quantity of impurities influence the properties and behavior of the anthropogenic CO(2), and so must be considered in the design and operation of CCS technology facilities. Their study is necessary for CO(2) transport and storage, and to develop theoretical models for specific engineering applications to CCS technology. In this work we determined the influence of CH(4), an important impurity of anthropogenic CO(2), within different steps of CCS technology: transport, injection, and geological storage. For this, we obtained new pressure-density-temperature (PρT) and vapor-liquid equilibrium (VLE) experimental data for six CO(2) + CH(4) mixtures at compositions which represent emissions from the main sources in the European Union and United States. The P and T ranges studied are within those estimated for CO(2) pipelines and geological storage sites. From these data we evaluated the minimal pressures for transport, regarding the density and pipeline's capacity requirements, and values for the solubility parameter of the mixtures, a factor which governs the solubility of substances present in the reservoir before injection. We concluded that the presence of CH(4) reduces the storage capacity and increases the buoyancy of the CO(2) plume, which diminishes the efficiency of solubility and residual trapping of CO(2), and reduces the injectivity into geological formations.

  16. Northern California CO2 Reduction Project

    Energy Technology Data Exchange (ETDEWEB)

    Hymes, Edward [C6 Resources LLC, Houston, TX (United States)

    2010-06-16

    C6 Resources LLC, a wholly owned subsidiary of Shell Oil Company, worked with the US Department of Energy (DOE) under a Cooperative Agreement to develop the Northern California CO2 Reduction Project. The objective of the Project is to demonstrate the viability of using Carbon Capture and Sequestration (CCS) to reduce existing greenhouse gas emissions from industrial sources on a large-scale. The Project will capture more than 700,000 metric tonnes of CO2 per year, which is currently being vented to the atmosphere from the Shell Martinez Refinery in Contra Costa County. The CO2 will be compressed and dehydrated at the refinery and then transported via pipeline to a sequestration site in a rural area in neighboring Solano County. The CO2 will be sequestered into a deep saline formation (more than two miles underground) and will be monitored to assure secure, long-term containment. The pipeline will be designed to carry as much as 1,400,000 metric tonnes of CO2 per year, so additional capacity will be available to accommodate CO2 captured from other industrial sources. The Project is expected to begin operation in 2015. The Project has two distinct phases. The overall objective of Phase 1 was to develop a fully definitive design basis for the Project. The Cooperative Agreement with the DOE provided cost sharing for Phase 1 and the opportunity to apply for additional DOE cost sharing for Phase 2, comprising the design, construction and operation of the Project. Phase 1 has been completed. DOE co-funding is provided by the American Recovery and Reinvestment Act (ARRA) of 2009. As prescribed by ARRA, the Project will stimulate the local economy by creating manufacturing, transportation, construction, operations, and management jobs while addressing the need to reduce greenhouse gas emissions at an accelerated pace. The Project, which will also assist in meeting the CO2 reduction requirements set

  17. Seasonal variability of soil CO2 flux and its carbon isotope composition in Krakow urban area, Southern Poland.

    Science.gov (United States)

    Jasek, Alina; Zimnoch, Miroslaw; Gorczyca, Zbigniew; Smula, Ewa; Rozanski, Kazimierz

    2014-06-01

    As urban atmosphere is depleted of (13)CO2, its imprint should be detectable in the local vegetation and therefore in its CO2 respiratory emissions. This work was aimed at characterising strength and isotope signature of CO2 fluxes from soil in urban areas with varying distances from anthropogenic CO2 emissions. The soil CO2 flux and its δ(13)C isotope signature were measured using a chamber method on a monthly basis from July 2009 to May 2012 within the metropolitan area of Krakow, Southern Poland, at two locations representing different levels of anthropogenic influence: a lawn adjacent to a busy street (A) and an urban meadow (B). The small-scale spatial variability of the soil CO2 flux was also investigated at site B. Site B revealed significantly higher summer CO2 fluxes (by approximately 46 %) than site A, but no significant differences were found between their δ(13)CO2 signatures.

  18. Scientific basis to assess the potential for geological sequestration of CO{sub 2} in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, L. W.; Chevalier, G. [Institut fuer Geologie, Universitaet Bern, Bern (Switzerland); Leu, W. [Geoform AG, Geologische Beratungen und Studien, Villeneuve (former Minusio) (Switzerland)

    2010-07-01

    Possibilities to sequester anthropogenic CO{sub 2} in deep geological formations are being investigated worldwide, but the potential within Switzerland has not yet been evaluated. This study presents a first-order appraisal based solely on geological criteria collated from the literature. The Swiss Molasse Basin (SMB) and the adjacent Folded Jura are the only realms of the country where CO{sub 2} could conceivably be stored in saline aquifers. Evaluation of geological criteria at the basin-wide scale shows that the SMB-Jura has moderate potential (score of 0.6 on a scale from 0 to 1) when compared to basins elsewhere. At the intrabasinal scale, inspection of the stratigraphy reveals four regional candidate aquifers that are sealed by suitable caprocks: top Basement plus basal Mesozoic sandstones, all sealed by the Anhydrite Group; Upper Muschelkalk sealed by the Gipskeuper; Hauptrogenstein sealed by the Effinger Member, and Upper Malm plus Lower Cretaceous sealed by the Lower Freshwater Molasse. Nine geological criteria are defined to evaluate the storage potential of these and other smaller-scale candidates. A numerical scoring and weighting scheme allows the criteria to be assessed simultaneously, permitting the storage potential to be depicted using the 0-1 scale in contoured maps. Approximately 5000 km{sup 2} of the central SMB exhibits potentials between 0.6 and 0.96. The Fribourg-Olten-Lucerne area is the most favoured owing to the presence of several sealed aquifers within the preferred 800-2500 m depth interval, and to its low seismicity, low geothermal gradient, low fault density, and long groundwater residence times. Smaller areas with good potential lie between Zurich and St. Gall. In contrast, western Switzerland, the Jura and the southern SMB have markedly poorer potential. Considering only the portions of the aquifers with potential above 0.6, the theoretical, effective storage capacity of the basin is estimated to be 2680 million tonnes of CO{sub 2

  19. Assessing the potential long-term increase of oceanic fossil fuel CO2 uptake due to CO2-calcification feedback

    Directory of Open Access Journals (Sweden)

    T. M. Lenton

    2007-07-01

    Full Text Available Plankton manipulation experiments exhibit a wide range of sensitivities of biogenic calcification to simulated anthropogenic acidification of the ocean, with the "lab rat" of planktic calcifiers, Emiliania huxleyi apparently not representative of calcification generally. We assess the implications of this observational uncertainty by creating an ensemble of realizations of an Earth system model that encapsulates a comparable range of uncertainty in calcification response to ocean acidification. We predict that a substantial reduction in marine carbonate production is possible in the future, with enhanced ocean CO2 sequestration across the model ensemble driving a 4–13% reduction in the year 3000 atmospheric fossil fuel CO2 burden. Concurrent changes in ocean circulation and surface temperatures in the model contribute about one third to the increase in CO2 uptake. We find that uncertainty in the predicted strength of CO2-calcification feedback seems to be dominated by the assumption as to which species of calcifier contribute most to carbonate production in the open ocean.

  20. CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage.

    Science.gov (United States)

    Iglauer, Stefan

    2017-05-16

    Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO 2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO 2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO 2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO 2 cannot percolate), (2) residual trapping (where the CO 2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO 2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO 2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO 2 through the rock are strongly influenced by the CO 2 -brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO 2 -wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO 2 -wet. Note that CO 2 -wet surfaces dramatically reduce CO 2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO 2 -wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO 2 -wettability and the

  1. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016: a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions

    Directory of Open Access Journals (Sweden)

    T. Oda

    2018-01-01

    Full Text Available The Open-source Data Inventory for Anthropogenic CO2 (ODIAC is a global high-spatial-resolution gridded emissions data product that distributes carbon dioxide (CO2 emissions from fossil fuel combustion. The emissions spatial distributions are estimated at a 1  ×  1 km spatial resolution over land using power plant profiles (emissions intensity and geographical location and satellite-observed nighttime lights. This paper describes the year 2016 version of the ODIAC emissions data product (ODIAC2016 and presents analyses that help guide data users, especially for atmospheric CO2 tracer transport simulations and flux inversion analysis. Since the original publication in 2011, we have made modifications to our emissions modeling framework in order to deliver a comprehensive global gridded emissions data product. Major changes from the 2011 publication are (1 the use of emissions estimates made by the Carbon Dioxide Information Analysis Center (CDIAC at the Oak Ridge National Laboratory (ORNL by fuel type (solid, liquid, gas, cement manufacturing, gas flaring, and international aviation and marine bunkers; (2 the use of multiple spatial emissions proxies by fuel type such as (a nighttime light data specific to gas flaring and (b ship/aircraft fleet tracks; and (3 the inclusion of emissions temporal variations. Using global fuel consumption data, we extrapolated the CDIAC emissions estimates for the recent years and produced the ODIAC2016 emissions data product that covers 2000–2015. Our emissions data can be viewed as an extended version of CDIAC gridded emissions data product, which should allow data users to impose global fossil fuel emissions in a more comprehensive manner than the original CDIAC product. Our new emissions modeling framework allows us to produce future versions of the ODIAC emissions data product with a timely update. Such capability has become more significant given the CDIAC/ORNL's shutdown. The ODIAC data

  2. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions

    Science.gov (United States)

    Oda, Tomohiro; Maksyutov, Shamil; Andres, Robert J.

    2018-01-01

    The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) is a global high-spatial-resolution gridded emissions data product that distributes carbon dioxide (CO2) emissions from fossil fuel combustion. The emissions spatial distributions are estimated at a 1 × 1 km spatial resolution over land using power plant profiles (emissions intensity and geographical location) and satellite-observed nighttime lights. This paper describes the year 2016 version of the ODIAC emissions data product (ODIAC2016) and presents analyses that help guide data users, especially for atmospheric CO2 tracer transport simulations and flux inversion analysis. Since the original publication in 2011, we have made modifications to our emissions modeling framework in order to deliver a comprehensive global gridded emissions data product. Major changes from the 2011 publication are (1) the use of emissions estimates made by the Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory (ORNL) by fuel type (solid, liquid, gas, cement manufacturing, gas flaring, and international aviation and marine bunkers); (2) the use of multiple spatial emissions proxies by fuel type such as (a) nighttime light data specific to gas flaring and (b) ship/aircraft fleet tracks; and (3) the inclusion of emissions temporal variations. Using global fuel consumption data, we extrapolated the CDIAC emissions estimates for the recent years and produced the ODIAC2016 emissions data product that covers 2000-2015. Our emissions data can be viewed as an extended version of CDIAC gridded emissions data product, which should allow data users to impose global fossil fuel emissions in a more comprehensive manner than the original CDIAC product. Our new emissions modeling framework allows us to produce future versions of the ODIAC emissions data product with a timely update. Such capability has become more significant given the CDIAC/ORNL's shutdown. The ODIAC data product could play an important

  3. Carbon dioxide (CO2) sequestration in deep saline aquifers and formations: Chapter 3

    Science.gov (United States)

    Rosenbauer, Robert J.; Thomas, Burt

    2010-01-01

    Carbon dioxide (CO2) capture and sequestration in geologic media is one among many emerging strategies to reduce atmospheric emissions of anthropogenic CO2. This chapter looks at the potential of deep saline aquifers – based on their capacity and close proximity to large point sources of CO2 – as repositories for the geologic sequestration of CO2. The petrochemical characteristics which impact on the suitability of saline aquifers for CO2 sequestration and the role of coupled geochemical transport models and numerical tools in evaluating site feasibility are also examined. The full-scale commercial CO2 sequestration project at Sleipner is described together with ongoing pilot and demonstration projects.

  4. Ex-situ and in-situ mineral carbonation as a means to sequester carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Gerdemann, Stephen J.; Dahlin, David C.; O' Connor, William K.; Penner, Larry R.; Rush, G.E.

    2004-01-01

    The U. S. Department of Energy's Albany Research Center is investigating mineral carbonation as a method of sequestering CO2 from coal-fired-power plants. Magnesium-silicate minerals such as serpentine [Mg3Si2O5(OH)4] and olivine (Mg2SiO4) react with CO2 to produce magnesite (MgCO3), and the calcium-silicate mineral, wollastonite (CaSiO3), reacts to form calcite (CaCO3). It is possible to carry out these reactions either ex situ (above ground in a traditional chemical processing plant) or in situ (storage underground and subsequent reaction with the host rock to trap CO2 as carbonate minerals). For ex situ mineral carbonation to be economically attractive, the reaction must proceed quickly to near completion. The reaction rate is accelerated by raising the activity of CO2 in solution, heat (but not too much), reducing the particle size, high-intensity grinding to disrupt the crystal structure, and, in the case of serpentine, heat-treatment to remove the chemically bound water. All of these carry energy/economic penalties. An economic study illustrates the impact of mineral availability and process parameters on the cost of ex situ carbon sequestration. In situ carbonation offers economic advantages over ex situ processes, because no chemical plant is required. Knowledge gained from the ex situ work was applied to long-term experiments designed to simulate in situ CO2 storage conditions. The Columbia River Basalt Group (CRBG), a multi-layered basaltic lava formation, has potentially favorable mineralogy (up to 25% combined concentration of Ca, Fe2+, and Mg cations) for storage of CO2. However, more information about the interaction of CO2 with aquifers and the host rock is needed. Core samples from the CRBG, as well as samples of olivine, serpentine, and sandstone, were reacted in an autoclave for up to 2000 hours at elevated temperatures and pressures. Changes in core porosity, secondary mineralizations, and both solution and solid chemistry were measured.

  5. The importance of crop growth modeling to interpret the Δ14CO2 signature of annual plants

    NARCIS (Netherlands)

    Bozhinova, D.; Combe, M.; Palstra, S. W. L.; Meijer, H. A. J.; Krol, M. C.; Peters, W.

    The C-14/C abundance in CO2((CO2)-C-14) promises to provide useful constraints on regional fossil fuel emissions and atmospheric transport through the large gradients introduced by anthropogenic activity. The currently sparse atmospheric (CO2)-C-14 monitoring network can potentially be augmented by

  6. Geological Storage of CO2. Site Selection Criteria; Almacenamiento Geologico de CO2. Criterios de Seleccion de Emplazamientos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C; Martinez, R; Recreo, F; Prado, P; Campos, R; Pelayo, M; Losa, A de la; Hurtado, A; Lomba, L; Perez del Villar, L; Ortiz, G; Sastre, J

    2006-07-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmineable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 ref.

  7. Multiphase, multicomponent simulations and experiments of reactive flow, relevant for combining geologic CO2 sequestration with geothermal energy capture

    Science.gov (United States)

    Saar, Martin O.

    2011-11-01

    Understanding the fluid dynamics of supercritical carbon dioxide (CO2) in brine- filled porous media is important for predictions of CO2 flow and brine displacement during geologic CO2 sequestration and during geothermal energy capture using sequestered CO2 as the subsurface heat extraction fluid. We investigate multiphase fluid flow in porous media employing particle image velocimetry experiments and lattice-Boltzmann fluid flow simulations at the pore scale. In particular, we are interested in the motion of a drop (representing a CO2 bubble) through an orifice in a plate, representing a simplified porous medium. In addition, we study single-phase/multicomponent reactive transport experimentally by injecting water with dissolved CO2 into rocks/sediments typically considered for CO2 sequestration to investigate how resultant fluid-mineral reactions modify permeability fields. Finally, we investigate numerically subsurface CO2 and heat transport at the geologic formation scale.

  8. MR imaging findings of a sequestered disc in the lumbar spine: a comparison with an extruded disc

    International Nuclear Information System (INIS)

    Sim, Su Youn; Park, Ji Seon; Ryu, Kyung Nam; Jin, Wook

    2007-01-01

    To compare the MR findings of a sequestered disc with an extruded disc. MR images of 28 patients with a sequestered disc and 18 patients with an extruded disc were retrospectively reviewed. Patients with sequestered discs were divided into two groups whether definite separation from the parent disc was or was not seen. In the latter group (definite separation not seen) and the extruded disc group of patients, the signal intensities of the herniated discs were compared with the signal intensities of the parent discs and were evaluated on T1-and T2-weighted images. We also assessed the presence of a notch within the herniated disc. In the sequestered disc group of patients (28 discs), only 5 discs (18%) showed obvious separation from the parent disc. Among the remaining 23 discs with indefinite separation, the notch was visible in 14 discs (61%) and 9 discs (39%) had no notch. In the extruded disc group (18 discs), the notch was visible in 2 (11%) discs and the difference between the two groups was statistically significant (ρ 0.0002). The signal intensities of the herniated discs on T1-weighted images were isointense in both the sequestered and extruded discs. The difference of incidence of high signal intensities on T2-weighted images was not statistically significant (ρ = 0.125). It is necessary to consider the possibility of the presence of a sequestered disc when a herniated disc material shows a notch

  9. CO2 fluxes from a tropical neighborhood: sources and sinks

    Science.gov (United States)

    Velasco, E.; Roth, M.; Tan, S.; Quak, M.; Britter, R.; Norford, L.

    2011-12-01

    Cities are the main contributors to the CO2 rise in the atmosphere. The CO2 released from the various emission sources is typically quantified by a bottom-up aggregation process that accounts for emission factors and fossil fuel consumption data. This approach does not consider the heterogeneity and variability of the urban emission sources, and error propagation can result in large uncertainties. In this context, direct measurements of CO2 fluxes that include all major and minor anthropogenic and natural sources and sinks from a specific district can be used to evaluate emission inventories. This study reports and compares CO2 fluxes measured directly using the eddy covariance method with emissions estimated by emissions factors and activity data for a residential neighborhood of Singapore, a highly populated and urbanized tropical city. The flux measurements were conducted during one year. No seasonal variability was found as a consequence of the constant climate conditions of tropical places; but a clear diurnal pattern with morning and late afternoon peaks in phase with the rush-hour traffic was observed. The magnitude of the fluxes throughout daylight hours is modulated by the urban vegetation, which is abundant in terms of biomass but not of land-cover (15%). Even though the carbon uptake by vegetation is significant, it does not exceed the anthropogenic emissions and the monitored district is a net CO2 source of 20.3 ton km-2 day-1 on average. The carbon uptake by vegetation is investigated as the difference between the estimated emissions and the measured fluxes during daytime.

  10. The importance of crop growth modeling to interpret the ¿14CO2 signature of annual plants

    NARCIS (Netherlands)

    Bozhinova, D.N.; Combe, M.; Palstra, S.W.L.; Meijer, H.A.J.; Krol, M.C.; Peters, W.

    2013-01-01

    [1] The 14C/C abundance in CO2(¿14CO2) promises to provide useful constraints on regional fossil fuel emissions and atmospheric transport through the large gradients introduced by anthropogenic activity. The currently sparse atmospheric ¿14CO2 monitoring network can potentially be augmented by using

  11. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi model linear feedback analysis

    International Nuclear Information System (INIS)

    Roy, Tilla; Bopp, Laurent; Gehlen, Marion; Cadule, Patricia; Schneider, Birgit; Frolicher, Thomas L.; Segschneider, Joachim; Tjiputra, Jerry; Heinze, Christoph; Joos, Fortunat

    2011-01-01

    The increase in atmospheric CO 2 over this century depends on the evolution of the oceanic air-sea CO 2 uptake, which will be driven by the combined response to rising atmospheric CO 2 itself and climate change. Here, the future oceanic CO 2 uptake is simulated using an ensemble of coupled climate-carbon cycle models. The models are driven by CO 2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010-2100) oceanic CO 2 uptake into a CO 2 -induced component, due to rising atmospheric CO 2 concentrations, and a climate-induced component, due to global warming. The models capture the observation based magnitude and distribution of anthropogenic CO 2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO 2 uptake in the sub polar Southern Ocean and the equatorial regions, owing to decreased CO 2 solubility; and reduced CO 2 uptake in the mid-latitudes, owing to decreased CO 2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extra-tropics, to large freshwater fluxes in the extra-tropical North Atlantic Ocean, and to small changes in the CO 2 solubility in the equatorial regions. In key anthropogenic CO 2 uptake regions, the climate-induced component offsets the CO 2 - induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extra-tropics and 25% in the southern extra-tropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO 2 uptake may be difficult without monitoring additional tracers, such as oxygen. (authors)

  12. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi model linear feedback analysis

    International Nuclear Information System (INIS)

    Roy, Tilla; Bopp, Laurent; Gehlen, Marion; Cadule, Patricia

    2011-01-01

    The increase in atmospheric CO 2 over this century depends on the evolution of the oceanic air-sea CO 2 uptake, which will be driven by the combined response to rising atmospheric CO 2 itself and climate change. Here, the future oceanic CO 2 uptake is simulated using an ensemble of coupled climate-carbon cycle models. The models are driven by CO 2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010-2100) oceanic CO 2 uptake into a CO 2 -induced component, due to rising atmospheric CO 2 concentrations, and a climate-induced component, due to global warming. The models capture the observation based magnitude and distribution of anthropogenic CO 2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO 2 uptake in the sub-polar Southern Ocean and the equatorial regions, owing to decreased CO 2 solubility; and reduced CO 2 uptake in the mid latitudes, owing to decreased CO 2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extra tropics, to large freshwater fluxes in the extra tropical North Atlantic Ocean, and to small changes in the CO 2 solubility in the equatorial regions. In key anthropogenic CO 2 uptake regions, the climate-induced component offsets the CO 2 - induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extra tropics and 25% in the southern extra tropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO 2 uptake may be difficult without monitoring additional tracers, such as oxygen. (authors)

  13. Multiscale observations of CO2, 13CO2, and pollutants at Four Corners for emission verification and attribution

    Science.gov (United States)

    Lindenmaier, Rodica; Dubey, Manvendra K.; Henderson, Bradley G.; Butterfield, Zachary T.; Herman, Jay R.; Rahn, Thom; Lee, Sang-Hyun

    2014-01-01

    There is a pressing need to verify air pollutant and greenhouse gas emissions from anthropogenic fossil energy sources to enforce current and future regulations. We demonstrate the feasibility of using simultaneous remote sensing observations of column abundances of CO2, CO, and NO2 to inform and verify emission inventories. We report, to our knowledge, the first ever simultaneous column enhancements in CO2 (3–10 ppm) and NO2 (1–3 Dobson Units), and evidence of δ13CO2 depletion in an urban region with two large coal-fired power plants with distinct scrubbing technologies that have resulted in ∆NOx/∆CO2 emission ratios that differ by a factor of two. Ground-based total atmospheric column trace gas abundances change synchronously and correlate well with simultaneous in situ point measurements during plume interceptions. Emission ratios of ∆NOx/∆CO2 and ∆SO2/∆CO2 derived from in situ atmospheric observations agree with those reported by in-stack monitors. Forward simulations using in-stack emissions agree with remote column CO2 and NO2 plume observations after fine scale adjustments. Both observed and simulated column ∆NO2/∆CO2 ratios indicate that a large fraction (70–75%) of the region is polluted. We demonstrate that the column emission ratios of ∆NO2/∆CO2 can resolve changes from day-to-day variation in sources with distinct emission factors (clean and dirty power plants, urban, and fires). We apportion these sources by using NO2, SO2, and CO as signatures. Our high-frequency remote sensing observations of CO2 and coemitted pollutants offer promise for the verification of power plant emission factors and abatement technologies from ground and space. PMID:24843169

  14. Simulation of anthropogenic CO2 uptake in the CCSM3.1 ocean circulation-biogeochemical model: comparison with data-based estimates

    Directory of Open Access Journals (Sweden)

    S. Khatiwala

    2012-04-01

    Full Text Available The global ocean has taken up a large fraction of the CO2 released by human activities since the industrial revolution. Quantifying the oceanic anthropogenic carbon (Cant inventory and its variability is important for predicting the future global carbon cycle. The detailed comparison of data-based and model-based estimates is essential for the validation and continued improvement of our prediction capabilities. So far, three global estimates of oceanic Cant inventory that are "data-based" and independent of global ocean circulation models have been produced: one based on the Δ C* method, and two that are based on constraining surface-to-interior transport of tracers, the TTD method and a maximum entropy inversion method (GF. The GF method, in particular, is capable of reconstructing the history of Cant inventory through the industrial era. In the present study we use forward model simulations of the Community Climate System Model (CCSM3.1 to estimate the Cant inventory and compare the results with the data-based estimates. We also use the simulations to test several assumptions of the GF method, including the assumption of constant climate and circulation, which is common to all the data-based estimates. Though the integrated estimates of global Cant inventories are consistent with each other, the regional estimates show discrepancies up to 50 %. The CCSM3 model underestimates the total Cant inventory, in part due to weak mixing and ventilation in the North Atlantic and Southern Ocean. Analyses of different simulation results suggest that key assumptions about ocean circulation and air-sea disequilibrium in the GF method are generally valid on the global scale, but may introduce errors in Cant estimates on regional scales. The GF method should also be used with caution when predicting future oceanic anthropogenic carbon uptake.

  15. Development of a Method for Measuring Carbon Balance in Chemical Sequestration of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Zhongxian; Pan, Wei-Ping; Riley, John T.

    2006-09-09

    Anthropogenic CO2 released from fossil fuel combustion is a primary greenhouse gas which contributes to “global warming.” It is estimated that stationary power generation contributes over one-third of total CO2 emissions. Reducing CO2 in the atmosphere can be accomplished either by decreasing the rate at which CO2 is emitted into the atmosphere or by increasing the rate at which it is removed from it. Extensive research has been conducted on determining a fast and inexpensive method to sequester carbon dioxide. These methods can be classified into two categories, CO2 fixation by natural sink process for CO2, or direct CO2 sequestration by artificial processes. In direct sequestration, CO2 produced from sources such as coal-fired power plants, would be captured from the exhausted gases. CO2 from a combustion exhaust gas is absorbed with an aqueous ammonia solution through scrubbing. The captured CO2 is then used to synthesize ammonium bicarbonate (ABC or NH4HCO3), an economical source of nitrogen fertilizer. In this work, we studied the carbon distribution after fertilizer is synthesized from CO2. The synthesized fertilizer in laboratory is used as a “CO2 carrier” to “transport” CO2 from the atmosphere to crops. After biological assimilation and metabolism in crops treated with ABC, a considerable amount of the carbon source is absorbed by the plants with increased biomass production. The majority of the unused carbon source percolates into the soil as carbonates, such as calcium carbonate (CaCO3) and magnesium carbonate (MgCO3). These carbonates are environmentally benign. As insoluble salts, they are found in normal rocks and can be stored safely and permanently in soil. This investigation mainly focuses on the carbon distribution after the synthesized fertilizer is applied to soil. Quantitative examination of carbon distribution in an ecosystem is a challenging task since the carbon in the soil may come from various sources. Therefore synthesized 14C

  16. Precipitation of hydrated Mg carbonate with the aid of carbonic anhydrase for CO2 sequestration

    Science.gov (United States)

    Power, I. M.; Harrison, A. L.; Dipple, G. M.

    2011-12-01

    Strategies for sequestering CO2 directly from the atmosphere are likely required to achieve the desired reduction in CO2 concentration and avoid the most damaging effects of climate change [1]. Numerous studies have demonstrated the accelerated precipitation of calcium carbonate minerals with the aid of carbonic anhydrase (CA) as a means of sequestering CO2 in solid carbonate form; however, no study has examined precipitation of magnesium carbonate minerals using CA. Precipitation of magnesite (MgCO3) is kinetically inhibited [2]; therefore, Mg2+ must be precipitated as hydrated carbonate minerals. In laboratory experiments, the uptake of atmospheric CO2 into brine solutions (0.1 M Mg) was rate-limiting for the precipitation of dypingite [Mg5(CO3)4(OH)2-5H2O] with initial precipitation requiring 15 days [3]. It was also found that dypingite precipitation outpaced the uptake of CO2 gas into solution. CO2 uptake is limited by the hydration of CO2 to form carbonate ions [4]. Carbonic anhydrase (CA) enzymes are among the fastest known in nature and are able to catalyze the hydration of CO2, i.e., converting CO2(aq) to CO32- and HCO3- [5]. CA plays an important role in the carbon concentrating mechanism of photoautotrophic, chemoautotrophic, and heterotrophic prokaryotes and is involved in pH homeostasis, facilitated diffusion of CO2, ion transport, and the interconversion of CO2 and HCO3- [6]. Introducing CA into buffered Mg-rich solutions should allow for more rapid precipitation of hydrated magnesium carbonate minerals. Batch experiments were conducted using 125 mL flasks containing 100 mL of Millipore deionized water with 0.2 M of MgCl2-6H2O. To buffer pH, 1.0 g of pulverized brucite [Mg(OH)2] or 1.0 g of NaOH was added to the systems, which were amended with Bovine carbonic anhydrase (BCA) (Sigma-Aldrich). Solutions were stirred continuously and kept at room temperature (~22°C) with laboratory air introduced by bubbling. Temperature and pH were measured routinely

  17. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?

    OpenAIRE

    Couldrey, Matthew; Oliver, Kevin; Yool, Andrew; Halloran, Paul; Achterberg, Eric

    2016-01-01

    The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual...

  18. Effect of coupled anthropogenic perturbations on stratospheric ozone

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Luther, F.M.; Penner, J.E.

    1992-01-01

    Since 1976 the greatest concern about potential perturbations to stratospheric ozone has been in regard to the atmospheric release of chlorofluorocarbons. Consequently, atmospheric measurements of ozone have usually been compared with model calculations in which only chlorocarbon perturbations are considered. However, in order to compare theoretical calculations with recent measurements of ozone and to project expected changes to atmospheric ozone levels over the next few decades, one must consider the effect from other perturbations as well. In this paper, the authors consider the coupling between several possible anthropogenic atmospheric perturbations. Namely, they examine the effects of past and possible future increases of chlorocarbons, CO 2 , N 2 O, and NO x . The focus of these calculations is on the potential changes in ozone due to chlorocarbon emissions, how other anthropogenic perturbations may have influenced the actual change in ozone over the last decade, and how these perturbations may influence future changes in ozone. Although calculations including future chlorocarbon emissions alone result in significant reductions in ozone, there is very little change in total ozone over the coming decades when other anthropogenic sources are included. Increasing CO 2 concentrations have the largest offsetting effect on the change in total ozone due to chlorocarbons. Owing to the necessity of considering emissions from a number of trace gases simultaneously, determining expected global-scale chemical and climatic effects is more complex than was previously recognized

  19. The costs of limiting fossil-fuel CO2 emissions: A survey and analysis

    International Nuclear Information System (INIS)

    Grubb, M.; Brink, P. ten; Morrison, M.

    1993-01-01

    In the late 1980s, interest flourished in the issue of global climate change. Many studies focused on the options for limiting anthropogenic emissions of greenhouse-related gases and managing the consequences of global warming and climate change. Making appropriate policy choices requires information on both the costs and benefits, as the occur over time, of policy interventions, and in increasing number of studies have sought to quantify the costs especially of limiting CO 2 emissions, as the dominant anthropogenic source. Such analyses now form an important part of overall policy assessments and influence international negotiations on policy responses. However, these studies are not well understood. In this paper the authors seek to analyze the literature on the costs of CO 2 abatement. 152 ref

  20. Calcium silicates synthesised from industrial residues with the ability for CO2 sequestration.

    Science.gov (United States)

    Morales-Flórez, Victor; Santos, Alberto; López, Antonio; Moriña, Isabel; Esquivias, Luis

    2014-12-01

    This work explored several synthesis routes to obtain calcium silicates from different calcium-rich and silica-rich industrial residues. Larnite, wollastonite and calcium silicate chloride were successfully synthesised with moderate heat treatments below standard temperatures. These procedures help to not only conserve natural resources, but also to reduce the energy requirements and CO2 emissions. In addition, these silicates have been successfully tested as carbon dioxide sequesters, to enhance the viability of CO2 mineral sequestration technologies using calcium-rich industrial by-products as sequestration agents. Two different carbon sequestration experiments were performed under ambient conditions. Static experiments revealed carbonation efficiencies close to 100% and real-time resolved experiments characterised the dynamic behaviour and ability of these samples to reduce the CO2 concentration within a mixture of gases. The CO2 concentration was reduced up to 70%, with a carbon fixation dynamic ratio of 3.2 mg CO2 per g of sequestration agent and minute. Our results confirm the suitability of the proposed synthesis routes to synthesise different calcium silicates recycling industrial residues, being therefore energetically more efficient and environmentally friendly procedures for the cement industry. © The Author(s) 2014.

  1. Constructive solution to the CO/sub 2/ problem

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, C

    1979-03-01

    CO/sub 2/ effects on climate receive increasing attention at the scientific, public, and political level. Three proposals for dealing with the CO/SUB/2 problem are briefly examined and their cost very roughly assessed. The first one, originally proposed by W. Nordhaus, uses an economical constraint, taxation, to scare the energy consumer out of fossil fuels into energy sources which do not release CO/SUB/2: nuclear, solar or even biomass. Taxes are so adjusted that a predetermined CO/SUB/2 level in the atmosphere will never be reached. The intermediate path is however left free for an eventual optimization, i.e. minimization of economic costs. In the second, originally proposed by Dyson, 10/SUP/1/SUP/2 sycamore trees should be planted, hoping they will in time mop up CO/SUB/2 from the atmosphere and store it in form of standing crop and humus. Apart from a certain number of problems arising from such a large scale plantation - after all active humanity is made of only about 10/SUP/9 people - the system appears up to a point selfdefeating because the resulting decrease in albedo will increase temperature, at least at the beginning, and only after many years the CO/SUB/2 sequestered will compensate for that. In the third, originally proposed by the author, a fuel cycle is suggested in analogy to the fuel cycle of nuclear reactors. CO/SUB/2 is then separated from stack gases, together with SO/SUB/2 and other noxious components, and then stored in geological structures, e.g. exhausted oil and gas fields, or in the deep ocean making use of thermohaline currents to diffuse it in depth. The same result can be obtained by separating air and burning fuels with oxygen. The costs for CO/SUB/2 control are relatively high in all three cases, but are certainly inside the capacity of the energy system to digest them.

  2. Evaluation of Southern Quebec asbestos residues for CO2 sequestration by mineral carbonation

    Energy Technology Data Exchange (ETDEWEB)

    Beaudoin, G.; Hebert, R.; Constantin, M. [Laval Univ., Quebec City, PQ (Canada); Bonin, G. [LAB Chrysotile Inc., Black Lake, PQ (Canada); Dipple, G. [British Columbia Univ., Vancouver, BC (Canada)

    2003-08-01

    One alternative to help reduce carbon dioxide (CO{sub 2}) levels in the atmosphere is to sequester CO{sub 2} by mineral carbonation using ultramafic rock-hosted magnesian silicates (serpentine, olivine, talc). The carbonation process produces magnesite, which is a geologically stable and an environmentally safe magnesium carbonate. Three CO{sub 2} sinks exist in southern Quebec use such silicates. They are: (1) asbestos mill residues, (2) associated mine waste, and (3) ultramafic bedrock. Extraction of asbestos in the region has been accomplished from serpentinized harzburgite located in the Thetford Mines and Asbestos ophiolitic massifs and also from the highly sheared Pennington Sheet. The physical and chemical properties of magnesium silicate deposits greatly determine their carbonation potential. A wide range of properties was observed in samples obtained from almost all asbestos mill residues and waste. The reaction which takes place depends on the mineral content. The kinetics of the reactions are influenced by humidity and grain size.

  3. Non-volcanic CO2 Earth degassing: Case of Mefite d'Ansanto (southern Apennines), Italy

    Science.gov (United States)

    Chiodini, G.; Granieri, D.; Avino, R.; Caliro, S.; Costa, A.; Minopoli, C.; Vilardo, G.

    2010-06-01

    Mefite d'Ansanto, southern Apennines, Italy is the largest natural emission of low temperature CO2 rich gases, from non-volcanic environment, ever measured in the Earth. The emission is fed by a buried reservoir, made up of permeable limestones and covered by clayey sediments. We estimated a total gas flux of ˜2000 tons per day. Under low wind conditions, the gas flows along a narrow natural channel producing a persistent gas river which has killed over a period of time people and animals. The application of a physical numerical model allowed us to define the zones which potentially can be affected by dangerous CO2 concentration at breathing height for humans. The geometry of the Mefite gas reservoir is similar to those designed for sequestering CO2 in geological storage projects where huge amounts of CO2 should be injected in order to reduce atmospheric CO2 concentration. The approach which we have used at Mefite to define hazardous zones for the human health can be applied also in case of large CO2 leakages from storage sites, a phenomena which, even if improbable, can not be ruled out.

  4. Exploring Multiple Constraints of Anthropogenic Pollution

    Science.gov (United States)

    Arellano, A. F., Jr.; Tang, W.; Silva, S. J.; Raman, A.

    2017-12-01

    It is imperative that we provide more accurate and consistent analysis of anthropogenic pollution emissions at scales that is relevant to air quality, energy, and environmental policy. Here, we present three proof-of-concept studies that explore observational constraints from ground, aircraft, and satellite-derived measurements of atmospheric composition on bulk characteristics of anthropogenic combustion in megacities and fire regions. We focus on jointly analyzing co-emitted combustion products such as CO2, NO2, CO, SO2, and aerosols from GOSAT, OCO-2, OMI, MOPITT, and MODIS retrievals, in conjunction with USEPA AQS and NASA field campaigns. Each of these constituents exhibit distinct atmospheric signatures that depend on fuel type, combustion technology, process, practices and regulatory policies. Our results show that distinguishable patterns and relationships between the increases in concentrations across the megacity (or enhancements) due to emissions of these constituents enable us to: a) identify trends in combustion activity and efficiency, and b) reconcile discrepancies between state- to country-based emission inventories and modeled concentrations of these constituents. For example, the trends in enhancement ratios of these species reveal combustion emission pathways for China and United States that are not captured by current emission inventories and chemical reanalysis. Analysis of their joint distributions has considerable potential utility in current and future integrated constituent data assimilation and inverse modeling activities for monitoring, verifying, and reporting emissions, particularly for regions with few observations and limited information on local combustion processes. This work also motivates the need for continuous and preferably collocated satellite measurements of atmospheric composition, including CH4 and CO2, and studies related to improving the applicability and integration of these observations with ground- and aircraft- based

  5. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology

    International Nuclear Information System (INIS)

    Köhler, Peter; Abrams, Jesse F; Völker, Christoph; Hauck, Judith; Wolf-Gladrow, Dieter A

    2013-01-01

    Ongoing global warming induced by anthropogenic emissions has opened the debate as to whether geoengineering is a ‘quick fix’ option. Here we analyse the intended and unintended effects of one specific geoengineering approach, which is enhanced weathering via the open ocean dissolution of the silicate-containing mineral olivine. This approach would not only reduce atmospheric CO 2 and oppose surface ocean acidification, but would also impact on marine biology. If dissolved in the surface ocean, olivine sequesters 0.28 g carbon per g of olivine dissolved, similar to land-based enhanced weathering. Silicic acid input, a byproduct of the olivine dissolution, alters marine biology because silicate is in certain areas the limiting nutrient for diatoms. As a consequence, our model predicts a shift in phytoplankton species composition towards diatoms, altering the biological carbon pumps. Enhanced olivine dissolution, both on land and in the ocean, therefore needs to be considered as ocean fertilization. From dissolution kinetics we calculate that only olivine particles with a grain size of the order of 1 μm sink slowly enough to enable a nearly complete dissolution. The energy consumption for grinding to this small size might reduce the carbon sequestration efficiency by ∼30%. (letter)

  6. Frictional and transport properties of simulated faults in CO2 storage reservoirs and clay-rich caprocks

    NARCIS (Netherlands)

    Bakker, Elisenda

    2017-01-01

    In order to mitigate and meet CO2 emission regulations, long-term CO2 storage in hydrocarbon reservoirs is one of the most attractive large-scale options. To ensure save anthropogenic storage, it is important to maintain the sealing integrity of potential storage complexes. It is therefore

  7. Environmental impacts of ocean disposal of CO{sub 2}. Final report volume 2, September 1994--August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, H.J.; Adams, E.E. [eds.

    1996-12-01

    One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2}. Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. Technically, the term `disposal` is really a misnomer because the atmosphere and ocean eventually equilibrate on a time scale of 1000 years regardless of where the CO{sub 2} is originally discharged. However, peak atmospheric CO{sub 2} concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO{sub 2} injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. In this project, we examined these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. In the process, we have developed a comprehensive method to assess the impacts of pH changes on passive marine organisms. This final report addresses the following six topics: CO{sub 2} loadings and scenarios, impacts of CO{sub 2} transport, near-field perturbations, far-field perturbations, environmental impacts of CO{sub 2} release, and policy and legal implications of CO{sub 2} release.

  8. A CO2-storage supply curve for North America and its implications for the deployment of carbon dioxide capture and storage systems

    International Nuclear Information System (INIS)

    Dooley, J.J.; Bachu, S.; Gupta, N.; Gale, J.

    2005-01-01

    This paper presented a highly disaggregated estimate of carbon dioxide (CO 2 )-storage capacity of more than 330 onshore geological reservoirs across the United States and Canada. The demand placed upon these reservoirs by thousands of existing large anthropogenic CO 2 point sources was also reviewed based on a newly developed methodology for estimating the effective storage capacities of deep saline formations, depleted oil and gas reservoirs, and deep unmineable coal seams. This analysis was based on matching the identified point sources with candidate storage reservoirs. By incorporating the updated source and reservoir data into the Battelle CO 2 -GIS, a series of pairwise costs for transporting CO 2 from sites of anthropogenic CO 2 sources was calculated along with the net cost of storing it in each of the candidate reservoirs within a specified distance of the point source. Results indicate a large and variably distributed North American storage capacity of at least 3,800 gigatonnes of CO 2 , with deep saline formations accounting for most of this capacity. A geospatial and techno-economic database of 2,082 anthropogenic CO 2 point sources in North America, each with annual emissions greater than 100,000 tonnes of CO 2 , was also refined. Sensitivities examined for the CO 2 -storage cost curve focused on high/low oil and gas prices; the maximum allowed distance between source and reservoir; and, the infrastructure costs associated with CO 2 -driven hydrocarbon recovery. 20 refs., 5 figs

  9. Accelerated weathering of limestone for CO2 mitigation opportunities for the stone and cement industries

    Science.gov (United States)

    Langer, W.H.; Juan, C.A.S.; Rau, G.H.; Caldeira, K.

    2009-01-01

    Large amounts of limestone fines coproduced during the processing of crushed limestone may be useful in the sequestration of carbon dioxide (CO 2). Accelerated weathering of limestone (AWL) is proposed as a low-tech method to capture and sequester CO2 from fossil fuel-fired power plants and other point-sources such as cement manufacturing. AWL reactants are readily available, inexpensive, and environmentally benign. Waste CO 2 is hydrated with water to produce carbonic acid, which then reacts with and is neutralized by limestone fines, thus converting CO2 gas to dissolved calcium bicarbonate. AWL waste products can be disposed of in the ocean. Feasibility requires access to an inexpensive source of limestone and to seawater, thus limiting AWL facilities within about 10 km of the coastline. The majority of U.S. coastal power generating facilities are within economical transport distance of limestone resources. AWL presents opportunities for collaborative efforts among the crushed stone industry, electrical utilities, cement manufactures, and research scientists.

  10. The aerial fertilization effect of CO sub 2 and its implications for global carbon cycling and maximum greenhouse warming

    Energy Technology Data Exchange (ETDEWEB)

    Idso, S B [US Water Conservation Laboratory, Phoenix, AZ (USA)

    1991-07-01

    The author observes that the CO{sub 2} sequestering ability of the world's plant life should increase with the rising CO{sub 2} content of the atmosphere. The enhanced cyclic variation of atmospheric CO{sub 2} in the Northern Hemisphere is seen to be a result of the CO{sub 2} fertilization effect. Trees are responsible for about two-thirds of global photosynthesis. It is calculated that a 300 ppm increase in atmospheric CO{sub 2} produces a 182 per cent increase in the mean productivity of the world's forests. Global warming yet to be faced will not be much more than that which has already occurred. The rising CO{sub 2} content of the atmosphere provides a strong impetus for forest expansion, and a solution to any problems its continued upward trend might produce by intensifying the major mechanisms for its removal. 22 refs., 1 fig.

  11. Comment on "Scrutinizing the carbon cycle and CO2residence time in the atmosphere" by H. Harde

    Science.gov (United States)

    Köhler, Peter; Hauck, Judith; Völker, Christoph; Wolf-Gladrow, Dieter A.; Butzin, Martin; Halpern, Joshua B.; Rice, Ken; Zeebe, Richard E.

    2018-05-01

    Harde (2017) proposes an alternative accounting scheme for the modern carbon cycle and concludes that only 4.3% of today's atmospheric CO2 is a result of anthropogenic emissions. As we will show, this alternative scheme is too simple, is based on invalid assumptions, and does not address many of the key processes involved in the global carbon cycle that are important on the timescale of interest. Harde (2017) therefore reaches an incorrect conclusion about the role of anthropogenic CO2 emissions. Harde (2017) tries to explain changes in atmospheric CO2 concentration with a single equation, while the most simple model of the carbon cycle must at minimum contain equations of at least two reservoirs (the atmosphere and the surface ocean), which are solved simultaneously. A single equation is fundamentally at odds with basic theory and observations. In the following we will (i) clarify the difference between CO2 atmospheric residence time and adjustment time, (ii) present recently published information about anthropogenic carbon, (iii) present details about the processes that are missing in Harde (2017), (iv) briefly discuss shortcoming in Harde's generalization to paleo timescales, (v) and comment on deficiencies in some of the literature cited in Harde (2017).

  12. Geological Storage of CO2. Site Selection Criteria; Almacenamiento Geologico de CO2. Criterios de Selecci0n de Emplazamientos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C; Martinez, R; Recreo, F; Prado, P; Campos, R; Pelayo, M; Losa, A de la; Hurtado, A; Lomba, L; Perez del Villar, L; Ortiz, G; Sastre, J; Zapatero, M A; Suarez, I; Arenillas, A

    2007-09-18

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmailable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 refs.

  13. Potential environmental issues of CO2 storage in deep saline aquifers: Geochemical results from the Frio-I Brine Pilot test, Texas, USA

    Science.gov (United States)

    Kharaka, Yousif K.; Thordsen, James J.; Hovorka, Susan D.; Nance, H. Seay; Cole, David R.; Phelps, Tommy J.; Knauss, Kevin G.

    2009-01-01

    Sedimentary basins in general, and deep saline aquifers in particular, are being investigated as possible repositories for large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes. To investigate the potential for the long-term storage of CO2 in such aquifers, 1600 t of CO2 were injected at 1500 m depth into a 24-m-thick "C" sandstone unit of the Frio Formation, a regional aquifer in the US Gulf Coast. Fluid samples obtained before CO2 injection from the injection well and an observation well 30 m updip showed a Na–Ca–Cl type brine with ∼93,000 mg/L TDS at saturation with CH4 at reservoir conditions; gas analyses showed that CH4 comprised ∼95% of dissolved gas, but CO2 was low at 0.3%. Following CO2 breakthrough, 51 h after injection, samples showed sharp drops in pH (6.5–5.7), pronounced increases in alkalinity (100–3000 mg/L as HCO3) and in Fe (30–1100 mg/L), a slug of very high DOC values, and significant shifts in the isotopic compositions of H2O, DIC, and CH4. These data, coupled with geochemical modeling, indicate corrosion of pipe and well casing as well as rapid dissolution of minerals, especially calcite and iron oxyhydroxides, both caused by lowered pH (initially ∼3.0 at subsurface conditions) of the brine in contact with supercritical CO2.These geochemical parameters, together with perfluorocarbon tracer gases (PFTs), were used to monitor migration of the injected CO2 into the overlying Frio “B”, composed of a 4-m-thick sandstone and separated from the “C” by ∼15 m of shale and siltstone beds. Results obtained from the Frio “B” 6 months after injection gave chemical and isotopic markers that show significant CO2 (2.9% compared with 0.3% CO2 in dissolved gas) migration into the “B” sandstone. Results of samples collected 15 months after injection, however, are ambiguous, and can be interpreted to show no additional injected CO2 in the “B” sandstone

  14. Anthropogenic emissions and space-borne observations of carbon monoxide over South Asia

    Science.gov (United States)

    Ul-Haq, Zia; Tariq, Salman; Ali, Muhammad

    2016-11-01

    The focus of this study is to understand anthropogenic emissions, spatiotemporal variability and trends of carbon monoxide (CO) over South Asia by using datasets from MACCity (Monitoring Atmospheric Composition and Climate, MACC and megaCITY - Zoom for the Environment, CityZEN), REAS (Regional Emission inventory in Asia), AIRS (Atmospheric Infrared Sounder) and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY). MACCity anthropogenic emissions show an overall increase of 16.5% during 2000-2010. Elevated levels of MACCity CO are found in Indo-Gangetic Basin (IGB), eastern mining region of India, Bangladesh and large urban areas. Some of the major contributors of these emissions have been identified as agricultural waste burning, land transport, industrial production, and energy generation and distribution. An area averaged mean value of AIRS CO at 600 hPa is found to be 114 ± 2 ppbv (slope -0.48 ± 0.2 ppbv yr-1, y-intercept 117 ± 1 ppbv and r = 0.68) with a minor declining trend at -0.41 ± 0.18% yr-1 over the region during 2003-2015. A strong seasonality in AIRS CO concentration is observed with spring season peak in March 129 ± 1.9 ppbv, whereas low values have been observed in summer monsoon with sturdy dip in July 99.6 ± 1.94 ppbv. AIRS CO and SCIAMACHY CO Total Column (CO TC) over the study region show spatial patterns similar to MACCity and REAS emissions. An analysis of SCIAMACHY CO TC tendencies has been performed which indicates minor rising trends over some parts of the region. Background CO, Recent Emissions (RE), and spatial anomalies in RE over high anthropogenic activity zones of Indus Basin, Ganges Basin and Eastern Region were analyzed using AIRS and SCIAMACHY CO data.

  15. The role of anthropogenic aerosol emission reduction in achieving the Paris Agreement's objective

    Science.gov (United States)

    Hienola, Anca; Pietikäinen, Joni-Pekka; O'Donnell, Declan; Partanen, Antti-Ilari; Korhonen, Hannele; Laaksonen, Ari

    2017-04-01

    The Paris agreement reached in December 2015 under the auspices of the United Nation Framework Convention on Climate Change (UNFCCC) aims at holding the global temperature increase to well below 2◦C above preindustrial levels and "to pursue efforts to limit the temperature increase to 1.5◦C above preindustrial levels". Limiting warming to any level implies that the total amount of carbon dioxide (CO2) - the dominant driver of long-term temperatures - that can ever be emitted into the atmosphere is finite. Essentially, this means that global CO2 emissions need to become net zero. CO2 is not the only pollutant causing warming, although it is the most persistent. Short-lived, non-CO2 climate forcers also must also be considered. Whereas much effort has been put into defining a threshold for temperature increase and zero net carbon emissions, surprisingly little attention has been paid to the non-CO2 climate forcers, including not just the non-CO2 greenhouse gases (methane (CH4), nitrous oxide (N2O), halocarbons etc.) but also the anthropogenic aerosols like black carbon (BC), organic carbon (OC) and sulfate. This study investigates the possibility of limiting the temperature increase to 1.5◦C by the end of the century under different future scenarios of anthropogenic aerosol emissions simulated with the very simplistic MAGICC climate carbon cycle model as well as with ECHAM6.1-HAM2.2-SALSA + UVic ESCM. The simulations include two different CO2 scenarios- RCP3PD as control and a CO2 reduction leading to 1.5◦C (which translates into reaching the net zero CO2 emissions by mid 2040s followed by negative emissions by the end of the century); each CO2 scenario includes also two aerosol pollution control cases denoted with CLE (current legislation) and MFR (maximum feasible reduction). The main result of the above scenarios is that the stronger the anthropogenic aerosol emission reduction is, the more significant the temperature increase by 2100 relative to pre

  16. Transition paths towards CO2 emission reduction in the steel industry

    NARCIS (Netherlands)

    Daniëls, Berend Wilhelm

    2002-01-01

    Radiative forcing, better known as the Greenhouse Effect, is probably the major 21st century environmental problem. Its probable cause is the anthropogenic emission of greenhouse gases, especially CO2. The Kyoto agreement enforces considerable reductions of the GHG emissions in 2010, with 6 to 8% of

  17. AIRS Views of Anthropogenic and Biomass Burning CO: INTEX-B/MILAGRO and TEXAQS/GoMACCS

    Science.gov (United States)

    McMillan, W. W.; Warner, J.; Wicks, D.; Barnet, C.; Sachse, G.; Chu, A.; Sparling, L.

    2006-12-01

    Utilizing the Atmospheric InfraRed Sounder's (AIRS) unique spatial and temporal coverage, we present observations of anthropogenic and biomass burning CO emissions as observed by AIRS during the 2006 field experiments INTEX-B/MILAGRO and TEXAQS/GoMACCS. AIRS daily CO maps covering more than 75% of the planet demonstrate the near global transport of these emissions. AIRS day/night coverage of significant portions of the Earth often show substantial changes in 12 hours or less. However, the coarse vertical resolution of AIRS retrieved CO complicates its interpretation. For example, extensive CO emissions are evident from Asia during April and May 2006, but it is difficult to determine the relative contributions of biomass burning in Thailand vs. domestic and industrial emissions from China. Similarly, sometimes AIRS sees enhanced CO over and downwind of Mexico City and other populated areas. AIRS low information content and decreasing sensitivity in the boundary layer can result in underestimates of CO total columns and free tropospheric abundances. Building on our analyses of INTEX-A/ICARTT data from 2004, we present comparisons with INTEX-B/MILAGRO and TEXAQS/GoMACCS in situ aircraft measurements and other satellite CO observations. The combined analysis of AIRS CO, water vapor and O3 retrievals; MODIS aerosol optical depths; and forward trajectory computations illuminate a variety of dynamical processes in the troposphere.

  18. Reconsideration of atmospheric CO2 lifetime: potential mechanism for explaining CO2 missing sink

    Science.gov (United States)

    Kikuchi, R.; Gorbacheva, T.; Gerardo, R.

    2009-04-01

    Carbon cycle data (Intergovernmental Panel on Climate Change 1996) indicate that fossil fuel use accounts for emissions to the atmosphere of 5.5±0.5 GtC (Gigatons of carbon) annually. Other important processes in the global CO2 budget are tropical deforestation, estimated to generate about 1.6±1.0 GtC/yr; absorption by the oceans, removing about 2.0±0.8 GtC/yr; and regrowth of northern forests, taking up about 0.5±0.5 GtC/yr. However, accurate measurements of CO2 show that the atmosphere is accumulating only about 3.3±0.2 GtC/yr. The imbalance of about 1.3±1.5 GtC/yr, termed the "missing sink", represents the difference between the estimated sources and the estimated sinks of CO2; that is, we do not know where all of the anthropogenic CO2 is going. Several potential mechanisms have been proposed to explain this missing carbon, such as CO2 fertilization, climate change, nitrogen deposition, land use change, forest regrowth et al. Considering the complexity of ecosystem, most of ecosystem model cannot handle all the potential mechanisms to reproduce the real world. It has been believed that the dominant sink mechanism is the fertilizing effects of increased CO2 concentrations in the atmosphere and the addition to soils of fixed nitrogen from fossil-fuel burning and agricultural fertilizers. However, a recent analysis of long-term observations of the change in biomass and growth rates suggests that such fertilization effects are much too small to explain more than a small fraction of the observed sink. In addition, long-term experiments in which small forest patches and other land ecosystems have been exposed to elevated CO2 levels for extended periods show a rapid decrease of the fertilization effect after an initial enhancement. We will explore this question of the missing sink in atmospheric CO2 residence time. Radioactive and stable carbon isotopes (13-C/12-C) show the real CO2 lifetime is about 5 years; i.e. CO2 is quickly taken out of the atmospheric

  19. Sequestering agents for the removal of actinides from waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, K.N.; White, D.J.; Xu, Jide; Mohs, T.R. [Univ. of California, Berkeley, CA (United States)

    1997-10-01

    The goal of this project is to take a biomimetic approach toward developing new separation technologies for the removal of radioactive elements from contaminated DOE sites. To achieve this objective, the authors are investigating the fundamental chemistry of naturally occurring, highly specific metal ion sequestering agents and developing them into liquid/liquid and solid supported actinide extraction agents. Nature produces sideophores (e.g., Enterobactin and Desferrioxamine B) to selectivity sequester Lewis acidic metal ions, in particular Fe(III), from its surroundings. These chelating agents typically use multiple catechols or hydroxamic acids to form polydentate ligands that chelate the metal ion forming very stable complexes. The authors are investigating and developing analogous molecules into selective chelators targeting actinide(IV) ions, which display similar properties to Fe(III). By taking advantage of differences in charge, preferred coordination number, and pH stability range, the transition from nature to actinide sequestering agents has been applied to the development of new and highly selective actinide extraction technologies. Additionally, the authors have shown that these chelating ligands are versatile ligands for chelating U(VI). In particular, they have been studying their coordination chemistry and fundamental interactions with the uranyl ion [UO{sub 2}]{sup 2+}, the dominant form of uranium found in aqueous media. With an understanding of this chemistry, and results obtained from in vivo uranium sequestration studies, it should be possible to apply these actinide(IV) extraction technologies to the development of new extraction agents for the removal of uranium from waste streams.

  20. HARNESSING THE CHEMISTRY OF CO2

    Energy Technology Data Exchange (ETDEWEB)

    Louie, Janis

    2010-05-11

    Our research program is broadly focused on activating CO{sub 2} through the use of organic and organometallic based catalysts. Some of our methods have centered on annulation reactions of unsaturated hydrocarbons (and carbonyl substrates) to provide a diverse array of carbocycles and heterocycles. We use a combination of catalyst discovery and optimization in conjunction with classical physical organic chemistry to elucidate the key mechanistic features of the cycloaddition reactions such that the next big advances in catalyst development can be made. Key to all of our cycloaddition reactions is the use of a sterically hindered, electron donating N heterocyclic carbene (NHC) ligand, namely IPr (or SIPr), in conjunction with a low valent nickel pre-catalyst. The efficacy of this ligand is two-fold: (1) the high {delta}-donating ability of the NHC increases the nucleophilicity of the metal center which thereby facilitates interaction with the electrophilic carbonyl and (2) the steric hindrance prevents an otherwise competitive side reaction involving only the alkyne substrate. Such a system has allowed for the facile cycloaddition to prepare highly functionalized pyrones, pyridones, pyrans, as well as novel carbocycles. Importantly, all reactions proceed under extremely mild conditions (room temperature, atmospheric pressures, and short reaction times), require only catalytic amounts of Ni/NHC and readily available starting materials, and afford annulated products in excellent yields. Our current focus revolves around understanding the fundamental processes that govern these cycloadditions such that the next big advance in the cyclization chemistry of CO{sub 2} can be made. Concurrent to our annulation chemistry is our investigation of the potential for imidazolylidenes to function as thermally-actuated CO{sub 2} sequestering and delivery agents.

  1. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.; Zapatero, M. A.; Suarez, I.; Arenillas, A.

    2007-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmailable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 refs

  2. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.

    2006-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmineable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 ref

  3. CO2 supply from an integrated network : the opportunities and challenges

    International Nuclear Information System (INIS)

    Heath, M.

    2006-01-01

    Strategies for using carbon dioxide (CO 2 ) from an integrated network were discussed. The oil and gas industry is currently considering carbon capture and storage (CCS) scenarios for Alberta. Integrated scenarios are aimed at providing business solution for CO 2 currently being produced in the province as well as optimizing the amounts of CO 2 that can be stored in geologic sinks. The scenarios hope to transform CCS into a value-added market capable of providing optimal returns to stakeholders along the CO 2 supply chain through the creation of an infrastructure designed to transport CO 2 in sufficient volumes. The storage of CO 2 in geologic sinks is expected to remove optimal amounts of anthropogenic CO 2 from larger stationary point sources. Interest in an integrated CO 2 market in Alberta has arisen from both economic and environmental concerns. The most effective CO 2 sources are fertilizer, gas processing, and hydrogen plants. Petrochemical facilities also produce high purity CO 2 . CO 2 capture approaches include post- and pre-combustion capture technologies as well as oxyfuel conversion. It was concluded that the cost of capturing CO 2 depends on concentration and purity levels obtained at the point of capture. Major CO 2 sources in the Western Canadian Sedimentary Basin (WCSB) were provided. tabs., figs

  4. Mountain peatlands range from CO2 sinks at high elevations to sources at low elevations: Implications for a changing climate

    Science.gov (United States)

    David J. Millar; David J. Cooper; Kathleen A. Dwire; Robert M. Hubbard; Joseph. von Fischer

    2016-01-01

    Mountain fens found in western North America have sequestered atmospheric carbon dioxide (CO2) for millennia, provide important habitat for wildlife, and serve as refugia for regionally-rare plant species typically found in boreal regions. It is unclear how Rocky Mountain fens are responding to a changing climate. It is possible that fens found at lower elevations may...

  5. Mineralogical controls on porosity and water chemistry during O_2-SO_2-CO_2 reaction of CO_2 storage reservoir and cap-rock core

    International Nuclear Information System (INIS)

    Pearce, Julie K.; Golab, Alexandra; Dawson, Grant K.W.; Knuefing, Lydia; Goodwin, Carley; Golding, Suzanne D.

    2016-01-01

    -rocks could be expected to act as baffles to fluids preventing vertical fluid migration. Concentrations of dissolved elements including Ca, Fe, Mn, and Ni increased during reactions of several core samples, with Mn, Mg, Co, and Zn correlated with Ca from cap-rock cores. Precipitation of gypsum, Fe-oxides and clays on seal core samples sequestered dissolved elements including Fe through co-precipitation or adsorption. A conceptual model of impure CO_2-water-rock interactions for a siliciclastic reservoir is discussed. - Highlights: • O_2-SO_2-CO_2 experiments on CO_2 sequestration site reservoir and cap-rock cores. • Coupled micro CT and geochemical characterization before and after reactions. • Strong acidification with reservoir core, no change in porosity. • Formation of open porosity in calcite cemented core, with buffered pH. • Dissolved Mn, Mg, Co, and Zn correlated with Ca from cap-rocks.

  6. An Integrated, Low Temperature Process to Capture and Sequester Carbon Dioxide from Industrial Emissions

    Science.gov (United States)

    Wendlandt, R. F.; Foremski, J. J.

    2013-12-01

    Laboratory experiments show that it is possible to integrate (1) the chemistry of serpentine dissolution, (2) capture of CO2 gas from the combustion of natural gas and coal-fired power plants using aqueous amine-based solvents, (3) long-term CO2 sequestration via solid phase carbonate precipitation, and (4) capture solvent regeneration with acid recycling in a single, continuous process. In our process, magnesium is released from serpentine at 300°C via heat treatment with ammonium sulfate salts or at temperatures as low as 50°C via reaction with sulfuric acid. We have also demonstrated that various solid carbonate phases can be precipitated directly from aqueous amine-based (NH3, MEA, DMEA) CO2 capture solvent solutions at room temperature. Direct precipitation from the capture solvent enables regenerating CO2 capture solvent without the need for heat and without the need to compress the CO2 off gas. We propose that known low-temperature electrochemical methods can be integrated with this process to regenerate the aqueous amine capture solvent and recycle acid for dissolution of magnesium-bearing mineral feedstocks and magnesium release. Although the direct precipitation of magnesite at ambient conditions remains elusive, experimental results demonstrate that at temperatures ranging from 20°C to 60°C, either nesquehonite Mg(HCO3)(OH)●2H2O or a double salt with the formula [NH4]2Mg(CO3)2●4H2O or an amorphous magnesium carbonate precipitate directly from the capture solvent. These phases are less desirable for CO2 sequestration than magnesite because they potentially remove constituents (water, ammonia) from the reaction system, reducing the overall efficiency of the sequestration process. Accordingly, the integrated process can be accomplished with minimal energy consumption and loss of CO2 capture and acid solvents, and a net generation of 1 to 4 moles of H2O/6 moles of CO2 sequestered (depending on the solid carbonate precipitate and amount of produced H2

  7. Global carbon - nitrogen - phosphorus cycle interactions: A key to solving the atmospheric CO2 balance problem?

    Science.gov (United States)

    Peterson, B. J.; Mellillo, J. M.

    1984-01-01

    If all biotic sinks of atmospheric CO2 reported were added a value of about 0.4 Gt C/yr would be found. For each category, a very high (non-conservative) estimate was used. This still does not provide a sufficient basis for achieving a balance between the sources and sinks of atmospheric CO2. The bulk of the discrepancy lies in a combination of errors in the major terms, the greatest being in a combination of errors in the major terms, the greatest being in the net biotic release and ocean uptake segments, but smaller errors or biases may exist in calculations of the rate of atmospheric CO2 increase and total fossil fuel use as well. The reason why biotic sinks are not capable of balancing the CO2 increase via nutrient-matching in the short-term is apparent from a comparison of the stoichiometry of the sources and sinks. The burning of fossil fuels and forest biomass releases much more CO2-carbon than is sequestered as organic carbon.

  8. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    Science.gov (United States)

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  9. The Efficacy and Potential of Renewable Energy from Carbon Dioxide that is Sequestered in Sedimentary Basin Geothermal Resources

    Science.gov (United States)

    Bielicki, J. M.; Adams, B. M.; Choi, H.; Saar, M. O.; Taff, S. J.; Jamiyansuren, B.; Buscheck, T. A.; Ogland-Hand, J.

    2015-12-01

    Mitigating climate change requires increasing the amount of electricity that is generated from renewable energy technologies and while simultaneously reducing the amount of carbon dioxide (CO2) that is emitted to the atmosphere from present energy and industrial facilities. We investigated the efficacy of generating electricity using renewable geothermal heat that is extracted by CO2 that is sequestered in sedimentary basins. To determine the efficacy of CO2-Geothermal power production in the United States, we conducted a geospatial resource assessment of the combination of subsurface CO2 storage capacity and heat flow in sedimentary basins and developed an integrated systems model that combines reservoir modeling with power plant modeling and economic costs. The geospatial resource assessment estimates the potential resource base for CO2-Geothermal power plants, and the integrated systems model estimates the physical (e.g., net power) and economic (e.g., levelized cost of electricity, capital cost) performance of an individual CO2-Geothermal power plant for a range of reservoir characteristics (permeability, depth, geothermal temperature gradient). Using coupled inverted five-spot injection patterns that are common in CO2-enhanced oil recovery operations, we determined the well pattern size that best leveraged physical and economic economies of scale for the integrated system. Our results indicate that CO2-Geothermal plants can be cost-effectively deployed in a much larger region of the United States than typical approaches to geothermal electricity production. These cost-effective CO2-Geothermal electricity facilities can also be capacity-competitive with many existing baseload and renewable energy technologies over a range of reservoir parameters. For example, our results suggest that, given the right combination of reservoir parameters, LCOEs can be as low as $25/MWh and capacities can be as high as a few hundred MW.

  10. Nanoporous amide networks based on tetraphenyladamantane for selective CO2capture

    KAUST Repository

    Zulfiqar, Sonia; Mantione, Daniele; El Tall, Omar; Sarwar, Muhammad Ilyas; Ruipé rez, Fernando; Rothenberger, Alexander; Mecerreyes, David

    2016-01-01

    Reduction of anthropogenic CO2 emissions and CO2 separation from post-combustion flue gases are among the imperative issues in the spotlight at present. Hence, it is highly desirable to develop efficient adsorbents for mitigating climate change with possible energy savings. Here, we report the design of a facile one pot catalyst-free synthetic protocol for the generation of three different nitrogen rich nanoporous amide networks (NANs) based on tetraphenyladamantane. Besides the porous architecture, CO2 capturing potential and high thermal stability, these NANs possess notable CO2/N2 selectivity with reasonable retention while increasing the temperature from 273 K to 298 K. The quantum chemical calculations also suggest that CO2 interacts mainly in the region of polar amide groups (-CONH-) present in NANs and this interaction is much stronger than that with N2 thus leading to better selectivity and affirming them as promising contenders for efficient gas separation. © The Royal Society of Chemistry 2016.

  11. Nanoporous amide networks based on tetraphenyladamantane for selective CO2capture

    KAUST Repository

    Zulfiqar, Sonia

    2016-04-19

    Reduction of anthropogenic CO2 emissions and CO2 separation from post-combustion flue gases are among the imperative issues in the spotlight at present. Hence, it is highly desirable to develop efficient adsorbents for mitigating climate change with possible energy savings. Here, we report the design of a facile one pot catalyst-free synthetic protocol for the generation of three different nitrogen rich nanoporous amide networks (NANs) based on tetraphenyladamantane. Besides the porous architecture, CO2 capturing potential and high thermal stability, these NANs possess notable CO2/N2 selectivity with reasonable retention while increasing the temperature from 273 K to 298 K. The quantum chemical calculations also suggest that CO2 interacts mainly in the region of polar amide groups (-CONH-) present in NANs and this interaction is much stronger than that with N2 thus leading to better selectivity and affirming them as promising contenders for efficient gas separation. © The Royal Society of Chemistry 2016.

  12. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ.

    Science.gov (United States)

    Yadav, Geetanjali; Karemore, Ankush; Dash, Sukanta Kumar; Sen, Ramkrishna

    2015-09-01

    In the present study, carbon-dioxide capture from in situ generated flue gas was carried out using Chlorella sp. in bubble column photobioreactors to develop a cost effective process for concomitant carbon sequestration and biomass production. Firstly, a comparative analysis of CO2 sequestration with varying concentrations of CO2 in air-CO2 and air-flue gas mixtures was performed. Chlorella sp. was found to be tolerant to 5% CO2 concentration. Subsequently, inhibitory effect of pure flue gas was minimized using various strategies like use of high initial cell density and photobioreactors in series. The final biofixation efficiency was improved by 54% using the adopted strategies. Further, sequestered microalgal biomass was analyzed for various biochemical constituents for their use in food, feed or biofuel applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Throwing new light on the reduction of CO2.

    Science.gov (United States)

    Ozin, Geoffrey A

    2015-03-18

    While the chemical energy in fossil fuels has enabled the rapid rise of modern civilization, their utilization and accompanying anthropogenic CO2 emissions is occurring at a rate that is outpacing nature's carbon cycle. Its effect is now considered to be irreversible and this could lead to the demise of human society. This is a complex issue without a single solution, yet from the burgeoning global research activity and development in the field of CO2 capture and utilization, there is light at the end of the tunnel. In this article a couple of recent advances are illuminated. Attention is focused on the discovery of gas-phase, light-assisted heterogeneous catalytic materials and processes for CO2 photoreduction that operate at sufficiently high rates and conversion efficiencies, and under mild conditions, to open a new pathway for an energy transition from today's "fossil fuel economy" to a new and sustainable "CO2 economy". Whichever of the competing CO2 capture and utilization approaches proves to be the best way forward for the development of a future CO2-based solar fuels economy, hopefully this can occur in a period short enough to circumvent the predicted adverse consequences of greenhouse gas climate change. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Meteorological and small scale internal ecosystem variability characterize the uncertainty of ecosystem level responses to elevated CO2. Insights from the Duke Forest FACE experiment

    Science.gov (United States)

    Paschalis, A.; Katul, G. G.; Fatichi, S.; Palmroth, S.; Way, D.

    2017-12-01

    One of the open questions in climate change research is the pathway by which elevated atmospheric CO2 concentration impacts the biogeochemical and hydrological cycles at the ecosystem scale. This impact leads to significant changes in long-term carbon stocks and the potential of ecosystems to sequester CO2, partially mitigating anthropogenic emissions. While the significance of elevated atmospheric CO2 concentration on instantaneous leaf-level processes such as photosynthesis and transpiration is rarely disputed, its integrated effect at the ecosystem level and at long-time scales remains a subject of debate. This debate has taken on some urgency as illustrated by differences arising between ecosystem modelling studies, and data-model comparisons using Free Air CO2 Enrichment (FACE) sites around the world. Inherent leaf-to-leaf variability in gas exchange rates can generate such inconsistencies. This inherent variability arises from the combined effect of meteorological "temporal" variability and the "spatial" variability of the biochemical parameters regulating vegetation carbon uptake. This combined variability leads to a non-straightforward scaling of ecosystem fluxes from the leaf to ecosystems. To illustrate this scaling behaviour, we used 10 years of leaf gas exchange measurements collected at the Duke Forest FACE experiment. The internal variability of the ecosystem parameters are first quantified and then combined with three different leaf-scale stomatal conductance models and an ecosystem model. The main results are: (a) Variability of the leaf level fluxes is dependent on both the meteorological drivers and differences in leaf age, position within the canopy, nitrogen and CO2 fertilization, which can be accommodated in model parameters; (b) Meteorological variability plays the dominant role at short temporal scales while parameter variability is significant at longer temporal scales. (c) Leaf level results do not necessarily translate to similar ecosystem

  15. Potential and economics of CO{sub 2} sequestration; Sequestration du CO{sub 2}: faisabilite et cout

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J. [CEA Saclay, 91 - Gif sur Yvette (France). Direction des Sciences de la Matiere; Ducroux, R. [Centre d' Initiative et de Recherche sur l' Energie et l' Environnement, CIRENE, 91 - Palaiseau (France)

    2001-07-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO{sub 2}. Some techniques could be used to reduced CO{sub 2} emission and stabilize atmospheric CO{sub 2} concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO{sub 2} emissions such as renewable or nuclear energy, iii) capture and store CO{sub 2} from fossil fuels combustion, and enhance the natural sinks for CO{sub 2} (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO{sub 2} and to review the various options for CO{sub 2} sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO{sub 2} and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO{sub 2} emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO{sub 2} emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO{sub 2} is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon

  16. High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta.

    Directory of Open Access Journals (Sweden)

    Avery O Tatters

    Full Text Available Anthropogenic CO(2 is progressively acidifying the ocean, but the responses of harmful algal bloom species that produce toxins that can bioaccumulate remain virtually unknown. The neurotoxin domoic acid is produced by the globally-distributed diatom genus Pseudo-nitzschia. This toxin is responsible for amnesic shellfish poisoning, which can result in illness or death in humans and regularly causes mass mortalities of marine mammals and birds. Domoic acid production by Pseudo-nitzschia cells is known to be regulated by nutrient availability, but potential interactions with increasing seawater CO(2 concentrations are poorly understood. Here we present experiments measuring domoic acid production by acclimatized cultures of Pseudo-nitzschia fraudulenta that demonstrate a strong synergism between projected future CO(2 levels (765 ppm and silicate-limited growth, which greatly increases cellular toxicity relative to growth under modern atmospheric (360 ppm or pre-industrial (200 ppm CO(2 conditions. Cellular Si:C ratios decrease with increasing CO(2, in a trend opposite to that seen for domoic acid production. The coastal California upwelling system where this species was isolated currently exhibits rapidly increasing levels of anthropogenic acidification, as well as widespread episodic silicate limitation of diatom growth. Our results suggest that the current ecosystem and human health impacts of toxic Pseudo-nitzschia blooms could be greatly exacerbated by future ocean acidification and 'carbon fertilization' of the coastal ocean.

  17. Comparison of CO2 Emissions Data for 30 Cities from Different Sources

    Science.gov (United States)

    Nakagawa, Y.; Koide, D.; Ito, A.; Saito, M.; Hirata, R.

    2017-12-01

    Many sources suggest that cities account for a large proportion of global anthropogenic greenhouse gas emissions. Therefore, in search for the best ways to reduce total anthropogenic greenhouse gas emissions, a focus on the city emission is crucial. In this study, we collected CO2 emissions data in 30 cities during 1990-2015 and evaluated the degree of variance between data sources. The CO2 emissions data were obtained from academic papers, municipal reports, and high-resolution emissions maps (CIDIACv2016, EDGARv4.2, ODIACv2016, and FFDASv2.0). To extract urban CO2 emissions from the high-resolution emissions maps, urban fraction ranging from 0 to 1 was calculated for each 1×1 degree grid cell using the global land cover data (SYNMAP). Total CO2 emissions from the grid cells in which urban fraction occupies greater than or equal to 0.9 were regarded as urban CO2 emissions. The estimated CO2 emissions varied greatly depending on the information sources, even in the same year. There was a large difference between CO2 emissions collected from academic papers, municipal reports, and those extracted from high-resolution emissions maps. One reason is that they use different city boundaries. That is, the city proper (i.e. the political city boundary) is often defined as the city boundary in academic papers and municipal reports, whereas the urban area is used in the high-resolution emissions maps. Furthermore, there was a large variation in CO2 emissions collected from academic papers and municipal reports. These differences may be due to the difference in the assumptions such as allocation ratio of CO2 emissions to producers and consumers. In general, the consumption-based assignment of emissions gives higher estimates of urban CO2 emission in comparison with production-based assignment. Furthermore, there was also a large variation in CO2 emissions extracted from high-resolution emissions maps. This difference would be attributable to differences in information used

  18. Carbon sequestration by mangrove forest: One approach for managing carbon dioxide emission from coal-based power plant

    Science.gov (United States)

    Ray, Raghab; Jana, Tapan Kumar

    2017-12-01

    Mangroves are known as natural carbon sinks, taking CO2 out of the atmosphere and store it in their biomass for many years. This study aimed to investigate the capacity of world's largest mangrove, the Sundarbans (Indian part) to sequester anthropogenic CO2 emitted from the proximate coal-based thermal power plant in Kolaghat (∼100 km away from mangrove site). Study also includes Kolkata, one of the largest metropolises of India (∼150 km away from mangrove site) for comparing micrometeorological parameters, biosphere-atmosphere CO2 exchange fluxes and atmospheric pollutants between three distinct environments: mangrove-power plant-metropolis. Hourly sampling of atmospheric CO2 in all three sites (late December 2011 and early January 2012) revealed that CO2 concentrations and emission fluxes were maximum around the power plant (360-621 ppmv, 5.6-56.7 mg m-2s-1 respectively) followed by the metropolis (383-459 ppmv, 3.8-20.4 mg m-2s-1 respectively) and mangroves (277-408 ppmv, -8.9-11.4 mg m-2s-1, respectively). Monthly coal consumption rates (41-57, in 104 ton month-1) were converted to CO2 suggesting that 2.83 Tg C was added to the atmosphere in 2011 for the generation of 7469732 MW energy from the power plant. Indian Sundarbans (4264 km2) sequestered total of 2.79 Tg C which was 0.64% of the annual fossil fuel emission from India in the same time period. Based on these data from 2010 to 2011, it is calculated that about 4328 km2 mangrove forest coverage is needed to sequester all CO2 emitted from the Kolaghat power plant.

  19. Sequestering of Fe and Pb ions from Wastewater by Canarium ...

    African Journals Online (AJOL)

    In this paper agricultural waste; Canarium schweinfurthii was explored for the sequestering of Fe and Pb ions from wastewater solution after carbonization and chemical treatment at 400oC. Optimum time of 30 and 150 min with percentage removal of 95 and 98% at optimum pH of 2 and 6 was obtained for Fe and Pb ions.

  20. Noble gas geochemistry to monitor CO2 geological storages

    International Nuclear Information System (INIS)

    Lafortune, St.

    2007-11-01

    According to the last IPCC (Intergovernmental Panel on Climate Change) report, a probability of 90 % can be now established for the responsibility of the anthropogenic CO 2 emissions for the global climate change observed since the beginning of the 20. century. To reduce these emissions and keep producing energy from coal, oil or gas combustions, CO 2 could be stored in geological reservoirs like aquifers, coal beds, and depleted oil or gas fields. Storing CO 2 in geological formations implies to control the efficiency and to survey the integrity of the storages, in order to be able to detect the possible leaks as fast as possible. Here, we study the feasibility of a geochemical monitoring through noble gas geochemistry. We present (1) the development of a new analytical line, Garodiox, developed to extract quantitatively noble gas from water samples, (2) the testing of Garodiox on samples from a natural CO 2 storage analogue (Pavin lake, France) and (3) the results of a first field work on a natural CO 2 accumulation (Montmiral, France). The results we obtain and the conclusions we draw, highlight the interest of the geochemical monitoring we suggest. (author)

  1. Disentangling the effects of CO2 and short-lived climate forcer mitigation

    NARCIS (Netherlands)

    Rogelj, J.; Schaeffer, M.; Meinshausen, M.; Shindell, D.T.; Hare, W.; Klimont, Z.; Velders, G.J.M.; Amann, M.; Schellnhuber, H.J.

    2014-01-01

    Anthropogenic global warming is driven by emissions of a wide variety of radiative forcers ranging from very short-lived climate forcers (SLCFs), like black carbon, to very long-lived, like CO2. These species are often released from common sources and are therefore intricately linked. However, for

  2. Numerical modeling of pore-scale phenomena during CO2 sequestration in oceanic sediments

    International Nuclear Information System (INIS)

    Kang, Qinjun; Tsimpanogiannis, Ioannis N.; Zhang, Dongxiao; Lichtner, Peter C.

    2005-01-01

    Direct disposal of liquid CO 2 on the ocean floor is one of the approaches considered for sequestering CO 2 in order to reduce its concentration in the atmosphere. At oceanic depths deeper than approximately 3000 m, liquid CO 2 density is higher than the density of seawater and CO 2 is expected to sink and form a pool at the ocean floor. In addition to chemical reactions between CO 2 and seawater to form hydrate, fluid displacement is also expected to occur within the ocean floor sediments. In this work, we consider two different numerical models for hydrate formation at the pore scale. The first model consists of the Lattice Boltzmann (LB) method applied to a single-phase supersaturated solution in a constructed porous medium. The second model is based on the Invasion Percolation (IP) in pore networks, applied to two-phase immiscible displacement of seawater by liquid CO 2 . The pore-scale results are upscaled to obtain constitutive relations for porosity, both transverse and for the entire domain, and for permeability. We examine deposition and displacement patterns, and changes in porosity and permeability due to hydrate formation, and how these properties depend on various parameters including a parametric study of the effect of hydrate formation kinetics. According to the simulations, the depth of CO 2 invasion in the sediments is controlled by changes in the pore-scale porosity close to the hydrate formation front. (author)

  3. Soil Carbon Storage and N{sub 2}O Emissions from Wheat Agroecosystems as Affected by Free-Air CO{sub 2} Enrichment (FACE) and Nitrogen Treatments. Annual Progress Report - Year 1: August 1, 1996 to July 31, 1997 [Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, S.W.; Matthias, A.; Thompson, T.L.

    1999-02-17

    Rising atmospheric CO{sub 2} concentrations have prompted concern about response of plants and crops to future elevated CO{sub 2} levels, and particularly the extent to which ecosystems will sequester carbon and thus impact the rate of rise of CO{sub 2} concentrations. Free-air CO{sub 2} enrichment (FACE) experimentation was used with wheat agroecosystems for two growing seasons to assess effects of CO{sub 2} and soil nitrogen. Over 20 researchers on this experiment variously examined plant production and grow yield, phenology, length of growing season, water-use efficiency, ecosystem productivity, below ground processes (root and microbial activity, carbon and nitrogen cycling), etc.

  4. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers

    International Nuclear Information System (INIS)

    Xu Tianfu; Apps, John A.; Pruess, Karsten

    2004-01-01

    Carbon dioxide disposal into deep aquifers is a potential means whereby atmospheric emissions of greenhouse gases may be reduced. However, our knowledge of the geohydrology, geochemistry, geophysics, and geomechanics of CO 2 disposal must be refined if this technology is to be implemented safely, efficiently, and predictably. As a prelude to a fully coupled treatment of physical and chemical effects of CO 2 injection, the authors have analyzed the impact of CO 2 immobilization through carbonate mineral precipitation. Batch reaction modeling of the geochemical evolution of 3 different aquifer mineral compositions in the presence of CO 2 at high pressure were performed. The modeling considered the following important factors affecting CO 2 sequestration: (1) the kinetics of chemical interactions between the host rock minerals and the aqueous phase, (2) CO 2 solubility dependence on pressure, temperature and salinity of the system, and (3) redox processes that could be important in deep subsurface environments. The geochemical evolution under CO 2 injection conditions was evaluated. In addition, changes in porosity were monitored during the simulations. Results indicate that CO 2 sequestration by matrix minerals varies considerably with rock type. Under favorable conditions the amount of CO 2 that may be sequestered by precipitation of secondary carbonates is comparable with and can be larger than the effect of CO 2 dissolution in pore waters. The precipitation of ankerite and siderite is sensitive to the rate of reduction of Fe(III) mineral precursors such as goethite or glauconite. The accumulation of carbonates in the rock matrix leads to a considerable decrease in porosity. This in turn adversely affects permeability and fluid flow in the aquifer. The numerical experiments described here provide useful insight into sequestration mechanisms, and their controlling geochemical conditions and parameters

  5. Characterisation, quantification and modelling of CO2 transport and interactions in a carbonate vadose zone: application to a CO2 diffusive leakage in a geological sequestration context

    International Nuclear Information System (INIS)

    Cohen, Gregory

    2013-01-01

    Global warming is related to atmospheric greenhouse gas concentration increase and especially anthropogenic CO 2 emissions. Geologic sequestration has the potential capacity and the longevity to significantly diminish anthropogenic CO 2 emissions. This sequestration in deep geological formation induces leakage risks from the geological reservoir. Several leakage scenarios have been imagined. Since it could continue for a long period, inducing environmental issues and risks for human, the scenario of a diffusive leakage is the most worrying. Thus, monitoring tools and protocols are needed to set up a near-surface monitoring plan. The present thesis deals with this problematic. The aims are the characterisation, the quantification and the modelling of transport and interactions of CO 2 in a carbonate unsaturated zone. This was achieved following an experimental approach on a natural pilot site in Saint-Emilion (Gironde, France), where diffusive gas leakage experiments were set up in a carbonate unsaturated zone. Different aspects were investigated during the study: natural pilot site description and instrumentation; the physical and chemical characterisation of carbonate reservoir heterogeneity; the natural functioning of the carbonate unsaturated zone and especially the set-up of a CO 2 concentrations baseline; the characterisation of gas plume extension following induced diffusive leakage in the carbonate unsaturated zone and the study of gas-water-rock interactions during a CO 2 diffusive leakage in a carbonate unsaturated zone through numerical simulations. The results show the importance of the carbonate reservoir heterogeneity characterisation as well as the sampling and analysing methods for the different phases. The baseline set-up is of main interest since it allows discrimination between the induced and the natural CO 2 concentrations variations. The transfer of CO 2 in a carbonate unsaturated zone is varying in function of physical and chemical properties

  6. An etude on global vacuum energy sequester

    International Nuclear Information System (INIS)

    D'Amico, Guido; Kaloper, Nemanja; Padilla, Antonio; Stefanyszyn, David; Westphal, Alexander; Zahariade, George

    2017-01-01

    Recently two of the authors proposed a mechanism of vacuum energy sequester as a means of protecting the observable cosmological constant from quantum radiative corrections. The original proposal was based on using global Lagrange multipliers, but later a local formulation was provided. Subsequently other interesting claims of a different non-local approach to the cosmological constant problem were made, based again on global Lagrange multipliers. We examine some of these proposals and find their mutual relationship. We explain that the proposals which do not treat the cosmological constant counterterm as a dynamical variable require fine tunings to have acceptable solutions. Furthermore, the counterterm often needs to be retuned at every order in the loop expansion to cancel the radiative corrections to the cosmological constant, just like in standard GR. These observations are an important reminder of just how the proposal of vacuum energy sequester avoids such problems.

  7. An etude on global vacuum energy sequester

    Energy Technology Data Exchange (ETDEWEB)

    D' Amico, Guido [CERN, Geneva (Switzerland). Theoretical Physics Dept.; Kaloper, Nemanja [California Univ., Davis, CA (United States). Dept. of Physics; Padilla, Antonio [Nottingham Univ. (United Kingdom). School of Physics and Astronomy; Stefanyszyn, David [Groningen Univ. (Netherlands). Van Swinderen Inst. for Particle Physics and Gravity; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Zahariade, George [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics

    2017-05-24

    Recently two of the authors proposed a mechanism of vacuum energy sequester as a means of protecting the observable cosmological constant from quantum radiative corrections. The original proposal was based on using global Lagrange multipliers, but later a local formulation was provided. Subsequently other interesting claims of a different non-local approach to the cosmological constant problem were made, based again on global Lagrange multipliers. We examine some of these proposals and find their mutual relationship. We explain that the proposals which do not treat the cosmological constant counterterm as a dynamical variable require fine tunings to have acceptable solutions. Furthermore, the counterterm often needs to be retuned at every order in the loop expansion to cancel the radiative corrections to the cosmological constant, just like in standard GR. These observations are an important reminder of just how the proposal of vacuum energy sequester avoids such problems.

  8. Dynamically sequestered F-term uplifting in extra dimension

    International Nuclear Information System (INIS)

    Abe, Hiroyuki; Higaki, Tetsutaro; Kobayashi, Tatsuo; Omura, Yuji

    2008-01-01

    We study moduli stabilization, the dynamical supersymmetry (SUSY) breaking, the uplifting of SUSY anti-de Sitter (AdS) vacuum and the sequestering of hidden sector in a five-dimensional supergravity model, where all modes of the visible sector and the hidden sector are originated from bulk fields. We clarify couplings between the visible and hidden sectors. The expressions for the visible sector soft SUSY breaking terms as well as the hidden sector potential are shown explicitly in our model. The sequestering is achieved dynamically by a wavefunction localization in extra dimension. We find that the tree-level soft scalar mass and the A-term can be suppressed at a SUSY breaking Minkowski minimum where the radius modulus is stabilized, while gaugino masses would be a mirage type

  9. What can be learned about carbon cycle climate feedbacks from the CO2 airborne fraction?

    Directory of Open Access Journals (Sweden)

    N. Gruber

    2010-08-01

    Full Text Available The ratio of CO2 accumulating in the atmosphere to the CO2 flux into the atmosphere due to human activity, the airborne fraction AF, is central to predict changes in earth's surface temperature due to greenhouse gas induced warming. This ratio has remained remarkably constant in the past five decades, but recent studies have reported an apparent increasing trend and interpreted it as an indication for a decrease in the efficiency of the combined sinks by the ocean and terrestrial biosphere. We investigate here whether this interpretation is correct by analyzing the processes that control long-term trends and decadal-scale variations in the AF. To this end, we use simplified linear models for describing the time evolution of an atmospheric CO2 perturbation. We find firstly that the spin-up time of the system for the AF to converge to a constant value is on the order of 200–300 years and differs depending on whether exponentially increasing fossil fuel emissions only or the sum of fossil fuel and land use emissions are used. We find secondly that the primary control on the decadal time-scale variations of the AF is variations in the relative growth rate of the total anthropogenic CO2 emissions. Changes in sink efficiencies tend to leave a smaller imprint. Therefore, before interpreting trends in the AF as an indication of weakening carbon sink efficiency, it is necessary to account for trends and variations in AF stemming from anthropogenic emissions and other extrinsic forcing events, such as volcanic eruptions. Using atmospheric CO2 data and emission estimates for the period 1959 through 2006, and our simple predictive models for the AF, we find that likely omissions in the reported emissions from land use change and extrinsic forcing events are sufficient to explain the observed long-term trend in AF. Therefore, claims for a decreasing long-term trend in the carbon sink efficiency over the last few decades are currently not supported by

  10. Soil Carbon Storage and N(sub 2)O Emissions from Wheat Agroecosystems as Affected by Free-Air CO(sub 2) Enrichment (FACE) and Nitrogen Treatments. Annual Progress Report - Year 1: August 1, 1996 to July 31, 1997[Final Report]; FINAL

    International Nuclear Information System (INIS)

    Leavitt, S.W.; Matthias, A.; Thompson, T.L.

    1999-01-01

    Rising atmospheric CO(sub 2) concentrations have prompted concern about response of plants and crops to future elevated CO(sub 2) levels, and particularly the extent to which ecosystems will sequester carbon and thus impact the rate of rise of CO(sub 2) concentrations. Free-air CO(sub 2) enrichment (FACE) experimentation was used with wheat agroecosystems for two growing seasons to assess effects of CO(sub 2) and soil nitrogen. Over 20 researchers on this experiment variously examined plant production and grow yield, phenology, length of growing season, water-use efficiency, ecosystem productivity, below ground processes (root and microbial activity, carbon and nitrogen cycling), etc

  11. CO2 Capture and Reuse

    International Nuclear Information System (INIS)

    Thambimuthu, K.; Gupta, M.; Davison, J.

    2003-01-01

    producing streams for use as a feedstock or by product for subsequent utilization in industrial processes, this paper will also review existing methods of CO2 utilization and the future scope for utilization as a sink that could prevent the release of anthropogenic CO2 emissions into the atmosphere. In order to be effective as a sink, the process or product that uses CO2 must take cognisance of the type of energy use, energy penalties and net greenhouse gas emissions associated with the 'capture' and 'fixation' of carbon, as well as significantly prolonging the period between CO2 production from fossil fuels and the stage of its final discharge into the atmosphere from any degradation or release of the 'fixed' carbon. Hence, the manufacturing of various chemicals, materials or products using CO2 as a raw material will be reviewed and evaluated in terms of these criteria as well as their chemical/thermodynamic stability relative to CO2

  12. Natural CO2 migrations in the South-Eastern Basin of France: implications for the CO2 storage in sedimentary formations

    International Nuclear Information System (INIS)

    Rubert, Y.

    2009-03-01

    Study of natural CO 2 analogues brings key informations on the factors governing the long term stability/instability of future anthropogenic CO 2 storages. The main objective of this work, through the study of cores from V.Mo.2 well crosscutting the Montmiral natural reservoir (Valence Basin, France), is to trace the deep CO 2 migrations in fractures. Petrographic, geochemical and micro-thermometric studies of the V.Mo.2 cores were thus performed in order: 1) to describe the reservoir filling conditions and 2) to detect possible CO 2 -leakage through the sediments overlying the reservoir. Fluid inclusions from the Paleozoic crystalline basement record the progressive unmixing of a hot homogeneous aquo-carbonic fluid. The Montmiral reservoir was therefore probably fed by a CO 2 -enriched gas component at the Late Cretaceous-Paleogene. The study of the sedimentary column in V.Mo.2 well, demonstrates that the CO 2 did not migrate towards the surface through the thick marly unit (Domerian-Middle Oxfordian). These marls have acted as an impermeable barrier that prevented the upward migration of fluids. Two main stages of fluid circulation have been recognized: 1) an ante- Callovian one related to the Tethysian extension 2) a tertiary stage during which the upper units underwent a karstification, with CO 2 leakage related but which remained confined into the deeper parts of the Valence Basin. Since the Paleogene, the Montmiral reservoir has apparently remained stable, despite the Pyrenean and alpine orogeneses. This is mainly due to the efficient seal formed by the thick marly levels and also to the local structuration in faulted blocks which apparently acted as efficient lateral barriers. (author)

  13. The influence of vegetation dynamics on anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    U. Port

    2012-11-01

    Full Text Available In this study, vegetation–climate and vegetation–carbon cycle interactions during anthropogenic climate change are assessed by using the Earth System Model of the Max Planck Institute for Meteorology (MPI ESM that includes vegetation dynamics and an interactive carbon cycle. We assume anthropogenic CO2 emissions according to the RCP 8.5 scenario in the time period from 1850 to 2120. For the time after 2120, we assume zero emissions to evaluate the response of the stabilising Earth System by 2300.

    Our results suggest that vegetation dynamics have a considerable influence on the changing global and regional climate. In the simulations, global mean tree cover extends by 2300 due to increased atmospheric CO2 concentration and global warming. Thus, land carbon uptake is higher and atmospheric CO2 concentration is lower by about 40 ppm when considering dynamic vegetation compared to the static pre-industrial vegetation cover. The reduced atmospheric CO2 concentration is equivalent to a lower global mean temperature. Moreover, biogeophysical effects of vegetation cover shifts influence the climate on a regional scale. Expanded tree cover in the northern high latitudes results in a reduced albedo and additional warming. In the Amazon region, declined tree cover causes a regional warming due to reduced evapotranspiration. As a net effect, vegetation dynamics have a slight attenuating effect on global climate change as the global climate cools by 0.22 K due to natural vegetation cover shifts in 2300.

  14. Advanced emission control system: CO2 sequestration using algae integrated management system (AIMS)

    International Nuclear Information System (INIS)

    Syed Isa Syed Alwi; Mohd Norsham Che Yahya; Ruzanna Abdul Rahman

    2010-01-01

    One of the companies under Algae tech, Sasaran Bio fuel Sdn. Bhd. provides project management, technology transfer and technical expertise to develop a solution to minimize and mitigate Carbon Dioxide (CO 2 ) emissions through the diversion of the CO 2 to open algal ponds and enclosed photo-bioreactors as algal propagation technologies to consume CO 2 waste stream. The company is presently consulting a listed company from Indonesia to address the technology know-how and implementation of microalgae development from the flue gas of the Groups power plants. Nowadays, one of the aspects that contribute to the air pollution is the emission of flue gases from the factories. So, we provide a system that can reduce the emission of flue gas to the atmosphere and at the same time, cultivate certain strain of algae. With the technology, Algae Integrated Management System (AIMS), it will be for sure a new beginning for way to reduce air pollution. The utilization of power plant resources for growing selected microalgae at a low energy cost for valuable products and bio-fuels while providing CO 2 sequestering. In the same time, it also a low cost algae agriculture. By doing so, it provides all year algae production which can be an income. This residual energy used CO 2 produced from power stations and industrial plants to feed the process (CO 2 recycling and bio-fixation) in cultivation of algae. This will be a low cost flue gas (CO 2 ) to the developer. In a nutshell, CO 2 Sequestration by algae reactors is a potential to reduce greenhouse gas emission by using the CO 2 in the stack gases to produce algae. (author)

  15. Xerogel-Sequestered Silanated Organochalcogenide Catalysts for Bromination with Hydrogen Peroxide and Sodium Bromide

    Directory of Open Access Journals (Sweden)

    Caitlyn M. Gatley

    2015-05-01

    Full Text Available While H2O2 is a powerful oxidant, decomposing into environmentally benign H2O and O2, a catalyst is often required for reactions with H2O2 to proceed at synthetically useful rates. Organotellurium and organoselenium compounds catalyze the oxidation of halide salts to hypohalous acids using H2O2. When sequestered into xerogel monoliths, the xerogel-chalcogenide combinations have demonstrated increased catalytic activity relative to the organochalcogen compound alone in solution for the oxidation of halide salts to hypohalous acids with H2O2. Diorganotellurides, diorganoselenides, and diorganodiselenides bearing triethoxysilane functionalities were sequestered into xerogel monoliths and their catalytic activity and longevity were investigated. The longevity of the catalyst-xerogel combinations was examined by isolating and recycling the catalyst-xerogel combination. It was found tellurium-containing catalyst 3 and selenium-containing catalyst 8 maintained their catalytic activity through three recycling trials and adding electron-donating substituents to catalyst 3 also increased the catalytic rate. The presence of organotellurium and organoselenium groups in the +4 oxidation state was determined by X-ray photoelectron spectroscopy.

  16. Problems in the Relationship between CO2 Emissions and Global Warming

    Directory of Open Access Journals (Sweden)

    Ferenc Kovács

    2005-03-01

    Full Text Available In the analysis of environmental conditions and impacts, the viewpoint that greenhouse gases, primarily anthropogenic (industrial, human carbon dioxide, play a determining role in the change of global temperatures, ( the increase experienced in the last one and a half decade, has been given widespread publicity recently. Coal-fired power plants are the first to blame for the increase in atmospheric CO2 concentrations in the last two centuries. The study indicates possibilities to increase the efficiency of coal-fired power plants, which would involve a considerable reduction in CO2 emissions with an identical production volume of electrical energy. On the basis of the analysis of the amount of fossil fuels used, the amount of CO2 emissions and changes in the concentrations of atmospheric CO2, it is shown that no correlation can be proved between the factors investigated and changes in global temperatures.

  17. Marine Microphytobenthic Assemblage Shift along a Natural Shallow-Water CO2 Gradient Subjected to Multiple Environmental Stressors

    OpenAIRE

    Johnson, V; Brownlee, C; Milazzo, M; Hall-Spencer, J

    2015-01-01

    Predicting the effects of anthropogenic CO2 emissions on coastal ecosystems requires an understanding of the responses of algae, since these are a vital functional component of shallow-water habitats. We investigated microphytobenthic assemblages on rock and sandy habitats along a shallow subtidal pCO2 gradient near volcanic seeps in the Mediterranean Sea. Field studies of natural pCO2 gradients help us understand the likely effects of ocean acidification because entire communities are subjec...

  18. Multidecadal Increase in North Atlantic Coccolithophores and Potential Role of Increasing CO2

    Science.gov (United States)

    Rivero-Calle, S.; Gnanadesikan, A.; del Castillo, C. E.; Balch, W. M.; Guikema, S.

    2016-02-01

    As anthropogenic CO2 emissions acidify the oceans, calcifiers are expected to be negatively impacted. Using data from the Continuous Plankton Recorder, we show that coccolithophore occurrence in the North Atlantic has increased from 2 to over 20% from 1965 through 2010. We used Random Forest models to examine more than 20 possible environmental drivers of this change. CO2 and the Atlantic Multidecadal Oscillation were the best predictors. Since coccolithophore photosynthesis is strongly carbon-limited, we hypothesize that higher CO2 levels might be encouraging growth. A compilation of 41 independent laboratory studies supports our hypothesis. Our study shows a long-term basin-scale increase in coccolithophores and suggests that increasing pCO2 and temperature accelerated the growth rate of a key phytoplankton group for carbon cycling.

  19. Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    Science.gov (United States)

    Rosenbauer, R.J.; Koksalan, T.; Palandri, J.L.

    2005-01-01

    Deep-saline aquifers are potential repositories for excess CO2, currently being emitted to the atmosphere from anthropogenic activities, but the reactivity of supercritical CO2 with host aquifer fluids and formation minerals needs to be understood. Experiments reacting supercritical CO2 with natural and synthetic brines in the presence and absence of limestone and plagioclase-rich arkosic sandstone showed that the reaction of CO2-saturated brine with limestone results in compositional, mineralogical, and porosity changes in the aquifer fluid and rock that are dependent on initial brine composition, especially dissolved calcium and sulfate. Experiments reacting CO2-saturated, low-sulfate brine with limestone dissolved 10% of the original calcite and increased rock porosity by 2.6%. Experiments reacting high-sulfate brine with limestone, both in the presence and absence of supercritical CO2, were characterized by the precipitation of anhydrite, dolomitization of the limestone, and a final decrease in porosity of 4.5%. However, based on favorable initial porosity changes of about 15% due to the dissolution of calcite, the combination of CO2 co-injection with other mitigation strategies might help alleviate some of the well-bore scale and formation-plugging problems near the injection zone of a brine disposal well in Paradox Valley, Colorado, as well as provide a repository for CO2. Experiments showed that the solubility of CO2 is enhanced in brine in the presence of limestone by 9% at 25 ??C and 6% at 120 ??C and 200 bar relative to the brine itself. The solubility of CO2 is enhanced also in brine in the presence of arkosic sandstone by 5% at 120 ??C and 300 bar. The storage of CO 2 in limestone aquifers is limited to only ionic and hydraulic trapping. However, brine reacted with supercritical CO2 and arkose yielded fixation and sequestration of CO2 in carbonate mineral phases. Brine desiccation was observed in all experiments containing a discrete CO2 phase

  20. Underground CO{sub 2} Storage: Approach for Favourable Formations in Ebro Basin; AGP de CO{sub 2}: Seleccion de Formaciones Favorables en la Cuenca del Ebro

    Energy Technology Data Exchange (ETDEWEB)

    Campos, R.; Perucha, A.; Recreo, F.

    2008-04-10

    The study of the possibilities of conducting Deep Geological CO{sub 2} Storage inside Spanish territory is being performed through the Strategic Singular Project PS-120000-2005-2 of the National Program of Energy from the Education and Science Ministry, and called CO{sub 2} generation, sequestration and storage advanced technologies, sub project N3 CO{sub 2} Geological Storage This report studies the possibilities the Ebro basin offers for definitive CO{sub 2} storage as one of the Spanish selected areas from previous studies. The study and reinterpretation of the information obtained from the hydrocarbon exploration accomplished in the area has lead to the selection of a series of geological formations. These formations have been chosen attending certain characteristics such as their disposition, extension, depth and porosity. The study has also been conducted considering the characteristics of the geological formations above the CO{sub 2} storage formations so as to guarantee the sealing of the storage. The study includes the approximate estimation of the storage capacity for each of the formations in Megatons of CO{sub 2}, which can be useful in future decision making. Deep geological storage is one of the more relevant international initiatives in order to eliminate or reduce the anthropogenic CO{sub 2} emissions to the atmosphere. (Author) 68 refs.

  1. Ocean acidification affects fish spawning but not paternity at CO2 seeps.

    Science.gov (United States)

    Milazzo, Marco; Cattano, Carlo; Alonzo, Suzanne H; Foggo, Andrew; Gristina, Michele; Rodolfo-Metalpa, Riccardo; Sinopoli, Mauro; Spatafora, Davide; Stiver, Kelly A; Hall-Spencer, Jason M

    2016-07-27

    Fish exhibit impaired sensory function and altered behaviour at levels of ocean acidification expected to occur owing to anthropogenic carbon dioxide emissions during this century. We provide the first evidence of the effects of ocean acidification on reproductive behaviour of fish in the wild. Satellite and sneaker male ocellated wrasse (Symphodus ocellatus) compete to fertilize eggs guarded by dominant nesting males. Key mating behaviours such as dominant male courtship and nest defence did not differ between sites with ambient versus elevated CO2 concentrations. Dominant males did, however, experience significantly lower rates of pair spawning at elevated CO2 levels. Despite the higher risk of sperm competition found at elevated CO2, we also found a trend of lower satellite and sneaker male paternity at elevated CO2 Given the importance of fish for food security and ecosystem stability, this study highlights the need for targeted research into the effects of rising CO2 levels on patterns of reproduction in wild fish. © 2016 The Author(s).

  2. Advances in CO2 capture technology: A patent review

    International Nuclear Information System (INIS)

    Li, Bingyun; Duan, Yuhua; Luebke, David; Morreale, Bryan

    2013-01-01

    Highlights: ► Timely updates on carbon capture technologies: More than 1000 patents on solvent, sorbent, and membrane. ► More patents on solvent and sorbent compared to membrane. ► Environmental and health concerns exist regarding carbon capture technologies. -- Abstract: Carbon dioxide (CO 2 ) emissions are believed to be a major contributor to global warming. As a consequence, large anthropogenic CO 2 sources worldwide will eventually be required to implement CO 2 capture and storage technologies to control CO 2 emissions. In order to guide the establishment of policies for CO 2 removal, we reviewed the current status of CO 2 capture patents and technologies based on the Espacenet patent database and found that more than 1000 patents have been published on sorbent, solvent, and membrane. More than 60% of these patents were published since the year 2000, and a sharp increase in patent numbers was seen in the last several years; ∼25% patents were published in the last 2 years. Substantially more patents on CO 2 removal and separation technologies are expected in the coming years. Meanwhile, the top four major types of patents, which consist of more than 2/3 of these patents, were patents granted by Japan (JP), United States (US), World Intellectual Property Organization (WO), and China (CN), and approximately half of the patents were JP and US patents. Unfortunately, no current technologies for removing CO 2 from large sources like coal-based power plants exist which satisfy the needs of safety, efficiency, and economy; further enhancement and innovation are much needed.

  3. Tropical Cyclones Cause CaCO3 Undersaturation of Coral Reef Seawater in a High-CO2 World

    Science.gov (United States)

    Manzello, D.; Enochs, I.; Carlton, R.; Musielewicz, S.; Gledhill, D. K.

    2013-12-01

    Ocean acidification is the global decline in seawater pH and calcium carbonate (CaCO3) saturation state (Ω) due to the uptake of anthropogenic CO2 by the world's oceans. Acidification impairs CaCO3 shell and skeleton construction by marine organisms. Coral reefs are particularly vulnerable, as they are constructed by the CaCO3 skeletons of corals and other calcifiers. We understand relatively little about how coral reefs will respond to ocean acidification in combination with other disturbances, such as tropical cyclones. Seawater carbonate chemistry data collected from two reefs in the Florida Keys before, during, and after Tropical Storm Isaac provide the most thorough data to-date on how tropical cyclones affect the seawater CO2-system of coral reefs. Tropical Storm Isaac caused both an immediate and prolonged decline in seawater pH. Aragonite saturation state was depressed by 1.0 for a full week after the storm impact. Based on current 'business-as-usual' CO2 emissions scenarios, we show that tropical cyclones with high rainfall and runoff can cause periods of undersaturation (Ω negatively impact the structural persistence of coral reefs over this century.

  4. CHEMICAL FIXATION OF CO2 IN COAL COMBUSTION PRODUCTS AND RECYCLING THROUGH BIOSYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    C. Henry Copeland; Paul Pier; Samantha Whitehead; Paul Enlow; Richard Strickland; David Behel

    2003-12-15

    This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented. Algal growth can be limited by several factors, including the level of bicarbonate available for photosynthesis, the pH of the growth solution, nutrient levels, and the size of the cell population, which determines the available space for additional growth. In order to supply additional CO2 to increase photosynthesis and algal biomass production, fly ash reactor has been demonstrated to increase the available CO2 in solution above the limits that are achievable with dissolved gas alone. The amount of dissolved CO2 can be used to control pH for optimum growth. Periodic harvesting of algae can be used to maintain algae in the exponential, rapid growth phase. An 800 liter scale up demonstrated that larger scale production is possible. The larger experiment demonstrated that indirect addition of CO2 is feasible and produces significantly less stress on the algal system. With better harvesting methods, nutrient management, and carbon dioxide management, an annual biomass harvest of about 9,000 metric tons per square kilometer (36 MT per acre) appears to be feasible. To sequester carbon, the algal biomass needs to be placed in a permanent location. If drying is undesirable, the biomass will eventually begin to aerobically decompose. It was demonstrated that algal biomass is a suitable feed to an anaerobic digester to produce methane

  5. Current Travertines Precipitation from CO2-rich Groundwaters as an alert of CO2 Leakages from a Natural CO2 Storage at Ganuelas-Mazarron Tertiary Basin (Murcia, Spain)

    International Nuclear Information System (INIS)

    Rodrigo-Naharro, J.; Delgado, A.; Herrero, M. J.; Granados, A.; Perez del Villar, L.

    2013-01-01

    Carbon capture and storage technologies represent the most suitable solutions related to the high anthropogenic CO 2 emissions to the atmosphere. As a consequence, monitoring of the possible CO 2 leakages from an artificial deep geological CO 2 storage is indispensable to guarantee its safety. Fast surficial travertine precipitation related to these CO 2 leakages can be used as an alert for these escapes. Since few studies exist focusing on the long-term behaviour of an artificial CO 2 DGS, natural CO 2 storage affected by natural or artificial escapes must be studied as natural analogues for predicting the long-term behaviour of an artificial CO 2 storage. In this context, a natural CO 2 reservoir affected by artificial CO 2 escapes has been studied in this work. This study has mainly focused on the current travertines precipitation associated with the upwelling CO 2 -rich waters from several hydrogeological wells drilled in the Ganuelas-Mazarron Tertiary basin (SE Spain), and consists of a comprehensive characterisation of parent-waters and their associated carbonates, including elemental and isotopic geochemistry, mineralogy and petrography. Geochemical characterisation of groundwaters has led to recognise 4 hydrofacies from 3 different aquifers. These groundwaters have very high salinity and electrical conductivity; are slightly acid; present high dissolved inorganic carbon (DIC) and free CO 2 ; are oversaturated in both aragonite and calcite; and dissolve, mobilize and transport low quantities of heavy and/or toxic elements. Isotopic values indicate that: i) the origin of parent-waters is related to rainfalls from clouds originated in the Mediterranean Sea or continental areas; ii) the origin of C is mainly inorganic; and iii) sulphate anions come mainly from the dissolution of the Messinian gypsum from the Tertiary Basin sediments. Current travertines precipitation seems to be controlled by a combination of several factors, such as: i) a fast decrease of the

  6. CO{sub 2}-balance in the athmosphere and CO{sub 2}-utilisation : an engineering approach

    Energy Technology Data Exchange (ETDEWEB)

    Turunen, H.

    2012-07-01

    The subject of the thesis was to analyze by an engineering approach the global CO{sub 2} balance and CO{sub 2} utilisation. The aim was to apply methods and knowledge used in engineering sciences to describe the global CO{sub 2} balance and the role of CO{sub 2} in anthropogenic utilisation applications. Moreover barriers restricting commercialisation of new applications are discussed. These subjects were studied by literature reviews and calculations based on thermodynamics models. Engineering methods have shown to be applicable to describe the global balance of CO{sub 2} and to define by a numerical way the Earth's system carrying capacity. Direct and indirect actions, which mitigate the overload situation, were derived from the results. To screen out the attractive CO{sub 2} properties in utilisation applications a mapping analysis was carried out. Properties, which enhance mass and heat transfer, are one of the most meaningful characteristics from the chemical engineering point of view. Attractive properties are often achieved at the supercritical state. Engineering thermodynamic methods were used in fluid phase determination of the case studies. Even simple methods are sufficient to advice experimental research work. The thermodynamic knowledge is the basement in creation of industrial scale chemical processes. If detailed information on system properties is needed, a model development due to the special requirements of high pressure systems and CO{sub 2} features is required. This knowledge covers property information from all the components involved in chemical reactions. In addition to engineering knowledge successful technology transfer requires positive social structure as well. Finally, if the humankind is willing to mimic Nature and use light of the Sun as an energy source in engineering systems, development of thermodynamic methods is required also in this area. Especially the work terms, originally defined in classical mechanical thermodynamics

  7. Chemical Method to Improve CO{sub 2} Flooding Sweep Efficiency for Oil Recovery Using SPI-CO{sub 2} Gels

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Lyle D.

    2009-04-14

    hydrocarbon combustion for energy, chemical and fertilizer plants. For example, coal fired power plants emit large amounts of CO{sub 2} in order to produce electrical energy. Carbon dioxide sequestration is gaining attention as concerns mount over possible global climate change caused by rising emissions of greenhouse gases. Removing the CO{sub 2} from the energy generation process would make these plants more environmentally friendly. In addition, CO{sub 2} flooding is an attractive means to enhance oil and natural gas recovery. Capture and use of the CO{sub 2} from these plants for recycling into CO{sub 2} flooding of marginal reservoirs provides a “dual use” opportunity prior to final CO{sub 2} sequestration in the depleted reservoir. Under the right pressure, temperature and oil composition conditions, CO{sub 2} can act as a solvent, cleaning oil trapped in the microscopic pores of the reservoir rock. This miscible process greatly increases the recovery of crude oil from a reservoir compared to recovery normally seen by waterflooding. An Enhanced Oil Recovery (EOR) project that uses an industrial source of CO{sub 2} that otherwise would be vented to the atmosphere has the added environmental benefit of sequestering the greenhouse gas.

  8. Net ecosystem CO2 exchange over a larch forest in Hokkaido, Japan

    International Nuclear Information System (INIS)

    Huimin Wang; Saigusa, Nobuko; Yamamoto, Susumu; Kondo, Hiroaki; Hirano, Takashi; Toriyama, Atsushi; Fujinuma, Yasumi

    2004-01-01

    Larch forests are distributed extensively in the east Eurasian continent and are expected to play a significant role in the terrestrial ecosystem carbon cycling process. In view of the fact that studies on carbon exchange for this important biome have been very limited, we have initiated a long-term flux observation in a larch forest ecosystem in Hokkaido in northern Japan since 2000. The net ecosystem CO 2 exchange (NEE) showed large seasonal and diurnal variation. Generally, the larch forest ecosystem released CO 2 in nighttime and assimilated CO 2 in daytime during the growing season from May to October. The ecosystem started to become a net carbon sink in May, reaching a maximum carbon uptake as high as 186 g C m -2 month -1 in June. With the yellowing, senescing and leaf fall, the ecosystem turned into a carbon source in November. During the non-growing season, the larch forest ecosystem became a net source of CO 2 , releasing an average of 16.7 g C m -2 month -1 . Overall, the ecosystem sequestered 141-240 g C m -2 yr -1 in 2001. The NEE was significantly influenced by environmental factors. Respiration of the ecosystem, for example, was exponentially dependent on air temperature, while photosynthesis was related to the incident PAR in a manner consistent with the Michaelis-Menten model. Although the vapor pressure deficit (VPD) was scarcely higher than 15 hPa, the CO 2 uptake rate was also depressed when VPD surpassed 10 hPa (Author)

  9. The future role of reforestation in reducing buildup of atmospheric CO2

    International Nuclear Information System (INIS)

    Marland, G.

    1993-01-01

    Among the options posed for mitigating the buildup of atmospheric CO 2 is planting new forest areas to sequester carbon from the atmosphere. Among the questions of interest in modeling the global carbon cycle is the extent to which reforestation is likely to succeed in providing physical removal of CO 2 from the atmosphere. There are many strategies for using forest land to mitigate the atmospheric buildup of CO 2 : decreasing the rate at which forests are cleared for other land uses, increasing the density of carbon storage in existing forests, improving the rate and efficiency at which forest products are used in the place of other energy intensive products, substitution of renewable wood fuels for fossil fuels, improved management of forests and agroforestry, and increasing the amount of land in standing forest. Because increasing the area of forests has social, political, and economic limitations; in addition to physical limitations; it is hard to envision a large increase in forest area except where there are associated economic benefits. The authors speculation is that, over the next several decades, the forest strategies most likely to be pursued for the express purpose of CO 2 mitigation are those which provide more or more-efficient substitution of forest products for energy or energy-intensive resources and that the physical accumulation of additional carbon in forests will be of lesser importance

  10. Gas geochemistry of natural analogues for the studies of geological CO2 sequestration

    International Nuclear Information System (INIS)

    Voltattorni, N.; Sciarra, A.; Caramanna, G.; Cinti, D.; Pizzino, L.; Quattrocchi, F.

    2009-01-01

    Geological sequestration of anthropogenic CO 2 appears to be a promising method for reducing the amount of greenhouse gases released to the atmosphere. Geochemical modelling of the storage capacity for CO 2 in saline aquifers, sandstones and/or carbonates should be based on natural analogues both in situ and in the laboratory. The main focus of this paper has been to study natural gas emissions representing extremely attractive surrogates for the study and prediction of the possible consequences of leakage from geological sequestration sites of anthropogenic CO 2 (i.e., the return to surface, potentially causing localised environmental problems). These include a comparison among three different Italian case histories: (i) the Solfatara crater (Phlegraean Fields caldera, southern Italy) is an ancient Roman spa. The area is characterised by intense and diffuse hydrothermal activity, testified by hot acidic mud pools, thermal springs and a large fumarolic field. Soil gas flux measurements show that the entire area discharges between 1200 and 1500 tons of CO 2 per day; (ii) the Panarea Island (Aeolian Islands, southern Italy) where a huge submarine volcanic-hydrothermal gas burst occurred in November, 2002. The submarine gas emissions chemically modified seawater causing a strong modification of the marine ecosystem. All of the collected gases are CO 2 -dominant (maximum value: 98.43 vol.%); (iii) the Tor Caldara area (Central Italy), located in a peripheral sector of the quiescent Alban Hills volcano, along the faults of the Ardea Basin transfer structure. The area is characterised by huge CO 2 degassing both from water and soil. Although the above mentioned areas do not represent a storage scenario, these sites do provide many opportunities to study near-surface processes and to test monitoring methodologies.

  11. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification

    Science.gov (United States)

    Zhang, Han; Cao, Long

    2016-01-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations. PMID:26838480

  12. On the cost-effective abatement of CO2-options taking consumer behaviour into account

    International Nuclear Information System (INIS)

    Wietschel, M.; Rentz, O.

    1995-01-01

    The current ecopolitical discussion focusses on the greenhouse effect and the consequent political aim to abate anthropogenic CO 2 emissions. Studies on individual measures for CO 2 abatement and on the development of efficient abatement strategies are already at hand. There is one aspect, however, that has hardly been dealt with as yet: If CO 2 abatement suceeds as it is planned by the Federal Government, then energy and prices will rise considerably, and this will curb the demand for energy. Any efficient abatement strategy must take this into account. The article presents a new concept for energy-emission models that takes consumer behaviour into account and discusses efficient CO 2 abatement strategies following from the application of such models. (orig.) [de

  13. Discussion of the influence of CO and CH4 in CO2 transport, injection, and storage for CCS technology.

    Science.gov (United States)

    Blanco, Sofía T; Rivas, Clara; Bravo, Ramón; Fernández, Javier; Artal, Manuela; Velasco, Inmaculada

    2014-09-16

    This paper discusses the influence of the noncondensable impurities CO and CH4 on Carbon Capture and Storage (CCS) technology. We calculated and drew conclusions about the impact of both impurities in the CO2 on selected transport, injection, and storage parameters (pipeline pressure drop, storage capacity, etc.), whose analysis is necessary for the safe construction and operation of CO2 pipelines and for the secure long-term geological storage of anthropogenic CO2. To calculate these parameters, it is necessary to acquire data on the volumetric properties and the vapor-liquid equilibrium of the fluid being subjected to CCS. In addition to literature data, we used new experimental data, which are presented here and were obtained for five mixtures of CO2+CO with compositions characteristic of the typical emissions of the E.U. and the U.S.A. Temperatures and pressures are based on relevant CO2 pipeline and geological storage site values. From our experimental results, Peng-Robinson, PC-SAFT, and GERG Equations of State for were validated CO2+CO under the conditions of CCS. We conclude that the concentration of both impurities strongly affects the studied parameters, with CO being the most influential and problematic. The overall result of these negative effects is an increase in the difficulties, risks, and overall costs of CCS.

  14. Integrated Energy System with Beneficial Carbon Dioxide (CO{sub 2}) Use

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaolei; Rink, Nancy

    2011-04-30

    To address the public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) is actively funding a CO{sub 2} management program to develop technologies capable of reducing the CO{sub 2} emissions from fossil fuel power plants and other industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE-NETL launched an alternative CO{sub 2} mitigation program focusing on beneficial CO{sub 2} reuse and supporting the development of technologies that mitigate emissions by converting CO{sub 2} to solid mineral form that can be utilized for enhanced oil recovery, in the manufacturing of concrete or as a benign landfill, in the production of valuable chemicals and/or fuels. This project was selected as a CO{sub 2} reuse activity which would conduct research and development (R&D) at the pilot scale via a cost-shared Cooperative Agreement number DE-FE0001099 with DOE-NETL and would utilize funds setaside by the American Recovery and Reinvestment Act (ARRA) of 2009 for Industrial Carbon Capture and Sequestration R&D,

  15. Potential and economics of CO2 sequestration

    International Nuclear Information System (INIS)

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J.

    2001-01-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2 . Some techniques could be used to reduced CO 2 emission and stabilize atmospheric CO 2 concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO 2 emissions such as renewable or nuclear energy, iii) capture and store CO 2 from fossil fuels combustion, and enhance the natural sinks for CO 2 (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO 2 and to review the various options for CO 2 sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO 2 emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO 2 is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon-storing approach to agriculture, forests and land management could

  16. Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes.

    Directory of Open Access Journals (Sweden)

    Jolanda M H Verspagen

    Full Text Available Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC, pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1 dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2 rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3 above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked

  17. Rising CO2 Levels Will Intensify Phytoplankton Blooms in Eutrophic and Hypertrophic Lakes

    Science.gov (United States)

    Verspagen, Jolanda M. H.; Van de Waal, Dedmer B.; Finke, Jan F.; Visser, Petra M.; Van Donk, Ellen; Huisman, Jef

    2014-01-01

    Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1) dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2) rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked intensification of

  18. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden

    Science.gov (United States)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy

    2016-04-01

    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal

  19. Evaluation of anthropogenic emissions of carbon monoxide in East Asia derived from the observations of atmospheric radon-222 over the western North Pacific

    International Nuclear Information System (INIS)

    Wada, A.; Matsueda, H.; Tsuboi, K.; Sawa, Y.; Murayama, S.; Taguchi, S.; Kamada, A.; Nosaka, M.

    2012-01-01

    We used the observed CO/"2"2"2Rn ratio in the Asian outflows at Minamitorishima (MNM), Yonagunijima (YON), and Ryori (RYO) in the western North Pacific from 2007 to 2011, together with a three-dimensional chemical transport model (STAG), in order to estimate anthropogenic emissions of CO in East Asia. The measurements captured high-frequency synoptic variations of enhanced "2"2"2Rn (ERN) events associated with the long-range transport of continental air masses. "2"2"2Rn and CO showed high correlation during the ERN events observed at MNM and YON in the winter and spring, but not at RYO. The STAG transport model reproduced well the concentrations of observed "2"2"2Rn when forced with a constant and uniform flux density of 1.0 atom cm"-"2 s"-"1, but underestimated the associated enhancement of synoptically variable CO caused by the underestimated flux values in the EDGAR ver. 4.1 emission database used in the model for East Asia. Better estimates for the East Asian emission were derived using a radon tracer method based on the difference in the enhancement ratio of CO/"2"2"2Rn between the observation and the model. The anthropogenic emissions of CO for China, Japan, and Korea were estimated to be 203 Tg CO yr"-"1, 91% of which originated in China. When compared with other estimated emissions of CO, our estimated result showed consistency with those of the inverse method, whereas the emission database of EDGAR was about 45% smaller than our anthropogenic estimation for China.

  20. Does elevated pCO2 affect reef octocorals?

    Science.gov (United States)

    Gabay, Yasmin; Benayahu, Yehuda; Fine, Maoz

    2013-03-01

    Increasing anthropogenic pCO2 alters seawater chemistry, with potentially severe consequences for coral reef growth and health. Octocorals are the second most important faunistic component in many reefs, often occupying 50% or more of the available substrate. Three species of octocorals from two families were studied in Eilat (Gulf of Aqaba), comprising the zooxanthellate Ovabunda macrospiculata and Heteroxenia fuscescens (family Xeniidae), and Sarcophyton sp. (family Alcyoniidae). They were maintained under normal (8.2) and reduced (7.6 and 7.3) pH conditions for up to 5 months. Their biolological features, including protein concentration, polyp weight, density of zooxanthellae, and their chlorophyll concentration per cell, as well as polyp pulsation rate, were examined under conditions more acidic than normal, in order to test the hypothesis that rising pCO2 would affect octocorals. The results indicate no statistically significant difference between the octocorals exposed to reduced pH values compared to the control. It is therefore suggested that the octocorals' tissue may act as a protective barrier against adverse pH conditions, thus maintaining them unharmed at high levels of pCO2.

  1. Observations of CO{sub 2} clathrate hydrate formation and dissolution under deep-ocean disposal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Warzinski, R.P.; Cugini, A.V. [Department of Energy, Pittsburgh, PA (United States); Holder, G.D. [Univ. of Pittsburgh, Pittsburgh, PA (United States)

    1995-11-01

    Disposal of anthropogenic emissions of CO{sub 2} may be required to mitigate rises in atmospheric levels of this greenhouse gas if other measures are ineffective and the worst global warming scenarios begin to occur. Long-term storage of large quantities of CO{sub 2} has been proposed, but the feasibility of large land and ocean disposal options remains to be established. Determining the fate of liquid CO{sub 2} injected into the ocean at depths greater than 500 m is complicated by uncertainties associated with the physical behavior of CO{sub 2} under these conditions, in particular the possible formation of the ice-like CO{sub 2} clathrate hydrate. Resolving this issue is key to establishing the technical feasibility of this option. Experimental and theoretical work in this area is reported.

  2. Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2

    Science.gov (United States)

    Rivero-Calle, Sara; Gnanadesikan, Anand; Del Castillo, Carlos E.; Balch, William M.; Guikema, Seth D.

    2015-12-01

    As anthropogenic carbon dioxide (CO2) emissions acidify the oceans, calcifiers generally are expected to be negatively affected. However, using data from the Continuous Plankton Recorder, we show that coccolithophore occurrence in the North Atlantic increased from ~2 to more than 20% from 1965 through 2010. We used random forest models to examine more than 20 possible environmental drivers of this change, finding that CO2 and the Atlantic Multidecadal Oscillation were the best predictors, leading us to hypothesize that higher CO2 levels might be encouraging growth. A compilation of 41 independent laboratory studies supports our hypothesis. Our study shows a long-term basin-scale increase in coccolithophores and suggests that increasing CO2 and temperature have accelerated the growth of a phytoplankton group that is important for carbon cycling.

  3. Coherence among the Northern Hemisphere land, cryosphere, and ocean responses to natural variability and anthropogenic forcing during the satellite era

    Science.gov (United States)

    Gonsamo, Alemu; Chen, Jing M.; Shindell, Drew T.; Asner, Gregory P.

    2016-08-01

    A lack of long-term measurements across Earth's biological and physical systems has made observation-based detection and attribution of climate change impacts to anthropogenic forcing and natural variability difficult. Here we explore coherence among land, cryosphere and ocean responses to recent climate change using 3 decades (1980-2012) of observational satellite and field data throughout the Northern Hemisphere. Our results show coherent interannual variability among snow cover, spring phenology, solar radiation, Scandinavian Pattern, and North Atlantic Oscillation. The interannual variability of the atmospheric peak-to-trough CO2 amplitude is mostly impacted by temperature-mediated effects of El Niño/Southern Oscillation (ENSO) and Pacific/North American Pattern (PNA), whereas CO2 concentration is affected by Polar Pattern control on sea ice extent dynamics. This is assuming the trend in anthropogenic CO2 emission remains constant, or the interannual changes in the trends are negligible. Our analysis suggests that sea ice decline-related CO2 release may outweigh increased CO2 uptake through longer growing seasons and higher temperatures. The direct effects of variation in solar radiation and leading teleconnections, at least in part via their impacts on temperature, dominate the interannual variability of land, cryosphere and ocean indicators. Our results reveal a coherent long-term changes in multiple physical and biological systems that are consistent with anthropogenic forcing of Earth's climate and inconsistent with natural drivers.

  4. Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2 O3 for Enhanced CO2 Capture Performance.

    Science.gov (United States)

    Armutlulu, Andac; Naeem, Muhammad Awais; Liu, Hsueh-Ju; Kim, Sung Min; Kierzkowska, Agnieszka; Fedorov, Alexey; Müller, Christoph R

    2017-11-01

    CO 2 capture and storage is a promising concept to reduce anthropogenic CO 2 emissions. The most established technology for capturing CO 2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high-temperature CO 2 sorbent can significantly reduce the costs of CO 2 capture. A serious disadvantage of CaO derived from earth-abundant precursors, e.g., limestone, is the rapid, sintering-induced decay of its cyclic CO 2 uptake. Here, a template-assisted hydrothermal approach to develop CaO-based sorbents exhibiting a very high and cyclically stable CO 2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al 2 O 3 (<3 nm) containing a central void, ensure (i) minimal diffusion limitations, (ii) space to accompany the substantial volumetric changes during CO 2 capture and release, and (iii) a minimal quantity of Al 2 O 3 for structural stabilization, thus maximizing the fraction of CO 2 -capture-active CaO. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sequester of metals and mineralization of organic contaminants with microbial mats

    International Nuclear Information System (INIS)

    Bender, J.; Phillips, P.; Gould, J.P.

    1995-01-01

    Several recalcitrant organic contaminants are completely mineralized to simple products by microbial mats. Contaminants include chlordane, PCB, TNT, petroleum distillates, BM compounds and TCE in a mixed contaminant solution containing Zn. Degradation rates are relatively rapid under both dark and light conditions. In addition to complete degradation of organic materials, mats have been used to reduce selenate to elemental selenium, remove Pb, Cd, Cu, Zn, Co, Cr, Fe and Mn from water and sequester uranium (U 238 ) at a rate of 3.19 mg/m 2 /h. Results of three pilot projects, including field pond treatment of mine drainage and bioreactor treatment of BTEX compounds will be reported. Microbial mats are natural heterotrophic and autotrophic communities dominated by cyanobacteria (blue-green algae). They are self-organized laminated structures annealed fightly together by slimy secretions from various microbial components. The surface slime of the mats effectively immobilizes the ecosystem to a variety of substrates, thereby stabilizing the most efficient internal microbial structure. Cyanobacteria mats are generated for bioremediation applications by enriching a water surface with ensiled grass clippings together with mat inocula developed in the laboratory

  6. Velocity Model for CO2 Sequestration in the Southeastern United States Atlantic Continental Margin

    Science.gov (United States)

    Ollmann, J.; Knapp, C. C.; Almutairi, K.; Almayahi, D.; Knapp, J. H.

    2017-12-01

    The sequestration of carbon dioxide (CO2) is emerging as a major player in offsetting anthropogenic greenhouse gas emissions. With 40% of the United States' anthropogenic CO2 emissions originating in the southeast, characterizing potential CO2 sequestration sites is vital to reducing the United States' emissions. The goal of this research project, funded by the Department of Energy (DOE), is to estimate the CO2 storage potential for the Southeastern United States Atlantic Continental Margin. Previous studies find storage potential in the Atlantic continental margin. Up to 16 Gt and 175 Gt of storage potential are estimated for the Upper Cretaceous and Lower Cretaceous formations, respectively. Considering 2.12 Mt of CO2 are emitted per year by the United States, substantial storage potential is present in the Southeastern United States Atlantic Continental Margin. In order to produce a time-depth relationship, a velocity model must be constructed. This velocity model is created using previously collected seismic reflection, refraction, and well data in the study area. Seismic reflection horizons were extrapolated using well log data from the COST GE-1 well. An interpolated seismic section was created using these seismic horizons. A velocity model will be made using P-wave velocities from seismic reflection data. Once the time-depth conversion is complete, the depths of stratigraphic units in the seismic refraction data will be compared to the newly assigned depths of the seismic horizons. With a lack of well control in the study area, the addition of stratigraphic unit depths from 171 seismic refraction recording stations provides adequate data to tie to the depths of picked seismic horizons. Using this velocity model, the seismic reflection data can be presented in depth in order to estimate the thickness and storage potential of CO2 reservoirs in the Southeastern United States Atlantic Continental Margin.

  7. Tropical coral reef habitat in a geoengineered, high-CO2 world

    Science.gov (United States)

    Couce, E.; Irvine, P. J.; Gregorie, L. J.; Ridgwell, A.; Hendy, E. J.

    2013-05-01

    Continued anthropogenic CO2 emissions are expected to impact tropical coral reefs by further raising sea surface temperatures (SST) and intensifying ocean acidification (OA). Although geoengineering by means of solar radiation management (SRM) may mitigate temperature increases, OA will persist, raising important questions regarding the impact of different stressor combinations. We apply statistical Bioclimatic Envelope Models to project changes in shallow water tropical coral reef habitat as a single niche (without resolving biodiversity or community composition) under various representative concentration pathway and SRM scenarios, until 2070. We predict substantial reductions in habitat suitability centered on the Indo-Pacific Warm Pool under net anthropogenic radiative forcing of ≥3.0 W/m2. The near-term dominant risk to coral reefs is increasing SSTs; below 3 W/m2 reasonably favorable conditions are maintained, even when achieved by SRM with persisting OA. "Optimal" mitigation occurs at 1.5 W/m2 because tropical SSTs overcool in a fully geoengineered (i.e., preindustrial global mean temperature) world.

  8. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6

    Directory of Open Access Journals (Sweden)

    H. Graven

    2017-12-01

    Full Text Available The isotopic composition of carbon (Δ14C and δ13C in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of 14C and 13C in the ocean and terrestrial components of Earth system models (ESMs present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Δ14C and δ13C in atmospheric CO2 for the historical period 1850–2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6 for models simulating carbon isotopes in the ocean or terrestrial biosphere. The data may also be useful for other carbon cycle modelling activities.

  9. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6

    Science.gov (United States)

    Graven, Heather; Allison, Colin E.; Etheridge, David M.; Hammer, Samuel; Keeling, Ralph F.; Levin, Ingeborg; Meijer, Harro A. J.; Rubino, Mauro; Tans, Pieter P.; Trudinger, Cathy M.; Vaughn, Bruce H.; White, James W. C.

    2017-12-01

    The isotopic composition of carbon (Δ14C and δ13C) in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of 14C and 13C in the ocean and terrestrial components of Earth system models (ESMs) present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Δ14C and δ13C in atmospheric CO2 for the historical period 1850-2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6) for models simulating carbon isotopes in the ocean or terrestrial biosphere. The data may also be useful for other carbon cycle modelling activities.

  10. Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2

    Science.gov (United States)

    Nikokavoura, Aspasia; Trapalis, Christos

    2017-01-01

    The increased concentration of CO2 in the atmosphere, originating from the burning of fossil fuels in stationary and mobile sources, is referred as the "Anthropogenic Greenhouse Effect" and constitutes a major environmental concern. The scientific community is highly concerned about the resulting enhancement of the mean atmospheric temperature, so a vast diversity of methods has been applied. Thermochemical, electrochemical, photocatalytic, photoelectrochemical processes, as well as combination of solar electricity generation and water splitting processes have been performed in order to lower the CO2 atmospheric levels. Photocatalytic methods are environmental friendly and succeed in reducing the atmospheric CO2 concentration and producing fuels or/and useful organic compounds at the same time. The most common photocatalysts for the CO2 reduction are the inorganic, the carbon based semiconductors and the hybrids based on semiconductors, which combine stability, low cost and appropriate structure in order to accomplish redox reactions. In this review, inorganic semiconductors such as single-metal oxide, mixed-metal oxides, metal oxide composites, layered double hydroxides (LDHs), salt composites, carbon based semiconductors such as graphene based composites, CNT composites, g-C3N4 composites and hybrid organic-inorganic materials (ZIFs) were studied. TiO2 and Ti based photocatalysts are extensively studied and therefore in this review they are not mentioned.

  11. Models for estimation of carbon sequestered by Cupressus ...

    African Journals Online (AJOL)

    This study compared models for estimating carbon sequestered aboveground in Cupressus lusitanica plantation stands at Wondo Genet College of Forestry and Natural Resources, Ethiopia. Relationships of carbon storage with tree component and stand age were also investigated. Thirty trees of three different ages (5, ...

  12. Mechanistic Insights into the Unique Role of Copper in CO2 Electroreduction Reactions.

    Science.gov (United States)

    Liu, Shan Ping; Zhao, Ming; Gao, Wang; Jiang, Qing

    2017-01-20

    Cu demonstrates a unique capability towards CO 2 electroreduction that can close the anthropogenic carbon cycle; however, its reaction mechanism remains elusive, owing to the obscurity of the solid-liquid interface on Cu surfaces where electrochemical reactions occur. Using a genetic algorithm method in addition to density functional theory, we explicitly identify the configuration of a water bilayer on Cu(2 1 1) and build electrochemical models. These enable us to reveal a mechanistic picture for CO 2 electroreduction, finding the key intermediates CCO* for the C 2 H 4 pathway and CH* for the CH 4 pathway, which rationalize a series of experimental observations. Furthermore, we find that the interplay between the Cu surfaces, carbon monomers, and water network (but not the binding of CO*) essentially determine the unique capability of Cu towards CO 2 electroreduction, proposing a new and effective descriptor for exploiting optimal catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. CO{sub 2} flooding performance prediction for Alberta oil pools

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.C. [Adams Pearson Associates Inc., Calgary, AB (Canada); Bachu, S. [Alberta Energy and Utilities Board, Calgary, AB (Canada)

    2002-06-01

    An advanced technical screening program was used to successfully screen and rank a very large number of Alberta oil pools for enhanced oil recovery using carbon dioxide (CO{sub 2}) flooding. This paper is a continuation paper describing the results of using the Microsoft Excel program with VBA to estimate production forecasts for several candidate pools in Alberta. A total of 6 ranking parameters were used, including API gravity of oil, residual oil saturation, ratio between reservoir pressure and minimum miscibility pressure, reservoir temperature, net pay thickness and porosity. The screening program provides a technical ranking of approximately 8,000 Alberta pools. After compilation of the Alberta oil pools, it was determined that most of the deep carbonate oil pools are excellent candidates for CO{sub 2} miscible flooding. Other Devonian carbonate pools are also ranked as having high potential for the process. An environmental benefit of CO{sub 2} miscible flooding process is that carbon sequestration has the potential to reduce anthropogenic carbon dioxide emissions from reaching the atmosphere. Ongoing studies are currently addressing CO{sub 2} capture and transportation, making EOR technology viable for maintaining light oil production in western Canada. 11 refs., 2 tabs., 2 figs.

  14. Consequences of co-benefits for the efficient design of carbon sequestration programs

    International Nuclear Information System (INIS)

    Feng, H.; Kling, C.L.

    2005-01-01

    The social efficiency of private carbon markets that also included trading in agricultural soil carbon sequestration with significant associated co-benefits were considered. Three topics related to the presence of co-benefits that sequester carbon were examined: (1) the consequences of co-benefits from carbon sinks and carbon abatement technology on the efficiency of carbon markets; (2) the efficient supply of carbon sequestration and co-benefits when there is spatial heterogeneity; and (3) the consequences of the presence of a carbon market when there is also a government supported conservation program. Co-benefits from carbon sinks and abatement were considered in relation to the socially efficient level of sequestration. The supply of carbon sequestration and co-benefits were then considered when fields differed in their potential to provide carbon and other environmental benefits. An empirical example of the economic characteristics of carbon sequestration and co-benefits in the Upper Mississippi River Basin was presented, in which the sequestration practice of land retirement with planting of perennial grasses was examined. Two sets of figures were used to illustrate the relationship between the cost of carbon sequestration and its marginal co-benefits: the marginal cost and the marginal co-benefits of carbon sequestration in a carbon market; and the marginal cost of carbon sequestration under a policy designed to maximize a bundle of environmental benefits. It was demonstrated that the relationship between carbon and its associated co-benefits will affect the efficiency of policy instruments designed for carbon sequestration. It was recommended that policy-makers consider that there are already a multitude of existing conservation programmes that result in significant carbon sequestration in many countries, and that nascent carbon markets are emerging in countries that have not ratified the Kyoto Protocol. The efficient level and location of carbon

  15. Global CO2 emissions from cement production

    Science.gov (United States)

    Andrew, Robbie M.

    2018-01-01

    The global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets and prioritise official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2016 were 1.45±0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2016 were 39.3±2.4 Gt CO2, 66 % of which have occurred since 1990. Emissions in 2015 were 30 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831455.

  16. Analysis of mineral trapping for CO{sub 2} disposal in deep aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Apps, John A.; Pruess, Karsten

    2001-07-20

    CO{sub 2} disposal into deep aquifers has been suggested as a potential means whereby atmospheric emissions of greenhouse gases may be reduced. However, our knowledge of the geohydrology, geochemistry, geophysics, and geomechanics of CO{sub 2} disposal must be refined if this technology is to be implemented safely, efficiently, and predictably. As a prelude to a fully coupled treatment of physical and chemical effects of CO{sub 2} injection, we have analyzed the impact of CO{sub 2} immobilization through carbonate precipitation. A survey of all major classes of rock-forming minerals, whose alteration would lead to carbonate precipitation, indicated that very few minerals are present in sufficient quantities in aquifer host rocks to permit significant sequestration of CO{sub 2}. We performed batch reaction modeling of the geochemical evolution of three different aquifer mineralogies in the presence of CO{sub 2} at high pressure. Our modeling considered (1) redox processes that could be important in deep subsurface environments, (2) the presence of organic matter, (3) the kinetics of chemical interactions between the host rock minerals and the aqueous phase, and (4) CO{sub 2} solubility dependence on pressure, temperature and salinity of the system. The geochemical evolution under both natural background and CO{sub 2} injection conditions was evaluated. In addition, changes in porosity were monitored during the simulations. Results indicate that CO{sub 2} sequestration by matrix minerals varies considerably with rock type. Under favorable conditions the amount of CO{sub 2} that may be sequestered by precipitation of secondary carbonates is comparable with and can be larger than the effect of CO{sub 2} dissolution in pore waters. The precipitation of ankerite and siderite is sensitive to the rate of reduction of ferric mineral precursors such as glauconite, which in turn is dependent on the reactivity of associated organic material. The accumulation of carbonates in

  17. Increased N2O emission by inhibited plant growth in the CO2 leaked soil environment: Simulation of CO2 leakage from carbon capture and storage (CCS) site.

    Science.gov (United States)

    Kim, You Jin; He, Wenmei; Ko, Daegeun; Chung, Haegeun; Yoo, Gayoung

    2017-12-31

    Atmospheric carbon dioxide (CO 2 ) concentrations is continuing to increase due to anthropogenic activity, and geological CO 2 storage via carbon capture and storage (CCS) technology can be an effective way to mitigate global warming due to CO 2 emission. However, the possibility of CO 2 leakage from reservoirs and pipelines exists, and such leakage could negatively affect organisms in the soil environment. Therefore, to determine the impacts of geological CO 2 leakage on plant and soil processes, we conducted a greenhouse study in which plants and soils were exposed to high levels of soil CO 2 . Cabbage, which has been reported to be vulnerable to high soil CO 2 , was grown under BI (no injection), NI (99.99% N 2 injection), and CI (99.99% CO 2 injection). Mean soil CO 2 concentration for CI was 66.8-76.9% and the mean O 2 concentrations in NI and CI were 6.6-12.7%, which could be observed in the CO 2 leaked soil from the pipelines connected to the CCS sites. The soil N 2 O emission was increased by 286% in the CI, where NO 3 - -N concentration was 160% higher compared to that in the control. This indicates that higher N 2 O emission from CO 2 leakage could be due to enhanced nitrification process. Higher NO 3 - -N content in soil was related to inhibited plant metabolism. In the CI treatment, chlorophyll content decreased and chlorosis appeared after 8th day of injection. Due to the inhibited root growth, leaf water and nitrogen contents were consistently lowered by 15% under CI treatment. Our results imply that N 2 O emission could be increased by the secondary effects of CO 2 leakage on plant metabolism. Hence, monitoring the environmental changes in rhizosphere would be very useful for impact assessment of CCS technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Gas geochemistry of natural analogues for the studies of geological CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Voltattorni, N., E-mail: nunzia.voltattorni@ingv.it [Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata no 605, 00143 Rome (Italy); Sciarra, A. [Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata no 605, 00143 Rome (Italy); Caramanna, G. [Earth Science Dep., University ' La Sapienza' , Piazzale A. Moro no 5, 00185 Rome (Italy); Cinti, D.; Pizzino, L.; Quattrocchi, F. [Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata no 605, 00143 Rome (Italy)

    2009-07-15

    Geological sequestration of anthropogenic CO{sub 2} appears to be a promising method for reducing the amount of greenhouse gases released to the atmosphere. Geochemical modelling of the storage capacity for CO{sub 2} in saline aquifers, sandstones and/or carbonates should be based on natural analogues both in situ and in the laboratory. The main focus of this paper has been to study natural gas emissions representing extremely attractive surrogates for the study and prediction of the possible consequences of leakage from geological sequestration sites of anthropogenic CO{sub 2} (i.e., the return to surface, potentially causing localised environmental problems). These include a comparison among three different Italian case histories: (i) the Solfatara crater (Phlegraean Fields caldera, southern Italy) is an ancient Roman spa. The area is characterised by intense and diffuse hydrothermal activity, testified by hot acidic mud pools, thermal springs and a large fumarolic field. Soil gas flux measurements show that the entire area discharges between 1200 and 1500 tons of CO{sub 2} per day; (ii) the Panarea Island (Aeolian Islands, southern Italy) where a huge submarine volcanic-hydrothermal gas burst occurred in November, 2002. The submarine gas emissions chemically modified seawater causing a strong modification of the marine ecosystem. All of the collected gases are CO{sub 2}-dominant (maximum value: 98.43 vol.%); (iii) the Tor Caldara area (Central Italy), located in a peripheral sector of the quiescent Alban Hills volcano, along the faults of the Ardea Basin transfer structure. The area is characterised by huge CO{sub 2} degassing both from water and soil. Although the above mentioned areas do not represent a storage scenario, these sites do provide many opportunities to study near-surface processes and to test monitoring methodologies.

  19. Evaluation of a Prototype pCO2 Optical Sensor

    Science.gov (United States)

    Sanborn-Marsh, C.; Sutton, A.; Sabine, C. L.; Lawrence-Salvas, N.; Dietrich, C.

    2016-12-01

    Anthropogenic greenhouse gas emissions continue to rise, driving climate change and altering the ocean carbonate systems. Carbonate chemistry can be characterized by any two of the four parameters: pH, total alkalinity, dissolved inorganic carbon, and partial pressure of dissolved carbon dioxide gas (pCO2). To fully monitor these dynamic systems, researchers must deploy a more temporally and spatially comprehensive sensor network. Logistical challenges, such as the energy consumption, size, lifetime, depth range, and cost of pCO2 sensors have limited the network's reach so far. NOAA's Pacific Marine Environmental Laboratory has conducted assessment tests of a pCO2 optical sensor (optode), recently developed by Atamanchuk et al (2014). We hope to deploy this optode in the summer of 2017 on high-resolution moored profiler, along with temperature, salinity, and oxygen sensors. While most pCO2 optodes have energy consumptions of 3-10 W, this 36mm-diameter by 86mm-long instrument consumes a mere 7-80 mW. Initial testing showed that its accuracy varied within an absolute range of 2-75 μatm, depending on environmental conditions, including temperature, salinity, response time, and initial calibration. Further research independently examining the effects of each variable on the accuracy of the data will also be presented.

  20. Carbon balance of CO2-EOR for NCNO classification

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Lopez, Vanessa [The University of Texas at Austin; Gil-Egui, Ramon; Gonzalez-Nicolas, Ana; Hovorka, Susan D

    2017-03-18

    The question of whether carbon dioxide enhanced oil recovery (CO2-EOR) constitutes a valid alternative for greenhouse gas emission reduction has been frequently asked by the general public and environmental sectors. Through this technology, operational since 1972, oil production is enhanced by injecting CO2 into depleted oil reservoirs in order displace the residual oil toward production wells in a solvent/miscible process. For decades, the CO2 utilized for EOR has been most commonly sourced from natural CO2 accumulations. More recently, a few projects have emerged where anthropogenic CO2 (A-CO2) is captured at an industrial facility, transported to a depleted oil field, and utilized for EOR. If carbon geologic storage is one of the project objectives, all the CO2 injected into the oil field for EOR could technically be stored in the formation. Even though the CO2 is being prevented from entering the atmosphere, and permanently stored away in a secured geologic formation, a question arises as to whether the total CO2 volumes stored in order to produce the incremental oil through EOR are larger than the CO2 emitted throughout the entire CO2-EOR process, including the capture facility, the EOR site, and the refining and burning of the end product. We intend to answer some of these questions through a DOE-NETL funded study titled “Carbon Life Cycle Analysis of CO2-EOR for Net Carbon Negative Oil (NCNO) Classification”. NCNO is defined as oil whose carbon emissions to the atmosphere, when burned or otherwise used, are less than the amount of carbon permanently stored in the reservoir in order to produce the oil. In this paper, we focus on the EOR site in what is referred to as a gate-to-gate system, but are inclusive of the burning of the refined product, as this end member is explicitly stated in the definition of NCNO. Finally, we use Cranfield, Mississippi, as a case study and come to the conclusion that the incremental oil produced is net carbon negative.

  1. Impact on CO2 Uptake of MWCNT after Acid Treatment Study

    Directory of Open Access Journals (Sweden)

    Michal Zgrzebnicki

    2017-01-01

    Full Text Available Greenhouse effect is responsible for keeping average temperature of Earth’s atmosphere at level of about 288 K. Its intensification leads to warming of our planet and may contribute to adverse changes in the environment. The most important pollution intensifying greenhouse effect is anthropogenic carbon dioxide. This particular gas absorbs secondary infrared radiation, which in the end leads to an increase of average temperature of Earth’s atmosphere. Main source of CO2 is burning of fossil fuels, like oil, natural gas, and coal. Therefore, to reduce its emission, a special CO2 capture and storage technology is required. Carbonaceous materials are promising materials for CO2 sorbents. Thus multiwalled carbon nanotubes, due to the lack of impurities like ash in activated carbons, were chosen as a model material for investigation of acid treatment impact on CO2 uptake. Remarkable 43% enhancement of CO2 sorption capacity was achieved at 273 K and relative pressure of 0.95. Samples were also thoroughly characterized in terms of texture (specific surface area measurement, transmission electron microscope and chemical composition (X-ray photoelectron spectroscopy.

  2. Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India.

    Science.gov (United States)

    Basu, Samarpita; Roy, Abhijit Sarma; Mohanty, Kaustubha; Ghoshal, Aloke K

    2013-09-01

    The present study aimed to isolate a high CO2 and temperature tolerant microalga capable of sequestering CO2 from flue gas. Microalga strain SA1 was isolated from a freshwater body of Assam and identified as Scenedesmus obliquus (KC733762). At 13.8±1.5% CO2 and 25 °C, maximum biomass (4.975±0.003 g L(-1)) and maximum CO2 fixation rate (252.883±0.361 mg L(-1) d(-1)) were obtained which were higher than most of the relevant studies. At elevated temperature (40 °C) and 13.8±1.5% CO2 maximum biomass (0.883±0.001 g L(-1)) was obtained. The carbohydrate, protein, lipid, and chlorophyll content of the CO2 treated SA1 were 30.87±0.64%, 9.48±1.65%, 33.04±0.46% and 6.03±0.19% respectively, which were higher than previous reports. Thus, SA1 could prove to be a potential candidate for CO2 sequestration from flue gas as well as for the production of value added substances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Managing the Budget: Stock-Flow Reasoning and the CO2 Accumulation Problem.

    Science.gov (United States)

    Newell, Ben R; Kary, Arthur; Moore, Chris; Gonzalez, Cleotilde

    2016-01-01

    The majority of people show persistent poor performance in reasoning about "stock-flow problems" in the laboratory. An important example is the failure to understand the relationship between the "stock" of CO2 in the atmosphere, the "inflow" via anthropogenic CO2 emissions, and the "outflow" via natural CO2 absorption. This study addresses potential causes of reasoning failures in the CO2 accumulation problem and reports two experiments involving a simple re-framing of the task as managing an analogous financial (rather than CO2 ) budget. In Experiment 1 a financial version of the task that required participants to think in terms of controlling debt demonstrated significant improvements compared to a standard CO2 accumulation problem. Experiment 2, in which participants were invited to think about managing savings, suggested that this improvement was fortuitous and coincidental rather than due to a fundamental change in understanding the stock-flow relationships. The role of graphical information in aiding or abetting stock-flow reasoning was also explored in both experiments, with the results suggesting that graphs do not always assist understanding. The potential for leveraging the kind of reasoning exhibited in such tasks in an effort to change people's willingness to reduce CO2 emissions is briefly discussed. Copyright © 2015 Cognitive Science Society, Inc.

  4. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years.

    Science.gov (United States)

    Joos, Fortunat; Spahni, Renato

    2008-02-05

    The rate of change of climate codetermines the global warming impacts on natural and socioeconomic systems and their capabilities to adapt. Establishing past rates of climate change from temperature proxy data remains difficult given their limited spatiotemporal resolution. In contrast, past greenhouse gas radiative forcing, causing climate to change, is well known from ice cores. We compare rates of change of anthropogenic forcing with rates of natural greenhouse gas forcing since the Last Glacial Maximum and of solar and volcanic forcing of the last millennium. The smoothing of atmospheric variations by the enclosure process of air into ice is computed with a firn diffusion and enclosure model. The 20th century increase in CO(2) and its radiative forcing occurred more than an order of magnitude faster than any sustained change during the past 22,000 years. The average rate of increase in the radiative forcing not just from CO(2) but from the combination of CO(2), CH(4), and N(2)O is larger during the Industrial Era than during any comparable period of at least the past 16,000 years. In addition, the decadal-to-century scale rate of change in anthropogenic forcing is unusually high in the context of the natural forcing variations (solar and volcanoes) of the past millennium. Our analysis implies that global climate change, which is anthropogenic in origin, is progressing at a speed that is unprecedented at least during the last 22,000 years.

  5. Estimating sequestered parasite population dynamics in cerebral malaria

    NARCIS (Netherlands)

    Gravenor, M. B.; van Hensbroek, M. B.; Kwiatkowski, D.

    1998-01-01

    Clinical investigation of malaria is hampered by the lack of a method for estimating the number of parasites that are sequestered in the tissues, for it is these parasites that are thought to be crucial to the pathogenesis of life-threatening complications such as cerebral malaria. We present a

  6. Impact of CO_2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO_2 Leakage

    International Nuclear Information System (INIS)

    Gulliver, Djuna M.; Gregory, Kelvin B.; Lowry, Gregory V.

    2016-01-01

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO_2) emissions to the atmosphere. During this process, CO_2 is injected as super critical carbon dioxide (SC-CO_2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO_2 in subsurface geologic formations could unintentionally lead to CO_2 leakage into overlying freshwater aquifers. Introduction of CO_2 into these subsurface environments will greatly increase the CO_2 concentration and will create CO_2 concentration gradients that drive changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO_2 gradients will impact these communities. The overarching goal of this project is to understand how CO_2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO_2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO_2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO_2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO_2 injection/leakage plume where CO_2 concentrations are highest. At CO_2 exposures expected downgradient from the CO_2 plume, selected microorganisms emerged as dominant in the CO_2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site

  7. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification.

    Science.gov (United States)

    Pacella, Stephen R; Brown, Cheryl A; Waldbusser, George G; Labiosa, Rochelle G; Hales, Burke

    2018-04-10

    The role of rising atmospheric CO 2 in modulating estuarine carbonate system dynamics remains poorly characterized, likely due to myriad processes driving the complex chemistry in these habitats. We reconstructed the full carbonate system of an estuarine seagrass habitat for a summer period of 2.5 months utilizing a combination of time-series observations and mechanistic modeling, and quantified the roles of aerobic metabolism, mixing, and gas exchange in the observed dynamics. The anthropogenic CO 2 burden in the habitat was estimated for the years 1765-2100 to quantify changes in observed high-frequency carbonate chemistry dynamics. The addition of anthropogenic CO 2 alters the thermodynamic buffer factors (e.g., the Revelle factor) of the carbonate system, decreasing the seagrass habitat's ability to buffer natural carbonate system fluctuations. As a result, the most harmful carbonate system indices for many estuarine organisms [minimum pH T , minimum Ω arag , and maximum pCO 2(s.w.) ] change up to 1.8×, 2.3×, and 1.5× more rapidly than the medians for each parameter, respectively. In this system, the relative benefits of the seagrass habitat in locally mitigating ocean acidification increase with the higher atmospheric CO 2 levels predicted toward 2100. Presently, however, these mitigating effects are mixed due to intense diel cycling of CO 2 driven by aerobic metabolism. This study provides estimates of how high-frequency pH T , Ω arag , and pCO 2(s.w.) dynamics are altered by rising atmospheric CO 2 in an estuarine habitat, and highlights nonlinear responses of coastal carbonate parameters to ocean acidification relevant for water quality management.

  8. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification

    Science.gov (United States)

    Pacella, Stephen R.; Brown, Cheryl A.; Waldbusser, George G.; Labiosa, Rochelle G.; Hales, Burke

    2018-04-01

    The role of rising atmospheric CO2 in modulating estuarine carbonate system dynamics remains poorly characterized, likely due to myriad processes driving the complex chemistry in these habitats. We reconstructed the full carbonate system of an estuarine seagrass habitat for a summer period of 2.5 months utilizing a combination of time-series observations and mechanistic modeling, and quantified the roles of aerobic metabolism, mixing, and gas exchange in the observed dynamics. The anthropogenic CO2 burden in the habitat was estimated for the years 1765–2100 to quantify changes in observed high-frequency carbonate chemistry dynamics. The addition of anthropogenic CO2 alters the thermodynamic buffer factors (e.g., the Revelle factor) of the carbonate system, decreasing the seagrass habitat’s ability to buffer natural carbonate system fluctuations. As a result, the most harmful carbonate system indices for many estuarine organisms [minimum pHT, minimum Ωarag, and maximum pCO2(s.w.)] change up to 1.8×, 2.3×, and 1.5× more rapidly than the medians for each parameter, respectively. In this system, the relative benefits of the seagrass habitat in locally mitigating ocean acidification increase with the higher atmospheric CO2 levels predicted toward 2100. Presently, however, these mitigating effects are mixed due to intense diel cycling of CO2 driven by aerobic metabolism. This study provides estimates of how high-frequency pHT, Ωarag, and pCO2(s.w.) dynamics are altered by rising atmospheric CO2 in an estuarine habitat, and highlights nonlinear responses of coastal carbonate parameters to ocean acidification relevant for water quality management.

  9. Current Travertines Precipitation from CO{sub 2}-rich Groundwaters as an alert of CO{sub 2} Leakages from a Natural CO{sub 2} Storage at Ganuelas-Mazarron Tertiary Basin (Murcia, Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigo-Naharro, J.; Delgado, A.; Herrero, M. J.; Granados, A.; Perez del Villar, L.

    2013-02-01

    Carbon capture and storage technologies (CCS) represent the most suitable solutions related to the high anthropogenic CO{sub 2} emissions to the atmosphere. As a consequence, monitoring of the possible CO{sub 2} leakages from an artificial deep geological CO{sub 2} storage (DGS) is indispensable to guarantee its safety. Fast surficial travertine precipitation related to these CO{sub 2} leakages can be used as an alert for these escapes. Since few studies exist focusing on the long-term behaviour of an artificial CO{sub 2} DGS, natural CO{sub 2} storage affected by natural or artificial escapes must be studied as natural analogues for predicting the long-term behaviour of an artificial CO{sub 2} storage. In this context, a natural CO{sub 2} reservoir affected by artificial CO{sub 2} escapes has been studied in this work. This study has mainly focused on the current travertines precipitation associated with the upwelling CO{sub 2}-rich waters from several hydrogeological wells drilled in the Ganuelas-Mazarron Tertiary basin (SE Spain), and consists of a comprehensive characterisation of parent-waters and their associated carbonates, including elemental and isotopic geochemistry, mineralogy and petrography. Geochemical characterisation of groundwaters has led to recognise 4 hydrofacies from 3 different aquifers. These groundwaters have very high salinity and electrical conductivity; are slightly acid; present high dissolved inorganic carbon (DIC) and free CO{sub 2}; are oversaturated in both aragonite and calcite; and dissolve, mobilize and transport low quantities of heavy and/or toxic elements. Isotopic values indicate that: i) the origin of parent-waters is related to rainfalls from clouds originated in the Mediterranean Sea or continental areas; ii) the origin of C is mainly inorganic; and iii) sulphate anions come mainly from the dissolution of the Messinian gypsum from the Tertiary Basin sediments. Current travertines precipitation seems to be controlled by a

  10. Micellized sequestered silver atoms and small silver clusters

    International Nuclear Information System (INIS)

    Borgarello, E.; Lawless, D.; Serpone, N.; Pelizzetti, E.; Meisel, D.

    1990-01-01

    Pulse radiolysis was used to examine the nature of the silver species obtained when an aqueous solution containing sequestered Ag + ions was reduced by hydrated electrons in the presence of a surfactant macrocyclic crown ether, labeled L, and/or a maltoside surfactant. The initially formed product is the Ag 0 (L) species which rapidly loses its ligand (half-life ≤5 μs) and reacts with another Ag + (L) ion to form Ag 2 + (L). The latter species decays by a bimolecular process to form the Ag 4 2+ (L) n species at a faster rate than its ligand free analogue. Ultimately, colloidal metallic silver, (Ag) n , forms which is stabilized by the surfactant moieties. No long-term stability to the reduced monomolecular species could be obtained

  11. Nutrient amendment does not increase mineralisation of sequestered carbon during incubation of a nitrogen limited mangrove soil

    KAUST Repository

    Keuskamp, Joost A.

    2013-02-01

    Mangrove forests are sites of intense carbon and nutrient cycling, which result in soil carbon sequestration on a global scale. Currently, mangrove forests receive increasing quantities of exogenous nutrients due to coastal development. The present paper quantifies the effects of nutrient loading on microbial growth rates and the mineralisation of soil organic carbon (SOC) in two mangrove soils contrasting in carbon content. An increase in SOC mineralisation rates would lead to the loss of historically sequestered carbon and an enhanced CO2 release from these mangrove soils.In an incubation experiment we enriched soils from Avicennia and Rhizophora mangrove forests bordering the Red Sea with different combinations of nitrogen, phosphorus and glucose to mimic the effects of wastewater influx. We measured microbial growth rates as well as carbon mineralisation rates in the natural situation and after enrichment. The results show that microbial growth is energy limited in both soils, with nitrogen as a secondary limitation. Nitrogen amendment increased the rate at which labile organic carbon was decomposed, while it decreased SOC mineralisation rates. Such an inhibitory effect on SOC mineralisation was not found for phosphorus enrichment.Our data confirm the negative effect of nitrogen enrichment on the mineralisation of recalcitrant carbon compounds found in other systems. Based on our results it is not to be expected that nutrient enrichment by itself will cause degradation of historically sequestered soil organic carbon in nitrogen limited mangrove forests. © 2012 Elsevier Ltd.

  12. Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste

    International Nuclear Information System (INIS)

    Perez-Lopez, Rafael; Castillo, Julio; Quispe, Dino; Nieto, Jose Miguel

    2010-01-01

    In this study, experiments were conducted to investigate the applicability of low-cost alkaline paper mill wastes as acidity neutralizing agents for treatment of acid mine drainage (AMD). Paper wastes include a calcium mud by-product from kraft pulping, and a calcite powder from a previous study focused on sequestering CO 2 by carbonation of calcium mud. The neutralization process consisted of increase of pH by alkaline additive dissolution, decrease of metals solubility and precipitation of gypsum and poorly crystallized Fe-Al oxy-hydroxides/oxy-hydroxysulphates, which acted as a sink for trace elements to that extent that solutions reached the pre-potability requirements of water for human consumption. This improvement was supported by geochemical modelling of solutions using PHREEQC software, and observations by scanning electron microscope and X-ray diffraction of reaction products. According to PHREEQC simulations, the annual amount of alkaline additive is able to treat AMD (pH 3.63, sulphate 3800 mg L -1 , iron 348 mg L -1 ) with an average discharge of about 114 and 40 L s -1 for calcium mud and calcite powder, respectively. Likewise, given the high potential of calcium mud to sequester CO 2 and of resulting calcite powder to neutralize AMD, paper wastes could be a promising solution for facing this double environmental problem.

  13. Numerical simulation of CO2 geological storage in saline aquifers – case study of Utsira formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zheming; Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States)

    2013-07-01

    CO2 geological storage (CGS) is one of the most promising technologies to address the issue of excessive anthropogenic CO2 emissions in the atmosphere due to fossil fuel combustion for electricity generation. In order to fully exploit the storage potential, numerical simulations can help in determining injection strategies before the deployment of full scale sequestration in saline aquifers. This paper presents the numerical simulations of CO2 geological storage in Utsira saline formation where the sequestration is currently underway. The effects of various hydrogeological and numerical factors on the CO2 distribution in the topmost hydrogeological layer of Utsira are discussed. The existence of multiple pathways for upward mobility of CO2 into the topmost layer of Utsira as well as the performance of the top seal are also investigated.

  14. A Low-Cost Fluorescent Sensor for pCO2 Measurements

    Directory of Open Access Journals (Sweden)

    Xudong Ge

    2014-04-01

    Full Text Available Global warming is believed to be caused by increasing amounts of greenhouse gases (mostly CO2 discharged into the environment by human activity. In addition to an increase in environmental temperature, an increased CO2 level has also led to ocean acidification. Ocean acidification and rising temperatures have disrupted the water’s ecological balance, killing off some plant and animal species, while encouraging the overgrowth of others. To minimize the effect of global warming on local ecosystem, there is a strong need to implement ocean observing systems to monitor the effects of anthropogenic CO2 and the impacts thereof on ocean biological productivity. Here, we describe the development of a low-cost fluorescent sensor for pCO2 measurements. The detector was exclusively assembled with low-cost optics and electronics, so that it would be affordable enough to be deployed in great numbers. The system has several novel features, such as an ideal 90° separation between excitation and emission, a beam combiner, a reference photodetector, etc. Initial tests showed that the system was stable and could achieve a high resolution despite the low cost.

  15. Aggregation of ALS-linked FUS mutant sequesters RNA binding proteins and impairs RNA granules formation

    Energy Technology Data Exchange (ETDEWEB)

    Takanashi, Keisuke; Yamaguchi, Atsushi, E-mail: atsyama@restaff.chiba-u.jp

    2014-09-26

    Highlights: • Aggregation of ALS-linked FUS mutant sequesters ALS-associated RNA-binding proteins (FUS wt, hnRNP A1, and hnRNP A2). • Aggregation of ALS-linked FUS mutant sequesters SMN1 in the detergent-insoluble fraction. • Aggregation of ALS-linked FUS mutant reduced the number of speckles in the nucleus. • Overproduced ALS-linked FUS mutant reduced the number of processing-bodies (PBs). - Abstract: Protein aggregate/inclusion is one of hallmarks for neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). FUS/TLS, one of causative genes for familial ALS, encodes a multifunctional DNA/RNA binding protein predominantly localized in the nucleus. C-terminal mutations in FUS/TLS cause the retention and the inclusion of FUS/TLS mutants in the cytoplasm. In the present study, we examined the effects of ALS-linked FUS mutants on ALS-associated RNA binding proteins and RNA granules. FUS C-terminal mutants were diffusely mislocalized in the cytoplasm as small granules in transiently transfected SH-SY5Y cells, whereas large aggregates were spontaneously formed in ∼10% of those cells. hnRNP A1, hnRNP A2, and SMN1 as well as FUS wild type were assembled into stress granules under stress conditions, and these were also recruited to FUS mutant-derived spontaneous aggregates in the cytoplasm. These aggregates stalled poly(A) mRNAs and sequestered SMN1 in the detergent insoluble fraction, which also reduced the number of nuclear oligo(dT)-positive foci (speckles) in FISH (fluorescence in situ hybridization) assay. In addition, the number of P-bodies was decreased in cells harboring cytoplasmic granules of FUS P525L. These findings raise the possibility that ALS-linked C-terminal FUS mutants could sequester a variety of RNA binding proteins and mRNAs in the cytoplasmic aggregates, which could disrupt various aspects of RNA equilibrium and biogenesis.

  16. Carbon sequestration, biological diversity, and sustainable development: Integrated forest management

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, M.A. (Environmental Research Lab., Corvallis, OR (United States)); Meganck, R.A. (United Nations Environment Programme for the Wider Caribbean, Kingston (Jamaica))

    Tropical deforestation provides a significant contribution to anthropogenic increases in atmospheric CO[sub 2] concentration that may lead to global warming. Forestation and other forest management options to sequester CO[sub 2] in the tropical latitudes may fail unless they address local economic, social, environmental, and political needs of people in the developing world. Forest management is discussed in terms of three objectives: Carbon sequestration, sustainable development, and biodiversity conservation. An integrated forest management strategy of land-use planning is proposed to achieve these objectives and is centered around: Preservation of primary forest, intensified use of nontimber resources, agroforestry, and selective use of plantation forestry. 89 refs., 1 fig., 1 tab.

  17. CO2-induced mechanical behaviour of Hawkesbury sandstone in the Gosford basin: An experimental study

    International Nuclear Information System (INIS)

    Rathnaweera, T.D.; Ranjith, P.G.; Perera, M.S.A.; Haque, A.; Lashin, A.; Al Arifi, N.; Chandrasekharam, D; Yang, SQ; Xu, T; Wang, SH; Yasar, E

    2015-01-01

    Carbon dioxide (CO 2 ) sequestered in saline aquifers undergoes a variety of chemically-coupled mechanical effects, which may cause CO 2 -induced mechanical changes and time-dependent reservoir deformation. This paper investigates the mineralogical and microstructural changes that occur in reservoir rocks following injection of CO 2 in deep saline aquifers and the manner in which these changes influence the mechanical properties of the reservoir rocks. In this study, cylindrical sandstone specimens, 38 mm in diameter and 76 mm high, obtained from the Gosford basin, were used to perform a series of unconfined compressive strength (UCS) tests. Different saturation conditions: dry, water- and brine-saturated sandstone samples with and without scCO 2 (super-critical carbon dioxide) injection, were considered in the study to obtain a comprehensive understanding of the impact of scCO 2 injection during the CO 2 sequestration process on saline aquifer mechanical properties. An acoustic emission (AE) system was employed to identify the stress threshold values of crack closure, crack initiation and crack damage for each testing condition during the whole deformation process of the specimens. Finally, scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF) analyses were performed to evaluate the chemical and mineralogical changes that occur in reservoir rocks during CO 2 injection. From the test results, it is clear that the CO 2 -saturated samples possessed a lower peak strength compared to non-CO 2 saturated samples. According to SEM, XRD and XRF analyses, considerable quartz mineral corrosion and dissolution of calcite and siderite were observed during the interactions of the CO 2 /water/rock and CO 2 /brine/rock systems, which implies that mineralogical and geochemical rock alterations affect rock mechanical properties by accelerating the collapse mechanisms of the pore matrix. AE results also reveal the weakening effect of rock pore

  18. CO 2 Capture from Dilute Gases as a Component of Modern Global Carbon Management

    KAUST Repository

    Jones, Christopher W.

    2011-01-01

    The growing atmospheric CO2 concentration and its impact on climate have motivated widespread research and development aimed at slowing or stemming anthropogenic carbon emissions. Technologies for carbon capture and sequestration (CCS) employing mass separating agents that extract and purify CO2 from flue gas emanating from large point sources such as fossil fuel-fired electricity-generating power plants are under development. Recent advances in solvents, adsorbents, and membranes for postcombust- ion CO 2 capture are described here. Specifically, room-temperature ionic liquids, supported amine materials, mixed matrix and facilitated transport membranes, and metal-organic framework materials are highlighted. In addition, the concept of extracting CO2 directly from ambient air (air capture) as a means of reducing the global atmospheric CO2 concentration is reviewed. For both conventional CCS from large point sources and air capture, critical research needs are identified and discussed. © Copyright 2011 by Annual Reviews. All rights reserved.

  19. CO 2 Capture from Dilute Gases as a Component of Modern Global Carbon Management

    KAUST Repository

    Jones, Christopher W.

    2011-07-15

    The growing atmospheric CO2 concentration and its impact on climate have motivated widespread research and development aimed at slowing or stemming anthropogenic carbon emissions. Technologies for carbon capture and sequestration (CCS) employing mass separating agents that extract and purify CO2 from flue gas emanating from large point sources such as fossil fuel-fired electricity-generating power plants are under development. Recent advances in solvents, adsorbents, and membranes for postcombust- ion CO 2 capture are described here. Specifically, room-temperature ionic liquids, supported amine materials, mixed matrix and facilitated transport membranes, and metal-organic framework materials are highlighted. In addition, the concept of extracting CO2 directly from ambient air (air capture) as a means of reducing the global atmospheric CO2 concentration is reviewed. For both conventional CCS from large point sources and air capture, critical research needs are identified and discussed. © Copyright 2011 by Annual Reviews. All rights reserved.

  20. Oxyfuel combustion for below zero CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Boeg Toftegaard, M; Hansen, Kim G; Fisker, D [DONG Energy Power, Hvidovre (Denmark); Brix, J; Brun Hansen, B; Putluru, S S.R.; Jensen, Peter Arendt; Glarborg, Peter; Degn Jensen, A [Technical Univ. of Denmark. CHEC Research Centre, Kgs. Lyngby (Denmark); Montgomery, M [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark)

    2011-07-01

    The reduction of CO{sub 2} emissions is of highest concern in relation to limiting the anthropogenic impacts on the environment. Primary focus has gathered on the large point sources of CO{sub 2} emissions constituted by large heat and power stations and other heavy, energy-consuming industry. Solutions are sought which will enable a significant reduction of the anthropogenic CO{sub 2} emissions during the transformation period from the use of fossil fuels to renewable sources of energy. Carbon capture and storage (CCS) has the potential to significantly reduce CO{sub 2} emissions from power stations while allowing for the continuous utilisation of the existing energy producing system in the transformation period. Oxyfuel combustion is one of the possible CCS technologies which show promising perspectives for implementation in industrial scale within a relatively short period of time. Oxyfuel combustion deviates from conventional combustion in air by using a mixture of pure oxygen and recirculated flue gas as the combustion medium thereby creating a flue gas highly concentrated in CO{sub 2} making the capture process economically more feasible compared to technologies with capture from more dilute CO{sub 2} streams. This project has investigated a number of the fundamental and practical issues of the oxyfuel combustion process by experimental, theoretical, and modelling investigations in order to improve the knowledge of the technology. The subjects investigated cover: general combustion characteristics of coal and biomass (straw) and mixtures thereof, formation and emission of pollutants, ash characteristics, flue gas cleaning for SO{sub 2} by wet scrubbing with limestone and for NO{sub x} by selective catalytic reduction (SCR), corrosion of boiler heat transfer surfaces, operation and control of large suspension-fired boilers, and the perspectives for the implementation of oxyfuel combustion s a CO{sub 2} sequestration solution in the Danish power production

  1. Balance, analysis of emission and CO{sub 2} sequestration in the generation of electricity surplus in sugar and ethanol sector; Balanco, analise de emissao e sequestro de CO{sub 2} na geracao de eletricidade excedente no setor sucro-alcooleiro

    Energy Technology Data Exchange (ETDEWEB)

    Chohfi, Felipe Moreton [Universidade Federal de Itajuba (UNIFEI), MG (Brazil); Dupas, Franscisco Antonio [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Fac. de Engenharia Ambiental. Inst. de Recursos Naturais; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Inst. de Engenharia Mecanica. Nucleo de Excelencia em Geracao Termeletrica e Distribuida

    2004-07-01

    In recent years, research activities regarding the global environmental impacts of carbon dioxide (CO{sub 2}) emissions have been intensified. The carbon market aims to minimize the emissions of this dangerous gas as it allows incentives for developed and developing countries to be stimulated not to adjust to a high carbon dioxide energy matrix. This work studies the carbon dioxide emissions and capture mass balance in the sugar and alcohol sector. Through a life cycle analysis methodology of surplus electricity production the CO{sub 2} balance is calculated. The results obtained show that 145,3 tons CO{sub 2}/hectare are sequestered during sugarcane cultivation and 111,5 tons CO{sub 2}/hectare are emitted for electricity production, resulting in a viable capture balance scenario of 33,8 tons of carbon dioxide per hectare of plantation in one life cycle of surplus electricity production that is supplied to the electricity distribution companies. The life cycle analysis of the cultivation of sugarcane biomass for surplus electricity production allowed a high value to be obtained for the CO{sub 2} absorption figure. If compared with other forms of electricity generation, the energy produced in sugar mills presents the lowest values of carbon dioxide emissions of all the other forms of electricity production. (author)

  2. CoMet: an airborne mission to simultaneously measure CO2 and CH4 using lidar, passive remote sensing, and in-situ techniques

    Science.gov (United States)

    Fix, Andreas; Amediek, Axel; Bovensmann, Heinrich; Ehret, Gerhard; Gerbig, Christoph; Gerilowski, Konstantin; Pfeilsticker, Klaus; Roiger, Anke; Zöger, Martin

    2018-04-01

    TIn order to improve our current knowledge on the budgets of the two most important anthropogenic greenhouse gases, CO2 and CH4, an airborne mission on board the German research aircraft HALO in coordination with two smaller Cessna aircraft is going to be conducted in April/May 2017. The goal of CoMet is to combine a suite of the best currently available active (lidar) and passive remote sensors as well as in-situ instruments to provide regional-scale data of greenhouse gases which are urgently required.

  3. CO2 abatement in the iron and steel industry - the case for carbon capture and storage (CCS

    Directory of Open Access Journals (Sweden)

    A.V. Todorut

    2017-01-01

    Full Text Available The steel industry is amongst the most energy-intensive industries also consuming large amounts of coal and emitting significant volumes of carbon dioxide (CO2. Studies indicate that steelmaking accounts for 6 - 7 % of world anthropogenic CO2 emissions, and 27 % of the total emissions of the world’s manufacturing sector. Steel manufacturers have responded to sustainable resource use and development adopting several measures attaining a reduction in energy consumption of 60 % in the last 50 years. The paper discusses Carbon Capture and Storage (CCS as a CO2 mitigation option, after the 2015 Paris Climate Conference (COP 21 and in relation to the European Regulation for CO2 measurement, reporting and verification.

  4. Edaphic factors controlling summer (rainy season) greenhouse gas emissions (CO2 and CH4) from semiarid mangrove soils (NE-Brazil).

    Science.gov (United States)

    Nóbrega, Gabriel N; Ferreira, Tiago O; Siqueira Neto, M; Queiroz, Hermano M; Artur, Adriana G; Mendonça, Eduardo De S; Silva, Ebenezer De O; Otero, Xosé L

    2016-01-15

    The soil attributes controlling the CO2, and CH4 emissions were assessed in semiarid mangrove soils (NE-Brazil) under different anthropogenic activities. Soil samples were collected from different mangroves under different anthropogenic impacts, e.g., shrimp farming (Jaguaribe River); urban wastes (Cocó River) and a control site (Timonha River). The sites were characterized according to the sand content; physicochemical parameters (Eh and pH); total organic C; soil C stock (SCS) and equivalent SCS (SCSEQV); total P and N; dissolved organic C (DOC); and the degree of pyritization (DOP). The CO2 and CH4 fluxes from the soils were assessed using static closed chambers. Higher DOC and SCS and the lowest DOP promote greater CO2 emission. The CH4 flux was only observed at Jaguaribe which presented higher DOP, compared to that found in mangroves from humid tropical climates. Semiarid mangrove soils cannot be characterized as important greenhouse gas sources, compared to humid tropical mangroves.

  5. Analysis of mineral trapping for CO(sub 2) disposal in deep aquifers; TOPICAL

    International Nuclear Information System (INIS)

    Xu, Tianfu; Apps, John A.; Pruess, Karsten

    2001-01-01

    CO(sub 2) disposal into deep aquifers has been suggested as a potential means whereby atmospheric emissions of greenhouse gases may be reduced. However, our knowledge of the geohydrology, geochemistry, geophysics, and geomechanics of CO(sub 2) disposal must be refined if this technology is to be implemented safely, efficiently, and predictably. As a prelude to a fully coupled treatment of physical and chemical effects of CO(sub 2) injection, we have analyzed the impact of CO(sub 2) immobilization through carbonate precipitation. A survey of all major classes of rock-forming minerals, whose alteration would lead to carbonate precipitation, indicated that very few minerals are present in sufficient quantities in aquifer host rocks to permit significant sequestration of CO(sub 2). We performed batch reaction modeling of the geochemical evolution of three different aquifer mineralogies in the presence of CO(sub 2) at high pressure. Our modeling considered (1) redox processes that could be important in deep subsurface environments, (2) the presence of organic matter, (3) the kinetics of chemical interactions between the host rock minerals and the aqueous phase, and (4) CO(sub 2) solubility dependence on pressure, temperature and salinity of the system. The geochemical evolution under both natural background and CO(sub 2) injection conditions was evaluated. In addition, changes in porosity were monitored during the simulations. Results indicate that CO(sub 2) sequestration by matrix minerals varies considerably with rock type. Under favorable conditions the amount of CO(sub 2) that may be sequestered by precipitation of secondary carbonates is comparable with and can be larger than the effect of CO(sub 2) dissolution in pore waters. The precipitation of ankerite and siderite is sensitive to the rate of reduction of ferric mineral precursors such as glauconite, which in turn is dependent on the reactivity of associated organic material. The accumulation of carbonates in

  6. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks

    International Nuclear Information System (INIS)

    Canadella, J.G.; Raupacha, M.R.; Le Quere, C.; Buitenhuis, E.T.; Gillett, N.P.; Field, C.B.; Ciais, P.; Conway, T.J.; Houghton, R.A.; Marland, G.

    2007-01-01

    The growth rate of atmospheric carbon dioxide (CO2), the largest human contributor to human-induced climate change, is increasing rapidly. Three processes contribute to this rapid increase. Two of these processes concern emissions. Recent growth of the world economy combined with an increase in its carbon intensity have led to rapid growth in fossil fuel CO2 emissions since 2000: comparing the 1990s with 2000-2006, the emissions growth rate increased from 1.3% to 3.3%/y. The third process is indicated by increasing evidence (P 0.89) for a long-term (50-year) increase in the airborne fraction (AF) of CO2 emissions, implying a decline in the efficiency of CO2 sinks on land and oceans in absorbing anthropogenic emissions. Since 2000, the contributions of these three factors to the increase in the atmospheric CO2 growth rate have been ∼65 ± 16% from increasing global economic activity, 17 ± 6% from the increasing carbon intensity of the global economy, and 18 ± 15% from the increase in AF. An increasing AF is consistent with results of climate-carbon cycle models, but the magnitude of the observed signal appears larger than that estimated by models. All of these changes characterize a carbon cycle that is generating stronger-than-expected and sooner-than-expected climate forcing. airborne fraction anthropogenic carbon emissions carbon-climate feedback terrestrial and ocean carbon emissions vulnerabilities of the carbon cycle

  7. Influence of Meteorology and interrelationship with greenhouse gases (CO2 and CH4) at a suburban site of India

    Science.gov (United States)

    Sreenivas, Gaddamidi; Mahesh, Pathakoti; Subin, Jose; Lakshmi Kanchana, Asuri; Venkata Narasimha Rao, Pamaraju; Dadhwal, Vinay Kumar

    2016-03-01

    Atmospheric greenhouse gases (GHGs), such as carbon dioxide (CO2) and methane (CH4), are important climate forcing agents due to their significant impacts on the climate system. The present study brings out first continuous measurements of atmospheric GHGs using high-precision LGR-GGA over Shadnagar, a suburban site of Central India during the year 2014. The annual mean CO2 and CH4 over the study region are found to be 394 ± 2.92 and 1.92 ± 0.07 ppm (μ ± 1σ) respectively. CO2 and CH4 show a significant seasonal variation during the study period with maximum (minimum) CO2 observed during pre-monsoon (monsoon), while CH4 recorded the maximum during post-monsoon and minimum during monsoon. Irrespective of the seasons, consistent diurnal variations of these gases are observed. Influences of prevailing meteorology (air temperature, wind speed, wind direction, and relative humidity) on GHGs have also been investigated. CO2 and CH4 show a strong positive correlation during winter, pre-monsoon, monsoon, and post-monsoon with correlation coefficients (Rs) equal to 0.80, 0.80, 0.61, and 0.72 respectively, indicating a common anthropogenic source for these gases. Analysis of this study reveals the major sources for CO2 are soil respiration and anthropogenic emissions while vegetation acts as a main sink, whereas the major source and sink for CH4 are vegetation and presence of hydroxyl (OH) radicals.

  8. Leakage and Seepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    International Nuclear Information System (INIS)

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO 2 ) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO 2 may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO 2 leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO 2 and CH 4 fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO 2 and CH 4 fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO 2 overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO 2 bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s -1 at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s -1 . Liquid CO 2 bubbles rise slower in water than gaseous CO 2 bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO 2 and CH 4 at three different seepage rates reveals that

  9. Risk Assessment and Management for Long-Term Storage of CO2 in Geologic Formations — United States Department of Energy R&D

    Directory of Open Access Journals (Sweden)

    Dawn Deel

    2007-02-01

    Full Text Available Concern about increasing atmospheric concentrations of carbon dioxide (CO2 and other greenhouse gases (GHG and their impact on the earth's climate has grown significantly over the last decade. Many countries, including the United States, wrestle with balancing economic development and meeting critical near-term environmental goals while minimizing long-term environmental risks. One promising solution to the buildup of GHGs in the atmosphere, being pursued by the U.S. Department of Energy's (DOE National Energy Technology Laboratory (NETL and its industrial and academic partners, is carbon sequestration—a process of permanent storage of CO2 emissions in underground geologic formations, thus avoiding CO2 release to the atmosphere. This option looks particularly attractive for point source emissions of GHGs, such as fossil fuel fired power plants. CO2 would be captured, transported to a sequestration site, and injected into an appropriate geologic formation. However, sequestration in geologic formations cannot achieve a significant role in reducing GHG emissions unless it is acceptable to stakeholders, regulators, and the general public, i.e., unless the risks involved are judged to be acceptable. One tool that can be used to achieve acceptance of geologic sequestration of CO2 is risk assessment, which is a proven method to objectively manage hazards in facilities such as oil and natural gas fields, pipelines, refineries, and chemical plants. Although probabilistic risk assessment (PRA has been applied in many areas, its application to geologic CO2 sequestration is still in its infancy. The most significant risk from geologic carbon sequestration is leakage of CO2. Two types of CO2 releases are possible—atmospheric and subsurface. High concentrations of CO2 caused by a release to the atmosphere would pose health risks to humans and animals, and any leakage of CO2 back into the atmosphere negates the effort expended to sequester the CO2

  10. Process for sequestering carbon dioxide and sulfur dioxide

    Science.gov (United States)

    Maroto-Valer, M Mercedes [State College, PA; Zhang, Yinzhi [State College, PA; Kuchta, Matthew E [State College, PA; Andresen, John M [State College, PA; Fauth, Dan J [Pittsburgh, PA

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  11. Noble gas geochemistry to monitor CO{sub 2} geological storages; Apports de la geochimie des gaz rares a la surveillance des sites de sequestration geologique de CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lafortune, St

    2007-11-15

    According to the last IPCC (Intergovernmental Panel on Climate Change) report, a probability of 90 % can be now established for the responsibility of the anthropogenic CO{sub 2} emissions for the global climate change observed since the beginning of the 20. century. To reduce these emissions and keep producing energy from coal, oil or gas combustions, CO{sub 2} could be stored in geological reservoirs like aquifers, coal beds, and depleted oil or gas fields. Storing CO{sub 2} in geological formations implies to control the efficiency and to survey the integrity of the storages, in order to be able to detect the possible leaks as fast as possible. Here, we study the feasibility of a geochemical monitoring through noble gas geochemistry. We present (1) the development of a new analytical line, Garodiox, developed to extract quantitatively noble gas from water samples, (2) the testing of Garodiox on samples from a natural CO{sub 2} storage analogue (Pavin lake, France) and (3) the results of a first field work on a natural CO{sub 2} accumulation (Montmiral, France). The results we obtain and the conclusions we draw, highlight the interest of the geochemical monitoring we suggest. (author)

  12. Experimental Investigation and Simplistic Geochemical Modeling of CO2 Mineral Carbonation Using the Mount Tawai Peridotite

    Directory of Open Access Journals (Sweden)

    Omeid Rahmani

    2016-03-01

    Full Text Available In this work, the potential of CO2 mineral carbonation of brucite (Mg(OH2 derived from the Mount Tawai peridotite (forsterite based (Mg2SiO4 to produce thermodynamically stable magnesium carbonate (MgCO3 was evaluated. The effect of three main factors (reaction temperature, particle size, and water vapor were investigated in a sequence of experiments consisting of aqueous acid leaching, evaporation to dryness of the slurry mass, and then gas-solid carbonation under pressurized CO2. The maximum amount of Mg converted to MgCO3 is ~99%, which occurred at temperatures between 150 and 175 °C. It was also found that the reduction of particle size range from >200 to <75 µm enhanced the leaching rate significantly. In addition, the results showed the essential role of water vapor in promoting effective carbonation. By increasing water vapor concentration from 5 to 10 vol %, the mineral carbonation rate increased by 30%. This work has also numerically modeled the process by which CO2 gas may be sequestered, by reaction with forsterite in the presence of moisture. In both experimental analysis and geochemical modeling, the results showed that the reaction is favored and of high yield; going almost to completion (within about one year with the bulk of the carbon partitioning into magnesite and that very little remains in solution.

  13. Springer An étude on global vacuum energy sequester

    CERN Document Server

    D'Amico, Guido; Padilla, Antonio; Stefanyszyn, David; Westphal, Alexander; Zahariade, George

    2017-09-18

    Recently two of the authors proposed a mechanism of vacuum energy sequester as a means of protecting the observable cosmological constant from quantum radiative corrections. The original proposal was based on using global Lagrange multipliers, but later a local formulation was provided. Subsequently other interesting claims of a different non-local approach to the cosmological constant problem were made, based again on global Lagrange multipliers. We examine some of these proposals and find their mutual relationship. We explain that the proposals which do not treat the cosmological constant counterterm as a dynamical variable require fine tunings to have acceptable solutions. Furthermore, the counterterm often needs to be retuned at every order in the loop expansion to cancel the radiative corrections to the cosmological constant, just like in standard GR. These observations are an important reminder of just how the proposal of vacuum energy sequester avoids such problems.

  14. Sea anemones may thrive in a high CO2 world.

    Science.gov (United States)

    Suggett, David J; Hall-Spencer, Jason M; Rodolfo-Metalpa, Riccardo; Boatman, Toby G; Payton, Ross; Tye Pettay, D; Johnson, Vivienne R; Warner, Mark E; Lawson, Tracy

    2012-10-01

    Increased seawater pCO 2 , and in turn 'ocean acidification' (OA), is predicted to profoundly impact marine ecosystem diversity and function this century. Much research has already focussed on calcifying reef-forming corals (Class: Anthozoa) that appear particularly susceptible to OA via reduced net calcification. However, here we show that OA-like conditions can simultaneously enhance the ecological success of non-calcifying anthozoans, which not only play key ecological and biogeochemical roles in present day benthic ecosystems but also represent a model organism should calcifying anthozoans exist as less calcified (soft-bodied) forms in future oceans. Increased growth (abundance and size) of the sea anemone (Anemonia viridis) population was observed along a natural CO 2 gradient at Vulcano, Italy. Both gross photosynthesis (P G ) and respiration (R) increased with pCO 2 indicating that the increased growth was, at least in part, fuelled by bottom up (CO 2 stimulation) of metabolism. The increase of P G outweighed that of R and the genetic identity of the symbiotic microalgae (Symbiodinium spp.) remained unchanged (type A19) suggesting proximity to the vent site relieved CO 2 limitation of the anemones' symbiotic microalgal population. Our observations of enhanced productivity with pCO 2 , which are consistent with previous reports for some calcifying corals, convey an increase in fitness that may enable non-calcifying anthozoans to thrive in future environments, i.e. higher seawater pCO 2 . Understanding how CO 2 -enhanced productivity of non- (and less-) calcifying anthozoans applies more widely to tropical ecosystems is a priority where such organisms can dominate benthic ecosystems, in particular following localized anthropogenic stress. © 2012 Blackwell Publishing Ltd.

  15. Modeling CO2 Sequestration in Saline Aquifer and Depleted Oil Reservoir To Evaluate Regional CO2 Sequestration Potential of Ozark Plateau Aquifer System, South-Central Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Watney, W. Lynn [University Of Kansas Center For Research, Inc. Lawrence, KS (United States); Rush, Jason [University Of Kansas Center For Research, Inc. Lawrence, KS (United States); Raney, Jennifer [University Of Kansas Center For Research, Inc. Lawrence, KS (United States)

    2014-09-30

    1. Drilled, cored, and logged three wells to the basement and collecting more than 2,700 ft of conventional core; obtained 20 mi2 of multicomponent 3D seismic imaging and merged and reprocessed more than 125 mi2 of existing 3D seismic data for use in modeling CO2- EOR oil recovery and CO2 storage in five oil fields in southern Kansas. 2. Determined the technical feasibility of injecting and sequestering CO2 in a set of four depleted oil reservoirs in the Cutter, Pleasant Prairie South, Eubank, and Shuck fields in southwest Kansas; of concurrently recovering oil from those fields; and of quantifying the volumes of CO2 sequestered and oil recovered during the process. 3. Formed a consortium of six oil operating companies, five of which own and operate the four fields. The consortium became part of the Southwest Kansas CO2-EOR Initiative for the purpose of sharing data, knowledge, and interest in understanding the potential for CO2-EOR in Kansas. 4. Built a regional well database covering 30,000 mi2 and containing stratigraphic tops from ~90,000 wells; correlated 30 major stratigraphic horizons; digitized key wells, including wireline logs and sample logs; and analyzed more than 3,000 drill stem tests to establish that fluid levels in deep aquifers below the Permian evaporites are not connected to the surface and therefore pressures are not hydrostatic. Connectivity with the surface aquifers is lacking because shale aquitards and impermeable evaporite layers consist of both halite and anhydrite. 5. Developed extensive web applications and an interactive mapping system that do the following: a. Facilitate access to a wide array of data obtained in the study, including core descriptions and analyses, sample logs, digital (LAS) well logs, seismic data, gravity and magnetics maps, structural and stratigraphic maps, inferred fault traces, earthquakes, Class I and II disposal wells, and

  16. Modeling CO2 Sequestration in Saline Aquifer and Depleted Oil Reservoir To Evaluate Regional CO2 Sequestration Potential of Ozark Plateau Aquifer System, South-Central Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Watney, W. Lynn [University Of Kansas Center For Research, Inc. Lawrence, KS (United States)

    2014-09-30

    1. Drilled, cored, and logged three wells to the basement and collecting more than 2,700 ft of conventional core; obtained 20 mi2 of multicomponent 3D seismic imaging and merged and reprocessed more than 125 mi2 of existing 3D seismic data for use in modeling CO2- EOR oil recovery and CO2 storage in five oil fields in southern Kansas. 2. Determined the technical feasibility of injecting and sequestering CO2 in a set of four depleted oil reservoirs in the Cutter, Pleasant Prairie South, Eubank, and Shuck fields in southwest Kansas; of concurrently recovering oil from those fields; and of quantifying the volumes of CO2 sequestered and oil recovered during the process. 3. Formed a consortium of six oil operating companies, five of which own and operate the four fields. The consortium became part of the Southwest Kansas CO2-EOR Initiative for the purpose of sharing data, knowledge, and interest in understanding the potential for CO2-EOR in Kansas. 4. Built a regional well database covering 30,000 mi2 and containing stratigraphic tops from ~90,000 wells; correlated 30 major stratigraphic horizons; digitized key wells, including wireline logs and sample logs; and analyzed more than 3,000 drill stem tests to establish that fluid levels in deep aquifers below the Permian evaporites are not connected to the surface and therefore pressures are not hydrostatic. Connectivity with the surface aquifers is lacking because shale aquitards and impermeable evaporite layers consist of both halite and anhydrite. 5. Developed extensive web applications and an interactive mapping system that do the following: a. Facilitate access to a wide array of data obtained in the study, including core descriptions and analyses, sample logs, digital (LAS) well logs, seismic data, gravity and magnetics maps, structural and stratigraphic maps, inferred fault traces, earthquakes, Class I and II disposal wells, and

  17. Committed CO2 Emissions of China's Coal-fired Power Plants

    Science.gov (United States)

    Suqin, J.

    2016-12-01

    The extent of global warming is determined by the cumulative effects of CO2 in the atmosphere. Coal-fired power plants, the largest anthropogenic source of CO2 emissions, produce large amount of CO2 emissions during their lifetimes of operation (committed emissions), which thus influence the future carbon emission space under specific targets on mitigating climate change (e.g., the 2 degree warming limit relative to pre-industrial levels). Comprehensive understanding of committed CO2 emissions for coal-fired power generators is urgently needed in mitigating global climate change, especially in China, the largest global CO2emitter. We calculated China's committed CO2 emissions from coal-fired power generators installed during 1993-2013 and evaluated their impact on future emission spaces at the provincial level, by using local specific data on the newly installed capacities. The committed CO2 emissions are calculated as the product of the annual coal consumption from newly installed capacities, emission factors (CO2emissions per unit crude coal consumption) and expected lifetimes. The sensitivities about generators lifetimes and the drivers on provincial committed emissions are also analyzed. Our results show that these relatively recently installed coal-fired power generators will lead to 106 Gt of CO2 emissions over the course of their lifetimes, which is more than three times the global CO2 emissions from fossil fuels in 2010. More than 80% (85 Gt) of their total committed CO2 will be emitted after 2013, which are referred to as the remaining emissions. Due to the uncertainties of generators lifetime, these remaining emissions would increase by 45 Gt if the lifetimes of China's coal-fired power generators were prolonged by 15 years. Furthermore, the remaining emissions are very different among various provinces owing to local developments and policy disparities. Provinces with large amounts of secondary industry and abundant coal reserves have higher committed

  18. CO2 credit or energy credit in emission trading?

    International Nuclear Information System (INIS)

    Hu, E.

    2002-01-01

    Emission trading is a good concept and approach to tackle global warming. However, what ''currency'' or ''credit'' should be used in the trading has remained a debatable topic. This paper proposed an ''Energy Credit'' concept as an alternative to the ''CO 2 credit'' that is currently in place. From the thermodynamic point of view, the global warming problem is an ''energy balance'' problem. The energy credit concept is thought to be more thermodynamically correct and tackles the core of the global warming problem more directly. The Energy credit concept proposed can be defined as: the credit to offset the extra energy trapped/absorbed in the earth (and its atmosphere) due to the extra anthropogenic emission (or other activities) by a country or company. A couple of examples are given in the paper to demonstrate the concept of the Energy credit and its advantages over the CO 2 credit concept. (author)

  19. Wettability determination by contact angle measurements: hvbB coal-water system with injection of synthetic flue gas and CO2.

    Science.gov (United States)

    Shojai Kaveh, Narjes; Rudolph, E Susanne J; Wolf, Karl-Heinz A A; Ashrafizadeh, Seyed Nezameddin

    2011-12-01

    Geological sequestration of pure carbon dioxide (CO(2)) in coal is one of the methods to sequester CO(2). In addition, injection of CO(2) or flue gas into coal enhances coal bed methane production (ECBM). The success of this combined process depends strongly on the wetting behavior of the coal, which is function of coal rank, ash content, heterogeneity of the coal surface, pressure, temperature and composition of the gas. The wetting behavior can be evaluated from the contact angle of a gas bubble, CO(2) or flue gas, on a coal surface. In this study, contact angles of a synthetic flue gas, i.e. a 80/20 (mol%) N(2)/CO(2) mixture, and pure CO(2) on a Warndt Luisenthal (WL) coal have been determined using a modified pendant drop cell in a pressure range from atmospheric to 16 MPa and a constant temperature of 318 K. It was found that the contact angles of flue gas on WL coal were generally smaller than those of CO(2). The contact angle of CO(2) changes from water-wet to gas-wet by increasing pressure above 8.5 MPa while the one for the flue gas changes from water-wet to intermediate-wet by increasing pressure above 10 MPa. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Forgotten carbon: indirect CO2 in greenhouse gas emission inventories

    International Nuclear Information System (INIS)

    Gillenwater, Michael

    2008-01-01

    National governments that are Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to submit greenhouse gas (GHG) inventories accounting for the emissions and removals occurring within their geographic territories. The Intergovernmental Panel on Climate Change (IPCC) provides inventory methodology guidance to the Parties of the UNFCCC. This methodology guidance, and national inventories based on it, omits carbon dioxide (CO 2 ) from the atmospheric oxidation of methane, carbon monoxide, and non-methane volatile organic compounds emissions that result from several source categories. The inclusion of this category of 'indirect' CO 2 in GHG inventories increases global anthropogenic emissions (excluding land use and forestry) between 0.5 and 0.7%. However, the effect of inclusion on aggregate UNFCCC Annex I Party GHG emissions would be to reduce the growth of total emissions, from 1990 to 2004, by 0.2% points. The effect on the GHG emissions and emission trends of individual countries varies. The paper includes a methodology for calculating these emissions and discusses uncertainties. Indirect CO 2 is equally relevant for GHG inventories at other scales, such as global, regional, organizational, and facility. Similarly, project-based methodologies, such as those used under the Clean Development Mechanism, may need revising to account for indirect CO 2

  1. Influence of European passenger cars weight to exhaust CO2 emissions

    International Nuclear Information System (INIS)

    Zervas, Efthimios; Lazarou, Christos

    2008-01-01

    The increase of atmospheric CO 2 concentration influences climate changes. The road transport sector is one of the main anthropogenic sources of CO 2 emissions in the European Union (EU). One of the main parameters influencing CO 2 emissions from passenger cars (PCs) is their weight, which increases during last years. For the same driving distance, heavier vehicles need more work than lighter ones, because they have to move an extra weight, and thus more fuel is consumed and thus increased CO 2 emissions. The weight control of new PCs could be an efficient way to control their CO 2 emissions. After an analysis of the EU new PCs market, their segment distribution and their weight, some estimations for 2020 are presented. Based on this analysis, 13 base scenarios using several ways for the control of the weight of future European new PCs are used to estimate their CO 2 emissions and the benefit of each scenario. The results show that a significant benefit on CO 2 emissions could be achieved if the weight of each PC does not exceed an upper limit, especially if this limit is quite low. The benefit obtained by limitations of weight is higher than the benefit obtained from the expected decreased future fuel consumption. Similar results are obtained when the weight of new PCs does not exceed an upper limit within each segment, or when the weight of each new PC decreases. (author)

  2. Multi-species constraint of anthropogenic and biogenic processes over North America during ACT-America summer 2016 and winter 2017 aircraft campaigns

    Science.gov (United States)

    Parazoo, N.; Bowman, K. W.; Kuai, L.; Liu, J.; Lee, M.; Baker, I. T.; Berry, J. A.; Davis, K. J.; Lauvaux, T.; DiGangi, J. P.; Sweeney, C.

    2017-12-01

    Multi-species measurements of CO, OCS, and SIF have the potential to attribute CO2 variability to productivity and anthropogenic emissions. ACT-America aircraft campaigns in summer 2016 and winter 2017 collected vertical profiles of these key species close to their sources, providing important constraints on CO2 sources across 3 unique regions in eastern North America. The CMS-Flux carbon cycle assimilation system uses satellite measurements of CO (MOPITT), CO2 (OCO-2), SIF (OCO-2), and OCS (TES) to determine regional CO2 sources due to fossil fuel emissions, biomass burning, and net biome exchange, providing independent flux constraints, and which can be propagated back to the atmosphere for direct comparison to aircraft data. Here, we evaluate tracer-tracer correlations between CO2, CO, and OCS from ACT-America aircraft data during fall and winter campaigns, and compare to posterior signals from CMS-Flux over the same period. To predict atmospheric OCS signals, we leverage mechanistic representations of OCS plant uptake and GPP in the SiB land surface model to determine OCS-GPP linear relationships, then use SIF optimized estimates of GPP to infer OCS fluxes. Our objectives in this study are 3 fold: (1) Determine consistency of regional source attributions from CMS-Flux with aircraft data from ACT-America; (2) Analyze observed (ACT-America) and predicted (CMS-Flux) tracer-tracer correlations across multiple seasons and regions to identify key biogenic and anthropogenic drivers; (3) Determine to what extent SIF and OCS are valid linear predictors of GPP spatial variability. Summertime evaluation of these tracers shows good correlation between OCS/CO2 and OCS/CO in the midwest but poorer correlation in the northeast possibly reflecting biogenic controls on CO2. Comparisons of observed and predicted CO and CO2 in the PBL with CMF-Flux data indicate positively correlated biases that reflect both transport and flux errors. These results are compared with the winter

  3. The Impact of Prior Biosphere Models in the Inversion of Global Terrestrial CO2 Fluxes by Assimilating OCO-2 Retrievals

    Science.gov (United States)

    Philip, Sajeev; Johnson, Matthew S.

    2018-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric fluxes. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in terrestrial biospheric models having significant differences in the quantification of biospheric CO2 fluxes. Atmospheric transport models assimilating measured (in situ or space-borne) CO2 concentrations to estimate "top-down" fluxes, generally use these biospheric CO2 fluxes as a priori information. Most of the flux inversion estimates result in substantially different spatio-temporal posteriori estimates of regional and global biospheric CO2 fluxes. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission dedicated to accurately measure column CO2 (XCO2) allows for an improved understanding of global biospheric CO2 fluxes. OCO-2 provides much-needed CO2 observations in data-limited regions facilitating better global and regional estimates of "top-down" CO2 fluxes through inversion model simulations. The specific objectives of our research are to: 1) conduct GEOS-Chem 4D-Var assimilation of OCO-2 observations, using several state-of-the-science biospheric CO2 flux models as a priori information, to better constrain terrestrial CO2 fluxes, and 2) quantify the impact of different biospheric model prior fluxes on OCO-2-assimilated a posteriori CO2 flux estimates. Here we present our assessment of the importance of these a priori fluxes by conducting Observing System Simulation Experiments (OSSE) using simulated OCO-2 observations with known "true" fluxes.

  4. The anthropogenic influence on heat and humidity in the US Midwest

    Science.gov (United States)

    Inda Diaz, H. A.; O'Brien, T. A.; Stone, D. A.

    2016-12-01

    Heatwaves, and extreme temperatures in general, have a wide range of negative impacts on society, and particularly on human health. In addition to temperature, humidity plays a key role in regulating human body temperature, with higher humidities tending to reduce the effectiveness of perspiration. There is recent theoretical and observational evidence that co-occurring extreme heat and humidity can potentially have a much more dramatic impact on human health than either extreme in isolation. There is an abundance of observational evidence indicating that anthropogenic increases in greenhouse gas (GHG) forcing have contributed to an increase in the intensity and frequency of temperature extremes on a global scale. However, aside from purely thermodynamically-driven increases in near-surface humidity, there is a paucity of similar evidence for anthropogenic impacts on humidity. Thermodynamic scaling would suggest that air masses originating from the ocean would be associated with higher specific humidity in a warmer world, and transpiration from irrigated crops could further increase humidity in warm air masses. In order to explore the role of anthropogenic GHG forcing on the co-occurrence of temperature and humidity extremes in the Midwestern United States (US), we evaluate a large ensemble of global climate model simulations with and without anthropogenic GHG forcing. In particular, we examine differences between the probability distributions of near-surface temperature, humidity, wet-bulb temperature, and the joint distribution of temperature and humidity in this ensemble. Finally, we explore augmenting this experimental framework with additional simulations to explore the role of anthropogenic changes in the land surface, and in particular irrigated crops, on co-occurring extreme heat and humidity.

  5. Response of the coccolithophore Emiliania huxleyi to increased CO2 and Fe availability within the plankton food web

    OpenAIRE

    Lorenzo Garrido, María del Rosario

    2016-01-01

    Ocean acidification due to increased CO2 emissions derived from anthropogenic activities is affecting marine ecosystems at an unprecedented rate (IPCC 2013). Ocean acidification has the potential to affect the physiological processes due to increasing CO2 levels and lower pH (Riebesell & Tortell 2011). Ocean acidification also impacts trace metal solubility and speciation. Among all trace metals, Fe is the most essential for biological functions of phytoplankton. Coccolithophores is one of...

  6. SEQUESTERING AGENTS FOR ACTIVE CAPS - REMEDIATION OF METALS AND ORGANICS

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A; Michael Paller, M; Danny D. Reible, D; Xingmao Ma, X; Ioana G. Petrisor, I

    2007-05-10

    This research evaluated organoclays, zeolites, phosphates, and a biopolymer as sequestering agents for inorganic and organic contaminants. Batch experiments were conducted to identify amendments and mixtures of amendments for metal and organic contaminants removal and retention. Contaminant removal was evaluated by calculating partitioning coefficients. Metal retention was evaluated by desorption studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays, and the biopolymer, chitosan, were very effective sequestering agents for metals in fresh and salt water. Organoclays were very effective sorbents for phenanthrene, pyrene, and benzo(a)pyrene. Partitioning coefficients for the organoclays were 3000-3500 ml g{sup -1} for benzo(a)pyrene, 400-450 ml g{sup -1} for pyrene, and 50-70 ml g{sup -1} for phenanthrene. Remediation of sites with a mixture of contaminants is more difficult than sites with a single contaminant because metals and organic contaminants have different fate and transport mechanisms in sediment and water. Mixtures of amendments (e.g., organoclay and rock phosphate) have high potential for remediating both organic and inorganic contaminants under a broad range of environmental conditions, and have promise as components in active caps for sediment remediation.

  7. Scrubbing system design for CO2 capture in coal-fired power plants

    International Nuclear Information System (INIS)

    Heischkamp, Elizabeth

    2017-01-01

    Within the last decades a continuous tightening of environmental regulations has been observed in several countries around the world. These include restriction of anthropogenic CO 2 emissions, since they are considered responsible for intensifying global warming. Coal-fired power plants represent a good possibility for capturing CO 2 before it is emitted in the atmosphere, thereby contributing to combat global warming. This work focuses on reducing the CO 2 emissions of such a power plant by 90 %. For this purpose a hard coal power plant is retrofitted with a chemical absorption using different solutions of piperazine promoted potassium carbonate. The resulting power plant's efficiency losses have been accounted for. A comparison of different scenarios such as the variation of operating parameters offer an insight in detecting suitable operating conditions that will allow to minimize efficiency penalties. Simulation details are provided along with a technical and an economic analysis.

  8. Painted Goby Larvae under High-CO2 Fail to Recognize Reef Sounds.

    Directory of Open Access Journals (Sweden)

    Joana M Castro

    Full Text Available Atmospheric CO2 levels have been increasing at an unprecedented rate due to anthropogenic activity. Consequently, ocean pCO2 is increasing and pH decreasing, affecting marine life, including fish. For many coastal marine fishes, selection of the adult habitat occurs at the end of the pelagic larval phase. Fish larvae use a range of sensory cues, including sound, for locating settlement habitat. This study tested the effect of elevated CO2 on the ability of settlement-stage temperate fish to use auditory cues from adult coastal reef habitats. Wild late larval stages of painted goby (Pomatoschistus pictus were exposed to control pCO2 (532 μatm, pH 8.06 and high pCO2 (1503 μatm, pH 7.66 conditions, likely to occur in nearshore regions subjected to upwelling events by the end of the century, and tested in an auditory choice chamber for their preference or avoidance to nighttime reef recordings. Fish reared in control pCO2 conditions discriminated reef soundscapes and were attracted by reef recordings. This behaviour changed in fish reared in the high CO2 conditions, with settlement-stage larvae strongly avoiding reef recordings. This study provides evidence that ocean acidification might affect the auditory responses of larval stages of temperate reef fish species, with potentially significant impacts on their survival.

  9. MINIMIZING NET CO2 EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL / BIOMASS BLENDS

    Energy Technology Data Exchange (ETDEWEB)

    Todd Lang; Robert Hurt

    2001-12-23

    This study presents a set of thermodynamic calculations on the optimal mode of solid fuel utilization considering a wide range of fuel types and processing technologies. The technologies include stand-alone combustion, biomass/coal cofiring, oxidative pyrolysis, and straight carbonization with no energy recovery but with elemental carbon storage. The results show that the thermodynamically optimal way to process solid fuels depends strongly on the specific fuels and technologies available, the local demand for heat or for electricity, and the local baseline energy-production method. Burning renewable fuels reduces anthropogenic CO{sub 2} emissions as widely recognized. In certain cases, however, other processing methods are equally or more effective, including the simple carbonization or oxidative pyrolysis of biomass fuels.

  10. Attributing Methane and Carbon Dioxide Emissions from Anthropogenic and Natural Sources Using AVIRIS-NG

    Science.gov (United States)

    Thorpe, A. K.; Frankenberg, C.; Thompson, D. R.; Duren, R. M.; Aubrey, A. D.; Bue, B. D.; Green, R. O.; Gerilowski, K.; Krings, T.; Borchardt, J.; Kort, E. A.; Sweeney, C.; Conley, S. A.; Roberts, D. A.; Dennison, P. E.; Ayasse, A.

    2016-12-01

    Imaging spectrometers like the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) can map large regions with the high spatial resolution necessary to resolve methane (CH4) and carbon dioxide (CO2) emissions. This capability is aided by real time detection and geolocation of gas plumes, permitting unambiguous identification of individual emission source locations and communication to ground teams for rapid follow up. We present results from AVIRIS-NG flight campaigns in the Four Corners region (Colorado and New Mexico) and the San Joaquin Valley (California). Over three hundred plumes were observed, reflecting emissions from anthropogenic and natural sources. Examples of plumes will be shown for a number of sources, including CH4 from well completions, gas processing plants, tanks, pipeline leaks, natural seeps, and CO2 from power plants. Despite these promising results, an imaging spectrometer built exclusively for quantitative mapping of gas plumes would have improved sensitivity compared to AVIRIS-NG. For example, an instrument providing a 1 nm spectral sampling (2,000-2,400 micron) would permit mapping CH4, CO2, H2O, CO, and N2O from more diffuse sources using both airborne and orbital platforms. The ability to identify emission sources offers the potential to constrain regional greenhouse gas budgets and improve partitioning between anthropogenic and natural emission sources. Because the CH4 lifetime is only about 9 years and CH4 has a Global Warming Potential 86 times that of CO2 for a 20 year time interval, mitigating these emissions is a particularly cost-effective approach to reduce overall atmospheric radiative forcing. Fig. 1. True color image subset with superimposed gas plumes showing concentrations in ppmm. Left: AVIRIS-NG observed CH4 plumes from natural gas processing plant extending over 500 m downwind of multiple emissions sources. Right: Multiple CO2 plumes observed from coal-fired power plant.

  11. Sequestering HMGB1 via DNA-Conjugated Beads Ameliorates Murine Colitis

    Science.gov (United States)

    Antoine, Daniel J.; Dancho, Meghan; Tsaava, Teá; Li, Jianhua; Lu, Ben; Levine, Yaakov A.; Stiegler, Andrew; Tamari, Yehuda; Al-Abed, Yousef; Roth, Jesse; Tracey, Kevin J.; Yang, Huan

    2014-01-01

    Inflammatory bowel disease (IBD) is chronic inflammation of the gastrointestinal tract that affects millions of people worldwide. Although the etiology of IBD is not clear, it is known that products from stressed cells and enteric microbes promote intestinal inflammation. High mobility group box 1 (HMGB1), originally identified as a nuclear DNA binding protein, is a cytokine-like protein mediator implicated in infection, sterile injury, autoimmune disease, and IBD. Elevated levels of HMGB1 have been detected in inflamed human intestinal tissues and in feces of IBD patients and mouse models of colitis. Neutralizing HMGB1 activity by administration of anti-HMGB1 antibodies or HMGB1-specific antagonist improves clinical outcomes in animal models of colitis. Since HMGB1 binds to DNA with high affinity, here we developed a novel strategy to sequester HMGB1 using DNA immobilized on sepharose beads. Screening of DNA-bead constructs revealed that B2 beads, one linear form of DNA conjugated beads, bind HMGB1 with high affinity, capture HMGB1 ex vivo from endotoxin-stimulated RAW 264.7 cell supernatant and from feces of mice with colitis. Oral administration of B2 DNA beads significantly improved body weight, reduced colon injury, and suppressed colonic and circulating cytokine levels in mice with spontaneous colitis (IL-10 knockout) and with dextran sulfate sodium-induced colitis. Thus, DNA beads reduce inflammation by sequestering HMGB1 and may have therapeutic potential for the treatment of IBD. PMID:25127031

  12. Quantifying Anthropogenic Dust Emissions

    Science.gov (United States)

    Webb, Nicholas P.; Pierre, Caroline

    2018-02-01

    Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.

  13. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change

    Science.gov (United States)

    Midgley, Guy F.; Bond, William J.

    2015-09-01

    Projections of ecosystem and biodiversity change for Africa under climate change diverge widely. More than other continents, Africa has disturbance-driven ecosystems that diversified under low Neogene CO2 levels, in which flammable fire-dependent C4 grasses suppress trees, and mega-herbivore action alters vegetation significantly. An important consequence is metastability of vegetation state, with rapid vegetation switches occurring, some driven by anthropogenic CO2-stimulated release of trees from disturbance control. These have conflicting implications for biodiversity and carbon sequestration relevant for policymakers and land managers. Biodiversity and ecosystem change projections need to account for both disturbance control and direct climate control of vegetation structure and function.

  14. Removing traffic emissions from CO2 time series measured at a tall tower using mobile measurements and transport modeling

    Science.gov (United States)

    Schmidt, Andres; Rella, Chris W.; Göckede, Mathias; Hanson, Chad; Yang, Zhenlin; Law, Beverly E.

    2014-11-01

    In recent years, measurements of atmospheric carbon dioxide with high precision and accuracy have become increasingly important for climate change research, in particular to inform terrestrial biosphere models. Anthropogenic carbon dioxide emissions from fossil fuel burning have long been recognized to contribute a significant portion of the carbon dioxide in the atmosphere. Here, we present an approach to remove the traffic related carbon dioxide emissions from mole fractions measured at a tall tower by using the corresponding carbon monoxide measurements in combination with footprint analyses and transport modeling. This technique improves the suitability of the CO2 data to be used in inverse modeling approaches of atmosphere-biosphere exchange that do not account for non-biotic portions of CO2. In our study region in Oregon, road traffic emissions are the biggest source of anthropogenic carbon dioxide and carbon monoxide. A three-day mobile campaign covering 1700 km of roads in northwestern Oregon was performed during summer of 2012 using a laser-based Cavity Ring-Down Spectrometer. The mobile measurements incorporated different roads including main highways, urban streets, and back-roads, largely within the typical footprint of a tall CO/CO2 observation tower in Oregon's Willamette Valley. For the first time, traffic related CO:CO2 emission ratios were measured directly at the sources during an on-road campaign under a variety of different driving conditions. An average emission ratio of 7.43 (±1.80) ppb CO per ppm CO2 was obtained for the study region and applied to separate the traffic related portion of CO2 from the mole fraction time series. The road traffic related portion of the CO2 mole fractions measured at the tower site reached maximum values ranging from 9.8 to 12 ppm, depending on the height above the surface, during summer 2012.

  15. Mineral nutrition and plant responses to elevated levels of atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, A.

    1996-08-01

    The atmospheric concentration of CO{sub 2}, a radiatively-active ({open_quotes}green-house{close_quotes}) gas, is increasing. This increase is considered a post-industrial phenomenon attributable to increasing rates of fossil fuel combustion and changing land use practices, particularly deforestation. Climate changes resulting from such elevated atmospheric CO{sub 2} levels, in addition to the direct effects of increased CO{sub 2}, are expected to modify the productivity of forests and alter species distributions. Elevated levels of CO{sub 2} have been shown, in some cases, to lead to enhanced growth rates in plants, particularly those with C{sub 3} metabolism - indicating that plant growth is CO{sub 2}-limited in these situations. Since the major process underlying growth is CO{sub 2} assimilation via photosynthesis in leaves, plant growth represents a potential for sequestering atmospheric carbon into biomass, but this potential could be hampered by plant carbon sink size. Carbon sinks are utilization sites for assimilated carbon, enabling carbon assimilation to proceed without potential inhibition from the accumulation of assimilate (photosynthate). Plant growth provides new sinks for assimilated carbon which permits greater uptake of atmospheric carbon dioxide. However, sinks are, on the whole, reduced in size by stress events due to the adverse effects of stress on photosynthetic rates and therefore growth. This document reviews some of the literature on plant responses to increasing levels of atmospheric carbon dioxide and to inadequate nutrient supply rates, and with this background, the potential for nutrient-limited plants to respond to increasing carbon dioxide is addressed. Conclusions from the literature review are then tested experimentally by means of a case study exploring carbon-nitrogen interactions in seedlings of loblolly pine.

  16. Cross-continental triple oxygen isotope analysis of tropospheric CO2

    Science.gov (United States)

    Liang, M. C.; Rangarajan, R.; Newman, S.; Laskar, A. H.

    2016-12-01

    The abundance variations of near surface atmospheric CO2 isotopologues (primarily 16O12C16O, 16O13C16O, 17O12C16O, and 18O12C16O) represent an integrated signal from anthropogenic/biogeochemical processes, including fossil fuel burning, biospheric photosynthesis and respiration, hydrospheric isotope exchange with water, and stratospheric photochemistry. Oxygen isotopes, in particular, are affected by the carbon and water cycles. Being a useful tracer that directly probes governing processes in CO2 biogeochemical cycles, D17O (= ln(1+d17O) - 0.516´ln(1+d18O)) provides an alternative constraint on the strengths of the associated cycles involving CO2. Here, we report more than one year of data obtained from Taiwan (Taipei), South China Sea, and USA (Pasadena, CA and Palos Verdes, CA). On average, the D17O values from these locations are similar and show no significant influence from the 2014-2016 El Nino event, in contrast to what has been reported for the 1997-1998 El Nino from the CO2 data collected from La Jolla, CA. Implications for utilizing the new tracer D17O for carbon cycling studies will be made.

  17. CO2 Outgassing from an Urbanized River System Fueled by Wastewater Treatment Plant Effluents.

    Science.gov (United States)

    Yoon, Tae Kyung; Jin, Hyojin; Begum, Most Shirina; Kang, Namgoo; Park, Ji-Hyung

    2017-09-19

    Continuous underway measurements were combined with a basin-scale survey to examine human impacts on CO 2 outgassing in a highly urbanized river system in Korea. While the partial pressure of CO 2 (pCO 2 ) was measured at 15 sites using syringe equilibration, 3 cruises employing an equilibrator were done along a 30 km transect in the Seoul metropolitan area. The basin-scale survey revealed longitudinal increases in surface water pCO 2 and dissolved organic carbon (DOC) in the downstream reach. Downstream increases in pCO 2 , DOC, fluorescence index, and inorganic N and P reflected disproportionately large contributions from wastewater treatment plant (WWTP) effluents carried by major urban tributaries. Cruise transects exhibited strong localized peaks of pCO 2 up to 13 000 μatm and 13 CO 2 enrichment along the confluences of tributaries at an average flow, whereas CO 2 pulses were dampened by increased flow during the monsoon period. Fluctuations in pCO 2 along the eutrophic reach downstream of the confluences reflected environmental controls on the balance between photosynthesis, biodegradation, and outgassing. The results underscore WWTP effluents as an anthropogenic source of nutrients, DOC, and CO 2 and their influences on algal blooms and associated C dynamics in eutrophic urbanized river systems, warranting further research on urbanization-induced perturbations to riverine metabolic processes and carbon fluxes.

  18. Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity

    OpenAIRE

    Delucchi, Mark

    1997-01-01

    The use of energy accounts for a major fraction of all anthropogenic emissions of greenhouse gases (IPCC, 1995) , and in most industrialized countries the use of transportation fuels and electricity accounts for a major fraction of all energy-related emissions. In the transportation sector alone, emissions of carbon dioxide (CO2) from the production and use of motor-vehicle fuels account for as much as 30% of CO2 emissions from the use of all fossil fuels (DeLuchi, 1991). The production and...

  19. Oxygen isotope anomaly in tropospheric CO2 and implications for CO2 residence time in the atmosphere and gross primary productivity.

    Science.gov (United States)

    Liang, Mao-Chang; Mahata, Sasadhar; Laskar, Amzad H; Thiemens, Mark H; Newman, Sally

    2017-10-13

    The abundance variations of near surface atmospheric CO 2 isotopologues (primarily 16 O 12 C 16 O, 16 O 13 C 16 O, 17 O 12 C 16 O, and 18 O 12 C 16 O) represent an integrated signal from anthropogenic/biogeochemical processes, including fossil fuel burning, biospheric photosynthesis and respiration, hydrospheric isotope exchange with water, and stratospheric photochemistry. Oxygen isotopes, in particular, are affected by the carbon and water cycles. Being a useful tracer that directly probes governing processes in CO 2 biogeochemical cycles, Δ 17 O (=ln(1 + δ 17 O) - 0.516 × ln(1 + δ 18 O)) provides an alternative constraint on the strengths of the associated cycles involving CO 2 . Here, we analyze Δ 17 O data from four places (Taipei, Taiwan; South China Sea; La Jolla, United States; Jerusalem, Israel) in the northern hemisphere (with a total of 455 measurements) and find a rather narrow range (0.326 ± 0.005‰). A conservative estimate places a lower limit of 345 ± 70 PgC year -1 on the cycling flux between the terrestrial biosphere and atmosphere and infers a residence time of CO 2 of 1.9 ± 0.3 years (upper limit) in the atmosphere. A Monte Carlo simulation that takes various plant uptake scenarios into account yields a terrestrial gross primary productivity of 120 ± 30 PgC year -1 and soil invasion of 110 ± 30 PgC year -1 , providing a quantitative assessment utilizing the oxygen isotope anomaly for quantifying CO 2 cycling.

  20. Long-term Increases in Flower Production by Growth Forms in Response to Anthropogenic Change in a Tropical Forest

    Science.gov (United States)

    Pau, S.; Wright, S. J.

    2016-12-01

    There is mounting evidence that anthropogenic global change is altering the ecology of tropical forests. A limited number of studies have focused on long-term trends in tropical reproductive activity, yet differences in reproductive activity should have consequences for demography and ultimately forest carbon, water, and energy balance. Here we analyze a 28-year record of tropical flower production in response to anthropogenic climate change. We show that a multi-decadal increase in flower production is most strongly driven by rising atmospheric CO2, which had approximately 8x the effect of the Multivariate ENSO Index and approximately 13x the effect of rainfall or solar radiation. Interannual peaks in flower production were associated with greater solar radiation and low rainfall during El Niño years. Observed changes in solar radiation explained flower production better than rainfall (models including solar radiation accounted for 94% of cumulative AICc weight compared to 87% for rainfall). All growth forms (lianas, canopy trees, midstory trees, and shrubs) produced more flowers with increasing CO2 except for understory treelets. The increase in flower production was matched by a lengthening of flowering duration for canopy trees and midstory trees; duration was also longer for understory treelets. Given that anthropogenic CO2 emissions will continue to climb over the next century, the long-term increase in flower production may persist unless offset by increasing cloudiness in the tropics, or until rising CO2 and/or warming temperatures associated with the greenhouse effect pass critical thresholds for plant reproduction.

  1. FIXAÇÃO DE CO2 EM EFLUENTE SALINO DE INDÚSTRIA PETROQUÍMICA

    Directory of Open Access Journals (Sweden)

    Leonardo F. Santos

    Full Text Available In various industrial processes, such as the process of obtaining potassium by solution mining or in the oil industry, fuels are burnt concurrently to the formation of saline effluents. The opportunity to sequester carbon through capturing the CO2 from the flue gas by carbonation of these effluents and reducing the potential of scaling of the water is evident. The use of saline industrial effluent from electrodialysis for carbon sequestration by mineralization of carbon dioxide is the focus of this work. The carbonation reaction of saline effluent of reverse electrodialysis, of low ionic strength and higher CO2 solubility, was simulated through OLI®. Precipitation tests were performed by bubbling 10-20 NL h-1 CO2 in a glass reactor containing the brine and pH adjusted to 8.9. The solid was characterized and the results from the simulation and the experiments were compared. The removal of calcium and strontium in the form of carbonates reach out up to 98% and 75%. The simulation results were in line with the experimental results for the calcium behavior, but not for strontium. The OLI® simulation was powerful to represent the calcium carbonate formation, however, comparisons between predicted Sr removal and testwork results presented differences and must be investigated.

  2. Natural CO{sub 2} migrations in the South-Eastern Basin of France: implications for the CO{sub 2} storage in sedimentary formations; Contribution a la connaissance des migrations de CO{sub 2} naturel dans le Bassin du Sud-Est de la France: enseignements pour le stockage geologique du CO{sub 2} dans les reservoirs sedimentaires

    Energy Technology Data Exchange (ETDEWEB)

    Rubert, Y.

    2009-03-15

    Study of natural CO{sub 2} analogues brings key informations on the factors governing the long term stability/instability of future anthropogenic CO{sub 2} storages. The main objective of this work, through the study of cores from V.Mo.2 well crosscutting the Montmiral natural reservoir (Valence Basin, France), is to trace the deep CO{sub 2} migrations in fractures. Petrographic, geochemical and micro-thermometric studies of the V.Mo.2 cores were thus performed in order: 1) to describe the reservoir filling conditions and 2) to detect possible CO{sub 2}-leakage through the sediments overlying the reservoir. Fluid inclusions from the Paleozoic crystalline basement record the progressive unmixing of a hot homogeneous aquo-carbonic fluid. The Montmiral reservoir was therefore probably fed by a CO{sub 2}-enriched gas component at the Late Cretaceous-Paleogene. The study of the sedimentary column in V.Mo.2 well, demonstrates that the CO{sub 2} did not migrate towards the surface through the thick marly unit (Domerian-Middle Oxfordian). These marls have acted as an impermeable barrier that prevented the upward migration of fluids. Two main stages of fluid circulation have been recognized: 1) an ante- Callovian one related to the Tethysian extension 2) a tertiary stage during which the upper units underwent a karstification, with CO{sub 2} leakage related but which remained confined into the deeper parts of the Valence Basin. Since the Paleogene, the Montmiral reservoir has apparently remained stable, despite the Pyrenean and alpine orogeneses. This is mainly due to the efficient seal formed by the thick marly levels and also to the local structuration in faulted blocks which apparently acted as efficient lateral barriers. (author)

  3. Random-modulation differential absorption lidar based on semiconductor lasers and single photon counting for atmospheric CO2 sensing

    Science.gov (United States)

    Quatrevalet, M.; Ai, X.; Pérez-Serrano, A.; Adamiec, P.; Barbero, J.; Fix, A.; Rarity, J. G.; Ehret, G.; Esquivias, I.

    2017-09-01

    Carbon dioxide (CO2) is the major anthropogenic greenhouse gas contributing to global warming and climate change. Its concentration has recently reached the 400-ppm mark, representing a more than 40 % increase with respect to its level prior to the industrial revolution.

  4. Screening and ranking Alberta oil pools for CO{sub 2} flooding and sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.C. [Adams Pearson Associates Inc., Calgary, AB (Canada); Bachu, S. [Alberta Energy and Utilities Board, Calgary, AB (Canada)

    2001-06-01

    This paper presented the results of a technical screening program using Excel VBA to successfully screen and rank a very large number of oil pools for enhanced oil recovery using carbon dioxide (CO{sub 2}) flooding. A total of 6 ranking parameters were used, including API gravity of oil, residual oil saturation, ratio between reservoir pressure and minimum miscibility pressure, reservoir temperature, net pay thickness and porosity. The screening program provided a technical ranking of approximately 8,800 Alberta pools in less than 2 minutes. After compilation of the Alberta oil pools, it was determined that most of the deep carbonate oil pools are excellent candidates for CO{sub 2} miscible flooding. Other Devonian carbonate pools were also ranked as having high potential for the process. An environmental benefit of CO{sub 2} miscible flooding process is that carbon sequestration has the potential to reduce anthropogenic carbon dioxide emissions from reaching the atmosphere. Ongoing studies are currently addressing CO{sub 2} capture and transportation, making EOR technology viable for maintaining light oil production in western Canada. 11 refs., 7 tabs., 1 fig.

  5. Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing

    Directory of Open Access Journals (Sweden)

    J. E. Penner

    2009-02-01

    Full Text Available Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth's area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. Here, we examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning, from anthropogenic sulfate aerosols, and from aircraft that deposit their aerosols directly in the upper troposphere. We use a version of the aerosol model that predicts sulfate number and mass concentrations in 3-modes and includes the formation of sulfate aerosol through homogeneous binary nucleation as well as a version that only predicts sulfate mass. The 3-mode version best represents the Aitken aerosol nuclei number concentrations in the upper troposphere which dominated ice crystal residues in the upper troposphere. Fossil fuel and biomass burning soot aerosols with this version exert a radiative forcing of −0.3 to −0.4 Wm2 while anthropogenic sulfate aerosols and aircraft aerosols exert a forcing of −0.01 to 0.04 Wm2 and −0.16 to −0.12 Wm2, respectively, where the range represents the forcing from two parameterizations for ice nucleation. The sign of the forcing in the mass-only version of the model depends on which ice nucleation parameterization is used and can be either positive or negative. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds, but this forcing has not been included in past assessments of the total anthropogenic radiative forcing of climate.

  6. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land

    Science.gov (United States)

    Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.; Koven, Charles D.; Lindsay, Keith; Pritchard, Michael S.; Swann, Abigail L. S.; Randerson, James T.

    2018-05-01

    Understanding how anthropogenic CO2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO2 increases are isolated over individual continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO2 than Asian or African forests.

  7. Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources

    Science.gov (United States)

    Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.

    Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.

  8. The CO2 emission in urbanic soils in the conditions of intensive technogenic pollution

    Science.gov (United States)

    Deviatova, Tatiana; Alaeva, Liliia; Negrobova, Elena; Kramareva, Tatiana

    2017-04-01

    Massive industrial pollution of the environment including soils leads to drastic changes in the vital activity of microorganisms, plants and animals. As objects of research was selected soils of the industrial and residential zones, farmland soils, forest soils. Comparative analysis showed that the emission of CO2 urbanizable increase compared to the suburban soils in recreational areas is 1.5 times, in the residential and industrial zones - in 3-5 times. In addition, identified a local point located in the vicinity of chemical plants, where soil CO2 emission increased up to 40 times compared to the suburban soils. Air technogenic pollution of soils by industrial emissions and transport enhances the mineralization of soil organic matter, increases its lability. These trends are associated with nonspecific adaptive reactions of the soil microbial complex in terms of pollution. Strengthening of the processes of mineralization may be due to the increase in the proportion of fungi in the microbial community. According to numerous reports they are more resistant to pollution compared to bacteria and actinomycetes. Admission to the soil organic matter of anthropogenic origin also increases the process of mineralization. According to the findings, low concentrations of petroleum products lead to increased "breathing" of the soil. Strengthening of the processes of mineralization and, consequently, of CO2 emissions, in the conditions of technogenic pollution of the soils identified in our studies, confirmed by numerous studies by other authors. According to reports in Russia the emission of CO2 from soils is 4.5 times higher than the industrial receipt of its atmosphere. The contribution of local anthropogenic CO2 emissions is not so significant compared to the indirect influence of soil pollution on increased CO2 emissions. Consequently, the expansion of technogenic contaminated soil is becoming a more significant factor adversely affecting the state of the atmosphere

  9. Preparation of activated carbon from fly ash and its application for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Alhamed, Yahia Abobakor; Rather, Sami Ullah; El-Shazly, Ahmad Hasan; Zaman, Sharif Fakhruz; Daous, Mohammad Abdulrhaman; Al-Zahrani, Abdulrahim Ahmad [King Abdulaziz University, Jeddah (Saudi Arabia)

    2015-04-15

    Power and desalination plants are one of the main anthropogenic sources for CO{sub 2} generation, which is one of the key elements to cause greenhouse gas effect and thus contribute to the global warming. Fly ash (FA) generated in desalination and power plants was converted into activated carbon (AC) treated with KOH at higher temperature and tested for CO{sub 2} capturing efficiency. Morphological characteristics of FA such as BET specific surface area (SSA), pore volume, pore diameter, and pore size distribution (PSD) were performed using N{sub 2} adsorption isotherm. CO{sub 2} adsorption capacity and adsorption isotherms of CO{sub 2} over AC were measured by performing thermogravimetric analysis at different temperatures. BET SSA of 161m{sup 2}g{sup -1} and adsorption capacity of 26mg CO{sub 2}/g AC can be obtained by activation at KOH/FA ratio of 5 at 700 .deg. C and activation time of 2 h. Therefore, great potential exists for producing AC from FA, which will have the positive effect of reducing the landfill problem and global warming.

  10. Classification of CO2 Geologic Storage: Resource and Capacity

    Science.gov (United States)

    Frailey, S.M.; Finley, R.J.

    2009-01-01

    The use of the term capacity to describe possible geologic storage implies a realistic or likely volume of CO2 to be sequestered. Poor data quantity and quality may lead to very high uncertainty in the storage estimate. Use of the term "storage resource" alleviates the implied certainty of the term "storage capacity". This is especially important to non- scientists (e.g. policy makers) because "capacity" is commonly used to describe the very specific and more certain quantities such as volume of a gas tank or a hotel's overnight guest limit. Resource is a term used in the classification of oil and gas accumulations to infer lesser certainty in the commercial production of oil and gas. Likewise for CO2 sequestration, a suspected porous and permeable zone can be classified as a resource, but capacity can only be estimated after a well is drilled into the formation and a relatively higher degree of economic and regulatory certainty is established. Storage capacity estimates are lower risk or higher certainty compared to storage resource estimates. In the oil and gas industry, prospective resource and contingent resource are used for estimates with less data and certainty. Oil and gas reserves are classified as Proved and Unproved, and by analogy, capacity can be classified similarly. The highest degree of certainty for an oil or gas accumulation is Proved, Developed Producing (PDP) Reserves. For CO2 sequestration this could be Proved Developed Injecting (PDI) Capacity. A geologic sequestration storage classification system is developed by analogy to that used by the oil and gas industry. When a CO2 sequestration industry emerges, storage resource and capacity estimates will be considered a company asset and consequently regulated by the Securities and Exchange Commission. Additionally, storage accounting and auditing protocols will be required to confirm projected storage estimates and assignment of credits from actual injection. An example illustrates the use of

  11. Terrestrial nitrogen-carbon cycle interactions at the global scale.

    Science.gov (United States)

    Zaehle, S

    2013-07-05

    Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing.

  12. CO2 production in anthropogenic Chinampas soils in Mexico City La producción de CO2 en suelos antropogénicos de Chinampas en la Ciudad de México A produção de CO2 em solos antropogénicos de Chinampas na cidade do México

    Directory of Open Access Journals (Sweden)

    Elena Ikkonen

    2012-07-01

    Full Text Available

    We studied microbial-associated C?2 production in anthropogenic chinampas soils. The soils were constructed by the accumulation of materials such as organic matter and loamy lacustrine sediments in Pre-Hispanic cultures in Mexico. To study the temperature sensitivity of C?2 production related to soil depth, moisture and oxygen availability, soil samples were collected at depths of 0-7, 7-18, 18-30, 30-40 and 40-50 cm. The soil samples were incubated under aerobic and anaerobic conditions at controlled temperatures (-5, 0, 5, 10, 20, 30 °C and soil moistures of 10, 30, 60 and 90% water-filled pore space. For all the soil depths, incubation temperatures and soil moistures, the mean rate of aerobic CO2 production was 58.0 mg CO2 kg-1 d-1 and that of anaerobic CO2 production 31.2 mg CO2 kg-1 d-1, with the highest rate found in the soil samples collected at a depth of 0-7 cm. A decrease in soil organic carbon content inhibited CO2 production more under anaerobic than aerobic conditions. The dependence of aerobic ??2 production on soil moisture increased at what constituted both unusually high and low temperatures for the study area. Since the response of ??2 production to temperature was lower under anaerobic than aerobic conditions, the increase in soil moisture content led to a decrease in the temperature sensitivity of ??2 production. The response of microbial activity to other factors may be modified under what constitutes the limiting conditions for any of the factors considered, as follows: (i when anaerobiosis increases in the soil, the limiting effect of substrate availability on microbial activity increases; (ii the CO2 production rate becomes more dependent on soil moisture under temperature stress; (iii the sensitivity of CO2

  13. Estimation of the Relationship Between Remotely Sensed Anthropogenic Heat Discharge and Building Energy Use

    Science.gov (United States)

    Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

    2012-01-01

    This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. The anthropogenic heat discharge was estimated with a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. The building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/Energy Information Administration survey data, the Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data. The spatial patterns of anthropogenic heat discharge and energy use from residential and commercial buildings were analyzed and compared. Quantitative relationships were evaluated across multiple scales from pixel aggregation to census block. The results indicate that anthropogenic heat discharge is consistent with building energy use in terms of the spatial pattern, and that building energy use accounts for a significant fraction of anthropogenic heat discharge. The research also implies that the relationship between anthropogenic heat discharge and building energy use is scale-dependent. The simultaneous estimation of anthropogenic heat discharge and building energy use via two independent methods improves the understanding of the surface energy balance in an urban landscape. The anthropogenic heat discharge derived from remote sensing and meteorological data may be able to serve as a spatial distribution proxy for spatially-resolved building energy use, and even for fossil-fuel CO2 emissions if additional factors are considered.

  14. Anthropogenic Sulfur Dioxide Emissions, 1850-2005: National and Regional Data Set by Source Category, Version 2.86

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Sulfur Dioxide Emissions, 1850-2005: National and Regional Data Set by Source Category, Version 2.86 provides annual estimates of anthropogenic...

  15. Constraining East Asian CO2 emissions with GOSAT retrievals: methods and policy implications

    Science.gov (United States)

    Shim, C.; Henze, D. K.; Deng, F.

    2017-12-01

    The world largest CO2 emissions are from East Asia. However, there are large uncertainties in CO2 emission inventories, mainly because of imperfections in bottom-up statistics and a lack of observations for validating emission fluxes, particularly over China. Here we tried to constrain East Asian CO2 emissions with GOSAT retrievals applying 4-Dvar GEOS-Chem and its adjoint model. We applied the inversion to only the cold season (November - February) in 2009 - 2010 since the summer monsoon and greater transboundary impacts in spring and fall greatly reduced the GOSAT retrievals. In the cold season, the a posteriori CO2 emissions over East Asia generally higher by 5 - 20%, particularly Northeastern China shows intensively higher in a posteriori emissions ( 20%), where the Chinese government is recently focusing on mitigating the air pollutants. In another hand, a posteriori emissions from Southern China are lower 10 - 25%. A posteriori emissions in Korea and Japan are mostly higher by 10 % except over Kyushu region. With our top-down estimates with 4-Dvar CO2 inversion, we will evaluate the current regional CO2 emissions inventories and potential uncertainties in the sectoral emissions. This study will help understand the quantitative information on anthropogenic CO2 emissions over East Asia and will give policy implications for the mitigation targets.

  16. On the causal structure between CO2 and global temperature

    Science.gov (United States)

    Stips, Adolf; Macias, Diego; Coughlan, Clare; Garcia-Gorriz, Elisa; Liang, X. San

    2016-01-01

    We use a newly developed technique that is based on the information flow concept to investigate the causal structure between the global radiative forcing and the annual global mean surface temperature anomalies (GMTA) since 1850. Our study unambiguously shows one-way causality between the total Greenhouse Gases and GMTA. Specifically, it is confirmed that the former, especially CO2, are the main causal drivers of the recent warming. A significant but smaller information flow comes from aerosol direct and indirect forcing, and on short time periods, volcanic forcings. In contrast the causality contribution from natural forcings (solar irradiance and volcanic forcing) to the long term trend is not significant. The spatial explicit analysis reveals that the anthropogenic forcing fingerprint is significantly regionally varying in both hemispheres. On paleoclimate time scales, however, the cause-effect direction is reversed: temperature changes cause subsequent CO2/CH4 changes. PMID:26900086

  17. Modeling and Evaluation of Geophysical Methods for Monitoring and Tracking CO2 Migration

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Jeff

    2012-11-30

    Geological sequestration has been proposed as a viable option for mitigating the vast amount of CO{sub 2} being released into the atmosphere daily. Test sites for CO{sub 2} injection have been appearing across the world to ascertain the feasibility of capturing and sequestering carbon dioxide. A major concern with full scale implementation is monitoring and verifying the permanence of injected CO{sub 2}. Geophysical methods, an exploration industry standard, are non-invasive imaging techniques that can be implemented to address that concern. Geophysical methods, seismic and electromagnetic, play a crucial role in monitoring the subsurface pre- and post-injection. Seismic techniques have been the most popular but electromagnetic methods are gaining interest. The primary goal of this project was to develop a new geophysical tool, a software program called GphyzCO2, to investigate the implementation of geophysical monitoring for detecting injected CO{sub 2} at test sites. The GphyzCO2 software consists of interconnected programs that encompass well logging, seismic, and electromagnetic methods. The software enables users to design and execute 3D surface-to-surface (conventional surface seismic) and borehole-to-borehole (cross-hole seismic and electromagnetic methods) numerical modeling surveys. The generalized flow of the program begins with building a complex 3D subsurface geological model, assigning properties to the models that mimic a potential CO{sub 2} injection site, numerically forward model a geophysical survey, and analyze the results. A test site located in Warren County, Ohio was selected as the test site for the full implementation of GphyzCO2. Specific interest was placed on a potential reservoir target, the Mount Simon Sandstone, and cap rock, the Eau Claire Formation. Analysis of the test site included well log data, physical property measurements (porosity), core sample resistivity measurements, calculating electrical permittivity values, seismic data

  18. Potential Hydrogeomechanical Impacts of Geological CO2 Sequestration

    Science.gov (United States)

    McPherson, B. J.; Haerer, D.; Han, W.; Heath, J.; Morse, J.

    2006-12-01

    Long-term sequestration of anthropogenic "greenhouse gases" such as CO2 is a proposed approach to managing climate change. Deep brine reservoirs in sedimentary basins are possible sites for sequestration, given their ubiquitous nature. We used a mathematical sedimentary basin model, including coupling of multiphase CO2-groundwater flow and rock deformation, to evaluate residence times in possible brine reservoir storage sites, migration patterns and rates away from such sites, and effects of CO2 injection on fluid pressures and rock strain. Study areas include the Uinta and Paradox basins of Utah, the San Juan basin of New Mexico, and the Permian basin of west Texas. Regional-scale hydrologic and mechanical properties, including the presence of fracture zones, were calibrated using laboratory and field data. Our initial results suggest that, in general, long-term (~100 years or more) sequestration in deep brine reservoirs is possible, if guided by robust structural and hydrologic data. However, specific processes must be addressed to characterize and minimize risks. In addition to CO2 migration from target sequestration reservoirs into other reservoirs or to the land surface, another environmental issue is displacement of brines into freshwater aquifers. We evaluated the potential for such unintended aquifer contamination by displacement of brines out of adjacent sealing layers such as marine shales. Results suggest that sustained injection of CO2 may incur significant brine displacement out of adjacent sealing layers, depending on the injection history, initial brine composition, and hydrologic properties of both reservoirs and seals. Model simulations also suggest that as injection-induced overpressures migrate, effective stresses may follow this migration under some conditions, as will associated rock strain. Such "strain migration" may lead to induced or reactivated fractures or faults, but can be controlled through reservoir engineering.

  19. The deforestation story: testing for anthropogenic origins of Africa's flammable grassy biomes.

    Science.gov (United States)

    Bond, William; Zaloumis, Nicholas P

    2016-06-05

    Africa has the most extensive C4 grassy biomes of any continent. They are highly flammable accounting for greater than 70% of the world's burnt area. Much of Africa's savannas and grasslands occur in climates warm enough and wet enough to support closed forests. The combination of open grassy systems and the frequent fires they support have long been interpreted as anthropogenic artefacts caused by humans igniting frequent fires. True grasslands, it was believed, would be restricted to climates too dry or too cold to support closed woody vegetation. The idea that higher-rainfall savannas are anthropogenic and that fires are of human origin has led to initiatives to 'reforest' Africa's open grassy systems paid for by carbon credits under the assumption that the net effect of converting these system to forests would sequester carbon, reduce greenhouse gases and mitigate global warming. This paper reviews evidence for the antiquity of African grassy ecosystems and for the fires that they sustain. Africa's grassy biomes and the fires that maintain them are ancient and there is no support for the idea that humans caused large-scale deforestation. Indicators of old-growth grasslands are described. These can help distinguish secondary grasslands suitable for reforestation from ancient grasslands that should not be afforested.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  20. CO2 balance of boreal, temperate, and tropical forests

    NARCIS (Netherlands)

    Luyssaert, S.; Inglima, I.; Jungs, M.; Richardson, A.; Reichsteins, M.; Papale, D.; Piao, S.L.; Schulzes, E.D.; Wingate, L.; Matteucci, G.; Aragaoss, L.; Aubinet, M.; Beers, van C.; Bernhofer, C.; Black, K.G.; Bonal, D.; Bonnefonds, J.M.; Chambers, J.; Ciais, P.; Cook, B.; Davis, K.J.; Dolman, A.J.; Gielen, B.; Goulden, M.; Grace, J.; Granier, A.; Grelle, A.; Griffis, T.; Grunwald, T.; Guidolotti, G.; Hanson, P.J.; Harding, R.; Hollinger, D.Y.; Hutyra, L.R.; Kolari, P.; Kruijt, B.; Kutsch, W.; Lagergren, F.; Laurila, T.; Law, B.E.; Maire, Le G.; Lindroth, A.; Loustau, D.; Malhi, Y.; Mateus, J.; Migliavacca, M.; Misson, L.; Montagnani, L.; Moncrief, J.; Moors, E.J.; Munger, J.W.; Nikinmaa, E.; Ollinger, S.V.; Pita, G.; Rebmann, C.; Roupsard, O.; Saigusa, N.; Sanz, M.J.; Seufert, G.; Sierra, C.; Smith, M.; Tang, J.; Valentini, R.; Vesala, T.; Janssens, I.A.

    2007-01-01

    Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are

  1. Assessing the effectiveness of global air-pollution treaties on CO2 emissions

    OpenAIRE

    Aurelie Slechten; Vincenzo Verardi

    2014-01-01

    This paper considers the effect of international air-pollution agreements ratified since 1970 on carbon dioxide emissions (CO2), the main cause of anthropogenic climate change. The analysis is based on a panel dataset of 150 countries over the period 1970-2008. While the literature generally focuses on one particular agreement, we analyze the effect of the accumulation of agreements using a two-way (country, year) fixed effects regression model. We find that the relationship between the numbe...

  2. Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes

    Science.gov (United States)

    Morales-Williams, Ana M.; Wanamaker, Alan D., Jr.; Downing, John A.

    2017-06-01

    Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3-) across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs). To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC) and phytoplankton particulate organic carbon (δ13Cphyto) in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass-balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3- during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3- uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.

  3. Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes

    Directory of Open Access Journals (Sweden)

    A. M. Morales-Williams

    2017-06-01

    Full Text Available Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3− across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs. To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC and phytoplankton particulate organic carbon (δ13Cphyto in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass–balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3− during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3− uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.

  4. Edaphic factors controlling summer (rainy season) greenhouse gas emissions (CO_2 and CH_4) from semiarid mangrove soils (NE-Brazil)

    International Nuclear Information System (INIS)

    Nóbrega, Gabriel N.; Ferreira, Tiago O.; Siqueira Neto, M.; Queiroz, Hermano M.; Artur, Adriana G.; Mendonça, Eduardo De S.; Silva, Ebenezer De O.

    2016-01-01

    The soil attributes controlling the CO_2, and CH_4 emissions were assessed in semiarid mangrove soils (NE-Brazil) under different anthropogenic activities. Soil samples were collected from different mangroves under different anthropogenic impacts, e.g., shrimp farming (Jaguaribe River); urban wastes (Cocó River) and a control site (Timonha River). The sites were characterized according to the sand content; physicochemical parameters (Eh and pH); total organic C; soil C stock (SCS) and equivalent SCS (SCS_E_Q_V); total P and N; dissolved organic C (DOC); and the degree of pyritization (DOP). The CO_2 and CH_4 fluxes from the soils were assessed using static closed chambers. Higher DOC and SCS and the lowest DOP promote greater CO_2 emission. The CH_4 flux was only observed at Jaguaribe which presented higher DOP, compared to that found in mangroves from humid tropical climates. Semiarid mangrove soils cannot be characterized as important greenhouse gas sources, compared to humid tropical mangroves. - Highlights: • GHG emission was associated with different soil characteristics. • Highest CO_2 emissions were found in mangroves with larger dissolved C and lower DOP. • Less CH_4 flux was due to low DOP in semiarid mangrove soils.

  5. Comparison of Landfill Methane Oxidation Measured Using Stable Isotope Analysis and CO2/CH4 Fluxes Measured by the Eddy Covariance Method

    Science.gov (United States)

    Xu, L.; Chanton, J.; McDermitt, D. K.; Li, J.; Green, R. B.

    2015-12-01

    Methane plays a critical role in the radiation balance and chemistry of the atmosphere. Globally, landfill methane emission contributes about 10-19% of the anthropogenic methane burden into the atmosphere. In the United States, 18% of annual anthropogenic methane emissions come from landfills, which represent the third largest source of anthropogenic methane emissions, behind enteric fermentation and natural gas and oil production. One uncertainty in estimating landfill methane emissions is the fraction of methane oxidized when methane produced under anaerobic conditions passes through the cover soil. We developed a simple stoichiometric model to estimate methane oxidation fraction when the anaerobic CO2 / CH4 production ratio is known, or can be estimated. The model predicts a linear relationship between CO2 emission rates and CH4 emission rates, where the slope depends on anaerobic CO2 / CH4 production ratio and the fraction of methane oxidized, and the intercept depends on non-methane-dependent oxidation processes. The model was tested using carbon dioxide emission rates (fluxes) and methane emission rates (fluxes) measured using the eddy covariance method over a one year period at the Turkey Run landfill in Georgia, USA. The CO2 / CH4 production ratio was estimated by measuring CO2 and CH4 concentrations in air sampled under anaerobic conditions deep inside the landfill. We also used a mass balance approach to independently estimate fractional oxidation based on stable isotope measurements (δ13C of methane) of gas samples taken from deep inside the landfill and just above the landfill surface. Results from the two independent methods agree well. The model will be described and methane oxidation will be discussed in relation to wind direction, location at the landfill, and age of the deposited refuse.

  6. Alternative photocatalysts to TiO{sub 2} for the photocatalytic reduction of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nikokavoura, Aspasia; Trapalis, Christos, E-mail: c.trapalis@inn.demokritos.gr

    2017-01-01

    Highlights: • Non TiO{sub 2} containing photocatalysts are intensively studied for CO{sub 2} reduction. • The inorganic and carbon based semiconductors are appropriate for redox reactions. • ZIFs and carbonaceous hybrids exhibited outstanding photocatalytic efficiency. • Highly active photocatalysts for CO{sub 2} conversion to useful materials are needed. - Abstract: The increased concentration of CO{sub 2} in the atmosphere, originating from the burning of fossil fuels in stationary and mobile sources, is referred as the “Anthropogenic Greenhouse Effect” and constitutes a major environmental concern. The scientific community is highly concerned about the resulting enhancement of the mean atmospheric temperature, so a vast diversity of methods has been applied. Thermochemical, electrochemical, photocatalytic, photoelectrochemical processes, as well as combination of solar electricity generation and water splitting processes have been performed in order to lower the CO{sub 2} atmospheric levels. Photocatalytic methods are environmental friendly and succeed in reducing the atmospheric CO{sub 2} concentration and producing fuels or/and useful organic compounds at the same time. The most common photocatalysts for the CO{sub 2} reduction are the inorganic, the carbon based semiconductors and the hybrids based on semiconductors, which combine stability, low cost and appropriate structure in order to accomplish redox reactions. In this review, inorganic semiconductors such as single-metal oxide, mixed-metal oxides, metal oxide composites, layered double hydroxides (LDHs), salt composites, carbon based semiconductors such as graphene based composites, CNT composites, g-C{sub 3}N{sub 4} composites and hybrid organic-inorganic materials (ZIFs) were studied. TiO{sub 2} and Ti based photocatalysts are extensively studied and therefore in this review they are not mentioned.

  7. Direct observation of increasing CO2 in the Weddell Gyre along the Prime Meridian during 1973-2008

    NARCIS (Netherlands)

    van Heuven, Steven M. A. C.; Hoppema, Mario; Huhn, Oliver; Slagter, Hans A.; de Baar, Hein J. W.

    2011-01-01

    The World Ocean takes up a large portion of the anthropogenic CO2 emitted into the atmosphere. Determining the resulting increase in dissolved inorganic carbon (C-T, expressed in mu mol kg(-1)) is challenging, particularly in the sub-surface and deep Southern Ocean where the time rate of change of

  8. Modelling Energy Systems and International Trade in CO2 Emission Quotas - The Kyoto Protocol and Beyond

    International Nuclear Information System (INIS)

    Persson, Tobias A.

    2002-01-01

    A transformation of the energy system in the 21st century is required if the CO 2 concentration in the atmosphere should be stabilized at a level that would prevent dangerous anthropogenic interference with the climate system. The industrialized countries have emitted most of the anthropogenic CO 2 released to the atmosphere since the beginning of the industrial era and still account for roughly two thirds of global fossil fuel related CO 2 emissions. Industrial country CO 2 emissions on a per capita basis are roughly five to ten times higher than those of developing countries. However, a global atmospheric CO 2 concentration target of 450 ppm, if adopted would require that global average per capita CO 2 emissions by the end of this century have to be comparable to those of developing countries today. The industrialized countries would have to reduce their emissions substantially and the emissions in developing countries could not follow a business-as-usual scenario. The transformation of the energy system and abatement of CO 2 emissions would need to occur in industrialized and developing countries. Energy-economy models have been developed to analyze of international trading in CO 2 emission permits. The thesis consists of three papers. The cost of meeting the Kyoto Protocol is estimated in the first paper. The Kyoto Protocol, which defines quantitative greenhouse gas emission commitments for industrialized countries over the period 2008-2012, is the first international agreement setting quantitative goals for abatement of CO 2 emissions from energy systems. The Protocol allows the creation of systems for trade in emission permits whereby countries exceeding their target levels can remain in compliance by purchasing surplus permits from other developed countries. However, a huge carbon surplus, which has been christened hot air, has been created in Russia and Ukraine since 1990 primarily because of the contraction of their economies. The current Unites States

  9. National greenhouse gas accounts: Current anthropogenic sources and sinks

    International Nuclear Information System (INIS)

    Subak, S.; Raskin, P.; Hippel, David von

    1992-01-01

    This study provides spatially disaggregated estimates of greenhouse gas emissions from the major anthropogenic sources for 145 countries. The data compilation is comprehensive in approach, including emissions from CO, CH 4 , N 2 O and ten halocarbons, in addition to CO 2 . The sources include emissions from fossil fuel production and use, cement production, halocarbons, landfills, land use changes, biomass burning, rice and livestock production and fertilizer consumption. The approach used to derive these estimates corresponds closely with the simple methodologies proposed by the Greenhouse Gas Emissions Task Force of the Intergovernmental Panel on Climate Change. The inventory includes a new estimate of greenhouse gas emissions from fossil fuel combustion based principally on data from the International Energy Agency. The research methodologies for estimating emissions from all sources is briefly described and compared with other recent studies in the literature. (112 refs.)

  10. Proteomic and metabolomic responses of Pacific oyster Crassostrea gigas to elevated pCO2 exposure.

    Science.gov (United States)

    Wei, Lei; Wang, Qing; Wu, Huifeng; Ji, Chenglong; Zhao, Jianmin

    2015-01-01

    The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being well understood. In this work, the effects of exposure to elevated pCO2 were characterized in gills and hepatopancreas of Crassostrea gigas using integrated proteomic and metabolomic approaches. Metabolic responses indicated that high CO2 exposure mainly caused disturbances in energy metabolism and osmotic regulation marked by differentially altered ATP, glucose, glycogen, amino acids and organic osmolytes in oysters, and the depletions of ATP in gills and the accumulations of ATP, glucose and glycogen in hepatopancreas accounted for the difference in energy distribution between these two tissues. Proteomic responses suggested that OA could not only affect energy and primary metabolisms, stress responses and calcium homeostasis in both tissues, but also influence the nucleotide metabolism in gills and cytoskeleton structure in hepatopancreas. This study demonstrated that the combination of proteomics and metabolomics could provide an insightful view into the effects of OA on oyster C. gigas. The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being understood. To our knowledge, few studies have focused on the responses induced by pCO2 at both protein and metabolite levels. The pacific oyster C. gigas, widely distributed

  11. Long-term surface pCO2 trends from observations and models

    International Nuclear Information System (INIS)

    Tjiputra, Jerry F.; Olsen, Are; Heinze, Christoph; Bopp, Laurent; Roy, Tilla

    2014-01-01

    also highlights the importance and need for a sustained long-term observing strategy to continue monitoring the change in the ocean anthropogenic CO 2 sink and to better understand the potential carbon cycle feedbacks to climate that could arise from it. (authors)

  12. Long-term surface pCO2 trends from observations and models

    Directory of Open Access Journals (Sweden)

    Jerry F. Tjiputra

    2014-05-01

    also highlights the importance and need for a sustained long-term observing strategy to continue monitoring the change in the ocean anthropogenic CO2 sink and to better understand the potential carbon cycle feedbacks to climate that could arise from it.

  13. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: : CO: CO2, N2O: CO2, CH4: CO2, O2: CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NARCIS (Netherlands)

    Popa, Maria Elena; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.; Rothe, M.; Röckmann, T.

    2014-01-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2/N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the Islisberg highway tunnel (Switzerland). The molar CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb:ppm, are lower than reported in

  14. Modeling and Simulation of Nanoparticle Transport in Multiphase Flows in Porous Media: CO2 Sequestration

    KAUST Repository

    El-Amin, Mohamed

    2012-09-03

    Geological storage of anthropogenic CO2 emissions in deep saline aquifers has recently received tremendous attention in the scientific literature. Injected CO2 plume buoyantly accumulates at the top part of the deep aquifer under a sealing cap rock, and some concern that the high-pressure CO2 could breach the seal rock. However, CO2 will diffuse into the brine underneath and generate a slightly denser fluid that may induce instability and convective mixing. Onset times of instability and convective mixing performance depend on the physical properties of the rock and fluids, such as permeability and density contrast. The novel idea is to adding nanoparticles to the injected CO2 to increase density contrast between the CO2-rich brine and the underlying resident brine and, consequently, decrease onset time of instability and increase convective mixing. As far as it goes, only few works address the issues related to mathematical and numerical modeling aspects of the nanoparticles transport phenomena in CO2 storages. In the current work, we will present mathematical models to describe the nanoparticles transport carried by injected CO2 in porous media. Buoyancy and capillary forces as well as Brownian diffusion are important to be considered in the model. IMplicit Pressure Explicit Saturation-Concentration (IMPESC) scheme is used and a numerical simulator is developed to simulate the nanoparticles transport in CO2 storages.

  15. CO{sub 2}-induced mechanical behaviour of Hawkesbury sandstone in the Gosford basin: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Rathnaweera, T.D. [Department of Civil Engineering, Monash University, Building 60, Melbourne, Victoria 3800 (Australia); Ranjith, P.G., E-mail: ranjith.pg@monash.edu [Department of Civil Engineering, Monash University, Building 60, Melbourne, Victoria 3800 (Australia); Perera, M.S.A.; Haque, A. [Department of Civil Engineering, Monash University, Building 60, Melbourne, Victoria 3800 (Australia); Lashin, A. [King Saud University, College of Engineering-Petroleum and Natural Gas Engineering Department, P.O. Box 800, Riyadh 11421, Saudi Arabia. (Saudi Arabia); Benha University, Faculty of Science-Geology Department, P.O. Box 13518, Benha (Egypt); Al Arifi, N. [King Saud University, College of Science-Geology and Geophysics Department, P.O. Box 2455, Riyadh 11451, Saudi Arabia. (Saudi Arabia); Chandrasekharam, D [King Saud University, College of Science-Geology and Geophysics Department, P.O. Box 2455, Riyadh 11451, Saudi Arabia. (Saudi Arabia); Department of Earth Sciences, Indian Institute of Technology Bombay, 400076 India (India); Yang, SQ [Department of Civil Engineering, Monash University, Building 60, Melbourne, Victoria 3800 (Australia); State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116 (China); Xu, T; Wang, SH [Center for Rock Instability & Seismicity Research, Northeastern University, Shenyang 110819 (China); Yasar, E [Iskenderun Technical University, Faculty of Mechanical Engineering, Dept. of Petroleum & Natural Gas Engineering, 31200 (Turkey)

    2015-08-12

    Carbon dioxide (CO{sub 2}) sequestered in saline aquifers undergoes a variety of chemically-coupled mechanical effects, which may cause CO{sub 2}-induced mechanical changes and time-dependent reservoir deformation. This paper investigates the mineralogical and microstructural changes that occur in reservoir rocks following injection of CO{sub 2} in deep saline aquifers and the manner in which these changes influence the mechanical properties of the reservoir rocks. In this study, cylindrical sandstone specimens, 38 mm in diameter and 76 mm high, obtained from the Gosford basin, were used to perform a series of unconfined compressive strength (UCS) tests. Different saturation conditions: dry, water- and brine-saturated sandstone samples with and without scCO{sub 2} (super-critical carbon dioxide) injection, were considered in the study to obtain a comprehensive understanding of the impact of scCO{sub 2} injection during the CO{sub 2} sequestration process on saline aquifer mechanical properties. An acoustic emission (AE) system was employed to identify the stress threshold values of crack closure, crack initiation and crack damage for each testing condition during the whole deformation process of the specimens. Finally, scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF) analyses were performed to evaluate the chemical and mineralogical changes that occur in reservoir rocks during CO{sub 2} injection. From the test results, it is clear that the CO{sub 2}-saturated samples possessed a lower peak strength compared to non-CO{sub 2} saturated samples. According to SEM, XRD and XRF analyses, considerable quartz mineral corrosion and dissolution of calcite and siderite were observed during the interactions of the CO{sub 2}/water/rock and CO{sub 2}/brine/rock systems, which implies that mineralogical and geochemical rock alterations affect rock mechanical properties by accelerating the collapse mechanisms of the pore matrix. AE results

  16. Scrubbing system design for CO{sub 2} capture in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Heischkamp, Elizabeth

    2017-07-01

    Within the last decades a continuous tightening of environmental regulations has been observed in several countries around the world. These include restriction of anthropogenic CO{sub 2} emissions, since they are considered responsible for intensifying global warming. Coal-fired power plants represent a good possibility for capturing CO{sub 2} before it is emitted in the atmosphere, thereby contributing to combat global warming. This work focuses on reducing the CO{sub 2} emissions of such a power plant by 90 %. For this purpose a hard coal power plant is retrofitted with a chemical absorption using different solutions of piperazine promoted potassium carbonate. The resulting power plant's efficiency losses have been accounted for. A comparison of different scenarios such as the variation of operating parameters offer an insight in detecting suitable operating conditions that will allow to minimize efficiency penalties. Simulation details are provided along with a technical and an economic analysis.

  17. 3rd Sino-German Conference “Underground Storage of CO2 and Energy”

    CERN Document Server

    Xie, Heping; Were, Patrick

    2013-01-01

    Anthropogenic greenhouse gas emissions, energy security and sustainability are three of the greatest contemporary global challenges today. This year the Sino-German Cooperation Group “Underground Storage of CO2 and Energy”, is meeting on the 21-23 May 2013 for the second time in Goslar, Germany, to convene its 3rd Sino-German conference on the theme “Clean Energy Systems in the Subsurface: Production, Storage and Conversion”.   This volume is a collection of diverse quality scientific works from different perspectives elucidating on the current developments in CO2 geologic sequestration research to reduce greenhouse emissions including measures to monitor surface leakage, groundwater quality and the integrity of caprock, while ensuring a sufficient supply of clean energy. The contributions herein have been structured into 6 major thematic research themes: Integrated Energy and Environmental Utilization of Geo-reservoirs: Law, Risk Management & Monitoring CO2 for Enhanced Gas and Oil Recovery, Coa...

  18. CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials.

    Science.gov (United States)

    Kierzkowska, Agnieszka M; Pacciani, Roberta; Müller, Christoph R

    2013-07-01

    The enormous anthropogenic emission of the greenhouse gas CO2 is most likely the main reason for climate change. Considering the continuing and indeed growing utilisation of fossil fuels for electricity generation and transportation purposes, development and implementation of processes that avoid the associated emissions of CO2 are urgently needed. CO2 capture and storage, commonly termed CCS, would be a possible mid-term solution to reduce the emissions of CO2 into the atmosphere. However, the costs associated with the currently available CO2 capture technology, that is, amine scrubbing, are prohibitively high, thus making the development of new CO2 sorbents a highly important research challenge. Indeed, CaO, readily obtained through the calcination of naturally occurring limestone, has been proposed as an alternative CO2 sorbent that could substantially reduce the costs of CO2 capture. However, one of the major drawbacks of using CaO derived from natural sources is its rapidly decreasing CO2 uptake capacity with repeated carbonation-calcination reactions. Here, we review the current understanding of fundamental aspects of the cyclic carbonation-calcination reactions of CaO such as its reversibility and kinetics. Subsequently, recent attempts to develop synthetic, CaO-based sorbents that possess high and cyclically stable CO2 uptakes are presented. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Energy implications of future stabilization of atmospheric CO2 content

    International Nuclear Information System (INIS)

    Hoffert, M.I.; Jain, A.K.

    1998-01-01

    The United Nations Framework Convention on Climate Change calls for ''stabilization of greenhouse-gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system...''. A standard baseline scenario that assumes no policy intervention to limit greenhouse-gas emissions has 10 TW (10 x 10 12 watts) of carbon-emission-free power being produced by the year 2050, equivalent to the power provided by all today's energy sources combined. Here we employ a carbon-cycle/energy model to estimate the carbon-emission-free power needed for various atmospheric CO 2 stabilization scenarios. We find that CO 2 stabilization with continued economic growth will require innovative, cost-effective and carbon-emission-free technologies that can provide additional tens of terawatts of primary power in the coming decades, and certainly by the middle of the twenty-first century, even with sustained improvement in the economic productivity of primary energy. (author)

  20. Improving the Monitoring, Verification, and Accounting of CO{sub 2} Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Engin; DeAngelo, Michael; Hardage, Bob; Sava, Diana; Sullivan, Charlotte; Wagner, Donald

    2012-12-31

    Research done in this study showed that P-SV seismic data provide better spatial resolution of geologic targets at our Appalachian Basin study area than do P-P data. This finding is important because the latter data (P-P) are the principal seismic data used to evaluate rock systems considered for CO{sub 2} sequestration. The increase in P-SV{sub 1} resolution over P-P resolution was particularly significant, with P-SV{sub 1} wavelengths being approximately 40-percent shorter than P-P wavelengths. CO{sub 2} sequestration projects across the Appalachian Basin should take advantage of the increased resolution provided by converted-shear seismic modes relative to P-wave seismic data. In addition to S-wave data providing better resolution of geologic targets, we found S-wave images described reservoir heterogeneities that P-P data could not see. Specifically, a channel-like anomaly was imaged in a key porous sandstone interval by P-SV{sub 1} data, and no indication of the feature existed in P-P data. If any stratigraphic unit is considered for CO{sub 2} storage purposes, it is important to know all heterogeneities internal to the unit to understand reservoir compartmentalization. We conclude it is essential that multicomponent seismic data be used to evaluate all potential reservoir targets whenever a CO{sub 2} storage effort is considered, particularly when sequestration efforts are initiated in the Appalachian Basin. Significant differences were observed between P-wave sequences and S- wave sequences in data windows corresponding to the Oriskany Sandstone, a popular unit considered for CO{sub 2} sequestration. This example demonstrates that S-wave sequences and facies often differ from P-wave sequences and facies and is a principle we have observed in every multicomponent seismic interpretation our research laboratory has done. As a result, we now emphasis elastic wavefield seismic stratigraphy in our reservoir characterization studies, which is a science based on the

  1. Mineral storage of CO2/H2S gas mixture injection in basaltic rocks

    Science.gov (United States)

    Clark, D. E.; Gunnarsson, I.; Aradottir, E. S.; Oelkers, E. H.; Sigfússon, B.; Snæbjörnsdottír, S. Ó.; Matter, J. M.; Stute, M.; Júlíusson, B. M.; Gíslason, S. R.

    2017-12-01

    carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 352 (6291), 1312-1314. [3] Snæbjörnsdottír, S.O., et al. (2017). The chemistry and saturation states of subsurface fluids during the in-situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland. International Journal of Greenhouse Gas Control 58, 87-102.

  2. CO2 Fluxes and Concentrations in a Residential Area in the Southern Hemisphere

    Science.gov (United States)

    Weissert, L. F.; Salmond, J. A.; Turnbull, J. C.; Schwendenmann, L.

    2014-12-01

    While cities are generally major sources of anthropogenic carbon dioxide (CO2) emissions, recent research has shown that parts of urban areas may also act as CO2 sinks due to CO2 uptake by vegetation. However, currently available results are related to a large degree of uncertainty due to the limitations of the applied methods and the limited number of studies available from urban areas, particularly from the southern hemisphere. In this study, we explore the potential of eddy covariance and tracer measurements (13C and 14C isotopes of CO2) to quantify and partition CO2 fluxes and concentrations in a residential urban area in Auckland, New Zealand. Based on preliminary results from autumn and winter (March to July 2014) the residential area is a small source of CO2 (0.11 mol CO2 m-2 day-1). CO2 fluxes and concentrations follow a distinct diurnal cycle with a morning peak between 7:00 and 9:00 (max: 0.25 mol CO2 m-2 day-1/412 ppm) and midday low with negative CO2 fluxes (min: -0.17 mol CO2 m-2 day-1/392 ppm) between 10:00 and 15:00 local time, likely due to photosynthetic CO2 uptake by local vegetation. Soil CO2 efflux may explain that CO2 concentrations increase and remain high (401 ppm) throughout the night. Mean diurnal winter δ13C values are in anti-phase with CO2 concentrations and vary between -9.0 - -9.7‰. The depletion of δ13C compared to clean atmospheric air (-8.2‰) is likely a result of local CO2 sources dominated by gasoline combustion (appr. 60%) during daytime. A sector analysis (based on prevailing wind) of CO2 fluxes and concentrations indicates lower CO2 fluxes and concentrations from the vegetation-dominated sector, further demonstrating the influence of vegetation on local CO2 concentrations. These results provide an insight into the temporal and spatial variability CO2 fluxes/concentrations and potential CO2 sinks and sources from a city in the southern hemisphere and add valuable information to the global database of urban CO2 fluxes.

  3. Community-level sensitivity of a calcifying ecosystem to acute in situ CO2 enrichment

    KAUST Repository

    Burdett, HL

    2017-11-23

    The rate of change in ocean carbonate chemistry is a vital determinant in the magnitude of effects observed. Benthic marine ecosystems are facing an increasing risk of acute CO2 exposure that may be natural or anthropogenically derived (e.g. engineering and industrial activities). However, our understanding of how acute CO2 events impact marine life is restricted to individual organisms, with little understanding for how this manifests at the community level. Here, we investigated in situ the effect of acute CO2 enrichment on the coralline algal ecosystem—a globally ubiquitous, ecologically and economically important habitat, but one which is likely to be sensitive to CO2 enrichment due to its highly calcified reef-like structures engineered by coralline algae. Most notably, we observed a rapid community-level shift to favour net dissolution rather than net calcification. Smaller changes from net respiration to net photosynthesis were also observed. There was no effect on the net flux of DMS/DMSP (algal secondary metabolites), nor on the nutrients nitrate and phosphate. Following return to ambient CO2 levels, only a partial recovery was seen within the monitoring timeframe. This study highlights the sensitivity of biogenic carbonate marine communities to acute CO2 enrichment and raises concerns over the capacity for the system to ‘bounce back’ if subjected to repeated acute high-CO2 events.

  4. Towards Interpreting the Signal of CO2 Emissions from Megacities by Applying a Lagrangian Receptor-oriented Model to OCO-2 XCO2 data

    Science.gov (United States)

    Wu, D.; Lin, J. C.; Oda, T.; Ye, X.; Lauvaux, T.; Yang, E. G.; Kort, E. A.

    2017-12-01

    Urban regions are large emitters of CO2 whose emission inventories are still associated with large uncertainties. Therefore, a strong need exists to better quantify emissions from megacities using a top-down approach. Satellites — e.g., the Orbiting Carbon Observatory 2 (OCO-2), provide a platform for monitoring spatiotemporal column CO2 concentrations (XCO2). In this study, we present a Lagrangian receptor-oriented model framework and evaluate "model-retrieved" XCO2 by comparing against OCO-2-retrieved XCO2, for three megacities/regions (Riyadh, Cairo and Pearl River Delta). OCO-2 soundings indicate pronounced XCO2 enhancements (dXCO2) when crossing Riyadh, which are successfully captured by our model with a slight latitude shift. From this model framework, we can identify and compare the relative contributions of dXCO2 resulted from anthropogenic emission versus biospheric fluxes. In addition, to impose constraints on emissions for Riyadh through inversion methods, three uncertainties sources are addressed in this study, including 1) transport errors, 2) receptor and model setups in atmospheric models, and 3) urban emission uncertainties. For 1), we calculate transport errors by adding a wind error component to randomize particle distributions. For 2), a set of sensitivity tests using bootstrap method is performed to describe proper ways to setup receptors in Lagrangian models. For 3), both emission uncertainties from the Fossil Fuel Data Assimilation System (FFDAS) and the spread among three emission inventories are used to approximate an overall fractional uncertainty in modeled anthropogenic signal (dXCO2.anthro). Lastly, we investigate the definition of background (clean) XCO2 for megacities from retrieved XCO2 by means of statistical tools and our model framework.

  5. CO2 Capture Dynamic and Steady-State Model Development, Optimization and Control: Applied to Piperazine and Enzyme Promoted MEA/MDEA

    DEFF Research Database (Denmark)

    Gaspar, Jozsef

    the market in the coming decades. However, the growing focus on mitigation of anthropogenic CO2 requires integration of fossil-fuel fired power plant with CO2 capture units. Post-combustion capture is the most mature capture technology and it is suitable for various processes in power plants, steel industry......, cement production, and bio-chemical industry. However, to make CO2 capture economically attractive, design of innovative solvents, optimization of operation conditions/process configuration and operational flexibility are of crucial importance. This thesis aims to contribute to the development...

  6. CO2-induced pH reduction increases physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus

    Science.gov (United States)

    Hu, Menghong; Lin, Daohui; Shang, Yueyong; Hu, Yi; Lu, Weiqun; Huang, Xizhi; Ning, Ke; Chen, Yimin; Wang, Youji

    2017-01-01

    The increasing usage of nanoparticles has caused their considerable release into the aquatic environment. Meanwhile, anthropogenic CO2 emissions have caused a reduction of seawater pH. However, their combined effects on marine species have not been experimentally evaluated. This study estimated the physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus under high pCO2 (2500-2600 μatm). We found that respiration rate (RR), food absorption efficiency (AE), clearance rate (CR), scope for growth (SFG) and O:N ratio were significantly reduced by nano-TiO2, whereas faecal organic weight rate and ammonia excretion rate (ER) were increased under nano-TiO2 conditions. High pCO2 exerted lower effects on CR, RR, ER and O:N ratio than nano-TiO2. Despite this, significant interactions of CO2-induced pH change and nano-TiO2 were found in RR, ER and O:N ratio. PCA showed close relationships among most test parameters, i.e., RR, CR, AE, SFG and O:N ratio. The normal physiological responses were strongly correlated to a positive SFG with normal pH and no/low nano-TiO2 conditions. Our results indicate that physiological functions of M. coruscus are more severely impaired by the combination of nano-TiO2 and high pCO2.

  7. Geochemical monitoring for detection of CO_{2} leakage from subsea storage sites

    Science.gov (United States)

    García-Ibáñez, Maribel I.; Omar, Abdirahman M.; Johannessen, Truls

    2017-04-01

    Carbon Capture and Storage (CCS) in subsea geological formations is a promising large-scale technology for mitigating the increases of carbon dioxide (CO2) in the atmosphere. However, detection and quantification of potential leakage of the stored CO2 remains as one of the main challenges of this technology. Geochemical monitoring of the water column is specially demanding because the leakage CO2 once in the seawater may be rapidly dispersed by dissolution, dilution and currents. In situ sensors capture CO2 leakage signal if they are deployed very close to the leakage point. For regions with vigorous mixing and/or deep water column, and for areas far away from the leakage point, a highly sensitive carbon tracer (Cseep tracer) was developed based on the back-calculation techniques used to estimate anthropogenic CO2 in the water column. Originally, the Cseep tracer was computed using accurate discrete measurements of total dissolved inorganic carbon (DIC) and total alkalinity (AT) in the Norwegian Sea to isolate the effect of natural submarine vents in the water column. In this work we assess the effect of measurement variables on the performance of the method by computing the Cseep tracer twice: first using DIC and AT, and second using partial pressure of CO2 (pCO2) and pH. The assessment was performed through the calculation of the signal to noise ratios (STNR). We found that the use of the Cseep tracer increases the STNR ten times compared to the raw measurement data, regardless of the variables used. Thus, while traditionally the pH-pCO2 pair generates the greatest uncertainties in the oceanic CO2 system, it seems that the Cseep technique is insensitive to that issue. On the contrary, the use of the pCO2-pH pair has the highest CO2 leakage detection and localization potential due to the fact that both pCO2 and pH can currently be measured at high frequency and in an autonomous mode.

  8. The declining uptake rate of atmospheric CO2 by land and ocean sinks

    International Nuclear Information System (INIS)

    Raupach, M.R.; Gloor, M.; Sarmiento, J.L.; Gasser, T.

    2014-01-01

    Through 1959-2012, an airborne fraction (AF) of 0.44 of total anthropogenic CO 2 emissions remained in the atmosphere, with the rest being taken up by land and ocean CO 2 sinks. Understanding of this uptake is critical because it greatly alleviates the emissions reductions required for climate mitigation, and also reduces the risks and damages that adaptation has to embrace. An observable quantity that reflects sink properties more directly than the AF is the CO 2 sink rate (k S ), the combined land-ocean CO 2 sink flux per unit excess atmospheric CO 2 above pre industrial levels. Here we show from observations that k S declined over 1959-2012 by a factor of about 1/3, implying that CO 2 sinks increased more slowly than excess CO 2 . Using a carbon-climate model, we attribute the decline in k S to four mechanisms: slower-than-exponential CO 2 emissions growth (35% of the trend), volcanic eruptions (25 %), sink responses to climate change (20 %), and nonlinear responses to increasing CO 2 , mainly oceanic (20 %). The first of these mechanisms is associated purely with the trajectory of extrinsic forcing, and the last two with intrinsic, feedback responses of sink processes to changes in climate and atmospheric CO 2 . Our results suggest that the effects of these intrinsic, nonlinear responses are already detectable in the global carbon cycle. Although continuing future decreases in k S will occur under all plausible CO 2 emission scenarios, the rate of decline varies between scenarios in non intuitive ways because extrinsic and intrinsic mechanisms respond in opposite ways to changes in emissions: extrinsic mechanisms cause k S to decline more strongly with increasing mitigation, while intrinsic mechanisms cause k S to decline more strongly under high-emission, low-mitigation scenarios as the carbon-climate system is perturbed further from a near-linear regime. (authors)

  9. Impact of CO2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO2 Leakage

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, Djuna [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Gregory, Kelvin B. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Lowry, Gregorgy V. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-06-20

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO2) emissions to the atmosphere. During this process, CO2 is injected as super critical carbon dioxide (SC-CO2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO2 in subsurface geologic formations could unintentionally lead to CO2 leakage into overlying freshwater aquifers. Introduction of CO2 into these subsurface environments will greatly increase the CO22 concentration and will create CO2 concentration gradients that drive changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO2 gradients will impact these communities. The overarching goal of this project is to understand how CO2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO2 injection/leakage plume where CO2 concentrations are highest. At CO2 exposures expected downgradient from the CO2 plume, selected microorganisms

  10. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2

    International Nuclear Information System (INIS)

    Schlesinger, W.H.; Lichter, J.

    2001-01-01

    The current rise in atmospheric CO 2 concentration is thought to be mitigated in part by carbon sequestration within forest ecosystems, where carbon can be stored in vegetation or soils. The storage of carbon in soils is determined by the fraction that is sequestered in persistent organic materials, such as humus. In experimental forest plots of loblolly pine (Pinus taeda) exposed to high CO 2 concentrations, nearly half of the carbon uptake is allocated to short-lived tissues, largely foliage. These tissues fall to the ground and decompose, normally contributing only a small portion of their carbon content to refractory soil humic materials. Such findings call into question the role of soils as long-term carbon sinks, and show the need for a better understanding of carbon cycling in forest soils. Here we report a significant accumulation of carbon in the litter layer of experimental forest plots after three years of growth at increased CO 2 concentrations (565 μ l 1 ). But fast turnover times of organic carbon in the litter layer (of about three years) appear to constrain the potential size of this carbon sink. Given the observation that carbon accumulation in the deeper mineral soil layers was absent, we suggest that significant, long-term net carbon sequestration in forest soils is unlikely. (author)

  11. Molecular and Microbial Mechanisms Increasing Soil C Storage Under Future Rates of Anthropogenic N Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zak, Donald R. [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-11-17

    A growing body of evidence reveals that anthropogenic N deposition can reduce the microbial decay of plant detritus and increase soil C storage across a wide range of terrestrial ecosystems. This aspect of global change has the potential to constrain the accumulation of anthropogenic CO2 in the Earth’s atmosphere, and hence slow the pace of climate warming. The molecular and microbial mechanisms underlying this biogeochemical response are not understood, and they are not a component of any coupled climate-biogeochemical model estimating ecosystem C storage, and hence, the future climate of an N-enriched Earth. Here, we report the use of genomic-enabled approaches to identify the molecular underpinnings of the microbial mechanisms leading to greater soil C storage in response to anthropogenic N deposition, thereby enabling us to better anticipate changes in soil C storage.

  12. Impact of CO2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO2 Leakage

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, Djuna M. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Gregory, Kelvin B. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering; Lowry, Gregory V. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering

    2016-06-20

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO2) emissions to the atmosphere. During this process, CO2 is injected as super critical carbon dioxide (SC-CO2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO2 in subsurface geologic formations could unintentionally lead to CO2 leakage into overlying freshwater aquifers. Introduction of CO2 into these subsurface environments will greatly increase the CO2 concentration and will create CO2 concentration gradients that drive changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO2 gradients will impact these communities. The overarching goal of this project is to understand how CO2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO2 injection/leakage plume where CO2 concentrations are highest. At CO2 exposures expected downgradient from the CO2 plume, selected microorganisms

  13. Near Surface CO2 Triple Oxygen Isotope Composition

    Directory of Open Access Journals (Sweden)

    Sasadhar Mahata

    2016-02-01

    Full Text Available The isotopic composition of carbon dioxide in the atmosphere is a powerful tool for constraining its sources and sinks. In particular, the 17O oxygen anomaly [Δ17O = 1000 × ln(1 + δ17O/1000 - 0.516 × 1000 × ln(1 + δ18O/1000], with a value > 0.5‰ produced in the middle atmosphere, provides an ideal tool for probing the exchange of carbon dioxide between the biosphere/hydrosphere and atmosphere. The biosphere/hydrosphere and anthropogenic emissions give values ≤ 0.3‰. Therefore, any anomaly in near surface CO2 would reflect the balance between stratospheric input and exchange with the aforementioned surface sources. We have analyzed Δ17O values of CO2 separated from air samples collected in Taipei, Taiwan, located in the western Pacific region. The obtained mean anomaly is 0.42 ± 0.14‰ (1-σ standard deviation, in good agreement with model prediction and a published decadal record. Apart from typically used δ13C and δ18O values, the Δ17O value could provide an additional tracer for constraining the carbon cycle.

  14. Inter-annual variability and trend detection of urban CO2, CH4 and CO emissions

    Science.gov (United States)

    Lauvaux, T.; Deng, A.; Gurney, K. R.; Nathan, B.; Ye, X.; Oda, T.; Karion, A.; Hardesty, M.; Harvey, R. M.; Richardson, S.; Whetstone, J. R.; Hutyra, L.; Davis, K. J.; Brewer, A.; Gaudet, B. J.; Turnbull, J. C.; Sweeney, C.; Shepson, P. B.; Miles, N.; Bonin, T.; Wu, K.; Balashov, N. V.

    2017-12-01

    The Indianapolis Flux (INFLUX) Experiment has conducted an unprecedented volume of atmospheric greenhouse gas measurements across the Indianapolis metropolitan area from aircraft, remote-sensing, and tower-based observational platforms. Assimilated in a high-resolution urban inversion system, atmospheric data provide an independent constraint to existing emission products, directly supporting the integration of economic data into urban emission systems. We present here the first multi-year assessment of carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) emissions from anthropogenic activities in comparison to multiple bottom-up emission products. Biogenic CO2 fluxes are quantified using an optimized biogeochemical model at high resolution, further refined within the atmospheric inversion system. We also present the first sector-based inversion by jointly assimilating CO2 and CO mixing ratios to quantify the dominant sectors of emissions over the entire period (2012-2015). The detected trend in CO2 emissions over 2012-2015 from both bottom-up emission products and tower-based inversions agree within a few percent, with a decline in city emissions over the 3-year time period. Major changes occur at the primary power plant, suggesting a decrease in energy production within the city limits. The joint assimilation of CO2 and CO mixing ratios confirms the absence of trends in other sectors. However, top-down and bottom-up approaches tend to disagree annually, with a decline in urban emissions suggested by atmospheric data in 2014 that is several months earlier than is observed in the bottom-up products. Concerning CH4 emissions, the inversion shows a decrease since mid-2014 which may be due to lower landfill emissions or lower energy consumption (from coal and natural gas). This first demonstration of a high-accuracy long-term greenhouse gas measurement network merged with a high-resolution bottom-up information system highlights the potential for informing

  15. Carbon stocks and greenhouse gas balance of an old-growth forest and an anthropogenic peatland in southern Chile

    Science.gov (United States)

    Perez-Quezada, J. F.; Brito, C. E.; Valdés, A.; Urrutia, P.

    2016-12-01

    Few studies have reported the effects of deforestation on carbon stocks and greenhouse gas balance in the temperate forests of the southern hemisphere. In some areas of southern Chile, after clear-cut or forest fires occurs a proliferation of Sphagnum moss, generating an anthropogenic type of peatland. We measured the effects of this change on the carbon stocks and the greenhouse gas balance, starting in 2013. Carbon stocks were measured in >30 plots on each site; ecosystem CO2 fluxes were measured continuously using eddy covariance stations; CH4 and N2O fluxes were measured monthly using closed chambers and cavity ring-down spectroscopy technology. Total ecosystem carbon stock was 1,523 Mg ha-1 in the forest and 130 Mg ha-1 in the peatland, representing a 91% difference. Both land use types were found to act as sinks of CO2 (NEE=-1094.2 and -31.9 g CO2 m-2 year-¹ for the forest and peatland, respectively); CH4 was mainly captured in the forest and peatland soils, generating balances of -0.70 and -0.12 g CH₄ m-2 year-¹. N2O fluxes were extremely low, so were considered as null. These results indicate that the greenhouse gas balance moved from -1134.6 to -38.8 g CO2-eq m-2 year-1 when land use changed from forest to anthropogenic peatland. These results provide evidence of the importance of preserving old-growth forests in southern Chile.

  16. Spatial and temporal variability in forest-atmosphere CO2 exchange

    Science.gov (United States)

    D.Y. Hollinger; J. Aber; B. Dail; E.A. Davidson; S.M. Goltz; et al.

    2004-01-01

    Seven years of carbon dioxide flux measurements indicate that a ∼ 90-year-old spruce dominated forest in Maine, USA, has been sequestering 174±46 gCm-2 yr-1 (mean±1 standard deviation, nocturnal friction velocity (u*) threshold >0.25ms-1...

  17. Sources and transport of Δ14C in CO2 within the Mexico City Basin and vicinity

    Directory of Open Access Journals (Sweden)

    H. B. Singh

    2009-07-01

    Full Text Available Radiocarbon samples taken over Mexico City and the surrounding region during the MILAGRO field campaign in March 2006 exhibited an unexpected distribution: (1 relatively few samples (23% were below the North American free tropospheric background value (57±2‰ despite the fossil fuel emissions from one of the world's most highly polluted environments; and (2 frequent enrichment well above the background value was observed. Correlate source tracer species and air transport characteristics were examined to elucidate influences on the radiocarbon distribution. Our analysis suggests that a combination of radiocarbon sources biased the "regional radiocarbon background" above the North American value thereby decreasing the apparent fossil fuel signature. Likely sources include the release of 14C-enhanced carbon from bomb 14C sequestered in plant carbon pools via the ubiquitous biomass burning in the region as well as the direct release of radiocarbon as CO2 from other "hot" sources. Plausible perturbations from local point "hot" sources include the burning of hazardous waste in cement kilns; medical waste incineration; and emissions from the Laguna Verde Nuclear Power Plant. These observations provide insight into the use of Δ14CO2 to constrain fossil fuel emissions in the megacity environment, indicating that underestimation of the fossil fuel contribution to the CO2 flux is likely wherever biomass burning coexists with urban emissions and is unaccounted for as a source of the elevated CO2 observed above local background. Our findings increase the complexity required to quantify fossil fuel-derived CO2 in source-rich environments characteristic of megacities, and have implications for the use of Δ14CO2 observations in evaluating bottom-up emission inventories and their reliability as a tool for validating national emission claims of CO2 within the framework of the Kyoto Protocol.

  18. Measurements of CO2 Mole Fractionand δ13C in Archived Air Samples from Cape Meares, Oregon (USA) 1977 - 1998

    Science.gov (United States)

    Clark, O.; Rice, A. L.

    2017-12-01

    Carbon dioxide (CO2) is the most abundant, anthropogenically forced greenhouse gas (GHG) in the global atmosphere. Emissions of CO2 account for approximately 75% of the world's total GHG emissions. Atmospheric concentrations of CO2 are higher now than they've been at any other time in the past 800,000 years. Currently, the global mean concentration exceeds 400 ppm. Today, global networks regularly monitor CO2 concentrations and isotopic composition (δ13C and δ18O). However, past data is sparse. Over 200 ambient air samples from Cape Meares, Oregon (45.5°N, 124.0°W), a coastal site in Western United States, were obtained by researchers at Oregon Institute of Science and Technology (OGI, now Oregon Health & Science University), between the years of 1977 and 1998 as part of a global monitoring program of six different sites in the polar, middle, and tropical latitudes of the Northern and Southern Hemispheres. Air liquefaction was used to compress approximately 1000L of air (STP) to 30bar, into 33L electropolished (SUMMA) stainless steel canisters. Select archived air samples from the original network are maintained at Portland State University (PSU) Department of Physics. These archived samples are a valuable look at changing atmospheric concentrations of CO2 and δ13C, which can contribute to a better understanding of changes in sources during this time. CO2 concentrations and δ13C of CO2 were measured at PSU, with a Picarro Cavity Ringdown Spectrometer, model G1101-i analytical system. This study presents the analytical methods used, calibration techniques, precision, and reproducibility. Measurements of select samples from the archive show rising CO2 concentrations and falling δ13C over the 1977 to 1998 period, compatible with previous observations and rising anthropogenic sources of CO2. The resulting data set was statistically analyzed in MATLAB. Results of preliminary seasonal and secular trends from the archive samples are presented.

  19. Assesment of Energy Options for CO2 Emission Reduction

    International Nuclear Information System (INIS)

    Cavlina, Nikola

    2014-01-01

    Since the 1992 Earth Summit in Rio de Janeiro, global anthropogenic CO 2 emissions grew by 52% which caused an increase in 10.8% in the CO 2 concentration in the atmosphere, and it tipped the 400 ppm mark in May 2013. The Fifth Assessment Report on climate impacts from the Intergovernmental Panel on Climate Change (IPCC) confirmed earlier warnings that climate change is already stressing human communities, agriculture, and natural ecosystems, and the effects are likely to increase in the future. While European Union has long been committed to lowering carbon emissions, this places additional pressure on current EU goals for energy sector that includes significant reduction of CO 2 emissions. Current EU commitment has been formalized in so-called '20-20-20' plan, reducing carbon emissions, increasing energy efficiency and increasing energy production from renewables by 20% by 2020. Some EU member states are even more ambitious, like United Kingdom, planning to reduce carbon emissions by 80% by 2050. Bulk of carbon reduction will have to be achived in energy sector. In the power industry, most popular solution is use of solar and wind power. Since their production varies significantly during the day, for the purpose of base-load production they can be paired with gas-fired power plant. Other possible CO 2 -free solution is nuclear power plant. In this invited lecture, predicted cost of energy production for newly bulit nuclear power plant and newly built combination of wind or solar and gas-fired power plant are compared. Comparison was done using Levelized Unit of Energy Cost (LUEC). Calculations were performed using the Monte Carlo method. For input parameters that have biggest uncertainty (gas cost, CO 2 emission fee) those uncertainties were addressed not only through probability distribution around predicted value, but also through different scenarious. (author)

  20. Studying the effect of CO2-induced acidification on sediment toxicity using acute amphipod toxicity test.

    Science.gov (United States)

    Basallote, M Dolores; De Orte, Manoela R; DelValls, T Ángel; Riba, Inmaculada

    2014-01-01

    Carbon capture and storage is increasingly being considered one of the most efficient approaches to mitigate the increase of CO2 in the atmosphere associated with anthropogenic emissions. However, the environmental effects of potential CO2 leaks remain largely unknown. The amphipod Ampelisca brevicornis was exposed to environmental sediments collected in different areas of the Gulf of Cádiz and subjected to several pH treatments to study the effects of CO2-induced acidification on sediment toxicity. After 10 days of exposure, the results obtained indicated that high lethal effects were associated with the lowest pH treatments, except for the Ría of Huelva sediment test. The mobility of metals from sediment to the overlying seawater was correlated to a pH decrease. The data obtained revealed that CO2-related acidification would lead to lethal effects on amphipods as well as the mobility of metals, which could increase sediment toxicity.

  1. Edaphic factors controlling summer (rainy season) greenhouse gas emissions (CO{sub 2} and CH{sub 4}) from semiarid mangrove soils (NE-Brazil)

    Energy Technology Data Exchange (ETDEWEB)

    Nóbrega, Gabriel N. [Departamento de Ciência do Solo, Escola Superior de Agricultura Luiz de Queiroz, ESALQ/USP, Av.Pádua Dias 11, Piracicaba, São Paulo 13.418-260 (Brazil); Ferreira, Tiago O., E-mail: toferreira@usp.br [Departamento de Ciência do Solo, Escola Superior de Agricultura Luiz de Queiroz, ESALQ/USP, Av.Pádua Dias 11, Piracicaba, São Paulo 13.418-260 (Brazil); Siqueira Neto, M. [Laboratório de Biogeoquímica Ambiental, Centro de Energia Nuclear na Agricultura, CENA/USP, Av. Centenário 303, Piracicaba, São Paulo 13.400-970 (Brazil); Queiroz, Hermano M.; Artur, Adriana G. [Departamento de Ciências do Solo, Universidade Federal do Ceará, UFC, Av. Mister Hull 2977, Campus do Pici, Fortaleza, Ceará 60.440-554 (Brazil); Mendonça, Eduardo De S. [Departamento de Produção Vegetal, Universidade Federal do Espírito Santo, UFES, Alto Universitário s/n, Alegre, Espírito Santo 29.500-000 (Brazil); Silva, Ebenezer De O. [Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Agroindústria Tropical, Pós Colheita, Dra. Sara Mesquita Street, 2270, Planalto Pici, Fortaleza, Ceará 60.511-110 (Brazil); and others

    2016-01-15

    The soil attributes controlling the CO{sub 2}, and CH{sub 4} emissions were assessed in semiarid mangrove soils (NE-Brazil) under different anthropogenic activities. Soil samples were collected from different mangroves under different anthropogenic impacts, e.g., shrimp farming (Jaguaribe River); urban wastes (Cocó River) and a control site (Timonha River). The sites were characterized according to the sand content; physicochemical parameters (Eh and pH); total organic C; soil C stock (SCS) and equivalent SCS (SCS{sub EQV}); total P and N; dissolved organic C (DOC); and the degree of pyritization (DOP). The CO{sub 2} and CH{sub 4} fluxes from the soils were assessed using static closed chambers. Higher DOC and SCS and the lowest DOP promote greater CO{sub 2} emission. The CH{sub 4} flux was only observed at Jaguaribe which presented higher DOP, compared to that found in mangroves from humid tropical climates. Semiarid mangrove soils cannot be characterized as important greenhouse gas sources, compared to humid tropical mangroves. - Highlights: • GHG emission was associated with different soil characteristics. • Highest CO{sub 2} emissions were found in mangroves with larger dissolved C and lower DOP. • Less CH{sub 4} flux was due to low DOP in semiarid mangrove soils.

  2. Global assessment of promising forest management practices for sequestration of carbon

    International Nuclear Information System (INIS)

    Winjum, J.K.; Dixon, R.K.; Schroeder, P.E.

    1991-01-01

    In the 1980s, forests covered an estimated 4.08 billion hectares and contained a carbon pool of 1,400 gigatonnes, or 64% of the total terrestrial pool. Forest biomass productivity per unit of land can be enhanced by proper management practices and it is suggested that by implementing such practices, forests could store more carbon globally and thereby slow the increase in atmospheric CO 2 . Currently, only about 10% of world forests are managed at an active level. An assessment is presented of the amount of carbon that could be sequestered globally by implementing the practices of reforestation, afforestation, natural regeneration, silviculture, and agroforestry. The assessment is based on the development of a global database on managed forest and agroforestry systems. For each of the above five practices, the database contains information on carbon sequestered per hectare, implementation costs, and estimates of the amount of land technically suitable for such practices throughout the world. Results are presented for each practice in the boreal, temperate, and tropical regions. Preliminary estimates show that promising forestry and agroforestry practices could sequester, over a 50-y period, ca 50-100 gigatonnes of carbon at a cost of $170-340 million. This would be a significant contribution as a mitigating measure regarding atmospheric CO 2 buildup and projections for global warming, at present rates of anthropogenic carbon emissions (300-400 gigatonnes carbon over 50 y). 19 refs., 2 figs., 4 tabs

  3. Anthropogenic Changes in Mid-latitude Storm and Blocking Activities from Observations and Climate Models

    Science.gov (United States)

    Li, D.

    2017-12-01

    Fingerprints of anthropogenic climate change can be most readily detected in the high latitudes of Northern Hemisphere, where temperature has been rising faster than the rest of the globe and sea ice cover has shrunk dramatically over recent decades. Reducing the meridional temperature gradient, this amplified warming over the high latitudes influences weather in the middle latitudes by modulating the jet stream, storms, and atmospheric blocking activities. Whether observational records have revealed significant changes in mid-latitude storms and blocking activities, however, has remained a subject of much debate. Buried deep in strong year-to-year variations, the long-term dynamic responses of the atmosphere are more difficult to identify, compared with its thermodynamic responses. Variabilities of decadal and longer timescales further obscure any trends diagnosed from satellite observations, which are often shorter than 40 years. Here, new metrics reflecting storm and blocking activities are developed using surface air temperature and pressure records, and their variations and long-term trends are examined. This approach gives an inkling of the changes in storm and blocking activities since the Industrial Revolution in regions with abundant long-term observational records, e.g. Europe and North America. The relationship between Atlantic Multi-decadal Oscillation and variations in storm and blocking activities across the Atlantic is also scrutinized. The connection between observed centennial trends and anthropogenic forcings is investigated using a hierarchy of numerical tools, from highly idealized to fully coupled atmosphere-ocean models. Pre-industrial control simulations and a set of large ensemble simulations forced by increased CO2 are analyzed to evaluate the range of natural variabilities, which paves the way to singling out significant anthropogenic changes from observational records, as well as predicting future changes in mid-latitude storm and

  4. Blue Water Trade-Offs With Vegetation in a CO2-Enriched Climate

    Science.gov (United States)

    Mankin, Justin S.; Seager, Richard; Smerdon, Jason E.; Cook, Benjamin I.; Williams, A. Park; Horton, Radley M.

    2018-04-01

    Present and future freshwater availability and drought risks are physically tied to the responses of surface vegetation to increasing CO2. A single-model large ensemble identifies the occurrence of colocated warming- and CO2-induced leaf area index increases with summer soil moisture declines. This pattern of "greening" and "drying," which occurs over 42% of global vegetated land area, is largely attributable to changes in the partitioning of precipitation at the land surface away from runoff and toward terrestrial vegetation ecosystems. Changes in runoff and ecosystem partitioning are inversely related, with changes in runoff partitioning being governed by changes in precipitation (mean and extremes) and ecosystem partitioning being governed by ecosystem water use and surface resistance to evapotranspiration (ET). Projections show that warming-influenced and CO2-enriched terrestrial vegetation ecosystems use water that historically would have been partitioned to runoff over 48% of global vegetated land areas, largely in Western North America, the Amazon, and Europe, many of the same regions with colocated greening and drying. These results have implications for how water available for people will change in response to anthropogenic warming and raise important questions about model representations of vegetation water responses to high CO2.

  5. Removing Traffic Emissions from CO2 Time Series Measured at a Tall Tower Using on-Road Measurements and WRF-Stilt Transport Modeling

    Science.gov (United States)

    Schmidt, A.; Rella, C.; Goeckede, M.; Hanson, C. V.; Yang, Z.; Law, B. E.

    2014-12-01

    In recent years, measurements of atmospheric carbon dioxide with high precision and accuracy have become increasingly important for climate change research, in particular to inform terrestrial biosphere models. Anthropogenic carbon dioxide emissions from fossil fuel burning have long been recognized to contribute a significant portion of the carbon dioxide in the atmosphere. Here, we present an approach to remove the traffic related carbon dioxide emissions from mole fractions measured at a tall tower by using the corresponding carbon monoxide measurements in combination with footprint analyses and transport modeling. This technique improves the suitability of the CO2 data to be used in inverse modeling approaches of atmosphere-biosphere exchange that do not account for non-biotic portions of CO2. In our study region in Oregon, road traffic emissions are the biggest source of anthropogenic carbon dioxide and carbon monoxide. A three-day mobile campaign covering 1700 km of roads in northwestern Oregon was performed during summer of 2012 using a laser-based Cavity Ring Down Spectrometer. The mobile measurements incorporated different roads including main highways, urban streets, and back-roads, largely within the typical footprint of a tall CO2 observation tower in Oregon's Willamette Valley. For the first time, traffic related CO:CO2 emission ratios were measured directly at the sources during an on-road campaign under a variety of different driving conditions. An average emission ratio of 7.43 (±1.80) ppb CO per ppm CO2 was obtained for the study region and applied to separate the traffic related portion of CO2 from the mole fraction time series. The road traffic related portion of the CO2 mole fractions measured at the tower site reached maximum values from 9.8 to 12 ppm, depending on the height above the surface, during summer 2012.

  6. On the relations between the oceanic uptake of CO2 and its carbon isotopes

    International Nuclear Information System (INIS)

    Heimann, M.; Maier-Reimer, E.

    1994-01-01

    The recent proposals to estimate the oceanic uptake of CO 2 by monitoring the oceanic change in 13 C/ 12 C isotope ratio or the air-sea 13 C/ 12 C isotopic disequilibrium is reviewed. Because the history of atmospheric CO 2 and 13 CO 2 since preindustrial times is almost the same, the oceanic penetration depth of both tracers must be the same. This dynamic constraint permits the establishment of yet a third method to estimate the global ocean uptake of CO 2 from 13 C measurements. Using available observations in conjunction with canonical values for the global carbon cycle parameters the three methods yield inconsistent oceanic CO 2 uptake rates for the time period 1970-1990, ranging from 0 to over 3 GtC year -1 . However, uncertainties in the available carbon cycle data must be taken into account. Using a non-linear estimation procedure, a consistent scenario with an oceanic CO 2 uptake rate of 2.2±0.8 GtC year -1 can be established. The method also permits an investigation of the sensitivities of the different approaches. An analysis of the results of two three-dimensional simulations with the Hamburg Model of the Oceanic Carbon Cycle shows that the 13 C isotope indeed tracks the oceanic penetration of anthropogenic CO 2 . Because of its different time history, bomb produced radiocarbon, as measured at the time of GEOSECS, correlates much less well to excess carbon. (orig.)

  7. Applications of geological labs on chip for CO_2 storage issues

    International Nuclear Information System (INIS)

    Morais, Sandy

    2016-01-01

    CO_2 geological storage in deep saline aquifers represents a mediation solution for reducing the anthropogenic CO_2 emissions. Consequently, this kind of storage requires adequate scientific knowledge to evaluate injection scenarios, estimate reservoir capacity and assess leakage risks. In this context, we have developed and used high pressure/high temperature micro-fluidic tools to investigate the different mechanisms associated with CO_2 geological storage in deep saline aquifers. The silicon-Pyrex 2D porous networks (Geological Labs On Chips) can replicate the reservoir p,T conditions (25 ≤ T ≤ 50 C, 50 ≤ p ≤ 10 MPa), geological and topological properties. This thesis manuscript first highlights the strategies developed during this work to fabricate the GLoCs and to access to global characteristics of our porous media such as porosity and permeability, which are later compared to numerical modelling results. The carbon dioxide detection in GLoCs mimicking p,T conditions of geological reservoirs by using the direct integration of optical fiber for IR spectroscopy is presented. I then detail the strategies for following the dissolution of carbonates in GLoCs with X-rays laminography experiments.Then, the manuscript focuses on the use of GLoCs to investigate each CO_2 trapping mechanism at the pore scale. The direct optical visualization and image processing allow us to follow the evolution of the injected CO_2/aqueous phase within the reservoir, including displacement mechanisms and pore saturation levels. Eventually, I present the ongoing works such as experiments with reactive brines and hydrates formations in porous media [fr

  8. FINAL TECHNICAL REPORT-THE ECOLOGY AND GENOMICS OF CO2 FIXATIION IN OCEANIC RIVER PLUMES

    Energy Technology Data Exchange (ETDEWEB)

    PAUL, JOHN H

    2013-06-21

    Oceanic river plumes represent some of the most productive environments on Earth. As major conduits for freshwater and nutrients into the coastal ocean, their impact on water column ecosystems extend for up to a thousand km into oligotrophic oceans. Upon entry into the oceans rivers are tremendous sources of CO2 and dissolved inorganic carbon (DIC). Yet owing to increased light transmissivity from sediment deposition coupled with the influx of nutrients, dramatic CO2 drawdown occurs, and plumes rapidly become sinks for CO2. Using state-of-the-art gene expression technology, we have examined the molecular biodiversity of CO2 fixation in the Mississippi River Plume (MRP; two research cruises) and the Orinoco River Plume (ORP; one cruise). When the MRP extends far into the Gulf because of entrainment with the Loop Current, MRP production (carbon fixation) can account for up to 41% of the surface production in the Gulf of Mexico. Nearer-shore plume stations (“high plume,” salinity< 32 ppt) had tremendous CO2 drawdown that was correlated to heterokont (principally diatom) carbon fixation gene expression. The principal form of nitrogen for this production based upon 15N studies was urea, believed to be from anthropogenic origin (fertilizer) from the MRP watershed. Intermediate plume environments (salinity 34 ppt) were characterized by high levels of Synechococcuus carbon fixation that was fueled by regenerated ammonium. Non-plume stations were characterized by high light Prochlorococcus carbon fixation gene expression that was positively correlated with dissolved CO2 concentrations. Although data from the ORP cruise is still being analyzed, some similarities and striking differences were found between the ORP and MRP. High levels of heterokont carbon fixation gene expression that correlated with CO2 drawdown were observed in the high plume, yet the magnitude of this phenomenon was far below that of the MRP, most likely due to the lower levels of anthropogenic

  9. In-Situ MVA of CO2 Sequestration Using Smart Field Technology

    Energy Technology Data Exchange (ETDEWEB)

    Mohaghegh, Shahab D. [West Virginia Univ. Research Corporation, Morgantown, WV (United States)

    2014-09-01

    Capability of underground carbon dioxide storage to confine and sustain injected CO2 for a long period of time is the main concern for geologic CO2 sequestration. If a leakage from a geological CO2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak, in a timely manner, in order to implement proper remediation activities. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or near surface monitoring of the sequestered CO2 . This study aims to monitor the integrity of CO2 storage at the reservoir level. This work proposes developing in-situ CO2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or “Smart Wells” along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered as the basis for this study. A reservoir simulation model for CO2 sequestration in the Citronelle field was developed and history matched. PDGs were installed, and therefore were considered in the numerical model, at the injection well and an observation well. Upon completion of the history matching process, high frequency pressure data from PDGs were generated using the history matched numerical model using different CO2 leakage scenarios. Since pressure signal behaviors were too complicated to de-convolute using any existing mathematical formulations, a Machine Learning-based technology was introduced for this purpose. An Intelligent Leakage Detection System (ILDS) was developed as the result of this effort using the machine learning and pattern recognition technologies. The ILDS

  10. Preliminary Safety and Risk HSE Assessment. Application to the Potential Locations of a CO2 Geological Storage Pilot

    International Nuclear Information System (INIS)

    Recreo, F.; Eguilior, S.; Ruiz, C.; Lomba, L.; Hurtado, A.

    2015-01-01

    The location of a site safe and able to sequester CO2 for long periods of time is essential to gain public acceptance. This requires a long-term safety assessment developed in a robust and reliable framework. Site selection is the first step and requires specific research. This paper describes the application of the Selection and Classification Method of Geological Formations (SCF) developed to assess the potential of geological formations to CO2 storage. This assessment is based in the analysis of risks to Health, Safety and Environment (HSE) derived from potential CO2 leakage. Comparisons of the results obtained from a number of potential sites can help to select the best candidate for CO2 injection. The potential impact will be related to three key potential features of CO2 geological storage: the potential of the target geological formation for long term CO2 containment; the potential for secondary containment on containment failure of the target formation; and the site's potential to mitigate and/or disperse CO2 leakage if the primary and secondary containments fail. The methodology assesses each of these three characteristics through an analysis and assessment of properties of certain attributes of them. Uncertainty will remain as an input and output value of the methodology due to the usual lack of data in most site selection processes. The global uncertainty reports on the trust on the knowledge of the site characteristics. Therefore, the methodology enables comparing sites taking into account both the HSE risk expectation and the estimation of the quality of knowledge concerning such risk. The objective is to contribute to the selection of potential sites for a CO2 injection pilot plant in the Iberian Peninsula from the perspective of Safety and Risk Analysis.

  11. Potential of Russian Regions to Implement CO2-Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Alexey Cherepovitsyn

    2018-06-01

    Full Text Available The paper assesses the techno-economic potential of Russia to implement carbon capture and storage technologies that imply the capture of anthropogenic CO2 and its injection into geologic reservoirs for long-term storage. The focus is on CO2 enhanced oil recovery projects that seem to be the most economically promising option of carbon capture and storage. The novelty of the work lies in the formulation of a potential assessment method of CO2 enhanced oil recovery, which allows for establishing a connection between energy production and oil extraction from the viewpoint of CO2 supply and demand. Using linear optimization, the most promising combinations of CO2 sources and sinks are identified and an economic evaluation of these projects is carried out. Based on this information, regions of Russia are ranked according to their prospects in regards to CO2 capture and enhanced oil recovery storage. The results indicate that Russia has a significant potential to utilize its power plants as CO2 sources for enhanced oil recovery projects. It has been estimated that 71 coal-fired power plants, and 185 of the gas-fired power plants of Russia annually produce 297.1 and 309.6 Mt of CO2 that can cover 553.4 Mt of the demand of 322 Russian oil fields. At the same time, the total CO2 storage capacity of the Russian fields is estimated at 7382.6 Mt, however, due to geological and technical factors, only 22.6% can be used for CO2-EOR projects. Of the 183 potential projects identified in the regional analysis phase, 99 were found to be cost-effective, with an average unit cost of € 19.07 per ton of CO2 and a payback period of 8.71 years. The most promising of the estimated regions is characterized by a well-developed energy industry, relatively low transportation costs, numerous large and medium-sized oil fields at the final stages of development, and favorable geological conditions that minimize the cost of injection. Geographically, they are located in the

  12. Sensitivity of Terrestrial Water and Energy Budgets to CO2-Physiological Forcing: An Investigation Using an Offline Land Model

    Science.gov (United States)

    Gopalakrishnan, Ranjith; Bala, Govindsamy; Jayaraman, Mathangi; Cao, Long; Nemani, Ramakrishna; Ravindranath, N. H.

    2011-01-01

    Increasing concentrations of atmospheric carbon dioxide (CO2) influence climate by suppressing canopy transpiration in addition to its well-known greenhouse gas effect. The decrease in plant transpiration is due to changes in plant physiology (reduced opening of plant stomata). Here, we quantify such changes in water flux for various levels of CO2 concentrations using the National Center for Atmospheric Research s (NCAR) Community Land Model. We find that photosynthesis saturates after 800 ppmv (parts per million, by volume) in this model. However, unlike photosynthesis, canopy transpiration continues to decline at about 5.1% per 100 ppmv increase in CO2 levels. We also find that the associated reduction in latent heat flux is primarily compensated by increased sensible heat flux. The continued decline in canopy transpiration and subsequent increase in sensible heat flux at elevated CO2 levels implies that incremental warming associated with the physiological effect of CO2 will not abate at higher CO2 concentrations, indicating important consequences for the global water and carbon cycles from anthropogenic CO2 emissions. Keywords: CO2-physiological effect, CO2-fertilization, canopy transpiration, water cycle, runoff, climate change 1.

  13. Sensitivity of terrestrial water and energy budgets to CO2-physiological forcing: an investigation using an offline land model

    International Nuclear Information System (INIS)

    Gopalakrishnan, Ranjith; Jayaraman, Mathangi; Ravindranath, N H; Bala, Govindsamy; Cao, Long; Nemani, Ramakrishna

    2011-01-01

    Increasing concentrations of atmospheric carbon dioxide (CO 2 ) influence climate by suppressing canopy transpiration in addition to its well-known greenhouse gas effect. The decrease in plant transpiration is due to changes in plant physiology (reduced opening of plant stomata). Here, we quantify such changes in water flux for various levels of CO 2 concentrations using the National Center for Atmospheric Research's (NCAR) Community Land Model. We find that photosynthesis saturates after 800 ppmv (parts per million, by volume) in this model. However, unlike photosynthesis, canopy transpiration continues to decline at about 5.1% per 100 ppmv increase in CO 2 levels. We also find that the associated reduction in latent heat flux is primarily compensated by increased sensible heat flux. The continued decline in canopy transpiration and subsequent increase in sensible heat flux at elevated CO 2 levels implies that incremental warming associated with the physiological effect of CO 2 will not abate at higher CO 2 concentrations, indicating important consequences for the global water and carbon cycles from anthropogenic CO 2 emissions.

  14. Changes in plants and soil microorganisms in an artificial CO2 leakage experiment

    Science.gov (United States)

    Ko, D.; Kim, Y.; Yoo, G.; Chung, H.

    2017-12-01

    Carbon capture and storage (CCS) technology is considered to be a promising technology that can mitigate global climate change by greatly reducing anthropogenic CO2 emissions. Despite the advantage, potential risks of leakage of CO2 from CO2 storage site exists, which may negatively affect organisms in the soil ecosystems. To investigate the short- term impacts of geological CO2 leakage on soil ecosystem, we conducted an artificial CO2 leakage experiment in a greenhouse where plants and soils were exposed to high levels of CO2. Corn was grown in a 1:1 (v/v) mixture of potting and field soil, and 99.99% CO2 gas was injected at a flow rate of 0.1l min-1 for 30 days whereas no gas was injected to control pots. Changes in plant growth, soil characteristics, and bacterial community composition were determined. Mean soil CO2 and O2 concentrations were 31.6% and 15.6%, respectively, in CO2-injected pots, while they were at ambient levels in control pots. The shoot and root length, and chlorophyll contents decreased in CO2-injected pots by 19.4%, 9.7%, and 11.9%, respectively. In addition, the concentration of available N such as NH4+-N and NO3-N was 83.3 to 90.8% higher in CO2-injected pots than in control pots likely due to inhibited plant growth. The results of bacterial 16S rRNA gene pyrosequencing showed that the major phyla in the soils were Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, and Saccharibacteria_TM7. Among these, the relative abundance of Proteobacteria was lower in CO2-injected than in control pots (28.8% vs. 34.1%) likely due to decreased C availability. On the other hand, the abundance of Saccharibacteria_TM7 was significantly higher in CO2-injected than in control pots (6.0% vs. 1.3%). The changes in soil mineral N and microorganisms in response to injected CO2 was likely due to inhibited plant growth under high soil CO2 conditions, and further studies are needed to determine if belowground CO2 leakage from CO2 storage sites can directly

  15. Depletion of fossil fuels and anthropogenic climate change—A review

    International Nuclear Information System (INIS)

    Höök, Mikael; Tang, Xu

    2013-01-01

    Future scenarios with significant anthropogenic climate change also display large increases in world production of fossil fuels, the principal CO 2 emission source. Meanwhile, fossil fuel depletion has also been identified as a future challenge. This chapter reviews the connection between these two issues and concludes that limits to availability of fossil fuels will set a limit for mankind's ability to affect the climate. However, this limit is unclear as various studies have reached quite different conclusions regarding future atmospheric CO 2 concentrations caused by fossil fuel limitations. It is concluded that the current set of emission scenarios used by the IPCC and others is perforated by optimistic expectations on future fossil fuel production that are improbable or even unrealistic. The current situation, where climate models largely rely on emission scenarios detached from the reality of supply and its inherent problems are problematic. In fact, it may even mislead planners and politicians into making decisions that mitigate one problem but make the other one worse. It is important to understand that the fossil energy problem and the anthropogenic climate change problem are tightly connected and need to be treated as two interwoven challenges necessitating a holistic solution. - Highlights: ► Review of the development of emission scenarios. ► Survey of future fossil fuel trajectories used by the IPCC emission scenarios. ► Discussions on energy transitions in the light of oil depletion. ► Review of earlier studies of future climate change and fossil fuel limitations.

  16. Subtask 2.17 - CO2 Storage Efficiency in Deep Saline Formations

    Energy Technology Data Exchange (ETDEWEB)

    Gorecki, Charles D. [Univ. of North Dakota, Grand Forks, ND (United States); Liu, Guoxiang [Univ. of North Dakota, Grand Forks, ND (United States); Braunberger, Jason R. [Univ. of North Dakota, Grand Forks, ND (United States); Klenner, Robert C. L. [Univ. of North Dakota, Grand Forks, ND (United States); Ayash, Scott C. [Univ. of North Dakota, Grand Forks, ND (United States); Dotzenrod, Neil W. [Univ. of North Dakota, Grand Forks, ND (United States); Steadman, Edward N. [Univ. of North Dakota, Grand Forks, ND (United States); Harju, John A. [Univ. of North Dakota, Grand Forks, ND (United States)

    2014-02-01

    As the field of carbon capture and storage (CCS) continues to advance, and large-scale implementation of geologic carbon dioxide (CO2) storage progresses, it will be important to understand the potential of geologic formations to store meaningful amounts of CO2. Geologic CO2 storage in deep saline formations (DSFs) has been suggested as one of the best potential methods for reducing anthropogenic CO2 emission to the atmosphere, and as such, updated storage resource estimation methods will continue to be an important component for the widespread deployment of CCS around the world. While there have been several methodologies suggested in the literature, most of these methods are based on a volumetric calculation of the pore volume of the DSF multiplied by a storage efficiency term and do not consider the effect of site-specific dynamic factors such as injection rate, injection pattern, timing of injection, pressure interference between injection locations, and overall formation pressure buildup. These volumetric methods may be excellent for comparing the potential between particular formations or basins, but they have not been validated through real-world experience or full-formation injection simulations. Several studies have also suggested that the dynamic components of geologic storage may play the most important role in storing CO2 in DSFs but until now have not directly compared CO2 storage resource estimates made with volumetric methodologies to estimates made using dynamic CO2 storage methodologies. In this study, two DSFs, in geographically separate areas with geologically diverse properties, were evaluated with both volumetric and dynamic CO2 storage resource estimation methodologies to compare the results and determine the applicability of both approaches. In the end, it was determined that the dynamic CO2 storage resource potential is timedependent and it

  17. Time-Lapse Seismic Monitoring and Performance Assessment of CO2 Sequestration in Hydrocarbon Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Datta-Gupta, Akhil [Texas Engineering Experiment Station, College Station, TX (United States)

    2017-06-15

    Carbon dioxide sequestration remains an important and challenging research topic as a potentially viable approach for mitigating the effects of greenhouse gases on global warming (e.g., Chu and Majumdar, 2012; Bryant, 2007; Orr, 2004; Hepple and Benson, 2005; Bachu, 2003; Grimston et al., 2001). While CO2 can be sequestered in oceanic or terrestrial biomass, the most mature and effective technology currently available is sequestration in geologic formations, especially in known hydrocarbon reservoirs (Barrufet et al., 2010; Hepple and Benson, 2005). However, challenges in the design and implementation of sequestration projects remain, especially over long time scales. One problem is that the tendency for gravity override caused by the low density and viscosity of CO2. In the presence of subsurface heterogeneity, fractures and faults, there is a significant risk of CO2 leakage from the sequestration site into overlying rock compared to other liquid wastes (Hesse and Woods, 2010; Ennis-King and Patterson, 2002; Tsang et al., 2002). Furthermore, the CO2 will likely interact chemically with the rock in which it is stored, so that understanding and predicting its transport behavior during sequestration can be complex and difficult (Mandalaparty et al., 2011; Pruess et al., 2003). Leakage of CO2 can lead to such problems as acidification of ground water and killing of plant life, in addition to contamination of the atmosphere (Ha-Duong, 2003; Gasda et al., 2004). The development of adequate policies and regulatory systems to govern sequestration therefore requires improved characterization of the media in which CO2 is stored and the development of advanced methods for detecting and monitoring its flow and transport in the subsurface (Bachu, 2003).

  18. Considering economic and geological uncertainty in the simulation of realistic investment decisions for CO2-EOR projects in the North Sea

    NARCIS (Netherlands)

    Welkenhuysen, Kris; Rupert, Jort; Compernolle, Tine; Ramirez, Andrea|info:eu-repo/dai/nl/284852414; Swennen, Rudy; Piessens, Kris

    2017-01-01

    The use of anthropogenic CO2 for enhancing oil recovery from mature oil fields in the North Sea has several potential benefits, and a number of assessments have been conducted. It remains, however, difficult to realistically simulate the economic circumstances and decisions, while including the

  19. Climate forcing by anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, Jr, J A; Hansen, J E; Hofmann, D J [University of Washington, Seattle, WA (USA). Inst. for Environmental Studies, Dept. of Atmospheric Sciences

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of short wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square metre, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes. 73 refs., 4 figs., 2 tabs.

  20. Effect of ocean acidification and elevated fCO2 on trace gas production by a Baltic Sea summer phytoplankton community

    NARCIS (Netherlands)

    Webb, A.L.; Leedham-Elvidge, E.; Hughes, C.; Hopkins, F.E.; Malin, G.; Bach, L.T.; Schulz, K.; Crawfurd, K.; Brussaard, C.P.D.; Stuhr, A.; Riebesell, U.; Liss, P.S.

    2016-01-01

    The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on

  1. Short-term effects of CO2 leakage on the soil bacterial community in a simulated gas leakage scenario.

    Science.gov (United States)

    Ma, Jing; Zhang, Wangyuan; Zhang, Shaoliang; Zhu, Qianlin; Feng, Qiyan; Chen, Fu

    2017-01-01

    The technology of carbon dioxide (CO 2 ) capture and storage (CCS) has provided a new option for mitigating global anthropogenic emissions with unique advantages. However, the potential risk of gas leakage from CO 2 sequestration and utilization processes has attracted considerable attention. Moreover, leakage might threaten soil ecosystems and thus cannot be ignored. In this study, a simulation experiment of leakage from CO 2 geological storage was designed to investigate the short-term effects of different CO 2 leakage concentration (from 400 g m -2 day -1 to 2,000 g m -2 day -1 ) on soil bacterial communities. A shunt device and adjustable flow meter were used to control the amount of CO 2 injected into the soil. Comparisons were made between soil physicochemical properties, soil enzyme activities, and microbial community diversity before and after injecting different CO 2 concentrations. Increasing CO 2 concentration decreased the soil pH, and the largest variation ranged from 8.15 to 7.29 ( p soil CO 2 concentration increased. The dominant phylum in the soil samples was Proteobacteria , whose proportion rose rapidly from 28.85% to 67.93%. In addition, the proportion of Acidobacteria decreased from 19.64% to 9.29% ( p soil ecosystems.

  2. Quantification of fossil fuel CO2 emissions at the urban scale: Results from the Indianapolis Flux Project (INFLUX)

    Science.gov (United States)

    Turnbull, J. C.; Cambaliza, M. L.; Sweeney, C.; Karion, A.; Newberger, T.; Tans, P. P.; Lehman, S.; Davis, K. J.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Shepson, P.; Gurney, K. R.; Song, Y.; Razlivanov, I. N.

    2012-12-01

    Emissions of fossil fuel CO2 (CO2ff) from anthropogenic sources are the primary driver of observed increases in the atmospheric CO2 burden, and hence global warming. Quantification of the magnitude of fossil fuel CO2 emissions is vital to improving our understanding of the global and regional carbon cycle, and independent evaluation of reported emissions is essential to the success of any emission reduction efforts. The urban scale is of particular interest, because ~75% CO2ff is emitted from urban regions, and cities are leading the way in attempts to reduce emissions. Measurements of 14CO2 can be used to determine CO2ff, yet existing 14C measurement techniques require laborious laboratory analysis and measurements are often insufficient for inferring an urban emission flux. This presentation will focus on how 14CO2 measurements can be combined with those of more easily measured ancillary tracers to obtain high resolution CO2ff mixing ratio estimates and then infer the emission flux. A pilot study over Sacramento, California showed strong correlations between CO2ff and carbon monoxide (CO) and demonstrated an ability to quantify the urban flux, albeit with large uncertainties. The Indianapolis Flux Project (INFLUX) aims to develop and assess methods to quantify urban greenhouse gas emissions. Indianapolis was chosen as an ideal test case because it has relatively straightforward meteorology; a contained, isolated, urban region; and substantial and well-known fossil fuel CO2 emissions. INFLUX incorporates atmospheric measurements of a suite of gases and isotopes including 14C from light aircraft and from a network of existing tall towers surrounding the Indianapolis urban area. The recently added CO2ff content is calculated from measurements of 14C in CO2, and then convolved with atmospheric transport models and ancillary data to estimate the urban CO2ff emission flux. Significant innovations in sample collection include: collection of hourly averaged samples to

  3. In vivo release of aflatoxin B1 bound to different sequestering agents in dairy cows

    Directory of Open Access Journals (Sweden)

    D. Diaz

    2010-04-01

    Full Text Available Nine lactating dairy cows, producing 31.08±5.00 kg of milk/cow/day and fed with a Total Mixed Ration (TMR with an intake of 22.3±0.8 Kg s.s./cow, were used to investigate the resistance of the AFs-SA complex in the rumen and in the gastro-intestinal tract. Two commercial sequestering agents Atox® and Mycosorb® were used. The AFB1 was also mixed to a rumen fluid (R-SA. AFB1 sequestered by Atox®, Mycosorb® and by R-SA were then fed to cows before the morning meal. Milk samples were collected for 6 consecutive milkings and analyzed for AFM1 content. The in vitro binding capacity of the two SA were 94.2% for Atox®, 84.3% for Mycosorb® and 71.86% for the R-SA. Both Atox® and Mycosorb® released some of the sequestered AFB1 determining an increase of the AFM1 in milk as soon as in the 1st milking from oral drenching (4.23±7.33; 23.60±8.23 and 46.06±39.84 ppt for Atox®, Mycosorb® and R-SA respectively. The AFM1 (ng/cow in milk at the 4th milking was lower (66.04, 661.77 and 1613.04; P<0.05 in Atox® and Mycosorb® than R-SA, respectively. The percentage release of bound AFB1 were 1.63% for Atox®, 20.27% for Mycosorb® and 50.48% for R-SA.

  4. Using a laser-based CO2 carbon isotope analyser to investigate gas transfer in geological media

    International Nuclear Information System (INIS)

    Guillon, S.; Pili, E.; Agrinier, P.

    2012-01-01

    CO 2 stable carbon isotopes are very attractive in environmental research to investigate both natural and anthropogenic carbon sources. Laser-based CO 2 carbon isotope analysis provides continuous measurement at high temporal resolution and is a promising alternative to isotope ratio mass spectrometry (IRMS). We performed a thorough assessment of a commercially available CO 2 Carbon Isotope Analyser (CCIA DLT-100, Los Gatos Research) that allows in situ measurement of C-13 in CO 2 . Using a set of reference gases of known CO 2 concentration and carbon isotopic composition, we evaluated the precision, long-term stability, temperature sensitivity and concentration dependence of the analyser. Despite good precision calculated from Allan variance (5.0 ppm for CO 2 concentration, and 0.05 per thousand for δC-13 at 60 s averaging), real performances are altered by two main sources of error: temperature sensitivity and dependence of C-13 on CO 2 concentration. Data processing is required to correct for these errors. Following application of these corrections, we achieve an accuracy of 8.7 ppm for CO 2 concentration and 1.3 per thousand for δC-13, which is worse compared to mass spectrometry performance, but still allowing field applications. With this portable analyser we measured CO 2 flux degassed from rock in an underground tunnel. The obtained carbon isotopic composition agrees with IRMS measurement, and can be used to identify the carbon source. (authors)

  5. Isolation and characterization of a CO2-tolerant Lactobacillus strain from Crystal Geyser, Utah, U.S.A.

    Science.gov (United States)

    Santillan, Eugenio Felipe; Shanahan, Timothy; Omelon, Christopher; Major, Jonathan; Bennett, Philip

    2015-07-01

    When CO2 is sequestered into the deep subsurface, changes to the subsurface microbial community will occur. Capnophiles, microorganisms that grow in CO2-rich environments, are some organisms that may be selected for under the new environmental conditions. To determine whether capnophiles comprise an important part of CO2-rich environments, an isolate from Crystal Geyser, Utah, U.S.A., a CO2- rich spring considered a carbon sequestration analogue, was characterized. The isolate was cultured under varying CO2, pH, salinity, and temperature, as well as different carbon substrates and terminal electron acceptors (TEAs) to elucidate growth conditions and metabolic activity. Designated CG-1, the isolate is related (99%) to Lactobacillus casei in 16S rRNA gene identity, growing at PCO2 between 0 to 1.0 MPa. Growth is inhibited at 2.5 MPa, but stationary phase cultures exposed to this pressure survive beyond 5 days. At 5.0 MPa, survival is at least 24 hours. CG-1 grows in neutral pH, 0.25 M NaCl, and between 25° to 45°C andconsumes glucose, lactose, sucrose, or crude oil, likely performing lactic acid fermentation. Fatty acid profiles between 0.1 MPa to 1.0 MPa suggests decreases in cell size and increases in membrane rigidity. Transmission electron microscopy reveals rod shaped bacteria at 0.1 MPa. At 1.0 MPa, cells are smaller, amorphous, and produce abundant capsular material. Its ability to grow in environments regardless of the presence of CO2 suggests we have isolated an organism that is more capnotolerant than capnophilic. Results also show that microorganisms are capable of surviving the stressful conditions created by the introduction of CO2 for sequestration. Furthermore, our ability to culture an environmental isolate indicates that organisms found in CO2 environments from previous genomic and metagenomics studies are viable, metabolizing, and potentially affecting the surrounding environment.

  6. Isolation and characterization of a CO2-tolerant Lactobacillus strain from Crystal Geyser, Utah, U.S.A.

    Energy Technology Data Exchange (ETDEWEB)

    Santillan, Eugenio-Felipe U.; Shanahan, Timothy M.; Omelon, Christopher R.; Major, Jonathan R.; Bennett, Philip C.

    2015-07-23

    When CO2 is sequestered into the deep subsurface, changes to the subsurface microbial community will occur. Capnophiles, microorganisms that grow in CO2-rich environments, are some organisms that may be selected for under the new environmental conditions. To determine whether capnophiles comprise an important part of CO2-rich environments, an isolate from Crystal Geyser, Utah, U.S.A., a CO2- rich spring considered a carbon sequestration analog, was characterized. The isolate was cultured under varying CO2, pH, salinity, and temperature, as well as different carbon substrates and terminal electron acceptors (TEAs) to elucidate growth conditions and metabolic activity. Designated CG-1, the isolate is related (99%) to Lactobacillus casei in 16S rRNA gene identity, growing at PCO2 between 0 and 1.0 MPa. Growth is inhibited at 2.5 MPa, but stationary phase cultures exposed to this pressure survive beyond 5 days. At 5.0 MPa, survival is at least 24 h. CG-1 grows in neutral pH, 0.25 M NaCl, and between 25° and 45°C and consumes glucose, lactose, sucrose, or crude oil, likely performing lactic acid fermentation. Fatty acid profiles between 0.1 and 1.0 MPa suggests decreases in cell size and increases in membrane rigidity. Transmission electron microscopy reveals rod shaped bacteria at 0.1 MPa. At 1.0 MPa, cells are smaller, amorphous, and produce abundant capsular material. Its ability to grow in environments regardless of the presence of CO2 suggests we have isolated an organism that is more capnotolerant than capnophilic. Results also show that microorganisms are capable of surviving the stressful conditions created by the introduction of CO2 for sequestration. Furthermore, our ability to culture an environmental isolate indicates that organisms found in CO2 environments from previous genomic and metagenomics studies are viable, metabolizing, and potentially affecting the

  7. Isolation and characterization of a CO2-tolerant Lactobacillus strain from Crystal Geyser, Utah, U.S.A.

    Directory of Open Access Journals (Sweden)

    Eugenio Felipe U Santillan

    2015-07-01

    Full Text Available When CO2 is sequestered into the deep subsurface, changes to the subsurface microbial community will occur. Capnophiles, microorganisms that grow in CO2-rich environments, are some organisms that may be selected for under the new environmental conditions. To determine whether capnophiles comprise an important part of CO2-rich environments, an isolate from Crystal Geyser, Utah, U.S.A., a CO2- rich spring considered a carbon sequestration analogue, was characterized. The isolate was cultured under varying CO2, pH, salinity, and temperature, as well as different carbon substrates and terminal electron acceptors (TEAs to elucidate growth conditions and metabolic activity. Designated CG-1, the isolate is related (99% to Lactobacillus casei in 16S rRNA gene identity, growing at PCO2 between 0 to 1.0 MPa. Growth is inhibited at 2.5 MPa, but stationary phase cultures exposed to this pressure survive beyond 5 days. At 5.0 MPa, survival is at least 24 hours. CG-1 grows in neutral pH, 0.25 M NaCl, and between 25° to 45°C andconsumes glucose, lactose, sucrose, or crude oil, likely performing lactic acid fermentation. Fatty acid profiles between 0.1 MPa to 1.0 MPa suggests decreases in cell size and increases in membrane rigidity. Transmission electron microscopy reveals rod shaped bacteria at 0.1 MPa. At 1.0 MPa, cells are smaller, amorphous, and produce abundant capsular material. Its ability to grow in environments regardless of the presence of CO2 suggests we have isolated an organism that is more capnotolerant than capnophilic. Results also show that microorganisms are capable of surviving the stressful conditions created by the introduction of CO2 for sequestration. Furthermore, our ability to culture an environmental isolate indicates that organisms found in CO2 environments from previous genomic and metagenomics studies are viable, metabolizing, and potentially affecting the surrounding environment.

  8. System-level modeling for economic evaluation of geological CO2 storage in gas reservoirs

    International Nuclear Information System (INIS)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2007-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO 2 ) from industrial sources into deep geological formations such as brine aquifers or depleted oil or gas reservoirs. Research is being conducted to improve understanding of factors affecting particular aspects of geological CO 2 storage (such as storage performance, storage capacity, and health, safety and environmental (HSE) issues) as well as to lower the cost of CO 2 capture and related processes. However, there has been less emphasis to date on system-level analyses of geological CO 2 storage that consider geological, economic, and environmental issues by linking detailed process models to representations of engineering components and associated economic models. The objective of this study is to develop a system-level model for geological CO 2 storage, including CO 2 capture and separation, compression, pipeline transportation to the storage site, and CO 2 injection. Within our system model we are incorporating detailed reservoir simulations of CO 2 injection into a gas reservoir and related enhanced production of methane. Potential leakage and associated environmental impacts are also considered. The platform for the system-level model is GoldSim [GoldSim User's Guide. GoldSim Technology Group; 2006, http://www.goldsim.com]. The application of the system model focuses on evaluating the feasibility of carbon sequestration with enhanced gas recovery (CSEGR) in the Rio Vista region of California. The reservoir simulations are performed using a special module of the TOUGH2 simulator, EOS7C, for multicomponent gas mixtures of methane and CO 2 . Using a system-level modeling approach, the economic benefits of enhanced gas recovery can be directly weighed against the costs and benefits of CO 2 injection

  9. An assessment of potential CO2 Sources throughout the Illinois Basin Subtask 5.1 – CO2 Source Assessment Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Vinodkumar [University of Illinois; O?Brien, Kevin; Korose, Christopher

    2018-05-09

    Large-scale anthropogenic CO2 sources (>100,000 tonnes/year) were catalogued and assessed for the Illinois East Sub-Basin project area. The portfolio of sources is quite diverse, and contains not only fossil-based power generation facilities but also ethanol, chemical, and refinery facilities. Over 60% of the facilities are relatively new (i.e. post year 2000 construction) hence increasing the likelihood that retrofitting the facility with a carbon capture plant is feasible. Two of the facilities have indicated interest in being “early adopters” should the CarbonSAFE project eventually transition to a build and operate phase: the Prairie State Generating Company’s electricity generation facility near Marissa, Illinois, and Quasar Syngas, LLC’s Wabash ammonia/direct-reduced iron plant, currently in development north of Terre Haute, Indiana.

  10. Characterization of surface layers on individual marine CaCO3 particles, using "variable energy" electron probe microanalysis (poster)

    OpenAIRE

    Aerts, K.; Godoi, R.; Van Grieken, R.

    2002-01-01

    The ocean constitutes a large sink for anthropogenic CO2, and thus plays a significant role in the global biogeochemical cycle of carbon and its perturbations. There remain, however, large uncertainties concerning the uptake of anthropogenic carbon by the ocean, mainly due to insufficient knowledge of processes controlling the pCO2 in surface waters. Most of the previous research efforts have been concentrated on the study of CO2 exchange at the air-sea interface due to temperature effects re...

  11. The role of vegetation in the CO2 flux from a tropical urban neighbourhood

    Science.gov (United States)

    Velasco, E.; Roth, M.; Tan, S. H.; Quak, M.; Nabarro, S. D. A.; Norford, L.

    2013-03-01

    Urban surfaces are usually net sources of CO2. Vegetation can potentially have an important role in reducing the CO2 emitted by anthropogenic activities in cities, particularly when vegetation is extensive and/or evergreen. Negative daytime CO2 fluxes, for example have been observed during the growing season at suburban sites characterized by abundant vegetation and low population density. A direct and accurate estimation of carbon uptake by urban vegetation is difficult due to the particular characteristics of the urban ecosystem and high variability in tree distribution and species. Here, we investigate the role of urban vegetation in the CO2 flux from a residential neighbourhood in Singapore using two different approaches. CO2 fluxes measured directly by eddy covariance are compared with emissions estimated from emissions factors and activity data. The latter includes contributions from vehicular traffic, household combustion, soil respiration and human breathing. The difference between estimated emissions and measured fluxes should approximate the biogenic flux. In addition, a tree survey was conducted to estimate the annual CO2 sequestration using allometric equations and an alternative model of the metabolic theory of ecology for tropical forests. Palm trees, banana plants and turfgrass were also included in the survey with their annual CO2 uptake obtained from published growth rates. Both approaches agree within 2% and suggest that vegetation captures 8% of the total emitted CO2 in the residential neighbourhood studied. A net uptake of 1.4 ton km-2 day-1 (510 ton km-2 yr-1 ) was estimated from the difference between the daily CO2 uptake by photosynthesis (3.95 ton km-2 ) and release by respiration (2.55 ton km-2). The study shows the importance of urban vegetation at the local scale for climate change mitigation in the tropics.

  12. CO2 supersaturation and net heterotrophy in a tropical estuary (Cochin, India): Influence of anthropogenic effect - Carbon dynamics in tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, G.V.M.; Thottathil, S.D.; Balachandran, K.K.; Madhu, N.V.; Madeswaran, P.; Nair, S.

    of pCO sub(2) (up to 6000 mu atm) and CO sub(2) effluxes (up to 274 mmolC m sup(-2) d sup(-1)) especially during monsoon. A first-order estimate of the carbon mass balance shows that net production of dissolved inorganic carbon is an order of magnitude...

  13. Carbonation of alkaline paper mill waste to reduce CO{sub 2} greenhouse gas emissions into the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, R. [Laboratoire de Geophysique Interne et Tectonophysique, CNRS-OSUG-UJF, Universite Joseph Fourier Grenoble I, Maison des Geosciences, BP 53, 38041 Grenoble Cedex (France); Department of Geology, University of Huelva, Campus ' El Carmen' , 21071 Huelva (Spain)], E-mail: rafael.perez@dgeo.uhu.es; Montes-Hernandez, G. [Laboratoire de Geophysique Interne et Tectonophysique, CNRS-OSUG-UJF, Universite Joseph Fourier Grenoble I, Maison des Geosciences, BP 53, 38041 Grenoble Cedex (France); Nieto, J.M. [Department of Geology, University of Huelva, Campus ' El Carmen' , 21071 Huelva (Spain); Renard, F. [Laboratoire de Geodynamique des Chaines Alpines, CNRS-OSUG-UJF, Universite Joseph Fourier Grenoble I, Maison des Geosciences, BP 53, 38041 Grenoble Cedex (France); Physics of Geological Processes, University of Oslo (Norway); Charlet, L. [Laboratoire de Geophysique Interne et Tectonophysique, CNRS-OSUG-UJF, Universite Joseph Fourier Grenoble I, Maison des Geosciences, BP 53, 38041 Grenoble Cedex (France)

    2008-08-15

    The global warming of Earth's near-surface, air and oceans in recent decades is a direct consequence of anthropogenic emission of greenhouse gases into the atmosphere such as CO{sub 2}, CH{sub 4}, N{sub 2}O and CFCs. The CO{sub 2} emissions contribute approximately 60% to this climate change. This study investigates experimentally the aqueous carbonation mechanisms of an alkaline paper mill waste containing about 55 wt% portlandite (Ca(OH){sub 2}) as a possible mineralogical CO{sub 2} sequestration process. The overall carbonation reaction includes the following steps: (1) Ca release from portlandite dissolution, (2) CO{sub 2} dissolution in water and (3) CaCO{sub 3} precipitation. This CO{sub 2} sequestration mechanism was supported by geochemical modelling of final solutions using PHREEQC software, and observations by scanning electron microscope and X-ray diffraction of final reaction products. According to the experimental protocol, the system proposed would favour the total capture of approx. 218 kg of CO{sub 2} into stable calcite/ton of paper waste, independently of initial CO{sub 2} pressure. The final product from the carbonation process is a calcite (ca. 100 wt%)-water dispersion. Indeed, the total captured CO{sub 2} mineralized as calcite could be stored in degraded soils or even used for diverse industrial applications. This result demonstrates the possibility of using the alkaline liquid-solid waste for CO{sub 2} mitigation and reduction of greenhouse effect gases into the atmosphere.

  14. Comparison of CO/sub 2/ measurements by two laboratories on air from bubbles in polar ice

    Energy Technology Data Exchange (ETDEWEB)

    Barnola, J.M.; Raynaud, D.; Neftel, A.; Oeschger, H.

    1983-06-02

    The CO/sub 2/ content of air enclosed in bubbles in polar ice has been reported by two laboratories (in Grenoble and Bern) to be representative of the atmospheric CO/sub 2/ concentration at the time the ice was formed. Such ice core studies indicate lower concentrations in ice formed at the end of the ice age, around 18,000 yr BP, and several explanations have been proposed for such a change. Both laboratories are currently measuring various ice cores in order to determine the pre-AD 1850 CO/sub 2/ level in the atmosphere, which relates to the partitioning of anthropogenic CO/sub 2/ among the atmospheric, biospheric and oceanic reservoirs. The two laboratories use different ice cores and different analytical procedures and, therefore, there is a need to know to what extent the measurements are quantitatively comparable. The results are presented of a comparison between the two laboratories based on measurements from the same ice core sections, which indicate that the measurements can be compared with great confidence. The results suggest that the mean CO/sub 2/ level recorded by Antartic ice for the period 800-2500 yr BP is about 260 p.p.m.v.

  15. Developing a Comprehensive Risk Assessment Framework for Geological Storage CO2

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Ian [Univ. of Texas, Austin, TX (United States)

    2014-08-31

    The operational risks for CCS projects include: risks of capturing, compressing, transporting and injecting CO₂; risks of well blowouts; risk that CO2 will leak into shallow aquifers and contaminate potable water; and risk that sequestered CO2 will leak into the atmosphere. This report examines these risks by using information on the risks associated with analogue activities such as CO2 based enhanced oil recovery (CO2-EOR), natural gas storage and acid gas disposal. We have developed a new analysis of pipeline risk based on Bayesian statistical analysis. Bayesian theory probabilities may describe states of partial knowledge, even perhaps those related to non-repeatable events. The Bayesian approach enables both utilizing existing data and at the same time having the capability to adsorb new information thus to lower uncertainty in our understanding of complex systems. Incident rates for both natural gas and CO2 pipelines have been widely used in papers and reports on risk of CO2 pipelines as proxies for the individual risk created by such pipelines. Published risk studies of CO2 pipelines suggest that the individual risk associated with CO2 pipelines is between 10-3 and 10-4, which reflects risk levels approaching those of mountain climbing, which many would find unacceptably high. This report concludes, based on a careful analysis of natural gas pipeline failures, suggests that the individual risk of CO2 pipelines is likely in the range of 10-6 to 10-7, a risk range considered in the acceptable to negligible range in most countries. If, as is commonly thought, pipelines represent the highest risk component of CCS outside of the capture plant, then this conclusion suggests that most (if not all) previous quantitative- risk assessments of components of CCS may be orders of magnitude to high. The potential lethality of unexpected CO2 releases

  16. The declining uptake rate of atmospheric CO2 by land and ocean sinks

    Directory of Open Access Journals (Sweden)

    M. R. Raupach

    2014-07-01

    Full Text Available Through 1959–2012, an airborne fraction (AF of 0.44 of total anthropogenic CO2 emissions remained in the atmosphere, with the rest being taken up by land and ocean CO2 sinks. Understanding of this uptake is critical because it greatly alleviates the emissions reductions required for climate mitigation, and also reduces the risks and damages that adaptation has to embrace. An observable quantity that reflects sink properties more directly than the AF is the CO2 sink rate (kS, the combined land–ocean CO2 sink flux per unit excess atmospheric CO2 above preindustrial levels. Here we show from observations that kS declined over 1959–2012 by a factor of about 1 / 3, implying that CO2 sinks increased more slowly than excess CO2. Using a carbon–climate model, we attribute the decline in kS to four mechanisms: slower-than-exponential CO2 emissions growth (~ 35% of the trend, volcanic eruptions (~ 25%, sink responses to climate change (~ 20%, and nonlinear responses to increasing CO2, mainly oceanic (~ 20%. The first of these mechanisms is associated purely with the trajectory of extrinsic forcing, and the last two with intrinsic, feedback responses of sink processes to changes in climate and atmospheric CO2. Our results suggest that the effects of these intrinsic, nonlinear responses are already detectable in the global carbon cycle. Although continuing future decreases in kS will occur under all plausible CO2 emission scenarios, the rate of decline varies between scenarios in non-intuitive ways because extrinsic and intrinsic mechanisms respond in opposite ways to changes in emissions: extrinsic mechanisms cause kS to decline more strongly with increasing mitigation, while intrinsic mechanisms cause kS to decline more strongly under high-emission, low-mitigation scenarios as the carbon–climate system is perturbed further from a near-linear regime.

  17. A decomposition analysis of CO2 emissions from energy use: Turkish case

    International Nuclear Information System (INIS)

    Ipek Tunc, G.; Tueruet-Asik, Serap; Akbostanci, Elif

    2009-01-01

    Environmental problems, especially 'climate change' due to significant increase in anthropogenic greenhouse gases, have been on the agenda since 1980s. Among the greenhouse gases, carbon dioxide (CO 2 ) is the most important one and is responsible for more than 60% of the greenhouse effect. The objective of this study is to identify the factors that contribute to changes in CO 2 emissions for the Turkish economy by utilizing Log Mean Divisia Index (LMDI) method developed by Ang (2005) [Ang, B.W., 2005. The LMDI approach to decomposition analysis: a practical guide. Energy Policy 33, 867-871]. Turkish economy is divided into three aggregated sectors, namely agriculture, industry and services, and energy sources used by these sectors are aggregated into four groups: solid fuels, petroleum, natural gas and electricity. This study covers the period 1970-2006, which enables us to investigate the effects of different macroeconomic policies on carbon dioxide emissions through changes in shares of industries and use of different energy sources. Our analysis shows that the main component that determines the changes in CO 2 emissions of the Turkish economy is the economic activity. Even though important changes in the structure of the economy during 1970-2006 period are observed, structure effect is not a significant factor in changes in CO 2 emissions, however intensity effect is.

  18. Anthropogenic combustion iron as a complex climate forcer.

    Science.gov (United States)

    Matsui, Hitoshi; Mahowald, Natalie M; Moteki, Nobuhiro; Hamilton, Douglas S; Ohata, Sho; Yoshida, Atsushi; Koike, Makoto; Scanza, Rachel A; Flanner, Mark G

    2018-04-23

    Atmospheric iron affects the global carbon cycle by modulating ocean biogeochemistry through the deposition of soluble iron to the ocean. Iron emitted by anthropogenic (fossil fuel) combustion is a source of soluble iron that is currently considered less important than other soluble iron sources, such as mineral dust and biomass burning. Here we show that the atmospheric burden of anthropogenic combustion iron is 8 times greater than previous estimates by incorporating recent measurements of anthropogenic magnetite into a global aerosol model. This new estimation increases the total deposition flux of soluble iron to southern oceans (30-90 °S) by 52%, with a larger contribution of anthropogenic combustion iron than dust and biomass burning sources. The direct radiative forcing of anthropogenic magnetite is estimated to be 0.021 W m -2 globally and 0.22 W m -2 over East Asia. Our results demonstrate that anthropogenic combustion iron is a larger and more complex climate forcer than previously thought, and therefore plays a key role in the Earth system.

  19. Strategies for satellite-based monitoring of CO2 from distributed area and point sources

    Science.gov (United States)

    Schwandner, Florian M.; Miller, Charles E.; Duren, Riley M.; Natraj, Vijay; Eldering, Annmarie; Gunson, Michael R.; Crisp, David

    2014-05-01

    Atmospheric CO2 budgets are controlled by the strengths, as well as the spatial and temporal variabilities of CO2 sources and sinks. Natural CO2 sources and sinks are dominated by the vast areas of the oceans and the terrestrial biosphere. In contrast, anthropogenic and geogenic CO2 sources are dominated by distributed area and point sources, which may constitute as much as 70% of anthropogenic (e.g., Duren & Miller, 2012), and over 80% of geogenic emissions (Burton et al., 2013). Comprehensive assessments of CO2 budgets necessitate robust and highly accurate satellite remote sensing strategies that address the competing and often conflicting requirements for sampling over disparate space and time scales. Spatial variability: The spatial distribution of anthropogenic sources is dominated by patterns of production, storage, transport and use. In contrast, geogenic variability is almost entirely controlled by endogenic geological processes, except where surface gas permeability is modulated by soil moisture. Satellite remote sensing solutions will thus have to vary greatly in spatial coverage and resolution to address distributed area sources and point sources alike. Temporal variability: While biogenic sources are dominated by diurnal and seasonal patterns, anthropogenic sources fluctuate over a greater variety of time scales from diurnal, weekly and seasonal cycles, driven by both economic and climatic factors. Geogenic sources typically vary in time scales of days to months (geogenic sources sensu stricto are not fossil fuels but volcanoes, hydrothermal and metamorphic sources). Current ground-based monitoring networks for anthropogenic and geogenic sources record data on minute- to weekly temporal scales. Satellite remote sensing solutions would have to capture temporal variability through revisit frequency or point-and-stare strategies. Space-based remote sensing offers the potential of global coverage by a single sensor. However, no single combination of orbit

  20. Atmospheric Variability of CO2 impact on space observation Requirements

    Science.gov (United States)

    Swanson, A. L.; Sen, B.; Newhart, L.; Segal, G.

    2009-12-01

    If International governments are to reduce GHG levels by 80% by 2050, as recommended by most scientific bodies concerned with avoiding the most hazardous changes in climate, then massive investments in infrastructure and new technology will be required over the coming decades. Such an investment will be a huge commitment by governments and corporations, and while it will offer long-term dividends in lower energy costs, a healthier environment and averted additional global warming, the shear magnitude of upfront costs will drive a call for a monitoring and verification system. Such a system will be required to offer accountability to signatories of governing bodies, as well as, for the global public. Measuring the average global distribution of CO2 is straight forward, as exemplified by the long running station measurements managed by NOAA’s Global Monitoring Division that includes the longterm Keeling record. However, quantifying anthropogenic and natural source/sink distributions and atmospheric mixing have been much more difficult to constrain. And, yet, an accurate accounting of all anthropogenic source strengths is required for Global Treaty verification. The only way to accurately assess Global GHG emissions is to construct an integrated system of ground, air and space based observations with extensive chemical modeling capabilities. We look at the measurement requirements for the space based component of the solutions. To determine what space sensor performance requirements for ground resolution, coverage, and revisit, we have analyzed regional CO2 distributions and variability using NASA and NOAA aircraft flight campaigns. The results of our analysis are presented as variograms showing average spatial variability over several Northern Hemispheric regions. There are distinct regional differences with the starkest contrast between urban versus rural and Coastal Asia versus Coastal US. The results suggest specific consequences on what spatial and temporal

  1. Comparison of the Wymark CO2 Reservoir with the Midale Beds at the Weyburn CO2 Injection Project

    International Nuclear Information System (INIS)

    Ryerson, F.; Johnson, J.

    2010-01-01

    The Devonian carbonates of the Duperow Formation on the western flank of the Williston Basin in southwest Saskatchewan contain natural accumulations of CO 2 , and may have done so for as long as 50 m.y. in the views of some investigations. These carbonate sediments are characterized by a succession of carbonate cycles capped by anhydrite-rich evaporites that are thought to act as seals to fluid migration. The Weyburn CO 2 injection site lies 400 km to the east in a series of Mississippian carbonates that were deposited in a similar depositional environment. That natural CO 2 can be stored long-term within carbonate strata has motivated the investigation of the Duperow rocks as a potential natural analogue to storage of anthropogenic CO 2 that may ultimately provide additional confidence for CO 2 sequestration in carbonate lithologies. For the Duperow strata to represent a legitimate analog for Midale injection and storage, the similarity in lithofacies, whole rock compositions, mineral compositions and porosity with the Midale Beds must be established. Previous workers have demonstrated the similarity of the lithofacies at both sites. Here we compare the whole rock compositions, mineralogy and mineral compositions. The major mineral phases at both locales are calcite, dolomite and anhydrite. In addition, accessory pyrite, fluorite and celestine are also observed. The distribution of porosity in the Midale Vuggy units is virtually identical to that of the Duperow Formation, but the Marly units of the Midale have significantly higher porosity. The Duperow Formation is topped by the Dinesmore evaporite that is particularly rich in anhydrite, and often contains authigenic K-feldspar. The chemistry of dolomite and calcite from the two localities also overlaps. Silicate minerals are in low abundance within the analyzed Duperow samples, < 3 wt% on a normative basis, with quartz the only phase identifiable in x-ray diffraction patterns. The Midale Beds contain

  2. Commentary on The Anthropogenic Greenhouse Era Began Thousands of Years Ago

    International Nuclear Information System (INIS)

    Crucifix, M.; Loutre, M.F.; Berger, A.

    2005-01-01

    Bill Ruddiman (Climatic Change, 61, 261-293, 2003) recently suggested that early civilisations could have saved us from an ice age because land management over substantial areas caused an increase in atmospheric CO2 concentration. Ruddiman suggests a decreasing natural course of the Holocene greenhouse gases concentrations and sea-level by referring to analogous situations in the past, namely the last three interglacials. An examination of marine isotopic stage 11 would perhaps make Ruddimans argument even more thought-challenging. Yet, the hypothesis of a natural lowering of CO2 during the Holocene contradicts recent numerical simulations of the Earth carbon cycle during this period. We think that the only way to resolve this conflict is to properly assimilate the palaeoclimate information in numerical climate models. As a general rule, models are insufficiently tested with respect to the wide range of climate situations that succeeded during the Pleistocene. In this comment, we present three definitions of palaeoclimate information assimilation with relevant examples. We also present original results with the Louvain-la-Neuve climate-ice sheet model suggesting that if, indeed, the Holocene atmospheric CO2 increase is anthropogenic, a late Holocene glacial inception is plausible, but not certain, depending on the exact time evolution of the atmospheric CO2 concentration during this period

  3. Forecasting of CO2 emissions from fuel combustion using trend analysis

    International Nuclear Information System (INIS)

    Koene, Aylin Cigdem; Bueke, Tayfun

    2010-01-01

    The accelerating use of fossil fuels since the Industrial Revolution and the rapid destruction of forests causes a significant increase in greenhouse gases. The increasing threat of global warming and climate change has been the major, worldwide, ongoing concern especially in the last two decades. The impacts of global warming on the world economy have been assessed intensively by researchers since the 1990s. Worldwide organizations have been attempting to reduce the adverse impacts of global warming through intergovernmental and binding agreements. Carbon dioxide (CO 2 ) is one of the most foremost greenhouse gases in the atmosphere. The energy sector is dominated by the direct combustion of fuels, a process leading to large emissions of CO 2 . CO 2 from energy represents about 60% of the anthropogenic greenhouse gas emissions of global emissions. This percentage varies greatly by country, due to diverse national energy structures. The top-25 emitting countries accounted 82.27% of the world CO 2 emissions in 2007. In the same year China was the largest emitter and generated 20.96% of the world total. Trend analysis is based on the idea that what has happened in the past gives traders an idea of what will happen in the future. In this study, trend analysis approach has been employed for modelling to forecast of energy-related CO 2 emissions. To this aim first, trends in CO 2 emissions for the top-25 countries and the world total CO 2 emissions during 1971-2007 are identified. On developing the regression analyses, the regression analyses with R 2 values less than 0.94 showing insignificant influence in statistical tests have been discarded. Statistically significant trends are indicated in eleven countries namely, India, South Korea, Islamic Republic of Iran, Mexico, Australia, Indonesia, Saudi Arabia, Brazil, South Africa, Taiwan, Turkey and the world total. The results obtained from the analyses showed that the models for those countries can be used for CO 2

  4. Energy recovery of the H2S and CO2 elimination with technology by hybrid plasma

    International Nuclear Information System (INIS)

    Salazar T, J. A.

    2014-01-01

    This document is a research focused on energy recovery from acid gas removal contained in natural gas as hydrogen sulfide (H 2 S) and carbon dioxide (CO 2 ), by obtaining highly energetic gas such as syngas (mixture of hydrogen and carbon monoxide, in particular) using plasma technology in its hybrid form, namely, gliding arc plasma, that has the property to behave like a thermal plasma and cold plasma, besides possessing among other virtues the ability to treat large flows continuously at atmospheric pressure without the need of using noble gases, with a power consumption of no more than 1000 W. Furthermore, this type of plasma has demonstrated to be a clean and efficient not only by high conversion rates of H 2 S (86%) and CO 2 (56%) and high percentages of selectivity in the production of hydrogen (H 2 ) and carbon monoxide carbon (CO) obtained in this work, but because it can even be seriously considered to replace other technologies currently used in the process of sweetening natural gas as adsorption, absorption and sequestering membranes. The results shown are based on a series of analysis, simulations, experiments and calculations, from the design of the plasma generating source based on an impulse-phase circuit, to the electrical characterization results and simulation by acquiring electrical signals, without forgetting the characterization of the resulting chemical components using various analytical techniques such as mass spectrometry, gas chromatography (GC), optical emission spectroscopy (OES), optical spectroscopy Fourier inverse transformed (XRD) and scanning electron microscopy (Sem), X-ray diffraction (XRD) and multi-gas detectors (iBrid MX6). Additionally, performed chemical kinetics and reaction mechanism of the compounds involved in the degradation of H 2 S and CO 2 similar to those experienced as well as the study of energy efficiency (Ece), specific energy (Se), all this to meet a projects needs 127499, entitled -Development of alternative

  5. Impact of CO_2-enriched combustion air on micro-gas turbine performance for carbon capture

    International Nuclear Information System (INIS)

    Best, Thom; Finney, Karen N.; Ingham, Derek B.; Pourkashanian, Mohamed

    2016-01-01

    Power generation is one of the largest anthropogenic greenhouse gas emission sources; although it is now reducing in carbon intensity due to switching from coal to gas, this is only part of a bridging solution that will require the utilization of carbon capture technologies. Gas turbines, such as those at the UK Carbon Capture Storage Research Centre's Pilot-scale Advanced CO_2 Capture Technology (UKCCSRC PACT) National Core Facility, have high exhaust gas mass flow rates with relatively low CO_2 concentrations; therefore solvent-based post-combustion capture is energy intensive. Exhaust gas recirculation (EGR) can increase CO_2 levels, reducing the capture energy penalty. The aim of this paper is to simulate EGR through enrichment of the combustion air with CO_2 to assess changes to turbine performance and potential impacts on complete generation and capture systems. The oxidising air was enhanced with CO_2, up to 6.29%vol dry, impacting mechanical performance, reducing both engine speed by over 400 revolutions per minute and compression temperatures. Furthermore, it affected complete combustion, seen in changes to CO and unburned hydrocarbon emissions. This impacted on turbine efficiency, which increased specific fuel consumption (by 2.9%). CO_2 enhancement could therefore result in significant efficiency gains for the capture plant. - Highlights: • Experimental investigation of the impact of exhaust gas recirculation (EGR) on GT performance. • Combustion air was enhanced with CO_2 to simulate EGR. • EGR impact was ascertained by CO and unburned hydrocarbon changes. • Primary factor influencing performance was found to be oxidiser temperature. • Impact of CO_2 enhancement on post-combustion capture efficiency.

  6. Anthropogenic climate change and allergen exposure: The role of plant biology.

    Science.gov (United States)

    Ziska, Lewis H; Beggs, Paul J

    2012-01-01

    Accumulation of anthropogenic gases, particularly CO(2), is likely to have 2 fundamental effects on plant biology. The first is an indirect effect through Earth's increasing average surface temperatures, with subsequent effects on other aspects of climate, such as rainfall and extreme weather events. The second is a direct effect caused by CO(2)-induced stimulation of photosynthesis and plant growth. Both effects are likely to alter a number of fundamental aspects of plant biology and human health, including aerobiology and allergic diseases, respectively. This review highlights the current and projected effect of increasing CO(2) and climate change in the context of plants and allergen exposure, emphasizing direct effects on plant physiologic parameters (eg, pollen production) and indirect effects (eg, fungal sporulation) related to diverse biotic and abiotic interactions. Overall, the review assumes that future global mitigation efforts will be limited and suggests a number of key research areas that will assist in adapting to the ongoing challenges to public health associated with increased allergen exposure. Published by Mosby, Inc.

  7. Estimate of anthropogenic halocarbon emission based on measured ratio relative to CO in the Pearl River Delta region, China

    Directory of Open Access Journals (Sweden)

    M. Shao

    2011-05-01

    Full Text Available Using a GC/FID/MS system, we analyzed the mixing ratio of 16 halocarbon species in more than 100 air samples collected in 2004 from the Pearl River Delta (PRD region of southern China. The results revealed that there are elevated mixing ratios for most of halocarbons, especially for HClC = CCl2 (trichloroethylene, TCE, CH2Cl2 (dichloromethane, DCM, CH3 Br (bromomethane, HCFC-22, CHCl3 (trichloromethane, CCl4 (tetrachloromethane, Cl2C = CCl2 (perchloroethylene, PCE, CH3CCl3 (methyl chloroform, MCF, and CFC-12. Comparisons were done with the data from TRACE-P and ALE/GAGE/AGAGE experiments, we found that the large variability in mixing ratios (relative standard deviation ranged from 9.31 % to 96.55 % of the halocarbons suggested substantial local emissions from the PRD region in 2004. Correlations between the mixing ratio of each species and carbon monoxide (CO was examined, and then the emission of each halocarbon was quantified based on scaling the optimized CO emission inventory with the slope of the regression line fitted to each species relative to CO. The calculated results revealed that mass of CH2Cl2 (7.0 Gg, CH3CCl3 (6.7 Gg, and Cl2C = CCl2 (2.3 Gg accounted for about 62.9 % of total halocarbon emissions, it suggested a significant contribution from solvent use in the PRD region. Emissions of HCFC-22 (3.5 Gg, an alternative refrigerant to chlorofluorocarbons (CFCs, were about 2.3 times greater than those of CFC-12 (1.6 Gg. CFC-12 and HCFC-22 accounted for 21.5 % of total emissions of halocarbons, so that the refrigerant would be the second largest source of halocarbons. However, the ratio approach found only minor emissions of CFCs, such as CFC-11, and the emission of CFC-114 and CFC-113 were close to zero. Emissions of other anthropogenic halocarbons, such as CCl

  8. Inversion of CO and NOx emissions using the adjoint of the IMAGES model

    Directory of Open Access Journals (Sweden)

    J.-F. Müller

    2005-01-01

    Full Text Available We use ground-based observations of CO mixing ratios and vertical column abundances together with tropospheric NO2 columns from the GOME satellite instrument as constraints for improving the global annual emission estimates of CO and NOx for the year 1997. The agreement between concentrations calculated by the global 3-dimensional CTM IMAGES and the observations is optimized using the adjoint modelling technique, which allows to invert for CO and NOx fluxes simultaneously, taking their chemical interactions into account. Our analysis quantifies a total of 39 flux parameters, comprising anthropogenic and biomass burning sources over large continental regions, soil and lightning emissions of NOx, biogenic emissions of CO and non-methane hydrocarbons, as well as the deposition velocities of both CO and NOx. Comparison between observed, prior and optimized CO mixing ratios at NOAA/CMDL sites shows that the inversion performs well at the northern mid- and high latitudes, and that it is less efficient in the Southern Hemisphere, as expected due to the scarsity of measurements over this part of the globe. The inversion, moreover, brings the model much closer to the measured NO2 columns over all regions. Sensitivity tests show that anthropogenic sources exhibit weak sensitivity to changes of the a priori errors associated to the bottom-up inventory, whereas biomass burning sources are subject to a strong variability. Our best estimate for the 1997 global top-down CO source amounts to 2760 Tg CO. Anthropogenic emissions increase by 28%, in agreement with previous inverse modelling studies, suggesting that the present bottom-up inventories underestimate the anthropogenic CO emissions in the Northern Hemisphere. The magnitude of the optimized NOx global source decreases by 14% with respect to the prior, and amounts to 42.1 Tg N, out of which 22.8 Tg N are due to anthropogenic sources. The NOx emissions increase over Tropical regions, whereas they decrease

  9. Energy recovery of the H{sub 2}S and CO{sub 2} elimination with technology by hybrid plasma; Recuperacion energetica de la eliminacion de H{sub 2}S y CO{sub 2} con tecnologia por plasma hibrido

    Energy Technology Data Exchange (ETDEWEB)

    Salazar T, J. A.

    2014-07-01

    This document is a research focused on energy recovery from acid gas removal contained in natural gas as hydrogen sulfide (H{sub 2}S) and carbon dioxide (CO{sub 2}), by obtaining highly energetic gas such as syngas (mixture of hydrogen and carbon monoxide, in particular) using plasma technology in its hybrid form, namely, gliding arc plasma, that has the property to behave like a thermal plasma and cold plasma, besides possessing among other virtues the ability to treat large flows continuously at atmospheric pressure without the need of using noble gases, with a power consumption of no more than 1000 W. Furthermore, this type of plasma has demonstrated to be a clean and efficient not only by high conversion rates of H{sub 2}S (86%) and CO{sub 2} (56%) and high percentages of selectivity in the production of hydrogen (H{sub 2}) and carbon monoxide carbon (CO) obtained in this work, but because it can even be seriously considered to replace other technologies currently used in the process of sweetening natural gas as adsorption, absorption and sequestering membranes. The results shown are based on a series of analysis, simulations, experiments and calculations, from the design of the plasma generating source based on an impulse-phase circuit, to the electrical characterization results and simulation by acquiring electrical signals, without forgetting the characterization of the resulting chemical components using various analytical techniques such as mass spectrometry, gas chromatography (GC), optical emission spectroscopy (OES), optical spectroscopy Fourier inverse transformed (XRD) and scanning electron microscopy (Sem), X-ray diffraction (XRD) and multi-gas detectors (iBrid MX6). Additionally, performed chemical kinetics and reaction mechanism of the compounds involved in the degradation of H{sub 2}S and CO{sub 2} similar to those experienced as well as the study of energy efficiency (Ece), specific energy (Se), all this to meet a projects needs 127499, entitled

  10. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?

    Science.gov (United States)

    Couldrey, Matthew P.; Oliver, Kevin I. C.; Yool, Andrew; Halloran, Paul R.; Achterberg, Eric P.

    2016-05-01

    The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature- and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO2 and k both contribute significantly to interannual F variability but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO2, and α on a range of timescales. On interannual and shorter timescales, both ΔpCO2 and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of nonseasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer-term flux variability.

  11. Performance Evaluation for China’s Planned CO2-IPDA

    Directory of Open Access Journals (Sweden)

    Ge Han

    2017-07-01

    Full Text Available Active remote sensing of atmospheric XCO2 has several advantages over existing passive remote sensors, including global coverage, a smaller footprint, improved penetration of aerosols, and night observation capabilities. China is planning to launch a multi-functional atmospheric observation satellite equipped with a CO2-IPDA (integrated path differential absorption Lidar to measure columnar concentrations of atmospheric CO2 globally. As space and power are limited on the satellite, compromises have been made to accommodate other passive sensors. In this study, we evaluated the sensitivity of the system’s retrieval accuracy and precision to some critical parameters to determine whether the current configuration is adequate to obtain the desired results and whether any further compromises are possible. We then mapped the distribution of random errors across China and surrounding regions using pseudo-observations to explore the performance of the planned CO2-IPDA over these regions. We found that random errors of less than 0.3% can be expected for most regions of our study area, which will allow the provision of valuable data that will help researchers gain a deeper insight into carbon cycle processes and accurately estimate carbon uptake and emissions. However, in the areas where major anthropogenic carbon sources are located, and in coastal seas, random errors as high as 0.5% are predicted. This is predominantly due to the high concentrations of aerosols, which cause serious attenuation of returned signals. Novel retrieving methods must, therefore, be developed in the future to suppress interference from low surface reflectance and high aerosol loading.

  12. Experimental Ion Mobility measurements in Ne-CO$_2$ and CO$_2$-N$_2$ mixtures

    CERN Document Server

    Encarnação, P.M.C.C.; Veenhof, R.; Neves, P.N.B.; Santos, F.P.; Trindade, A.M.F.; Borges, F.I.G.M.; Conde, C.A.N.

    2016-01-01

    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V−1s−1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V−1s−1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This secon...

  13. Assessing the Potential of Utilization and Storage Strategies for Post-Combustion CO2 Emissions Reduction

    International Nuclear Information System (INIS)

    Armstrong, Katy; Styring, Peter

    2015-01-01

    The emissions reduction potential of three carbon dioxide handling strategies for post-combustion capture is considered. These are carbon capture and sequestration/storage (CCS), enhanced hydrocarbon recovery (EHR), and carbon dioxide utilization (CDU) to produce synthetic oil. This is performed using common and comparable boundary conditions including net CO 2 sequestered based on equivalent boundary conditions. This is achieved using a “cradle to grave approach” where the final destination and fate of any product is considered. The input boundary is pure CO 2 that has been produced using a post-combustion capture process as this is common between all processes. The output boundary is the emissions resulting from any product produced with the assumption that the majority of the oil will go to combustion processes. We also consider the “cradle to gate” approach where the ultimate fate of the oil is not considered as this is a boundary condition often applied to EHR processes. Results show that while CCS can make an impact on CO 2 emissions, CDU will have a comparable effect whilst generating income while EHR will ultimately increase net emissions. The global capacity for CDU is also compared against CCS using data based on current and planned CCS projects. Analysis shows that current CDU represent a greater volume of capture than CCS processes and that this gap is likely to remain well beyond 2020 which is the limit of the CCS projects in the database.

  14. Skeletal mineralogy of coral recruits under high temperature and pCO2

    Science.gov (United States)

    Foster, T.; Clode, P. L.

    2016-03-01

    Aragonite, which is the polymorph of CaCO3 precipitated by modern corals during skeletal formation, has a higher solubility than the more stable polymorph calcite. This higher solubility may leave animals that produce aragonitic skeletons more vulnerable to anthropogenic ocean acidification. It is therefore important to determine whether scleractinian corals have the plasticity to adapt and produce calcite in their skeletons in response to changing environmental conditions. Both high pCO2 and lower Mg / Ca ratios in seawater are thought to have driven changes in the skeletal mineralogy of major marine calcifiers in the past ˜ 540 Ma. Experimentally reduced Mg / Ca ratios in ambient seawater have been shown to induce some calcite precipitation in both adult and newly settled modern corals; however, the impact of high pCO2 on the mineralogy of recruits is unknown. Here we determined the skeletal mineralogy of 1-month-old Acropora spicifera coral recruits grown under high temperature (+3 °C) and pCO2 (˜ 900 µatm) conditions, using X-ray diffraction and Raman spectroscopy. We found that newly settled coral recruits produced entirely aragonitic skeletons regardless of the treatment. Our results show that elevated pCO2 alone is unlikely to drive changes in the skeletal mineralogy of young corals. Not having an ability to switch from aragonite to calcite precipitation may leave corals and ultimately coral reef ecosystems more susceptible to predicted ocean acidification. An important area for prospective research would be the investigation of the combined impact of high pCO2 and reduced Mg / Ca ratio on coral skeletal mineralogy.

  15. Deployable micro-traps to sequester motile bacteria

    Science.gov (United States)

    di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-04-01

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria.

  16. The Mississippi CCS Project

    Energy Technology Data Exchange (ETDEWEB)

    Doug Cathro

    2010-09-30

    The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

  17. CO{sub 2} Energy Reactor – Integrated Mineral Carbonation: Perspectives on Lab-Scale Investigation and Products Valorization

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Rafael M., E-mail: rafael.santos@alumni.utoronto.ca [Chemical and Environmental Laboratories (CEL), School of Applied Chemical and Environmental Sciences, Sheridan Institute of Technology, Brampton, ON (Canada); Knops, Pol C. M.; Rijnsburger, Keesjan L. [Innovation Concepts B.V., Twello (Netherlands); Chiang, Yi Wai [School of Engineering, University of Guelph, Guelph, ON (Canada)

    2016-02-15

    To overcome the challenges of mineral CO{sub 2} sequestration, Innovation Concepts B.V. is developing a unique proprietary gravity pressure vessel (GPV) reactor technology and has focussed on generating reaction products of high economic value. The GPV provides intense process conditions through hydrostatic pressurization and heat exchange integration that harvests exothermic reaction energy, thereby reducing energy demand of conventional reactor designs, in addition to offering other benefits. In this paper, a perspective on the status of this technology and outlook for the future is provided. To date, laboratory-scale tests of the envisioned process have been performed in a tubular “rocking autoclave” reactor. The mineral of choice has been olivine [~Mg{sub 1.6}Fe{sup 2+}{sub 0.4}(SiO{sub 4}) + ppm Ni/Cr], although asbestos, steel slags, and oil shale residues are also under investigation. The effect of several process parameters on reaction extent and product properties has been tested: CO{sub 2} pressure, temperature, residence time, additives (buffers, lixiviants, chelators, oxidizers), solids loading, and mixing rate. The products (carbonates, amorphous silica, and chromite) have been physically separated (based on size, density, and magnetic properties), characterized (for chemistry, mineralogy, and morphology), and tested in intended applications (as pozzolanic carbon-negative building material). Economically, it is found that product value is the main driver for mineral carbonation, rather than, or in addition to, the sequestered CO{sub 2}. The approach of using a GPV and focusing on valuable reaction products could thus make CO{sub 2} mineralization a feasible and sustainable industrial process.

  18. Evolutionary context for understanding and manipulating plant responses to past, present and future atmospheric [CO2

    Science.gov (United States)

    Leakey, Andrew D. B.; Lau, Jennifer A.

    2012-01-01

    Variation in atmospheric [CO2] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO2] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO2] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO2] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO2]. Evolutionary responses to elevated [CO2] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO2] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO2]. This lack of evidence for strong evolutionary effects of elevated [CO2] is surprising, given the large effects of elevated [CO2] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO2] and (ii) benefit maximally from future, greater [CO2]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C4 photosynthesis into C3 leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration of plant responses to varying

  19. Evolutionary context for understanding and manipulating plant responses to past, present and future atmospheric [CO2].

    Science.gov (United States)

    Leakey, Andrew D B; Lau, Jennifer A

    2012-02-19

    Variation in atmospheric [CO(2)] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO(2)] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO(2)] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO(2)] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO(2)]. Evolutionary responses to elevated [CO(2)] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO(2)] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO(2)]. This lack of evidence for strong evolutionary effects of elevated [CO(2)] is surprising, given the large effects of elevated [CO(2)] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO(2)] and (ii) benefit maximally from future, greater [CO(2)]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C(4) photosynthesis into C(3) leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration

  20. Towards disentangling natural and anthropogenic GHG emissions by space-based atmospheric concentration imaging - The CarbonSat Earth Explorer 8 Candidate Mission

    Science.gov (United States)

    Bovensmann, Heinrich; Gerilowski, Konstantin; Krings, Thomas; Reuter, Max; Burrows, John P.; Buchwitz, Michael; Bösch, Hartmut; Brunner, Dominik; Ciais, Philippe; Breon, Francois-Marie; Crisp, David; Dolman, Han; Hayman, Garry; Houweling, Sander; Lichtenberg, Günter; Ingmann, Paul; Meijer, Yasjka

    2013-04-01

    CarbonSat was selected by ESA as a candidate for the 8 Earth Explorer Opportunity (EE8). The objective of the CarbonSat mission is to determine natural and anthropogenic sources and sinks of the two most important greenhouse gases, carbon dioxide and methane. The unique features of the CarbonSat mission concept are that it offers a combination of high spatial resolution (2 x 2 km2) and broad swath (240 km) to provide global imaging of localised strong emission source areas such as large cities (Megacities), landfills, power plants, volcanoes, etc. and to be able to separate anthropogenic from natural fluxes. In addition, CarbonSat data will also quantify natural fluxes of CO2 and CH4 (biospheric CO2, wetland CH4 etc.) and their changes, to better understand these important sources and sinks and their sensitivity to a changing climate. CarbonSat aims to deliver global data sets of dry column mixing ratios of CO2 and CH4 with high precision (goal: CO2 concept builds on the heritage and lessons learned from SCIAMACHY (2002-2012), GOSAT (2009-present) and OCO-2 (2014 onwards) to make scientifically and strategically important measurements of the amounts and distribution of CO2 and CH4 for biogeochemical and climate change research. CarbonSat entered industrial system feasibility activities in 2012, which are supported by scientific studies and campaigns. The current status of the mission concept and selected results from the scientific studies documenting the expected data quality and characteristics will be presented.

  1. On the potential for a CO2 fertilization effect in forest trees: An assessment of 58 controlled-exposure studies and estimates of the biotic growth factor

    International Nuclear Information System (INIS)

    Wullschleger, S.D.; Post, W.M.; King, A.W.

    1992-01-01

    Characterizing the response of terrestrial ecosystems to increasing concentrations of atmospheric CO 2 and estimating their biological capacity to either moderate or accelerate predicted changes in the earth's climate, continues to present a formidable challenge to experimentalist and modelers alike. Nevertheless, it is generally recognized that the carbon dynamics of terrestrial vegetation represent an important biospheric feedback to increasing CO 2 concentrations, and hence to global warming, and as such there exists little debate that ecosystems occupy a.potentially pivotal role in determining both the direction and rate of future changes in atmospheric CO 2 concentration. What is currently the subject of much debate, however, is whether terrestrial ecosystems will contribute to global warming by releasing additional CO 2 the atmosphere as a result of increasing respiration and/or decomposition in a warming climate, or whether they will instead sequester additional carbon in response to the enhancing effects of atmospheric CO 2 on plant growth. This latter response, the so-called CO 2 fertilization effect, has been hypothesized as an important negative feedback to global warming, offering the potential to constrain future increases in atmospheric CO 2 concentration, and has often been invoked to either partially or wholly account for the estimated 1.6 Gt C/year imbalance or ''missing sink'' in calculations of the global carbon budget

  2. Rechargeable Al-CO2 Batteries for Reversible Utilization of CO2.

    Science.gov (United States)

    Ma, Wenqing; Liu, Xizheng; Li, Chao; Yin, Huiming; Xi, Wei; Liu, Ruirui; He, Guang; Zhao, Xian; Luo, Jun; Ding, Yi

    2018-05-21

    The excessive emission of CO 2 and the energy crisis are two major issues facing humanity. Thus, the electrochemical reduction of CO 2 and its utilization in metal-CO 2 batteries have attracted wide attention because the batteries can simultaneously accelerate CO 2 fixation/utilization and energy storage/release. Here, rechargeable Al-CO 2 batteries are proposed and realized, which use chemically stable Al as the anode. The batteries display small discharge/charge voltage gaps down to 0.091 V and high energy efficiencies up to 87.7%, indicating an efficient battery performance. Their chemical reaction mechanism to produce the performance is revealed to be 4Al + 9CO 22Al 2 (CO 3 ) 3 + 3C, by which CO 2 is reversibly utilized. These batteries are envisaged to effectively and safely serve as a potential CO 2 fixation/utilization strategy with stable Al. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Vulnerability of Polar Oceans to Anthropogenic Acidification: Comparison of Arctic and Antarctic Seasonal Cycles

    OpenAIRE

    E. H. Shadwick; T. W. Trull; H. Thomas; J. A. E. Gibson

    2013-01-01

    Polar oceans are chemically sensitive to anthropogenic acidification due to their relatively low alkalinity and correspondingly weak carbonate buffering capacity. Here, we compare unique CO2 system observations covering complete annual cycles at an Arctic (Amundsen Gulf) and Antarctic site (Prydz Bay). The Arctic site experiences greater seasonal warming (10 vs 3?C), and freshening (3 vs 2), has lower alkalinity (2220 vs 2320??mol/kg), and lower summer pH (8.15 vs 8.5), than the Antarctic sit...

  4. Effect of climate warming on the annual terrestrial net ecosystem CO2 exchange globally in the boreal and temperate regions.

    Science.gov (United States)

    Zhang, Zhiyuan; Zhang, Renduo; Cescatti, Alessandro; Wohlfahrt, Georg; Buchmann, Nina; Zhu, Juan; Chen, Guanhong; Moyano, Fernando; Pumpanen, Jukka; Hirano, Takashi; Takagi, Kentaro; Merbold, Lutz

    2017-06-08

    The net ecosystem CO 2 exchange is the result of the imbalance between the assimilation process (gross primary production, GPP) and ecosystem respiration (RE). The aim of this study was to investigate temperature sensitivities of these processes and the effect of climate warming on the annual terrestrial net ecosystem CO 2 exchange globally in the boreal and temperate regions. A database of 403 site-years of ecosystem flux data at 101 sites in the world was collected and analyzed. Temperature sensitivities of rates of RE and GPP were quantified with Q 10 , defined as the increase of RE (or GPP) rates with a temperature rise of 10 °C. Results showed that on the annual time scale, the intrinsic temperature sensitivity of GPP (Q 10sG ) was higher than or equivalent to the intrinsic temperature sensitivity of RE (Q 10sR ). Q 10sG was negatively correlated to the mean annual temperature (MAT), whereas Q 10sR was independent of MAT. The analysis of the current temperature sensitivities and net ecosystem production suggested that temperature rise might enhance the CO 2 sink of terrestrial ecosystems both in the boreal and temperate regions. In addition, ecosystems in these regions with different plant functional types should sequester more CO 2 with climate warming.

  5. Observational determination of surface radiative forcing by CO2 from 2000 to 2010.

    Science.gov (United States)

    Feldman, D R; Collins, W D; Gero, P J; Torn, M S; Mlawer, E J; Shippert, T R

    2015-03-19

    The climatic impact of CO2 and other greenhouse gases is usually quantified in terms of radiative forcing, calculated as the difference between estimates of the Earth's radiation field from pre-industrial and present-day concentrations of these gases. Radiative transfer models calculate that the increase in CO2 since 1750 corresponds to a global annual-mean radiative forcing at the tropopause of 1.82 ± 0.19 W m(-2) (ref. 2). However, despite widespread scientific discussion and modelling of the climate impacts of well-mixed greenhouse gases, there is little direct observational evidence of the radiative impact of increasing atmospheric CO2. Here we present observationally based evidence of clear-sky CO2 surface radiative forcing that is directly attributable to the increase, between 2000 and 2010, of 22 parts per million atmospheric CO2. The time series of this forcing at the two locations-the Southern Great Plains and the North Slope of Alaska-are derived from Atmospheric Emitted Radiance Interferometer spectra together with ancillary measurements and thoroughly corroborated radiative transfer calculations. The time series both show statistically significant trends of 0.2 W m(-2) per decade (with respective uncertainties of ±0.06 W m(-2) per decade and ±0.07 W m(-2) per decade) and have seasonal ranges of 0.1-0.2 W m(-2). This is approximately ten per cent of the trend in downwelling longwave radiation. These results confirm theoretical predictions of the atmospheric greenhouse effect due to anthropogenic emissions, and provide empirical evidence of how rising CO2 levels, mediated by temporal variations due to photosynthesis and respiration, are affecting the surface energy balance.

  6. Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study

    Directory of Open Access Journals (Sweden)

    R. Thyrhaug

    2008-07-01

    Full Text Available The predicted rise in anthropogenic CO2 emissions will increase CO2 concentrations and decrease seawater pH in the upper ocean. Recent studies have revealed effects of pCO2 induced changes in seawater chemistry on a variety of marine life forms, in particular calcifying organisms. To test whether the predicted increase in pCO2 will directly or indirectly (via changes in phytoplankton dynamics affect abundance, activities, and community composition of heterotrophic bacteria during phytoplankton bloom development, we have aerated mesocosms with CO2 to obtain triplicates with three different partial pressures of CO2 (pCO2: 350 μatm (1×CO2, 700 μatm (2×CO2 and 1050 μatm (3×CO2. The development of a phytoplankton bloom was initiated by the addition of nitrate and phosphate. In accordance to an elevated carbon to nitrogen drawdown at increasing pCO2, bacterial production (BPP of free-living and attached bacteria as well as cell-specific BPP (csBPP of attached bacteria were related to the C:N ratio of suspended matter. These relationships significantly differed among treatments. However, bacterial abundance and activities were not statistically different among treatments. Solely community structure of free-living bacteria changed with pCO2 whereas that of attached bacteria seemed to be independent of pCO2 but tightly coupled to phytoplankton bloom development. Our findings imply that changes in pCO2, although reflected by changes in community structure of free-living bacteria, do not directly affect bacterial activity. Furthermore, bacterial activity and dynamics of heterotrophic bacteria, especially of attached bacteria, were tightly correlated to phytoplankton development and, hence, may also potentially depend on changes in pCO2.

  7. Ground deformation monitoring using RADARSAT-2 DInSAR-MSBAS at the Aquistore CO2 storage site in Saskatchewan (Canada)

    Science.gov (United States)

    Czarnogorska, M.; Samsonov, S.; White, D.

    2014-11-01

    The research objectives of the Aquistore CO2 storage project are to design, adapt, and test non-seismic monitoring methods for measurement, and verification of CO2 storage, and to integrate data to determine subsurface fluid distributions, pressure changes and associated surface deformation. Aquistore site is located near Estevan in Southern Saskatchewan on the South flank of the Souris River and west of the Boundary Dam Power Station and the historical part of Estevan coal mine in southeastern Saskatchewan, Canada. Several monitoring techniques were employed in the study area including advanced satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) technique, GPS, tiltmeters and piezometers. The targeted CO2 injection zones are within the Winnipeg and Deadwood formations located at > 3000 m depth. An array of monitoring techniques was employed in the study area including advanced satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) with established corner reflectors, GPS, tiltmeters and piezometers stations. We used airborne LIDAR data for topographic phase estimation, and DInSAR product geocoding. Ground deformation maps have been calculated using Multidimensional Small Baseline Subset (MSBAS) methodology from 134 RADARSAT-2 images, from five different beams, acquired during 20120612-20140706. We computed and interpreted nine time series for selected places. MSBAS results indicate slow ground deformation up to 1 cm/year not related to CO2 injection but caused by various natural and anthropogenic causes.

  8. The German R&D Program for CO2 Utilization-Innovations for a Green Economy.

    Science.gov (United States)

    Mennicken, Lothar; Janz, Alexander; Roth, Stefanie

    2016-06-01

    Carbon capture and utilization (CCU) is a field of key emerging technologies. CCU can support the economy to decrease the dependency on fossil carbon raw materials, to stabilize electricity grids and markets with respect to a growing share of fluctuating renewable energy. Furthermore, it can contribute to mitigate anthropogenic CO2 emissions. The German Federal Ministry of Education and Research has provided substantial financial support for research and development projects, stimulating research, development, and innovations in the field of CO2 utilization. This review provides an overview over the most relevant funding measures in this field. Examples of successful projects demonstrate that CCU technologies are already economically viable or technologically ready for industrial application. CCU technologies as elements of a future "green economy" can contribute to reach the ambitious German sustainability targets with regard to climate protection as well as raw material productivity.

  9. Stable carbon isotopes to monitor the CO2 source mix in the urban environment

    Science.gov (United States)

    Vogel, F. R.; Wu, L.; Ramonet, M.; Broquet, G.; Worthy, D. E. J.

    2014-12-01

    Urban areas are said to be responsible for approximately 71% of fossil fuel CO2 emissions while comprising only two percent of the land area [IEA, 2008]. This limited spatial expansion could facility a monitoring of anthropogenic GHGs from atmospheric observations. As major sources of emissions, cities also have a huge potential to drive emissions reductions. To effectively manage emissions, cities must however, first establish techniques to validate their reported emission statistics. A pilot study which includes continues 13CO2 data from calibrated cavity ring-down spectrometers [Vogel et al. 2013] of two "sister sites" in the vicinity of Toronto, Canada is contrasted to recent observations of 13CO2 observations in Paris during significant pollution events. Using Miller-Tans plots [Miller and Tans, 2003] for our multi-season observations reveals significant changes of the source signatures of night time CO2 emissions which reflect the importance of natural gas burning in Megacities (up to 80% of fossil fuel sources) and show-case the potential of future isotope studies to determine source sectors. Especially the winter data this approach seems suitable to determine the source contribution of different fuel types (natural gas, liquid fuels and coal) which can inform the interpretation of other Greenhouse Gases and air pollution levels.

  10. Effects of anthropogenic sound on digging behavior, metabolism, Ca2+/Mg2+ ATPase activity, and metabolism-related gene expression of the bivalve Sinonovacula constricta

    Science.gov (United States)

    Peng, Chao; Zhao, Xinguo; Liu, Saixi; Shi, Wei; Han, Yu; Guo, Cheng; Jiang, Jingang; Wan, Haibo; Shen, Tiedong; Liu, Guangxu

    2016-01-01

    Anthropogenic sound has increased significantly in the past decade. However, only a few studies to date have investigated its effects on marine bivalves, with little known about the underlying physiological and molecular mechanisms. In the present study, the effects of different types, frequencies, and intensities of anthropogenic sounds on the digging behavior of razor clams (Sinonovacula constricta) were investigated. The results showed that variations in sound intensity induced deeper digging. Furthermore, anthropogenic sound exposure led to an alteration in the O:N ratios and the expression of ten metabolism-related genes from the glycolysis, fatty acid biosynthesis, tryptophan metabolism, and Tricarboxylic Acid Cycle (TCA cycle) pathways. Expression of all genes under investigation was induced upon exposure to anthropogenic sound at ~80 dB re 1 μPa and repressed at ~100 dB re 1 μPa sound. In addition, the activity of Ca2+/Mg2+-ATPase in the feet tissues, which is directly related to muscular contraction and subsequently to digging behavior, was also found to be affected by anthropogenic sound intensity. The findings suggest that sound may be perceived by bivalves as changes in the water particle motion and lead to the subsequent reactions detected in razor clams. PMID:27063002

  11. Effects of anthropogenic sound on digging behavior, metabolism, Ca(2+)/Mg(2+) ATPase activity, and metabolism-related gene expression of the bivalve Sinonovacula constricta.

    Science.gov (United States)

    Peng, Chao; Zhao, Xinguo; Liu, Saixi; Shi, Wei; Han, Yu; Guo, Cheng; Jiang, Jingang; Wan, Haibo; Shen, Tiedong; Liu, Guangxu

    2016-04-11

    Anthropogenic sound has increased significantly in the past decade. However, only a few studies to date have investigated its effects on marine bivalves, with little known about the underlying physiological and molecular mechanisms. In the present study, the effects of different types, frequencies, and intensities of anthropogenic sounds on the digging behavior of razor clams (Sinonovacula constricta) were investigated. The results showed that variations in sound intensity induced deeper digging. Furthermore, anthropogenic sound exposure led to an alteration in the O:N ratios and the expression of ten metabolism-related genes from the glycolysis, fatty acid biosynthesis, tryptophan metabolism, and Tricarboxylic Acid Cycle (TCA cycle) pathways. Expression of all genes under investigation was induced upon exposure to anthropogenic sound at ~80 dB re 1 μPa and repressed at ~100 dB re 1 μPa sound. In addition, the activity of Ca(2+)/Mg(2+)-ATPase in the feet tissues, which is directly related to muscular contraction and subsequently to digging behavior, was also found to be affected by anthropogenic sound intensity. The findings suggest that sound may be perceived by bivalves as changes in the water particle motion and lead to the subsequent reactions detected in razor clams.

  12. Effects of anthropogenic sound on digging behavior, metabolism, Ca2+/Mg2+ ATPase activity, and metabolism-related gene expression of the bivalve Sinonovacula constricta

    Science.gov (United States)

    Peng, Chao; Zhao, Xinguo; Liu, Saixi; Shi, Wei; Han, Yu; Guo, Cheng; Jiang, Jingang; Wan, Haibo; Shen, Tiedong; Liu, Guangxu

    2016-04-01

    Anthropogenic sound has increased significantly in the past decade. However, only a few studies to date have investigated its effects on marine bivalves, with little known about the underlying physiological and molecular mechanisms. In the present study, the effects of different types, frequencies, and intensities of anthropogenic sounds on the digging behavior of razor clams (Sinonovacula constricta) were investigated. The results showed that variations in sound intensity induced deeper digging. Furthermore, anthropogenic sound exposure led to an alteration in the O:N ratios and the expression of ten metabolism-related genes from the glycolysis, fatty acid biosynthesis, tryptophan metabolism, and Tricarboxylic Acid Cycle (TCA cycle) pathways. Expression of all genes under investigation was induced upon exposure to anthropogenic sound at ~80 dB re 1 μPa and repressed at ~100 dB re 1 μPa sound. In addition, the activity of Ca2+/Mg2+-ATPase in the feet tissues, which is directly related to muscular contraction and subsequently to digging behavior, was also found to be affected by anthropogenic sound intensity. The findings suggest that sound may be perceived by bivalves as changes in the water particle motion and lead to the subsequent reactions detected in razor clams.

  13. CO2 sequestration

    International Nuclear Information System (INIS)

    Favre, E.; Jammes, L.; Guyot, F.; Prinzhofer, A.; Le Thiez, P.

    2009-01-01

    This document presents the summary of a conference-debate held at the Academie des Sciences (Paris, France) on the topic of CO 2 sequestration. Five papers are reviewed: problems and solutions for the CO 2 sequestration; observation and surveillance of reservoirs; genesis of carbonates and geological storage of CO 2 ; CO 2 sequestration in volcanic and ultra-basic rocks; CO 2 sequestration, transport and geological storage: scientific and economical perspectives

  14. Retrieving CO2 from Orbiting Carbon Observatory-2 (OCO-2) Spectra

    Science.gov (United States)

    Crisp, David

    2014-06-01

    Fossil fuel combustion, deforestation, and other human activities are currently adding almost 40 billion tons of carbon dioxide (CO2) to the atmosphere each year. These emissions have increased by roughly a factor of 3 over the past half century and are still growing by more than 2% per year. The developing world is now responsible for the majority (57%) of these emissions and their rapid growth rates. Precise measurements collected by a global network of surface stations show that these emissions have contributed to a 25% increase in the atmospheric CO2 concentration over the past half century. Surprisingly, comparisons of these measurements with fossil fuel emission inventories indicate that only about half of the CO2 emitted into the atmosphere by human activities stays there. The rest is apparently being absorbed by natural CO2 "sinks" at the Earth's surface. Measurements of the pH of the ocean indicate that it absorbs roughly one quarter of these emissions. The remainder has been attributed to the land biosphere, but the identity and location of the land sinks is still unknown. In addition, the fraction of the anthropogenic CO2 absorbed by these natural sinks has varied dramatically from year to year, but has remained near 1/2 on decadal time scales as the emissions have steadily increased. Uncertainties in the nature, location, and processes controlling these natural sink largely preclude reliable predictions of future atmospheric CO2 buildup rates. The existing greenhouse gas monitoring network can accurately track CO2 changes on hemispheric to global scales, but does not have the resolution or coverage needed to quantify emission sources on regional scales or to identify the natural sinks responsible for absorbing CO2. One way to improve the measurement density is to retrieve precise, spatially-resolved estimates of the column-averaged CO2 dry air mole fraction, XCO2, from satellites. Surface-weighted estimates of XCO2 can be retrieved from measurements of

  15. Anthropogenic SO2/NOx committee--current status

    International Nuclear Information System (INIS)

    Benkovitz, C.M.

    1993-04-01

    Current activities of the Anthropogenic SO 2 /NO x Committee center around the compilation of Version 1 of the GEIA inventories. These inventories will be based on the GEIA-specified 1 degrees by 1 degrees grid (lower left corner at 180 degrees W/90 degrees S, west to east and south to north), reflect 1985 emissions and consist of two data sets: Version 1A inventories with annual emissions at one level and Version 1B inventories with seasonal emissions, two vertical levels (defined at 100 m) and sectoral split information. The basic information used for both versions of the GEIA inventories will be identical; i.e., emissions totals across both inventories will be the same. Work is being carried out in two complementary working groups; Carmen Benkovitz, Brookhaven National Laboratory, Upton, NY, USA heads the work on the annual inventory, Eva Voldner, Atmospheric Environment Services, Canada and Trevor Scholtz, ORTECH International, Canada, head the work on the seasonal inventory

  16. In situ measurements of H2O, CH4 and CO2 in the upper troposphere and the lower stratosphere (UT-LS) with the baloonborne picoSDLA and AMULSE tunable diode laser spectrometers during the 2014 and 2015 "Stratoscience" campaigns

    Science.gov (United States)

    Miftah-El-Khair, Zineb; Joly, Lilian; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Grouiez, Bruno; Albo, Grégory; Chauvin, Nicolas; Maamary, Rabih; Amarouche, Nadir; Durry, Georges

    2016-04-01

    H2O, CH4 and CO2 are major greenhouse gases with a strong impact on climate. The concentrations of CO2 and CH4 have dramatically increased since the beginning of the industrialization era due to anthropogenic activities, contributing thereby to the global warming. Anthropogenic activities as fossil fuels, ruminant, and biomass burning constitute the major sources of carbon dioxide and methane. The increase of H2O concentration in the stratosphere could cause a cooling of this atmospheric region, impacting the recovery of the ozone layer. Therefore, having information and data about the vertical distribution of H2O, CO2 and CH4 is very useful to improve our knowledge of the future of our climate. We have developed, with the help of French space agency (CNES) and CNRS, two laser diode sensors PicoSDLA and AMULSE devoted to the in situ measurements of H2O, CH4 and CO2 from balloon platforms. These instruments were operated from open stratospheric balloons in Timmins, CA, in August 2014 and 2015. We report and discuss the instrumental achievements of both sensors during these flights in the UT-LS. Aknowledgments: The authors acknowledge financial supports from CNES, CNRS and the region Champagne-Ardenne.

  17. The Lake Charles CCS Project

    Energy Technology Data Exchange (ETDEWEB)

    Doug Cathro

    2010-06-30

    The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas and Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.

  18. Overcoming Multidrug Resistance via Photodestruction of ABCG2-Rich Extracellular Vesicles Sequestering Photosensitive Chemotherapeutics

    Science.gov (United States)

    Goler-Baron, Vicky; Assaraf, Yehuda G.

    2012-01-01

    Multidrug resistance (MDR) remains a dominant impediment to curative cancer chemotherapy. Efflux transporters of the ATP-binding cassette (ABC) superfamily including ABCG2, ABCB1 and ABCC1 mediate MDR to multiple structurally and functionally distinct antitumor agents. Recently we identified a novel mechanism of MDR in which ABCG2-rich extracellular vesicles (EVs) form in between attached neighbor breast cancer cells and highly concentrate various chemotherapeutics in an ABCG2-dependent manner, thereby sequestering them away from their intracellular targets. Hence, development of novel strategies to overcome MDR modalities is a major goal of cancer research. Towards this end, we here developed a novel approach to selectively target and kill MDR cancer cells. We show that illumination of EVs that accumulated photosensitive cytotoxic drugs including imidazoacridinones (IAs) and topotecan resulted in intravesicular formation of reactive oxygen species (ROS) and severe damage to the EVs membrane that is shared by EVs-forming cells, thereby leading to tumor cell lysis and the overcoming of MDR. Furthermore, consistent with the weak base nature of IAs, MDR cells that are devoid of EVs but contained an increased number of lysosomes, highly accumulated IAs in lysosomes and upon photosensitization were efficiently killed via ROS-dependent lysosomal rupture. Combining targeted lysis of IAs-loaded EVs and lysosomes elicited a synergistic cytotoxic effect resulting in MDR reversal. In contrast, topotecan, a bona fide transport substrate of ABCG2, accumulated exclusively in EVs of MDR cells but was neither detected in lysosomes of normal breast epithelial cells nor in non-MDR breast cancer cells. This exclusive accumulation in EVs enhanced the selectivity of the cytotoxic effect exerted by photodynamic therapy to MDR cells without harming normal cells. Moreover, lysosomal alkalinization with bafilomycin A1 abrogated lysosomal accumulation of IAs, consequently preventing

  19. Assessing the Importance of Prior Biospheric Fluxes on Inverse Model Estimates of CO2

    Science.gov (United States)

    Philip, S.; Johnson, M. S.; Potter, C. S.; Genovese, V. B.

    2017-12-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric sources/sinks. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in models having significant differences in the quantification of biospheric CO2 fluxes. Currently, atmospheric chemical transport models (CTM) and global climate models (GCM) use multiple different biospheric CO2 flux models resulting in large differences in simulating the global carbon cycle. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission was designed to allow for the improved understanding of the processes involved in the exchange of carbon between terrestrial ecosystems and the atmosphere, and therefore allowing for more accurate assessment of the seasonal/inter-annual variability of CO2. OCO-2 provides much-needed CO2 observations in data-limited regions allowing for the evaluation of model simulations of greenhouse gases (GHG) and facilitating global/regional estimates of "top-down" CO2 fluxes. We conduct a 4-D Variation (4D-Var) data assimilation with the GEOS-Chem (Goddard Earth Observation System-Chemistry) CTM using 1) OCO-2 land nadir and land glint retrievals and 2) global in situ surface flask observations to constrain biospheric CO2 fluxes. We apply different state-of-the-science year-specific CO2 flux models (e.g., NASA-CASA (NASA-Carnegie Ames Stanford Approach), CASA-GFED (Global Fire Emissions Database), Simple Biosphere Model version 4 (SiB-4), and LPJ (Lund-Postdam-Jena)) to assess the impact of "a priori" flux predictions to "a posteriori" estimates. We will present the "top-down" CO2 flux estimates for the year 2015 using OCO-2 and in situ observations, and a complete indirect evaluation of the a priori and a posteriori flux estimates using independent in situ observations. We will also present our assessment of the variability of "top-down" CO2 flux estimates when using different

  20. Reactive Transport Analysis of Fault 'Self-sealing' Associated with CO2 Storage

    Science.gov (United States)

    Patil, V.; McPherson, B. J. O. L.; Priewisch, A.; Franz, R. J.

    2014-12-01

    We present an extensive hydrologic and reactive transport analysis of the Little Grand Wash fault zone (LGWF), a natural analog of fault-associated leakage from an engineered CO2 repository. Injecting anthropogenic CO2 into the subsurface is suggested for climate change mitigation. However, leakage of CO2 from its target storage formation into unintended areas is considered as a major risk involved in CO2 sequestration. In the event of leakage, permeability in leakage pathways like faults may get sealed (reduced) due to precipitation or enhanced (increased) due to dissolution reactions induced by CO2-enriched water, thus influencing migration and fate of the CO2. We hypothesize that faults which act as leakage pathways can seal over time in presence of CO2-enriched waters. An example of such a fault 'self-sealing' is found in the LGWF near Green River, Utah in the Paradox basin, where fault outcrop shows surface and sub-surface fractures filled with calcium carbonate (CaCO3). The LGWF cuts through multiple reservoirs and seal layers piercing a reservoir of naturally occurring CO2, allowing it to leak into overlying aquifers. As the CO2-charged water from shallower aquifers migrates towards atmosphere, a decrease in pCO2 leads to supersaturation of water with respect to CaCO3, which precipitates in the fractures of the fault damage zone. In order to test the nature, extent and time-frame of the fault sealing, we developed reactive flow simulations of the LGWF. Model parameters were chosen based on hydrologic measurements from literature. Model geochemistry was constrained by water analysis of the adjacent Crystal Geyser and observations from a scientific drilling test conducted at the site. Precipitation of calcite in the top portion of the fault model led to a decrease in the porosity value of the damage zone, while clay precipitation led to a decrease in the porosity value of the fault core. We found that the results were sensitive to the fault architecture