WorldWideScience

Sample records for sequence structure interaction

  1. RNA-Pareto: interactive analysis of Pareto-optimal RNA sequence-structure alignments.

    Science.gov (United States)

    Schnattinger, Thomas; Schöning, Uwe; Marchfelder, Anita; Kestler, Hans A

    2013-12-01

    Incorporating secondary structure information into the alignment process improves the quality of RNA sequence alignments. Instead of using fixed weighting parameters, sequence and structure components can be treated as different objectives and optimized simultaneously. The result is not a single, but a Pareto-set of equally optimal solutions, which all represent different possible weighting parameters. We now provide the interactive graphical software tool RNA-Pareto, which allows a direct inspection of all feasible results to the pairwise RNA sequence-structure alignment problem and greatly facilitates the exploration of the optimal solution set.

  2. Prediction of protein-protein interaction sites in sequences and 3D structures by random forests.

    Directory of Open Access Journals (Sweden)

    Mile Sikić

    2009-01-01

    Full Text Available Identifying interaction sites in proteins provides important clues to the function of a protein and is becoming increasingly relevant in topics such as systems biology and drug discovery. Although there are numerous papers on the prediction of interaction sites using information derived from structure, there are only a few case reports on the prediction of interaction residues based solely on protein sequence. Here, a sliding window approach is combined with the Random Forests method to predict protein interaction sites using (i a combination of sequence- and structure-derived parameters and (ii sequence information alone. For sequence-based prediction we achieved a precision of 84% with a 26% recall and an F-measure of 40%. When combined with structural information, the prediction performance increases to a precision of 76% and a recall of 38% with an F-measure of 51%. We also present an attempt to rationalize the sliding window size and demonstrate that a nine-residue window is the most suitable for predictor construction. Finally, we demonstrate the applicability of our prediction methods by modeling the Ras-Raf complex using predicted interaction sites as target binding interfaces. Our results suggest that it is possible to predict protein interaction sites with quite a high accuracy using only sequence information.

  3. Structure and Sequence Analyses of Clustered Protocadherins Reveal Antiparallel Interactions that Mediate Homophilic Specificity.

    Science.gov (United States)

    Nicoludis, John M; Lau, Sze-Yi; Schärfe, Charlotta P I; Marks, Debora S; Weihofen, Wilhelm A; Gaudet, Rachelle

    2015-11-03

    Clustered protocadherin (Pcdh) proteins mediate dendritic self-avoidance in neurons via specific homophilic interactions in their extracellular cadherin (EC) domains. We determined crystal structures of EC1-EC3, containing the homophilic specificity-determining region, of two mouse clustered Pcdh isoforms (PcdhγA1 and PcdhγC3) to investigate the nature of the homophilic interaction. Within the crystal lattices, we observe antiparallel interfaces consistent with a role in trans cell-cell contact. Antiparallel dimerization is supported by evolutionary correlations. Two interfaces, located primarily on EC2-EC3, involve distinctive clustered Pcdh structure and sequence motifs, lack predicted glycosylation sites, and contain residues highly conserved in orthologs but not paralogs, pointing toward their biological significance as homophilic interaction interfaces. These two interfaces are similar yet distinct, reflecting a possible difference in interaction architecture between clustered Pcdh subfamilies. These structures initiate a molecular understanding of clustered Pcdh assemblies that are required to produce functional neuronal networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Structural Insight into the interaction of Flavonoids with Human Telomeric Sequence

    Science.gov (United States)

    Tawani, Arpita; Kumar, Amit

    2015-01-01

    Flavonoids are a group of naturally available compounds that are an attractive source for drug discovery. Their potential to act as anti-tumourigenic and anti-proliferative agents has been reported previously but is not yet fully understood. Targeting human telomeric G-quadruplex DNA could be one of the mechanisms by which these flavonoids exert anticancer activity. We have performed detailed biophysical studies for the interaction of four representative flavonoids, Luteolin, Quercetin, Rutin and Genistein, with the human telomeric G-quadruplex sequence tetramolecular d-(T2AG3T) (Tel7). In addition, we used NMR spectroscopy to derive the first model for the complex formed between Quercetin and G-quadruplex sequence. The model showed that Quercetin stabilises the G-quadruplex structure and does not open the G-tetrad. It interacts with the telomeric sequence through π-stacking at two sites: between T1pT2 and between G6pT7. Based on our findings, we suggest that Quercetin could be a potent candidate for targeting the telomere and thus, act as a potent anti-cancer agent. PMID:26627543

  5. Large-scale prediction of drug–target interactions using protein sequences and drug topological structures

    International Nuclear Information System (INIS)

    Cao Dongsheng; Liu Shao; Xu Qingsong; Lu Hongmei; Huang Jianhua; Hu Qiannan; Liang Yizeng

    2012-01-01

    Highlights: ► Drug–target interactions are predicted using an extended SAR methodology. ► A drug–target interaction is regarded as an event triggered by many factors. ► Molecular fingerprint and CTD descriptors are used to represent drugs and proteins. ► Our approach shows compatibility between the new scheme and current SAR methodology. - Abstract: The identification of interactions between drugs and target proteins plays a key role in the process of genomic drug discovery. It is both consuming and costly to determine drug–target interactions by experiments alone. Therefore, there is an urgent need to develop new in silico prediction approaches capable of identifying these potential drug–target interactions in a timely manner. In this article, we aim at extending current structure–activity relationship (SAR) methodology to fulfill such requirements. In some sense, a drug–target interaction can be regarded as an event or property triggered by many influence factors from drugs and target proteins. Thus, each interaction pair can be represented theoretically by using these factors which are based on the structural and physicochemical properties simultaneously from drugs and proteins. To realize this, drug molecules are encoded with MACCS substructure fingerings representing existence of certain functional groups or fragments; and proteins are encoded with some biochemical and physicochemical properties. Four classes of drug–target interaction networks in humans involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, are independently used for establishing predictive models with support vector machines (SVMs). The SVM models gave prediction accuracy of 90.31%, 88.91%, 84.68% and 83.74% for four datasets, respectively. In conclusion, the results demonstrate the ability of our proposed method to predict the drug–target interactions, and show a general compatibility between the new scheme and current SAR

  6. Large-scale prediction of drug-target interactions using protein sequences and drug topological structures

    Energy Technology Data Exchange (ETDEWEB)

    Cao Dongsheng [Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083 (China); Liu Shao [Xiangya Hospital, Central South University, Changsha 410008 (China); Xu Qingsong [School of Mathematical Sciences and Computing Technology, Central South University, Changsha 410083 (China); Lu Hongmei; Huang Jianhua [Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083 (China); Hu Qiannan [Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071 (China); Liang Yizeng, E-mail: yizeng_liang@263.net [Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083 (China)

    2012-11-08

    Highlights: Black-Right-Pointing-Pointer Drug-target interactions are predicted using an extended SAR methodology. Black-Right-Pointing-Pointer A drug-target interaction is regarded as an event triggered by many factors. Black-Right-Pointing-Pointer Molecular fingerprint and CTD descriptors are used to represent drugs and proteins. Black-Right-Pointing-Pointer Our approach shows compatibility between the new scheme and current SAR methodology. - Abstract: The identification of interactions between drugs and target proteins plays a key role in the process of genomic drug discovery. It is both consuming and costly to determine drug-target interactions by experiments alone. Therefore, there is an urgent need to develop new in silico prediction approaches capable of identifying these potential drug-target interactions in a timely manner. In this article, we aim at extending current structure-activity relationship (SAR) methodology to fulfill such requirements. In some sense, a drug-target interaction can be regarded as an event or property triggered by many influence factors from drugs and target proteins. Thus, each interaction pair can be represented theoretically by using these factors which are based on the structural and physicochemical properties simultaneously from drugs and proteins. To realize this, drug molecules are encoded with MACCS substructure fingerings representing existence of certain functional groups or fragments; and proteins are encoded with some biochemical and physicochemical properties. Four classes of drug-target interaction networks in humans involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, are independently used for establishing predictive models with support vector machines (SVMs). The SVM models gave prediction accuracy of 90.31%, 88.91%, 84.68% and 83.74% for four datasets, respectively. In conclusion, the results demonstrate the ability of our proposed method to predict the drug

  7. Hierarchical folding of multiple sequence alignments for the prediction of structures and RNA-RNA interactions

    DEFF Research Database (Denmark)

    Seemann, Ernst Stefan; Richter, Andreas S.; Gorodkin, Jan

    2010-01-01

    of that used for individual multiple alignments. Results: We derived a rather extensive algorithm. One of the advantages of our approach (in contrast to other RNARNA interaction prediction methods) is the application of covariance detection and prediction of pseudoknots between intra- and inter-molecular base...... pairs. As a proof of concept, we show an example and discuss the strengths and weaknesses of the approach....

  8. Effect of electron correlations and Breit interactions on ground-state fine-structures along the nitrogen-like isoelectronic sequence

    International Nuclear Information System (INIS)

    Wang Xiaolu; Lu Wenlai; Gao Xiang; Li Jiaming

    2009-01-01

    The accurate atomic data of nitrogen and nitrogen-like ions have an importance role in fusion plasma studies and astrophysics studies. The precise calculation of fine-structures is required to obtain such atomic data. Along the whole nitrogen isoelectronic sequence, the contributions of the electron correlations, the Breit interactions and the quantum electrodynamics corrections on the ground-state fine-structures are elucidated. When Z is low, the electron correlations are important, and the Breit interactions, which cannot be neglected cause interesting anomalous fine-structure splittings. When Z is high, the electron correlations are less important, and the Breit interactions are important in addition to spin-orbit interactions for precise calculations. (authors)

  9. Using structural knowledge in the protein data bank to inform the search for potential host-microbe protein interactions in sequence space: application to Mycobacterium tuberculosis.

    Science.gov (United States)

    Mahajan, Gaurang; Mande, Shekhar C

    2017-04-04

    A comprehensive map of the human-M. tuberculosis (MTB) protein interactome would help fill the gaps in our understanding of the disease, and computational prediction can aid and complement experimental studies towards this end. Several sequence-based in silico approaches tap the existing data on experimentally validated protein-protein interactions (PPIs); these PPIs serve as templates from which novel interactions between pathogen and host are inferred. Such comparative approaches typically make use of local sequence alignment, which, in the absence of structural details about the interfaces mediating the template interactions, could lead to incorrect inferences, particularly when multi-domain proteins are involved. We propose leveraging the domain-domain interaction (DDI) information in PDB complexes to score and prioritize candidate PPIs between host and pathogen proteomes based on targeted sequence-level comparisons. Our method picks out a small set of human-MTB protein pairs as candidates for physical interactions, and the use of functional meta-data suggests that some of them could contribute to the in vivo molecular cross-talk between pathogen and host that regulates the course of the infection. Further, we present numerical data for Pfam domain families that highlights interaction specificity on the domain level. Not every instance of a pair of domains, for which interaction evidence has been found in a few instances (i.e. structures), is likely to functionally interact. Our sorting approach scores candidates according to how "distant" they are in sequence space from known examples of DDIs (templates). Thus, it provides a natural way to deal with the heterogeneity in domain-level interactions. Our method represents a more informed application of local alignment to the sequence-based search for potential human-microbial interactions that uses available PPI data as a prior. Our approach is somewhat limited in its sensitivity by the restricted size and

  10. JDet: interactive calculation and visualization of function-related conservation patterns in multiple sequence alignments and structures.

    Science.gov (United States)

    Muth, Thilo; García-Martín, Juan A; Rausell, Antonio; Juan, David; Valencia, Alfonso; Pazos, Florencio

    2012-02-15

    We have implemented in a single package all the features required for extracting, visualizing and manipulating fully conserved positions as well as those with a family-dependent conservation pattern in multiple sequence alignments. The program allows, among other things, to run different methods for extracting these positions, combine the results and visualize them in protein 3D structures and sequence spaces. JDet is a multiplatform application written in Java. It is freely available, including the source code, at http://csbg.cnb.csic.es/JDet. The package includes two of our recently developed programs for detecting functional positions in protein alignments (Xdet and S3Det), and support for other methods can be added as plug-ins. A help file and a guided tutorial for JDet are also available.

  11. The interaction between the iron-responsive element binding protein and its cognate RNA is highly dependent upon both RNA sequence and structure.

    Science.gov (United States)

    Jaffrey, S R; Haile, D J; Klausner, R D; Harford, J B

    1993-09-25

    To assess the influence of RNA sequence/structure on the interaction RNAs with the iron-responsive element binding protein (IRE-BP), twenty eight altered RNAs were tested as competitors for an RNA corresponding to the ferritin H chain IRE. All changes in the loop of the predicted IRE hairpin and in the unpaired cytosine residue characteristically found in IRE stems significantly decreased the apparent affinity of the RNA for the IRE-BP. Similarly, alteration in the spacing and/or orientation of the loop and the unpaired cytosine of the stem by either increasing or decreasing the number of base pairs separating them significantly reduced efficacy as a competitor. It is inferred that the IRE-BP forms multiple contacts with its cognate RNA, and that these contacts, acting in concert, provide the basis for the high affinity of this interaction.

  12. Draft Genome Sequence of the Soil Bacterium Burkholderia terrae Strain BS001, Which Interacts with Fungal Surface Structures

    DEFF Research Database (Denmark)

    Nazir, Rashid; Hansen, Martin A.; Sorensen, Soren

    2012-01-01

    Burkholderia terrae BS001 is a soil bacterium which was originally isolated from the mycosphere of the ectomycorrhizal fungus Laccaria proxima. It exhibits a range of fungus-interacting traits which reveal its propensity to actively interact at fungal interfaces. Here, we present the approximately...

  13. Sequence Text Structure Intervention during Interactive Book Reading of Expository Picture Books with Preschool Children with Language Impairment

    Science.gov (United States)

    Breit-Smith, Allison; Olszewski, Arnold; Swoboda, Christopher; Guo, Ying; Prendeville, Jo-Anne

    2017-01-01

    This study explores the outcomes of an interactive book reading intervention featuring expository picture books. This small-group intervention was delivered by four practitioners (two early childhood special education teachers and two speech-language pathologists) three times per week for 8 weeks to 6 preschool-age children (3 years 1 month to 4…

  14. Sequence-dependent separation of trinucleotides by ion-interaction reversed-phase liquid chromatography A structure-retention study assisted by soft-modelling and molecular dynamics

    Czech Academy of Sciences Publication Activity Database

    Mikulášek, K.; Jaroň, Kamil S.; Kulhánek, P.; Bittová, M.; Havliš, J.

    2016-01-01

    Roč. 1469, October (2016), s. 88-95 ISSN 0021-9673 Institutional support: RVO:68081766 Keywords : Sequence-dependent separation * Ion-interaction reversed-phase liquid chromatography * Trinucleotides * Oligonucleotide sequence isomers * QSRR * Molecular dynamics Subject RIV: CE - Biochemistry Impact factor: 3.981, year: 2016

  15. Extended sequence diagram for human system interaction

    International Nuclear Information System (INIS)

    Hwang, Jong Rok; Choi, Sun Woo; Ko, Hee Ran; Kim, Jong Hyun

    2012-01-01

    Unified Modeling Language (UML) is a modeling language in the field of object oriented software engineering. The sequence diagram is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a message sequence chart. It depicts the objects and classes involved in the scenario and the sequence of messages exchanged between the objects needed to carry out the functionality of the scenario. This paper proposes the Extended Sequence Diagram (ESD), which is capable of depicting human system interaction for nuclear power plants, as well as cognitive process of operators analysis. In the conventional sequence diagram, there is a limit to only identify the activities of human and systems interactions. The ESD is extended to describe operators' cognitive process in more detail. The ESD is expected to be used as a task analysis method for describing human system interaction. The ESD can also present key steps causing abnormal operations or failures and diverse human errors based on cognitive condition

  16. Tools for integrated sequence-structure analysis with UCSF Chimera

    Directory of Open Access Journals (Sweden)

    Huang Conrad C

    2006-07-01

    Full Text Available Abstract Background Comparing related structures and viewing the structures in the context of sequence alignments are important tasks in protein structure-function research. While many programs exist for individual aspects of such work, there is a need for interactive visualization tools that: (a provide a deep integration of sequence and structure, far beyond mapping where a sequence region falls in the structure and vice versa; (b facilitate changing data of one type based on the other (for example, using only sequence-conserved residues to match structures, or adjusting a sequence alignment based on spatial fit; (c can be used with a researcher's own data, including arbitrary sequence alignments and annotations, closely or distantly related sets of proteins, etc.; and (d interoperate with each other and with a full complement of molecular graphics features. We describe enhancements to UCSF Chimera to achieve these goals. Results The molecular graphics program UCSF Chimera includes a suite of tools for interactive analyses of sequences and structures. Structures automatically associate with sequences in imported alignments, allowing many kinds of crosstalk. A novel method is provided to superimpose structures in the absence of a pre-existing sequence alignment. The method uses both sequence and secondary structure, and can match even structures with very low sequence identity. Another tool constructs structure-based sequence alignments from superpositions of two or more proteins. Chimera is designed to be extensible, and mechanisms for incorporating user-specific data without Chimera code development are also provided. Conclusion The tools described here apply to many problems involving comparison and analysis of protein structures and their sequences. Chimera includes complete documentation and is intended for use by a wide range of scientists, not just those in the computational disciplines. UCSF Chimera is free for non-commercial use and is

  17. On topological RNA interaction structures.

    Science.gov (United States)

    Qin, Jing; Reidys, Christian M

    2013-07-01

    Recently a folding algorithm of topological RNA pseudoknot structures was presented in Reidys et al. (2011). This algorithm folds single-stranded γ-structures, that is, RNA structures composed by distinct motifs of bounded topological genus. In this article, we set the theoretical foundations for the folding of the two backbone analogues of γ structures: the RNA γ-interaction structures. These are RNA-RNA interaction structures that are constructed by a finite number of building blocks over two backbones having genus at most γ. Combinatorial properties of γ-interaction structures are of practical interest since they have direct implications for the folding of topological interaction structures. We compute the generating function of γ-interaction structures and show that it is algebraic, which implies that the numbers of interaction structures can be computed recursively. We obtain simple asymptotic formulas for 0- and 1-interaction structures. The simplest class of interaction structures are the 0-interaction structures, which represent the two backbone analogues of secondary structures.

  18. Proteochemometric Modeling of the Interaction Space of Carbonic Anhydrase and its Inhibitors: An Assessment of Structure-based and Sequence-based Descriptors.

    Science.gov (United States)

    Rasti, Behnam; Namazi, Mohsen; Karimi-Jafari, M H; Ghasemi, Jahan B

    2017-04-01

    Due to its physiological and clinical roles, carbonic anhydrase (CA) is one of the most interesting case studies. There are different classes of CAinhibitors including sulfonamides, polyamines, coumarins and dithiocarbamates (DTCs). However, many of them hardly act as a selective inhibitor against a specific isoform. Therefore, finding highly selective inhibitors for different isoforms of CA is still an ongoing project. Proteochemometrics modeling (PCM) is able to model the bioactivity of multiple compounds against different isoforms of a protein. Therefore, it would be extremely applicable when investigating the selectivity of different ligands towards different receptors. Given the facts, we applied PCM to investigate the interaction space and structural properties that lead to the selective inhibition of CA isoforms by some dithiocarbamates. Our models have provided interesting structural information that can be considered to design compounds capable of inhibiting different isoforms of CA in an improved selective manner. Validity and predictivity of the models were confirmed by both internal and external validation methods; while Y-scrambling approach was applied to assess the robustness of the models. To prove the reliability and the applicability of our findings, we showed how ligands-receptors selectivity can be affected by removing any of these critical findings from the modeling process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structure from interaction events

    NARCIS (Netherlands)

    de Nooy, W.

    2015-01-01

    In this contribution to the colloquium, I argue why and how I lost interest in the overall structure of social networks even though Big Data techniques are increasingly simplifying the collection, organisation, and analysis of ever larger networks. The challenge that Big Data techniques pose to the

  20. Structure and Sequence Search on Aptamer-Protein Docking

    Science.gov (United States)

    Xiao, Jiajie; Bonin, Keith; Guthold, Martin; Salsbury, Freddie

    2015-03-01

    Interactions between proteins and deoxyribonucleic acid (DNA) play a significant role in the living systems, especially through gene regulation. However, short nucleic acids sequences (aptamers) with specific binding affinity to specific proteins exhibit clinical potential as therapeutics. Our capillary and gel electrophoresis selection experiments show that specific sequences of aptamers can be selected that bind specific proteins. Computationally, given the experimentally-determined structure and sequence of a thrombin-binding aptamer, we can successfully dock the aptamer onto thrombin in agreement with experimental structures of the complex. In order to further study the conformational flexibility of this thrombin-binding aptamer and to potentially develop a predictive computational model of aptamer-binding, we use GPU-enabled molecular dynamics simulations to both examine the conformational flexibility of the aptamer in the absence of binding to thrombin, and to determine our ability to fold an aptamer. This study should help further de-novo predictions of aptamer sequences by enabling the study of structural and sequence-dependent effects on aptamer-protein docking specificity.

  1. Sequence memory based on coherent spin-interaction neural networks.

    Science.gov (United States)

    Xia, Min; Wong, W K; Wang, Zhijie

    2014-12-01

    Sequence information processing, for instance, the sequence memory, plays an important role on many functions of brain. In the workings of the human brain, the steady-state period is alterable. However, in the existing sequence memory models using heteroassociations, the steady-state period cannot be changed in the sequence recall. In this work, a novel neural network model for sequence memory with controllable steady-state period based on coherent spininteraction is proposed. In the proposed model, neurons fire collectively in a phase-coherent manner, which lets a neuron group respond differently to different patterns and also lets different neuron groups respond differently to one pattern. The simulation results demonstrating the performance of the sequence memory are presented. By introducing a new coherent spin-interaction sequence memory model, the steady-state period can be controlled by dimension parameters and the overlap between the input pattern and the stored patterns. The sequence storage capacity is enlarged by coherent spin interaction compared with the existing sequence memory models. Furthermore, the sequence storage capacity has an exponential relationship to the dimension of the neural network.

  2. Protein 3D structure computed from evolutionary sequence variation.

    Directory of Open Access Journals (Sweden)

    Debora S Marks

    Full Text Available The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues, including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7-4.8 Å C(α-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org. This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of

  3. Fluid-structure interaction of submerged structures

    International Nuclear Information System (INIS)

    Tang, H.T.; Becker, E.B.; Taylor, L.M.

    1979-01-01

    The purpose of the paper is to investigate fluid-structure interaction (FSI) of submerged structures in a confined fluid-structure system. Our particular interest is the load experienced by a rigid submerged structure subject to a pressure excitation in a fluid domain bounded by a structure which is either flexible or rigid. The objective is to see whether the load experienced by the submerged structure will be influenced by its confinement conditions. This investigation is intended to provide insight into the characteristics of FSI and answer the question as to whether one can obtain FSI independent data by constructing a small scale rigid submerged structure inside a flexible fluid-structure system. (orig.)

  4. Protein Function Prediction Based on Sequence and Structure Information

    KAUST Repository

    Smaili, Fatima Z.

    2016-05-25

    The number of available protein sequences in public databases is increasing exponentially. However, a significant fraction of these sequences lack functional annotation which is essential to our understanding of how biological systems and processes operate. In this master thesis project, we worked on inferring protein functions based on the primary protein sequence. In the approach we follow, 3D models are first constructed using I-TASSER. Functions are then deduced by structurally matching these predicted models, using global and local similarities, through three independent enzyme commission (EC) and gene ontology (GO) function libraries. The method was tested on 250 “hard” proteins, which lack homologous templates in both structure and function libraries. The results show that this method outperforms the conventional prediction methods based on sequence similarity or threading. Additionally, our method could be improved even further by incorporating protein-protein interaction information. Overall, the method we use provides an efficient approach for automated functional annotation of non-homologous proteins, starting from their sequence.

  5. Biophysical and structural considerations for protein sequence evolution

    Directory of Open Access Journals (Sweden)

    Grahnen Johan A

    2011-12-01

    Full Text Available Abstract Background Protein sequence evolution is constrained by the biophysics of folding and function, causing interdependence between interacting sites in the sequence. However, current site-independent models of sequence evolutions do not take this into account. Recent attempts to integrate the influence of structure and biophysics into phylogenetic models via statistical/informational approaches have not resulted in expected improvements in model performance. This suggests that further innovations are needed for progress in this field. Results Here we develop a coarse-grained physics-based model of protein folding and binding function, and compare it to a popular informational model. We find that both models violate the assumption of the native sequence being close to a thermodynamic optimum, causing directional selection away from the native state. Sampling and simulation show that the physics-based model is more specific for fold-defining interactions that vary less among residue type. The informational model diffuses further in sequence space with fewer barriers and tends to provide less support for an invariant sites model, although amino acid substitutions are generally conservative. Both approaches produce sequences with natural features like dN/dS Conclusions Simple coarse-grained models of protein folding can describe some natural features of evolving proteins but are currently not accurate enough to use in evolutionary inference. This is partly due to improper packing of the hydrophobic core. We suggest possible improvements on the representation of structure, folding energy, and binding function, as regards both native and non-native conformations, and describe a large number of possible applications for such a model.

  6. Nonlinear deterministic structures and the randomness of protein sequences

    CERN Document Server

    Huang Yan Zhao

    2003-01-01

    To clarify the randomness of protein sequences, we make a detailed analysis of a set of typical protein sequences representing each structural classes by using nonlinear prediction method. No deterministic structures are found in these protein sequences and this implies that they behave as random sequences. We also give an explanation to the controversial results obtained in previous investigations.

  7. The structure of weak interaction

    International Nuclear Information System (INIS)

    Zee, A.

    1977-01-01

    The effect of introducing righthanded currents on the structure of weak interaction is discussed. The ΔI=1/2 rule is in the spotlight. The discussion provides an interesting example in which the so-called Iizuka-Okubo-Zweing rule is not only evaded, but completely negated

  8. Spectral entropy criteria for structural segmentation in genomic DNA sequences

    International Nuclear Information System (INIS)

    Chechetkin, V.R.; Lobzin, V.V.

    2004-01-01

    The spectral entropy is calculated with Fourier structure factors and characterizes the level of structural ordering in a sequence of symbols. It may efficiently be applied to the assessment and reconstruction of the modular structure in genomic DNA sequences. We present the relevant spectral entropy criteria for the local and non-local structural segmentation in DNA sequences. The results are illustrated with the model examples and analysis of intervening exon-intron segments in the protein-coding regions

  9. Computational methods in sequence and structure prediction

    Science.gov (United States)

    Lang, Caiyi

    This dissertation is organized into two parts. In the first part, we will discuss three computational methods for cis-regulatory element recognition in three different gene regulatory networks as the following: (a) Using a comprehensive "Phylogenetic Footprinting Comparison" method, we will investigate the promoter sequence structures of three enzymes (PAL, CHS and DFR) that catalyze sequential steps in the pathway from phenylalanine to anthocyanins in plants. Our result shows there exists a putative cis-regulatory element "AC(C/G)TAC(C)" in the upstream of these enzyme genes. We propose this cis-regulatory element to be responsible for the genetic regulation of these three enzymes and this element, might also be the binding site for MYB class transcription factor PAP1. (b) We will investigate the role of the Arabidopsis gene glutamate receptor 1.1 (AtGLR1.1) in C and N metabolism by utilizing the microarray data we obtained from AtGLR1.1 deficient lines (antiAtGLR1.1). We focus our investigation on the putatively co-regulated transcript profile of 876 genes we have collected in antiAtGLR1.1 lines. By (a) scanning the occurrence of several groups of known abscisic acid (ABA) related cisregulatory elements in the upstream regions of 876 Arabidopsis genes; and (b) exhaustive scanning of all possible 6-10 bps motif occurrence in the upstream regions of the same set of genes, we are able to make a quantative estimation on the enrichment level of each of the cis-regulatory element candidates. We finally conclude that one specific cis-regulatory element group, called "ABRE" elements, are statistically highly enriched within the 876-gene group as compared to their occurrence within the genome. (c) We will introduce a new general purpose algorithm, called "fuzzy REDUCE1", which we have developed recently for automated cis-regulatory element identification. In the second part, we will discuss our newly devised protein design framework. With this framework we have developed

  10. Dynamic Soil-Structure-Interaction

    DEFF Research Database (Denmark)

    Kellezi, Lindita

    1998-01-01

    The aim of this thesis is to investigate and develop alternative methods of analyzing problems in dynamic soil-structure-interaction. The main focus is the major difficulty posed by such an analysis - the phenomenon of waves which radiate outward from the excited structures towards infinity....... In numerical calculations, only a finite region of the foundation metium is analyzed and something is done to prevent the outgoing radiating waves to reflect from the regions's boundary. The prosent work concerns itself with the study of such effects, using the finite element method, and artificial...... transmitting boundary at the edges of the computational mesh. To start with, an investigation of the main effects of the interaction phenomena is carried out employing a widely used model, considering dynamic stiffness of the unbounded soil as frequency independent. Then a complete description...

  11. Structural Variation and Uniformity among Tetraloop-Receptor Interactions and Other Loop-Helix Interactions in RNA Crystal Structures

    Science.gov (United States)

    Wu, Li; Chai, Dinggeng; Fraser, Marie E.; Zimmerly, Steven

    2012-01-01

    Tetraloop-receptor interactions are prevalent structural units in RNAs, and include the GAAA/11-nt and GNRA-minor groove interactions. In this study, we have compiled a set of 78 nonredundant loop-helix interactions from X-ray crystal structures, and examined them for the extent of their sequence and structural variation. Of the 78 interactions in the set, only four were classical GAAA/11-nt motifs, while over half (48) were GNRA-minor groove interactions. The GNRA-minor groove interactions were not a homogeneous set, but were divided into five subclasses. The most predominant subclass is characterized by two triple base pair interactions in the minor groove, flanked by two ribose zipper contacts. This geometry may be considered the “standard” GNRA-minor groove interaction, while the other four subclasses are alternative ways to form interfaces between a minor groove and tetraloop. The remaining 26 structures in the set of 78 have loops interacting with mostly idiosyncratic receptors. Among the entire set, a number of sequence-structure correlations can be identified, which may be used as initial hypotheses in predicting three-dimensional structures from primary sequences. Conversely, other sequence patterns are not predictive; for example, GAAA loop sequences and GG/CC receptors bind to each other with three distinct geometries. Finally, we observe an example of structural evolution in group II introns, in which loop-receptor motifs are substituted for each other while maintaining the larger three-dimensional geometry. Overall, the study gives a more complete view of RNA loop-helix interactions that exist in nature. PMID:23152878

  12. QUASAR--scoring and ranking of sequence-structure alignments.

    Science.gov (United States)

    Birzele, Fabian; Gewehr, Jan E; Zimmer, Ralf

    2005-12-15

    Sequence-structure alignments are a common means for protein structure prediction in the fields of fold recognition and homology modeling, and there is a broad variety of programs that provide such alignments based on sequence similarity, secondary structure or contact potentials. Nevertheless, finding the best sequence-structure alignment in a pool of alignments remains a difficult problem. QUASAR (quality of sequence-structure alignments ranking) provides a unifying framework for scoring sequence-structure alignments that aids finding well-performing combinations of well-known and custom-made scoring schemes. Those scoring functions can be benchmarked against widely accepted quality scores like MaxSub, TMScore, Touch and APDB, thus enabling users to test their own alignment scores against 'standard-of-truth' structure-based scores. Furthermore, individual score combinations can be optimized with respect to benchmark sets based on known structural relationships using QUASAR's in-built optimization routines.

  13. Sequence motifs in MADS transcription factors responsible for specificity and diversification of protein-protein interaction.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is largely missing, in particular for paralogous protein families with high sequence similarity, such as the plant MADS domain transcription factor family. In comparison to the situation in mammalian species, this important family of transcription regulators has expanded enormously in plant species and contains over 100 members in the model plant species Arabidopsis thaliana. Here, we provide insight into the mechanisms that determine protein-protein interaction specificity for the Arabidopsis MADS domain transcription factor family, using an integrated computational and experimental approach. Plant MADS proteins have highly similar amino acid sequences, but their dimerization patterns vary substantially. Our computational analysis uncovered small sequence regions that explain observed differences in dimerization patterns with reasonable accuracy. Furthermore, we show the usefulness of the method for prediction of MADS domain transcription factor interaction networks in other plant species. Introduction of mutations in the predicted interaction motifs demonstrated that single amino acid mutations can have a large effect and lead to loss or gain of specific interactions. In addition, various performed bioinformatics analyses shed light on the way evolution has shaped MADS domain transcription factor interaction specificity. Identified protein-protein interaction motifs appeared to be strongly conserved among orthologs, indicating their evolutionary importance. We also provide evidence that mutations in these motifs can be a source for sub- or neo-functionalization. The analyses presented here take us a step forward in understanding protein-protein interactions and the interplay between protein sequences and

  14. Structure of the human chromosome interaction network.

    Directory of Open Access Journals (Sweden)

    Sergio Sarnataro

    Full Text Available New Hi-C technologies have revealed that chromosomes have a complex network of spatial contacts in the cell nucleus of higher organisms, whose organisation is only partially understood. Here, we investigate the structure of such a network in human GM12878 cells, to derive a large scale picture of nuclear architecture. We find that the intensity of intra-chromosomal interactions is power-law distributed. Inter-chromosomal interactions are two orders of magnitude weaker and exponentially distributed, yet they are not randomly arranged along the genomic sequence. Intra-chromosomal contacts broadly occur between epigenomically homologous regions, whereas inter-chromosomal contacts are especially associated with regions rich in highly expressed genes. Overall, genomic contacts in the nucleus appear to be structured as a network of networks where a set of strongly individual chromosomal units, as envisaged in the 'chromosomal territory' scenario derived from microscopy, interact with each other via on average weaker, yet far from random and functionally important interactions.

  15. PCNA Structure and Interactions with Partner Proteins

    KAUST Repository

    Oke, Muse; Zaher, Manal S.; Hamdan, Samir

    2018-01-01

    Proliferating cell nuclear antigen (PCNA) consists of three identical monomers that topologically encircle double-stranded DNA. PCNA stimulates the processivity of DNA polymerase δ and, to a less extent, the intrinsically highly processive DNA polymerase ε. It also functions as a platform that recruits and coordinates the activities of a large number of DNA processing proteins. Emerging structural and biochemical studies suggest that the nature of PCNA-partner proteins interactions is complex. A hydrophobic groove at the front side of PCNA serves as a primary docking site for the consensus PIP box motifs present in many PCNA-binding partners. Sequences that immediately flank the PIP box motif or regions that are distant from it could also interact with the hydrophobic groove and other regions of PCNA. Posttranslational modifications on the backside of PCNA could add another dimension to its interaction with partner proteins. An encounter of PCNA with different DNA structures might also be involved in coordinating its interactions. Finally, the ability of PCNA to bind up to three proteins while topologically linked to DNA suggests that it would be a versatile toolbox in many different DNA processing reactions.

  16. PCNA Structure and Interactions with Partner Proteins

    KAUST Repository

    Oke, Muse

    2018-01-29

    Proliferating cell nuclear antigen (PCNA) consists of three identical monomers that topologically encircle double-stranded DNA. PCNA stimulates the processivity of DNA polymerase δ and, to a less extent, the intrinsically highly processive DNA polymerase ε. It also functions as a platform that recruits and coordinates the activities of a large number of DNA processing proteins. Emerging structural and biochemical studies suggest that the nature of PCNA-partner proteins interactions is complex. A hydrophobic groove at the front side of PCNA serves as a primary docking site for the consensus PIP box motifs present in many PCNA-binding partners. Sequences that immediately flank the PIP box motif or regions that are distant from it could also interact with the hydrophobic groove and other regions of PCNA. Posttranslational modifications on the backside of PCNA could add another dimension to its interaction with partner proteins. An encounter of PCNA with different DNA structures might also be involved in coordinating its interactions. Finally, the ability of PCNA to bind up to three proteins while topologically linked to DNA suggests that it would be a versatile toolbox in many different DNA processing reactions.

  17. Filovirus Glycoprotein Sequence, Structure and Virulence

    OpenAIRE

    Phillips, J. C.

    2014-01-01

    Leading Ebola subtypes exhibit a wide mortality range, here explained at the molecular level by using fractal hydropathic scaling of amino acid sequences based on protein self-organized criticality. Specific hydrophobic features in the hydrophilic mucin-like domain suffice to account for the wide mortality range. Significance statement: Ebola virus is spreading rapidly in Africa. The connection between protein amino acid sequence and mortality is identified here.

  18. Structure-soil-structure interaction of nuclear structures

    International Nuclear Information System (INIS)

    Snyder, M.D.; Shaw, D.E.; Hall, J.R. Jr.

    1975-01-01

    Structure-to-structure interaction resulting from coupling of the foundations through the soil has traditionally been neglected in the seismic analysis of nuclear power plants. This paper examines the phenomenon and available methods of analytical treatment, including finite element and lumped parameter methods. Finite element techniques have lead to the treatment of through soil coupling of structural foundations using two dimensional plane strain models owing to the difficulty of considering three dimensional finite element models. The coupling problem is treated by means of a lumped parameter model derived from elastic half-space considerations. Consequently, the method is applicable to the interaction of any number of foundations and allows the simultaneous application of tri-directional excitation. The method entails the idealization of interacting structures as lumped mass/shear beams with lumped soil springs and dampers beneath each foundation plus a coupling matrix between the interacting foundations. Utilizing classical elastic half-space methods, the individual foundation soil springs and dampers may be derived, accounting for the effects of embedment and soil layering, analogous to the methods used for single soil-structure, interaction problems. The coupling matrix is derived by generating influence coefficients based on the geometric relationship of the structures using classical half-space solutions. The influence coefficients form the coupling flexibility matrix which is inverted to yield the coupling matrix for the lumped parameter model

  19. Next-Generation Sequencing for Binary Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Bernhard eSuter

    2015-12-01

    Full Text Available The yeast two-hybrid (Y2H system exploits host cell genetics in order to display binary protein-protein interactions (PPIs via defined and selectable phenotypes. Numerous improvements have been made to this method, adapting the screening principle for diverse applications, including drug discovery and the scale-up for proteome wide interaction screens in human and other organisms. Here we discuss a systematic workflow and analysis scheme for screening data generated by Y2H and related assays that includes high-throughput selection procedures, readout of comprehensive results via next-generation sequencing (NGS, and the interpretation of interaction data via quantitative statistics. The novel assays and tools will serve the broader scientific community to harness the power of NGS technology to address PPI networks in health and disease. We discuss examples of how this next-generation platform can be applied to address specific questions in diverse fields of biology and medicine.

  20. Formatt: Correcting protein multiple structural alignments by incorporating sequence alignment

    Directory of Open Access Journals (Sweden)

    Daniels Noah M

    2012-10-01

    Full Text Available Abstract Background The quality of multiple protein structure alignments are usually computed and assessed based on geometric functions of the coordinates of the backbone atoms from the protein chains. These purely geometric methods do not utilize directly protein sequence similarity, and in fact, determining the proper way to incorporate sequence similarity measures into the construction and assessment of protein multiple structure alignments has proved surprisingly difficult. Results We present Formatt, a multiple structure alignment based on the Matt purely geometric multiple structure alignment program, that also takes into account sequence similarity when constructing alignments. We show that Formatt outperforms Matt and other popular structure alignment programs on the popular HOMSTRAD benchmark. For the SABMark twilight zone benchmark set that captures more remote homology, Formatt and Matt outperform other programs; depending on choice of embedded sequence aligner, Formatt produces either better sequence and structural alignments with a smaller core size than Matt, or similarly sized alignments with better sequence similarity, for a small cost in average RMSD. Conclusions Considering sequence information as well as purely geometric information seems to improve quality of multiple structure alignments, though defining what constitutes the best alignment when sequence and structural measures would suggest different alignments remains a difficult open question.

  1. Reconstruction of ancestral RNA sequences under multiple structural constraints

    OpenAIRE

    Tremblay-Savard, Olivier; Reinharz, Vladimir; Waldisp?hl, J?r?me

    2016-01-01

    Background Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA) families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. Methods In this paper, we introduce achARNement, a maximum parsimony approach that, given...

  2. QCD Structure of Nuclear Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos [Florida Intl Univ., Miami, FL (United States)

    2011-05-25

    This dissertation investigated selected processes involving baryons and nuclei in hard scattering reactions. Through these processes, this work explored the constituent structure of baryons and the mechanisms through which the interactions between these constituents ultimately control the selected reactions. First, hard nucleon-nucleon elastic scattering was studied considering the quark exchange (QE) between the nucleons to be the dominant mechanism of interaction in the constituent picture. It was found that an angular asymmetry exhibited by proton-neutron (pn) elastic scattering data is explained within this framework if a quark-diquark picture dominates the nucleon's structure instead of a more traditional SU(6) model. The latter yields an asymmetry around 90 deg center of mass scattering with a sign opposite to what is experimentally observed. The second process is the hard breakup by a photon of a nucleon-nucleon system in light nuclei. Proton-proton (pp) and pn breakup in 3He, and double Δ-isobars production in deuteron breakup were analyzed in the hard rescattering model (HRM), which in conjunction with the QE mechanism provides a QCD description of the reaction. Cross sections for both channels in 3He photodisintegration were computed without the need of a fitting parameter. The results presented here for pp breakup show excellent agreement with recent experimental data. In double Δ-isobars production in deuteron breakup, HRM angular distributions for the two double Δ channels were compared to the pn channel and to each other. An important prediction from this study is that the Δ++ Δ- channel consistently dominates Δ+Δ0, which is in contrast with models that unlike the HRM consider a double Δ system in the initial state of the interaction. For such models both channels should have the same strength.

  3. Substrate sequence selectivity of APOBEC3A implicates intra-DNA interactions.

    Science.gov (United States)

    Silvas, Tania V; Hou, Shurong; Myint, Wazo; Nalivaika, Ellen; Somasundaran, Mohan; Kelch, Brian A; Matsuo, Hiroshi; Kurt Yilmaz, Nese; Schiffer, Celia A

    2018-05-14

    The APOBEC3 (A3) family of human cytidine deaminases is renowned for providing a first line of defense against many exogenous and endogenous retroviruses. However, the ability of these proteins to deaminate deoxycytidines in ssDNA makes A3s a double-edged sword. When overexpressed, A3s can mutate endogenous genomic DNA resulting in a variety of cancers. Although the sequence context for mutating DNA varies among A3s, the mechanism for substrate sequence specificity is not well understood. To characterize substrate specificity of A3A, a systematic approach was used to quantify the affinity for substrate as a function of sequence context, length, secondary structure, and solution pH. We identified the A3A ssDNA binding motif as (T/C)TC(A/G), which correlated with enzymatic activity. We also validated that A3A binds RNA in a sequence specific manner. A3A bound tighter to substrate binding motif within a hairpin loop compared to linear oligonucleotide, suggesting A3A affinity is modulated by substrate structure. Based on these findings and previously published A3A-ssDNA co-crystal structures, we propose a new model with intra-DNA interactions for the molecular mechanism underlying A3A sequence preference. Overall, the sequence and structural preferences identified for A3A leads to a new paradigm for identifying A3A's involvement in mutation of endogenous or exogenous DNA.

  4. Use of designed sequences in protein structure recognition.

    Science.gov (United States)

    Kumar, Gayatri; Mudgal, Richa; Srinivasan, Narayanaswamy; Sandhya, Sankaran

    2018-05-09

    Knowledge of the protein structure is a pre-requisite for improved understanding of molecular function. The gap in the sequence-structure space has increased in the post-genomic era. Grouping related protein sequences into families can aid in narrowing the gap. In the Pfam database, structure description is provided for part or full-length proteins of 7726 families. For the remaining 52% of the families, information on 3-D structure is not yet available. We use the computationally designed sequences that are intermediately related to two protein domain families, which are already known to share the same fold. These strategically designed sequences enable detection of distant relationships and here, we have employed them for the purpose of structure recognition of protein families of yet unknown structure. We first measured the success rate of our approach using a dataset of protein families of known fold and achieved a success rate of 88%. Next, for 1392 families of yet unknown structure, we made structural assignments for part/full length of the proteins. Fold association for 423 domains of unknown function (DUFs) are provided as a step towards functional annotation. The results indicate that knowledge-based filling of gaps in protein sequence space is a lucrative approach for structure recognition. Such sequences assist in traversal through protein sequence space and effectively function as 'linkers', where natural linkers between distant proteins are unavailable. This article was reviewed by Oliviero Carugo, Christine Orengo and Srikrishna Subramanian.

  5. Prediction of Protein Structural Classes for Low-Similarity Sequences Based on Consensus Sequence and Segmented PSSM

    Directory of Open Access Journals (Sweden)

    Yunyun Liang

    2015-01-01

    Full Text Available Prediction of protein structural classes for low-similarity sequences is useful for understanding fold patterns, regulation, functions, and interactions of proteins. It is well known that feature extraction is significant to prediction of protein structural class and it mainly uses protein primary sequence, predicted secondary structure sequence, and position-specific scoring matrix (PSSM. Currently, prediction solely based on the PSSM has played a key role in improving the prediction accuracy. In this paper, we propose a novel method called CSP-SegPseP-SegACP by fusing consensus sequence (CS, segmented PsePSSM, and segmented autocovariance transformation (ACT based on PSSM. Three widely used low-similarity datasets (1189, 25PDB, and 640 are adopted in this paper. Then a 700-dimensional (700D feature vector is constructed and the dimension is decreased to 224D by using principal component analysis (PCA. To verify the performance of our method, rigorous jackknife cross-validation tests are performed on 1189, 25PDB, and 640 datasets. Comparison of our results with the existing PSSM-based methods demonstrates that our method achieves the favorable and competitive performance. This will offer an important complementary to other PSSM-based methods for prediction of protein structural classes for low-similarity sequences.

  6. Finding the most significant common sequence and structure motifs in a set of RNA sequences

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Heyer, L.J.; Stormo, G.D.

    1997-01-01

    We present a computational scheme to locally align a collection of RNA sequences using sequence and structure constraints, In addition, the method searches for the resulting alignments with the most significant common motifs, among all possible collections, The first part utilizes a simplified...

  7. Identification of similar regions of protein structures using integrated sequence and structure analysis tools

    Directory of Open Access Journals (Sweden)

    Heiland Randy

    2006-03-01

    Full Text Available Abstract Background Understanding protein function from its structure is a challenging problem. Sequence based approaches for finding homology have broad use for annotation of both structure and function. 3D structural information of protein domains and their interactions provide a complementary view to structure function relationships to sequence information. We have developed a web site http://www.sblest.org/ and an API of web services that enables users to submit protein structures and identify statistically significant neighbors and the underlying structural environments that make that match using a suite of sequence and structure analysis tools. To do this, we have integrated S-BLEST, PSI-BLAST and HMMer based superfamily predictions to give a unique integrated view to prediction of SCOP superfamilies, EC number, and GO term, as well as identification of the protein structural environments that are associated with that prediction. Additionally, we have extended UCSF Chimera and PyMOL to support our web services, so that users can characterize their own proteins of interest. Results Users are able to submit their own queries or use a structure already in the PDB. Currently the databases that a user can query include the popular structural datasets ASTRAL 40 v1.69, ASTRAL 95 v1.69, CLUSTER50, CLUSTER70 and CLUSTER90 and PDBSELECT25. The results can be downloaded directly from the site and include function prediction, analysis of the most conserved environments and automated annotation of query proteins. These results reflect both the hits found with PSI-BLAST, HMMer and with S-BLEST. We have evaluated how well annotation transfer can be performed on SCOP ID's, Gene Ontology (GO ID's and EC Numbers. The method is very efficient and totally automated, generally taking around fifteen minutes for a 400 residue protein. Conclusion With structural genomics initiatives determining structures with little, if any, functional characterization

  8. Interchangeable Positions in Interaction Sequences in Science Classrooms

    Directory of Open Access Journals (Sweden)

    Carol Rees

    2017-03-01

    Full Text Available Triadic dialogue, the Initiation, Response, Evaluation sequence typical of teacher /student interactions in classrooms, has long been identified as a barrier to students’ access to learning, including science learning. A large body of research on the subject has over the years led to projects and policies aimed at increasing opportunities for students to learn through interactive dialogue in classrooms. However, the triadic dialogue pattern continues to dominate, even when teachers intend changing this. Prior quantitative research on the subject has focused on identifying independent variables such as style of teacher questioning that have an impact, while qualitative researchers have worked to interpret the use of dialogue within the whole context of work in the classroom. A recent paper offers an alternative way to view the triadic dialogue pattern and its origin; the triadic dialogue pattern is an irreducible social phenomenon that arises in a particular situation regardless of the identity of the players who inhabit the roles in the turn-taking sequence (Roth & Gardner, 2012. According to this perspective, alternative patterns of dialogue would exist which are alternative irreducible social phenomena that arise in association with different situations. The aim of this paper is to examine as precisely as possible, the characteristics of dialogue patterns in a seventh-eighth grade classroom during science inquiry, and the precise situations from which these dialogue patterns emerge, regardless of the staffing (teacher or students in the turn-taking sequence. Three different patterns were identified each predominating in a particular situation. This fine-grained analysis could offer valuable insights into ways to support teachers working to alter the kinds of dialogue patterns that arise in their classrooms.

  9. Sequence walkers: a graphical method to display how binding proteins interact with DNA or RNA sequences | Center for Cancer Research

    Science.gov (United States)

    A graphical method is presented for displaying how binding proteins and other macromolecules interact with individual bases of nucleotide sequences. Characters representing the sequence are either oriented normally and placed above a line indicating favorable contact, or upside-down and placed below the line indicating unfavorable contact. The positive or negative height of each letter shows the contribution of that base to the average sequence conservation of the binding site, as represented by a sequence logo.

  10. Fluid structure interaction with sloshing

    International Nuclear Information System (INIS)

    Belytschko, T.B.; Liu, W.K.

    1983-01-01

    In this paper, three different formulations for fluid-structure interaction with sloshing are discussed. When the surface displacements are large, the problems are nonlinear, and Arbitrary Lagrangian Eulerian (ALE) methods and direct time integration are most appropriate. Explicit direct time integration has the disadvantage of a limited time-step whereas implicit method has the disadvantage of nonconvergence and high computational cost. A mixed time method which employs E-mE (explicit-multiple explicit) integration for obtaining the velocity and free surface displacement and I-mI (implicit-multiple implicit) integration for obtaining the pressure is described. An iterative solution procedure is used to enhance the efficiency of the implicit solution procedure as well as to reduce the computer storage. For linear problems, the surface wave effects can be approximated by a perturbation method on the body force term if the surface displacements are small. Furthermore, if the fluid can be idealized as inviscid, incompressible and irrotational, the pressure, velocity, and free surface displacement variables can be eliminated via a velocity potential formulation. (orig.)

  11. Protein Function Prediction Based on Sequence and Structure Information

    KAUST Repository

    Smaili, Fatima Z.

    2016-01-01

    operate. In this master thesis project, we worked on inferring protein functions based on the primary protein sequence. In the approach we follow, 3D models are first constructed using I-TASSER. Functions are then deduced by structurally matching

  12. Topology of RNA-RNA interaction structures

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Huang, Fenix Wenda; Penner, Robert

    2012-01-01

    Abstract The topological filtration of interacting RNA complexes is studied, and the role is analyzed of certain diagrams called irreducible shadows, which form suitable building blocks for more general structures. We prove that, for two interacting RNAs, called interaction structures, there exist...

  13. MSAViewer: interactive JavaScript visualization of multiple sequence alignments.

    Science.gov (United States)

    Yachdav, Guy; Wilzbach, Sebastian; Rauscher, Benedikt; Sheridan, Robert; Sillitoe, Ian; Procter, James; Lewis, Suzanna E; Rost, Burkhard; Goldberg, Tatyana

    2016-11-15

    The MSAViewer is a quick and easy visualization and analysis JavaScript component for Multiple Sequence Alignment data of any size. Core features include interactive navigation through the alignment, application of popular color schemes, sorting, selecting and filtering. The MSAViewer is 'web ready': written entirely in JavaScript, compatible with modern web browsers and does not require any specialized software. The MSAViewer is part of the BioJS collection of components. The MSAViewer is released as open source software under the Boost Software License 1.0. Documentation, source code and the viewer are available at http://msa.biojs.net/Supplementary information: Supplementary data are available at Bioinformatics online. msa@bio.sh. © The Author 2016. Published by Oxford University Press.

  14. Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%

    DEFF Research Database (Denmark)

    Havgaard, Jakob Hull; Lyngsø, Rune B.; Stormo, Gary D.

    2005-01-01

    detect two genes with low sequence similarity, where the genes are part of a larger genomic region. Results: Here we present such an approach for pairwise local alignment which is based on FILDALIGN and the Sankoff algorithm for simultaneous structural alignment of multiple sequences. We include...... the ability to conduct mutual scans of two sequences of arbitrary length while searching for common local structural motifs of some maximum length. This drastically reduces the complexity of the algorithm. The scoring scheme includes structural parameters corresponding to those available for free energy....... The structure prediction performance for a family is typically around 0.7 using Matthews correlation coefficient. In case (2), the algorithm is successful at locating RNA families with an average sensitivity of 0.8 and a positive predictive value of 0.9 using a BLAST-like hit selection scheme. Availability...

  15. Identifying structural variants using linked-read sequencing data.

    Science.gov (United States)

    Elyanow, Rebecca; Wu, Hsin-Ta; Raphael, Benjamin J

    2017-11-03

    Structural variation, including large deletions, duplications, inversions, translocations, and other rearrangements, is common in human and cancer genomes. A number of methods have been developed to identify structural variants from Illumina short-read sequencing data. However, reliable identification of structural variants remains challenging because many variants have breakpoints in repetitive regions of the genome and thus are difficult to identify with short reads. The recently developed linked-read sequencing technology from 10X Genomics combines a novel barcoding strategy with Illumina sequencing. This technology labels all reads that originate from a small number (~5-10) DNA molecules ~50Kbp in length with the same molecular barcode. These barcoded reads contain long-range sequence information that is advantageous for identification of structural variants. We present Novel Adjacency Identification with Barcoded Reads (NAIBR), an algorithm to identify structural variants in linked-read sequencing data. NAIBR predicts novel adjacencies in a individual genome resulting from structural variants using a probabilistic model that combines multiple signals in barcoded reads. We show that NAIBR outperforms several existing methods for structural variant identification - including two recent methods that also analyze linked-reads - on simulated sequencing data and 10X whole-genome sequencing data from the NA12878 human genome and the HCC1954 breast cancer cell line. Several of the novel somatic structural variants identified in HCC1954 overlap known cancer genes. Software is available at compbio.cs.brown.edu/software. braphael@princeton.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. SAAS: Short Amino Acid Sequence - A Promising Protein Secondary Structure Prediction Method of Single Sequence

    Directory of Open Access Journals (Sweden)

    Zhou Yuan Wu

    2013-07-01

    Full Text Available In statistical methods of predicting protein secondary structure, many researchers focus on single amino acid frequencies in α-helices, β-sheets, and so on, or the impact near amino acids on an amino acid forming a secondary structure. But the paper considers a short sequence of amino acids (3, 4, 5 or 6 amino acids as integer, and statistics short sequence's probability forming secondary structure. Also, many researchers select low homologous sequences as statistical database. But this paper select whole PDB database. In this paper we propose a strategy to predict protein secondary structure using simple statistical method. Numerical computation shows that, short amino acids sequence as integer to statistics, which can easy see trend of short sequence forming secondary structure, and it will work well to select large statistical database (whole PDB database without considering homologous, and Q3 accuracy is ca. 74% using this paper proposed simple statistical method, but accuracy of others statistical methods is less than 70%.

  17. Correlated mutations in protein sequences: Phylogenetic and structural effects

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A.S. [Los Alamos National Lab., NM (United States). Theoretical Div.]|[Santa Fe Inst., NM (United States); Giraud, B.G. [C.E.N. Saclay, Gif/Yvette (France). Service Physique Theorique; Liu, L.C. [Los Alamos National Lab., NM (United States). Theoretical Div.; Stormo, G.D. [Univ. of Colorado, Boulder, CO (United States). Dept. of Molecular, Cellular and Developmental Biology

    1998-12-01

    Covariation analysis of sets of aligned sequences for RNA molecules is relatively successful in elucidating RNA secondary structure, as well as some aspects of tertiary structure. Covariation analysis of sets of aligned sequences for protein molecules is successful in certain instances in elucidating certain structural and functional links, but in general, pairs of sites displaying highly covarying mutations in protein sequences do not necessarily correspond to sites that are spatially close in the protein structure. In this paper the authors identify two reasons why naive use of covariation analysis for protein sequences fails to reliably indicate sequence positions that are spatially proximate. The first reason involves the bias introduced in calculation of covariation measures due to the fact that biological sequences are generally related by a non-trivial phylogenetic tree. The authors present a null-model approach to solve this problem. The second reason involves linked chains of covariation which can result in pairs of sites displaying significant covariation even though they are not spatially proximate. They present a maximum entropy solution to this classic problem of causation versus correlation. The methodologies are validated in simulation.

  18. Soil-structure interaction including nonlinear soil

    OpenAIRE

    Gicev, Vlado

    2008-01-01

    There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.

  19. Music and language perception: expectations, structural integration, and cognitive sequencing.

    Science.gov (United States)

    Tillmann, Barbara

    2012-10-01

    Music can be described as sequences of events that are structured in pitch and time. Studying music processing provides insight into how complex event sequences are learned, perceived, and represented by the brain. Given the temporal nature of sound, expectations, structural integration, and cognitive sequencing are central in music perception (i.e., which sounds are most likely to come next and at what moment should they occur?). This paper focuses on similarities in music and language cognition research, showing that music cognition research provides insight into the understanding of not only music processing but also language processing and the processing of other structured stimuli. The hypothesis of shared resources between music and language processing and of domain-general dynamic attention has motivated the development of research to test music as a means to stimulate sensory, cognitive, and motor processes. Copyright © 2012 Cognitive Science Society, Inc.

  20. Reconstruction of ancestral RNA sequences under multiple structural constraints

    Directory of Open Access Journals (Sweden)

    Olivier Tremblay-Savard

    2016-11-01

    Full Text Available Abstract Background Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. Methods In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously calculates ancestral RNA sequences for these two families. Results We test our methodology on simulated data sets, and show that achARNement outperforms classical maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number of candidate sequences. To conclude this study, we apply our algorithms on the Glm clan and the FinP-traJ clan from the Rfam database. Conclusions Our results show that our methods reconstruct small sets of high-quality candidate ancestors with better agreement to the two target structures than with classical approaches. Our program is freely available at: http://csb.cs.mcgill.ca/acharnement .

  1. Reconstruction of ancestral RNA sequences under multiple structural constraints.

    Science.gov (United States)

    Tremblay-Savard, Olivier; Reinharz, Vladimir; Waldispühl, Jérôme

    2016-11-11

    Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA) families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously calculates ancestral RNA sequences for these two families. We test our methodology on simulated data sets, and show that achARNement outperforms classical maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number of candidate sequences. To conclude this study, we apply our algorithms on the Glm clan and the FinP-traJ clan from the Rfam database. Our results show that our methods reconstruct small sets of high-quality candidate ancestors with better agreement to the two target structures than with classical approaches. Our program is freely available at: http://csb.cs.mcgill.ca/acharnement .

  2. MODexplorer: an integrated tool for exploring protein sequence, structure and function relationships.

    KAUST Repository

    Kosinski, Jan

    2013-02-08

    SUMMARY: MODexplorer is an integrated tool aimed at exploring the sequence, structural and functional diversity in protein families useful in homology modeling and in analyzing protein families in general. It takes as input either the sequence or the structure of a protein and provides alignments with its homologs along with a variety of structural and functional annotations through an interactive interface. The annotations include sequence conservation, similarity scores, ligand-, DNA- and RNA-binding sites, secondary structure, disorder, crystallographic structure resolution and quality scores of models implied by the alignments to the homologs of known structure. MODexplorer can be used to analyze sequence and structural conservation among the structures of similar proteins, to find structures of homologs solved in different conformational state or with different ligands and to transfer functional annotations. Furthermore, if the structure of the query is not known, MODexplorer can be used to select the modeling templates taking all this information into account and to build a comparative model. AVAILABILITY AND IMPLEMENTATION: Freely available on the web at http://modorama.biocomputing.it/modexplorer. Website implemented in HTML and JavaScript with all major browsers supported. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

  3. MODexplorer: an integrated tool for exploring protein sequence, structure and function relationships.

    KAUST Repository

    Kosinski, Jan; Barbato, Alessandro; Tramontano, Anna

    2013-01-01

    SUMMARY: MODexplorer is an integrated tool aimed at exploring the sequence, structural and functional diversity in protein families useful in homology modeling and in analyzing protein families in general. It takes as input either the sequence or the structure of a protein and provides alignments with its homologs along with a variety of structural and functional annotations through an interactive interface. The annotations include sequence conservation, similarity scores, ligand-, DNA- and RNA-binding sites, secondary structure, disorder, crystallographic structure resolution and quality scores of models implied by the alignments to the homologs of known structure. MODexplorer can be used to analyze sequence and structural conservation among the structures of similar proteins, to find structures of homologs solved in different conformational state or with different ligands and to transfer functional annotations. Furthermore, if the structure of the query is not known, MODexplorer can be used to select the modeling templates taking all this information into account and to build a comparative model. AVAILABILITY AND IMPLEMENTATION: Freely available on the web at http://modorama.biocomputing.it/modexplorer. Website implemented in HTML and JavaScript with all major browsers supported. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

  4. Population death sequences and Cox processes driven by interacting Feller diffusions

    CERN Document Server

    Wei Gang; Feng Jian Feng

    2002-01-01

    We carry out a complete study on the relationship between Cox processes driven by interacting Feller diffusions and death sequences of immigration-emigration linked population networks. It is first proved that the Cox process driven by a Feller diffusion is equivalent to the death sequence of a birth and death process. The conclusion is then generalized to the case of Cox processes driven by interacting Feller diffusions and death sequences of interacting populations.

  5. Population death sequences and Cox processes driven by interacting Feller diffusions

    International Nuclear Information System (INIS)

    Wei Gang; Clifford, Peter; Feng Jianfeng

    2002-01-01

    We carry out a complete study on the relationship between Cox processes driven by interacting Feller diffusions and death sequences of immigration-emigration linked population networks. It is first proved that the Cox process driven by a Feller diffusion is equivalent to the death sequence of a birth and death process. The conclusion is then generalized to the case of Cox processes driven by interacting Feller diffusions and death sequences of interacting populations

  6. Population death sequences and Cox processes driven by interacting Feller diffusions

    Energy Technology Data Exchange (ETDEWEB)

    Wei Gang [Department of Mathematics, Baptist University, Hong Kong (China); Clifford, Peter [Department of Statistics, 1 South Parks Road, Oxford (United Kingdom); Feng Jianfeng [COGS, Sussex University, Brighton (United Kingdom)

    2002-11-08

    We carry out a complete study on the relationship between Cox processes driven by interacting Feller diffusions and death sequences of immigration-emigration linked population networks. It is first proved that the Cox process driven by a Feller diffusion is equivalent to the death sequence of a birth and death process. The conclusion is then generalized to the case of Cox processes driven by interacting Feller diffusions and death sequences of interacting populations.

  7. Fluid Structure Interaction for Hydraulic Problems

    International Nuclear Information System (INIS)

    Souli, Mhamed; Aquelet, Nicolas

    2011-01-01

    Fluid Structure interaction plays an important role in engineering applications. Physical phenomena such as flow induced vibration in nuclear industry, fuel sloshing tank in automotive industry or rotor stator interaction in turbo machinery, can lead to structure deformation and sometimes to failure. In order to solve fluid structure interaction problems, the majority of numerical tests consists in using two different codes to separately solve pressure of the fluid and structural displacements. In this paper, a unique code with an ALE formulation approach is used to implicitly calculate the pressure of an incompressible fluid applied to the structure. The development of the ALE method as well as the coupling in a computational structural dynamic code, allows to solve more large industrial problems related to fluid structure coupling. (authors)

  8. Massively Parallel Interrogation of Aptamer Sequence, Structure and Function

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N O; Tok, J B; Tarasow, T M

    2008-02-08

    Optimization of high affinity reagents is a significant bottleneck in medicine and the life sciences. The ability to synthetically create thousands of permutations of a lead high-affinity reagent and survey the properties of individual permutations in parallel could potentially relieve this bottleneck. Aptamers are single stranded oligonucleotides affinity reagents isolated by in vitro selection processes and as a class have been shown to bind a wide variety of target molecules. Methodology/Principal Findings. High density DNA microarray technology was used to synthesize, in situ, arrays of approximately 3,900 aptamer sequence permutations in triplicate. These sequences were interrogated on-chip for their ability to bind the fluorescently-labeled cognate target, immunoglobulin E, resulting in the parallel execution of thousands of experiments. Fluorescence intensity at each array feature was well resolved and shown to be a function of the sequence present. The data demonstrated high intra- and interchip correlation between the same features as well as among the sequence triplicates within a single array. Consistent with aptamer mediated IgE binding, fluorescence intensity correlated strongly with specific aptamer sequences and the concentration of IgE applied to the array. The massively parallel sequence-function analyses provided by this approach confirmed the importance of a consensus sequence found in all 21 of the original IgE aptamer sequences and support a common stem:loop structure as being the secondary structure underlying IgE binding. The microarray application, data and results presented illustrate an efficient, high information content approach to optimizing aptamer function. It also provides a foundation from which to better understand and manipulate this important class of high affinity biomolecules.

  9. Massively parallel interrogation of aptamer sequence, structure and function.

    Directory of Open Access Journals (Sweden)

    Nicholas O Fischer

    Full Text Available BACKGROUND: Optimization of high affinity reagents is a significant bottleneck in medicine and the life sciences. The ability to synthetically create thousands of permutations of a lead high-affinity reagent and survey the properties of individual permutations in parallel could potentially relieve this bottleneck. Aptamers are single stranded oligonucleotides affinity reagents isolated by in vitro selection processes and as a class have been shown to bind a wide variety of target molecules. METHODOLOGY/PRINCIPAL FINDINGS: High density DNA microarray technology was used to synthesize, in situ, arrays of approximately 3,900 aptamer sequence permutations in triplicate. These sequences were interrogated on-chip for their ability to bind the fluorescently-labeled cognate target, immunoglobulin E, resulting in the parallel execution of thousands of experiments. Fluorescence intensity at each array feature was well resolved and shown to be a function of the sequence present. The data demonstrated high intra- and inter-chip correlation between the same features as well as among the sequence triplicates within a single array. Consistent with aptamer mediated IgE binding, fluorescence intensity correlated strongly with specific aptamer sequences and the concentration of IgE applied to the array. CONCLUSION AND SIGNIFICANCE: The massively parallel sequence-function analyses provided by this approach confirmed the importance of a consensus sequence found in all 21 of the original IgE aptamer sequences and support a common stem:loop structure as being the secondary structure underlying IgE binding. The microarray application, data and results presented illustrate an efficient, high information content approach to optimizing aptamer function. It also provides a foundation from which to better understand and manipulate this important class of high affinity biomolecules.

  10. EPRI research on soil-structure interaction

    International Nuclear Information System (INIS)

    Tang, H.T.

    1986-01-01

    The paper briefly discusses the background of soil-structure interaction research and identifies the nuclear industry's need for a realistic, experimentally qualified soil-structure interaction analysis methodology for nuclear power plant design to reduce excessive conservatism and stabilize the licensing process. EPRI research and joint research efforts between EPRI and Niagara Mohawk Power Corporation, Taiwan Power Company, and the Japanese Century Research Institute for Electric Power Industry are outlined. As a result of these and other research efforts, improvement in soil-structure interactions methodologies is being realized

  11. Design of Mariner 9 Science Sequences using Interactive Graphics Software

    Science.gov (United States)

    Freeman, J. E.; Sturms, F. M, Jr.; Webb, W. A.

    1973-01-01

    This paper discusses the analyst/computer system used to design the daily science sequences required to carry out the desired Mariner 9 science plan. The Mariner 9 computer environment, the development and capabilities of the science sequence design software, and the techniques followed in the daily mission operations are discussed. Included is a discussion of the overall mission operations organization and the individual components which played an essential role in the sequence design process. A summary of actual sequences processed, a discussion of problems encountered, and recommendations for future applications are given.

  12. JNSViewer-A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures.

    Science.gov (United States)

    Shi, Jieming; Li, Xi; Dong, Min; Graham, Mitchell; Yadav, Nehul; Liang, Chun

    2017-01-01

    Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome) were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html.

  13. JNSViewer—A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures

    Science.gov (United States)

    Dong, Min; Graham, Mitchell; Yadav, Nehul

    2017-01-01

    Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome) were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html. PMID:28582416

  14. JNSViewer-A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures.

    Directory of Open Access Journals (Sweden)

    Jieming Shi

    Full Text Available Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html.

  15. TECHNICAL NOTES SEISMIC SOIL-STRUCTURE INTERACTION ...

    African Journals Online (AJOL)

    dell

    SEISMIC SOIL-STRUCTURE INTERACTION AS A POTENTIAL TOOL FOR. ECONOMICAL ... ground motion at the interface with the rock. The soil can .... half space have an elastic modulus of E and a mass density of ρ . .... The trial solution to.

  16. Toolkit Design for Interactive Structured Graphics

    National Research Council Canada - National Science Library

    Bederson, Benjamin B; Grosjean, Jesse; Meyer, Jon

    2003-01-01

    .... We describe Jazz (a polylithic toolkit) and Piccolo (a monolithic toolkit), each of which we built to support interactive 2D structured graphics applications in general, and Zoomable User Interface applications in particular...

  17. Sequence Dependent Interactions Between DNA and Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Roxbury, Daniel

    It is known that single-stranded DNA adopts a helical wrap around a single-walled carbon nanotube (SWCNT), forming a water-dispersible hybrid molecule. The ability to sort mixtures of SWCNTs based on chirality (electronic species) has recently been demonstrated using special short DNA sequences that recognize certain matching SWCNTs of specific chirality. This thesis investigates the intricacies of DNA-SWCNT sequence-specific interactions through both experimental and molecular simulation studies. The DNA-SWCNT binding strengths were experimentally quantified by studying the kinetics of DNA replacement by a surfactant on the surface of particular SWCNTs. Recognition ability was found to correlate strongly with measured binding strength, e.g. DNA sequence (TAT)4 was found to bind 20 times stronger to the (6,5)-SWCNT than sequence (TAT)4T. Next, using replica exchange molecular dynamics (REMD) simulations, equilibrium structures formed by (a) single-strands and (b) multiple-strands of 12-mer oligonucleotides adsorbed on various SWCNTs were explored. A number of structural motifs were discovered in which the DNA strand wraps around the SWCNT and 'stitches' to itself via hydrogen bonding. Great variability among equilibrium structures was observed and shown to be directly influenced by DNA sequence and SWCNT type. For example, the (6,5)-SWCNT DNA recognition sequence, (TAT)4, was found to wrap in a tight single-stranded right-handed helical conformation. In contrast, DNA sequence T12 forms a beta-barrel left-handed structure on the same SWCNT. These are the first theoretical indications that DNA-based SWCNT selectivity can arise on a molecular level. In a biomedical collaboration with the Mayo Clinic, pathways for DNA-SWCNT internalization into healthy human endothelial cells were explored. Through absorbance spectroscopy, TEM imaging, and confocal fluorescence microscopy, we showed that intracellular concentrations of SWCNTs far exceeded those of the incubation

  18. PSAIA – Protein Structure and Interaction Analyzer

    Directory of Open Access Journals (Sweden)

    Vlahoviček Kristian

    2008-04-01

    Full Text Available Abstract Background PSAIA (Protein Structure and Interaction Analyzer was developed to compute geometric parameters for large sets of protein structures in order to predict and investigate protein-protein interaction sites. Results In addition to most relevant established algorithms, PSAIA offers a new method PIADA (Protein Interaction Atom Distance Algorithm for the determination of residue interaction pairs. We found that PIADA produced more satisfactory results than comparable algorithms implemented in PSAIA. Particular advantages of PSAIA include its capacity to combine different methods to detect the locations and types of interactions between residues and its ability, without any further automation steps, to handle large numbers of protein structures and complexes. Generally, the integration of a variety of methods enables PSAIA to offer easier automation of analysis and greater reliability of results. PSAIA can be used either via a graphical user interface or from the command-line. Results are generated in either tabular or XML format. Conclusion In a straightforward fashion and for large sets of protein structures, PSAIA enables the calculation of protein geometric parameters and the determination of location and type for protein-protein interaction sites. XML formatted output enables easy conversion of results to various formats suitable for statistic analysis. Results from smaller data sets demonstrated the influence of geometry on protein interaction sites. Comprehensive analysis of properties of large data sets lead to new information useful in the prediction of protein-protein interaction sites.

  19. High-Throughput Sequencing Based Methods of RNA Structure Investigation

    DEFF Research Database (Denmark)

    Kielpinski, Lukasz Jan

    In this thesis we describe the development of four related methods for RNA structure probing that utilize massive parallel sequencing. Using them, we were able to gather structural data for multiple, long molecules simultaneously. First, we have established an easy to follow experimental...... and computational protocol for detecting the reverse transcription termination sites (RTTS-Seq). This protocol was subsequently applied to hydroxyl radical footprinting of three dimensional RNA structures to give a probing signal that correlates well with the RNA backbone solvent accessibility. Moreover, we applied...

  20. Universality Classes of Interaction Structures for NK Fitness Landscapes

    Science.gov (United States)

    Hwang, Sungmin; Schmiegelt, Benjamin; Ferretti, Luca; Krug, Joachim

    2018-02-01

    Kauffman's NK-model is a paradigmatic example of a class of stochastic models of genotypic fitness landscapes that aim to capture generic features of epistatic interactions in multilocus systems. Genotypes are represented as sequences of L binary loci. The fitness assigned to a genotype is a sum of contributions, each of which is a random function defined on a subset of k ≤ L loci. These subsets or neighborhoods determine the genetic interactions of the model. Whereas earlier work on the NK model suggested that most of its properties are robust with regard to the choice of neighborhoods, recent work has revealed an important and sometimes counter-intuitive influence of the interaction structure on the properties of NK fitness landscapes. Here we review these developments and present new results concerning the number of local fitness maxima and the statistics of selectively accessible (that is, fitness-monotonic) mutational pathways. In particular, we develop a unified framework for computing the exponential growth rate of the expected number of local fitness maxima as a function of L, and identify two different universality classes of interaction structures that display different asymptotics of this quantity for large k. Moreover, we show that the probability that the fitness landscape can be traversed along an accessible path decreases exponentially in L for a large class of interaction structures that we characterize as locally bounded. Finally, we discuss the impact of the NK interaction structures on the dynamics of evolution using adaptive walk models.

  1. Adaptive compressive learning for prediction of protein-protein interactions from primary sequence.

    Science.gov (United States)

    Zhang, Ya-Nan; Pan, Xiao-Yong; Huang, Yan; Shen, Hong-Bin

    2011-08-21

    Protein-protein interactions (PPIs) play an important role in biological processes. Although much effort has been devoted to the identification of novel PPIs by integrating experimental biological knowledge, there are still many difficulties because of lacking enough protein structural and functional information. It is highly desired to develop methods based only on amino acid sequences for predicting PPIs. However, sequence-based predictors are often struggling with the high-dimensionality causing over-fitting and high computational complexity problems, as well as the redundancy of sequential feature vectors. In this paper, a novel computational approach based on compressed sensing theory is proposed to predict yeast Saccharomyces cerevisiae PPIs from primary sequence and has achieved promising results. The key advantage of the proposed compressed sensing algorithm is that it can compress the original high-dimensional protein sequential feature vector into a much lower but more condensed space taking the sparsity property of the original signal into account. What makes compressed sensing much more attractive in protein sequence analysis is its compressed signal can be reconstructed from far fewer measurements than what is usually considered necessary in traditional Nyquist sampling theory. Experimental results demonstrate that proposed compressed sensing method is powerful for analyzing noisy biological data and reducing redundancy in feature vectors. The proposed method represents a new strategy of dealing with high-dimensional protein discrete model and has great potentiality to be extended to deal with many other complicated biological systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Fundamental trends in fluid-structure interaction

    CERN Document Server

    Galdi, Giovanni P

    2010-01-01

    The interaction of a fluid with a solid body is a widespread phenomenon in nature, occurring at different scales and different applied disciplines. Interestingly enough, even though the mathematical theory of the motion of bodies in a liquid is one of the oldest and most classical problems in fluid mechanics, mathematicians have, only very recently, become interested in a systematic study of the basic problems related to fluid-structure interaction, from both analytical and numerical viewpoints. ""Fundamental Trends in Fluid-Structure Interaction"" is a unique collection of important papers wr

  3. Cation-π interactions in structural biology

    OpenAIRE

    Gallivan, Justin P.; Dougherty, Dennis A.

    1999-01-01

    Cation-pi interactions in protein structures are identified and evaluated by using an energy-based criterion for selecting significant sidechain pairs. Cation-pi interactions are found to be common among structures in the Protein Data Bank, and it is clearly demonstrated that, when a cationic sidechain (Lys or Arg) is near an aromatic sidechain (Phe, Tyr, or Trp), the geometry is biased toward one that would experience a favorable cation-pi interaction. The sidechain of Arg is more likely tha...

  4. Interacting boson model with surface delta interaction between nucleons: Structure and interaction of bosons

    International Nuclear Information System (INIS)

    Druce, C.H.; Moszkowski, S.A.

    1986-01-01

    The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. We have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interaction for the case of degenerate orbits. A connection is made between these coefficients and the parameters of the interaction boson model Hamiltonian. A link between the latter parameters and the single boson energies is suggested

  5. Interacting boson model with surface delta interaction between nucleons: Structure and interaction of bosons

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.; Moszkowski, S.A.

    1986-01-01

    The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. We have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interaction for the case of degenerate orbits. A connection is made between these coefficients and the parameters of the interaction boson model Hamiltonian. A link between the latter parameters and the single boson energies is suggested.

  6. Analysis of Pumphouse RCC Frame Structure for Soil Structure Interaction

    OpenAIRE

    Mr A.S. Thombare; Prof. V.P. Kumbhar; Prof. A.H. Kumbhar

    2016-01-01

    When structure is built on ground some elements of structure are direct contact with soil. When loads are applied on structure internal forces are developed in both the structure as well as in soil. It results in deformation of both the components which are independent to each other. This are called soil structure interaction. The analysis is done by using (Bentley STAAD.Pro V8i Version 2007) software. The analysis carried out been pump house structure R.C.C. frame structure find ...

  7. Structural characterization of HDPE/LLDPE blend-based nano composites obtained by different blending sequence

    International Nuclear Information System (INIS)

    Passador, Fabio R.; Ruvolo Filho, Adhemar; Pessan, Luiz A.

    2011-01-01

    The blending sequence affects the morphology formation of the nanocomposites. In this work, the blending sequences were explored to determine its influence in the rheological behavior of HDPE/LLDPE/OMMT nanocomposites. The nanocomposites were obtained by melt-intercalation using a mixture of LLDPE-g-MA and HDPE-g-MA as compatibilizer system in a torque rheometer at 180 deg C and five blending sequences were studied. The materials structures were characterized by wide angle X-ray diffraction (WAXD) and by rheological properties. The nanoclay's addition increased the shear viscosity at low shear rates, changing the behavior of HDPE/LLDPE matrix to a Bingham model behavior with an apparent yield stress. Intense interactions were obtained for the blending sequence where LLDPE and/or LLDPE-g-MA were first reinforced with organoclay since the intercalation process occurs preferentially in the amorphous phase. (author)

  8. Mode Interaction in Structures - An Overview

    DEFF Research Database (Denmark)

    Byskov, Esben

    2004-01-01

    Abstract Koiter [1] was the first to formulate an asymptotic expansion to investigate postbuckling behavior and imperfection sensitivity of elastic structures. Since then, a large number of analyses of particular structures have appeared as well as some new expansions aimed at specific problems, ...... analyses must always be preferred because asymptotic expansions are obsolete. Keywords: stability, elastic, mode interaction....

  9. IVisTMSA: Interactive Visual Tools for Multiple Sequence Alignments.

    Science.gov (United States)

    Pervez, Muhammad Tariq; Babar, Masroor Ellahi; Nadeem, Asif; Aslam, Naeem; Naveed, Nasir; Ahmad, Sarfraz; Muhammad, Shah; Qadri, Salman; Shahid, Muhammad; Hussain, Tanveer; Javed, Maryam

    2015-01-01

    IVisTMSA is a software package of seven graphical tools for multiple sequence alignments. MSApad is an editing and analysis tool. It can load 409% more data than Jalview, STRAP, CINEMA, and Base-by-Base. MSA comparator allows the user to visualize consistent and inconsistent regions of reference and test alignments of more than 21-MB size in less than 12 seconds. MSA comparator is 5,200% efficient and more than 40% efficient as compared to BALiBASE c program and FastSP, respectively. MSA reconstruction tool provides graphical user interfaces for four popular aligners and allows the user to load several sequence files at a time. FASTA generator converts seven formats of alignments of unlimited size into FASTA format in a few seconds. MSA ID calculator calculates identity matrix of more than 11,000 sequences with a sequence length of 2,696 base pairs in less than 100 seconds. Tree and Distance Matrix calculation tools generate phylogenetic tree and distance matrix, respectively, using neighbor joining% identity and BLOSUM 62 matrix.

  10. Hybrid modelling of soil-structure interaction for embedded structures

    International Nuclear Information System (INIS)

    Gupta, S.; Penzien, J.

    1981-01-01

    The basic methods currently being used for the analysis of soil-structure interaction fail to properly model three-dimensional embedded structures with flexible foundations. A hybrid model for the analysis of soil-structure interaction is developed in this investigation which takes advantage of the desirable features of both the finite element and substructure methods and which minimizes their undesirable features. The hybrid model is obtained by partitioning the total soil-structure system into a nearfield and a far-field with a smooth hemispherical interface. The near-field consists of the structure and a finite region of soil immediately surrounding its base. The entire near-field may be modelled in three-dimensional form using the finite element method; thus, taking advantage of its ability to model irregular geometries, and the non-linear soil behavior in the immediate vicinity of the structure. (orig./WL)

  11. Sequence Design for a Test Tube of Interacting Nucleic Acid Strands.

    Science.gov (United States)

    Wolfe, Brian R; Pierce, Niles A

    2015-10-16

    We describe an algorithm for designing the equilibrium base-pairing properties of a test tube of interacting nucleic acid strands. A target test tube is specified as a set of desired "on-target" complexes, each with a target secondary structure and target concentration, and a set of undesired "off-target" complexes, each with vanishing target concentration. Sequence design is performed by optimizing the test tube ensemble defect, corresponding to the concentration of incorrectly paired nucleotides at equilibrium evaluated over the ensemble of the test tube. To reduce the computational cost of accepting or rejecting mutations to a random initial sequence, the structural ensemble of each on-target complex is hierarchically decomposed into a tree of conditional subensembles, yielding a forest of decomposition trees. Candidate sequences are evaluated efficiently at the leaf level of the decomposition forest by estimating the test tube ensemble defect from conditional physical properties calculated over the leaf subensembles. As optimized subsequences are merged toward the root level of the forest, any emergent defects are eliminated via ensemble redecomposition and sequence reoptimization. After successfully merging subsequences to the root level, the exact test tube ensemble defect is calculated for the first time, explicitly checking for the effect of the previously neglected off-target complexes. Any off-target complexes that form at appreciable concentration are hierarchically decomposed, added to the decomposition forest, and actively destabilized during subsequent forest reoptimization. For target test tubes representative of design challenges in the molecular programming and synthetic biology communities, our test tube design algorithm typically succeeds in achieving a normalized test tube ensemble defect ≤1% at a design cost within an order of magnitude of the cost of test tube analysis.

  12. A method for partitioning the information contained in a protein sequence between its structure and function.

    Science.gov (United States)

    Possenti, Andrea; Vendruscolo, Michele; Camilloni, Carlo; Tiana, Guido

    2018-05-23

    Proteins employ the information stored in the genetic code and translated into their sequences to carry out well-defined functions in the cellular environment. The possibility to encode for such functions is controlled by the balance between the amount of information supplied by the sequence and that left after that the protein has folded into its structure. We study the amount of information necessary to specify the protein structure, providing an estimate that keeps into account the thermodynamic properties of protein folding. We thus show that the information remaining in the protein sequence after encoding for its structure (the 'information gap') is very close to what needed to encode for its function and interactions. Then, by predicting the information gap directly from the protein sequence, we show that it may be possible to use these insights from information theory to discriminate between ordered and disordered proteins, to identify unknown functions, and to optimize artificially-designed protein sequences. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  13. WildSpan: mining structured motifs from protein sequences

    Directory of Open Access Journals (Sweden)

    Chen Chien-Yu

    2011-03-01

    Full Text Available Abstract Background Automatic extraction of motifs from biological sequences is an important research problem in study of molecular biology. For proteins, it is desired to discover sequence motifs containing a large number of wildcard symbols, as the residues associated with functional sites are usually largely separated in sequences. Discovering such patterns is time-consuming because abundant combinations exist when long gaps (a gap consists of one or more successive wildcards are considered. Mining algorithms often employ constraints to narrow down the search space in order to increase efficiency. However, improper constraint models might degrade the sensitivity and specificity of the motifs discovered by computational methods. We previously proposed a new constraint model to handle large wildcard regions for discovering functional motifs of proteins. The patterns that satisfy the proposed constraint model are called W-patterns. A W-pattern is a structured motif that groups motif symbols into pattern blocks interleaved with large irregular gaps. Considering large gaps reflects the fact that functional residues are not always from a single region of protein sequences, and restricting motif symbols into clusters corresponds to the observation that short motifs are frequently present within protein families. To efficiently discover W-patterns for large-scale sequence annotation and function prediction, this paper first formally introduces the problem to solve and proposes an algorithm named WildSpan (sequential pattern mining across large wildcard regions that incorporates several pruning strategies to largely reduce the mining cost. Results WildSpan is shown to efficiently find W-patterns containing conserved residues that are far separated in sequences. We conducted experiments with two mining strategies, protein-based and family-based mining, to evaluate the usefulness of W-patterns and performance of WildSpan. The protein-based mining mode

  14. Algebraic structure of open string interactions

    International Nuclear Information System (INIS)

    Ramond, P.; Rodgers, V.G.J.

    1986-05-01

    Starting from the gauge invariant equations of motion for the free open string we show how to generate interactions by analogy with Yang-Mills. We postulate Non-Abelian transformation laws acting on the fields of the gauge invariant free open string theory. By demanding algebraic closure we then derive a set of consistency requirements and show that they lead to the construction of the minimal interacting equations which contain no cubic terms away from the physical gauge. We present explicit solutions to lowest interacting order for both vertices and structure functions. 14 refs

  15. Algebraic structure of open-string interactions

    International Nuclear Information System (INIS)

    Ramond, P.; Rodgers, V.G.J.

    1986-01-01

    Starting from the gauge-invariant equations of motion for the free open string we show how to generate interactions by analogy with the Yang-Mills system. We postulate non-Abelian transformation laws acting on the fields of the gauge-invariant free open-string theory. By demanding algebraic closure we then derive a set of consistency requirements and show that they lead to the construction of the minimal interacting equations which contain no cubic terms away from the physical gauge. We present explicit solutions to lowest interacting order for both vertices and structure functions

  16. Hadronic interaction and structure of exotic nuclei

    International Nuclear Information System (INIS)

    Otsuka, Takaharu

    2009-01-01

    I will overview recent studies on the evolution of the shell structure in stable and exotic nuclei, and will show its relevance to hadronic interaction, including nuclear forces. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The shell structure and existing limit of nuclei depend also on the three-body interaction in a specific way. I will sketch how the Δ-hole excitation induced three-body force (Fujita-Miyazawa force) modifies them. (author)

  17. The sequence, structure and evolutionary features of HOTAIR in mammals

    Science.gov (United States)

    2011-01-01

    Background An increasing number of long noncoding RNAs (lncRNAs) have been identified recently. Different from all the others that function in cis to regulate local gene expression, the newly identified HOTAIR is located between HoxC11 and HoxC12 in the human genome and regulates HoxD expression in multiple tissues. Like the well-characterised lncRNA Xist, HOTAIR binds to polycomb proteins to methylate histones at multiple HoxD loci, but unlike Xist, many details of its structure and function, as well as the trans regulation, remain unclear. Moreover, HOTAIR is involved in the aberrant regulation of gene expression in cancer. Results To identify conserved domains in HOTAIR and study the phylogenetic distribution of this lncRNA, we searched the genomes of 10 mammalian and 3 non-mammalian vertebrates for matches to its 6 exons and the two conserved domains within the 1800 bp exon6 using Infernal. There was just one high-scoring hit for each mammal, but many low-scoring hits were found in both mammals and non-mammalian vertebrates. These hits and their flanking genes in four placental mammals and platypus were examined to determine whether HOTAIR contained elements shared by other lncRNAs. Several of the hits were within unknown transcripts or ncRNAs, many were within introns of, or antisense to, protein-coding genes, and conservation of the flanking genes was observed only between human and chimpanzee. Phylogenetic analysis revealed discrete evolutionary dynamics for orthologous sequences of HOTAIR exons. Exon1 at the 5' end and a domain in exon6 near the 3' end, which contain domains that bind to multiple proteins, have evolved faster in primates than in other mammals. Structures were predicted for exon1, two domains of exon6 and the full HOTAIR sequence. The sequence and structure of two fragments, in exon1 and the domain B of exon6 respectively, were identified to robustly occur in predicted structures of exon1, domain B of exon6 and the full HOTAIR in mammals

  18. Geometrical primitives reconstruction from image sequence in an interactive context

    International Nuclear Information System (INIS)

    Monchal, L.; Aubry, P.

    1995-01-01

    We propose a method to recover 3D geometrical shape from image sequence, in a context of man machine co-operation. The human operator has to point out the edges of an object in the first image and choose a corresponding geometrical model. The algorithm tracks each relevant 2D segments describing surface discontinuities or limbs, in the images. Then, knowing motion of the camera between images, the positioning and the size of the virtual object are deduced by minimising a function. The function describes how well the virtual objects is linked to the extracted segments of the sequence, its geometrical model and pieces of information given by the operator. (author). 13 refs., 7 figs., 8 tabs

  19. Non-linear soil-structure interaction

    International Nuclear Information System (INIS)

    Wolf, J.P.

    1984-01-01

    The basic equation of motion to analyse the interaction of a non-linear structure and an irregular soil with the linear unbounded soil is formulated in the time domain. The contribution of the unbounded soil involves convolution integrals of the dynamic-stiffness coefficients in the time domain and the corresponding motions. As another possibility, a flexibility formulation fot the contribution of the unbounded soil using the dynamic-flexibility coefficients in the time domain, together with the direct-stiffness method for the structure and the irregular soil can be applied. As an example of a non-linear soil-structure-interaction analysis, the partial uplift of the basemat of a structure is examined. (Author) [pt

  20. Structural Correlates of Skilled Performance on a Motor Sequence Task

    Directory of Open Access Journals (Sweden)

    Christopher J Steele

    2012-10-01

    Full Text Available The brain regions functionally engaged in motor sequence performance are well established, but the structural characteristics of these regions and the fibre pathways involved have been less well studied. In addition, relatively few studies have combined multiple magnetic resonance imaging (MRI and behavioural performance measures in the same sample. Therefore, the current study used diffusion tensor imaging, probabilistic tractography, and voxel-based morphometry to determine the structural correlates of skilled motor performance. Further, we compared these findings with fMRI results in the same sample. We correlated final performance and rate of improvement measures on a temporal motor sequence task with skeletonised fractional anisotropy (FA and whole brain grey matter (GM volume. Final synchronisation performance was negatively correlated with FA in white matter underlying bilateral sensorimotor cortex – an effect that was mediated by a positive correlation with radial diffusivity. Multi-fibre tractography indicated that this region contained crossing fibres from the corticospinal tract and superior longitudinal fasciculus (SLF. The identified SLF pathway linked parietal and auditory cortical regions that have been shown to be functionally engaged in this task. Thus, we hypothesise that enhanced synchronisation performance on this task may be related to greater fibre integrity of the SLF. Rate of improvement on synchronisation was positively correlated with GM volume in cerebellar lobules HVI and V – regions that showed training-related decreases in activity in the same sample. Taken together, our results link individual differences in brain structure and function to motor sequence performance on the same task. Further, our study illustrates the utility of using multiple MR measures and analysis techniques to specify the interpretation of structural findings.

  1. MPID-T2: a database for sequence-structure-function analyses of pMHC and TR/pMHC structures.

    Science.gov (United States)

    Khan, Javed Mohammed; Cheruku, Harish Reddy; Tong, Joo Chuan; Ranganathan, Shoba

    2011-04-15

    Sequence-structure-function information is critical in understanding the mechanism of pMHC and TR/pMHC binding and recognition. A database for sequence-structure-function information on pMHC and TR/pMHC interactions, MHC-Peptide Interaction Database-TR version 2 (MPID-T2), is now available augmented with the latest PDB and IMGT/3Dstructure-DB data, advanced features and new parameters for the analysis of pMHC and TR/pMHC structures. http://biolinfo.org/mpid-t2. shoba.ranganathan@mq.edu.au Supplementary data are available at Bioinformatics online.

  2. The PETfold and PETcofold web servers for intra- and intermolecular structures of multiple RNA sequences

    DEFF Research Database (Denmark)

    Seemann, Ernst Stefan; Menzel, Karl Peter; Backofen, Rolf

    2011-01-01

    gene. We present web servers to analyze multiple RNA sequences for common RNA structure and for RNA interaction sites. The web servers are based on the recent PET (Probabilistic Evolutionary and Thermodynamic) models PETfold and PETcofold, but add user friendly features ranging from a graphical layer...... to interactive usage of the predictors. Additionally, the web servers provide direct access to annotated RNA alignments, such as the Rfam 10.0 database and multiple alignments of 16 vertebrate genomes with human. The web servers are freely available at: http://rth.dk/resources/petfold/...

  3. Structural Approaches to Sequence Evolution Molecules, Networks, Populations

    CERN Document Server

    Bastolla, Ugo; Roman, H. Eduardo; Vendruscolo, Michele

    2007-01-01

    Structural requirements constrain the evolution of biological entities at all levels, from macromolecules to their networks, right up to populations of biological organisms. Classical models of molecular evolution, however, are focused at the level of the symbols - the biological sequence - rather than that of their resulting structure. Now recent advances in understanding the thermodynamics of macromolecules, the topological properties of gene networks, the organization and mutation capabilities of genomes, and the structure of populations make it possible to incorporate these key elements into a broader and deeply interdisciplinary view of molecular evolution. This book gives an account of such a new approach, through clear tutorial contributions by leading scientists specializing in the different fields involved.

  4. Thermodynamic Molecular Switch in Sequence-Specific Hydrophobic Interaction: Two Computational Models Compared

    Directory of Open Access Journals (Sweden)

    Paul Chun

    2003-01-01

    Full Text Available We have shown in our published work the existence of a thermodynamic switch in biological systems wherein a change of sign in ΔCp°(Treaction leads to a true negative minimum in the Gibbs free energy change of reaction, and hence, a maximum in the related Keq. We have examined 35 pair-wise, sequence-specific hydrophobic interactions over the temperature range of 273–333 K, based on data reported by Nemethy and Scheraga in 1962. A closer look at a single example, the pair-wise hydrophobic interaction of leucine-isoleucine, will demonstrate the significant differences when the data are analyzed using the Nemethy-Scheraga model or treated by the Planck-Benzinger methodology which we have developed. The change in inherent chemical bond energy at 0 K, ΔH°(T0 is 7.53 kcal mol-1 compared with 2.4 kcal mol-1, while ‹ts› is 365 K as compared with 355 K, for the Nemethy-Scheraga and Planck-Benzinger model, respectively. At ‹tm›, the thermal agitation energy is about five times greater than ΔH°(T0 in the Planck-Benzinger model, that is 465 K compared to 497 K in the Nemethy-Scheraga model. The results imply that the negative Gibbs free energy minimum at a well-defined ‹ts›, where TΔS° = 0 at about 355 K, has its origin in the sequence-specific hydrophobic interactions, which are highly dependent on details of molecular structure. The Nemethy-Scheraga model shows no evidence of the thermodynamic molecular switch that we have found to be a universal feature of biological interactions. The Planck-Benzinger method is the best known for evaluating the innate temperature-invariant enthalpy, ΔH°(T0, and provides for better understanding of the heat of reaction for biological molecules.

  5. Change Trajectories for Parent-Child Interaction Sequences during Parent-Child Interaction Therapy for Child Physical Abuse

    Science.gov (United States)

    Hakman, Melissa; Chaffin, Mark; Funderburk, Beverly; Silovsky, Jane F.

    2009-01-01

    Objective: Parent-child interaction therapy (PCIT) has been found to reduce future child abuse reports among physically abusive parents. Reductions in observed negative parenting behaviors mediated this benefit. The current study examined session-by-session interaction sequences in order to identify when during treatment these changes occur and…

  6. Interaction of multiwalled carbon nanotube produces structural ...

    African Journals Online (AJOL)

    Abstract. Multiwalled carbon nanotube (MWCNT) has been found to produce structural changes in Calf Thymus-DNA (CT-DNA). The interaction or binding of the multi-walled carbon nanotubes (MWCNT) was investigated in order to discover if it brings about any significant changes of the DNA double helix using CD spectra ...

  7. Strategy elimination in games with interaction structures

    NARCIS (Netherlands)

    Witzel, A.; Apt, K.R.; Zvesper, J.A.

    2009-01-01

    We study games in the presence of an interaction structure, which allows players to communicate their preferences, assuming that each player initially only knows his own preferences. We study the outcomes of iterated elimination of strictly dominated strategies (IESDS) that can be obtained in any

  8. Modeling of soil-water-structure interaction

    DEFF Research Database (Denmark)

    Tang, Tian

    as the developed nonlinear soil displacements and stresses under monotonic and cyclic loading. With the FVM nonlinear coupled soil models as a basis, multiphysics modeling of wave-seabed-structure interaction is carried out. The computations are done in an open source code environment, OpenFOAM, where FVM models...

  9. On some structure-turbulence interaction problems

    Science.gov (United States)

    Maekawa, S.; Lin, Y. K.

    1976-01-01

    The interactions between a turbulent flow structure; responding to its excitation were studied. The turbulence was typical of those associated with a boundary layer, having a cross-spectral density indicative of convection and statistical decay. A number of structural models were considered. Among the one-dimensional models were an unsupported infinite beam and a periodically supported infinite beam. The fuselage construction of an aircraft was then considered. For the two-dimensional case a simple membrane was used to illustrate the type of formulation applicable to most two-dimensional structures. Both the one-dimensional and two-dimensional structures studied were backed by a cavity filled with an initially quiescent fluid to simulate the acoustic environment when the structure forms one side of a cabin of a sea vessel or aircraft.

  10. Improving accuracy of protein-protein interaction prediction by considering the converse problem for sequence representation

    Directory of Open Access Journals (Sweden)

    Wang Yong

    2011-10-01

    Full Text Available Abstract Background With the development of genome-sequencing technologies, protein sequences are readily obtained by translating the measured mRNAs. Therefore predicting protein-protein interactions from the sequences is of great demand. The reason lies in the fact that identifying protein-protein interactions is becoming a bottleneck for eventually understanding the functions of proteins, especially for those organisms barely characterized. Although a few methods have been proposed, the converse problem, if the features used extract sufficient and unbiased information from protein sequences, is almost untouched. Results In this study, we interrogate this problem theoretically by an optimization scheme. Motivated by the theoretical investigation, we find novel encoding methods for both protein sequences and protein pairs. Our new methods exploit sufficiently the information of protein sequences and reduce artificial bias and computational cost. Thus, it significantly outperforms the available methods regarding sensitivity, specificity, precision, and recall with cross-validation evaluation and reaches ~80% and ~90% accuracy in Escherichia coli and Saccharomyces cerevisiae respectively. Our findings here hold important implication for other sequence-based prediction tasks because representation of biological sequence is always the first step in computational biology. Conclusions By considering the converse problem, we propose new representation methods for both protein sequences and protein pairs. The results show that our method significantly improves the accuracy of protein-protein interaction predictions.

  11. Data Structures: Sequence Problems, Range Queries, and Fault Tolerance

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund

    performance and money in the design of todays high speed memory technologies. Hardware, power failures, and environmental conditions such as cosmic rays and alpha particles can all alter the memory in unpredictable ways. In applications where large memory capacities are needed at low cost, it makes sense......The focus of this dissertation is on algorithms, in particular data structures that give provably ecient solutions for sequence analysis problems, range queries, and fault tolerant computing. The work presented in this dissertation is divided into three parts. In Part I we consider algorithms...... to assume that the algorithms themselves are in charge for dealing with memory faults. We investigate searching, sorting and counting algorithms and data structures that provably returns sensible information in spite of memory corruptions....

  12. Fluid-structure interaction investigations for pipelines

    International Nuclear Information System (INIS)

    Altstadt, E.; Carl, H.; Weiss, R.

    2003-12-01

    In existing Nuclear Power Plants water hammers can occur in case of an inflow of sub-cooled water into pipes or other parts of the equipment, which are filled with steam or steam-water mixture. They also may appear as the consequence of fast valve closing or opening actions or of breaks in pipelines, with single phase or two-phase flow. In the latter case, shock waves in two-phase flow must be expected. In all cases, strong dynamic stresses are induced in the wall of the equipment. Further, the change of the momentum of the liquid motion and the deformation of the component due to the dynamic stresses generate high loads on the support structures of the component, in which the water hammer respectively the shock wave occurs. The influence of the fluid-structure interaction on the magnitude of the loads on pipe walls and support structures is not yet completely understood. In case of a dynamic load caused by a pressure wave, the stresses in pipe walls, especially in bends, are different from the static case. The propagating pressure wave may cause additional non-symmetric deformations which increase the equivalent stresses in comparison to the symmetric load created by a static inner pressure. On the other hand, fluid-structure interaction causes the structure to deform, which leads to a decrease of the resulting stresses. The lack of experimental data obtained at well defined geometric boundary conditions is a significant obstacle for the validation of codes which consider fluid-structure interaction. Furthermore, up to now the feedback from structural deformations to the fluid mechanics has not been fully implemented in existing calculation software codes. Therefore, at FZR a cold water hammer test facility (CWHTF) was designed and built up. (orig.)

  13. Discovering approximate-associated sequence patterns for protein-DNA interactions

    KAUST Repository

    Chan, Tak Ming

    2010-12-30

    Motivation: The bindings between transcription factors (TFs) and transcription factor binding sites (TFBSs) are fundamental protein-DNA interactions in transcriptional regulation. Extensive efforts have been made to better understand the protein-DNA interactions. Recent mining on exact TF-TFBS-associated sequence patterns (rules) has shown great potentials and achieved very promising results. However, exact rules cannot handle variations in real data, resulting in limited informative rules. In this article, we generalize the exact rules to approximate ones for both TFs and TFBSs, which are essential for biological variations. Results: A progressive approach is proposed to address the approximation to alleviate the computational requirements. Firstly, similar TFBSs are grouped from the available TF-TFBS data (TRANSFAC database). Secondly, approximate and highly conserved binding cores are discovered from TF sequences corresponding to each TFBS group. A customized algorithm is developed for the specific objective. We discover the approximate TF-TFBS rules by associating the grouped TFBS consensuses and TF cores. The rules discovered are evaluated by matching (verifying with) the actual protein-DNA binding pairs from Protein Data Bank (PDB) 3D structures. The approximate results exhibit many more verified rules and up to 300% better verification ratios than the exact ones. The customized algorithm achieves over 73% better verification ratios than traditional methods. Approximate rules (64-79%) are shown statistically significant. Detailed variation analysis and conservation verification on NCBI records demonstrate that the approximate rules reveal both the flexible and specific protein-DNA interactions accurately. The approximate TF-TFBS rules discovered show great generalized capability of exploring more informative binding rules. © The Author 2010. Published by Oxford University Press. All rights reserved.

  14. Sequence and structural characterization of Trx-Grx type of monothiol glutaredoxins from Ashbya gossypii.

    Science.gov (United States)

    Yadav, Saurabh; Kumari, Pragati; Kushwaha, Hemant Ritturaj

    2013-01-01

    Glutaredoxins are enzymatic antioxidants which are small, ubiquitous, glutathione dependent and essentially classified under thioredoxin-fold superfamily. Glutaredoxins are classified into two types: dithiol and monothiol. Monothiol glutaredoxins which carry the signature "CGFS" as a redox active motif is known for its role in oxidative stress, inside the cell. In the present analysis, the 138 amino acid long monothiol glutaredoxin, AgGRX1 from Ashbya gossypii was identified and has been used for the analysis. The multiple sequence alignment of the AgGRX1 protein sequence revealed the characteristic motif of typical monothiol glutaredoxin as observed in various other organisms. The proposed structure of the AgGRX1 protein was used to analyze signature folds related to the thioredoxin superfamily. Further, the study highlighted the structural features pertaining to the complex mechanism of glutathione docking and interacting residues.

  15. Soil-structure interaction - an engineering evaluation

    International Nuclear Information System (INIS)

    Hadjian, A.H.

    1976-01-01

    The two methods of analysis for structure interaction, the impedance and the finite element methods, are reviewed with regard to their present capabilities to address the significant factors of the problem. The objective of the paper is to evaluate if an adequate engineering solution to the problem is provided by either approach. Questions related to the reduction of seismic motions with depth scattering of incident waves, the three-dimensionality of the real problem, soil damping, strain dependency of soil properties and the uncertainties associated with all of the above are discussed in sufficient detail. All conclusions made are based on referenced material. It appears that both methods as presently practised have not yet completely solved the problem, the impedance approach has come closer to addressing the more significant issues. Because of this finding, in addition to its simplicity and low cost, the impedance approach is the perfect engineering method for soil-structure interaction. (Auth.)

  16. Fluid structure interaction in tube bundles

    International Nuclear Information System (INIS)

    Brochard, D.; Jedrzejewski, F.; Gibert, R.J.

    1995-01-01

    A lot of industrial components contain tube bundles immersed in a fluid. The mechanical analysis of such systems requires the study of the fluid structure interaction in the tube bundle. Simplified methods, based on homogenization methods, have been developed to analyse such phenomenon and have been validated through experimental results. Generally, these methods consider only the fluid motion in a plan normal to the bundle axis. This paper will analyse, in a first part, the fluid structure interaction in a tube bundle through a 2D finite element model representing the bundle cross section. The influence of various parameters like the bundle size, and the bundle confinement will be studied. These results will be then compared with results from homogenization methods. Finally, the influence of the 3D fluid motion will be investigated, in using simplified methods. (authors). 11 refs., 12 figs., 2 tabs

  17. Many Body Structure of Strongly Interacting Systems

    CERN Document Server

    Arenhövel, Hartmuth; Drechsel, Dieter; Friedrich, Jörg; Kaiser, Karl-Heinz; Walcher, Thomas; Symposium on 20 Years of Physics at the Mainz Microtron MAMI

    2006-01-01

    This carefully edited proceedings volume provides an extensive review and analysis of the work carried out over the past 20 years at the Mainz Microtron (MAMI). This research centered around the application of Quantum Chromodynamics in the strictly nonperturbative regime at hadronic scales of about 1 fm. Due to the many degrees of freedom in hadrons at this scale the leitmotiv of this research is "Many body structure of strongly interacting systems". Further, an outlook on the research with the forthcoming upgrade of MAMI is given. This volume is an authoritative source of reference for everyone interested in the field of the electro-weak probing of the structure of hadrons.

  18. Proton-neutron interaction and nuclear structure

    International Nuclear Information System (INIS)

    Casten, R.F.

    1986-01-01

    The pervasive role of the proton-neutron interaction in nuclear structure is discussed. Particular emphasis is given to its influence on the onset of collectivity and deformation, on intruder states, and on the evolution of subshell structure. The N/sub p/N/sub n/ scheme is outlined and some applications of it to collective model calculations and to nuclei far off stability are described. The concept of N/sub p/N/sub n/ multiplets is introduced. 32 refs., 20 figs

  19. Dissipative Structures At Laser-Solid Interactions

    Science.gov (United States)

    Nanai, Laszlo

    1989-05-01

    The questions which are discussed in this lecture refer to one of sections of laser-solid interactions, namely: to formation of different dissipative structures on the surface of metals and semiconductors when they are irradiated by intensive laser light in chemically active media (f.e.air). Some particular examples of the development at different spatial and time instabilities, periodic and stochastic structures, auto-wave processes are present-ed using testing materials vanadium metal and semiconducting V205 single crystals and light sources: cw and pulsed CO2 and YAG lasers.

  20. SOIL STRUCTURE INTERACTION EFFECTS ON MULTISTOREY R/C STRUCTURES

    Directory of Open Access Journals (Sweden)

    Muberra ESER AYDEMIR

    2013-01-01

    Full Text Available This paper addresses the behavior of multistorey structures considering soil structure interaction under earthquake excitation. For this purpose, sample 3, 6, 9 storey RC frames are designed based on Turkish Seismic Design Code and analyzed in time domain with incremental dynamic analysis. Strength reduction factors are investigated for generated sample plane frames for 64 different earthquake motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil. According to the analysis result, strength reduction factors of sample buildings considering soil structure interaction are found to be almost always smaller than design strength reduction factors given in current seismic design codes, which cause an unsafe design and nonconservative design forces.

  1. Soil/Structure Interactions in Earthquakes

    Science.gov (United States)

    Ramey, G. W.; Moore, R. K.; Yoo, C. H.; Bush, Thomas D., Jr.; Stallings, J. M.

    1986-01-01

    In effort to improve design of Earthquake-resistant structures, mathematical study undertaken to simulate interactions among soil, foundation, and superstructure during various kinds of vibrational excitation. System modeled as three lumped masses connected vertically by springs, with lowest mass connected to horizontal vibrator (representing ground) through springs and dashpot. Behavior of springs described by elastic or elastoplastic force/deformation relationships. Relationships used to approximate nonlinear system behavior and soil/foundation-interface behavior.

  2. PFEM application in fluid structure interaction problems

    OpenAIRE

    Celigueta Jordana, Miguel Ángel; Larese De Tetto, Antonia; Latorre, Salvador

    2008-01-01

    In the current paper the Particle Finite Element Method (PFEM), an innovative numerical method for solving a wide spectrum of problems involving the interaction of fluid and structures, is briefly presented. Many examples of the use of the PFEM with GiD support are shown. GiD framework provides a useful pre and post processor for the specific features of the method. Its advantages and shortcomings are pointed out in the present work. Peer Reviewed

  3. Weakly interacting massive particles and stellar structure

    International Nuclear Information System (INIS)

    Bouquet, A.

    1988-01-01

    The existence of weakly interacting massive particles (WIMPs) may solve both the dark matter problem and the solar neutrino problem. Such particles affect the energy transport in the stellar cores and change the stellar structure. We present the results of an analytic approximation to compute these effects in a self-consistent way. These results can be applied to many different stars, but we focus on the decrease of the 8 B neutrino flux in the case of the Sun

  4. Implication of the cause of differences in 3D structures of proteins with high sequence identity based on analyses of amino acid sequences and 3D structures.

    Science.gov (United States)

    Matsuoka, Masanari; Sugita, Masatake; Kikuchi, Takeshi

    2014-09-18

    Proteins that share a high sequence homology while exhibiting drastically different 3D structures are investigated in this study. Recently, artificial proteins related to the sequences of the GA and IgG binding GB domains of human serum albumin have been designed. These artificial proteins, referred to as GA and GB, share 98% amino acid sequence identity but exhibit different 3D structures, namely, a 3α bundle versus a 4β + α structure. Discriminating between their 3D structures based on their amino acid sequences is a very difficult problem. In the present work, in addition to using bioinformatics techniques, an analysis based on inter-residue average distance statistics is used to address this problem. It was hard to distinguish which structure a given sequence would take only with the results of ordinary analyses like BLAST and conservation analyses. However, in addition to these analyses, with the analysis based on the inter-residue average distance statistics and our sequence tendency analysis, we could infer which part would play an important role in its structural formation. The results suggest possible determinants of the different 3D structures for sequences with high sequence identity. The possibility of discriminating between the 3D structures based on the given sequences is also discussed.

  5. Optimal packaging of FIV genomic RNA depends upon a conserved long-range interaction and a palindromic sequence within gag.

    Science.gov (United States)

    Rizvi, Tahir A; Kenyon, Julia C; Ali, Jahabar; Aktar, Suriya J; Phillip, Pretty S; Ghazawi, Akela; Mustafa, Farah; Lever, Andrew M L

    2010-10-15

    The feline immunodeficiency virus (FIV) is a lentivirus that is related to human immunodeficiency virus (HIV), causing a similar pathology in cats. It is a potential small animal model for AIDS and the FIV-based vectors are also being pursued for human gene therapy. Previous studies have mapped the FIV packaging signal (ψ) to two or more discontinuous regions within the 5' 511 nt of the genomic RNA and structural analyses have determined its secondary structure. The 5' and 3' sequences within ψ region interact through extensive long-range interactions (LRIs), including a conserved heptanucleotide interaction between R/U5 and gag. Other secondary structural elements identified include a conserved 150 nt stem-loop (SL2) and a small palindromic stem-loop within gag open reading frame that might act as a viral dimerization initiation site. We have performed extensive mutational analysis of these sequences and structures and ascertained their importance in FIV packaging using a trans-complementation assay. Disrupting the conserved heptanucleotide LRI to prevent base pairing between R/U5 and gag reduced packaging by 2.8-5.5 fold. Restoration of pairing using an alternative, non-wild type (wt) LRI sequence restored RNA packaging and propagation to wt levels, suggesting that it is the structure of the LRI, rather than its sequence, that is important for FIV packaging. Disrupting the palindrome within gag reduced packaging by 1.5-3-fold, but substitution with a different palindromic sequence did not restore packaging completely, suggesting that the sequence of this region as well as its palindromic nature is important. Mutation of individual regions of SL2 did not have a pronounced effect on FIV packaging, suggesting that either it is the structure of SL2 as a whole that is necessary for optimal packaging, or that there is redundancy within this structure. The mutational analysis presented here has further validated the previously predicted RNA secondary structure of FIV

  6. Advances in soil-structure interaction studies

    International Nuclear Information System (INIS)

    Maheshwari, B.K.

    2011-01-01

    It is utmost important that lifeline infrastructures (such as bridges, hospitals, power plants, dams etc.) are safe and functional during earthquakes as damage or collapse of these structures may have far reaching implications. A lifeline's failure may hamper relief and rescue operations required just after an earthquake and secondly its indirect economical losses may be very severe. Therefore, safety of these structures during earthquakes is vital. Further, damage to nuclear facilities during earthquake may lead to disaster. These structures should be designed adequately taking into account all the important issues. Soil-Structure Interaction (SSI) is one of the design issues, which is often overlooked and even in some cases ignored. The effects of dynamic SSI are well understood and practiced in the nuclear power industry (for large foundations of the nuclear containment structures) since sixties. However, in last decade, there are many advances in techniques of SSI and those need to be incorporated in practice. Failures of many structures occurred during the 1989 Loma Prieta and 1994 Northridge, California earthquakes and the 1995 Kobe, Japan earthquake due to SSI or a related issue. Many jetties had failed in Andaman and Nicobar islands due to Sumatra earthquake and ensuing tsunamis. It is because of this recent experience that the importance of SSI on dynamic response of structures during earthquakes has been fully realized. General belief that the SSI effects are always beneficial for the structure is not correct. Some cases have been presented where it is shown that SSI effects are detrimental for the stability of the structure. This paper addresses the effects of dynamic SSI on the response of the structures and explains its importance. Further advances in SSI studies have been discussed

  7. Viroids: from genotype to phenotype just relying on RNA sequence and structural motifs

    Directory of Open Access Journals (Sweden)

    Ricardo eFlores

    2012-06-01

    Full Text Available As a consequence of two unique physical properties, small size and circularity, viroid RNAs do not code for proteins and thus depend on RNA sequence/structural motifs for interacting with host proteins that mediate their invasion, replication, spread, and circumvention of defensive barriers. Viroid genomes fold up on themselves adopting collapsed secondary structures wherein stretches of nucleotides stabilized by Watson-Crick pairs are flanked by apparently unstructured loops. However, compelling data show that they are instead stabilized by alternative non-canonical pairs and that specific loops in the rod-like secondary structure, characteristic of Potato spindle tuber viroid and most other members of the family Pospiviroidae, are critical for replication and systemic trafficking. In contrast, rather than folding into a rod-like secondary structure, most members of the family Avsunvioidae adopt multibranched conformations occasionally stabilized by kissing loop interactions critical for viroid viability in vivo. Besides these most stable secondary structures, viroid RNAs alternatively adopt during replication transient metastable conformations containing elements of local higher-order structure, prominent among which are the hammerhead ribozymes catalyzing a key replicative step in the family Avsunvioidae, and certain conserved hairpins that also mediate replication steps in the family Pospiviroidae. Therefore, different RNA structures ⎯either global or local ⎯ determine different functions, thus highlighting the need for in-depth structural studies on viroid RNAs.

  8. SSI [soil-structure interactions] and structural benchmarks

    International Nuclear Information System (INIS)

    Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1986-01-01

    This paper presents the latest results of the ongoing program entitled, ''Standard Problems for Structural Computer Codes'', currently being worked on at BNL for the USNRC, Office of Nuclear Regulatory Research. During FY 1986, efforts were focussed on three tasks, namely, (1) an investigation of ground water effects on the response of Category I structures, (2) the Soil-Structure Interaction Workshop and (3) studies on structural benchmarks associated with Category I structures. The objective of the studies on ground water effects is to verify the applicability and the limitations of the SSI methods currently used by the industry in performing seismic evaluations of nuclear plants which are located at sites with high water tables. In a previous study by BNL (NUREG/CR-4588), it has been concluded that the pore water can influence significantly the soil-structure interaction process. This result, however, is based on the assumption of fully saturated soil profiles. Consequently, the work was further extended to include cases associated with variable water table depths. In this paper, results related to ''cut-off'' depths beyond which the pore water effects can be ignored in seismic calculations, are addressed. Comprehensive numerical data are given for soil configurations typical to those encountered in nuclear plant sites. These data were generated by using a modified version of the SLAM code which is capable of handling problems related to the dynamic response of saturated soils

  9. Insights into the fold organization of TIM barrel from interaction energy based structure networks.

    Science.gov (United States)

    Vijayabaskar, M S; Vishveshwara, Saraswathi

    2012-01-01

    There are many well-known examples of proteins with low sequence similarity, adopting the same structural fold. This aspect of sequence-structure relationship has been extensively studied both experimentally and theoretically, however with limited success. Most of the studies consider remote homology or "sequence conservation" as the basis for their understanding. Recently "interaction energy" based network formalism (Protein Energy Networks (PENs)) was developed to understand the determinants of protein structures. In this paper we have used these PENs to investigate the common non-covalent interactions and their collective features which stabilize the TIM barrel fold. We have also developed a method of aligning PENs in order to understand the spatial conservation of interactions in the fold. We have identified key common interactions responsible for the conservation of the TIM fold, despite high sequence dissimilarity. For instance, the central beta barrel of the TIM fold is stabilized by long-range high energy electrostatic interactions and low-energy contiguous vdW interactions in certain families. The other interfaces like the helix-sheet or the helix-helix seem to be devoid of any high energy conserved interactions. Conserved interactions in the loop regions around the catalytic site of the TIM fold have also been identified, pointing out their significance in both structural and functional evolution. Based on these investigations, we have developed a novel network based phylogenetic analysis for remote homologues, which can perform better than sequence based phylogeny. Such an analysis is more meaningful from both structural and functional evolutionary perspective. We believe that the information obtained through the "interaction conservation" viewpoint and the subsequently developed method of structure network alignment, can shed new light in the fields of fold organization and de novo computational protein design.

  10. Interactions of nickel(II) with histones. Stability and solution structure of complexes with CH3CO-Cys-Ala-Ile-His-NH2, a putative metal binding sequence of histone H3.

    Science.gov (United States)

    Bal, W; Lukszo, J; Jezowska-Bojczuk, M; Kasprzak, K S

    1995-01-01

    Nickel(II) compounds are established human carcinogens, but the molecular mechanisms underlying their activity are only partially known. One mechanism may include mediation by nickel of promutagenic oxidative DNA damage that depends on Ni(II) binding to chromatin. To characterize such binding at the histone moiety of chromatin, we synthesized the peptide CH3CO-Cys-Ala-Ile-His-NH2 (L), a model of the evolutionarily conserved motif in histone H3 with expected affinity for transition metals, and evaluated its reactivity toward Ni(II). Combined spectroscopic (UV/vis, CD, NMR) and potentiometric measurements showed that, at physiological pH, mixtures of Ni(II) and L yielded unusual macrochelate complexes, NiL and NiL2, in which the metal cation was bound through Cys and His side chains in a square-planar arrangement. Above pH 9, a NiH-3L complex was formed, structurally analogous to typical square-planar nickel complexes. These complexes are expected to catalyze oxidation reactions, and therefore, coordination of Ni(II) by the L motif in core histone H3 may be a key event in oxidative DNA base damage observed in the process of Ni(II)-induced carcinogenesis.

  11. Shake Table Study on the Effect of Mainshock-Aftershock Sequences on Structures with SFSI

    Directory of Open Access Journals (Sweden)

    Xiaoyang Qin

    2017-01-01

    Full Text Available Observations from recent earthquakes have emphasised the need for a better understanding of the effects of structure-footing-soil interaction on the response of structures. In order to incorporate the influences of soil, a laminar box can be used to contain the soil during experiments. The laminar box simulates field boundary conditions by allowing the soil to shear during shake table tests. A holistic response of a structure and supporting soil can thus be obtained by placing a model structure on the surface of the soil in the laminar box. This work reveals the response of structure with SFSI under mainshock and aftershock earthquake sequences. A large (2 m by 2 m laminar box, capable of simulating the behaviour of both dry and saturated soils, was constructed. A model structure was placed on dry sand in the laminar box. The setup was excited by a sequence of earthquake excitations. The first excitation was used to obtain the response of the model on sand under the mainshock of an earthquake. The second and third excitations represented the first and second aftershocks, respectively.

  12. Principles of fluid-structure interaction

    International Nuclear Information System (INIS)

    Schumann, U.; Kernforschungszentrum Karlsruhe G.m.b.H.

    1981-01-01

    Fluid-structure interaction (FSI) is an important physical phenomenon which has attracted significant attention in nuclear reactor safety analysis. Here, simple explanations of the principle effects of FSI are given and illustrated by reference to numerical and experimental results. First, a very simple fluid-structure model is introduced which consists of a spring supported piston closing a fluid filled rigid pipe. The motion of the piston and the fluid is approximately described by one degree of freedom, respectively. Depending on the load frequency and material parameters one finds that the coupled system is characterized by virtual masses and stiffnesses or by the inverse properties which are termed virtual fluidities and compressibilities. Thus the two parts interact as if they are connected in series or in parallel. The two eigenfrequencies of the coupled system enclose the eigenfrequencies of the individual fluid and structure parts. Second, the great importance of Hamilton's principle for derivation of the coupled equations of motion is emphasized. From this principle upper and lower bounds for the effective density of a heterogeneous fluid-solid mixture are deduced. Continuum models for such mixtures contain a virtual density tensor. Finally, we discuss FSI for the case of a loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR) in the first (subcooled) blowdown period. Here, the fluid imposes pressure loadings on internal structures like the core barrel and the motion of these structures influences the fluid motion. Recent experimental results obtained at the HDR are compared with numerical predictions of the FLUX 2-code. The fair agreement confirms that we have well understood the principal effects of FSI. (orig.) [de

  13. Fluid structure interaction in piping systems

    Energy Technology Data Exchange (ETDEWEB)

    Svingen, Bjoernar

    1996-12-31

    The Dr. ing. thesis relates to an analysis of fluid structure interaction in piping systems in the frequency domain. The governing equations are the water hammer equations for the liquid, and the beam-equations for the structure. The fluid and structural equations are coupled through axial stresses and fluid continuity relations controlled by the contraction factor (Poisson coupling), and continuity and force relations at the boundaries (junction coupling). A computer program has been developed using the finite element method as a discretization technique both for the fluid and for the structure. This is made for permitting analyses of large systems including branches and loops, as well as including hydraulic piping components, and experiments are executed. Excitations are made in a frequency range from zero Hz and up to at least one thousand Hz. Frequency dependent friction is modelled as stiffness proportional Rayleigh damping both for the fluid and for the structure. With respect to the water hammer equations, stiffness proportional damping is seen as an artificial (bulk) viscosity term. A physical interpretation of this term in relation to transient/oscillating hydraulic pipe-friction is given. 77 refs., 72 figs., 4 tabs.

  14. Interactions of Chromatin Context, Binding Site Sequence Content, and Sequence Evolution in Stress-Induced p53 Occupancy and Transactivation

    OpenAIRE

    Su, Dan; Wang, Xuting; Campbell, Michelle R.; Song, Lingyun; Safi, Alexias; Crawford, Gregory E.; Bell, Douglas A.

    2015-01-01

    Cellular stresses activate the tumor suppressor p53 protein leading to selective binding to DNA response elements (REs) and gene transactivation from a large pool of potential p53 REs (p53REs). To elucidate how p53RE sequences and local chromatin context interact to affect p53 binding and gene transactivation, we mapped genome-wide binding localizations of p53 and H3K4me3 in untreated and doxorubicin (DXR)-treated human lymphoblastoid cells. We examined the relationships among p53 occupancy, ...

  15. Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase.

    Science.gov (United States)

    Meiselbach, Heike; Sticht, Heinrich

    2011-08-01

    The coordination of activity in biological systems requires the existence of different signal transduction pathways that interact with one another and must be precisely regulated. The Src-family tyrosine kinases, which are found in many signaling pathways, differ in their physiological function despite their high overall structural similarity. In this context, the differences in the SH3-SH2 domain linkers might play a role for differential regulation, but the structural consequences of linker sequence remain poorly understood. We have therefore performed comparative molecular dynamics simulations of wildtype Hck and of a mutant Hck in which the SH3-SH2 domain linker is replaced by the corresponding sequence from the homologous kinase Lck. These simulations reveal that linker replacement not only affects the orientation of the SH3 domain itself, but also leads to an alternative conformation of the activation segment in the Hck kinase domain. The sequence of the SH3-SH2 domain linker thus exerts a remote effect on the active site geometry and might therefore play a role in modulating the structure of the inactive kinase or in fine-tuning the activation process itself.

  16. Structural properties of replication origins in yeast DNA sequences

    International Nuclear Information System (INIS)

    Cao Xiaoqin; Zeng Jia; Yan Hong

    2008-01-01

    Sequence-dependent DNA flexibility is an important structural property originating from the DNA 3D structure. In this paper, we investigate the DNA flexibility of the budding yeast (S. Cerevisiae) replication origins on a genome-wide scale using flexibility parameters from two different models, the trinucleotide and the tetranucleotide models. Based on analyzing average flexibility profiles of 270 replication origins, we find that yeast replication origins are significantly rigid compared with their surrounding genomic regions. To further understand the highly distinctive property of replication origins, we compare the flexibility patterns between yeast replication origins and promoters, and find that they both contain significantly rigid DNAs. Our results suggest that DNA flexibility is an important factor that helps proteins recognize and bind the target sites in order to initiate DNA replication. Inspired by the role of the rigid region in promoters, we speculate that the rigid replication origins may facilitate binding of proteins, including the origin recognition complex (ORC), Cdc6, Cdt1 and the MCM2-7 complex

  17. Enzyme structure and interaction with inhibitors

    International Nuclear Information System (INIS)

    London, R.E.

    1983-01-01

    This article reviews some of the results of studies on the 13 C-labeled enzyme dihydrofolate reductase (DHFR). Nuclear magnetic resonance (NMR) techniques are used in combination with isotopic labeling to learn about the structure and dynamics of this enzyme. 13 C-labeling is used for the purpose of studying enzyme/substrate and enzyme/inhibitor interactions. A second set of studies with DHFR was designed to investigate the basis for the high affinity between the inhibitor methotrexate and DHFR. The label was placed on the inhibitor, rather than the enzyme

  18. Functional region prediction with a set of appropriate homologous sequences-an index for sequence selection by integrating structure and sequence information with spatial statistics

    Science.gov (United States)

    2012-01-01

    Background The detection of conserved residue clusters on a protein structure is one of the effective strategies for the prediction of functional protein regions. Various methods, such as Evolutionary Trace, have been developed based on this strategy. In such approaches, the conserved residues are identified through comparisons of homologous amino acid sequences. Therefore, the selection of homologous sequences is a critical step. It is empirically known that a certain degree of sequence divergence in the set of homologous sequences is required for the identification of conserved residues. However, the development of a method to select homologous sequences appropriate for the identification of conserved residues has not been sufficiently addressed. An objective and general method to select appropriate homologous sequences is desired for the efficient prediction of functional regions. Results We have developed a novel index to select the sequences appropriate for the identification of conserved residues, and implemented the index within our method to predict the functional regions of a protein. The implementation of the index improved the performance of the functional region prediction. The index represents the degree of conserved residue clustering on the tertiary structure of the protein. For this purpose, the structure and sequence information were integrated within the index by the application of spatial statistics. Spatial statistics is a field of statistics in which not only the attributes but also the geometrical coordinates of the data are considered simultaneously. Higher degrees of clustering generate larger index scores. We adopted the set of homologous sequences with the highest index score, under the assumption that the best prediction accuracy is obtained when the degree of clustering is the maximum. The set of sequences selected by the index led to higher functional region prediction performance than the sets of sequences selected by other sequence

  19. Earthquake response analysis considering structure-soil-structure interaction

    International Nuclear Information System (INIS)

    Shiomi, T.; Takahashi, K.; Oguro, E.

    1981-01-01

    This paper proposes a numerical method of earthquake response analysis considering the structure-soil-structure interaction between two adjacent buildings. In this paper an analytical study is presented in order to show some typical features of coupling effects of two reactor buildings of the BWR-type nuclear power plant. The technical approach is a kind of substructure method, which at first evaluates the compliance properties with the foundation-soil-foundation interaction and then uses the compliance in determining seismic responses of two super-structures during earthquake motions. For this purpose, it is assumed that the soil medium is an elastic half space for modeling and that the rigidity of any type of structures such as piping facilities connecting the adjacent buildings is negligible. The technical approach is mainly based on the following procedures. Supersturcture stiffness is calculated by using the method which has been developed in our laboratory based on the Thin-Wall Beam Theory. Soil stiffness is expressed by a matrix with 12 x 12 elements as a function of frequency, which is calculated using the soil compliance functions proposed in Dr. Tajimi's Theory. These stiffness values may be expressed by complex numbers for modeling the damping mechanism of superstructures. We can solve eigenvalue problems with frequency dependent stiffness and the large-scale matrix using our method which is based on condensing the matrix to the suitable size by Rayleigh-Ritz method. Earthquake responses can be solved in the frequency domain by Fourier Transform. (orig./RW)

  20. Structural insights into microtubule doublet interactions inaxonemes

    Energy Technology Data Exchange (ETDEWEB)

    Downing, Kenneth H.; Sui, Haixin

    2007-06-06

    Coordinated sliding of microtubule doublets, driven by dynein motors, produces periodic beating of the axoneme. Recent structural studies of the axoneme have used cryo-electron tomography to reveal new details of the interactions among some of the multitude of proteins that form the axoneme and regulate its movement. Connections among the several sets of dyneins, in particular, suggest ways in which their actions may be coordinated. Study of the molecular architecture of isolated doublets has provided a structural basis for understanding the doublet's mechanical properties that are related to the bending of the axoneme, and has also offered insight into its potential role in the mechanism of dynein activity regulation.

  1. Prediction of host - pathogen protein interactions between Mycobacterium tuberculosis and Homo sapiens using sequence motifs.

    Science.gov (United States)

    Huo, Tong; Liu, Wei; Guo, Yu; Yang, Cheng; Lin, Jianping; Rao, Zihe

    2015-03-26

    Emergence of multiple drug resistant strains of M. tuberculosis (MDR-TB) threatens to derail global efforts aimed at reigning in the pathogen. Co-infections of M. tuberculosis with HIV are difficult to treat. To counter these new challenges, it is essential to study the interactions between M. tuberculosis and the host to learn how these bacteria cause disease. We report a systematic flow to predict the host pathogen interactions (HPIs) between M. tuberculosis and Homo sapiens based on sequence motifs. First, protein sequences were used as initial input for identifying the HPIs by 'interolog' method. HPIs were further filtered by prediction of domain-domain interactions (DDIs). Functional annotations of protein and publicly available experimental results were applied to filter the remaining HPIs. Using such a strategy, 118 pairs of HPIs were identified, which involve 43 proteins from M. tuberculosis and 48 proteins from Homo sapiens. A biological interaction network between M. tuberculosis and Homo sapiens was then constructed using the predicted inter- and intra-species interactions based on the 118 pairs of HPIs. Finally, a web accessible database named PATH (Protein interactions of M. tuberculosis and Human) was constructed to store these predicted interactions and proteins. This interaction network will facilitate the research on host-pathogen protein-protein interactions, and may throw light on how M. tuberculosis interacts with its host.

  2. A DNA Structure-Based Bionic Wavelet Transform and Its Application to DNA Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2003-01-01

    Full Text Available DNA sequence analysis is of great significance for increasing our understanding of genomic functions. An important task facing us is the exploration of hidden structural information stored in the DNA sequence. This paper introduces a DNA structure-based adaptive wavelet transform (WT – the bionic wavelet transform (BWT – for DNA sequence analysis. The symbolic DNA sequence can be separated into four channels of indicator sequences. An adaptive symbol-to-number mapping, determined from the structural feature of the DNA sequence, was introduced into WT. It can adjust the weight value of each channel to maximise the useful energy distribution of the whole BWT output. The performance of the proposed BWT was examined by analysing synthetic and real DNA sequences. Results show that BWT performs better than traditional WT in presenting greater energy distribution. This new BWT method should be useful for the detection of the latent structural features in future DNA sequence analysis.

  3. Nuclear structure and neutrino-nucleus interaction

    International Nuclear Information System (INIS)

    Krmpotic, Francisco

    2011-01-01

    Recent years have witnessed an intense experimental and theoretical activity oriented towards a better comprehension of neutrino nucleus interaction. While the main motivation for this task is the demand coming from oscillation experiments in their search for a precise determination of neutrino properties, the relevance of neutrino interaction with matter is more wide-ranging. It is imperative for astrophysics, hadronic and nuclear physics, and physics beyond the standard model. The experimental information on neutrino induced reactions is rapidly growing, and the corresponding theoretical description is a challenging proposition, since the energy scales of interest span a vast region, going from few MeV for solar neutrinos, to tens of MeV for the interpretation of experiments with the muon and pion decay at rest and the detection of neutrinos coming from the core collapse of supernova, and to hundreds of MeV or few GeV for the detection of atmospheric neutrinos, and for the neutrino oscillation program of the MiniBooNE experiment. The presence of neutrinos, being chargeless particles, can only be inferred by detecting the secondary particles created in colliding and interacting with the matter. Nuclei are often used as neutrino detectors, and in particular 12 C which is a component of many scintillator detectors. Thus, the interpretation of neutrino data heavily relies on detailed and quantitative knowledge of the features of the neutrino-nucleus interaction. The nuclear structure methods used in the evaluation of the neutrino-nucleus cross section are reviewed. Detailed comparison between the experimental and theoretical results establishes benchmarks needed for verification and/or parameter adjustment of the nuclear models. Having a reliable tool for such calculation is of great importance in a variety of applications, such as the description of the r-process nucleosynthesis. (author)

  4. RStrucFam: a web server to associate structure and cognate RNA for RNA-binding proteins from sequence information.

    Science.gov (United States)

    Ghosh, Pritha; Mathew, Oommen K; Sowdhamini, Ramanathan

    2016-10-07

    RNA-binding proteins (RBPs) interact with their cognate RNA(s) to form large biomolecular assemblies. They are versatile in their functionality and are involved in a myriad of processes inside the cell. RBPs with similar structural features and common biological functions are grouped together into families and superfamilies. It will be useful to obtain an early understanding and association of RNA-binding property of sequences of gene products. Here, we report a web server, RStrucFam, to predict the structure, type of cognate RNA(s) and function(s) of proteins, where possible, from mere sequence information. The web server employs Hidden Markov Model scan (hmmscan) to enable association to a back-end database of structural and sequence families. The database (HMMRBP) comprises of 437 HMMs of RBP families of known structure that have been generated using structure-based sequence alignments and 746 sequence-centric RBP family HMMs. The input protein sequence is associated with structural or sequence domain families, if structure or sequence signatures exist. In case of association of the protein with a family of known structures, output features like, multiple structure-based sequence alignment (MSSA) of the query with all others members of that family is provided. Further, cognate RNA partner(s) for that protein, Gene Ontology (GO) annotations, if any and a homology model of the protein can be obtained. The users can also browse through the database for details pertaining to each family, protein or RNA and their related information based on keyword search or RNA motif search. RStrucFam is a web server that exploits structurally conserved features of RBPs, derived from known family members and imprinted in mathematical profiles, to predict putative RBPs from sequence information. Proteins that fail to associate with such structure-centric families are further queried against the sequence-centric RBP family HMMs in the HMMRBP database. Further, all other essential

  5. SIFTS: Structure Integration with Function, Taxonomy and Sequences resource

    Science.gov (United States)

    Velankar, Sameer; Dana, José M.; Jacobsen, Julius; van Ginkel, Glen; Gane, Paul J.; Luo, Jie; Oldfield, Thomas J.; O’Donovan, Claire; Martin, Maria-Jesus; Kleywegt, Gerard J.

    2013-01-01

    The Structure Integration with Function, Taxonomy and Sequences resource (SIFTS; http://pdbe.org/sifts) is a close collaboration between the Protein Data Bank in Europe (PDBe) and UniProt. The two teams have developed a semi-automated process for maintaining up-to-date cross-reference information to UniProt entries, for all protein chains in the PDB entries present in the UniProt database. This process is carried out for every weekly PDB release and the information is stored in the SIFTS database. The SIFTS process includes cross-references to other biological resources such as Pfam, SCOP, CATH, GO, InterPro and the NCBI taxonomy database. The information is exported in XML format, one file for each PDB entry, and is made available by FTP. Many bioinformatics resources use SIFTS data to obtain cross-references between the PDB and other biological databases so as to provide their users with up-to-date information. PMID:23203869

  6. Analyses of the Sequence and Structural Properties Corresponding to Pentapeptide and Large Palindromes in Proteins.

    Directory of Open Access Journals (Sweden)

    Settu Sridhar

    Full Text Available The analyses of 3967 representative proteins selected from the Protein Data Bank revealed the presence of 2803 pentapeptide and large palindrome sequences with known secondary structure conformation. These represent 2014 unique palindrome sequences. 60% palindromes are not associated with any regular secondary structure and 28% are in helix conformation, 11% in strand conformation and 1% in the coil conformation. The average solvent accessibility values are in the range between 0-155.28 Å2 suggesting that the palindromes in proteins can be either buried, exposed to the solvent or share an intermittent property. The number of residue neighborhood contacts defined by interactions ≤ 3.2 Ǻ is in the range between 0-29 residues. Palindromes of the same length in helix, strand and coil conformation are associated with different amino acid residue preferences at the individual positions. Nearly, 20% palindromes interact with catalytic/active site residues, ligand or metal ions in proteins and may therefore be important for function in the corresponding protein. The average hydrophobicity values for the pentapeptide and large palindromes range between -4.3 to +4.32 and the number of palindromes is almost equally distributed between the negative and positive hydrophobicity values. The palindromes represent 107 different protein families and the hydrolases, transferases, oxidoreductases and lyases contain relatively large number of palindromes.

  7. Interaction and the structures of coal

    Science.gov (United States)

    Opaprakasit, Pakorn

    The origin of a decrease in the amount of soluble material from coal upon a reflux treatment has been investigated in an attempt to obtain insight into the nature of the interaction in the macromolecular network structure of coal. This decrease in the extractable material is a result of an increase in the amount of physical cross-links associated with secondary interactions. The alternate possibility of covalent cross-link formation by ether linkage was found to be unlikely because the coal hydroxyl content remains unchanged upon heat treatment. The functional groups responsible for forming these physical cross-links and their contents vary from coal to coal with coal rank. Carboxylate/cation complexes, similar to those found in ionomers, dominate in low rank coal. In high rank coal, the clusters involving pi-cation interactions were observed. Both mechanisms seem to play a role in mid rank coals. These physical cross-links are responsible for a lowering of the extraction yield of coal, but are disrupted by a treatment with acid solution, resulting in an increase in the extraction yield. As a consequence, the cross-links in coal structure should be classified into two types; a "permanent" covalent cross-link, which break under extreme conditions such as chemical reaction and pyrolysis, and "reversible" cross-links, largely associated with ionomer-like structure and pi-cation interactions. The interaction between a "magic" solvent of N-methylpyrollidone and carbon disulfide (NMP/CS2) and its role in the unusual extractability enhancement of Upper Freeport coal has also been investigated. The results strongly suggest that NMP/CS2 mixed solvents form complexes with cations. These mixed solvents are capable of forming a solid complex with cations from NaOH and some simple salts, such as NaCl and LiCl. Given that Upper Freeport coal contains a large amount of mineral matter, it is not surprising that these types of complexes could be formed in the present of the mixed

  8. Fluid-structure interaction and biomedical applications

    CERN Document Server

    Galdi, Giovanni; Nečasová, Šárka

    2014-01-01

    This book presents, in a methodical way, updated and comprehensive descriptions and analyses of some of the most relevant problems in the context of fluid-structure interaction (FSI). Generally speaking, FSI is among the most popular and intriguing problems in applied sciences and includes industrial as well as biological applications. Various fundamental aspects of FSI are addressed from different perspectives, with a focus on biomedical applications. More specifically, the book presents a mathematical analysis of basic questions like the well-posedness of the relevant initial and boundary value problems, as well as the modeling and the numerical simulation of a number of fundamental phenomena related to human biology. These latter research topics include blood flow in arteries and veins, blood coagulation and speech modeling. We believe that the variety of the topics discussed, along with the different approaches used to address and solve the corresponding problems, will help readers to develop a more holis...

  9. Dissecting the hybridization of oligonucleotides to structured complementary sequences.

    Science.gov (United States)

    Peracchi, Alessio

    2016-06-01

    When oligonucleotides hybridize to long target molecules, the process is slowed by the secondary structure in the targets. The phenomenon has been analyzed in several previous studies, but many details remain poorly understood. I used a spectrofluorometric strategy, focusing on the formation/breaking of individual base pairs, to study the kinetics of association between a DNA hairpin and >20 complementary oligonucleotides ('antisenses'). Hybridization rates differed by over three orders of magnitude. Association was toehold-mediated, both for antisenses binding to the target's ends and for those designed to interact with the loop. Binding of these latter, besides being consistently slower, was affected to variable, non-uniform extents by the asymmetric loop structure. Divalent metal ions accelerated hybridization, more pronouncedly when nucleation occurred at the loop. Incorporation of locked nucleic acid (LNA) residues in the antisenses substantially improved the kinetics only when LNAs participated to the earliest hybridization steps. The effects of individual LNAs placed along the antisense indicated that the reaction transition state occurred after invading at least the first base pair of the stem. The experimental approach helps dissect hybridization reactions involving structured nucleic acids. Toehold-dependent, nucleation-invasion models appear fully appropriate for describing such reactions. Estimating the stability of nucleation complexes formed at internal toeholds is the major hurdle for the quantitative prediction of hybridization rates. While analyzing the mechanisms of a fundamental biochemical process (hybridization), this work also provides suggestions for the improvement of technologies that rely on such process. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Students' Guided Reinvention of Definition of Limit of a Sequence with Interactive Technology

    Science.gov (United States)

    Flores, Alfinio; Park, Jungeun

    2016-01-01

    In a course emphasizing interactive technology, 19 students, including 18 mathematics education majors, mostly in their first year, reinvented the definition of limit of a sequence while working in small cooperative groups. The class spent four sessions of 75 minutes each on a cyclical process of guided reinvention of the definition of limit of a…

  11. Cations form sequence selective motifs within DNA grooves via a combination of cation-pi and ion-dipole/hydrogen bond interactions.

    Science.gov (United States)

    Stewart, Mikaela; Dunlap, Tori; Dourlain, Elizabeth; Grant, Bryce; McFail-Isom, Lori

    2013-01-01

    The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl⁺) and the polarized first hydration shell waters of divalent cations (Mg²⁺, Ca²⁺) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves.

  12. Influence of the Amino Acid Sequence on Protein-Mineral Interactions in Soil

    Science.gov (United States)

    Chacon, S. S.; Reardon, P. N.; Purvine, S.; Lipton, M. S.; Washton, N.; Kleber, M.

    2017-12-01

    The intimate associations between protein and mineral surfaces have profound impacts on nutrient cycling in soil. Proteins are an important source of organic C and N, and a subset of proteins, extracellular enzymes (EE), can catalyze the depolymerization of soil organic matter (SOM). Our goal was to determine how variation in the amino acid sequence could influence a protein's susceptibility to become chemically altered by mineral surfaces to infer the fate of adsorbed EE function in soil. We hypothesized that (1) addition of charged amino acids would enhance the adsorption onto oppositely charged mineral surfaces (2) addition of aromatic amino acids would increase adsorption onto zero charged surfaces (3) Increase adsorption of modified proteins would enhance their susceptibility to alterations by redox active minerals. To test these hypotheses, we generated three engineered proxies of a model protein Gb1 (IEP 4.0, 6.2 kDA) by inserting either negatively charged, positively charged or aromatic amino acids in the second loop. These modified proteins were allowed to interact with functionally different mineral surfaces (goethite, montmorillonite, kaolinite and birnessite) at pH 5 and 7. We used LC-MS/MS and solution-state Heteronuclear Single Quantum Coherence Spectroscopy NMR to observe modifications on engineered proteins as a consequence to mineral interactions. Preliminary results indicate that addition of any amino acids to a protein increase its susceptibility to fragmentation and oxidation by redox active mineral surfaces, and alter adsorption to the other mineral surfaces. This suggest that not all mineral surfaces in soil may act as sorbents for EEs and chemical modification of their structure should also be considered as an explanation for decrease in EE activity. Fragmentation of proteins by minerals can bypass the need to produce proteases, but microbial acquisition of other nutrients that require enzymes such as cellulases, ligninases or phosphatases

  13. TFpredict and SABINE: sequence-based prediction of structural and functional characteristics of transcription factors.

    Directory of Open Access Journals (Sweden)

    Johannes Eichner

    Full Text Available One of the key mechanisms of transcriptional control are the specific connections between transcription factors (TF and cis-regulatory elements in gene promoters. The elucidation of these specific protein-DNA interactions is crucial to gain insights into the complex regulatory mechanisms and networks underlying the adaptation of organisms to dynamically changing environmental conditions. As experimental techniques for determining TF binding sites are expensive and mostly performed for selected TFs only, accurate computational approaches are needed to analyze transcriptional regulation in eukaryotes on a genome-wide level. We implemented a four-step classification workflow which for a given protein sequence (1 discriminates TFs from other proteins, (2 determines the structural superclass of TFs, (3 identifies the DNA-binding domains of TFs and (4 predicts their cis-acting DNA motif. While existing tools were extended and adapted for performing the latter two prediction steps, the first two steps are based on a novel numeric sequence representation which allows for combining existing knowledge from a BLAST scan with robust machine learning-based classification. By evaluation on a set of experimentally confirmed TFs and non-TFs, we demonstrate that our new protein sequence representation facilitates more reliable identification and structural classification of TFs than previously proposed sequence-derived features. The algorithms underlying our proposed methodology are implemented in the two complementary tools TFpredict and SABINE. The online and stand-alone versions of TFpredict and SABINE are freely available to academics at http://www.cogsys.cs.uni-tuebingen.de/software/TFpredict/ and http://www.cogsys.cs.uni-tuebingen.de/software/SABINE/.

  14. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis.

    Science.gov (United States)

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. http://www.cemb.edu.pk/sw.html RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language.

  15. Complete Genome Sequence of Sporisorium scitamineum and Biotrophic Interaction Transcriptome with Sugarcane.

    Directory of Open Access Journals (Sweden)

    Lucas M Taniguti

    Full Text Available Sporisorium scitamineum is a biotrophic fungus responsible for the sugarcane smut, a worldwide spread disease. This study provides the complete sequence of individual chromosomes of S. scitamineum from telomere to telomere achieved by a combination of PacBio long reads and Illumina short reads sequence data, as well as a draft sequence of a second fungal strain. Comparative analysis to previous available sequences of another strain detected few polymorphisms among the three genomes. The novel complete sequence described herein allowed us to identify and annotate extended subtelomeric regions, repetitive elements and the mitochondrial DNA sequence. The genome comprises 19,979,571 bases, 6,677 genes encoding proteins, 111 tRNAs and 3 assembled copies of rDNA, out of our estimated number of copies as 130. Chromosomal reorganizations were detected when comparing to sequences of S. reilianum, the closest smut relative, potentially influenced by repeats of transposable elements. Repetitive elements may have also directed the linkage of the two mating-type loci. The fungal transcriptome profiling from in vitro and from interaction with sugarcane at two time points (early infection and whip emergence revealed that 13.5% of the genes were differentially expressed in planta and particular to each developmental stage. Among them are plant cell wall degrading enzymes, proteases, lipases, chitin modification and lignin degradation enzymes, sugar transporters and transcriptional factors. The fungus also modulates transcription of genes related to surviving against reactive oxygen species and other toxic metabolites produced by the plant. Previously described effectors in smut/plant interactions were detected but some new candidates are proposed. Ten genomic islands harboring some of the candidate genes unique to S. scitamineum were expressed only in planta. RNAseq data was also used to reassure gene predictions.

  16. Interactions of rat repetitive sequence MspI8 with nuclear matrix proteins during spermatogenesis

    International Nuclear Information System (INIS)

    Rogolinski, J.; Widlak, P.; Rzeszowska-Wolny, J.

    1996-01-01

    Using the Southwestern blot analysis we have studied the interactions between rat repetitive sequence MspI8 and the nuclear matrix proteins of rats testis cells. Starting from 2 weeks the young to adult animal showed differences in type of testis nuclear matrix proteins recognizing the MspI8 sequence. The same sets of nuclear matrix proteins were detected in some enriched in spermatocytes and spermatids and obtained after fractionation of cells of adult animal by the velocity sedimentation technique. (author). 21 refs, 5 figs

  17. Difference analysis for fluid-structure interaction

    International Nuclear Information System (INIS)

    Giencke, E.; Forkel, M.

    1979-01-01

    For solving fluid structure interaction problems it is possible to organize the compter programs for the difference method in the same way as for the finite element method by establishing the difference equations with the principial of virtual work. In the finite element method the individual localized functions for the approximation of the potential function PHI will be chosen also as virtual functions delta PHI. Deriving difference equations the virtual states are simple as possible and the approximation of the potential function may be linear or parabolic. The equations become symmetric both for points in the interiour and the boundaries and for grids with rectangular and triangular elements. The boundary and edge-conditions shall established for elastic walls and for the free surface. For regular rectangular and triangular grids it is possible to derive on the same way multipoint difference equations, which for the same numbers of unknowns are two orders better in accuracy as the usual difference or the finite element equations. Some examples for the pressure distribution in a BWR-steel-containment due to steam bubble collaps at the condenser pipes will be shown. (orig.)

  18. Bayesian reconstruction of photon interaction sequences for high-resolution PET detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pratx, Guillem; Levin, Craig S [Molecular Imaging Program at Stanford, Department of Radiology, Stanford, CA (United States)], E-mail: cslevin@stanford.edu

    2009-09-07

    Realizing the full potential of high-resolution positron emission tomography (PET) systems involves accurately positioning events in which the annihilation photon deposits all its energy across multiple detector elements. Reconstructing the complete sequence of interactions of each photon provides a reliable way to select the earliest interaction because it ensures that all the interactions are consistent with one another. Bayesian estimation forms a natural framework to maximize the consistency of the sequence with the measurements while taking into account the physics of {gamma}-ray transport. An inherently statistical method, it accounts for the uncertainty in the measured energy and position of each interaction. An algorithm based on maximum a posteriori (MAP) was evaluated for computer simulations. For a high-resolution PET system based on cadmium zinc telluride detectors, 93.8% of the recorded coincidences involved at least one photon multiple-interactions event (PMIE). The MAP estimate of the first interaction was accurate for 85.2% of the single photons. This represents a two-fold reduction in the number of mispositioned events compared to minimum pair distance, a simpler yet efficient positioning method. The point-spread function of the system presented lower tails and higher peak value when MAP was used. This translated into improved image quality, which we quantified by studying contrast and spatial resolution gains.

  19. Simultaneous Structural Variation Discovery in Multiple Paired-End Sequenced Genomes

    Science.gov (United States)

    Hormozdiari, Fereydoun; Hajirasouliha, Iman; McPherson, Andrew; Eichler, Evan E.; Sahinalp, S. Cenk

    Next generation sequencing technologies have been decreasing the costs and increasing the world-wide capacity for sequence production at an unprecedented rate, making the initiation of large scale projects aiming to sequence almost 2000 genomes [1]. Structural variation detection promises to be one of the key diagnostic tools for cancer and other diseases with genomic origin. In this paper, we study the problem of detecting structural variation events in two or more sequenced genomes through high throughput sequencing . We propose to move from the current model of (1) detecting genomic variations in single next generation sequenced (NGS) donor genomes independently, and (2) checking whether two or more donor genomes indeed agree or disagree on the variations (in this paper we name this framework Independent Structural Variation Discovery and Merging - ISV&M), to a new model in which we detect structural variation events among multiple genomes simultaneously.

  20. De novo prediction of structured RNAs from genomic sequences

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Hofacker, Ivo L.; Þórarinsson, Elfar

    2010-01-01

    currently available, because evolutionary conservation highlights functionally important regions. Conserved secondary structure, rather than primary sequence, is the hallmark of many functionally important RNAs, because compensatory substitutions in base-paired regions preserve structure. Unfortunately...

  1. The chemical structure of DNA sequence signals for RNA transcription

    Science.gov (United States)

    George, D. G.; Dayhoff, M. O.

    1982-01-01

    The proposed recognition sites for RNA transcription for E. coli NRA polymerase, bacteriophage T7 RNA polymerase, and eukaryotic RNA polymerase Pol II are evaluated in the light of the requirements for efficient recognition. It is shown that although there is good experimental evidence that specific nucleic acid sequence patterns are involved in transcriptional regulation in bacteria and bacterial viruses, among the sequences now available, only in the case of the promoters recognized by bacteriophage T7 polymerase does it seem likely that the pattern is sufficient. It is concluded that the eukaryotic pattern that is investigated is not restrictive enough to serve as a recognition site.

  2. Implications of interaction between Humans and Structures

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2015-01-01

    Many civil engineering structures are occupied by humans, and often humans are considered as a static load in calculations. However, active humans on structures can cause structural vibrations. Passive humans might also be present on that structure and they do change the structural system (such a...

  3. Sequence-structure relationships in RNA loops: establishing the basis for loop homology modeling.

    Science.gov (United States)

    Schudoma, Christian; May, Patrick; Nikiforova, Viktoria; Walther, Dirk

    2010-01-01

    The specific function of RNA molecules frequently resides in their seemingly unstructured loop regions. We performed a systematic analysis of RNA loops extracted from experimentally determined three-dimensional structures of RNA molecules. A comprehensive loop-structure data set was created and organized into distinct clusters based on structural and sequence similarity. We detected clear evidence of the hallmark of homology present in the sequence-structure relationships in loops. Loops differing by structures. Thus, our results support the application of homology modeling for RNA loop model building. We established a threshold that may guide the sequence divergence-based selection of template structures for RNA loop homology modeling. Of all possible sequences that are, under the assumption of isosteric relationships, theoretically compatible with actual sequences observed in RNA structures, only a small fraction is contained in the Rfam database of RNA sequences and classes implying that the actual RNA loop space may consist of a limited number of unique loop structures and conserved sequences. The loop-structure data sets are made available via an online database, RLooM. RLooM also offers functionalities for the modeling of RNA loop structures in support of RNA engineering and design efforts.

  4. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier

    KAUST Repository

    Kulmanov, Maxat

    2017-09-27

    Motivation A large number of protein sequences are becoming available through the application of novel high-throughput sequencing technologies. Experimental functional characterization of these proteins is time-consuming and expensive, and is often only done rigorously for few selected model organisms. Computational function prediction approaches have been suggested to fill this gap. The functions of proteins are classified using the Gene Ontology (GO), which contains over 40 000 classes. Additionally, proteins have multiple functions, making function prediction a large-scale, multi-class, multi-label problem. Results We have developed a novel method to predict protein function from sequence. We use deep learning to learn features from protein sequences as well as a cross-species protein–protein interaction network. Our approach specifically outputs information in the structure of the GO and utilizes the dependencies between GO classes as background information to construct a deep learning model. We evaluate our method using the standards established by the Computational Assessment of Function Annotation (CAFA) and demonstrate a significant improvement over baseline methods such as BLAST, in particular for predicting cellular locations.

  5. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier.

    Science.gov (United States)

    Kulmanov, Maxat; Khan, Mohammed Asif; Hoehndorf, Robert; Wren, Jonathan

    2018-02-15

    A large number of protein sequences are becoming available through the application of novel high-throughput sequencing technologies. Experimental functional characterization of these proteins is time-consuming and expensive, and is often only done rigorously for few selected model organisms. Computational function prediction approaches have been suggested to fill this gap. The functions of proteins are classified using the Gene Ontology (GO), which contains over 40 000 classes. Additionally, proteins have multiple functions, making function prediction a large-scale, multi-class, multi-label problem. We have developed a novel method to predict protein function from sequence. We use deep learning to learn features from protein sequences as well as a cross-species protein-protein interaction network. Our approach specifically outputs information in the structure of the GO and utilizes the dependencies between GO classes as background information to construct a deep learning model. We evaluate our method using the standards established by the Computational Assessment of Function Annotation (CAFA) and demonstrate a significant improvement over baseline methods such as BLAST, in particular for predicting cellular locations. Web server: http://deepgo.bio2vec.net, Source code: https://github.com/bio-ontology-research-group/deepgo. robert.hoehndorf@kaust.edu.sa. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  6. RCK: accurate and efficient inference of sequence- and structure-based protein-RNA binding models from RNAcompete data.

    Science.gov (United States)

    Orenstein, Yaron; Wang, Yuhao; Berger, Bonnie

    2016-06-15

    Protein-RNA interactions, which play vital roles in many processes, are mediated through both RNA sequence and structure. CLIP-based methods, which measure protein-RNA binding in vivo, suffer from experimental noise and systematic biases, whereas in vitro experiments capture a clearer signal of protein RNA-binding. Among them, RNAcompete provides binding affinities of a specific protein to more than 240 000 unstructured RNA probes in one experiment. The computational challenge is to infer RNA structure- and sequence-based binding models from these data. The state-of-the-art in sequence models, Deepbind, does not model structural preferences. RNAcontext models both sequence and structure preferences, but is outperformed by GraphProt. Unfortunately, GraphProt cannot detect structural preferences from RNAcompete data due to the unstructured nature of the data, as noted by its developers, nor can it be tractably run on the full RNACompete dataset. We develop RCK, an efficient, scalable algorithm that infers both sequence and structure preferences based on a new k-mer based model. Remarkably, even though RNAcompete data is designed to be unstructured, RCK can still learn structural preferences from it. RCK significantly outperforms both RNAcontext and Deepbind in in vitro binding prediction for 244 RNAcompete experiments. Moreover, RCK is also faster and uses less memory, which enables scalability. While currently on par with existing methods in in vivo binding prediction on a small scale test, we demonstrate that RCK will increasingly benefit from experimentally measured RNA structure profiles as compared to computationally predicted ones. By running RCK on the entire RNAcompete dataset, we generate and provide as a resource a set of protein-RNA structure-based models on an unprecedented scale. Software and models are freely available at http://rck.csail.mit.edu/ bab@mit.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by

  7. Fraisse sequences: category-theoretic approach to universal homogeneous structures

    Czech Academy of Sciences Publication Activity Database

    Kubiś, Wieslaw

    2014-01-01

    Roč. 165, č. 11 (2014), s. 1755-1811 ISSN 0168-0072 R&D Projects: GA ČR(CZ) GAP201/12/0290 Institutional support: RVO:67985840 Keywords : universal homogeneous object * Fraissé sequence * amalgamation Subject RIV: BA - General Mathematics Impact factor: 0.548, year: 2014 http://www.sciencedirect.com/science/article/pii/S0168007214000773

  8. Detecting the temporal structure of sound sequences in newborn infants

    NARCIS (Netherlands)

    Háden, G.P.; Honing, H.; Török, M.; Winkler, I.

    2015-01-01

    Most high-level auditory functions require one to detect the onset and offset of sound sequences as well as registering the rate at which sounds are presented within the sound trains. By recording event-related brain potentials to onsets and offsets of tone trains as well as to changes in the

  9. Molecular cloning, sequence analysis and structure prediction of the ...

    African Journals Online (AJOL)

    AJL

    2012-04-19

    Apr 19, 2012 ... The primers were based on the rBAT sequences of other animals deposited in GenBank. .... fragment; M1, 2000 bp DNA ladder; M2, 1000 bp DNA ladder. spliced to obtain the ..... A traffic signal for heterodimeric amino acid.

  10. Survey of methods for integrated sequence analysis with emphasis on man-machine interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kahlbom, U; Holmgren, P [RELCON, Stockholm (Sweden)

    1995-05-01

    This report presents a literature study concerning recently developed monotonic methodologies in the human reliability area. The work was performed by RELCON AB on commission by NKS/RAK-1, subproject 3. The topic of subproject 3 is `Integrated Sequence Analysis with Emphasis on Man-Machine Interaction`. The purpose with the study was to compile recently developed methodologies and to propose some of these methodologies for use in the sequence analysis task. The report describes mainly non-dynamic (monotonic) methodologies. One exception is HITLINE, which is a semi-dynamic method. Reference provides a summary of approaches to dynamic analysis of man-machine-interaction, and explains the differences between monotonic and dynamic methodologies. (au) 21 refs.

  11. Survey of methods for integrated sequence analysis with emphasis on man-machine interaction

    International Nuclear Information System (INIS)

    Kahlbom, U.; Holmgren, P.

    1995-05-01

    This report presents a literature study concerning recently developed monotonic methodologies in the human reliability area. The work was performed by RELCON AB on commission by NKS/RAK-1, subproject 3. The topic of subproject 3 is 'Integrated Sequence Analysis with Emphasis on Man-Machine Interaction'. The purpose with the study was to compile recently developed methodologies and to propose some of these methodologies for use in the sequence analysis task. The report describes mainly non-dynamic (monotonic) methodologies. One exception is HITLINE, which is a semi-dynamic method. Reference provides a summary of approaches to dynamic analysis of man-machine-interaction, and explains the differences between monotonic and dynamic methodologies. (au) 21 refs

  12. Study on Human-structure Dynamic Interaction in Civil Engineering

    Science.gov (United States)

    Gao, Feng; Cao, Li Lin; Li, Xing Hua

    2018-06-01

    The research of human-structure dynamic interaction are reviewed. Firstly, the influence of the crowd load on structural dynamic characteristics is introduced and the advantages and disadvantages of different crowd load models are analyzed. Then, discussing the influence of structural vibration on the human-induced load, especially the influence of different stiffness structures on the crowd load. Finally, questions about human-structure interaction that require further study are presented.

  13. Some Implications of Human-Structure Interaction

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2013-01-01

    On structures, humans may be active which may cause structural vibrations as human activity can excite structural vibration modes. However, humans may also be passive (sitting or standing on the structure). The paper addresses this subject and explores the implications of having passive humans...

  14. DNA interactions with a Methylene Blue redox indicator depend on the DNA length and are sequence specific.

    Science.gov (United States)

    Farjami, Elaheh; Clima, Lilia; Gothelf, Kurt V; Ferapontova, Elena E

    2010-06-01

    A DNA molecular beacon approach was used for the analysis of interactions between DNA and Methylene Blue (MB) as a redox indicator of a hybridization event. DNA hairpin structures of different length and guanine (G) content were immobilized onto gold electrodes in their folded states through the alkanethiol linker at the 5'-end. Binding of MB to the folded hairpin DNA was electrochemically studied and compared with binding to the duplex structure formed by hybridization of the hairpin DNA to a complementary DNA strand. Variation of the electrochemical signal from the DNA-MB complex was shown to depend primarily on the DNA length and sequence used: the G-C base pairs were the preferential sites of MB binding in the duplex. For short 20 nts long DNA sequences, the increased electrochemical response from MB bound to the duplex structure was consistent with the increased amount of bound and electrochemically readable MB molecules (i.e. MB molecules that are available for the electron transfer (ET) reaction with the electrode). With longer DNA sequences, the balance between the amounts of the electrochemically readable MB molecules bound to the hairpin DNA and to the hybrid was opposite: a part of the MB molecules bound to the long-sequence DNA duplex seem to be electrochemically mute due to long ET distance. The increasing electrochemical response from MB bound to the short-length DNA hybrid contrasts with the decreasing signal from MB bound to the long-length DNA hybrid and allows an "off"-"on" genosensor development.

  15. De novo structural modeling and computational sequence analysis ...

    African Journals Online (AJOL)

    Jane

    2011-07-25

    Jul 25, 2011 ... fold recognition and ab initio protein structures, classification of structural motifs and ... stringent cross validation method to evaluate the method's performance ..... Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H,.

  16. Scoring protein relationships in functional interaction networks predicted from sequence data.

    Directory of Open Access Journals (Sweden)

    Gaston K Mazandu

    Full Text Available UNLABELLED: The abundance of diverse biological data from various sources constitutes a rich source of knowledge, which has the power to advance our understanding of organisms. This requires computational methods in order to integrate and exploit these data effectively and elucidate local and genome wide functional connections between protein pairs, thus enabling functional inferences for uncharacterized proteins. These biological data are primarily in the form of sequences, which determine functions, although functional properties of a protein can often be predicted from just the domains it contains. Thus, protein sequences and domains can be used to predict protein pair-wise functional relationships, and thus contribute to the function prediction process of uncharacterized proteins in order to ensure that knowledge is gained from sequencing efforts. In this work, we introduce information-theoretic based approaches to score protein-protein functional interaction pairs predicted from protein sequence similarity and conserved protein signature matches. The proposed schemes are effective for data-driven scoring of connections between protein pairs. We applied these schemes to the Mycobacterium tuberculosis proteome to produce a homology-based functional network of the organism with a high confidence and coverage. We use the network for predicting functions of uncharacterised proteins. AVAILABILITY: Protein pair-wise functional relationship scores for Mycobacterium tuberculosis strain CDC1551 sequence data and python scripts to compute these scores are available at http://web.cbio.uct.ac.za/~gmazandu/scoringschemes.

  17. How Many Protein Sequences Fold to a Given Structure? A Coevolutionary Analysis.

    Science.gov (United States)

    Tian, Pengfei; Best, Robert B

    2017-10-17

    Quantifying the relationship between protein sequence and structure is key to understanding the protein universe. A fundamental measure of this relationship is the total number of amino acid sequences that can fold to a target protein structure, known as the "sequence capacity," which has been suggested as a proxy for how designable a given protein fold is. Although sequence capacity has been extensively studied using lattice models and theory, numerical estimates for real protein structures are currently lacking. In this work, we have quantitatively estimated the sequence capacity of 10 proteins with a variety of different structures using a statistical model based on residue-residue co-evolution to capture the variation of sequences from the same protein family. Remarkably, we find that even for the smallest protein folds, such as the WW domain, the number of foldable sequences is extremely large, exceeding the Avogadro constant. In agreement with earlier theoretical work, the calculated sequence capacity is positively correlated with the size of the protein, or better, the density of contacts. This allows the absolute sequence capacity of a given protein to be approximately predicted from its structure. On the other hand, the relative sequence capacity, i.e., normalized by the total number of possible sequences, is an extremely tiny number and is strongly anti-correlated with the protein length. Thus, although there may be more foldable sequences for larger proteins, it will be much harder to find them. Lastly, we have correlated the evolutionary age of proteins in the CATH database with their sequence capacity as predicted by our model. The results suggest a trade-off between the opposing requirements of high designability and the likelihood of a novel fold emerging by chance. Published by Elsevier Inc.

  18. Structure-Interaction Theory: Conceptual, Contextual and Strategic Influences on Human Communication

    Directory of Open Access Journals (Sweden)

    Стивен А Биби

    2015-12-01

    Full Text Available This paper addresses Structure-Interaction Theory (SIT, a theoretical framework that both describes communication messages as well as assists in making predictions about how human communication can be improved based on listener preferences for message structure or interaction. Communication messages may be characterized as existing on a continuum of structure-interaction. Communication structure is the inherent way information in a message is organized. A highly structured message is one in which the message is strategically organized using a planned arrangement of symbols to create meaning. Communication interaction is a way of viewing a message with give-and-take, less sustained “notes,” more change in note sequence and briefer notes. SIT seeks to provide a framework to assist communicators in appropriately adapting a message for maximum effectiveness. Although Structure-Interaction Theory newly articulated here, it is anchored in both classic ways of describing communication, such as rhetoric and dialectic (Aristotle, 1959, as well as more contemporary communication theories (Salem, 2012; Littlejohn & Foss, 2008. Specifically, the paper provides an overview of the theory and its conceptual assumptions, identifies how the theory can help explain and predict communication in several communication contexts (interpersonal, group, public communication, and suggests how SIT may help identify strategies to enhance human development. Structure-Interaction Theory is based on an assumption that a human communication message which is understood, achieves the intended effect of the communicator, and is ethical, requires an appropriate balance of two things: structure and interaction. Communication structure is the inherent way a message is constructed to provide a sustained direction to present information to another person. In linking structure and interaction to Aristotle’s description of messages, rhetoric is a more structured, sustained speech

  19. Structure Prediction and Analysis of Neuraminidase Sequence Variants

    Science.gov (United States)

    Thayer, Kelly M.

    2016-01-01

    Analyzing protein structure has become an integral aspect of understanding systems of biochemical import. The laboratory experiment endeavors to introduce protein folding to ascertain structures of proteins for which the structure is unavailable, as well as to critically evaluate the quality of the prediction obtained. The model system used is the…

  20. The HIVToolbox 2 web system integrates sequence, structure, function and mutation analysis.

    Directory of Open Access Journals (Sweden)

    David P Sargeant

    Full Text Available There is enormous interest in studying HIV pathogenesis for improving the treatment of patients with HIV infection. HIV infection has become one of the best-studied systems for understanding how a virus can hijack a cell. To help facilitate discovery, we previously built HIVToolbox, a web system for visual data mining. The original HIVToolbox integrated information for HIV protein sequence, structure, functional sites, and sequence conservation. This web system has been used for almost 40,000 searches. We report improvements to HIVToolbox including new functions and workflows, data updates, and updates for ease of use. HIVToolbox2, is an improvement over HIVToolbox with new functions. HIVToolbox2 has new functionalities focused on HIV pathogenesis including drug-binding sites, drug-resistance mutations, and immune epitopes. The integrated, interactive view enables visual mining to generate hypotheses that are not readily revealed by other approaches. Most HIV proteins form multimers, and there are posttranslational modification and protein-protein interaction sites at many of these multimerization interfaces. Analysis of protease drug binding sites reveals an anatomy of drug resistance with different types of drug-resistance mutations regionally localized on the surface of protease. Some of these drug-resistance mutations have a high prevalence in specific HIV-1 M subtypes. Finally, consolidation of Tat functional sites reveals a hotspot region where there appear to be 30 interactions or posttranslational modifications. A cursory analysis with HIVToolbox2 has helped to identify several global patterns for HIV proteins. An initial analysis with this tool identifies homomultimerization of almost all HIV proteins, functional sites that overlap with multimerization sites, a global drug resistance anatomy for HIV protease, and specific distributions of some DRMs in specific HIV M subtypes. HIVToolbox2 is an open-access web application available at

  1. On the relationship between residue structural environment and sequence conservation in proteins.

    Science.gov (United States)

    Liu, Jen-Wei; Lin, Jau-Ji; Cheng, Chih-Wen; Lin, Yu-Feng; Hwang, Jenn-Kang; Huang, Tsun-Tsao

    2017-09-01

    Residues that are crucial to protein function or structure are usually evolutionarily conserved. To identify the important residues in protein, sequence conservation is estimated, and current methods rely upon the unbiased collection of homologous sequences. Surprisingly, our previous studies have shown that the sequence conservation is closely correlated with the weighted contact number (WCN), a measure of packing density for residue's structural environment, calculated only based on the C α positions of a protein structure. Moreover, studies have shown that sequence conservation is correlated with environment-related structural properties calculated based on different protein substructures, such as a protein's all atoms, backbone atoms, side-chain atoms, or side-chain centroid. To know whether the C α atomic positions are adequate to show the relationship between residue environment and sequence conservation or not, here we compared C α atoms with other substructures in their contributions to the sequence conservation. Our results show that C α positions are substantially equivalent to the other substructures in calculations of various measures of residue environment. As a result, the overlapping contributions between C α atoms and the other substructures are high, yielding similar structure-conservation relationship. Take the WCN as an example, the average overlapping contribution to sequence conservation is 87% between C α and all-atom substructures. These results indicate that only C α atoms of a protein structure could reflect sequence conservation at the residue level. © 2017 Wiley Periodicals, Inc.

  2. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions

    Directory of Open Access Journals (Sweden)

    Cheryl-Emiliane Tien Chow

    2015-04-01

    Full Text Available Viral diversity and virus-host interactions in oxygen-starved regions of the ocean, also known as oxygen minimum zones (OMZs, remain relatively unexplored. Microbial community metabolism in OMZs alters nutrient and energy flow through marine food webs, resulting in biological nitrogen loss and greenhouse gas production. Thus, viruses infecting OMZ microbes have the potential to modulate community metabolism with resulting feedback on ecosystem function. Here, we describe viral communities inhabiting oxic surface (10m and oxygen-starved basin (200m waters of Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia using viral metagenomics and complete viral fosmid sequencing on samples collected between April 2007 and April 2010. Of 6459 open reading frames (ORFs predicted across all 34 viral fosmids, 77.6% (n=5010 had no homology to reference viral genomes. These fosmids recruited a higher proportion of viral metagenomic sequences from Saanich Inlet than from nearby northeastern subarctic Pacific Ocean (Line P waters, indicating differences in the viral communities between coastal and open ocean locations. While functional annotations of fosmid ORFs were limited, recruitment to NCBI’s non-redundant ‘nr’ database and publicly available single-cell genomes identified putative viruses infecting marine thaumarchaeal and SUP05 proteobacteria to provide potential host linkages with relevance to coupled biogeochemical cycling processes in OMZ waters. Taken together, these results highlight the power of coupled analyses of multiple sequence data types, such as viral metagenomic and fosmid sequence data with prokaryotic single cell genomes, to chart viral diversity, elucidate genomic and ecological contexts for previously unclassifiable viral sequences, and identify novel host interactions in natural and engineered ecosystems.

  3. Dispositional optimism and perceived risk interact to predict intentions to learn genome sequencing results.

    Science.gov (United States)

    Taber, Jennifer M; Klein, William M P; Ferrer, Rebecca A; Lewis, Katie L; Biesecker, Leslie G; Biesecker, Barbara B

    2015-07-01

    Dispositional optimism and risk perceptions are each associated with health-related behaviors and decisions and other outcomes, but little research has examined how these constructs interact, particularly in consequential health contexts. The predictive validity of risk perceptions for health-related information seeking and intentions may be improved by examining dispositional optimism as a moderator, and by testing alternate types of risk perceptions, such as comparative and experiential risk. Participants (n = 496) had their genomes sequenced as part of a National Institutes of Health pilot cohort study (ClinSeq®). Participants completed a cross-sectional baseline survey of various types of risk perceptions and intentions to learn genome sequencing results for differing disease risks (e.g., medically actionable, nonmedically actionable, carrier status) and to use this information to change their lifestyle/health behaviors. Risk perceptions (absolute, comparative, and experiential) were largely unassociated with intentions to learn sequencing results. Dispositional optimism and comparative risk perceptions interacted, however, such that individuals higher in optimism reported greater intentions to learn all 3 types of sequencing results when comparative risk was perceived to be higher than when it was perceived to be lower. This interaction was inconsistent for experiential risk and absent for absolute risk. Independent of perceived risk, participants high in dispositional optimism reported greater interest in learning risks for nonmedically actionable disease and carrier status, and greater intentions to use genome information to change their lifestyle/health behaviors. The relationship between risk perceptions and intentions may depend on how risk perceptions are assessed and on degree of optimism. (c) 2015 APA, all rights reserved.

  4. GenRGenS: Software for Generating Random Genomic Sequences and Structures

    OpenAIRE

    Ponty , Yann; Termier , Michel; Denise , Alain

    2006-01-01

    International audience; GenRGenS is a software tool dedicated to randomly generating genomic sequences and structures. It handles several classes of models useful for sequence analysis, such as Markov chains, hidden Markov models, weighted context-free grammars, regular expressions and PROSITE expressions. GenRGenS is the only program that can handle weighted context-free grammars, thus allowing the user to model and to generate structured objects (such as RNA secondary structures) of any giv...

  5. Using structure to explore the sequence alignment space of remote homologs.

    Directory of Open Access Journals (Sweden)

    Andrew Kuziemko

    2011-10-01

    Full Text Available Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is "optimal" in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are "suboptimal" in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for "modelability", we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended.

  6. Using structure to explore the sequence alignment space of remote homologs.

    Science.gov (United States)

    Kuziemko, Andrew; Honig, Barry; Petrey, Donald

    2011-10-01

    Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP) are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is "optimal" in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are "suboptimal" in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for "modelability", we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended.

  7. STING Millennium: a web-based suite of programs for comprehensive and simultaneous analysis of protein structure and sequence

    Science.gov (United States)

    Neshich, Goran; Togawa, Roberto C.; Mancini, Adauto L.; Kuser, Paula R.; Yamagishi, Michel E. B.; Pappas, Georgios; Torres, Wellington V.; Campos, Tharsis Fonseca e; Ferreira, Leonardo L.; Luna, Fabio M.; Oliveira, Adilton G.; Miura, Ronald T.; Inoue, Marcus K.; Horita, Luiz G.; de Souza, Dimas F.; Dominiquini, Fabiana; Álvaro, Alexandre; Lima, Cleber S.; Ogawa, Fabio O.; Gomes, Gabriel B.; Palandrani, Juliana F.; dos Santos, Gabriela F.; de Freitas, Esther M.; Mattiuz, Amanda R.; Costa, Ivan C.; de Almeida, Celso L.; Souza, Savio; Baudet, Christian; Higa, Roberto H.

    2003-01-01

    STING Millennium Suite (SMS) is a new web-based suite of programs and databases providing visualization and a complex analysis of molecular sequence and structure for the data deposited at the Protein Data Bank (PDB). SMS operates with a collection of both publicly available data (PDB, HSSP, Prosite) and its own data (contacts, interface contacts, surface accessibility). Biologists find SMS useful because it provides a variety of algorithms and validated data, wrapped-up in a user friendly web interface. Using SMS it is now possible to analyze sequence to structure relationships, the quality of the structure, nature and volume of atomic contacts of intra and inter chain type, relative conservation of amino acids at the specific sequence position based on multiple sequence alignment, indications of folding essential residue (FER) based on the relationship of the residue conservation to the intra-chain contacts and Cα–Cα and Cβ–Cβ distance geometry. Specific emphasis in SMS is given to interface forming residues (IFR)—amino acids that define the interactive portion of the protein surfaces. SMS may simultaneously display and analyze previously superimposed structures. PDB updates trigger SMS updates in a synchronized fashion. SMS is freely accessible for public data at http://www.cbi.cnptia.embrapa.br, http://mirrors.rcsb.org/SMS and http://trantor.bioc.columbia.edu/SMS. PMID:12824333

  8. Structure of local interactions in complex financial dynamics.

    Science.gov (United States)

    Jiang, X F; Chen, T T; Zheng, B

    2014-06-17

    With the network methods and random matrix theory, we investigate the interaction structure of communities in financial markets. In particular, based on the random matrix decomposition, we clarify that the local interactions between the business sectors (subsectors) are mainly contained in the sector mode. In the sector mode, the average correlation inside the sectors is positive, while that between the sectors is negative. Further, we explore the time evolution of the interaction structure of the business sectors, and observe that the local interaction structure changes dramatically during a financial bubble or crisis.

  9. Structural study of surfactant-dependent interaction with protein

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, Sumit; Aswal, Vinod K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, Joachim [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  10. Unraveling the sequence and structure of the protein osteocalcin from a 42 ka fossil horse

    Science.gov (United States)

    Ostrom, Peggy H.; Gandhi, Hasand; Strahler, John R.; Walker, Angela K.; Andrews, Philip C.; Leykam, Joseph; Stafford, Thomas W.; Kelly, Robert L.; Walker, Danny N.; Buckley, Mike; Humpula, James

    2006-04-01

    We report the first complete amino acid sequence and evidence of secondary structure for osteocalcin from a temperate fossil. The osteocalcin derives from a 42 ka equid bone excavated from Juniper Cave, Wyoming. Results were determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-MS) and Edman sequencing with independent confirmation of the sequence in two laboratories. The ancient sequence was compared to that of three modern taxa: horse ( Equus caballus), zebra ( Equus grevyi), and donkey ( Equus asinus). Although there was no difference in sequence among modern taxa, MALDI-MS and Edman sequencing show that residues 48 and 49 of our modern horse are Thr, Ala rather than Pro, Val as previously reported (Carstanjen B., Wattiez, R., Armory, H., Lepage, O.M., Remy, B., 2002. Isolation and characterization of equine osteocalcin. Ann. Med. Vet.146(1), 31-38). MALDI-MS and Edman sequencing data indicate that the osteocalcin sequence of the 42 ka fossil is similar to that of modern horse. Previously inaccessible structural attributes for ancient osteocalcin were observed. Glu 39 rather than Gln 39 is consistent with deamidation, a process known to occur during fossilization and aging. Two post-translational modifications were documented: Hyp 9 and a disulfide bridge. The latter suggests at least partial retention of secondary structure. As has been done for ancient DNA research, we recommend standards for preparation and criteria for authenticating results of ancient protein sequencing.

  11. Electronic structures in ion-surface interactions

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Takeuchi, Takae; Yamamoto, Masao.

    1997-01-01

    A chemical bond generated by the interaction between low energy ion and base was investigated by ab initio molecular orbital method. The effects of ion charge were studied by calculation of this method. When carbon ion approached to graphite base (C 24 H 12 ), the positive ion and the neutral atom covalently bonded, but the negative ion did not combine with it. When carbon ion was injected into h-BN base (B 12 N 12 H 12 , hexagonal system boron nitride), the positive ion and the neutron atom formed covalent bond and the van der Waals binding, and the negative ion interacted statically with it. (S.Y.)

  12. Wave Interaction with Porous Coastal Structures

    DEFF Research Database (Denmark)

    Jensen, Bjarne

    with the simulation of a rock toe structure on a rubble mound breakwater. The stones in the toe structure were resolved directly in the model while the rest of the breakwater was included with the porosity model. In Chapter 6 both experimental and numerical topics are included. The physical experiments includes...

  13. Implicit Structured Sequence Learning: An FMRI Study of the Structural Mere-Exposure Effect

    Directory of Open Access Journals (Sweden)

    Vasiliki eFolia

    2014-02-01

    Full Text Available In this event-related FMRI study we investigated the effect of five days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the FMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45 and the medial prefrontal regions (centered on BA 8/32. Importantly, and central to this study, the inclusion of a naive preference FMRI baseline measurement allowed us to conclude that these FMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax in unsupervised AGL paradigms with proper learning designs.

  14. Implicit structured sequence learning: an fMRI study of the structural mere-exposure effect.

    Science.gov (United States)

    Folia, Vasiliki; Petersson, Karl Magnus

    2014-01-01

    In this event-related fMRI study we investigated the effect of 5 days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the fMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference fMRI baseline measurement allowed us to conclude that these fMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs.

  15. Effect of energy level sequences and neutron–proton interaction on α-particle preformation probability

    International Nuclear Information System (INIS)

    Ismail, M.; Adel, A.

    2013-01-01

    A realistic density-dependent nucleon–nucleon (NN) interaction with finite-range exchange part which produces the nuclear matter saturation curve and the energy dependence of the nucleon–nucleus optical model potential is used to calculate the preformation probability, S α , of α-decay from different isotones with neutron numbers N=124,126,128,130 and 132. We studied the variation of S α with the proton number, Z, for each isotone and found the effect of neutron and proton energy levels of parent nuclei on the behavior of the α-particle preformation probability. We found that S α increases regularly with the proton number when the proton pair in α-particle is emitted from the same level and the neutron level sequence is not changed during the Z-variation. In this case the neutron–proton (n–p) interaction of the two levels, contributing to emission process, is too small. On the contrary, if the proton or neutron level sequence is changed during the emission process, S α behaves irregularly, the irregular behavior increases if both proton and neutron levels are changed. This behavior is accompanied by change or rapid increase in the strength of n–p interaction

  16. Unveiling in situ interactions between marine protists and bacteria through single cell sequencing

    Science.gov (United States)

    Martinez-Garcia, Manuel; Brazel, David; Poulton, Nicole J; Swan, Brandon K; Gomez, Monica Lluesma; Masland, Dashiell; Sieracki, Michael E; Stepanauskas, Ramunas

    2012-01-01

    Heterotrophic protists are a highly diverse and biogeochemically significant component of marine ecosystems, yet little is known about their species-specific prey preferences and symbiotic interactions in situ. Here we demonstrate how these previously unresolved questions can be addressed by sequencing the eukaryote and bacterial SSU rRNA genes from individual, uncultured protist cells collected from their natural marine environment and sorted by flow cytometry. We detected Pelagibacter ubique in association with a MAST-4 protist, an actinobacterium in association with a chrysophyte and three bacteroidetes in association with diverse protist groups. The presence of identical phylotypes among the putative prey and the free bacterioplankton in the same sample provides evidence for predator–prey interactions. Our results also suggest a discovery of novel symbionts, distantly related to Rickettsiales and the candidate divisions ZB3 and TG2, associated with Cercozoa and Chrysophyta cells. This study demonstrates the power of single cell sequencing to untangle ecological interactions between uncultured protists and prokaryotes. PMID:21938022

  17. Measuring patterns in team interaction sequences using a discrete recurrence approach.

    Science.gov (United States)

    Gorman, Jamie C; Cooke, Nancy J; Amazeen, Polemnia G; Fouse, Shannon

    2012-08-01

    Recurrence-based measures of communication determinism and pattern information are described and validated using previously collected team interaction data. Team coordination dynamics has revealed that"mixing" team membership can lead to flexible interaction processes, but keeping a team "intact" can lead to rigid interaction processes. We hypothesized that communication of intact teams would have greater determinism and higher pattern information compared to that of mixed teams. Determinism and pattern information were measured from three-person Uninhabited Air Vehicle team communication sequences over a series of 40-minute missions. Because team members communicated using push-to-talk buttons, communication sequences were automatically generated during each mission. The Composition x Mission determinism effect was significant. Intact teams' determinism increased over missions, whereas mixed teams' determinism did not change. Intact teams had significantly higher maximum pattern information than mixed teams. Results from these new communication analysis methods converge with content-based methods and support our hypotheses. Because they are not content based, and because they are automatic and fast, these new methods may be amenable to real-time communication pattern analysis.

  18. Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device

    DEFF Research Database (Denmark)

    Marie, Rodolphe; Pedersen, Jonas Nyvold; L. V. Bauer, David

    2013-01-01

    as well as unique structural variation. Following its mapping, a molecule of interest was rescued fromthe chip;amplified and localized to a chromosome by FISH; and interrogated down to 1-bp resolution with a commercial sequencer, thereby reconciling haplotype-phased chromosome substructure with sequence....

  19. Sequence and 3D structure based analysis of TNT degrading proteins in Arabidopsis thaliana.

    Science.gov (United States)

    Bhattacherjee, Amrita; Mandal, Rahul Shubhra; Das, Santasabuj; Kundu, Sudip

    2014-03-01

    TNT, accidentally released at several manufacturing sites, contaminates ground water and soil. It has a toxic effect to algae and invertebrate, and chronic exposure to TNT also causes harmful effects to human. On the other hand, many plants including Arabidopsis thaliana have the ability to metabolize TNT either completely or at least to a reduced less toxic form. In A. thaliana, the enzyme UDP glucosyltransferase (UDPGT) can further conjugate the reduced forms 2-HADNT and 4-HADNT (2-hydroxylamino-4, 6- dinitrotoluene and 4-hydroxylamino-2, 6- dinitrotoluene) of TNT. Based on the experimental analysis, existing literature and phylogenetic analysis, it is evident that among 107 UDPGT proteins only six are involved in the TNT degrading process. A total of 13 UDPGT proteins including five of these TNT degrading proteins fall within the same group of phylogeny. Thus, these 13 UDPGT proteins have been classified into two groups, TNT-degrading and TNT-non-degrading proteins. To understand the differences in TNT-degrading capacities; using homology modeling we first predicted two structures, taking one representative sequence from both the groups. Next, we performed molecular docking of the modeled structure and TNT reduced form 2-hydroxylamino-4, 6- dinitrotoluene (2-HADNT). We observed that while the Trp residue located within the active site region of the TNT- degrading protein showed π-Cation interaction; such type of interaction was absent in TNT-non-degrading protein, as the respective Trp residue lay outside of the pocket in this case. We observed the conservation of this π-Cation interaction during MD simulation of TNT-degrading protein. Thus, the position and the orientation of the active site residue Trp could explain the presence and absence of TNT-degrading capacity of the UDPGT proteins.

  20. Nonparametric combinatorial sequence models.

    Science.gov (United States)

    Wauthier, Fabian L; Jordan, Michael I; Jojic, Nebojsa

    2011-11-01

    This work considers biological sequences that exhibit combinatorial structures in their composition: groups of positions of the aligned sequences are "linked" and covary as one unit across sequences. If multiple such groups exist, complex interactions can emerge between them. Sequences of this kind arise frequently in biology but methodologies for analyzing them are still being developed. This article presents a nonparametric prior on sequences which allows combinatorial structures to emerge and which induces a posterior distribution over factorized sequence representations. We carry out experiments on three biological sequence families which indicate that combinatorial structures are indeed present and that combinatorial sequence models can more succinctly describe them than simpler mixture models. We conclude with an application to MHC binding prediction which highlights the utility of the posterior distribution over sequence representations induced by the prior. By integrating out the posterior, our method compares favorably to leading binding predictors.

  1. Carcinogen-DNA interaction study by base sequence footprinting. Final report, July 1, 1983-June 30, 1986

    International Nuclear Information System (INIS)

    Bases, R.

    1986-01-01

    Our previous studies on acetylaminofluorene (AAF) modified DNA demonstrated three kinds of structural changes in DNA of defined base sequence. For example, adduct formation by N-Aco-AAF was found at each guanine. We studied the interaction of IgG specific for AAF guanosine in an in vitro system using AAF modified phi X-174 rf DNA. We had expected to find protection against DNAase I digestion. Instead, when the DNA was immunobound to an inert matrix via the IgG, DNAase I digestion was enhanced 20 fold without changing the base sequence pattern of digestion. DNAase I hypersensitive sites are a necessary but not a sufficient condition for transcription. Moreover, some hypersensitive sites are stably propagated, independent of the continued presence of the inducer. Stability of these hypersensitive sites in the absence of their inducer suggests that they can be propagated. It appeared likely that distortion of DNA by a carcinogen adduct such as AAF, and the interaction of this modified DNA with a specific protein such as IgG or cellular proteins might inappropriately enhance the transcription of specific genes. That hypothesis will be tested; surprisingly, little is known about the early action of carcinogens on expression of specific genes. 34 refs., 2 figs., 1 tab

  2. Understanding Protein-Protein Interactions Using Local Structural Features

    DEFF Research Database (Denmark)

    Planas-Iglesias, Joan; Bonet, Jaume; García-García, Javier

    2013-01-01

    Protein-protein interactions (PPIs) play a relevant role among the different functions of a cell. Identifying the PPI network of a given organism (interactome) is useful to shed light on the key molecular mechanisms within a biological system. In this work, we show the role of structural features...... interacting and non-interacting protein pairs to classify the structural features that sustain the binding (or non-binding) behavior. Our study indicates that not only the interacting region but also the rest of the protein surface are important for the interaction fate. The interpretation...... to score the likelihood of the interaction between two proteins and to develop a method for the prediction of PPIs. We have tested our method on several sets with unbalanced ratios of interactions and non-interactions to simulate real conditions, obtaining accuracies higher than 25% in the most unfavorable...

  3. Structure soil structure interaction effects: Seismic analysis of safety related collocated concrete structures

    International Nuclear Information System (INIS)

    Joshi, J.R.

    2000-01-01

    The Process, Purification and Stack Buildings are collocated safety related concrete shear wall structures with plan dimensions in excess of 100 feet. An important aspect of their seismic analysis was the determination of structure soil structure interaction (SSSI) effects, if any. The SSSI analysis of the Process Building, with one other building at a time, was performed with the SASSI computer code for up to 50 frequencies. Each combined model had about 1500 interaction nodes. Results of the SSSI analysis were compared with those from soil structure interaction (SSI) analysis of the individual buildings, done with ABAQUS and SASSI codes, for three parameters: peak accelerations, seismic forces and the in-structure floor response spectra (FRS). The results may be of wider interest due to the model size and the potential applicability to other deep soil layered sites. Results obtained from the ABAQUS analysis were consistently higher, as expected, than those from the SSI and SSSI analyses using the SASSI. The SSSI effect between the Process and Purification Buildings was not significant. The Process and Stack Building results demonstrated that under certain conditions a massive structure can have an observable effect on the seismic response of a smaller and less stiff structure

  4. Spatial-structural interaction and strain energy structural optimisation

    NARCIS (Netherlands)

    Hofmeyer, H.; Davila Delgado, J.M.; Borrmann, A.; Geyer, P.; Rafiq, Y.; Wilde, de P.

    2012-01-01

    A research engine iteratively transforms spatial designs into structural designs and vice versa. Furthermore, spatial and structural designs are optimised. It is suggested to optimise a structural design by evaluating the strain energy of its elements and by then removing, adding, or changing the

  5. An impedance function approach for soil-structure interaction analyses including structure-to-structure interaction effects

    International Nuclear Information System (INIS)

    Gantayat, A.; Kamil, H.

    1981-01-01

    The dynamic soil-structure and structure-to-structure interaction effects may be determined in one of the two ways: by modeling the entire soil-structure system by a finite-element model, or by using a frequency-dependent (or frequency-independent) impedance function approach. In seismic design of nuclear power plant structures, the normal practice is to use the first approach because of its simplicity and easy availability of computer codes to perform such analyses. However, in the finite-element approach, because of the size and cost restrictions, the three-dimensional behavior of the entire soil-structure system and the radiation damping in soil are only approximately included by using a two-dimensional finite-element mesh. In using the impedance function approach, the soil-structure analyses can be performed in four steps: (a) determination of the dynamic properties of the fixed base superstructure, (b) determination of foundation and structure impedance matrices and input motions, (c) evaluation of foundation motion, (d) analysis of the fixed base superstructure using computed foundation motion. (orig./RW)

  6. Distribution of genotype network sizes in sequence-to-structure genotype-phenotype maps.

    Science.gov (United States)

    Manrubia, Susanna; Cuesta, José A

    2017-04-01

    An essential quantity to ensure evolvability of populations is the navigability of the genotype space. Navigability, understood as the ease with which alternative phenotypes are reached, relies on the existence of sufficiently large and mutually attainable genotype networks. The size of genotype networks (e.g. the number of RNA sequences folding into a particular secondary structure or the number of DNA sequences coding for the same protein structure) is astronomically large in all functional molecules investigated: an exhaustive experimental or computational study of all RNA folds or all protein structures becomes impossible even for moderately long sequences. Here, we analytically derive the distribution of genotype network sizes for a hierarchy of models which successively incorporate features of increasingly realistic sequence-to-structure genotype-phenotype maps. The main feature of these models relies on the characterization of each phenotype through a prototypical sequence whose sites admit a variable fraction of letters of the alphabet. Our models interpolate between two limit distributions: a power-law distribution, when the ordering of sites in the prototypical sequence is strongly constrained, and a lognormal distribution, as suggested for RNA, when different orderings of the same set of sites yield different phenotypes. Our main result is the qualitative and quantitative identification of those features of sequence-to-structure maps that lead to different distributions of genotype network sizes. © 2017 The Author(s).

  7. Sequence analyses and 3D structure prediction of two Type III ...

    African Journals Online (AJOL)

    Internet

    2012-04-17

    Apr 17, 2012 ... analyses were performed using the sequence data of growth hormone gene (gh) ... used as a phylogenetic marker for different taxonomic ..... structural changes have been observed in some parts of ..... of spatial restraints.

  8. Structural priority approach to fluid-structure interaction problems

    International Nuclear Information System (INIS)

    Au-Yang, M.K.; Galford, J.E.

    1981-01-01

    In a large class of dynamic problems occurring in nuclear reactor safety analysis, the forcing function is derived from the fluid enclosed within the structure itself. Since the structural displacement depends on the fluid pressure, which in turn depends on the structural boundaries, a rigorous approach to this class of problems involves simultaneous solution of the coupled fluid mechanics and structural dynamics equations with the structural response and the fluid pressure as unknowns. This paper offers an alternate approach to the foregoing problems. 8 refs

  9. Nonstructural NSs protein of rift valley fever virus interacts with pericentromeric DNA sequences of the host cell, inducing chromosome cohesion and segregation defects.

    Science.gov (United States)

    Mansuroglu, Z; Josse, T; Gilleron, J; Billecocq, A; Leger, P; Bouloy, M; Bonnefoy, E

    2010-01-01

    Rift Valley fever virus (RVFV) is an emerging, highly pathogenic virus; RVFV infection can lead to encephalitis, retinitis, or fatal hepatitis associated with hemorrhagic fever in humans, as well as death, abortions, and fetal deformities in animals. RVFV nonstructural NSs protein, a major factor of the virulence, forms filamentous structures in the nuclei of infected cells. In order to further understand RVFV pathology, we investigated, by chromatin immunoprecipitation, immunofluorescence, fluorescence in situ hybridization, and confocal microscopy, the capacity of NSs to interact with the host genome. Our results demonstrate that even though cellular DNA is predominantly excluded from NSs filaments, NSs interacts with some specific DNA regions of the host genome such as clusters of pericentromeric gamma-satellite sequence. Targeting of these sequences by NSs was correlated with the induction of chromosome cohesion and segregation defects in RVFV-infected murine, as well as sheep cells. Using recombinant nonpathogenic virus rZHDeltaNSs210-230, expressing a NSs protein deleted of its region of interaction with cellular factor SAP30, we showed that the NSs-SAP30 interaction was essential for NSs to target pericentromeric sequences, as well as for induction of chromosome segregation defects. The effect of RVFV upon the inheritance of genetic information is discussed with respect to the pathology associated with fetal deformities and abortions, highlighting the main role played by cellular cofactor SAP30 on the establishment of NSs interactions with host DNA sequences and RVFV pathogenesis.

  10. GeneWiz browser: An Interactive Tool for Visualizing Sequenced Chromosomes

    DEFF Research Database (Denmark)

    Hallin, Peter Fischer; Stærfeldt, Hans Henrik; Rotenberg, Eva

    2009-01-01

    , standard atlases are pre-generated for all prokaryotic genomes available in GenBank, providing a fast overview of all available genomes, including recently deposited genome sequences. The tool is available online from http://www.cbs.dtu.dk/services/gwBrowser. [Supplemental material including interactive...... atlases is available online at http://www.cbs.dtu.dk/services/gwBrowser/suppl/]....... readability and increased functionality compared to other browsers. The tool allows the user to select the display of various genomic features, color setting and data ranges. Custom numerical data can be added to the plot, allowing for example visualization of gene expression and regulation data. Further...

  11. Solving RNA's structural secrets: interaction with antibodies and crystal structure of a nuclease resistant RNA

    International Nuclear Information System (INIS)

    Wallace, S.T.

    1998-10-01

    This Ph.D. thesis concerns the structural characterization of RNA. The work is split into two sections: 1) in vitro selection and characterization of RNAs which bind antibiotics and 2) crystal structure of a nuclease resistant RNA molecule used in antisense applications. Understanding antibiotic-RNA interactions is crucial in aiding rational drug design. We were interested in studying antibiotic interactions with RNAs small enough to characterize at the molecular and possibly at the atomic level. In order to do so, we previously performed in vitro selection to find small RNAs which bind to the peptide antibiotic viomycin and the aminoglycoside antibiotic streptomycin. The characterization of the viomycin-binding RNAs revealed the necessity of a pseudoknot-structure in order to interact with the antibiotic. The RNAs which were selected to interact with streptomycin require the presence of magnesium to bind the antibiotic. One of the RNAs, upon interacting with streptomycin undergoes a significant conformational change spanning the entire RNA sequence needed to bind the antibiotic. In a quest to design oligodeoxynucleotides (ODNs) which are able to specifically bid and inactivate the mRNA of a gene, it is necessary to fulfill two criteria: 1) increase binding affinity between the ODN and the target RNA and 2) increase the ODN's resistance to nuclease degradation. An ODN with an aminopropyl modification at the 2' position of its ribose has emerged as the most successful candidate at fulfilling both criteria. It is the most nuclease resistant modification known to date. We were interested in explaining how this modification is able to circumvent degradation by nucleases. A dodecamer containing a single 2'-O-aminopropyl modified nucleotide was crystallized and the structure was solved to a resolution of 1.6 A. In an attempt to explain the nuclease resistance, the crystal coordinates were modeled into the active exonuclease site of DNA polymerase I. We propose the

  12. De novo structural modeling and computational sequence analysis ...

    African Journals Online (AJOL)

    Different bioinformatics tools and machine learning techniques were used for protein structural classification. De novo protein modeling was performed by using I-TASSER server. The final model obtained was accessed by PROCHECK and DFIRE2, which confirmed that the final model is reliable. Until complete biochemical ...

  13. Charge structure of K-p interactions

    International Nuclear Information System (INIS)

    Goettgens, R.; Ransone, G.; Sixel, P.

    1981-01-01

    The charge transfer distribution, its average, dispersion and skewness are studied in K - p interactions at 110 GeV/c and lower energies. The ratio of dispersion squared to rapidity plateau height is found to be energy independent as suggested by the neutral cluster models. The short range charge correlations in rapidity are observed at all energies; at 110 GeV/c there is also evidence for a long range component. (author)

  14. Secondary structure classification of amino-acid sequences using state-space modeling

    OpenAIRE

    Brunnert, Marcus; Krahnke, Tillmann; Urfer, Wolfgang

    2001-01-01

    The secondary structure classification of amino acid sequences can be carried out by a statistical analysis of sequence and structure data using state-space models. Aiming at this classification, a modified filter algorithm programmed in S is applied to data of three proteins. The application leads to correct classifications of two proteins even when using relatively simple estimation methods for the parameters of the state-space models. Furthermore, it has been shown that the assumed initial...

  15. libcov: A C++ bioinformatic library to manipulate protein structures, sequence alignments and phylogeny

    OpenAIRE

    Butt, Davin; Roger, Andrew J; Blouin, Christian

    2005-01-01

    Background An increasing number of bioinformatics methods are considering the phylogenetic relationships between biological sequences. Implementing new methodologies using the maximum likelihood phylogenetic framework can be a time consuming task. Results The bioinformatics library libcov is a collection of C++ classes that provides a high and low-level interface to maximum likelihood phylogenetics, sequence analysis and a data structure for structural biological methods. libcov can be used ...

  16. Cellular structures in a system of interacting particles

    International Nuclear Information System (INIS)

    Lev, B.I.

    2009-01-01

    The general description of the formation of a cellular structure in the system of interacting particles is proposed. The analytical results for possible cellular structures in the usual colloidal systems, systems of particles immersed in a liquid crystal, and gravitational systems have been presented. It is shown that the formation of a cellular structure in all systems of interacting particles at different temperatures and concentrations of particles has the same physical nature

  17. TurboFold: Iterative probabilistic estimation of secondary structures for multiple RNA sequences

    Directory of Open Access Journals (Sweden)

    Sharma Gaurav

    2011-04-01

    Full Text Available Abstract Background The prediction of secondary structure, i.e. the set of canonical base pairs between nucleotides, is a first step in developing an understanding of the function of an RNA sequence. The most accurate computational methods predict conserved structures for a set of homologous RNA sequences. These methods usually suffer from high computational complexity. In this paper, TurboFold, a novel and efficient method for secondary structure prediction for multiple RNA sequences, is presented. Results TurboFold takes, as input, a set of homologous RNA sequences and outputs estimates of the base pairing probabilities for each sequence. The base pairing probabilities for a sequence are estimated by combining intrinsic information, derived from the sequence itself via the nearest neighbor thermodynamic model, with extrinsic information, derived from the other sequences in the input set. For a given sequence, the extrinsic information is computed by using pairwise-sequence-alignment-based probabilities for co-incidence with each of the other sequences, along with estimated base pairing probabilities, from the previous iteration, for the other sequences. The extrinsic information is introduced as free energy modifications for base pairing in a partition function computation based on the nearest neighbor thermodynamic model. This process yields updated estimates of base pairing probability. The updated base pairing probabilities in turn are used to recompute extrinsic information, resulting in the overall iterative estimation procedure that defines TurboFold. TurboFold is benchmarked on a number of ncRNA datasets and compared against alternative secondary structure prediction methods. The iterative procedure in TurboFold is shown to improve estimates of base pairing probability with each iteration, though only small gains are obtained beyond three iterations. Secondary structures composed of base pairs with estimated probabilities higher than a

  18. γ-Glutamyltranspeptidases: sequence, structure, biochemical properties, and biotechnological applications.

    Science.gov (United States)

    Castellano, Immacolata; Merlino, Antonello

    2012-10-01

    γ-Glutamyltranspeptidases (γ-GTs) are ubiquitous enzymes that catalyze the hydrolysis of γ-glutamyl bonds in glutathione and glutamine and the transfer of the released γ-glutamyl group to amino acids or short peptides. These enzymes are involved in glutathione metabolism and play critical roles in antioxidant defense, detoxification, and inflammation processes. Moreover, γ-GTs have been recently found to be involved in many physiological disorders, such as Parkinson's disease and diabetes. In this review, the main biochemical and structural properties of γ-GTs isolated from different sources, as well as their conformational stability and mechanism of catalysis, are described and examined with the aim of contributing to the discussion on their structure-function relationships. Possible applications of γ-glutamyltranspeptidases in different fields of biotechnology and medicine are also discussed.

  19. Dynamic Analysis of Partially Embedded Structures Considering Soil-Structure Interaction in Time Domain

    OpenAIRE

    Mahmoudpour, Sanaz; Attarnejad, Reza; Behnia, Cambyse

    2011-01-01

    Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite el...

  20. Dynamic Assessment of Microbial Ecology (DAME): A web app for interactive analysis and visualization of microbial sequencing data

    Science.gov (United States)

    Dynamic Assessment of Microbial Ecology (DAME) is a shiny-based web application for interactive analysis and visualization of microbial sequencing data. DAME provides researchers not familiar with R programming the ability to access the most current R functions utilized for ecology and gene sequenci...

  1. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information

    Directory of Open Access Journals (Sweden)

    Hu Jianjun

    2011-05-01

    Full Text Available Abstract Background Accurate prediction of binding residues involved in the interactions between proteins and small ligands is one of the major challenges in structural bioinformatics. Heme is an essential and commonly used ligand that plays critical roles in electron transfer, catalysis, signal transduction and gene expression. Although much effort has been devoted to the development of various generic algorithms for ligand binding site prediction over the last decade, no algorithm has been specifically designed to complement experimental techniques for identification of heme binding residues. Consequently, an urgent need is to develop a computational method for recognizing these important residues. Results Here we introduced an efficient algorithm HemeBIND for predicting heme binding residues by integrating structural and sequence information. We systematically investigated the characteristics of binding interfaces based on a non-redundant dataset of heme-protein complexes. It was found that several sequence and structural attributes such as evolutionary conservation, solvent accessibility, depth and protrusion clearly illustrate the differences between heme binding and non-binding residues. These features can then be separately used or combined to build the structure-based classifiers using support vector machine (SVM. The results showed that the information contained in these features is largely complementary and their combination achieved the best performance. To further improve the performance, an attempt has been made to develop a post-processing procedure to reduce the number of false positives. In addition, we built a sequence-based classifier based on SVM and sequence profile as an alternative when only sequence information can be used. Finally, we employed a voting method to combine the outputs of structure-based and sequence-based classifiers, which demonstrated remarkably better performance than the individual classifier alone

  2. 'End of life' conversations, appreciation sequences, and the interaction order in cancer clinics.

    Science.gov (United States)

    Maynard, Douglas W; Cortez, Dagoberto; Campbell, Toby C

    2016-01-01

    To address the organization of conversations in oncology visits by taking an "interaction order" perspective and asking how these visits are intrinsically organized. Conversation analysis. Using audio recordings of talk in oncology visits involving patients with non-small cell lung cancer, we identify and analyze an "appreciation sequence" that is designed to elicit patients' understanding and positive assessment of treatments in terms of their prolongation of life. An "appreciation sequence," regularly initiated after the delivery of scan results and/or treatment recommendations, simultaneously reminds patients of their mortality while suggesting that the treatment received has prolonged their lives, and in some cases significantly beyond the median time of survival. We explore the functions of the appreciation sequence for cancer care and set the stage for considering where and when physicians have choices about the order and direction the talk can take and how to allocate time for end of life and quality of life conversations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Validation of seismic soil-structure interaction

    International Nuclear Information System (INIS)

    Finn, Liam W.D.; Ledbetter, R.H.; Beratan, L.L.

    1988-01-01

    Simulated earthquake tests were conducted on centrifuged model structures embedded in dry and saturated sand foundations. Accelerations and pore water pressures were recorded at many locations during the test. Model responses were analyzed using the program TARA-3 which incorporates a procedure for nonlinear dynamic effective stress analysis. Computed and measured responses agreed quite closely. (author)

  4. Human-structure Interaction and Implications

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2016-01-01

    On civil engineering structures human occupancy is often modeled as a static load. Modeling humans as a static load is a simplification of matters, as will be demonstrated in the paper. The paper addresses the complexity of having both passive humans (sitting or standing) as well as active humans...

  5. Validation of seismic soil-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Finn, Liam W.D. [Department of Civil Engineering, University of British Columbia, Vancouver (Canada); Ledbetter, R H [USAE Waterways Experiment Station, Vicksburg (United States); Beratan, L L [U.S. Nuclear Regulatory Commission, Office of Research, Washington, DC (United States)

    1988-07-01

    Simulated earthquake tests were conducted on centrifuged model structures embedded in dry and saturated sand foundations. Accelerations and pore water pressures were recorded at many locations during the test. Model responses were analyzed using the program TARA-3 which incorporates a procedure for nonlinear dynamic effective stress analysis. Computed and measured responses agreed quite closely. (author)

  6. Sequence and structural analysis of the chitinase insertion domain reveals two conserved motifs involved in chitin-binding.

    Directory of Open Access Journals (Sweden)

    Hai Li

    2010-01-01

    Full Text Available Chitinases are prevalent in life and are found in species including archaea, bacteria, fungi, plants, and animals. They break down chitin, which is the second most abundant carbohydrate in nature after cellulose. Hence, they are important for maintaining a balance between carbon and nitrogen trapped as insoluble chitin in biomass. Chitinases are classified into two families, 18 and 19 glycoside hydrolases. In addition to a catalytic domain, which is a triosephosphate isomerase barrel, many family 18 chitinases contain another module, i.e., chitinase insertion domain. While numerous studies focus on the biological role of the catalytic domain in chitinase activity, the function of the chitinase insertion domain is not completely understood. Bioinformatics offers an important avenue in which to facilitate understanding the role of residues within the chitinase insertion domain in chitinase function.Twenty-seven chitinase insertion domain sequences, which include four experimentally determined structures and span five kingdoms, were aligned and analyzed using a modified sequence entropy parameter. Thirty-two positions with conserved residues were identified. The role of these conserved residues was explored by conducting a structural analysis of a number of holo-enzymes. Hydrogen bonding and van der Waals calculations revealed a distinct subset of four conserved residues constituting two sequence motifs that interact with oligosaccharides. The other conserved residues may be key to the structure, folding, and stability of this domain.Sequence and structural studies of the chitinase insertion domains conducted within the framework of evolution identified four conserved residues which clearly interact with the substrates. Furthermore, evolutionary studies propose a link between the appearance of the chitinase insertion domain and the function of family 18 chitinases in the subfamily A.

  7. Protein-Protein Interactions Prediction Using a Novel Local Conjoint Triad Descriptor of Amino Acid Sequences

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2017-11-01

    Full Text Available Protein-protein interactions (PPIs play crucial roles in almost all cellular processes. Although a large amount of PPIs have been verified by high-throughput techniques in the past decades, currently known PPIs pairs are still far from complete. Furthermore, the wet-lab experiments based techniques for detecting PPIs are time-consuming and expensive. Hence, it is urgent and essential to develop automatic computational methods to efficiently and accurately predict PPIs. In this paper, a sequence-based approach called DNN-LCTD is developed by combining deep neural networks (DNNs and a novel local conjoint triad description (LCTD feature representation. LCTD incorporates the advantage of local description and conjoint triad, thus, it is capable to account for the interactions between residues in both continuous and discontinuous regions of amino acid sequences. DNNs can not only learn suitable features from the data by themselves, but also learn and discover hierarchical representations of data. When performing on the PPIs data of Saccharomyces cerevisiae, DNN-LCTD achieves superior performance with accuracy as 93.12%, precision as 93.75%, sensitivity as 93.83%, area under the receiver operating characteristic curve (AUC as 97.92%, and it only needs 718 s. These results indicate DNN-LCTD is very promising for predicting PPIs. DNN-LCTD can be a useful supplementary tool for future proteomics study.

  8. Interactive software tool to comprehend the calculation of optimal sequence alignments with dynamic programming.

    Science.gov (United States)

    Ibarra, Ignacio L; Melo, Francisco

    2010-07-01

    Dynamic programming (DP) is a general optimization strategy that is successfully used across various disciplines of science. In bioinformatics, it is widely applied in calculating the optimal alignment between pairs of protein or DNA sequences. These alignments form the basis of new, verifiable biological hypothesis. Despite its importance, there are no interactive tools available for training and education on understanding the DP algorithm. Here, we introduce an interactive computer application with a graphical interface, for the purpose of educating students about DP. The program displays the DP scoring matrix and the resulting optimal alignment(s), while allowing the user to modify key parameters such as the values in the similarity matrix, the sequence alignment algorithm version and the gap opening/extension penalties. We hope that this software will be useful to teachers and students of bioinformatics courses, as well as researchers who implement the DP algorithm for diverse applications. The software is freely available at: http:/melolab.org/sat. The software is written in the Java computer language, thus it runs on all major platforms and operating systems including Windows, Mac OS X and LINUX. All inquiries or comments about this software should be directed to Francisco Melo at fmelo@bio.puc.cl.

  9. Sequence-dependent rotation axis changes and interaction torque use in overarm throwing.

    Science.gov (United States)

    Hansen, Clint; Rezzoug, Nasser; Gorce, Philippe; Venture, Gentiane; Isableu, Brice

    2016-01-01

    We examined the role of rotation axes during an overarm throwing task. Participants performed such task and were asked to throw a ball at maximal velocity at a target. The purpose of this study was to examine whether the minimum inertia axis would be exploited during the throwing phases, a time when internal-external rotations of the shoulder are particularly important. A motion capture system was used to evaluate the performance and to compute the potential axes of rotation (minimum inertia axis, shoulder-centre of mass axis and the shoulder-elbow axis). More specifically, we investigated whether a velocity-dependent change in rotational axes can be observed in the different throwing phases and whether the control obeys the principle of minimum inertia resistance. Our results showed that the limbs' rotational axis mainly coincides with the minimum inertia axis during the cocking phase and with the shoulder-elbow axis during the acceleration phase. Besides these rotation axes changes, the use of interaction torque is also sequence-dependent. The sequence-dependent rotation axes changes associated with the use of interaction torque during the acceleration phase could be a key factor in the production of hand velocity at ball release.

  10. Topology optimization for acoustic-structure interaction problems

    DEFF Research Database (Denmark)

    Yoon, Gil Ho; Jensen, Jakob Søndergaard; Sigmund, Ole

    2006-01-01

    We propose a gradient based topology optimization algorithm for acoustic-structure (vibro-acoustic) interaction problems without an explicit interfacing boundary representation. In acoustic-structure interaction problems, the pressure field and the displacement field are governed by the Helmholtz...... to subdomain interfaces evolving during the optimization process. In this paper, we propose to use a mixed finite element formulation with displacements and pressure as primary variables (u/p formulation) which eliminates the need for explicit boundary representation. In order to describe the Helmholtz......-dimensional acoustic-structure interaction problems are optimized to show the validity of the proposed method....

  11. Cluster structures influenced by interaction with a surface.

    Science.gov (United States)

    Witt, Christopher; Dieterich, Johannes M; Hartke, Bernd

    2018-05-30

    Clusters on surfaces are vitally important for nanotechnological applications. Clearly, cluster-surface interactions heavily influence the preferred cluster structures, compared to clusters in vacuum. Nevertheless, systematic explorations and an in-depth understanding of these interactions and how they determine the cluster structures are still lacking. Here we present an extension of our well-established non-deterministic global optimization package OGOLEM from isolated clusters to clusters on surfaces. Applying this approach to intentionally simple Lennard-Jones test systems, we produce a first systematic exploration that relates changes in cluster-surface interactions to resulting changes in adsorbed cluster structures.

  12. Structural and sequence features of two residue turns in beta-hairpins.

    Science.gov (United States)

    Madan, Bharat; Seo, Sung Yong; Lee, Sun-Gu

    2014-09-01

    Beta-turns in beta-hairpins have been implicated as important sites in protein folding. In particular, two residue β-turns, the most abundant connecting elements in beta-hairpins, have been a major target for engineering protein stability and folding. In this study, we attempted to investigate and update the structural and sequence properties of two residue turns in beta-hairpins with a large data set. For this, 3977 beta-turns were extracted from 2394 nonhomologous protein chains and analyzed. First, the distribution, dihedral angles and twists of two residue turn types were determined, and compared with previous data. The trend of turn type occurrence and most structural features of the turn types were similar to previous results, but for the first time Type II turns in beta-hairpins were identified. Second, sequence motifs for the turn types were devised based on amino acid positional potentials of two-residue turns, and their distributions were examined. From this study, we could identify code-like sequence motifs for the two residue beta-turn types. Finally, structural and sequence properties of beta-strands in the beta-hairpins were analyzed, which revealed that the beta-strands showed no specific sequence and structural patterns for turn types. The analytical results in this study are expected to be a reference in the engineering or design of beta-hairpin turn structures and sequences. © 2014 Wiley Periodicals, Inc.

  13. MRI in Optic Neuritis: Structure, Function, Interactions

    DEFF Research Database (Denmark)

    Fuglø, Dan

    2011-01-01

    resonance imaging (MRI), and the visual evoked potential (VEP) continues to show a delayed P100 indicating persistent demyelination. The explanation for this apparent discrepancy between structure and function could be due to either a redundancy in the visual pathways so that some degree of signal loss...... will have very few or no clinical symptoms, or it could be due to compensatory mechanisms in the visual pathway or the visual cortex. In order to understand the pathophysiology and recovery processes in ON it is essential to have sensitive methods to asses both structure and function. These methods...... are low. Functional MRI (fMRI) is a non-invasive technique that can measure brain activity with a high spatial resolution. Recently, technical and methodological advancements have made it feasible to record VEPs and fMRI simultaneously and the relationship between averaged VEPs and averaged fMRI signals...

  14. Interactive visualization tools for the structural biologist.

    Science.gov (United States)

    Porebski, Benjamin T; Ho, Bosco K; Buckle, Ashley M

    2013-10-01

    In structural biology, management of a large number of Protein Data Bank (PDB) files and raw X-ray diffraction images often presents a major organizational problem. Existing software packages that manipulate these file types were not designed for these kinds of file-management tasks. This is typically encountered when browsing through a folder of hundreds of X-ray images, with the aim of rapidly inspecting the diffraction quality of a data set. To solve this problem, a useful functionality of the Macintosh operating system (OSX) has been exploited that allows custom visualization plugins to be attached to certain file types. Software plugins have been developed for diffraction images and PDB files, which in many scenarios can save considerable time and effort. The direct visualization of diffraction images and PDB structures in the file browser can be used to identify key files of interest simply by scrolling through a list of files.

  15. Protein secondary structure prediction for a single-sequence using hidden semi-Markov models

    Directory of Open Access Journals (Sweden)

    Borodovsky Mark

    2006-03-01

    Full Text Available Abstract Background The accuracy of protein secondary structure prediction has been improving steadily towards the 88% estimated theoretical limit. There are two types of prediction algorithms: Single-sequence prediction algorithms imply that information about other (homologous proteins is not available, while algorithms of the second type imply that information about homologous proteins is available, and use it intensively. The single-sequence algorithms could make an important contribution to studies of proteins with no detected homologs, however the accuracy of protein secondary structure prediction from a single-sequence is not as high as when the additional evolutionary information is present. Results In this paper, we further refine and extend the hidden semi-Markov model (HSMM initially considered in the BSPSS algorithm. We introduce an improved residue dependency model by considering the patterns of statistically significant amino acid correlation at structural segment borders. We also derive models that specialize on different sections of the dependency structure and incorporate them into HSMM. In addition, we implement an iterative training method to refine estimates of HSMM parameters. The three-state-per-residue accuracy and other accuracy measures of the new method, IPSSP, are shown to be comparable or better than ones for BSPSS as well as for PSIPRED, tested under the single-sequence condition. Conclusions We have shown that new dependency models and training methods bring further improvements to single-sequence protein secondary structure prediction. The results are obtained under cross-validation conditions using a dataset with no pair of sequences having significant sequence similarity. As new sequences are added to the database it is possible to augment the dependency structure and obtain even higher accuracy. Current and future advances should contribute to the improvement of function prediction for orphan proteins inscrutable

  16. Large-scale determination of sequence, structure, and function relationships in cytosolic glutathione transferases across the biosphere.

    Science.gov (United States)

    Mashiyama, Susan T; Malabanan, M Merced; Akiva, Eyal; Bhosle, Rahul; Branch, Megan C; Hillerich, Brandan; Jagessar, Kevin; Kim, Jungwook; Patskovsky, Yury; Seidel, Ronald D; Stead, Mark; Toro, Rafael; Vetting, Matthew W; Almo, Steven C; Armstrong, Richard N; Babbitt, Patricia C

    2014-04-01

    The cytosolic glutathione transferase (cytGST) superfamily comprises more than 13,000 nonredundant sequences found throughout the biosphere. Their key roles in metabolism and defense against oxidative damage have led to thousands of studies over several decades. Despite this attention, little is known about the physiological reactions they catalyze and most of the substrates used to assay cytGSTs are synthetic compounds. A deeper understanding of relationships across the superfamily could provide new clues about their functions. To establish a foundation for expanded classification of cytGSTs, we generated similarity-based subgroupings for the entire superfamily. Using the resulting sequence similarity networks, we chose targets that broadly covered unknown functions and report here experimental results confirming GST-like activity for 82 of them, along with 37 new 3D structures determined for 27 targets. These new data, along with experimentally known GST reactions and structures reported in the literature, were painted onto the networks to generate a global view of their sequence-structure-function relationships. The results show how proteins of both known and unknown function relate to each other across the entire superfamily and reveal that the great majority of cytGSTs have not been experimentally characterized or annotated by canonical class. A mapping of taxonomic classes across the superfamily indicates that many taxa are represented in each subgroup and highlights challenges for classification of superfamily sequences into functionally relevant classes. Experimental determination of disulfide bond reductase activity in many diverse subgroups illustrate a theme common for many reaction types. Finally, sequence comparison between an enzyme that catalyzes a reductive dechlorination reaction relevant to bioremediation efforts with some of its closest homologs reveals differences among them likely to be associated with evolution of this unusual reaction

  17. Large-scale determination of sequence, structure, and function relationships in cytosolic glutathione transferases across the biosphere.

    Directory of Open Access Journals (Sweden)

    Susan T Mashiyama

    2014-04-01

    Full Text Available The cytosolic glutathione transferase (cytGST superfamily comprises more than 13,000 nonredundant sequences found throughout the biosphere. Their key roles in metabolism and defense against oxidative damage have led to thousands of studies over several decades. Despite this attention, little is known about the physiological reactions they catalyze and most of the substrates used to assay cytGSTs are synthetic compounds. A deeper understanding of relationships across the superfamily could provide new clues about their functions. To establish a foundation for expanded classification of cytGSTs, we generated similarity-based subgroupings for the entire superfamily. Using the resulting sequence similarity networks, we chose targets that broadly covered unknown functions and report here experimental results confirming GST-like activity for 82 of them, along with 37 new 3D structures determined for 27 targets. These new data, along with experimentally known GST reactions and structures reported in the literature, were painted onto the networks to generate a global view of their sequence-structure-function relationships. The results show how proteins of both known and unknown function relate to each other across the entire superfamily and reveal that the great majority of cytGSTs have not been experimentally characterized or annotated by canonical class. A mapping of taxonomic classes across the superfamily indicates that many taxa are represented in each subgroup and highlights challenges for classification of superfamily sequences into functionally relevant classes. Experimental determination of disulfide bond reductase activity in many diverse subgroups illustrate a theme common for many reaction types. Finally, sequence comparison between an enzyme that catalyzes a reductive dechlorination reaction relevant to bioremediation efforts with some of its closest homologs reveals differences among them likely to be associated with evolution of this

  18. Structural biology by NMR: structure, dynamics, and interactions.

    Directory of Open Access Journals (Sweden)

    Phineus R L Markwick

    2008-09-01

    Full Text Available The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time-scales from picoseconds to seconds. Nuclear Magnetic Resonance (NMR spectroscopy has emerged as the method of choice for studying both protein structure and dynamics in solution. Typically, NMR experiments are sensitive both to structural features and to dynamics, and hence the measured data contain information on both. Despite major progress in both experimental approaches and computational methods, obtaining a consistent view of structure and dynamics from experimental NMR data remains a challenge. Molecular dynamics simulations have emerged as an indispensable tool in the analysis of NMR data.

  19. Amyloid fibril formation from sequences of a natural beta-structured fibrous protein, the adenovirus fiber.

    Science.gov (United States)

    Papanikolopoulou, Katerina; Schoehn, Guy; Forge, Vincent; Forsyth, V Trevor; Riekel, Christian; Hernandez, Jean-François; Ruigrok, Rob W H; Mitraki, Anna

    2005-01-28

    Amyloid fibrils are fibrous beta-structures that derive from abnormal folding and assembly of peptides and proteins. Despite a wealth of structural studies on amyloids, the nature of the amyloid structure remains elusive; possible connections to natural, beta-structured fibrous motifs have been suggested. In this work we focus on understanding amyloid structure and formation from sequences of a natural, beta-structured fibrous protein. We show that short peptides (25 to 6 amino acids) corresponding to repetitive sequences from the adenovirus fiber shaft have an intrinsic capacity to form amyloid fibrils as judged by electron microscopy, Congo Red binding, infrared spectroscopy, and x-ray fiber diffraction. In the presence of the globular C-terminal domain of the protein that acts as a trimerization motif, the shaft sequences adopt a triple-stranded, beta-fibrous motif. We discuss the possible structure and arrangement of these sequences within the amyloid fibril, as compared with the one adopted within the native structure. A 6-amino acid peptide, corresponding to the last beta-strand of the shaft, was found to be sufficient to form amyloid fibrils. Structural analysis of these amyloid fibrils suggests that perpendicular stacking of beta-strand repeat units is an underlying common feature of amyloid formation.

  20. Soil-structure interaction analysis of ZPR6 reactor facility

    International Nuclear Information System (INIS)

    Ma, D.C.; Ahmed, H.U.

    1981-01-01

    Due to the computer storage limitation and economic concern, the current practice of soil-structure interaction analysis is limited to two dimensional analysis. The 2-D plane strain finite element program, FLUSH, is one often most used program in the analysis. Seismic response of soil and basement can be determined very well by FLUSH. The response of the structure above ground level, however, is often underestimated. This is mainly due to the three dimensional characteristics of the structures. This paper describes a detailed soil-structure interaction analysis of a rectangular embedded structure in conjunction with FLUSH program. The objective of the analysis is to derive the mean interaction motions at the structure base and the soil dynamic forces exerted on the basement lateral walls. The base motions and lateral soil dynamic forces are the specified boundary conditions for the later 3-D building response analysis. (orig./RW)

  1. Influence of 63Ser phosphorylation and dephosphorylation on the structure of the stathmin helical nucleation sequence: a molecular dynamics study.

    Science.gov (United States)

    Missimer, John H; Steinmetz, Michel O; van Gunsteren, Wilfred F; Dolenc, Jožica

    2012-10-23

    Phosphorylation is an important mechanism regulating protein-protein interactions involving intrinsically disordered protein regions. Stathmin, an archetypical example of an intrinsically disordered protein, is a key regulator of microtubule dynamics in which phosphorylation of 63Ser within the helical nucleation sequence strongly down-regulates the tubulin binding and microtubule destabilizing activities of the protein. Experimental studies on a peptide encompassing the 19-residue helical nucleation sequence of stathmin (residues 55-73) indicate that phosphorylation of 63Ser destabilizes the peptide's secondary structure by disrupting the salt bridges supporting its helical conformation. In order to investigate this hypothesis at atomic resolution, we performed molecular dynamics simulations of nonphosphorylated and phosphorylated stathmin-[55-73] at room temperature and pressure, neutral pH, and explicit solvation using the recently released GROMOS force field 54A7. In the simulations of nonphosphorylated stathmin-[55-73] emerged salt bridges associated with helical configurations. In the simulations of 63Ser phosphorylated stathmin-[55-73] these configurations dispersed and were replaced by a proliferation of salt bridges yielding disordered configurations. The transformation of the salt bridges was accompanied by emergence of numerous interactions between main and side chains, involving notably the oxygen atoms of the phosphorylated 63Ser. The loss of helical structure induced by phosphorylation is reversible, however, as a final simulation showed. The results extend the hypothesis of salt bridge derangement suggested by experimental observations of the stathmin nucleation sequence, providing new insights into regulation of intrinsically disordered protein systems mediated by phosphorylation.

  2. Electromagnetic and structural interaction analysis of curved shell structures

    International Nuclear Information System (INIS)

    Horie, T.; Niho, T.

    1993-01-01

    This paper describes a finite element formulation of the eddy current and structure coupled problem for curved shell structures. Coupling terms produced by curved geometry as well as flat plate geometry were obtained. Both matrix equations for eddy current and structure were solved simultaneously using coupling sub-matrices. TEAM Workshop bench mark problem 16 was solved to verify the formulation and the computer code. Agreement with experimental results was very good for such plate problem. A coupled problem for cylindrical shell structure was also analyzed. Influence of each coupling term was examined. The next topic is the eigenvalues of the coupled equations. Although the coupled matrix equations are not symmetric, symmetry was obtained by introducing a symmetrizing variable. The eigenvalues of the coupled matrix equations are different from those obtained from the uncoupled equations because of the influence of the coupling sub-matrix components. Some parameters obtained by the eigenvalue analysis have characteristics of parameters which indicate the intensity of electromagnetic structural coupling effect. (author)

  3. Three-Dimensional Structural Aspects of Protein–Polysaccharide Interactions

    Directory of Open Access Journals (Sweden)

    Masamichi Nagae

    2014-03-01

    Full Text Available Linear polysaccharides are typically composed of repeating mono- or disaccharide units and are ubiquitous among living organisms. Polysaccharide diversity arises from chain-length variation, branching, and additional modifications. Structural diversity is associated with various physiological functions, which are often regulated by cognate polysaccharide-binding proteins. Proteins that interact with linear polysaccharides have been identified or developed, such as galectins and polysaccharide-specific antibodies, respectively. Currently, data is accumulating on the three-dimensional structure of polysaccharide-binding proteins. These proteins are classified into two types: exo-type and endo-type. The former group specifically interacts with the terminal units of polysaccharides, whereas the latter with internal units. In this review, we describe the structural aspects of exo-type and endo-type protein-polysaccharide interactions. Further, we discuss the structural basis for affinity and specificity enhancement in the face of inherently weak binding interactions.

  4. Dynamic soil-structure interactions on embedded buildings

    International Nuclear Information System (INIS)

    Kobarg, J.; Werkle, H.; Henseleit, O.

    1983-01-01

    The dynamic soil-structure interaction on the horizontal seismic excitation is investigated on two typical embedded auxiliary buildings of a nuclear power plant. The structure and the soil are modelled by various analytical and numerical methods. Under the condition of the linear viscoelastic theory, i.e. soil characteristic constant in time and independent of strain, the interaction influences between a homogenous soil layer and a structure are analysied for the following parameters: 4) mathematical soil modells; 4) mathematical structure modells; 4) shear wave velocities; 3) embedment conditions; 4) earthquake time histories. (orig.) [de

  5. Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models.

    Directory of Open Access Journals (Sweden)

    Catherine L Worth

    Full Text Available BACKGROUND: Up until recently the only available experimental (high resolution structure of a G-protein-coupled receptor (GPCR was that of bovine rhodopsin. In the past few years the determination of GPCR structures has accelerated with three new receptors, as well as squid rhodopsin, being successfully crystallized. All share a common molecular architecture of seven transmembrane helices and can therefore serve as templates for building molecular models of homologous GPCRs. However, despite the common general architecture of these structures key differences do exist between them. The choice of which experimental GPCR structure(s to use for building a comparative model of a particular GPCR is unclear and without detailed structural and sequence analyses, could be arbitrary. The aim of this study is therefore to perform a systematic and detailed analysis of sequence-structure relationships of known GPCR structures. METHODOLOGY: We analyzed in detail conserved and unique sequence motifs and structural features in experimentally-determined GPCR structures. Deeper insight into specific and important structural features of GPCRs as well as valuable information for template selection has been gained. Using key features a workflow has been formulated for identifying the most appropriate template(s for building homology models of GPCRs of unknown structure. This workflow was applied to a set of 14 human family A GPCRs suggesting for each the most appropriate template(s for building a comparative molecular model. CONCLUSIONS: The available crystal structures represent only a subset of all possible structural variation in family A GPCRs. Some GPCRs have structural features that are distributed over different crystal structures or which are not present in the templates suggesting that homology models should be built using multiple templates. This study provides a systematic analysis of GPCR crystal structures and a consistent method for identifying

  6. Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models.

    Science.gov (United States)

    Worth, Catherine L; Kleinau, Gunnar; Krause, Gerd

    2009-09-16

    Up until recently the only available experimental (high resolution) structure of a G-protein-coupled receptor (GPCR) was that of bovine rhodopsin. In the past few years the determination of GPCR structures has accelerated with three new receptors, as well as squid rhodopsin, being successfully crystallized. All share a common molecular architecture of seven transmembrane helices and can therefore serve as templates for building molecular models of homologous GPCRs. However, despite the common general architecture of these structures key differences do exist between them. The choice of which experimental GPCR structure(s) to use for building a comparative model of a particular GPCR is unclear and without detailed structural and sequence analyses, could be arbitrary. The aim of this study is therefore to perform a systematic and detailed analysis of sequence-structure relationships of known GPCR structures. We analyzed in detail conserved and unique sequence motifs and structural features in experimentally-determined GPCR structures. Deeper insight into specific and important structural features of GPCRs as well as valuable information for template selection has been gained. Using key features a workflow has been formulated for identifying the most appropriate template(s) for building homology models of GPCRs of unknown structure. This workflow was applied to a set of 14 human family A GPCRs suggesting for each the most appropriate template(s) for building a comparative molecular model. The available crystal structures represent only a subset of all possible structural variation in family A GPCRs. Some GPCRs have structural features that are distributed over different crystal structures or which are not present in the templates suggesting that homology models should be built using multiple templates. This study provides a systematic analysis of GPCR crystal structures and a consistent method for identifying suitable templates for GPCR homology modelling that will

  7. Key Issues in Modeling of Complex 3D Structures from Video Sequences

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available Construction of three-dimensional structures from video sequences has wide applications for intelligent video analysis. This paper summarizes the key issues of the theory and surveys the recent advances in the state of the art. Reconstruction of a scene object from video sequences often takes the basic principle of structure from motion with an uncalibrated camera. This paper lists the typical strategies and summarizes the typical solutions or algorithms for modeling of complex three-dimensional structures. Open difficult problems are also suggested for further study.

  8. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Pair interaction of bilayer-coated nanoscopic particles

    Science.gov (United States)

    Zhang, Qi-Yi

    2009-02-01

    The pair interaction between bilayer membrane-coated nanosized particles has been explored by using the self-consistent field (SCF) theory. The bilayer membranes are composed of amphiphilic polymers. For different system parameters, the pair-interaction free energies are obtained. Particular emphasis is placed on the analysis of a sequence of structural transformations of bilayers on spherical particles, which occur during their approaching processes. For different head fractions of amphiphiles, the asymmetrical morphologies between bilayers on two particles and the inverted micellar intermediates have been found in the membrane fusion pathway. These results can benefit the fabrication of vesicles as encapsulation vectors for drug and gene delivery.

  9. Predicting and validating protein interactions using network structure.

    Directory of Open Access Journals (Sweden)

    Pao-Yang Chen

    2008-07-01

    Full Text Available Protein interactions play a vital part in the function of a cell. As experimental techniques for detection and validation of protein interactions are time consuming, there is a need for computational methods for this task. Protein interactions appear to form a network with a relatively high degree of local clustering. In this paper we exploit this clustering by suggesting a score based on triplets of observed protein interactions. The score utilises both protein characteristics and network properties. Our score based on triplets is shown to complement existing techniques for predicting protein interactions, outperforming them on data sets which display a high degree of clustering. The predicted interactions score highly against test measures for accuracy. Compared to a similar score derived from pairwise interactions only, the triplet score displays higher sensitivity and specificity. By looking at specific examples, we show how an experimental set of interactions can be enriched and validated. As part of this work we also examine the effect of different prior databases upon the accuracy of prediction and find that the interactions from the same kingdom give better results than from across kingdoms, suggesting that there may be fundamental differences between the networks. These results all emphasize that network structure is important and helps in the accurate prediction of protein interactions. The protein interaction data set and the program used in our analysis, and a list of predictions and validations, are available at http://www.stats.ox.ac.uk/bioinfo/resources/PredictingInteractions.

  10. Applications in soil-structure interactions. Final report, June 1979

    International Nuclear Information System (INIS)

    Jhaveri, D.P.

    1979-01-01

    Complex phenomenon of soil-structure interaction was assessed. Relationships between the characteristics of the earthquake ground motions, the local soil and geologic conditions, and the response of the structures to the ground motions were studied. (I) The use of the explicit finite-difference method to study linear elastic soil-structure interaction is described. A linear two-dimensional study of different conditions that influence the dynamic compliance and scattering properties of foundations is presented. (II) The FLUSH computer code was used to compute the soil-structure interaction during SIMQUAKE 1B, an experimental underground blast excitation of a 1/12-scale model of a nuclear containment structure. Evaluation was performed using transient excitation, applied to a finite-difference grid. Dynamic foundation properties were studied. Results indicate that the orientation and location of the source relative to the site and the wave environment at the site may be important parameters to be considered. Differences between the computed and experimental recorded responses are indicated, and reasons for the discrepancy are suggested. (III) A case study that examined structural and ground response data tabulated and catalogued from tests at the Nevada Test Site for its applicability to the soil-structure interaction questions of interest is presented. Description, methods, and evaluation of data on soil-structure interaction from forced vibration tests are presented. A two-dimensional finite-difference grid representing a relatively rigid structure resting on uniform ground was analyzed and monitored. Fourier spectra of monitored time histories were also evaluated and are presented. Results show clear evidence of soil-structure interaction and significant agreement with theory. 128 figures, 18 tables

  11. Sensitivity to structure in action sequences: An infant event-related potential study.

    Science.gov (United States)

    Monroy, Claire D; Gerson, Sarah A; Domínguez-Martínez, Estefanía; Kaduk, Katharina; Hunnius, Sabine; Reid, Vincent

    2017-05-06

    Infants are sensitive to structure and patterns within continuous streams of sensory input. This sensitivity relies on statistical learning, the ability to detect predictable regularities in spatial and temporal sequences. Recent evidence has shown that infants can detect statistical regularities in action sequences they observe, but little is known about the neural process that give rise to this ability. In the current experiment, we combined electroencephalography (EEG) with eye-tracking to identify electrophysiological markers that indicate whether 8-11-month-old infants detect violations to learned regularities in action sequences, and to relate these markers to behavioral measures of anticipation during learning. In a learning phase, infants observed an actor performing a sequence featuring two deterministic pairs embedded within an otherwise random sequence. Thus, the first action of each pair was predictive of what would occur next. One of the pairs caused an action-effect, whereas the second did not. In a subsequent test phase, infants observed another sequence that included deviant pairs, violating the previously observed action pairs. Event-related potential (ERP) responses were analyzed and compared between the deviant and the original action pairs. Findings reveal that infants demonstrated a greater Negative central (Nc) ERP response to the deviant actions for the pair that caused the action-effect, which was consistent with their visual anticipations during the learning phase. Findings are discussed in terms of the neural and behavioral processes underlying perception and learning of structured action sequences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Aromatic-Aromatic Interactions in Biological System: Structure Activity Relationships

    International Nuclear Information System (INIS)

    Rajagopal, Appavu; Deepa, Mohan; Govindaraju, Munisamy

    2016-01-01

    While, intramolecular hydrogen bonds have attracted the greatest attention in studies of peptide conformations, the recognition that several other weakly polar interactions may be important determinants of folded structure has been growing. Burley and Petsko provided a comprehensive overview of the importance of weakly polar interactions, in shaping protein structures. The interactions between aromatic rings, which are spatially approximate, have attracted special attention. A survey of the proximal aromatic residue pairs in proteins, allowed Burley and Petsko to suggest that, “phenyl ring centroids are separated by a preferential distance of between 4.5 and 7 Å, and dihedral angles approximately 90° are most common”

  13. Aromatic-Aromatic Interactions in Biological System: Structure Activity Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, Appavu; Deepa, Mohan [Molecular Biophysics Unit, Indian Institute of Sciences-Bangalore, Karnataka (India); Govindaraju, Munisamy [Bio-Spatial Technology Research Unit, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu (India)

    2016-02-26

    While, intramolecular hydrogen bonds have attracted the greatest attention in studies of peptide conformations, the recognition that several other weakly polar interactions may be important determinants of folded structure has been growing. Burley and Petsko provided a comprehensive overview of the importance of weakly polar interactions, in shaping protein structures. The interactions between aromatic rings, which are spatially approximate, have attracted special attention. A survey of the proximal aromatic residue pairs in proteins, allowed Burley and Petsko to suggest that, “phenyl ring centroids are separated by a preferential distance of between 4.5 and 7 Å, and dihedral angles approximately 90° are most common”.

  14. Exact gate sequences for universal quantum computation using the XY interaction alone

    International Nuclear Information System (INIS)

    Kempe, J.; Whaley, K.B.

    2002-01-01

    In a previous publication [J. Kempe et al., Quantum Computation and Information (Rinton Press, Princeton, NJ, 2001), Vol. 1, special issue, p. 33] we showed that it is possible to implement universal quantum computation with the anisotropic XY-Heisenberg exchange acting as a single interaction. To achieve this we used encodings of the states of the computation into a larger Hilbert space. This proof is nonconstructive, however, and did not explicitly give the trade-offs in time that are required to implement encoded single-qubit operations and encoded two-qubit gates. Here we explicitly give the gate sequences needed to simulate these operations on encoded qubits and qutrits (three-level systems) and analyze the trade-offs involved. We also propose a possible layout for the qubits in a triangular arrangement

  15. Sequence-based prediction of protein protein interaction using a deep-learning algorithm.

    Science.gov (United States)

    Sun, Tanlin; Zhou, Bo; Lai, Luhua; Pei, Jianfeng

    2017-05-25

    Protein-protein interactions (PPIs) are critical for many biological processes. It is therefore important to develop accurate high-throughput methods for identifying PPI to better understand protein function, disease occurrence, and therapy design. Though various computational methods for predicting PPI have been developed, their robustness for prediction with external datasets is unknown. Deep-learning algorithms have achieved successful results in diverse areas, but their effectiveness for PPI prediction has not been tested. We used a stacked autoencoder, a type of deep-learning algorithm, to study the sequence-based PPI prediction. The best model achieved an average accuracy of 97.19% with 10-fold cross-validation. The prediction accuracies for various external datasets ranged from 87.99% to 99.21%, which are superior to those achieved with previous methods. To our knowledge, this research is the first to apply a deep-learning algorithm to sequence-based PPI prediction, and the results demonstrate its potential in this field.

  16. Interaction between hippocampal and striatal systems predicts subsequent consolidation of motor sequence memory.

    Directory of Open Access Journals (Sweden)

    Geneviève Albouy

    Full Text Available The development of fast and reproducible motor behavior is a crucial human capacity. The aim of the present study was to address the relationship between the implementation of consistent behavior during initial training on a sequential motor task (the Finger Tapping Task and subsequent sleep-dependent motor sequence memory consolidation, using functional magnetic resonance imaging (fMRI and total sleep deprivation protocol. Our behavioral results indicated significant offline gains in performance speed after sleep whereas performance was only stabilized, but not enhanced, after sleep deprivation. At the cerebral level, we previously showed that responses in the caudate nucleus increase, in parallel to a decrease in its functional connectivity with frontal areas, as performance became more consistent. Here, the strength of the competitive interaction, assessed through functional connectivity analyses, between the caudate nucleus and hippocampo-frontal areas during initial training, predicted delayed gains in performance at retest in sleepers but not in sleep-deprived subjects. Moreover, during retest, responses increased in the hippocampus and medial prefrontal cortex in sleepers whereas in sleep-deprived subjects, responses increased in the putamen and cingulate cortex. Our results suggest that the strength of the competitive interplay between the striatum and the hippocampus, participating in the implementation of consistent motor behavior during initial training, conditions subsequent motor sequence memory consolidation. The latter process appears to be supported by a reorganisation of cerebral activity in hippocampo-neocortical networks after sleep.

  17. Comparative analysis of MR sequences to detect structural brain lesions in tuberous sclerosis

    International Nuclear Information System (INIS)

    Pinto Gama, Hugo Pereira; Campos Meirelles, Rogerio Goncalves de; Mendonca do Rego, Jose Iram; Rocha, Antonio Jose da; Silva, Carlos Jorge da; Braga, Flavio Tulio; Martins Maia, Antonio Carlos; Lederman, Henrique Manoel

    2006-01-01

    Tuberous sclerosis (TS) is a neurocutaneous genetically inherited disease with variable penetrance characterized by dysplasias and hamartomas affecting multiple organs. MR is the imaging method of choice to demonstrate structural brain lesions in TS. To compare MR sequences and determine which is most useful for the demonstration of each type of brain lesion in TS patients. We reviewed MR scans of 18 TS patients for the presence of cortical tubers, white matter lesions (radial bands), subependymal nodules, and subependymal giant cell astrocytoma (SGCA) on the following sequences: (1) T1-weighted spin-echo (T1 SE) images before and after gadolinium (Gd) injection; (2) nonenhanced T1 SE sequence with an additional magnetization transfer contrast medium pulse on resonance (T1 SE/MTC); and (3) fluid-attenuated inversion recovery (FLAIR) sequence. Cortical tubers were found in significantly (P<0.05) larger numbers and more conspicuously in FLAIR and T1 SE/MTC sequences. The T1 SE/MTC sequence was far superior to other methods in detecting white matter lesions (P<0.01). There was no significant difference between the T1 SE/MTC and T1 SE (before and after Gd injection) sequences in the detection of subependymal nodules; FLAIR sequence showed less sensitivity than the others in identifying the nodules. T1 SE sequences after Gd injection demonstrated better the limits of the SGCA. We demonstrated the importance of appropriate MRI sequences for diagnosis of the most frequent brain lesions in TS. Our study reinforces the fact that each sequence has a particular application according to the type of TS lesion. Gd injection might be useful in detecting SGCA; however, the parameters of size and location are also important for a presumptive diagnosis of these tumors. (orig.)

  18. Inference of Interactions in Cyanobacterial-Heterotrophic Co-Cultures via Transcriptome Sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Beliaev, Alex S.; Romine, Margaret F.; Serres, Margaret; Bernstein, Hans C.; Linggi, Bryan E.; Markillie, Lye Meng; Isern, Nancy G.; Chrisler, William B.; Kucek, Leo A.; Hill, Eric A.; Pinchuk, Grigoriy; Bryant, Donald A.; Wiley, H. S.; Fredrickson, Jim K.; Konopka, Allan

    2014-04-29

    We employed deep sequencing technology to identify transcriptional adaptation of the euryhaline unicellular cyanobacterium Synechococcus sp. PCC 7002 and the marine facultative aerobe Shewanella putrefaciens W3-18-1 to growth in a co-culture and infer the effect of carbon flux distributions on photoautotroph-heterotroph interactions. The overall transcriptome response of both organisms to co-cultivation was shaped by their respective physiologies and growth constraints. Carbon limitation resulted in the expansion of metabolic capacities which was manifested through the transcriptional upregulation of transport and catabolic pathways. While growth coupling occurred via lactate oxidation or secretion of photosynthetically fixed carbon, there was evidence of specific metabolic interactions between the two organisms. On one hand, the production and excretion of specific amino acids (methionine and alanine) by the cyanobacterium correlated with the putative downregulation of the corresponding biosynthetic machinery of Shewanella W3-18-1. On the other hand, the broad and consistent decrease of mRNA levels for many Fe-regulated Synechococcus 7002 genes during co-cultivation suggested increased Fe availability as well as more facile and energy-efficient mechanisms for Fe acquisition by the cyanobacterium. Furthermore, evidence pointed at potentially novel interactions between oxygenic photoautotrophs and heterotrophs related to the oxidative stress response as transcriptional patterns suggested that Synechococcus 7002 rather than Shewanella W3-18-1 provided scavenging functions for reactive oxygen species under co-culture conditions. This study provides an initial insight into the complexity of photoautotrophic-heterotrophic interactions and brings new perspectives of their role in the robustness and stability of the association.

  19. Computation of wave fields and soil structure interaction

    International Nuclear Information System (INIS)

    Lysmer, J.W.

    1982-01-01

    The basic message of the lecture is that the determination of the temporal and spatial variation of the free-field motions is the most important part of any soil-structure interaction analysis. Any interaction motions may be considered as small aberrations superimposed on the free-field motions. The current definition of the soil-structure interaction problem implies that superposition must be used, directly or indirectly, in any rational method of analysis of this problem. This implies that the use of nonlinear procedures in any part of a soil-structure interaction analysis must be questioned. Currently the most important part of the soil-structure interaction analysis, the free-field problem, cannot be solved by nonlinear methods. Hence, it does not seem reasonable to spend a large effort on trying to obtain nonlinear solutions for the interaction part of the problem. Even if such solutions are obtained they cannot legally be superimposed on the free-field motions to obtain the total motions of the structure. This of course does not preclude the possibility that such an illegal procedure may lead to solutions which are close enough for engineering purposes. However, further research is required to make a decision on this issue

  20. Term structure of 4d-electron configurations and calculated spectrum in Sn-isonuclear sequence

    International Nuclear Information System (INIS)

    Al-Rabban, Moza M.

    2006-01-01

    Theoretical calculations of term structure are carried out for the ground configurations 4d w , of atomic ions in the Sn isonuclear sequence. Atomic computations are performed to give a detailed account of the transitions in Sn +6 to Sn +13 ions. The spectrum is calculated for the most important excited configurations 4p 5 4d n+1 , 4d n-1 4f 1 , and 4d n-1 5p 1 with respect to the ground configuration 4d n , with n=8-1, respectively. The importance of 4p-4d, 4d-4f, and 4d-5p transitions is stressed, as well as the need for the configuration-interaction CI treatment of the Δn=0 transitions. In the region of importance for extreme ultraviolet (EUV) lithography around 13.4nm, the strongest lines were expected to be 4d n -4p 5 4d n+1 and 4d n -4d n-1 4f 1

  1. Connecting Protein Structure to Intermolecular Interactions: A Computer Modeling Laboratory

    Science.gov (United States)

    Abualia, Mohammed; Schroeder, Lianne; Garcia, Megan; Daubenmire, Patrick L.; Wink, Donald J.; Clark, Ginevra A.

    2016-01-01

    An understanding of protein folding relies on a solid foundation of a number of critical chemical concepts, such as molecular structure, intra-/intermolecular interactions, and relating structure to function. Recent reports show that students struggle on all levels to achieve these understandings and use them in meaningful ways. Further, several…

  2. Some aspects of the interaction between systems- and structural reliability

    International Nuclear Information System (INIS)

    Schueller, G.K.; Schmitt, W.

    1979-01-01

    The purpose of this paper is to study the interaction between systems- and structural reliability analysis with reference to the design of structural components of LWR. Presently the evaluation of systems reliability is carried out apart from structural reliability analysis. Moreover, two basically different methodologies are used for analysis. While in systems analysis the simplified binary approach is still generally accepted, in structural reliability one has to resort to more sophisticated procedures to obtain realistic results. The interactive effect may be illustrated as follows: For example, the integrity of the primary circuit interacts with the integrity of the containment structure. This means that the probability of occurrence of the pipe rupture which may cause a LOCA and consequently leads to a build-up of temperature and pressure within the containment affects directly its structural reliability. The piping system, particularly the primary piping, in turn interacts with the protective system, which is part of the safety system. This piping structure is also subjected to various operational loading conditions. In a numerical example dealing with leakage probabilities of pipes it is shown how methods of structural reliability may be used to gain more insight in the estimation of failure rates of system components. (orig.)

  3. Functional and structural analysis of the DNA sequence conferring glucocorticoid inducibility to the mouse mammary tumor virus gene

    International Nuclear Information System (INIS)

    Skroch, P.

    1987-05-01

    In the first part of my thesis I show that the DNA element conferring glucocorticoid inducibility to the Mouse Mammary Tumor Virus (HRE) has enhancer properties. It activates a heterologous promoter - that of the β-globin gene, independently of distance, position and orientation. These properties however have to be regarded in relation to the remaining regulatory elements of the activated gene as the recombinants between HRE and the TK gene have demonstrated. In the second part of my thesis I investigated the biological significance of certain sequence motifs of the HRE, which are remarkable by their interaction with transacting factors or sequence homologies with other regulatory DNA elements. I could confirm the generally postulated modular structure of enhancers for the HRE and bring the relevance of the single subdomains for the function of the element into relationship. (orig.) [de

  4. Phylo-mLogo: an interactive and hierarchical multiple-logo visualization tool for alignment of many sequences

    Directory of Open Access Journals (Sweden)

    Lee DT

    2007-02-01

    Full Text Available Abstract Background When aligning several hundreds or thousands of sequences, such as epidemic virus sequences or homologous/orthologous sequences of some big gene families, to reconstruct the epidemiological history or their phylogenies, how to analyze and visualize the alignment results of many sequences has become a new challenge for computational biologists. Although there are several tools available for visualization of very long sequence alignments, few of them are applicable to the alignments of many sequences. Results A multiple-logo alignment visualization tool, called Phylo-mLogo, is presented in this paper. Phylo-mLogo calculates the variabilities and homogeneities of alignment sequences by base frequencies or entropies. Different from the traditional representations of sequence logos, Phylo-mLogo not only displays the global logo patterns of the whole alignment of multiple sequences, but also demonstrates their local homologous logos for each clade hierarchically. In addition, Phylo-mLogo also allows the user to focus only on the analysis of some important, structurally or functionally constrained sites in the alignment selected by the user or by built-in automatic calculation. Conclusion With Phylo-mLogo, the user can symbolically and hierarchically visualize hundreds of aligned sequences simultaneously and easily check the changes of their amino acid sites when analyzing many homologous/orthologous or influenza virus sequences. More information of Phylo-mLogo can be found at URL http://biocomp.iis.sinica.edu.tw/phylomlogo.

  5. Rtools: a web server for various secondary structural analyses on single RNA sequences.

    Science.gov (United States)

    Hamada, Michiaki; Ono, Yukiteru; Kiryu, Hisanori; Sato, Kengo; Kato, Yuki; Fukunaga, Tsukasa; Mori, Ryota; Asai, Kiyoshi

    2016-07-08

    The secondary structures, as well as the nucleotide sequences, are the important features of RNA molecules to characterize their functions. According to the thermodynamic model, however, the probability of any secondary structure is very small. As a consequence, any tool to predict the secondary structures of RNAs has limited accuracy. On the other hand, there are a few tools to compensate the imperfect predictions by calculating and visualizing the secondary structural information from RNA sequences. It is desirable to obtain the rich information from those tools through a friendly interface. We implemented a web server of the tools to predict secondary structures and to calculate various structural features based on the energy models of secondary structures. By just giving an RNA sequence to the web server, the user can get the different types of solutions of the secondary structures, the marginal probabilities such as base-paring probabilities, loop probabilities and accessibilities of the local bases, the energy changes by arbitrary base mutations as well as the measures for validations of the predicted secondary structures. The web server is available at http://rtools.cbrc.jp, which integrates software tools, CentroidFold, CentroidHomfold, IPKnot, CapR, Raccess, Rchange and RintD. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Mapping RNA Structure In Vitro with SHAPE Chemistry and Next-Generation Sequencing (SHAPE-Seq).

    Science.gov (United States)

    Watters, Kyle E; Lucks, Julius B

    2016-01-01

    Mapping RNA structure with selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry has proven to be a versatile method for characterizing RNA structure in a variety of contexts. SHAPE reagents covalently modify RNAs in a structure-dependent manner to create adducts at the 2'-OH group of the ribose backbone at nucleotides that are structurally flexible. The positions of these adducts are detected using reverse transcriptase (RT) primer extension, which stops one nucleotide before the modification, to create a pool of cDNAs whose lengths reflect the location of SHAPE modification. Quantification of the cDNA pools is used to estimate the "reactivity" of each nucleotide in an RNA molecule to the SHAPE reagent. High reactivities indicate nucleotides that are structurally flexible, while low reactivities indicate nucleotides that are inflexible. These SHAPE reactivities can then be used to infer RNA structures by restraining RNA structure prediction algorithms. Here, we provide a state-of-the-art protocol describing how to perform in vitro RNA structure probing with SHAPE chemistry using next-generation sequencing to quantify cDNA pools and estimate reactivities (SHAPE-Seq). The use of next-generation sequencing allows for higher throughput, more consistent data analysis, and multiplexing capabilities. The technique described herein, SHAPE-Seq v2.0, uses a universal reverse transcription priming site that is ligated to the RNA after SHAPE modification. The introduced priming site allows for the structural analysis of an RNA independent of its sequence.

  7. On Sequence Lengths of Some Special External Exclusive OR Type LFSR Structures – Study and Analysis

    Directory of Open Access Journals (Sweden)

    A Ahmad

    2014-12-01

    Full Text Available The study of the length of pseudo-random binary sequences generated by Linear- Feedback Shift Registers (LFSRs plays an important role in the design approaches of built-in selftest, cryptosystems, and other applications. However, certain LFSR structures might not be appropriate in some situations. Given that determining the length of generated pseudo-random binary sequence is a complex task, therefore, before using an LFSR structure, it is essential to investigate the length and the properties of the sequence. This paper investigates some conditions and LFSR’s structures, which restrict the pseudo-random binary sequences’ generation to a certain fixed length. The outcomes of this paper are presented in the form of theorems, simulations, and analyses. We believe that these outcomes are of great importance to the designers of built-in self-test equipment, cryptosystems, and other applications such as radar, CDMA, error correction, and Monte Carlo simulation.

  8. Structural stability of interaction networks against negative external fields

    Science.gov (United States)

    Yoon, S.; Goltsev, A. V.; Mendes, J. F. F.

    2018-04-01

    We explore structural stability of weighted and unweighted networks of positively interacting agents against a negative external field. We study how the agents support the activity of each other to confront the negative field, which suppresses the activity of agents and can lead to collapse of the whole network. The competition between the interactions and the field shape the structure of stable states of the system. In unweighted networks (uniform interactions) the stable states have the structure of k -cores of the interaction network. The interplay between the topology and the distribution of weights (heterogeneous interactions) impacts strongly the structural stability against a negative field, especially in the case of fat-tailed distributions of weights. We show that apart from critical slowing down there is also a critical change in the system structure that precedes the network collapse. The change can serve as an early warning of the critical transition. To characterize changes of network structure we develop a method based on statistical analysis of the k -core organization and so-called "corona" clusters belonging to the k -cores.

  9. Sequence-Dependent Self-Assembly and Structural Diversity of Islet Amyloid Polypeptide-Derived β-Sheet Fibrils

    International Nuclear Information System (INIS)

    Wang, Shih-Ting; Lin, Yiyang; Spencer, Ryan K.; Thomas, Michael R.; Nguyen, Andy I.

    2017-01-01

    Determining the structural origins of amyloid fibrillation is essential for understanding both the pathology of amyloidosis and the rational design of inhibitors to prevent or reverse amyloid formation. In this work, the decisive roles of peptide structures on amyloid self-assembly and morphological diversity were investigated by the design of eight amyloidogenic peptides derived from islet amyloid polypeptide. Among the segments, two distinct morphologies were highlighted in the form of twisted and planar (untwisted) ribbons with varied diameters, thicknesses, and lengths. In particular, transformation of amyloid fibrils from twisted ribbons into untwisted structures was triggered by substitution of the C-terminal serine with threonine, where the side chain methyl group was responsible for the distinct morphological change. This effect was confirmed following serine substitution with alanine and valine and was ascribed to the restriction of intersheet torsional strain through the increased hydrophobic interactions and hydrogen bonding. We also studied the variation of fibril morphology (i.e., association and helicity) and peptide aggregation propensity by increasing the hydrophobicity of the peptide side group, capping the N-terminus, and extending sequence length. Lastly, we anticipate that our insights into sequence-dependent fibrillation and morphological diversity will shed light on the structural interpretation of amyloidogenesis and development of structure-specific imaging agents and aggregation inhibitors.

  10. ERCOFTAC Symposium on Unsteady Separation in Fluid-Structure Interaction

    CERN Document Server

    Bottaro, Alessandro; Thompson, Mark

    2016-01-01

    This book addresses flow separation within the context of fluid-structure interaction phenomena. Here, new findings from two research communities focusing on fluids and structures are brought together, emphasizing the importance of a unified multidisciplinary approach. The book covers the theory, experimental findings, numerical simulations, and modeling in fluid dynamics and structural mechanics for both incompressible and compressible separated unsteady flows. There is a focus on the morphing of lifting structures in order to increase their aerodynamic and/or hydrodynamic performances, to control separation and to reduce noise, as well as to inspire the design of novel structures. The different chapters are based on contributions presented at the ERCOFTAC Symposium on Unsteady Separation in Fluid-Structure Interaction held in Mykonos, Greece, 17-21 June, 2013 and include extended discussions and new highlights. The book is intended for students, researchers and practitioners in the broad field of computatio...

  11. Integrating sequencing technologies in personal genomics: optimal low cost reconstruction of structural variants.

    Directory of Open Access Journals (Sweden)

    Jiang Du

    2009-07-01

    Full Text Available The goal of human genome re-sequencing is obtaining an accurate assembly of an individual's genome. Recently, there has been great excitement in the development of many technologies for this (e.g. medium and short read sequencing from companies such as 454 and SOLiD, and high-density oligo-arrays from Affymetrix and NimbelGen, with even more expected to appear. The costs and sensitivities of these technologies differ considerably from each other. As an important goal of personal genomics is to reduce the cost of re-sequencing to an affordable point, it is worthwhile to consider optimally integrating technologies. Here, we build a simulation toolbox that will help us optimally combine different technologies for genome re-sequencing, especially in reconstructing large structural variants (SVs. SV reconstruction is considered the most challenging step in human genome re-sequencing. (It is sometimes even harder than de novo assembly of small genomes because of the duplications and repetitive sequences in the human genome. To this end, we formulate canonical problems that are representative of issues in reconstruction and are of small enough scale to be computationally tractable and simulatable. Using semi-realistic simulations, we show how we can combine different technologies to optimally solve the assembly at low cost. With mapability maps, our simulations efficiently handle the inhomogeneous repeat-containing structure of the human genome and the computational complexity of practical assembly algorithms. They quantitatively show how combining different read lengths is more cost-effective than using one length, how an optimal mixed sequencing strategy for reconstructing large novel SVs usually also gives accurate detection of SNPs/indels, how paired-end reads can improve reconstruction efficiency, and how adding in arrays is more efficient than just sequencing for disentangling some complex SVs. Our strategy should facilitate the sequencing of

  12. Pedagogical Interaction in High School, the Structural and Functional Model of Pedagogical Interaction

    Science.gov (United States)

    Semenova, Larissa A.; Kazantseva, Anastassiya I.; Sergeyeva, Valeriya V.; Raklova, Yekaterina M.; Baiseitova, Zhanar B.

    2016-01-01

    The study covers the problems of pedagogical technologies and their experimental implementation in the learning process. The theoretical aspects of the "student-teacher" interaction are investigated. A structural and functional model of pedagogical interaction is offered, which determines the conditions for improving pedagogical…

  13. SeqHound: biological sequence and structure database as a platform for bioinformatics research

    Directory of Open Access Journals (Sweden)

    Dumontier Michel

    2002-10-01

    Full Text Available Abstract Background SeqHound has been developed as an integrated biological sequence, taxonomy, annotation and 3-D structure database system. It provides a high-performance server platform for bioinformatics research in a locally-hosted environment. Results SeqHound is based on the National Center for Biotechnology Information data model and programming tools. It offers daily updated contents of all Entrez sequence databases in addition to 3-D structural data and information about sequence redundancies, sequence neighbours, taxonomy, complete genomes, functional annotation including Gene Ontology terms and literature links to PubMed. SeqHound is accessible via a web server through a Perl, C or C++ remote API or an optimized local API. It provides functionality necessary to retrieve specialized subsets of sequences, structures and structural domains. Sequences may be retrieved in FASTA, GenBank, ASN.1 and XML formats. Structures are available in ASN.1, XML and PDB formats. Emphasis has been placed on complete genomes, taxonomy, domain and functional annotation as well as 3-D structural functionality in the API, while fielded text indexing functionality remains under development. SeqHound also offers a streamlined WWW interface for simple web-user queries. Conclusions The system has proven useful in several published bioinformatics projects such as the BIND database and offers a cost-effective infrastructure for research. SeqHound will continue to develop and be provided as a service of the Blueprint Initiative at the Samuel Lunenfeld Research Institute. The source code and examples are available under the terms of the GNU public license at the Sourceforge site http://sourceforge.net/projects/slritools/ in the SLRI Toolkit.

  14. Interactive Hangman teaches amino acid structures and abbreviations

    OpenAIRE

    Pennington, BO; Sears, D; Clegg, DO

    2014-01-01

    © 2014 by The International Union of Biochemistry and Molecular Biology, 42(6):495-500, 2014. We developed an interactive exercise to teach students how to draw the structures of the 20 standard amino acids and to identify the one-letter abbreviations by modifying the familiar game of "Hangman." Amino acid structures were used to represent single letters throughout the game. To provide additional practice in identifying structures, hints to the answers were written in "amino acid sentences" f...

  15. A scalable double-barcode sequencing platform for characterization of dynamic protein-protein interactions.

    Science.gov (United States)

    Schlecht, Ulrich; Liu, Zhimin; Blundell, Jamie R; St Onge, Robert P; Levy, Sasha F

    2017-05-25

    Several large-scale efforts have systematically catalogued protein-protein interactions (PPIs) of a cell in a single environment. However, little is known about how the protein interactome changes across environmental perturbations. Current technologies, which assay one PPI at a time, are too low throughput to make it practical to study protein interactome dynamics. Here, we develop a highly parallel protein-protein interaction sequencing (PPiSeq) platform that uses a novel double barcoding system in conjunction with the dihydrofolate reductase protein-fragment complementation assay in Saccharomyces cerevisiae. PPiSeq detects PPIs at a rate that is on par with current assays and, in contrast with current methods, quantitatively scores PPIs with enough accuracy and sensitivity to detect changes across environments. Both PPI scoring and the bulk of strain construction can be performed with cell pools, making the assay scalable and easily reproduced across environments. PPiSeq is therefore a powerful new tool for large-scale investigations of dynamic PPIs.

  16. Reliability evaluation of containments including soil-structure interaction

    International Nuclear Information System (INIS)

    Pires, J.; Hwang, H.; Reich, M.

    1985-12-01

    Soil-structure interaction effects on the reliability assessment of containment structures are examined. The probability-based method for reliability evaluation of nuclear structures developed at Brookhaven National Laboratory is extended to include soil-structure interaction effects. In this method, reliability of structures is expressed in terms of limit state probabilities. Furthermore, random vibration theory is utilized to calculate limit state probabilities under random seismic loads. Earthquake ground motion is modeled by a segment of a zero-mean, stationary, filtered Gaussian white noise random process, represented by its power spectrum. All possible seismic hazards at a site, represented by a hazard curve, are also included in the analysis. The soil-foundation system is represented by a rigid surface foundation on an elastic halfspace. Random and other uncertainties in the strength properties of the structure, in the stiffness and internal damping of the soil, are also included in the analysis. Finally, a realistic reinforced concrete containment is analyzed to demonstrate the application of the method. For this containment, the soil-structure interaction effects on; (1) limit state probabilities, (2) structural fragility curves, (3) floor response spectra with probabilistic content, and (4) correlation coefficients for total acceleration response at specified structural locations, are examined in detail. 25 refs., 21 figs., 12 tabs

  17. The carbohydrate sequence markup language (CabosML): an XML description of carbohydrate structures.

    Science.gov (United States)

    Kikuchi, Norihiro; Kameyama, Akihiko; Nakaya, Shuuichi; Ito, Hiromi; Sato, Takashi; Shikanai, Toshihide; Takahashi, Yoriko; Narimatsu, Hisashi

    2005-04-15

    Bioinformatics resources for glycomics are very poor as compared with those for genomics and proteomics. The complexity of carbohydrate sequences makes it difficult to define a common language to represent them, and the development of bioinformatics tools for glycomics has not progressed. In this study, we developed a carbohydrate sequence markup language (CabosML), an XML description of carbohydrate structures. The language definition (XML Schema) and an experimental database of carbohydrate structures using an XML database management system are available at http://www.phoenix.hydra.mki.co.jp/CabosDemo.html kikuchi@hydra.mki.co.jp.

  18. Large scale identification and categorization of protein sequences using structured logistic regression

    DEFF Research Database (Denmark)

    Pedersen, Bjørn Panella; Ifrim, Georgiana; Liboriussen, Poul

    2014-01-01

    Abstract Background Structured Logistic Regression (SLR) is a newly developed machine learning tool first proposed in the context of text categorization. Current availability of extensive protein sequence databases calls for an automated method to reliably classify sequences and SLR seems well...... problem. Results Using SLR, we have built classifiers to identify and automatically categorize P-type ATPases into one of 11 pre-defined classes. The SLR-classifiers are compared to a Hidden Markov Model approach and shown to be highly accurate and scalable. Representing the bulk of currently known...... for further biochemical characterization and structural analysis....

  19. Spatiotemporal dynamics and epistatic interaction sites in dengue virus type 1: a comprehensive sequence-based analysis.

    Directory of Open Access Journals (Sweden)

    Pei-Yu Chu

    Full Text Available The continuing threat of dengue fever necessitates a comprehensive characterisation of its epidemiological trends. Phylogenetic and recombination events were reconstructed based on 100 worldwide dengue virus (DENV type 1 genome sequences with an outgroup (prototypes of DENV2-4. The phylodynamic characteristics and site-specific variation were then analysed using data without the outgroup. Five genotypes (GI-GV and a ladder-like structure with short terminal branch topology were observed in this study. Apparently, the transmission of DENV1 was geographically random before gradual localising with human activity as GI-GIII in South Asia, GIV in the South Pacific, and GV in the Americas. Genotypes IV and V have recently shown higher population densities compared to older genotypes. All codon regions and all tree branches were skewed toward a negative selection, which indicated that their variation was restricted by protein function. Notably, multi-epistatic interaction sites were found in both PrM 221 and NS3 1730. Recombination events accumulated in regions E, NS3-NS4A, and particularly in region NS5. The estimated coevolution pattern also highlights the need for further study of the biological role of protein PrM 221 and NS3 1730. The recent transmission of emergent GV sublineages into Central America and Europe mandates closely monitoring of genotype interaction and succession.

  20. Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications

    Science.gov (United States)

    Cvicek, Vaclav; Goddard, William A.; Abrol, Ravinder

    2016-01-01

    The understanding of G-protein coupled receptors (GPCRs) is undergoing a revolution due to increased information about their signaling and the experimental determination of structures for more than 25 receptors. The availability of at least one receptor structure for each of the GPCR classes, well separated in sequence space, enables an integrated superfamily-wide analysis to identify signatures involving the role of conserved residues, conserved contacts, and downstream signaling in the context of receptor structures. In this study, we align the transmembrane (TM) domains of all experimental GPCR structures to maximize the conserved inter-helical contacts. The resulting superfamily-wide GpcR Sequence-Structure (GRoSS) alignment of the TM domains for all human GPCR sequences is sufficient to generate a phylogenetic tree that correctly distinguishes all different GPCR classes, suggesting that the class-level differences in the GPCR superfamily are encoded at least partly in the TM domains. The inter-helical contacts conserved across all GPCR classes describe the evolutionarily conserved GPCR structural fold. The corresponding structural alignment of the inactive and active conformations, available for a few GPCRs, identifies activation hot-spot residues in the TM domains that get rewired upon activation. Many GPCR mutations, known to alter receptor signaling and cause disease, are located at these conserved contact and activation hot-spot residue positions. The GRoSS alignment places the chemosensory receptor subfamilies for bitter taste (TAS2R) and pheromones (Vomeronasal, VN1R) in the rhodopsin family, known to contain the chemosensory olfactory receptor subfamily. The GRoSS alignment also enables the quantification of the structural variability in the TM regions of experimental structures, useful for homology modeling and structure prediction of receptors. Furthermore, this alignment identifies structurally and functionally important residues in all human GPCRs

  1. Structural protein descriptors in 1-dimension and their sequence-based predictions.

    Science.gov (United States)

    Kurgan, Lukasz; Disfani, Fatemeh Miri

    2011-09-01

    The last few decades observed an increasing interest in development and application of 1-dimensional (1D) descriptors of protein structure. These descriptors project 3D structural features onto 1D strings of residue-wise structural assignments. They cover a wide-range of structural aspects including conformation of the backbone, burying depth/solvent exposure and flexibility of residues, and inter-chain residue-residue contacts. We perform first-of-its-kind comprehensive comparative review of the existing 1D structural descriptors. We define, review and categorize ten structural descriptors and we also describe, summarize and contrast over eighty computational models that are used to predict these descriptors from the protein sequences. We show that the majority of the recent sequence-based predictors utilize machine learning models, with the most popular being neural networks, support vector machines, hidden Markov models, and support vector and linear regressions. These methods provide high-throughput predictions and most of them are accessible to a non-expert user via web servers and/or stand-alone software packages. We empirically evaluate several recent sequence-based predictors of secondary structure, disorder, and solvent accessibility descriptors using a benchmark set based on CASP8 targets. Our analysis shows that the secondary structure can be predicted with over 80% accuracy and segment overlap (SOV), disorder with over 0.9 AUC, 0.6 Matthews Correlation Coefficient (MCC), and 75% SOV, and relative solvent accessibility with PCC of 0.7 and MCC of 0.6 (0.86 when homology is used). We demonstrate that the secondary structure predicted from sequence without the use of homology modeling is as good as the structure extracted from the 3D folds predicted by top-performing template-based methods.

  2. Optimization of mathematical models for soil structure interaction

    International Nuclear Information System (INIS)

    Vallenas, J.M.; Wong, C.K.; Wong, D.L.

    1993-01-01

    Accounting for soil-structure interaction in the design and analysis of major structures for DOE facilities can involve significant costs in terms of modeling and computer time. Using computer programs like SASSI for modeling major structures, especially buried structures, requires the use of models with a large number of soil-structure interaction nodes. The computer time requirements (and costs) increase as a function of the number of interaction nodes to the third power. The added computer and labor cost for data manipulation and post-processing can further increase the total cost. This paper provides a methodology to significantly reduce the number of interaction nodes. This is achieved by selectively increasing the thickness of soil layers modeled based on the need for the mathematical model to capture as input only those frequencies that can actually be transmitted by the soil media. The authors have rarely found that a model needs to capture frequencies as high as 33 Hz. Typically coarser meshes (and a lesser number of interaction nodes) are adequate

  3. Two stage approach to dynamic soil structure interaction

    International Nuclear Information System (INIS)

    Nelson, I.

    1981-01-01

    A two stage approach is used to reduce the effective size of soil island required to solve dynamic soil structure interaction problems. The ficticious boundaries of the conventional soil island are chosen sufficiently far from the structure so that the presence of the structure causes only a slight perturbation on the soil response near the boundaries. While the resulting finite element model of the soil structure system can be solved, it requires a formidable computational effort. Currently, a two stage approach is used to reduce this effort. The combined soil structure system has many frequencies and wavelengths. For a stiff structure, the lowest frequencies are those associated with the motion of the structure as a rigid body. In the soil, these modes have the longest wavelengths and attenuate most slowly. The higher frequency deformational modes of the structure have shorter wavelengths and their effect attenuates more rapidly with distance from the structure. The difference in soil response between a computation with a refined structural model, and one with a crude model, tends towards zero a very short distance from the structure. In the current work, the 'crude model' is a rigid structure with the same geometry and inertial properties as the refined model. Preliminary calculations indicated that a rigid structure would be a good low frequency approximation to the actual structure, provided the structure was much stiffer than the native soil. (orig./RW)

  4. Process Machine Interactions Predicition and Manipulation of Interactions between Manufacturing Processes and Machine Tool Structures

    CERN Document Server

    Hollmann, Ferdinand

    2013-01-01

    This contributed volume collects the scientific results of the DFG Priority Program 1180 Prediction and Manipulation of Interactions between Structure and Process. The research program has been conducted during the years 2005 and 2012, whereas the primary goal was the analysis of the interactions between processes and structures in modern production facilities. This book presents the findings of the 20 interdisciplinary subprojects, focusing on different manufacturing processes such as high performance milling, tool grinding or metal forming. It contains experimental investigations as well as mathematical modeling of production processes and machine interactions. New experimental advancements and novel simulation approaches are also included.

  5. Sequencing of Dust Filter Production Process Using Design Structure Matrix (DSM)

    Science.gov (United States)

    Sari, R. M.; Matondang, A. R.; Syahputri, K.; Anizar; Siregar, I.; Rizkya, I.; Ursula, C.

    2018-01-01

    Metal casting company produces machinery spare part for manufactures. One of the product produced is dust filter. Most of palm oil mill used this product. Since it is used in most of palm oil mill, company often have problems to address this product. One of problem is the disordered of production process. It carried out by the job sequencing. The important job that should be solved first, least implement, while less important job and could be completed later, implemented first. Design Structure Matrix (DSM) used to analyse and determine priorities in the production process. DSM analysis is sort of production process through dependency sequencing. The result of dependency sequences shows the sequence process according to the inter-process linkage considering before and after activities. Finally, it demonstrates their activities to the coupled activities for metal smelting, refining, grinding, cutting container castings, metal expenditure of molds, metal casting, coating processes, and manufacture of molds of sand.

  6. Influence of soil-structure interaction on floor response spectra

    International Nuclear Information System (INIS)

    Costantino, C.J.; Miller, C.A.; Curreri, J.R.

    1985-01-01

    A study was undertaken to investigate the influence of soil-structure interaction on floor response spectra developed in typical nuclear power plant structures. A horizontal earthquake time history, whose spectra envelops the Reg. Guide 1.60 criteria and is scaled to a 1 g peak acceleration, was used as input to structural models. Two different structural stick models were used, representing typical BWR and PWR facilities. By varying the structural and soil stiffness parameters, a wide range of system behaviors were investigated. Floor response spectra, required to assess equipment qualification, were of primary interest. It was found from a variation of parameter study that the interaction soil parameters, particularly radiation damping, greatly affect the nature of the calculated responses. (orig.)

  7. A review of experimental soil-structure interaction damping

    International Nuclear Information System (INIS)

    Tsai, N.C.

    1981-01-01

    In soil-structure interaction analysis, the foundation soil is usually represented by impedance springs and dampers. The impedance damping includes the effect of both the material damping and the radiation damping. Because the impedance theory normally assumes a rigid structural base and an elastic bond between the soil and structure, it is generally held that the radiation damping has been overestimated by the theory. There are some published information on the dynamic tests of footings and structures that allow direct or indirect assessments of the validity of the analytical radiation damping. An overview of such information is presented here. Based on these limited test data, it is concluded that for horizontal soil-structure interaction analysis the analytical radiation damping alone is sufficient to represent the combined material and radiation damping in the field. On the other hand, for vertical analysis it appears that the theory may have overestimated the radiation damping and certain reduction is recommended. (orig.)

  8. Influence of soil-structure interaction on floor response spectra

    International Nuclear Information System (INIS)

    Costantino, C.J.; Miller, C.A.; Curreri, J.R.

    1985-01-01

    A study was undertaken to investigate the influence of soil-structure interaction on floor response spectra developed in typical nuclear power plant structures. A horizontal earthquake time history, whose spectra envelops the Regulatory Guide 1.60 criteria and is scaled to a log peak acceleration, was used as input to structural models. Two different structural stick models were used, representing typical BWR and PWR facilities. By varying the structural and soil stiffness parameters, a wide range of system behaviors were investigated. Floor response spectra, required to assess equipment qualification, were of primary interest. It was found from a variation of parameter study that the interaction soil parameters, particularly radiation damping, greatly affect the nature of the calculated responses. 2 refs., 2 figs., 2 tabs

  9. Estimation of kinship coefficient in structured and admixed populations using sparse sequencing data.

    Directory of Open Access Journals (Sweden)

    Jinzhuang Dou

    2017-09-01

    Full Text Available Knowledge of biological relatedness between samples is important for many genetic studies. In large-scale human genetic association studies, the estimated kinship is used to remove cryptic relatedness, control for family structure, and estimate trait heritability. However, estimation of kinship is challenging for sparse sequencing data, such as those from off-target regions in target sequencing studies, where genotypes are largely uncertain or missing. Existing methods often assume accurate genotypes at a large number of markers across the genome. We show that these methods, without accounting for the genotype uncertainty in sparse sequencing data, can yield a strong downward bias in kinship estimation. We develop a computationally efficient method called SEEKIN to estimate kinship for both homogeneous samples and heterogeneous samples with population structure and admixture. Our method models genotype uncertainty and leverages linkage disequilibrium through imputation. We test SEEKIN on a whole exome sequencing dataset (WES of Singapore Chinese and Malays, which involves substantial population structure and admixture. We show that SEEKIN can accurately estimate kinship coefficient and classify genetic relatedness using off-target sequencing data down sampled to ~0.15X depth. In application to the full WES dataset without down sampling, SEEKIN also outperforms existing methods by properly analyzing shallow off-target data (~0.75X. Using both simulated and real phenotypes, we further illustrate how our method improves estimation of trait heritability for WES studies.

  10. Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome.

    Science.gov (United States)

    Pingault, Lise; Choulet, Frédéric; Alberti, Adriana; Glover, Natasha; Wincker, Patrick; Feuillet, Catherine; Paux, Etienne

    2015-02-10

    Because of its size, allohexaploid nature, and high repeat content, the bread wheat genome is a good model to study the impact of the genome structure on gene organization, function, and regulation. However, because of the lack of a reference genome sequence, such studies have long been hampered and our knowledge of the wheat gene space is still limited. The access to the reference sequence of the wheat chromosome 3B provided us with an opportunity to study the wheat transcriptome and its relationships to genome and gene structure at a level that has never been reached before. By combining this sequence with RNA-seq data, we construct a fine transcriptome map of the chromosome 3B. More than 8,800 transcription sites are identified, that are distributed throughout the entire chromosome. Expression level, expression breadth, alternative splicing as well as several structural features of genes, including transcript length, number of exons, and cumulative intron length are investigated. Our analysis reveals a non-monotonic relationship between gene expression and structure and leads to the hypothesis that gene structure is determined by its function, whereas gene expression is subject to energetic cost. Moreover, we observe a recombination-based partitioning at the gene structure and function level. Our analysis provides new insights into the relationships between gene and genome structure and function. It reveals mechanisms conserved with other plant species as well as superimposed evolutionary forces that shaped the wheat gene space, likely participating in wheat adaptation.

  11. Fluid-structure interactions models, analysis and finite elements

    CERN Document Server

    Richter, Thomas

    2017-01-01

    This book starts by introducing the fundamental concepts of mathematical continuum mechanics for fluids and solids and their coupling. Special attention is given to the derivation of variational formulations for the subproblems describing fluid- and solid-mechanics as well as the coupled fluid-structure interaction problem. Two monolithic formulations for fluid-structure interactions are described in detail: the well-established ALE formulation and the modern Fully Eulerian formulation, which can effectively deal with problems featuring large deformation and contact. Further, the book provides details on state-of-the-art discretization schemes for fluid- and solid-mechanics and considers the special needs of coupled problems with interface-tracking and interface-capturing techniques. Lastly, advanced topics like goal-oriented error estimation, multigrid solution and gradient-based optimization schemes are discussed in the context of fluid-structure interaction problems.

  12. Salt-bridging effects on short amphiphilic helical structure and introducing sequence-based short beta-turn motifs.

    Science.gov (United States)

    Guarracino, Danielle A; Gentile, Kayla; Grossman, Alec; Li, Evan; Refai, Nader; Mohnot, Joy; King, Daniel

    2018-02-01

    Determining the minimal sequence necessary to induce protein folding is beneficial in understanding the role of protein-protein interactions in biological systems, as their three-dimensional structures often dictate their activity. Proteins are generally comprised of discrete secondary structures, from α-helices to β-turns and larger β-sheets, each of which is influenced by its primary structure. Manipulating the sequence of short, moderately helical peptides can help elucidate the influences on folding. We created two new scaffolds based on a modestly helical eight-residue peptide, PT3, we previously published. Using circular dichroism (CD) spectroscopy and changing the possible salt-bridging residues to new combinations of Lys, Arg, Glu, and Asp, we found that our most helical improvements came from the Arg-Glu combination, whereas the Lys-Asp was not significantly different from the Lys-Glu of the parent scaffold, PT3. The marked 3 10 -helical contributions in PT3 were lessened in the Arg-Glu-containing peptide with the beginning of cooperative unfolding seen through a thermal denaturation. However, a unique and unexpected signature was seen for the denaturation of the Lys-Asp peptide which could help elucidate the stages of folding between the 3 10 and α-helix. In addition, we developed a short six-residue peptide with β-turn/sheet CD signature, again to help study minimal sequences needed for folding. Overall, the results indicate that improvements made to short peptide scaffolds by fine-tuning the salt-bridging residues can enhance scaffold structure. Likewise, with the results from the new, short β-turn motif, these can help impact future peptidomimetic designs in creating biologically useful, short, structured β-sheet-forming peptides.

  13. Neighborhood structure effects on the Dynamic response of soil-structure interaction by harmonic analysis

    Directory of Open Access Journals (Sweden)

    Pan Dan-guang

    2015-01-01

    Full Text Available For realizing the variation of structural dynamic characteristics due to neighbor structure in buildings group, the surface structure is idealized as an equivalent single degree of freedom system with rigid base whose site consists of a single homogeneous layer. Based on the model, a equivalent method on the equivalent seismic excitation is proposed. Then, the differences of seismic response and equivalent seismic input between soil - structure interaction (SSI system and structure -soil-structure interaction (SSSI system are investigated by harmonic analysis. The numerical results show that dynamic responses would be underestimated in SSSI system when the forcing frequencies are close to the Natural frequency if the effects of neighborhood structure were ignored. Neighborhood structure would make the translational displacement increase and rocking vibration decrease. When establishing an effective seismic input, it is necessary to consider the impact of inertia interaction.

  14. Structured prediction models for RNN based sequence labeling in clinical text.

    Science.gov (United States)

    Jagannatha, Abhyuday N; Yu, Hong

    2016-11-01

    Sequence labeling is a widely used method for named entity recognition and information extraction from unstructured natural language data. In clinical domain one major application of sequence labeling involves extraction of medical entities such as medication, indication, and side-effects from Electronic Health Record narratives. Sequence labeling in this domain, presents its own set of challenges and objectives. In this work we experimented with various CRF based structured learning models with Recurrent Neural Networks. We extend the previously studied LSTM-CRF models with explicit modeling of pairwise potentials. We also propose an approximate version of skip-chain CRF inference with RNN potentials. We use these methodologies for structured prediction in order to improve the exact phrase detection of various medical entities.

  15. Some considerations on the dynamic structure-soil-structure interactions analysis

    International Nuclear Information System (INIS)

    Matthees, W.

    1979-01-01

    A mixed method has been developed for the approximate analysis of soil-structure or structure-soil-structure interaction problems due to earthquakes. In order to produce comparable results of interaction problems as well as for shallow and for deep soils due to the same earthquake excitation (accelerogram) situated always at the lower bedrock boundary, the analysis is performed in two steps: 1) Calculation of the complex transfer function and the response of the upper interior boundary of a layered soil-system which is connected at its top to a soil-structure-system, using the one-dimensional deconvolution. 2) By making a complete interaction analysis of the surface soil-structure-system using the interior boundary excitation of the calculated response from step 1. The depth of the soil-structure-system must be chosen large enough to exclude interaction effects down to the layered soil-system's interior boundary. (orig.)

  16. Molecular-Level Thermodynamic Switch Controls Chemical Equilibrium in Sequence-Specific Hydrophobic Interaction of 35 Dipeptide Pairs

    OpenAIRE

    Chun, Paul W.

    2003-01-01

    Applying the Planck-Benzinger methodology, the sequence-specific hydrophobic interactions of 35 dipeptide pairs were examined over a temperature range of 273–333 K, based on data reported by Nemethy and Scheraga in 1962. The hydrophobic interaction in these sequence-specific dipeptide pairs is highly similar in its thermodynamic behavior to that of other biological systems. The results imply that the negative Gibbs free energy change minimum at a well-defined stable temperature, 〈Ts〉, where t...

  17. Palingol: a declarative programming language to describe nucleic acids' secondary structures and to scan sequence database.

    Science.gov (United States)

    Billoud, B; Kontic, M; Viari, A

    1996-01-01

    At the DNA/RNA level, biological signals are defined by a combination of spatial structures and sequence motifs. Until now, few attempts had been made in writing general purpose search programs that take into account both sequence and structure criteria. Indeed, the most successful structure scanning programs are usually dedicated to particular structures and are written using general purpose programming languages through a complex and time consuming process where the biological problem of defining the structure and the computer engineering problem of looking for it are intimately intertwined. In this paper, we describe a general representation of structures, suitable for database scanning, together with a programming language, Palingol, designed to manipulate it. Palingol has specific data types, corresponding to structural elements-basically helices-that can be arranged in any way to form a complex structure. As a consequence of the declarative approach used in Palingol, the user should only focus on 'what to search for' while the language engine takes care of 'how to look for it'. Therefore, it becomes simpler to write a scanning program and the structural constraints that define the required structure are more clearly identified. PMID:8628670

  18. An Infinite Sequence of Full AFL-Structures, Each of Which Possesses an Infinite Hierarchy

    NARCIS (Netherlands)

    Asveld, P.R.J.

    1999-01-01

    We investigate different sets of operations on languages which results in corresponding algebraic structures, viz.\\ in different types of full AFL's (full Abstract Family of Languages). By iterating control on ETOL-systems we show that there exists an infinite sequence ${\\cal C}_m$ ($m\\geq1$) of

  19. An Infinite Sequence of Full AFL-structures, Each of Which Possesses an Infinite Hierarchy

    NARCIS (Netherlands)

    Asveld, P.R.J.; Martin-Vide, C.; Mitrana, V.

    2001-01-01

    We investigate different sets of operations on languages which results in corresponding algebraic structures, viz.\\ in different types of full AFL's (full Abstract Family of Languages). By iterating control on ETOL-systems we show that there exists an infinite sequence ${\\cal C}_m$ ($m\\geq1$) of

  20. Community structure of arbuscular mycorrhizal fungi in undisturbed vegetation revealed by analyses of LSU rdna sequences

    DEFF Research Database (Denmark)

    Rosendahl, Søren; Holtgrewe-Stukenbrock, Eva

    2004-01-01

    Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with plant roots and are found in most ecosystems. In this study the community structure of AMF in a clade of the genus Glomus was examined in undisturbed costal grassland using LSU rDNA sequences amplified from roots of Hieracium...

  1. Reproducible analysis of sequencing-based RNA structure probing data with user-friendly tools

    DEFF Research Database (Denmark)

    Kielpinski, Lukasz Jan; Sidiropoulos, Nikos; Vinther, Jeppe

    2015-01-01

    time also made analysis of the data challenging for scientists without formal training in computational biology. Here, we discuss different strategies for data analysis of massive parallel sequencing-based structure-probing data. To facilitate reproducible and standardized analysis of this type of data...

  2. Multi-physics fluid-structure interaction modelling software

    CSIR Research Space (South Africa)

    Malan, AG

    2008-11-01

    Full Text Available -structure interaction modelling software AG MALAN AND O OXTOBY CSIR Defence, Peace, Safety and Security, PO Box 395, Pretoria, 0001 Email: amalan@csir.co.za – www.csir.co.za Internationally leading aerospace company Airbus sponsored key components... of the development of the CSIR fl uid-structure interaction (FSI) software. Below are extracts from their evaluation of the devel- oped technology: “The fi eld of FSI covers a massive range of engineering problems, each with their own multi-parameter, individual...

  3. An overset grid approach to linear wave-structure interaction

    DEFF Research Database (Denmark)

    Read, Robert; Bingham, Harry B.

    2012-01-01

    A finite-difference based approach to wave-structure interaction is reported that employs the overset approach to grid generation. A two-dimensional code that utilizes the Overture C++ library has been developed to solve the linear radiation problem for a floating body of arbitrary form. This sof......A finite-difference based approach to wave-structure interaction is reported that employs the overset approach to grid generation. A two-dimensional code that utilizes the Overture C++ library has been developed to solve the linear radiation problem for a floating body of arbitrary form...

  4. A sensitivity study of seismic structure-soil-structure interaction problems for nuclear power plants

    International Nuclear Information System (INIS)

    Matthees, W.; Magiera, G.

    1982-01-01

    A sensitivity study for the interaction effects of adjacent structures of nuclear power plants caused by horizontal seismic excitation has been performed. The key structural and soil parameters for linear and for nonlinear behaviour were varied within their applicable bandwidth. It has been shown that the interaction phenomena can contribute to the response of structures to such a large extent that it cannot be disregarded. (orig.)

  5. The retro-GCN4 leucine zipper sequence forms a stable three-dimensional structure

    Science.gov (United States)

    Mittl, Peer R. E.; Deillon, Christine; Sargent, David; Liu, Niankun; Klauser, Stephan; Thomas, Richard M.; Gutte, Bernd; Grütter, Markus G.

    2000-01-01

    The question of whether a protein whose natural sequence is inverted adopts a stable fold is still under debate. We have determined the 2.1-Å crystal structure of the retro-GCN4 leucine zipper. In contrast to the two-stranded helical coiled-coil GCN4 leucine zipper, the retro-leucine zipper formed a very stable, parallel four-helix bundle, which now lends itself to further structural and functional studies. PMID:10716989

  6. Structure, complexity and cooperation in parallel external chat interactions

    DEFF Research Database (Denmark)

    Grønning, Anette

    2012-01-01

    This article examines structure, complexity and cooperation in external chat interactions at the workplace in which one of the participants is taking part in multiple parallel conversations. The investigation is based on an analysis of nine chat interactions in a work-related context, with partic......This article examines structure, complexity and cooperation in external chat interactions at the workplace in which one of the participants is taking part in multiple parallel conversations. The investigation is based on an analysis of nine chat interactions in a work-related context...... focus is on “turn-taking organisation as the fundamental and generic aspect of interaction organisation” (Drew & Heritage, 1992, p. 25), including the use of turn-taking rules, adjacency pairs, and the importance of pauses. Even though the employee and the union members do not know one another...... and cannot see, hear, or touch one another, it is possible to detect an informal, pleasant tone in their interactions. This challenges the basically asymmetrical relationship between employee and customer, and one can sense a further level of asymmetry. In terms of medium, chat interactions exist via various...

  7. WebScipio: An online tool for the determination of gene structures using protein sequences

    Directory of Open Access Journals (Sweden)

    Waack Stephan

    2008-09-01

    Full Text Available Abstract Background Obtaining the gene structure for a given protein encoding gene is an important step in many analyses. A software suited for this task should be readily accessible, accurate, easy to handle and should provide the user with a coherent representation of the most probable gene structure. It should be rigorous enough to optimise features on the level of single bases and at the same time flexible enough to allow for cross-species searches. Results WebScipio, a web interface to the Scipio software, allows a user to obtain the corresponding coding sequence structure of a here given a query protein sequence that belongs to an already assembled eukaryotic genome. The resulting gene structure is presented in various human readable formats like a schematic representation, and a detailed alignment of the query and the target sequence highlighting any discrepancies. WebScipio can also be used to identify and characterise the gene structures of homologs in related organisms. In addition, it offers a web service for integration with other programs. Conclusion WebScipio is a tool that allows users to get a high-quality gene structure prediction from a protein query. It offers more than 250 eukaryotic genomes that can be searched and produces predictions that are close to what can be achieved by manual annotation, for in-species and cross-species searches alike. WebScipio is freely accessible at http://www.webscipio.org.

  8. PROCARB: A Database of Known and Modelled Carbohydrate-Binding Protein Structures with Sequence-Based Prediction Tools

    Directory of Open Access Journals (Sweden)

    Adeel Malik

    2010-01-01

    Full Text Available Understanding of the three-dimensional structures of proteins that interact with carbohydrates covalently (glycoproteins as well as noncovalently (protein-carbohydrate complexes is essential to many biological processes and plays a significant role in normal and disease-associated functions. It is important to have a central repository of knowledge available about these protein-carbohydrate complexes as well as preprocessed data of predicted structures. This can be significantly enhanced by tools de novo which can predict carbohydrate-binding sites for proteins in the absence of structure of experimentally known binding site. PROCARB is an open-access database comprising three independently working components, namely, (i Core PROCARB module, consisting of three-dimensional structures of protein-carbohydrate complexes taken from Protein Data Bank (PDB, (ii Homology Models module, consisting of manually developed three-dimensional models of N-linked and O-linked glycoproteins of unknown three-dimensional structure, and (iii CBS-Pred prediction module, consisting of web servers to predict carbohydrate-binding sites using single sequence or server-generated PSSM. Several precomputed structural and functional properties of complexes are also included in the database for quick analysis. In particular, information about function, secondary structure, solvent accessibility, hydrogen bonds and literature reference, and so forth, is included. In addition, each protein in the database is mapped to Uniprot, Pfam, PDB, and so forth.

  9. Structure of uracil-DNA glycosylase from Mycobacterium tuberculosis: insights into interactions with ligands

    International Nuclear Information System (INIS)

    Kaushal, Prem Singh; Talawar, Ramappa K.; Varshney, Umesh; Vijayan, M.

    2010-01-01

    The molecule of uracil-DNA glycosylase from M. tuberculosis exhibits domain motion on binding to DNA or a proteinaceous inhibitor. The highly conserved DNA-binding region interacts with a citrate ion in the structure. Uracil N-glycosylase (Ung) is the most thoroughly studied of the group of uracil DNA-glycosylase (UDG) enzymes that catalyse the first step in the uracil excision-repair pathway. The overall structure of the enzyme from Mycobacterium tuberculosis is essentially the same as that of the enzyme from other sources. However, differences exist in the N- and C-terminal stretches and some catalytic loops. Comparison with appropriate structures indicate that the two-domain enzyme closes slightly when binding to DNA, while it opens slightly when binding to the proteinaceous inhibitor Ugi. The structural changes in the catalytic loops on complexation reflect the special features of their structure in the mycobacterial protein. A comparative analysis of available sequences of the enzyme from different sources indicates high conservation of amino-acid residues in the catalytic loops. The uracil-binding pocket in the structure is occupied by a citrate ion. The interactions of the citrate ion with the protein mimic those of uracil, in addition to providing insights into other possible interactions that inhibitors could be involved in

  10. From Sequence and Forces to Structure, Function and Evolution of Intrinsically Disordered Proteins

    Science.gov (United States)

    Forman-Kay, Julie D.; Mittag, Tanja

    2015-01-01

    Intrinsically disordered proteins (IDPs), which lack persistent structure, are a challenge to structural biology due to the inapplicability of standard methods for characterization of folded proteins as well as their deviation from the dominant structure/function paradigm. Their widespread presence and involvement in biological function, however, has spurred the growing acceptance of the importance of IDPs and the development of new tools for studying their structure, dynamics and function. The interplay of folded and disordered domains or regions for function and the existence of a continuum of protein states with respect to conformational energetics, motional timescales and compactness is shaping a unified understanding of structure-dynamics-disorder/function relationships. On the 20th anniversary of this journal, Structure, we provide a historical perspective on the investigation of IDPs and summarize the sequence features and physical forces that underlie their unique structural, functional and evolutionary properties. PMID:24010708

  11. SoftSearch: integration of multiple sequence features to identify breakpoints of structural variations.

    Directory of Open Access Journals (Sweden)

    Steven N Hart

    Full Text Available BACKGROUND: Structural variation (SV represents a significant, yet poorly understood contribution to an individual's genetic makeup. Advanced next-generation sequencing technologies are widely used to discover such variations, but there is no single detection tool that is considered a community standard. In an attempt to fulfil this need, we developed an algorithm, SoftSearch, for discovering structural variant breakpoints in Illumina paired-end next-generation sequencing data. SoftSearch combines multiple strategies for detecting SV including split-read, discordant read-pair, and unmated pairs. Co-localized split-reads and discordant read pairs are used to refine the breakpoints. RESULTS: We developed and validated SoftSearch using real and synthetic datasets. SoftSearch's key features are 1 not requiring secondary (or exhaustive primary alignment, 2 portability into established sequencing workflows, and 3 is applicable to any DNA-sequencing experiment (e.g. whole genome, exome, custom capture, etc.. SoftSearch identifies breakpoints from a small number of soft-clipped bases from split reads and a few discordant read-pairs which on their own would not be sufficient to make an SV call. CONCLUSIONS: We show that SoftSearch can identify more true SVs by combining multiple sequence features. SoftSearch was able to call clinically relevant SVs in the BRCA2 gene not reported by other tools while offering significantly improved overall performance.

  12. A sequence-based survey of the complex structural organization of tumor genomes

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Colin; Raphael, Benjamin J.; Volik, Stanislav; Yu, Peng; Wu, Chunxiao; Huang, Guiqing; Linardopoulou, Elena V.; Trask, Barbara J.; Waldman, Frederic; Costello, Joseph; Pienta, Kenneth J.; Mills, Gordon B.; Bajsarowicz, Krystyna; Kobayashi, Yasuko; Sridharan, Shivaranjani; Paris, Pamela; Tao, Quanzhou; Aerni, Sarah J.; Brown, Raymond P.; Bashir, Ali; Gray, Joe W.; Cheng, Jan-Fang; de Jong, Pieter; Nefedov, Mikhail; Ried, Thomas; Padilla-Nash, Hesed M.; Collins, Colin C.

    2008-04-03

    The genomes of many epithelial tumors exhibit extensive chromosomal rearrangements. All classes of genome rearrangements can be identified using End Sequencing Profiling (ESP), which relies on paired-end sequencing of cloned tumor genomes. In this study, brain, breast, ovary and prostate tumors along with three breast cancer cell lines were surveyed with ESP yielding the largest available collection of sequence-ready tumor genome breakpoints and providing evidence that some rearrangements may be recurrent. Sequencing and fluorescence in situ hybridization (FISH) confirmed translocations and complex tumor genome structures that include coamplification and packaging of disparate genomic loci with associated molecular heterogeneity. Comparison of the tumor genomes suggests recurrent rearrangements. Some are likely to be novel structural polymorphisms, whereas others may be bona fide somatic rearrangements. A recurrent fusion transcript in breast tumors and a constitutional fusion transcript resulting from a segmental duplication were identified. Analysis of end sequences for single nucleotide polymorphisms (SNPs) revealed candidate somatic mutations and an elevated rate of novel SNPs in an ovarian tumor. These results suggest that the genomes of many epithelial tumors may be far more dynamic and complex than previously appreciated and that genomic fusions including fusion transcripts and proteins may be common, possibly yielding tumor-specific biomarkers and therapeutic targets.

  13. Core genome conservation of Staphylococcus haemolyticus limits sequence based population structure analysis.

    Science.gov (United States)

    Cavanagh, Jorunn Pauline; Klingenberg, Claus; Hanssen, Anne-Merethe; Fredheim, Elizabeth Aarag; Francois, Patrice; Schrenzel, Jacques; Flægstad, Trond; Sollid, Johanna Ericson

    2012-06-01

    The notoriously multi-resistant Staphylococcus haemolyticus is an emerging pathogen causing serious infections in immunocompromised patients. Defining the population structure is important to detect outbreaks and spread of antimicrobial resistant clones. Currently, the standard typing technique is pulsed-field gel electrophoresis (PFGE). In this study we describe novel molecular typing schemes for S. haemolyticus using multi locus sequence typing (MLST) and multi locus variable number of tandem repeats (VNTR) analysis. Seven housekeeping genes (MLST) and five VNTR loci (MLVF) were selected for the novel typing schemes. A panel of 45 human and veterinary S. haemolyticus isolates was investigated. The collection had diverse PFGE patterns (38 PFGE types) and was sampled over a 20 year-period from eight countries. MLST resolved 17 sequence types (Simpsons index of diversity [SID]=0.877) and MLVF resolved 14 repeat types (SID=0.831). We found a low sequence diversity. Phylogenetic analysis clustered the isolates in three (MLST) and one (MLVF) clonal complexes, respectively. Taken together, neither the MLST nor the MLVF scheme was suitable to resolve the population structure of this S. haemolyticus collection. Future MLVF and MLST schemes will benefit from addition of more variable core genome sequences identified by comparing different fully sequenced S. haemolyticus genomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Topology optimization of fluid-structure-interaction problems in poroelasticity

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Sigmund, Ole

    2013-01-01

    This paper presents a method for applying topology optimization to fluid-structure interaction problems in saturated poroelastic media. The method relies on a multiple-scale method applied to periodic media. The resulting model couples the Stokes flow in the pores of the structure with the deform...... by topology optimization in order to optimize the performance of a shock absorber and test the pressure loading capabilities and optimization of an internally pressurized lid. © 2013 Published by Elsevier B.V....

  15. Interactive diversity promotes the evolution of cooperation in structured populations

    International Nuclear Information System (INIS)

    Su, Qi; Li, Aming; Zhou, Lei; Wang, Long

    2016-01-01

    Evolutionary games on networks traditionally assume that each individual adopts an identical strategy to interact with all its neighbors in each generation. Considering the prevalent diversity of individual interactions in the real society, here we propose the concept of interactive diversity, which allows individuals to adopt different strategies against different neighbors in each generation. We investigate the evolution of cooperation based on the edge dynamics rather than the traditional nodal dynamics in networked systems. The results show that, without invoking any other mechanisms, interactive diversity drives the frequency of cooperation to a high level for a wide range of parameters in both well-mixed and structured populations. Even in highly connected populations, cooperation still thrives. When interactive diversity and large topological heterogeneity are combined together, however, in the relaxed social dilemma, cooperation level is lower than that with just one of them, implying that the combination of many promotive factors may make a worse outcome. By an analytical approximation, we get the condition under which interactive diversity provides more advantages for cooperation than traditional evolutionary dynamics does. Numerical simulations validating the approximation are also presented. Our work provides a new line to explore the latent relation between the ubiquitous cooperation and individuals’ distinct responses in different interactions. The presented results suggest that interactive diversity should receive more attention in pursuing mechanisms fostering cooperation. (paper)

  16. Sequence-influenced interactions of oligoacridines with DNA detected by retarded gel electrophorectic migrations

    International Nuclear Information System (INIS)

    Nielsen, P.E.; Zhen, W.; Henriksen, U.; Buchardt, O.

    1988-01-01

    The authors have found that di-, tri-, tetra-, and hexa-9-acridinylamines are so efficiently associated with DNA during electrophoresis in polyacrylamide or agarose gels that they retard its migration. The retardation is roughly proportional to the reagent to base pair ratio, and the magnitude of the retardation indicates that a combined charge neutralization/helix extension mechanism is mainly responsible for the effect. Furthermore, DNA sequence dependent differences are observed. Thus, the pUC 19 restriction fragments (HaeIII or AluI), which in the native state comigrate upon gel electrophoretic analysis, could be separated in the presence of a diacridine, and specific DNA fragments responded differently to different diacridines. These results suggest that the effect also is due to a contribution from the DNA conformation and that the DNA conformation dynamics are influenced differently upon binding of different diacridines. They foresee three applications of this observation: (1) in analytical gel electrophoretic separation of otherwise comigrating DNA molecules, (2) in studies of polyintercalator-DNA interaction, and (3) in measurements of polyintercalator-induced DNA unwinding

  17. Role of sequence and structural polymorphism on the mechanical properties of amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Gwonchan Yoon

    Full Text Available Amyloid fibrils playing a critical role in disease expression, have recently been found to exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is comparable to that of other mechanical proteins such as microtubule, actin filament, and spider silk. These remarkable mechanical properties of amyloid fibrils are correlated with their functional role in disease expression. This suggests the importance in understanding how these excellent mechanical properties are originated through self-assembly process that may depend on the amino acid sequence. However, the sequence-structure-property relationship of amyloid fibrils has not been fully understood yet. In this work, we characterize the mechanical properties of human islet amyloid polypeptide (hIAPP fibrils with respect to their molecular structures as well as their amino acid sequence by using all-atom explicit water molecular dynamics (MD simulation. The simulation result suggests that the remarkable bending rigidity of amyloid fibrils can be achieved through a specific self-aggregation pattern such as antiparallel stacking of β strands (peptide chain. Moreover, we have shown that a single point mutation of hIAPP chain constituting a hIAPP fibril significantly affects the thermodynamic stability of hIAPP fibril formed by parallel stacking of peptide chain, and that a single point mutation results in a significant change in the bending rigidity of hIAPP fibrils formed by antiparallel stacking of β strands. This clearly elucidates the role of amino acid sequence on not only the equilibrium conformations of amyloid fibrils but also their mechanical properties. Our study sheds light on sequence-structure-property relationships of amyloid fibrils, which suggests that the mechanical properties of amyloid fibrils are encoded in their sequence-dependent molecular architecture.

  18. Random amino acid mutations and protein misfolding lead to Shannon limit in sequence-structure communication.

    Directory of Open Access Journals (Sweden)

    Andreas Martin Lisewski

    2008-09-01

    Full Text Available The transmission of genomic information from coding sequence to protein structure during protein synthesis is subject to stochastic errors. To analyze transmission limits in the presence of spurious errors, Shannon's noisy channel theorem is applied to a communication channel between amino acid sequences and their structures established from a large-scale statistical analysis of protein atomic coordinates. While Shannon's theorem confirms that in close to native conformations information is transmitted with limited error probability, additional random errors in sequence (amino acid substitutions and in structure (structural defects trigger a decrease in communication capacity toward a Shannon limit at 0.010 bits per amino acid symbol at which communication breaks down. In several controls, simulated error rates above a critical threshold and models of unfolded structures always produce capacities below this limiting value. Thus an essential biological system can be realistically modeled as a digital communication channel that is (a sensitive to random errors and (b restricted by a Shannon error limit. This forms a novel basis for predictions consistent with observed rates of defective ribosomal products during protein synthesis, and with the estimated excess of mutual information in protein contact potentials.

  19. Inferring the Clonal Structure of Viral Populations from Time Series Sequencing.

    Directory of Open Access Journals (Sweden)

    Donatien F Chedom

    2015-11-01

    Full Text Available RNA virus populations will undergo processes of mutation and selection resulting in a mixed population of viral particles. High throughput sequencing of a viral population subsequently contains a mixed signal of the underlying clones. We would like to identify the underlying evolutionary structures. We utilize two sources of information to attempt this; within segment linkage information, and mutation prevalence. We demonstrate that clone haplotypes, their prevalence, and maximum parsimony reticulate evolutionary structures can be identified, although the solutions may not be unique, even for complete sets of information. This is applied to a chain of influenza infection, where we infer evolutionary structures, including reassortment, and demonstrate some of the difficulties of interpretation that arise from deep sequencing due to artifacts such as template switching during PCR amplification.

  20. GRASP2: visualization, surface properties, and electrostatics of macromolecular structures and sequences.

    Science.gov (United States)

    Petrey, Donald; Honig, Barry

    2003-01-01

    The widespread use of the original version of GRASP revealed the importance of the visualization of physicochemical and structural properties on the molecular surface. This chapter describes a new version of GRASP that contains many new capabilities. In terms of analysis tools, the most notable new features are sequence and structure analysis and alignment tools and the graphical integration of sequence and structural information. Not all the new GRASP2 could be described here and more capabilities are continually being added. An on-line manual, details on obtaining the software, and technical notes about the program and the Troll software library can be found at the Honig laboratory Web site (http://trantor.bioc.columbia.edu).

  1. Population structure of Lactobacillus helveticus isolates from naturally fermented dairy products based on multilocus sequence typing.

    Science.gov (United States)

    Sun, Zhihong; Liu, Wenjun; Song, Yuqin; Xu, Haiyan; Yu, Jie; Bilige, Menghe; Zhang, Heping; Chen, Yongfu

    2015-05-01

    Lactobacillus helveticus is an economically important lactic acid bacterium used in industrial dairy fermentation. In the present study, the population structure of 245 isolates of L. helveticus from different naturally fermented dairy products in China and Mongolia were investigated using an multilocus sequence typing scheme with 11 housekeeping genes. A total of 108 sequence types were detected, which formed 8 clonal complexes and 27 singletons. Results from Structure, SplitsTree, and ClonalFrame software analyses demonstrated the presence of 3 subpopulations in the L. helveticus isolates used in our study, namely koumiss, kurut-tarag, and panmictic lineages. Most L. helveticus isolates from particular ecological origins had specific population structures. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Performance of partitioned procedures in fluid-structure interaction

    NARCIS (Netherlands)

    Degroote, J.; Haelterman, R.; Annerel, S.; Bruggeman, P.J.; Vierendeels, J.

    2010-01-01

    Partitioned simulations of fluid–structure interaction can be solved for the interface’s position with Newton–Raphson iterations but obtaining the exact Jacobian is impossible if the solvers are "black boxes". It is demonstrated that only an approximate Jacobian is needed, as long as it describes

  3. Numerical modeling of block structure dynamics: Application to the Vrancea region and study of earthquakes sequences in the synthetic catalogs

    International Nuclear Information System (INIS)

    Soloviev, A.A.; Vorobieva, I.A.

    1995-08-01

    A seismically active region is represented as a system of absolutely rigid blocks divided by infinitely thin plane faults. The interaction of the blocks along the fault planes and with the underlying medium is viscous-elastic. The system of blocks moves as a consequence of prescribed motion of boundary blocks and the underlying medium. When for some part of a fault plane the stress surpasses a certain strength level a stress-drop (''a failure'') occurs. It can cause a failure for other parts of fault planes. The failures are considered as earthquakes. As a result of the numerical simulation a synthetic earthquake catalogue is produced. This procedure is applied for numerical modeling of dynamics of the block structure approximating the tectonic structure of the Vrancea region. By numerical experiments the values of the model parameters were obtained which supplied the synthetic earthquake catalog with the space distribution of epicenters close to the real distribution of the earthquake epicenters in the Vrancea region. The frequency-magnitude relations (Gutenberg-Richter curves) obtained for the synthetic and real catalogs have some common features. The sequences of earthquakes arising in the model are studied for some artificial structures. It is found that ''foreshocks'', ''main shocks'', and ''aftershocks'' could be detected among earthquakes forming the sequences. The features of aftershocks, foreshocks, and catalogs of main shocks are analysed. (author). 5 refs, 12 figs, 16 tabs

  4. Standard problems to evaluate soil structure interaction computer codes

    International Nuclear Information System (INIS)

    Miller, C.A.; Costantino, C.J.; Philippacopoulos, A.J.

    1979-01-01

    The seismic response of nuclear power plant structures is often calculated using lumped parameter methods. A finite element model of the structure is coupled to the soil with a spring-dashpot system used to represent the interaction process. The parameters of the interaction model are based on analytic solutions to simple problems which are idealizations of the actual problems of interest. The objective of the work reported in this paper is to compare predicted responses using the standard lumped parameter models with experimental data. These comparisons are shown to be good for a fairly uniform soil system and for loadings which do not result in nonlinear interaction effects such as liftoff. 7 references, 7 figures

  5. Sequence, structure and function relationships in flaviviruses as assessed by evolutive aspects of its conserved non-structural protein domains.

    Science.gov (United States)

    da Fonseca, Néli José; Lima Afonso, Marcelo Querino; Pedersolli, Natan Gonçalves; de Oliveira, Lucas Carrijo; Andrade, Dhiego Souto; Bleicher, Lucas

    2017-10-28

    Flaviviruses are responsible for serious diseases such as dengue, yellow fever, and zika fever. Their genomes encode a polyprotein which, after cleavage, results in three structural and seven non-structural proteins. Homologous proteins can be studied by conservation and coevolution analysis as detected in multiple sequence alignments, usually reporting positions which are strictly necessary for the structure and/or function of all members in a protein family or which are involved in a specific sub-class feature requiring the coevolution of residue sets. This study provides a complete conservation and coevolution analysis on all flaviviruses non-structural proteins, with results mapped on all well-annotated available sequences. A literature review on the residues found in the analysis enabled us to compile available information on their roles and distribution among different flaviviruses. Also, we provide the mapping of conserved and coevolved residues for all sequences currently in SwissProt as a supplementary material, so that particularities in different viruses can be easily analyzed. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Structural mode significance using INCA. [Interactive Controls Analysis computer program

    Science.gov (United States)

    Bauer, Frank H.; Downing, John P.; Thorpe, Christopher J.

    1990-01-01

    Structural finite element models are often too large to be used in the design and analysis of control systems. Model reduction techniques must be applied to reduce the structural model to manageable size. In the past, engineers either performed the model order reduction by hand or used distinct computer programs to retrieve the data, to perform the significance analysis and to reduce the order of the model. To expedite this process, the latest version of INCA has been expanded to include an interactive graphical structural mode significance and model order reduction capability.

  7. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction

    KAUST Repository

    Cui, Xuefeng

    2016-06-15

    Motivation: Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. Method: We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence–structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. Results: We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM–HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods.

  8. Structured methods and striking moments: using question sequences in "living" ways.

    Science.gov (United States)

    Lowe, Roger

    2005-03-01

    This article draws together two seemingly incompatible practices in social constructionist therapies: the use of structured questioning methods (associated with solution-focused and narrative therapies) and the poetic elaboration of "striking moments" (associated with conversational therapies). To what extent can we value and use both styles of practice? Beginning with practitioners' concerns about the use of structured question sequences, I explore possibilities for resituating these methods in different conceptual and metaphorical frames, selectively drawing on ideas from the philosophy of striking moments. The aim is not to reduce one therapeutic style to another, but to encourage the teaching and practice of structured methods in more creative, improvisational, and "living" ways.

  9. New Insights about Enzyme Evolution from Large Scale Studies of Sequence and Structure Relationships*

    Science.gov (United States)

    Brown, Shoshana D.; Babbitt, Patricia C.

    2014-01-01

    Understanding how enzymes have evolved offers clues about their structure-function relationships and mechanisms. Here, we describe evolution of functionally diverse enzyme superfamilies, each representing a large set of sequences that evolved from a common ancestor and that retain conserved features of their structures and active sites. Using several examples, we describe the different structural strategies nature has used to evolve new reaction and substrate specificities in each unique superfamily. The results provide insight about enzyme evolution that is not easily obtained from studies of one or only a few enzymes. PMID:25210038

  10. New insights about enzyme evolution from large scale studies of sequence and structure relationships.

    Science.gov (United States)

    Brown, Shoshana D; Babbitt, Patricia C

    2014-10-31

    Understanding how enzymes have evolved offers clues about their structure-function relationships and mechanisms. Here, we describe evolution of functionally diverse enzyme superfamilies, each representing a large set of sequences that evolved from a common ancestor and that retain conserved features of their structures and active sites. Using several examples, we describe the different structural strategies nature has used to evolve new reaction and substrate specificities in each unique superfamily. The results provide insight about enzyme evolution that is not easily obtained from studies of one or only a few enzymes. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Fluid-Structure Interaction Mechanisms for Close-In Explosions

    Directory of Open Access Journals (Sweden)

    Andrew B. Wardlaw Jr.

    2000-01-01

    Full Text Available This paper examines fluid-structure interaction for close-in internal and external underwater explosions. The resulting flow field is impacted by the interaction between the reflected explosion shock and the explosion bubble. This shock reflects off the bubble as an expansion that reduces the pressure level between the bubble and the target, inducing cavitation and its subsequent collapse that reloads the target. Computational examples of several close-in interaction cases are presented to document the occurrence of these mechanisms. By comparing deformable and rigid body simulations, it is shown that cavitation collapse can occur solely from the shock-bubble interaction without the benefit of target deformation. Addition of a deforming target lowers the flow field pressure, facilitates cavitation and cavitation collapse, as well as reducing the impulse of the initial shock loading.

  12. Numerical procedure for fluid-structure interaction with structure displacements limited by a rigid obstacle

    Directory of Open Access Journals (Sweden)

    Yakhlef O.

    2017-06-01

    Full Text Available A fixed point algorithmis proposed to solve a fluid-structure interaction problem with the supplementary constraint that the structure displacements are limited by a rigid obstacle. Fictitious domain approach with penalization is used for the fluid equations. The surface forces from the fluid acting on the structure are computed using the fluid solution in the structure domain. The continuity of the fluid and structure velocities is imposed through the penalization parameter. The constraint of non-penetration of the elastic structure into the rigid obstacle is treated weakly. A convex constrained optimization problem is solved in order to get the structure displacements. Numerical results are presented.

  13. Structure of a rare non-standard sequence k-turn bound by L7Ae protein

    Science.gov (United States)

    Huang, Lin; Lilley, David M.J.

    2014-01-01

    Kt-23 from Thelohania solenopsae is a rare RNA kink turn (k-turn) where an adenine replaces the normal guanine at the 2n position. L7Ae is a member of a strongly conserved family of proteins that bind a range of k-turn structures in the ribosome, box C/D and H/ACA small nucleolar RNAs and U4 small nuclear RNA. We have solved the crystal structure of T. solenopsae Kt-23 RNA bound to Archeoglobus fulgidus L7Ae protein at a resolution of 2.95 Å. The protein binds in the major groove displayed on the outer face of the k-turn, in a manner similar to complexes with standard k-turn structures. The k-turn adopts a standard N3 class conformation, with a single hydrogen bond from A2b N6 to A2n N3. This contrasts with the structure of the same sequence located in the SAM-I riboswitch, where it adopts an N1 structure, showing the inherent plasticity of k-turn structure. This potentially can affect any tertiary interactions in which the RNA participates. PMID:24482444

  14. Fluid/structure interaction in BERDYNE (Level 4)

    International Nuclear Information System (INIS)

    Fox, M.J.H.

    1988-02-01

    A fluid-structure interaction capability has been developed for Level 4 of the finite element dynamics code BERDYNE, as part of the BERSAFE structural analysis system. This permits analysis of small amplitude free or forced vibration of systems comprising elastic structural components and inviscid volumes of possibly compressible fluid. Free fluid surfaces under the influence of gravity may be present. The formulation chosen uses the rigid walled fluid modes, calculated in a preliminary stage, as a basis for description of the coupled system, providing symmetric system matrices for which efficient solution procedures are available. The inclusion of the fluid modal variables within the system matrices is carried out through the use of the BERDYNE 'substructuring' feature, which allows the inclusion of very general 'super-elements' among the normal structural elements. The program also has a seismic analysis capability, used for the analysis of fluid-structure systems subjected to a specified support acceleration time history. In this case analysis is carried out in terms of relative structural motions, but absolute fluid pressures. Application of the BERDYNE fluid/structure interaction capability to some simple test cases produced results in good agreement with results obtained by analytic or independent numerical techniques. Full instructions on the use of the facility will be included in the BERDYNE Level 4 documentation. Interim documentation for the pre-release version is available from the author. (author)

  15. Universal structure of a strongly interacting Fermi gas

    Energy Technology Data Exchange (ETDEWEB)

    Kuhnle, Eva; Dyke, Paul; Hoinka, Sascha; Mark, Michael; Hu Hui; Liu Xiaji; Drummond, Peter; Hannaford, Peter; Vale, Chris, E-mail: cvale@swin.edu.au [ARC Centre of Excellence for Quantum Atom Optics, Swinburne University of Technology, Hawthorn 3122 (Australia)

    2011-01-10

    This paper presents studies of the universal properties of strongly interacting Fermi gases using Bragg spectroscopy. We focus on pair-correlations, their relationship to the contact C introduced by Tan, and their dependence on both the momentum and temperature. We show that short-range pair correlations obey a universal law, first derived by Tan through measurements of the static structure factor, which displays a universal scaling with the ratio of the contact to the momentum C/q. Bragg spectroscopy of ultracold {sup 6}Li atoms is employed to measure the structure factor for a wide range of momenta and interaction strengths, providing broad confirmation of this universal law. We show that calibrating our Bragg spectra using the f-sum rule leads to a dramatic improvement in the accuracy of the structure factor measurement. We also measure the temperature dependence of the contact in a unitary gas and compare our results to calculations based on a virial expansion.

  16. Multi-scale coding of genomic information: From DNA sequence to genome structure and function

    International Nuclear Information System (INIS)

    Arneodo, Alain; Vaillant, Cedric; Audit, Benjamin; Argoul, Francoise; D'Aubenton-Carafa, Yves; Thermes, Claude

    2011-01-01

    Understanding how chromatin is spatially and dynamically organized in the nucleus of eukaryotic cells and how this affects genome functions is one of the main challenges of cell biology. Since the different orders of packaging in the hierarchical organization of DNA condition the accessibility of DNA sequence elements to trans-acting factors that control the transcription and replication processes, there is actually a wealth of structural and dynamical information to learn in the primary DNA sequence. In this review, we show that when using concepts, methodologies, numerical and experimental techniques coming from statistical mechanics and nonlinear physics combined with wavelet-based multi-scale signal processing, we are able to decipher the multi-scale sequence encoding of chromatin condensation-decondensation mechanisms that play a fundamental role in regulating many molecular processes involved in nuclear functions.

  17. A Sequence-Specific Interaction between the Saccharomyces cerevisiae rRNA Gene Repeats and a Locus Encoding an RNA Polymerase I Subunit Affects Ribosomal DNA Stability

    Science.gov (United States)

    Cahyani, Inswasti; Cridge, Andrew G.; Engelke, David R.; Ganley, Austen R. D.

    2014-01-01

    The spatial organization of eukaryotic genomes is linked to their functions. However, how individual features of the global spatial structure contribute to nuclear function remains largely unknown. We previously identified a high-frequency interchromosomal interaction within the Saccharomyces cerevisiae genome that occurs between the intergenic spacer of the ribosomal DNA (rDNA) repeats and the intergenic sequence between the locus encoding the second largest RNA polymerase I subunit and a lysine tRNA gene [i.e., RPA135-tK(CUU)P]. Here, we used quantitative chromosome conformation capture in combination with replacement mapping to identify a 75-bp sequence within the RPA135-tK(CUU)P intergenic region that is involved in the interaction. We demonstrate that the RPA135-IGS1 interaction is dependent on the rDNA copy number and the Msn2 protein. Surprisingly, we found that the interaction does not govern RPA135 transcription. Instead, replacement of a 605-bp region within the RPA135-tK(CUU)P intergenic region results in a reduction in the RPA135-IGS1 interaction level and fluctuations in rDNA copy number. We conclude that the chromosomal interaction that occurs between the RPA135-tK(CUU)P and rDNA IGS1 loci stabilizes rDNA repeat number and contributes to the maintenance of nucleolar stability. Our results provide evidence that the DNA loci involved in chromosomal interactions are composite elements, sections of which function in stabilizing the interaction or mediating a functional outcome. PMID:25421713

  18. Generation of equipment response spectrum considering equipment-structure interaction

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Yoo, Kwang Hoon

    2005-01-01

    Floor response spectra for dynamic response of subsystem such as equipment, or piping in nuclear power plant are usually generated without considering dynamic interaction between main structure and subsystem. Since the dynamic structural response generally has the narrow-banded shapes, the resulting floor response spectra developed for various locations in the structure usually have high spectral peak amplitudes in the narrow frequency bands corresponding to the natural frequencies of the structural system. The application of such spectra for design of subsystems often leads to excessive design conservatisms, especially when the equipment frequency and structure are at resonance condition. Thus, in order to provide a rational and realistic design input for dynamic analysis and design of equipment, dynamic equipment-structure interaction (ESI) should be considered in developing equipment response spectrum which is particularly important for equipment at the resonance condition. Many analytical methods have been proposed in the past for developing equipment response spectra considering ESI. However, most of these methods have not been adapted to the practical applications because of either the complexities or the lack of rigorousness of the methods. At one hand, mass ratio among the equipment and structure was used as an important parameter to obtain equipment response spectra. Similarly, Tseng has also proposed the analytical method for developing equipment response spectra using mass ratio in the frequency domain. This method is analytically rigorous and can be easily validated. It is based on the dynamic substructuring method as applied to the dynamic soil-structure interaction (SSI) analysis, and can relatively easily be implemented for practical applications without to change the current dynamic analysis and design practice for subsystems. The equipment response spectra derived in this study are also based on Tseng's proposed method

  19. Structural and sequence analysis of imelysin-like proteins implicated in bacterial iron uptake.

    Directory of Open Access Journals (Sweden)

    Qingping Xu

    Full Text Available Imelysin-like proteins define a superfamily of bacterial proteins that are likely involved in iron uptake. Members of this superfamily were previously thought to be peptidases and were included in the MEROPS family M75. We determined the first crystal structures of two remotely related, imelysin-like proteins. The Psychrobacter arcticus structure was determined at 2.15 Å resolution and contains the canonical imelysin fold, while higher resolution structures from the gut bacteria Bacteroides ovatus, in two crystal forms (at 1.25 Å and 1.44 Å resolution, have a circularly permuted topology. Both structures are highly similar to each other despite low sequence similarity and circular permutation. The all-helical structure can be divided into two similar four-helix bundle domains. The overall structure and the GxHxxE motif region differ from known HxxE metallopeptidases, suggesting that imelysin-like proteins are not peptidases. A putative functional site is located at the domain interface. We have now organized the known homologous proteins into a superfamily, which can be separated into four families. These families share a similar functional site, but each has family-specific structural and sequence features. These results indicate that imelysin-like proteins have evolved from a common ancestor, and likely have a conserved function.

  20. Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure.

    Science.gov (United States)

    Ruhlman, Tracey A; Zhang, Jin; Blazier, John C; Sabir, Jamal S M; Jansen, Robert K

    2017-04-01

    There is a misinterpretation in the literature regarding the variable orientation of the small single copy region of plastid genomes (plastomes). The common phenomenon of small and large single copy inversion, hypothesized to occur through intramolecular recombination between inverted repeats (IR) in a circular, single unit-genome, in fact, more likely occurs through recombination-dependent replication (RDR) of linear plastome templates. If RDR can be primed through both intra- and intermolecular recombination, then this mechanism could not only create inversion isomers of so-called single copy regions, but also an array of alternative sequence arrangements. We used Illumina paired-end and PacBio single-molecule real-time (SMRT) sequences to characterize repeat structure in the plastome of Monsonia emarginata (Geraniaceae). We used OrgConv and inspected nucleotide alignments to infer ancestral nucleotides and identify gene conversion among repeats and mapped long (>1 kb) SMRT reads against the unit-genome assembly to identify alternative sequence arrangements. Although M. emarginata lacks the canonical IR, we found that large repeats (>1 kilobase; kb) represent ∼22% of the plastome nucleotide content. Among the largest repeats (>2 kb), we identified GC-biased gene conversion and mapping filtered, long SMRT reads to the M. emarginata unit-genome assembly revealed alternative, substoichiometric sequence arrangements. We offer a model based on RDR and gene conversion between long repeated sequences in the M. emarginata plastome and provide support that both intra-and intermolecular recombination between large repeats, particularly in repeat-rich plastomes, varies unit-genome structure while homogenizing the nucleotide sequence of repeats. © 2017 Botanical Society of America.

  1. Dynamical soil-structure interactions: influence of soil behaviour nonlinearities

    International Nuclear Information System (INIS)

    Gandomzadeh, Ali

    2011-01-01

    The interaction of the soil with the structure has been largely explored the assumption of material and geometrical linearity of the soil. Nevertheless, for moderate or strong seismic events, the maximum shear strain can easily reach the elastic limit of the soil behavior. Considering soil-structure interaction, the nonlinear effects may change the soil stiffness at the base of the structure and therefore energy dissipation into the soil. Consequently, ignoring the nonlinear characteristics of the dynamic soil-structure interaction (DSSI) this phenomenon could lead to erroneous predictions of structural response. The goal of this work is to implement a fully nonlinear constitutive model for soils into a numerical code in order to investigate the effect of soil nonlinearity on dynamic soil structure interaction. Moreover, different issues are taken into account such as the effect of confining stress on the shear modulus of the soil, initial static condition, contact elements in the soil-structure interface, etc. During this work, a simple absorbing layer method based on a Rayleigh/Caughey damping formulation, which is often already available in existing Finite Element softwares, is also presented. The stability conditions of the wave propagation problems are studied and it is shown that the linear and nonlinear behavior are very different when dealing with numerical dispersion. It is shown that the 10 points per wavelength rule, recommended in the literature for the elastic media is not sufficient for the nonlinear case. The implemented model is first numerically verified by comparing the results with other known numerical codes. Afterward, a parametric study is carried out for different types of structures and various soil profiles to characterize nonlinear effects. Different features of the DSSI are compared to the linear case: modification of the amplitude and frequency content of the waves propagated into the soil, fundamental frequency, energy dissipation in

  2. A structural study for the optimisation of functional motifs encoded in protein sequences

    Directory of Open Access Journals (Sweden)

    Helmer-Citterich Manuela

    2004-04-01

    Full Text Available Abstract Background A large number of PROSITE patterns select false positives and/or miss known true positives. It is possible that – at least in some cases – the weak specificity and/or sensitivity of a pattern is due to the fact that one, or maybe more, functional and/or structural key residues are not represented in the pattern. Multiple sequence alignments are commonly used to build functional sequence patterns. If residues structurally conserved in proteins sharing a function cannot be aligned in a multiple sequence alignment, they are likely to be missed in a standard pattern construction procedure. Results Here we present a new procedure aimed at improving the sensitivity and/ or specificity of poorly-performing patterns. The procedure can be summarised as follows: 1. residues structurally conserved in different proteins, that are true positives for a pattern, are identified by means of a computational technique and by visual inspection. 2. the sequence positions of the structurally conserved residues falling outside the pattern are used to build extended sequence patterns. 3. the extended patterns are optimised on the SWISS-PROT database for their sensitivity and specificity. The method was applied to eight PROSITE patterns. Whenever structurally conserved residues are found in the surface region close to the pattern (seven out of eight cases, the addition of information inferred from structural analysis is shown to improve pattern selectivity and in some cases selectivity and sensitivity as well. In some of the cases considered the procedure allowed the identification of functionally interesting residues, whose biological role is also discussed. Conclusion Our method can be applied to any type of functional motif or pattern (not only PROSITE ones which is not able to select all and only the true positive hits and for which at least two true positive structures are available. The computational technique for the identification of

  3. Multiple amino acid sequence alignment nitrogenase component 1: insights into phylogenetics and structure-function relationships.

    Directory of Open Access Journals (Sweden)

    James B Howard

    Full Text Available Amino acid residues critical for a protein's structure-function are retained by natural selection and these residues are identified by the level of variance in co-aligned homologous protein sequences. The relevant residues in the nitrogen fixation Component 1 α- and β-subunits were identified by the alignment of 95 protein sequences. Proteins were included from species encompassing multiple microbial phyla and diverse ecological niches as well as the nitrogen fixation genotypes, anf, nif, and vnf, which encode proteins associated with cofactors differing at one metal site. After adjusting for differences in sequence length, insertions, and deletions, the remaining >85% of the sequence co-aligned the subunits from the three genotypes. Six Groups, designated Anf, Vnf , and Nif I-IV, were assigned based upon genetic origin, sequence adjustments, and conserved residues. Both subunits subdivided into the same groups. Invariant and single variant residues were identified and were defined as "core" for nitrogenase function. Three species in Group Nif-III, Candidatus Desulforudis audaxviator, Desulfotomaculum kuznetsovii, and Thermodesulfatator indicus, were found to have a seleno-cysteine that replaces one cysteinyl ligand of the 8Fe:7S, P-cluster. Subsets of invariant residues, limited to individual groups, were identified; these unique residues help identify the gene of origin (anf, nif, or vnf yet should not be considered diagnostic of the metal content of associated cofactors. Fourteen of the 19 residues that compose the cofactor pocket are invariant or single variant; the other five residues are highly variable but do not correlate with the putative metal content of the cofactor. The variable residues are clustered on one side of the cofactor, away from other functional centers in the three dimensional structure. Many of the invariant and single variant residues were not previously recognized as potentially critical and their identification

  4. Predictability in the Epidemic-Type Aftershock Sequence model of interacting triggered seismicity

    Science.gov (United States)

    Helmstetter, AgnèS.; Sornette, Didier

    2003-10-01

    As part of an effort to develop a systematic methodology for earthquake forecasting, we use a simple model of seismicity on the basis of interacting events which may trigger a cascade of earthquakes, known as the Epidemic-Type Aftershock Sequence model (ETAS). The ETAS model is constructed on a bare (unrenormalized) Omori law, the Gutenberg-Richter law, and the idea that large events trigger more numerous aftershocks. For simplicity, we do not use the information on the spatial location of earthquakes and work only in the time domain. We demonstrate the essential role played by the cascade of triggered seismicity in controlling the rate of aftershock decay as well as the overall level of seismicity in the presence of a constant external seismicity source. We offer an analytical approach to account for the yet unobserved triggered seismicity adapted to the problem of forecasting future seismic rates at varying horizons from the present. Tests presented on synthetic catalogs validate strongly the importance of taking into account all the cascades of still unobserved triggered events in order to predict correctly the future level of seismicity beyond a few minutes. We find a strong predictability if one accepts to predict only a small fraction of the large-magnitude targets. Specifically, we find a prediction gain (defined as the ratio of the fraction of predicted events over the fraction of time in alarms) equal to 21 for a fraction of alarm of 1%, a target magnitude M ≥ 6, an update time of 0.5 days between two predictions, and for realistic parameters of the ETAS model. However, the probability gains degrade fast when one attempts to predict a larger fraction of the targets. This is because a significant fraction of events remain uncorrelated from past seismicity. This delineates the fundamental limits underlying forecasting skills, stemming from an intrinsic stochastic component in these interacting triggered seismicity models. Quantitatively, the fundamental

  5. Using sequence-specific chemical and structural properties of DNA to predict transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Amy L Bauer

    2010-11-01

    Full Text Available An important step in understanding gene regulation is to identify the DNA binding sites recognized by each transcription factor (TF. Conventional approaches to prediction of TF binding sites involve the definition of consensus sequences or position-specific weight matrices and rely on statistical analysis of DNA sequences of known binding sites. Here, we present a method called SiteSleuth in which DNA structure prediction, computational chemistry, and machine learning are applied to develop models for TF binding sites. In this approach, binary classifiers are trained to discriminate between true and false binding sites based on the sequence-specific chemical and structural features of DNA. These features are determined via molecular dynamics calculations in which we consider each base in different local neighborhoods. For each of 54 TFs in Escherichia coli, for which at least five DNA binding sites are documented in RegulonDB, the TF binding sites and portions of the non-coding genome sequence are mapped to feature vectors and used in training. According to cross-validation analysis and a comparison of computational predictions against ChIP-chip data available for the TF Fis, SiteSleuth outperforms three conventional approaches: Match, MATRIX SEARCH, and the method of Berg and von Hippel. SiteSleuth also outperforms QPMEME, a method similar to SiteSleuth in that it involves a learning algorithm. The main advantage of SiteSleuth is a lower false positive rate.

  6. Soil-structure interaction Vol.3. Influence of ground water

    Energy Technology Data Exchange (ETDEWEB)

    Costantino, C J

    1986-04-01

    This study has been performed for the Nuclear Regulatory Commission (NRC) by the Structural Analysis Division of Brookhaven National Laboratory (BNL). The study was conducted during the fiscal year 1965 on the program entitled 'Benchmarking of Structural Engineering Problems' sponsored by NRC. The program considered three separate but complementary problems, each associated with the soil-structure interaction (551) phase of the seismic response analysis of nuclear plant facilities. The reports, all entitled Soil-Structure Interaction, are presented in three separate volumes, namely: Vol. 1 Influence of Layering by AJ Philippacopoulos, Vol. 2 Influence of Lift-Off by C.A. Miller, Vol. 3 Influence of Ground Water by C.J. Costantino. The two problems presented in Volumes 2 and 3 were conducted at the City University of New York (CUNY) under subcontract to BNL. This report, Volume 3 of the report, presents a summary of the first year's effort on the subject of the influence of foundation ground water on the SSI phenomenon. A finite element computer program was developed for the two-phased formulation of the combined soil-water problem. This formulation is based on the Biot dynamic equations of motion for both the solid and fluid phases of a typical soil. Frequency dependent interaction coefficients were generated for the two-dimensional plane problem of a rigid surface footing moving against a saturated linear soil. The results indicate that interaction coefficients are significantly modified as compared to the comparable values for a dry soil, particularly for the rocking mode of response. Calculations were made to study the impact of the modified interaction coefficients on the response of a typical nuclear reactor building. The amplification factors for a stick model placed atop a dry and saturated soil were computed. It was found that pore water caused the rocking response to decrease and translational response to increase over the frequency range of interest, as

  7. Centrifuge modelling of seismic soil structure interaction effects

    International Nuclear Information System (INIS)

    Ghosh, B.; Madabhushi, S.P.G.

    2007-01-01

    Proper understanding of the role of unbounded soil in the evaluation of dynamic soil structure interaction (SSI) problem is very important for structures used in the nuclear industry. In this paper, the results from a series of dynamic centrifuge tests are reported. These tests were performed on different types of soil stratifications supporting a rigid containment structure. Test results indicate that accelerations transmitted to the structure's base are dependent on the stiffness degradation in the supporting soil. Steady build up of excess pore pressure leads to softening of the soil, which decreases the shear modulus and shear strength and subsequently changes the dynamic responses. It is also shown that the presence of the structure reduces the translational component of the input base motion and induces rocking of the structure. The test results are compared with some standard formulae used for evaluating interaction in the various building codes. It was concluded that the dynamic shear modulus values used should be representative of the site conditions and can vary dramatically due to softening. Damping values used are still very uncertain and contain many factors, which cannot be accounted in the experiments. It is emphasized that simplified design processes are important to gain an insight into the behaviour of the physical mechanism but for a complete understanding of the SSI effects sophisticated methods are necessary to account for non-linear behaviour of the soil material

  8. Considerations about soil-structures interaction in nuclear power plants

    International Nuclear Information System (INIS)

    Muzzi, F.

    1977-01-01

    The main features of the soil-structure interaction for nuclear power plant are presented as they resulted from conservations that the author carried out at the Berkeley (California) University, at the California Institute of Technology and at the U.S. Nuclear Regulatory Commission in Washington (Dec 1975). The complete and inertial interaction approaches of analysis are discussed. The complete approach by the use of finite element technique as suggested by the U.S.N.R.C. Standard Review Plan 3.7.1. (June 1975) is finally described. (author)

  9. Studies on melt-water-structure interaction during severe accidents

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Dinh, T.N.; Okkonen, T.J.; Bui, V.A.; Nourgaliev, R.R.; Andersson, J.

    1996-10-01

    Results of a series of studies, on melt-water-structure interactions which occur during the progression of a core melt-down accident, are described. The emphasis is on the in-vessel interactions and the studies are both experimental and analytical. Since, the studies performed resulted in papers published in proceedings of the technical meetings, and in journals, copies of a set of selected papers are attached to provide details. A summary of the results obtained is provided for the reader who does not, or cannot, venture into the perusal of the attached papers. (au)

  10. Studies on melt-water-structure interaction during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Dinh, T.N.; Okkonen, T.J.; Bui, V.A.; Nourgaliev, R.R.; Andersson, J. [Royal Inst. of Technology, Div. of Nucl. Power Safety, Stockholm (Sweden)

    1996-10-01

    Results of a series of studies, on melt-water-structure interactions which occur during the progression of a core melt-down accident, are described. The emphasis is on the in-vessel interactions and the studies are both experimental and analytical. Since, the studies performed resulted in papers published in proceedings of the technical meetings, and in journals, copies of a set of selected papers are attached to provide details. A summary of the results obtained is provided for the reader who does not, or cannot, venture into the perusal of the attached papers. (au).

  11. MultiSeq: unifying sequence and structure data for evolutionary analysis

    Directory of Open Access Journals (Sweden)

    Wright Dan

    2006-08-01

    Full Text Available Abstract Background Since the publication of the first draft of the human genome in 2000, bioinformatic data have been accumulating at an overwhelming pace. Currently, more than 3 million sequences and 35 thousand structures of proteins and nucleic acids are available in public databases. Finding correlations in and between these data to answer critical research questions is extremely challenging. This problem needs to be approached from several directions: information science to organize and search the data; information visualization to assist in recognizing correlations; mathematics to formulate statistical inferences; and biology to analyze chemical and physical properties in terms of sequence and structure changes. Results Here we present MultiSeq, a unified bioinformatics analysis environment that allows one to organize, display, align and analyze both sequence and structure data for proteins and nucleic acids. While special emphasis is placed on analyzing the data within the framework of evolutionary biology, the environment is also flexible enough to accommodate other usage patterns. The evolutionary approach is supported by the use of predefined metadata, adherence to standard ontological mappings, and the ability for the user to adjust these classifications using an electronic notebook. MultiSeq contains a new algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of a homologous group of distantly related proteins. The method, based on the multidimensional QR factorization of multiple sequence and structure alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. Conclusion MultiSeq is a major extension of the Multiple Alignment tool that is provided as part of VMD, a structural

  12. Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins.

    Directory of Open Access Journals (Sweden)

    Pietro Scaturro

    Full Text Available Non-structural protein 1 (NS1 is one of the most enigmatic proteins of the Dengue virus (DENV, playing distinct functions in immune evasion, pathogenesis and viral replication. The recently reported crystal structure of DENV NS1 revealed its peculiar three-dimensional fold; however, detailed information on NS1 function at different steps of the viral replication cycle is still missing. By using the recently reported crystal structure, as well as amino acid sequence conservation, as a guide for a comprehensive site-directed mutagenesis study, we discovered that in addition to being essential for RNA replication, DENV NS1 is also critically required for the production of infectious virus particles. Taking advantage of a trans-complementation approach based on fully functional epitope-tagged NS1 variants, we identified previously unreported interactions between NS1 and the structural proteins Envelope (E and precursor Membrane (prM. Interestingly, coimmunoprecipitation revealed an additional association with capsid, arguing that NS1 interacts via the structural glycoproteins with DENV particles. Results obtained with mutations residing either in the NS1 Wing domain or in the β-ladder domain suggest that NS1 might have two distinct functions in the assembly of DENV particles. By using a trans-complementation approach with a C-terminally KDEL-tagged ER-resident NS1, we demonstrate that the secretion of NS1 is dispensable for both RNA replication and infectious particle production. In conclusion, our results provide an extensive genetic map of NS1 determinants essential for viral RNA replication and identify a novel role of NS1 in virion production that is mediated via interaction with the structural proteins. These studies extend the list of NS1 functions and argue for a central role in coordinating replication and assembly/release of infectious DENV particles.

  13. Automated Clustering Analysis of Immunoglobulin Sequences in Chronic Lymphocytic Leukemia Based on 3D Structural Descriptors

    DEFF Research Database (Denmark)

    Marcatili, Paolo; Mochament, Konstantinos; Agathangelidis, Andreas

    2016-01-01

    study, we used the structure prediction tools PIGS and I-TASSER for creating the 3D models and the TM-align algorithm to superpose them. The innovation of the current methodology resides in the usage of methods adapted from 3D content-based search methodologies to determine the local structural...... determine it are extremely laborious and demanding. Hence, the ability to gain insight into the structure of Igs at large relies on the availability of tools and algorithms for producing accurate Ig structural models based on their primary sequence alone. These models can then be used to determine...... to achieve an optimal solution to this task yet their results were hindered mainly due to the lack of efficient clustering methods based on the similarity of 3D structure descriptors. Here, we present a novel workflow for robust Ig 3D modeling and automated clustering. We validated our protocol in chronic...

  14. An experimental study on soil-structure interaction effects

    International Nuclear Information System (INIS)

    Mita, Akira; Kumagai, Shigeru

    1989-01-01

    The soil-structure interaction effects play an important role in the earthquake response of large scale structures such as nuclear power plants. Recent decades, many experimental and analytical studies have been conducted. Even though sophisticated analytical tools are ready to use, complicated soil-structure interaction problems such as those with a complex geometry can not be solved yet. For such problems a laboratory experiment is a powerful alternative. In the laboratory experiment, a device to absorb the reflected waves is always necessary to be attached on the boundaries of the soil model to simulate the semi-infiniteness of the actual ground. But unfortunately absorbing devices currently available are far from satisfactory. In this paper, a new experimental method is employed for soil-structure interaction problems to simulate the semi-infiniteness of the actual ground. The present method utilizes the characteristics of transient response to an impulse load so that no special treatment on the boundaries of the soil model is required. This technique is applicable to a linear elastic system whose impulse response decreases to a small enough value before observing the reflected waves. (author)

  15. Sequence- and structure-dependent DNA base dynamics: Synthesis, structure, and dynamics of site and sequence specifically spin-labeled DNA

    International Nuclear Information System (INIS)

    Spaltenstein, A.; Robinson, B.H.; Hopkins, P.B.

    1989-01-01

    A nitroxide spin-labeled analogue of thymidine (1a), in which the methyl group is replaced by an acetylene-tethered nitroxide, was evaluated as a probe for structural and dynamics studies of sequence specifically spin-labeled DNA. Residue 1a was incorporated into synthetic deoxyoligonucleotides by using automated phosphite triester methods. 1 H NMR, CD, and thermal denaturation studies indicate that 1a (T) does not significantly alter the structure of 5'-d(CGCGAATT*CGCG) from that of the native dodecamer. EPR studies on monomer, single-stranded, and duplexed DNA show that 1a readily distinguishes environments of different rigidity. Comparison of the general line-shape features of the observed EPR spectra of several small duplexes (12-mer, 24-mer) with simulated EPR spectra assuming isotropic motion suggests that probe 1a monitors global tumbling of small duplexes. Increasing the length of the DNA oligomers results in significant deviation from isotropic motion, with line-shape features similar to those of calculated spectra of objects with isotropic rotational correlation times of 20-100 ns. EPR spectra of a spin-labeled GT mismatch and a T bulge in long DNAs are distinct from those of spin-labeled Watson-Crick paired DNAs, further demonstrating the value of EPR as a tool in the evaluation of local dynamic and structural features in macromolecules

  16. Insights into the role of protein molecule size and structure on interfacial properties using designed sequences

    Science.gov (United States)

    Dwyer, Mirjana Dimitrijev; He, Lizhong; James, Michael; Nelson, Andrew; Middelberg, Anton P. J.

    2013-01-01

    Mixtures of a large, structured protein with a smaller, unstructured component are inherently complex and hard to characterize at interfaces, leading to difficulties in understanding their interfacial behaviours and, therefore, formulation optimization. Here, we investigated interfacial properties of such a mixed system. Simplicity was achieved using designed sequences in which chemical differences had been eliminated to isolate the effect of molecular size and structure, namely a short unstructured peptide (DAMP1) and its longer structured protein concatamer (DAMP4). Interfacial tension measurements suggested that the size and bulk structuring of the larger molecule led to much slower adsorption kinetics. Neutron reflectometry at equilibrium revealed that both molecules adsorbed as a monolayer to the air–water interface (indicating unfolding of DAMP4 to give a chain of four connected DAMP1 molecules), with a concentration ratio equal to that in the bulk. This suggests the overall free energy of adsorption is equal despite differences in size and bulk structure. At small interfacial extensional strains, only molecule packing influenced the stress response. At larger strains, the effect of size became apparent, with DAMP4 registering a higher stress response and interfacial elasticity. When both components were present at the interface, most stress-dissipating movement was achieved by DAMP1. This work thus provides insights into the role of proteins' molecular size and structure on their interfacial properties, and the designed sequences introduced here can serve as effective tools for interfacial studies of proteins and polymers. PMID:23303222

  17. Structure, complexity and cooperation in parallel external chat interactions

    Directory of Open Access Journals (Sweden)

    Anette Grønning

    2012-09-01

    Full Text Available This article examines structure, complexity and cooperation in external chat interactions at the workplace in which one of the participants is taking part in multiple parallel conversations. The investigation is based on an analysis of nine chat interactions in a work-related context, with particular focus on the content of the parallel time spans of the chat interactions. The analysis was inspired by applied conversation analysis (CA. The empirical material has been placed at my disposal by Kristelig Fagbevægelse (Krifa, which is Denmark’s third-largest trade union. The article’s overall focus is on “turn-taking organisation as the fundamental and generic aspect of interaction organisation” (Drew & Heritage, 1992, p. 25, including the use of turn-taking rules, adjacency pairs, and the importance of pauses. Even though the employee and the union members do not know one another and cannot see, hear, or touch one another, it is possible to detect an informal, pleasant tone in their interactions. This challenges the basically asymmetrical relationship between employee and customer, and one can sense a further level of asymmetry. In terms of medium, chat interactions exist via various references to other media, including telephone calls and e-mails.

  18. eMatchSite: sequence order-independent structure alignments of ligand binding pockets in protein models.

    Directory of Open Access Journals (Sweden)

    Michal Brylinski

    2014-09-01

    Full Text Available Detecting similarities between ligand binding sites in the absence of global homology between target proteins has been recognized as one of the critical components of modern drug discovery. Local binding site alignments can be constructed using sequence order-independent techniques, however, to achieve a high accuracy, many current algorithms for binding site comparison require high-quality experimental protein structures, preferably in the bound conformational state. This, in turn, complicates proteome scale applications, where only various quality structure models are available for the majority of gene products. To improve the state-of-the-art, we developed eMatchSite, a new method for constructing sequence order-independent alignments of ligand binding sites in protein models. Large-scale benchmarking calculations using adenine-binding pockets in crystal structures demonstrate that eMatchSite generates accurate alignments for almost three times more protein pairs than SOIPPA. More importantly, eMatchSite offers a high tolerance to structural distortions in ligand binding regions in protein models. For example, the percentage of correctly aligned pairs of adenine-binding sites in weakly homologous protein models is only 4-9% lower than those aligned using crystal structures. This represents a significant improvement over other algorithms, e.g. the performance of eMatchSite in recognizing similar binding sites is 6% and 13% higher than that of SiteEngine using high- and moderate-quality protein models, respectively. Constructing biologically correct alignments using predicted ligand binding sites in protein models opens up the possibility to investigate drug-protein interaction networks for complete proteomes with prospective systems-level applications in polypharmacology and rational drug repositioning. eMatchSite is freely available to the academic community as a web-server and a stand-alone software distribution at http://www.brylinski.org/ematchsite.

  19. Significance of structure–soil–structure interaction for closely spaced structures

    International Nuclear Information System (INIS)

    Roy, Christine; Bolourchi, Said; Eggers, Daniel

    2015-01-01

    Nuclear facilities typically consist of many closely spaced structures with different sizes and depths of embedment. Seismic response of each structure could be influenced by dynamic structure–soil–structure interaction (SSSI) behavior of adjacent closely spaced structures. This paper examines the impact of SSSI on the in-structure response spectra (ISRS) and peak accelerations of a light structure adjacent to a heavy structure and of a heavy structure adjacent to a similar heavy structure for several soil cases, foundation embedment depths, and separation distances. The impacts of a heavy surface or embedded structure on adjacent ground motions were studied. The analyses demonstrated the adjacent ground motions are sensitive to foundation embedment, soil profile, response frequency, and distance from the structure. Seismic responses of a light structure located near a heavy structure are calculated either by modeling both structures subjected to free field motions, or performing a cascade analysis by considering the light structure model subjected to modified ground motions due to the heavy structure. Cascade SSSI analyses are shown to adequately account for the effect of the heavy structure on the light structure without explicitly modeling both structures together in a single analysis. To further study the influence of SSSI behavior, this paper examines dynamic response of two adjacent heavy structures and compares this response to response of a single heavy structure neglecting adjacent structures. The SSSI responses of the two heavy structures are evaluated for varying soil conditions and structure separation distances using three-dimensional linear SSI analyses and considering anti-symmetry boundary conditions. The analyses demonstrate that the SSSI response of a light or a heavy structure can be influenced by the presence of a nearby heavy structure. Although this study considers linear analysis methodology, the conclusion of SSSI influences on dynamic

  20. SVM-PB-Pred: SVM based protein block prediction method using sequence profiles and secondary structures.

    Science.gov (United States)

    Suresh, V; Parthasarathy, S

    2014-01-01

    We developed a support vector machine based web server called SVM-PB-Pred, to predict the Protein Block for any given amino acid sequence. The input features of SVM-PB-Pred include i) sequence profiles (PSSM) and ii) actual secondary structures (SS) from DSSP method or predicted secondary structures from NPS@ and GOR4 methods. There were three combined input features PSSM+SS(DSSP), PSSM+SS(NPS@) and PSSM+SS(GOR4) used to test and train the SVM models. Similarly, four datasets RS90, DB433, LI1264 and SP1577 were used to develop the SVM models. These four SVM models developed were tested using three different benchmarking tests namely; (i) self consistency, (ii) seven fold cross validation test and (iii) independent case test. The maximum possible prediction accuracy of ~70% was observed in self consistency test for the SVM models of both LI1264 and SP1577 datasets, where PSSM+SS(DSSP) input features was used to test. The prediction accuracies were reduced to ~53% for PSSM+SS(NPS@) and ~43% for PSSM+SS(GOR4) in independent case test, for the SVM models of above two same datasets. Using our method, it is possible to predict the protein block letters for any query protein sequence with ~53% accuracy, when the SP1577 dataset and predicted secondary structure from NPS@ server were used. The SVM-PB-Pred server can be freely accessed through http://bioinfo.bdu.ac.in/~svmpbpred.

  1. Revised Mimivirus major capsid protein sequence reveals intron-containing gene structure and extra domain

    Directory of Open Access Journals (Sweden)

    Suzan-Monti Marie

    2009-05-01

    Full Text Available Abstract Background Acanthamoebae polyphaga Mimivirus (APM is the largest known dsDNA virus. The viral particle has a nearly icosahedral structure with an internal capsid shell surrounded with a dense layer of fibrils. A Capsid protein sequence, D13L, was deduced from the APM L425 coding gene and was shown to be the most abundant protein found within the viral particle. However this protein remained poorly characterised until now. A revised protein sequence deposited in a database suggested an additional N-terminal stretch of 142 amino acids missing from the original deduced sequence. This result led us to investigate the L425 gene structure and the biochemical properties of the complete APM major Capsid protein. Results This study describes the full length 3430 bp Capsid coding gene and characterises the 593 amino acids long corresponding Capsid protein 1. The recombinant full length protein allowed the production of a specific monoclonal antibody able to detect the Capsid protein 1 within the viral particle. This protein appeared to be post-translationnally modified by glycosylation and phosphorylation. We proposed a secondary structure prediction of APM Capsid protein 1 compared to the Capsid protein structure of Paramecium Bursaria Chlorella Virus 1, another member of the Nucleo-Cytoplasmic Large DNA virus family. Conclusion The characterisation of the full length L425 Capsid coding gene of Acanthamoebae polyphaga Mimivirus provides new insights into the structure of the main Capsid protein. The production of a full length recombinant protein will be useful for further structural studies.

  2. Oligomeric protein structure networks: insights into protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Brinda KV

    2005-12-01

    Full Text Available Abstract Background Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues with special emphasis to protein interfaces. Results A variety of interactions such as hydrogen bond, salt bridges, aromatic and hydrophobic interactions, which occur at the interfaces are identified in a consolidated manner as amino acid clusters at the interface, from this study. Moreover, the characterization of the highly connected hub-forming residues at the interfaces and their comparison with the hubs from the non-interface regions and the non-hubs in the interface regions show that there is a predominance of charged interactions at the interfaces. Further, strong and weak interfaces are identified on the basis of the interaction strength between amino acid residues and the sizes of the interface clusters, which also show that many protein interfaces are stronger than their monomeric protein cores. The interface strengths evaluated based on the interface clusters and hubs also correlate well with experimentally determined dissociation constants for known complexes. Finally, the interface hubs identified using the present method correlate very well with experimentally determined hotspots in the interfaces of protein complexes obtained from the Alanine Scanning Energetics database (ASEdb. A few predictions of interface hot

  3. On RNA-RNA interaction structures of fixed topological genus.

    Science.gov (United States)

    Fu, Benjamin M M; Han, Hillary S W; Reidys, Christian M

    2015-04-01

    Interacting RNA complexes are studied via bicellular maps using a filtration via their topological genus. Our main result is a new bijection for RNA-RNA interaction structures and a linear time uniform sampling algorithm for RNA complexes of fixed topological genus. The bijection allows to either reduce the topological genus of a bicellular map directly, or to lose connectivity by decomposing the complex into a pair of single stranded RNA structures. Our main result is proved bijectively. It provides an explicit algorithm of how to rewire the corresponding complexes and an unambiguous decomposition grammar. Using the concept of genus induction, we construct bicellular maps of fixed topological genus g uniformly in linear time. We present various statistics on these topological RNA complexes and compare our findings with biological complexes. Furthermore we show how to construct loop-energy based complexes using our decomposition grammar. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A sensitivity study for soil-structure interaction

    International Nuclear Information System (INIS)

    Kunar, R.R.; White, D.C.; Ashdown, M.J.; Waker, C.H.; Daintith, D.

    1981-01-01

    This paper presents the results of a study in which the sensitivity of a containment building typical of one type of construction used in the nuclear reprocessing industry is examined for variations in soil data and seismic input. A number of dynamic soil-structure interaction analyses are performed on the structure and its foundations using parametric variations of the depth of soil layer, soil material properties, bedrock flexibility, seismic input location and time and phase characteristics of the earthquake excitation. Previous experience is combined with the results obtained to gneralise conclusions regarding the conditions under which each of the uncertainties will be significant enough to merit proper statistical treatment. (orig.)

  5. CISM Summer School on Fluid-Structure Interactions in Acoustics

    CERN Document Server

    1999-01-01

    The subject of the book is directly related to environmental noise and vibration phenomena (sound emission by vibrating structures, prediction and reduction, ...). Transportation noise is one of the main applications. The book presents an overview of the most recent knowledge on interaction phenomena between a structure and a fluid, including nonlinear aspects. It covers all aspects of the phenomena, from the mathematical modeling up to the applications to automotive industrial problems. The aim is to provide readers with a good understanding of the physical phenomena as well as the most recent knowledge of predictive methods.

  6. Optimization of morphing flaps based on fluid structure interaction modeling

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Akay, Busra

    2018-01-01

    This article describes the design optimization of morphing trailing edge flaps for wind turbines with ‘smart blades’. A high fidelity Fluid Structure Interaction (FSI) simulation framework is utilized, comprised of 2D Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) models....... A coupled aero-structural simulation of a 10% chordwise length morphing trailing edge flap for a 4 MW wind turbine rotor is carried out and response surfaces are produced with respect to the flap internal geometry design parameters for the design conditions. Surrogate model based optimization is applied...

  7. Dynamic soil-structure interaction of monopod and polypod foundations

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard

    2016-01-01

    within the time domain, frequency-independent lumped-parameter models are developed. The paper proposes a decision criterion for determination of which components must be included within a lumped-parameter model in order to account for the structure–soil–structure interaction in an adequate and efficient......The paper concerns the importance of through–soil coupling for structures having foundations with more footings. First, a model for dynamic analysis of polypod footings is established in the frequency domain, employing Green’s function for wave propagation in a layered half-space. To allow analysis...

  8. Seismic soil structure interaction: analysis and centrifuge model studies

    International Nuclear Information System (INIS)

    Finn, W.D.L.; Ledbetter, R.H.; Beratan, L.L.

    1985-01-01

    A method for non-linear dynamic effective stress analysis is introduced which is applicable to soil-structure interaction problems. Full interaction including slip between structure and foundation is taken into account and the major factors are included which must be considered when computing dynamic soil response. An experimental investigation was conducted using simulated earthquake tests on centrifuged geotechnical models in order to obtain prototype response data of foundation soils carrying both surface and embedded structures and to validate the dynamic effective stress analysis. Horizontal and vertical accelerations were measured at various points on structures and in the sand foundation. Seismically-induced pore water pressure changes were also measured at various locations in the foundation. Computer plots of the data were obtained while the centrifuge was in flight and representative samples are presented. The results show clearly the pronounced effect that increasing pore water pressures have on dynamic response. It is demonstrated that a coherent picture of dynamic response of soil-structure systems is provided by dynamic effective stress non-linear analysis. Based on preliminary results, it appears that the pore water pressure effects can be predicted

  9. Seismic soil-structure interaction: Analysis and centrifuge model studies

    International Nuclear Information System (INIS)

    Finn, W.D.L.; Ledbetter, R.H.; Beratan, L.L.

    1986-01-01

    A method for nonlinear dynamic effective stress analysis applicable to soil-structure interaction problems is introduced. Full interaction including slip between structure and foundation is taken into account and the major factors that must be considered when computing dynamic soil response are included. An experimental investigation using simulated earthquake tests on centrifuged geotechnical models was conducted to obtain prototype response data of foundation soils carrying both surface and embedded structures and to validate the dynamic effective stress analysis. The centrifuge tests were conducted in the Geotechnical Centrifuge at Cambridge University, England. Horizontal and vertical accelerations were measured at various points on structures and in the sand foundation. Seismically induced pore water pressure changes were also measured at various locations in the foundation. Computer plots of the data were obtained while the centrifuge was in flight and representative samples are presented. The results clearly show the pronounced effect of increasing pore water pressures on dynamic response. It is demonstrated that a coherent picture of dynamic response of soil-structure systems is provided by dynamic effective stress nonlinear analysis. On the basis of preliminary results, it appears that the effects of pore water pressure can be predicted. (orig.)

  10. High frequency flow-structural interaction in dense subsonic fluids

    Science.gov (United States)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  11. Interactive physically-based structural modeling of hydrocarbon systems

    International Nuclear Information System (INIS)

    Bosson, Mael; Grudinin, Sergei; Bouju, Xavier; Redon, Stephane

    2012-01-01

    Hydrocarbon systems have been intensively studied via numerical methods, including electronic structure computations, molecular dynamics and Monte Carlo simulations. Typically, these methods require an initial structural model (atomic positions and types, topology, etc.) that may be produced using scripts and/or modeling tools. For many systems, however, these building methods may be ineffective, as the user may have to specify the positions of numerous atoms while maintaining structural plausibility. In this paper, we present an interactive physically-based modeling tool to construct structural models of hydrocarbon systems. As the user edits the geometry of the system, atomic positions are also influenced by the Brenner potential, a well-known bond-order reactive potential. In order to be able to interactively edit systems containing numerous atoms, we introduce a new adaptive simulation algorithm, as well as a novel algorithm to incrementally update the forces and the total potential energy based on the list of updated relative atomic positions. The computational cost of the adaptive simulation algorithm depends on user-defined error thresholds, and our potential update algorithm depends linearly with the number of updated bonds. This allows us to enable efficient physically-based editing, since the computational cost is decoupled from the number of atoms in the system. We show that our approach may be used to effectively build realistic models of hydrocarbon structures that would be difficult or impossible to produce using other tools.

  12. Mitochondrial and nuclear sequence polymorphisms reveal geographic structuring in Amazonian populations of Echinococcus vogeli (Cestoda: Taeniidae).

    Science.gov (United States)

    Santos, Guilherme B; Soares, Manoel do C P; de F Brito, Elisabete M; Rodrigues, André L; Siqueira, Nilton G; Gomes-Gouvêa, Michele S; Alves, Max M; Carneiro, Liliane A; Malheiros, Andreza P; Póvoa, Marinete M; Zaha, Arnaldo; Haag, Karen L

    2012-12-01

    To date, nothing is known about the genetic diversity of the Echinococcus neotropical species, Echinococcus vogeli and Echinococcus oligarthrus. Here we used mitochondrial and nuclear DNA sequence polymorphisms to uncover the genetic structure, transmission and history of E. vogeli in the Brazilian Amazon, based on a sample of 38 isolates obtained from human and wild animal hosts. We confirm that the parasite is partially synanthropic and show that its populations are diverse. Furthermore, significant geographical structuring is found, with western and eastern populations being genetically divergent. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  13. Fast computational methods for predicting protein structure from primary amino acid sequence

    Science.gov (United States)

    Agarwal, Pratul Kumar [Knoxville, TN

    2011-07-19

    The present invention provides a method utilizing primary amino acid sequence of a protein, energy minimization, molecular dynamics and protein vibrational modes to predict three-dimensional structure of a protein. The present invention also determines possible intermediates in the protein folding pathway. The present invention has important applications to the design of novel drugs as well as protein engineering. The present invention predicts the three-dimensional structure of a protein independent of size of the protein, overcoming a significant limitation in the prior art.

  14. Structure of Microgels with Debye–Hückel Interactions

    OpenAIRE

    Hideki Kobayashi; Roland G. Winkler

    2014-01-01

    The structural properties of model microgel particles are investigated by molecular dynamics simulations applying a coarse-grained model. A microgel is comprised of a regular network of polymers internally connected by tetra-functional cross-links and with dangling ends at its surface. The self-avoiding polymers are modeled as bead-spring linear chains. Electrostatic interactions are taken into account by the Debye–Hückel potential. The microgels exhibit a quite uniform density under bad solv...

  15. Structuring Interactive Correctness Proofs by Formalizing Coding Idioms

    OpenAIRE

    Gast, Holger

    2012-01-01

    This paper examines a novel strategy for developing correctness proofs in interactive software verification for C programs. Rather than proceeding backwards from the generated verification conditions, we start by developing a library of the employed data structures and related coding idioms. The application of that library then leads to correctness proofs that reflect informal arguments about the idioms. We apply this strategy to the low-level memory allocator of the L4 microkernel, a case st...

  16. Human cancer protein-protein interaction network: a structural perspective.

    Directory of Open Access Journals (Sweden)

    Gozde Kar

    2009-12-01

    Full Text Available Protein-protein interaction networks provide a global picture of cellular function and biological processes. Some proteins act as hub proteins, highly connected to others, whereas some others have few interactions. The dysfunction of some interactions causes many diseases, including cancer. Proteins interact through their interfaces. Therefore, studying the interface properties of cancer-related proteins will help explain their role in the interaction networks. Similar or overlapping binding sites should be used repeatedly in single interface hub proteins, making them promiscuous. Alternatively, multi-interface hub proteins make use of several distinct binding sites to bind to different partners. We propose a methodology to integrate protein interfaces into cancer interaction networks (ciSPIN, cancer structural protein interface network. The interactions in the human protein interaction network are replaced by interfaces, coming from either known or predicted complexes. We provide a detailed analysis of cancer related human protein-protein interfaces and the topological properties of the cancer network. The results reveal that cancer-related proteins have smaller, more planar, more charged and less hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and high specificity of the cancer-related interactions. We also classified the genes in ciSPIN according to phenotypes. Within phenotypes, for breast cancer, colorectal cancer and leukemia, interface properties were found to be discriminating from non-cancer interfaces with an accuracy of 71%, 67%, 61%, respectively. In addition, cancer-related proteins tend to interact with their partners through distinct interfaces, corresponding mostly to multi-interface hubs, which comprise 56% of cancer-related proteins, and constituting the nodes with higher essentiality in the network (76%. We illustrate the interface related affinity properties of two cancer-related hub

  17. ITS2 sequence-structure phylogeny reveals diverse endophytic Pseudocercospora fungi on poplars.

    Science.gov (United States)

    Yan, Dong-Hui; Gao, Qian; Sun, Xiaoming; Song, Xiaoyu; Li, Hongchang

    2018-04-01

    For matching the new fungal nomenclature to abolish pleomorphic names for a fungus, a genus Pseudocercospora s. str. was suggested to host holomorphic Pseudocercosproa fungi. But the Pseudocercosproa fungi need extra phylogenetic loci to clarify their taxonomy and diversity for their existing and coming species. Internal transcribed spacer 2 (ITS2) secondary structures have been promising in charactering species phylogeny in plants, animals and fungi. In present study, a conserved model of ITS2 secondary structures was confirmed on fungi in Pseudocercospora s. str. genus using RNAshape program. The model has a typical eukaryotic four-helix ITS2 secondary structure. But a single U base occurred in conserved motif of U-U mismatch in Helix 2, and a UG emerged in UGGU motif in Helix 3 to Pseudocercospora fungi. The phylogeny analyses based on the ITS2 sequence-secondary structures with compensatory base change characterizations are able to delimit more species for Pseudocercospora s. str. than phylogenic inferences of traditional multi-loci alignments do. The model was employed to explore the diversity of endophytic Pseudocercospora fungi in poplar trees. The analysis results also showed that endophytic Pseudocercospora fungi were diverse in species and evolved a specific lineage in poplar trees. This work suggested that ITS2 sequence-structures could become as additionally significant loci for species phylogenetic and taxonomic studies on Pseudocerospora fungi, and that Pseudocercospora endophytes could be important roles to Pseudocercospora fungi's evolution and function in ecology.

  18. Combining protein sequence, structure, and dynamics: A novel approach for functional evolution analysis of PAS domain superfamily.

    Science.gov (United States)

    Dong, Zheng; Zhou, Hongyu; Tao, Peng

    2018-02-01

    PAS domains are widespread in archaea, bacteria, and eukaryota, and play important roles in various functions. In this study, we aim to explore functional evolutionary relationship among proteins in the PAS domain superfamily in view of the sequence-structure-dynamics-function relationship. We collected protein sequences and crystal structure data from RCSB Protein Data Bank of the PAS domain superfamily belonging to three biological functions (nucleotide binding, photoreceptor activity, and transferase activity). Protein sequences were aligned and then used to select sequence-conserved residues and build phylogenetic tree. Three-dimensional structure alignment was also applied to obtain structure-conserved residues. The protein dynamics were analyzed using elastic network model (ENM) and validated by molecular dynamics (MD) simulation. The result showed that the proteins with same function could be grouped by sequence similarity, and proteins in different functional groups displayed statistically significant difference in their vibrational patterns. Interestingly, in all three functional groups, conserved amino acid residues identified by sequence and structure conservation analysis generally have a lower fluctuation than other residues. In addition, the fluctuation of conserved residues in each biological function group was strongly correlated with the corresponding biological function. This research suggested a direct connection in which the protein sequences were related to various functions through structural dynamics. This is a new attempt to delineate functional evolution of proteins using the integrated information of sequence, structure, and dynamics. © 2017 The Protein Society.

  19. Pairwise structure alignment specifically tuned for surface pockets and interaction interfaces

    KAUST Repository

    Cui, Xuefeng

    2015-09-09

    To detect and evaluate the similarities between the three-dimensional (3D) structures of two molecules, various kinds of methods have been proposed for the pairwise structure alignment problem [6, 9, 7, 11]. The problem plays important roles when studying the function and the evolution of biological molecules. Recently, pairwise structure alignment methods have been extended and applied on surface pocket structures [10, 3, 5] and interaction interface structures [8, 4]. The results show that, even when there are no global similarities discovered between the global sequences and the global structures, biological molecules or complexes could share similar functions because of well conserved pockets and interfaces. Thus, pairwise pocket and interface structure alignments are promising to unveil such shared functions that cannot be discovered by the well-studied global sequence and global structure alignments. State-of-the-art methods for pairwise pocket and interface structure alignments [4, 5] are direct extensions of the classic pairwise protein structure alignment methods, and thus such methods share a few limitations. First, the goal of the classic protein structure alignment methods is to align single-chain protein structures (i.e., a single fragment of residues connected by peptide bonds). However, we observed that pockets and interfaces tend to consist of tens of extremely short backbone fragments (i.e., three or fewer residues connected by peptide bonds). Thus, existing pocket and interface alignment methods based on the protein structure alignment methods still rely on the existence of long-enough backbone fragments, and the fragmentation issue of pockets and interfaces rises the risk of missing the optimal alignments. Moreover, existing interface structure alignment methods focus on protein-protein interfaces, and require a "blackbox preprocessing" before aligning protein-DNA and protein-RNA interfaces. Therefore, we introduce the PROtein STucture Alignment

  20. Nonlinear dynamic analysis of framed structures including soil-structure interaction effects

    International Nuclear Information System (INIS)

    Mahmood, M.N.; Ahmed, S.Y.

    2008-01-01

    The role of oil-structure interaction on seismic behavior of reinforced concrete structures is investigated in this paper. A finite element approach has been adopted to model the interaction system that consists of the reinforced concrete plane frame, soil deposit and interface which represents the frictional between foundation of the structure and subsoil. The analysis is based on the elasto-plastic behavior of the frame members (beams and columns) that is defined by the ultimate axial force-bending moment interaction curve, while the cap model is adopted to govern the elasto-plastic behavior of the soil material. Mohr-Coulomb failure law is used to determine the initiation of slippage at the interface, while the separation is assumed to determine the initiation of slippage at the interface, while the separation is assumed to occur when the stresses at the interface becomes tension stresses. New-Mark's Predictor-Corrector algorithm is adopted for nonlinear dynamic analysis. The main aim of present work is to evaluate the sensitivity of structures to different behavior of the soil and interface layer when subjected to an earthquake excitation. Predicted results of the dynamic analysis of the interaction system indicate that the soil-structure interaction problem can have beneficial effects on the structural behavior when different soil models (elastic and elasto-plastic) and interface conditions (perfect bond and permitted slip)are considered. (author)

  1. Assessment of soil/structure interaction analysis procedures for nuclear power plant structures

    International Nuclear Information System (INIS)

    Young, G.A.; Wei, B.C.

    1977-01-01

    The paper presents an assessment of two state-of-the-art soil/structure interaction analysis procedures that are frequently used to provide seismic analyses of nuclear power plant structures. The advantages of large three-dimensional, elastic, discrete mass models and two-dimensional finite element models are compared. The discrete mass models can provide three-dimensional response capability with economical computer costs but only fair soil/structure interaction representation. The two-dimensional finite element models provide good soil/structure interaction representation, but cannot provide out-of-plane response. Three-dimensional finite element models would provide the most informative and complete analyses. For this model, computer costs would be much greater, but modeling costs would be approximately the same as those required for three-dimensional discrete mass models

  2. High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture.

    Directory of Open Access Journals (Sweden)

    Soichi Inagaki

    Full Text Available Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA-genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.

  3. High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture.

    Science.gov (United States)

    Inagaki, Soichi; Henry, Isabelle M; Lieberman, Meric C; Comai, Luca

    2015-01-01

    Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA-genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.

  4. GxGrare: gene-gene interaction analysis method for rare variants from high-throughput sequencing data.

    Science.gov (United States)

    Kwon, Minseok; Leem, Sangseob; Yoon, Joon; Park, Taesung

    2018-03-19

    With the rapid advancement of array-based genotyping techniques, genome-wide association studies (GWAS) have successfully identified common genetic variants associated with common complex diseases. However, it has been shown that only a small proportion of the genetic etiology of complex diseases could be explained by the genetic factors identified from GWAS. This missing heritability could possibly be explained by gene-gene interaction (epistasis) and rare variants. There has been an exponential growth of gene-gene interaction analysis for common variants in terms of methodological developments and practical applications. Also, the recent advancement of high-throughput sequencing technologies makes it possible to conduct rare variant analysis. However, little progress has been made in gene-gene interaction analysis for rare variants. Here, we propose GxGrare which is a new gene-gene interaction method for the rare variants in the framework of the multifactor dimensionality reduction (MDR) analysis. The proposed method consists of three steps; 1) collapsing the rare variants, 2) MDR analysis for the collapsed rare variants, and 3) detect top candidate interaction pairs. GxGrare can be used for the detection of not only gene-gene interactions, but also interactions within a single gene. The proposed method is illustrated with 1080 whole exome sequencing data of the Korean population in order to identify causal gene-gene interaction for rare variants for type 2 diabetes. The proposed GxGrare performs well for gene-gene interaction detection with collapsing of rare variants. GxGrare is available at http://bibs.snu.ac.kr/software/gxgrare which contains simulation data and documentation. Supported operating systems include Linux and OS X.

  5. Gaseous diffusion flames: simple structures and their interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cavaliere, A. [Universita degli Studi Federico II, Naples (Italy). Dip. di Ingegneria Chimica; Ragucci, R. [Istituto di Ricerche sulla Combustione C,N.R., Naples (Italy)

    2001-07-01

    This is a synoptic overview of a selection of works dealing with single diffusive structures, with their mutual interaction in simple flows and their statistical modeling in complex flows. The focus is on reacting conditions pertaining to gaseous diffusion flames, but isothermal structures are also described when they are of some conceptual interest. This paper considers only few representative works for each subject, which are functional in explaining the key characteristics of the diffusive structures. The extension, given to single subjects, is not weighed according to the number of related publications but on the relevance to the basic understanding of the general framework concerning diffusion flames. One-dimensional structures are first discussed. They are ordered according to the number of balance equation terms needed for their description. Two-dimensional (2D) structures are then introduced following an order based on their convolution level. Some pioneering work on three-dimensional structures is further quoted. The temporal evolution of simple structures in quiescent or simple flowing 2D systems is considered. The latter case is exploited to present classification of diffusion-controlled mixing regimes. Modeling characterization approach of turbulent diffusion flames is also described in order to yield a self-sufficient didactic presentation. The approach based on the flame surface density model is specifically discussed because of its potential use in the determination of qualitative and quantitative features of simple diffusion flames. (author)

  6. Cyclotide Evolution: Insights from the Analyses of Their Precursor Sequences, Structures and Distribution in Violets (Viola

    Directory of Open Access Journals (Sweden)

    Sungkyu Park

    2017-12-01

    Full Text Available Cyclotides are a family of plant proteins that are characterized by a cyclic backbone and a knotted disulfide topology. Their cyclic cystine knot (CCK motif makes them exceptionally resistant to thermal, chemical, and enzymatic degradation. By disrupting cell membranes, the cyclotides function as host defense peptides by exhibiting insecticidal, anthelmintic, antifouling, and molluscicidal activities. In this work, we provide the first insight into the evolution of this family of plant proteins by studying the Violaceae, in particular species of the genus Viola. We discovered 157 novel precursor sequences by the transcriptomic analysis of six Viola species: V. albida var. takahashii, V. mandshurica, V. orientalis, V. verecunda, V. acuminata, and V. canadensis. By combining these precursor sequences with the phylogenetic classification of Viola, we infer the distribution of cyclotides across 63% of the species in the genus (i.e., ~380 species. Using full precursor sequences from transcriptomes, we show an evolutionary link to the structural diversity of the cyclotides, and further classify the cyclotides by sequence signatures from the non-cyclotide domain. Also, transcriptomes were compared to cyclotide expression on a peptide level determined using liquid chromatography-mass spectrometry. Furthermore, the novel cyclotides discovered were associated with the emergence of new biological functions.

  7. Structural analysis of a repetitive protein sequence motif in strepsirrhine primate amelogenin.

    Directory of Open Access Journals (Sweden)

    Rodrigo S Lacruz

    2011-03-01

    Full Text Available Strepsirrhines are members of a primate suborder that has a distinctive set of features associated with the development of the dentition. Amelogenin (AMEL, the better known of the enamel matrix proteins, forms 90% of the secreted organic matrix during amelogenesis. Although AMEL has been sequenced in numerous mammalian lineages, the only reported strepsirrhine AMEL sequences are those of the ring-tailed lemur and galago, which contain a set of additional proline-rich tandem repeats absent in all other primates species analyzed to date, but present in some non-primate mammals. Here, we first determined that these repeats are present in AMEL from three additional lemur species and thus are likely to be widespread throughout this group. To evaluate the functional relevance of these repeats in strepsirrhines, we engineered a mutated murine amelogenin sequence containing a similar proline-rich sequence to that of Lemur catta. In the monomeric form, the MQP insertions had no influence on the secondary structure or refolding properties, whereas in the assembled form, the insertions increased the hydrodynamic radii. We speculate that increased AMEL nanosphere size may influence enamel formation in strepsirrhine primates.

  8. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure.

    Science.gov (United States)

    Binzer, Amrei; Guill, Christian; Rall, Björn C; Brose, Ulrich

    2016-01-01

    Warming and eutrophication are two of the most important global change stressors for natural ecosystems, but their interaction is poorly understood. We used a dynamic model of complex, size-structured food webs to assess interactive effects on diversity and network structure. We found antagonistic impacts: Warming increases diversity in eutrophic systems and decreases it in oligotrophic systems. These effects interact with the community size structure: Communities of similarly sized species such as parasitoid-host systems are stabilized by warming and destabilized by eutrophication, whereas the diversity of size-structured predator-prey networks decreases strongly with warming, but decreases only weakly with eutrophication. Nonrandom extinction risks for generalists and specialists lead to higher connectance in networks without size structure and lower connectance in size-structured communities. Overall, our results unravel interactive impacts of warming and eutrophication and suggest that size structure may serve as an important proxy for predicting the community sensitivity to these global change stressors. © 2015 John Wiley & Sons Ltd.

  9. Soil-structure interaction in fuel handling building

    International Nuclear Information System (INIS)

    Elaidi, B.M.; Eissa, M.A.

    1998-01-01

    This paper presents an accurate three-dimensional seismic soil-structure interaction analysis for large structures. The method is applied to the fuel building in nuclear power plants. The analysis is performed numerically in the frequency domain and the responses are obtained by inverse Fourier transformation. The size of the structure matrices is reduced by transforming the equation of motion to the modal coordinate system. The soil is simulated as a layered media on top of viscoelastic half space. Soil impedance matrices are calculated from the principles of continuum mechanics and account for soil stiffness and energy dissipation. Effects of embedment on the field equations is incorporated through the scattering matrices or by simply scaling the soil impedance. Finite element methods are used to discretize the concrete foundation for the generation of the soil interaction matrices. Decoupling of the sloshing water in the spent fuel pools and the free-standing spent fuel racks is simulated. The input seismic motions are defined by three artificial time history accelerations. These input motions are generated to match the ground design basis response spectra and the target power spectral density function. The methods described in this paper can handle arbitrary foundation layouts, allows for large structural models, and accurately represents the soil impedance. Time history acceleration responses were subsequently used to generate floor response spectra at applicable damping values. (orig.)

  10. Structural insights and ab initio sequencing within the DING proteins family

    International Nuclear Information System (INIS)

    Elias, Mikael; Liebschner, Dorothee; Gotthard, Guillaume; Chabriere, Eric

    2011-01-01

    DING proteins constitute a recently discovered protein family that is ubiquitous in eukaryotes. The structural insights and the physiological involvements of these intriguing proteins are hereby deciphered. DING proteins constitute an intriguing family of phosphate-binding proteins that was identified in a wide range of organisms, from prokaryotes and archae to eukaryotes. Despite their seemingly ubiquitous occurrence in eukaryotes, their encoding genes are missing from sequenced genomes. Such a lack has considerably hampered functional studies. In humans, these proteins have been related to several diseases, like atherosclerosis, kidney stones, inflammation processes and HIV inhibition. The human phosphate binding protein is a human representative of the DING family that was serendipitously discovered from human plasma. An original approach was developed to determine ab initio the complete and exact sequence of this 38 kDa protein by utilizing mass spectrometry and X-ray data in tandem. Taking advantage of this first complete eukaryotic DING sequence, a immunohistochemistry study was undertaken to check the presence of DING proteins in various mice tissues, revealing that these proteins are widely expressed. Finally, the structure of a bacterial representative from Pseudomonas fluorescens was solved at sub-angstrom resolution, allowing the molecular mechanism of the phosphate binding in these high-affinity proteins to be elucidated

  11. Structural insights and ab initio sequencing within the DING proteins family

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Mikael, E-mail: mikael.elias@weizmann.ac.il [Weizmann Institute of Science, Rehovot (Israel); Liebschner, Dorothee [CRM2, Nancy Université (France); Gotthard, Guillaume; Chabriere, Eric [AFMB, Université Aix-Marseille II (France)

    2011-01-01

    DING proteins constitute a recently discovered protein family that is ubiquitous in eukaryotes. The structural insights and the physiological involvements of these intriguing proteins are hereby deciphered. DING proteins constitute an intriguing family of phosphate-binding proteins that was identified in a wide range of organisms, from prokaryotes and archae to eukaryotes. Despite their seemingly ubiquitous occurrence in eukaryotes, their encoding genes are missing from sequenced genomes. Such a lack has considerably hampered functional studies. In humans, these proteins have been related to several diseases, like atherosclerosis, kidney stones, inflammation processes and HIV inhibition. The human phosphate binding protein is a human representative of the DING family that was serendipitously discovered from human plasma. An original approach was developed to determine ab initio the complete and exact sequence of this 38 kDa protein by utilizing mass spectrometry and X-ray data in tandem. Taking advantage of this first complete eukaryotic DING sequence, a immunohistochemistry study was undertaken to check the presence of DING proteins in various mice tissues, revealing that these proteins are widely expressed. Finally, the structure of a bacterial representative from Pseudomonas fluorescens was solved at sub-angstrom resolution, allowing the molecular mechanism of the phosphate binding in these high-affinity proteins to be elucidated.

  12. Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction.

    Science.gov (United States)

    Garnotel, Simon; Salmon, Stéphanie; Balédent, Olivier

    2018-01-01

    Cerebrospinal fluid (CSF) stroke volume in the aqueduct is widely used to evaluate CSF dynamics disorders. In a healthy population, aqueduct stroke volume represents around 10% of the spinal stroke volume while intracranial subarachnoid space stroke volume represents 90%. The amplitude of the CSF oscillations through the different compartments of the cerebrospinal system is a function of the geometry and the compliances of each compartment, but we suspect that it could also be impacted be the cardiac cycle frequency. To study this CSF distribution, we have developed a numerical model of the cerebrospinal system taking into account cerebral ventricles, intracranial subarachnoid spaces, spinal canal and brain tissue in fluid-structure interactions. A numerical fluid-structure interaction model is implemented using a finite-element method library to model the cerebrospinal system and its interaction with the brain based on fluid mechanics equations and linear elasticity equations coupled in a monolithic formulation. The model geometry, simplified in a first approach, is designed in accordance with realistic volume ratios of the different compartments: a thin tube is used to mimic the high flow resistance of the aqueduct. CSF velocity and pressure and brain displacements are obtained as simulation results, and CSF flow and stroke volume are calculated from these results. Simulation results show a significant variability of aqueduct stroke volume and intracranial subarachnoid space stroke volume in the physiological range of cardiac frequencies. Fluid-structure interactions are numerous in the cerebrospinal system and difficult to understand in the rigid skull. The presented model highlights significant variations of stroke volumes under cardiac frequency variations only.

  13. Dark matter self-interactions and small scale structure

    Science.gov (United States)

    Tulin, Sean; Yu, Hai-Bo

    2018-02-01

    We review theories of dark matter (DM) beyond the collisionless paradigm, known as self-interacting dark matter (SIDM), and their observable implications for astrophysical structure in the Universe. Self-interactions are motivated, in part, due to the potential to explain long-standing (and more recent) small scale structure observations that are in tension with collisionless cold DM (CDM) predictions. Simple particle physics models for SIDM can provide a universal explanation for these observations across a wide range of mass scales spanning dwarf galaxies, low and high surface brightness spiral galaxies, and clusters of galaxies. At the same time, SIDM leaves intact the success of ΛCDM cosmology on large scales. This report covers the following topics: (1) small scale structure issues, including the core-cusp problem, the diversity problem for rotation curves, the missing satellites problem, and the too-big-to-fail problem, as well as recent progress in hydrodynamical simulations of galaxy formation; (2) N-body simulations for SIDM, including implications for density profiles, halo shapes, substructure, and the interplay between baryons and self-interactions; (3) semi-analytic Jeans-based methods that provide a complementary approach for connecting particle models with observations; (4) merging systems, such as cluster mergers (e.g., the Bullet Cluster) and minor infalls, along with recent simulation results for mergers; (5) particle physics models, including light mediator models and composite DM models; and (6) complementary probes for SIDM, including indirect and direct detection experiments, particle collider searches, and cosmological observations. We provide a summary and critical look for all current constraints on DM self-interactions and an outline for future directions.

  14. Structured Light-Matter Interactions Enabled By Novel Photonic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Litchinitser, Natalia [Univ. at Buffalo, NY (United States); Feng, Liang [Univ. at Buffalo, NY (United States)

    2017-05-02

    The synergy of complex materials and complex light is expected to add a new dimension to the science of light and its applications [1]. The goal of this program is to investigate novel phenomena emerging at the interface of these two branches of modern optics. While metamaterials research was largely focused on relatively “simple” linearly or circularly polarized light propagation in “complex” nanostructured, carefully designed materials with properties not found in nature, many singular optics studies addressed “complex” structured light transmission in “simple” homogeneous, isotropic, nondispersive transparent media, where both spin and orbital angular momentum are independently conserved. However, if both light and medium are complex so that structured light interacts with a metamaterial whose optical materials properties can be designed at will, the spin or angular momentum can change, which leads to spin-orbit interaction and many novel optical phenomena that will be studied in the proposed project. Indeed, metamaterials enable unprecedented control over light propagation, opening new avenues for using spin and quantum optical phenomena, and design flexibility facilitating new linear and nonlinear optical properties and functionalities, including negative index of refraction, magnetism at optical frequencies, giant optical activity, subwavelength imaging, cloaking, dispersion engineering, and unique phase-matching conditions for nonlinear optical interactions. In this research program we focused on structured light-matter interactions in complex media with three particularly remarkable properties that were enabled only with the emergence of metamaterials: extreme anisotropy, extreme material parameters, and magneto-electric coupling–bi-anisotropy and chirality.

  15. Genetic structure of Florida green turtle rookeries as indicated by mitochondrial DNA control region sequences

    Science.gov (United States)

    Shamblin, Brian M.; Bagley, Dean A.; Ehrhart, Llewellyn M.; Desjardin, Nicole A.; Martin, R. Erik; Hart, Kristen M.; Naro-Maciel, Eugenia; Rusenko, Kirt; Stiner, John C.; Sobel, Debra; Johnson, Chris; Wilmers, Thomas; Wright, Laura J.; Nairn, Campbell J.

    2014-01-01

    Green turtle (Chelonia mydas) nesting has increased dramatically in Florida over the past two decades, ranking the Florida nesting aggregation among the largest in the Greater Caribbean region. Individual beaches that comprise several hundred kilometers of Florida’s east coast and Keys support tens to thousands of nests annually. These beaches encompass natural to highly developed habitats, and the degree of demographic partitioning among rookeries was previously unresolved. We characterized the genetic structure of ten Florida rookeries from Cape Canaveral to the Dry Tortugas through analysis of 817 base pair mitochondrial DNA (mtDNA) control region sequences from 485 nesting turtles. Two common haplotypes, CM-A1.1 and CM-A3.1, accounted for 87 % of samples, and the haplotype frequencies were strongly partitioned by latitude along Florida’s Atlantic coast. Most genetic structure occurred between rookeries on either side of an apparent genetic break in the vicinity of the St. Lucie Inlet that separates Hutchinson Island and Jupiter Island, representing the finest scale at which mtDNA structure has been documented in marine turtle rookeries. Florida and Caribbean scale analyses of population structure support recognition of at least two management units: central eastern Florida and southern Florida. More thorough sampling and deeper sequencing are necessary to better characterize connectivity among Florida green turtle rookeries as well as between the Florida nesting aggregation and others in the Greater Caribbean region.

  16. Isotope labeling for NMR studies of macromolecular structure and interactions

    International Nuclear Information System (INIS)

    Wright, P.E.

    1994-01-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform 13 C, 15 N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific 13 C and 15 N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions

  17. Isotope labeling for NMR studies of macromolecular structure and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.E. [Scripps Research Institute, La Jolla, CA (United States)

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  18. Nonlinear seismic soil-structure interaction analysis of nuclear power plant structures

    International Nuclear Information System (INIS)

    Khanna, J.K.; Setlur, A.V.; Pathak, D.V.

    1977-01-01

    The heterogeneous and nonlinear soil medium and the detailed three-dimensional structure are synthesized to determine the seismic response to soil-structure systems. The approach is particularly attractive in a design office environment since it: a) leads to interactive motion at the soil-structure interface; b) uses existing public domain programs such as SAPIV, LUSH and FLUSH with marginal modifications; and c) meets current regulatory requirements for soil-structure interaction analysis. Past methods differ from each other depending on the approach adopted for soil and structure representations and procedures for solving the governing differential equations. Advantages and limitations of these methods are reviewed. In the current approach, the three-dimensional structure is represented by the dynamic characteristics of its fixed base condition. This representation is ideal when structures are designed to be within elastic range. An important criterion is the design of the nuclear power plant structures. Model damping coefficients are varied to reflect the damping properties of different structural component materials. The detailed structural model is systematically reduced to reflect important dynamic behavior with simultaneous storing of intermediate information for retrieval of detailed structural response. Validity of the approach has been established with simple numerical experiments. (Auth.)

  19. Implicit Structured Sequence Learning: An FMRI Study of the Structural Mere-Exposure Effect

    OpenAIRE

    Vasiliki eFolia; Vasiliki eFolia; Karl Magnus ePetersson; Karl Magnus ePetersson; Karl Magnus ePetersson

    2014-01-01

    In this event-related FMRI study we investigated the effect of five days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the FMRI results ...

  20. Analytical study on model tests of soil-structure interaction

    International Nuclear Information System (INIS)

    Odajima, M.; Suzuki, S.; Akino, K.

    1987-01-01

    Since nuclear power plant (NPP) structures are stiff, heavy and partly-embedded, the behavior of those structures during an earthquake depends on the vibrational characteristics of not only the structure but also the soil. Accordingly, seismic response analyses considering the effects of soil-structure interaction (SSI) are extremely important for seismic design of NPP structures. Many studies have been conducted on analytical techniques concerning SSI and various analytical models and approaches have been proposed. Based on the studies, SSI analytical codes (computer programs) for NPP structures have been improved at JINS (Japan Institute of Nuclear Safety), one of the departments of NUPEC (Nuclear Power Engineering Test Center) in Japan. These codes are soil-spring lumped-mass code (SANLUM), finite element code (SANSSI), thin layered element code (SANSOL). In proceeding with the improvement of the analytical codes, in-situ large-scale forced vibration SSI tests were performed using models simulating light water reactor buildings, and simulation analyses were performed to verify the codes. This paper presents an analytical study to demonstrate the usefulness of the codes

  1. On the interaction of Rayleigh surface waves with structures

    International Nuclear Information System (INIS)

    Simpson, I.C.

    1976-12-01

    A two-dimensional soil-structure interaction analysis is carried out for transient Rayleigh surface waves that are incident on a structure. The structure is modelled by a three-degree of freedom rigid basemat to which is attached a flexible superstructure, modelled by a single mass-spring system. The structural responses to a given Rayleigh wave train are compared with those that would have been obtained if the free-field acceleration-time history had been applied as a normally incident body wave. The results clearly exhibit the 'frequency filtering' effects of the rigid basemat on the incident Rayleigh waves. It is shown that, if seismic excitation of a structure is, in fact, due to Rayleigh surface waves, then an analysis assuming normally incident body waves can considerably over-estimate structural response, both at basemat level for horizontal and vertical oscillations of the superstructure. However, in the examples considered here, relatively large rocking effects were induced by the Rayleigh waves, thus giving maximum horizontal accelerations in the superstructure that were of comparable magnitude for Rayleigh and normally incident body waves. (author)

  2. Structural and sequence diversity of the transposon Galileo in the Drosophila willistoni genome.

    Science.gov (United States)

    Gonçalves, Juliana W; Valiati, Victor Hugo; Delprat, Alejandra; Valente, Vera L S; Ruiz, Alfredo

    2014-09-13

    Galileo is one of three members of the P superfamily of DNA transposons. It was originally discovered in Drosophila buzzatii, in which three segregating chromosomal inversions were shown to have been generated by ectopic recombination between Galileo copies. Subsequently, Galileo was identified in six of 12 sequenced Drosophila genomes, indicating its widespread distribution within this genus. Galileo is strikingly abundant in Drosophila willistoni, a neotropical species that is highly polymorphic for chromosomal inversions, suggesting a role for this transposon in the evolution of its genome. We carried out a detailed characterization of all Galileo copies present in the D. willistoni genome. A total of 191 copies, including 133 with two terminal inverted repeats (TIRs), were classified according to structure in six groups. The TIRs exhibited remarkable variation in their length and structure compared to the most complete copy. Three copies showed extended TIRs due to internal tandem repeats, the insertion of other transposable elements (TEs), or the incorporation of non-TIR sequences into the TIRs. Phylogenetic analyses of the transposase (TPase)-encoding and TIR segments yielded two divergent clades, which we termed Galileo subfamilies V and W. Target-site duplications (TSDs) in D. willistoni Galileo copies were 7- or 8-bp in length, with the consensus sequence GTATTAC. Analysis of the region around the TSDs revealed a target site motif (TSM) with a 15-bp palindrome that may give rise to a stem-loop secondary structure. There is a remarkable abundance and diversity of Galileo copies in the D. willistoni genome, although no functional copies were found. The TIRs in particular have a dynamic structure and extend in different ways, but their ends (required for transposition) are more conserved than the rest of the element. The D. willistoni genome harbors two Galileo subfamilies (V and W) that diverged ~9 million years ago and may have descended from an ancestral

  3. Site response - a critical problem in soil-structure interaction analyses for embedded structures

    International Nuclear Information System (INIS)

    Seed, H.B.; Lysmer, J.

    1986-01-01

    Soil-structure interaction analyses for embedded structures must necessarily be based on a knowledge of the manner in which the soil would behave in the absence of any structure - that is on a knowledge and understanding of the spatial distribution of motions in the ground within the depth of embedment of the structure. The nature of these spatial variations is discussed and illustrated by examples of recorded motions. It is shown that both the amplitude of peak acceleration and the form of the acceleration response spectrum for earthquake motions will necessarily vary with depth and failure to take these variations into account may introduce an unwarranted degree of conservatism into the soil-structure interaction analysis procedure

  4. Engineering characterization of ground motion. Task II: Soil structure interaction effects on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Luco, J E; Wong, H L [Structural and Earthquake Engineering Consultants, Inc., Sierra Madre, CA (United States); Chang, C -Y; Power, M S; Idriss, I M [Woodward-Clyde Consultants, Walnut Creek, CA (United States)

    1986-08-01

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this research program sponsored by the U.S. Nuclear Regulatory Commission (USNRC) is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study, which is presented in Vol. 1 of NUREG/CR-3805, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in Vols. 2 through of NUREG/CR-3805 as follows: Vol. 2 effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects; Vol. 3 observational data on spatial variations of earthquake ground motions; Vol. 4 soil-structure interaction effects on structural response; and Vol. 5, summary based on Tasks I and II studies. This report presents the results of the Vol. 4 studies.

  5. Ulysses: accurate detection of low-frequency structural variations in large insert-size sequencing libraries.

    Science.gov (United States)

    Gillet-Markowska, Alexandre; Richard, Hugues; Fischer, Gilles; Lafontaine, Ingrid

    2015-03-15

    The detection of structural variations (SVs) in short-range Paired-End (PE) libraries remains challenging because SV breakpoints can involve large dispersed repeated sequences, or carry inherent complexity, hardly resolvable with classical PE sequencing data. In contrast, large insert-size sequencing libraries (Mate-Pair libraries) provide higher physical coverage of the genome and give access to repeat-containing regions. They can thus theoretically overcome previous limitations as they are becoming routinely accessible. Nevertheless, broad insert size distributions and high rates of chimerical sequences are usually associated to this type of libraries, which makes the accurate annotation of SV challenging. Here, we present Ulysses, a tool that achieves drastically higher detection accuracy than existing tools, both on simulated and real mate-pair sequencing datasets from the 1000 Human Genome project. Ulysses achieves high specificity over the complete spectrum of variants by assessing, in a principled manner, the statistical significance of each possible variant (duplications, deletions, translocations, insertions and inversions) against an explicit model for the generation of experimental noise. This statistical model proves particularly useful for the detection of low frequency variants. SV detection performed on a large insert Mate-Pair library from a breast cancer sample revealed a high level of somatic duplications in the tumor and, to a lesser extent, in the blood sample as well. Altogether, these results show that Ulysses is a valuable tool for the characterization of somatic mosaicism in human tissues and in cancer genomes. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Testing statistical significance scores of sequence comparison methods with structure similarity

    Directory of Open Access Journals (Sweden)

    Leunissen Jack AM

    2006-10-01

    Full Text Available Abstract Background In the past years the Smith-Waterman sequence comparison algorithm has gained popularity due to improved implementations and rapidly increasing computing power. However, the quality and sensitivity of a database search is not only determined by the algorithm but also by the statistical significance testing for an alignment. The e-value is the most commonly used statistical validation method for sequence database searching. The CluSTr database and the Protein World database have been created using an alternative statistical significance test: a Z-score based on Monte-Carlo statistics. Several papers have described the superiority of the Z-score as compared to the e-value, using simulated data. We were interested if this could be validated when applied to existing, evolutionary related protein sequences. Results All experiments are performed on the ASTRAL SCOP database. The Smith-Waterman sequence comparison algorithm with both e-value and Z-score statistics is evaluated, using ROC, CVE and AP measures. The BLAST and FASTA algorithms are used as reference. We find that two out of three Smith-Waterman implementations with e-value are better at predicting structural similarities between proteins than the Smith-Waterman implementation with Z-score. SSEARCH especially has very high scores. Conclusion The compute intensive Z-score does not have a clear advantage over the e-value. The Smith-Waterman implementations give generally better results than their heuristic counterparts. We recommend using the SSEARCH algorithm combined with e-values for pairwise sequence comparisons.

  7. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny

    Science.gov (United States)

    Marr, Henry S.; Tarigo, Jaime L.; Cohn, Leah A.; Bird, David M.; Scholl, Elizabeth H.; Levy, Michael G.; Wiegmann, Brian M.; Birkenheuer, Adam J.

    2016-01-01

    The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon) are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi) with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis) and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae) while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward understanding the

  8. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny.

    Directory of Open Access Journals (Sweden)

    Megan E Schreeg

    Full Text Available The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward

  9. Characterising non-covalent interactions with the Cambridge Structural Database.

    Science.gov (United States)

    Lommerse, J P; Taylor, R

    1997-02-01

    This review describes how the CSD can be used to study non-covalent interactions. Several different types of information may be obtained. First, the relative frequencies of various interactions can be studied; for example, we have shown that the terminal oxygen atoms of phosphate groups accept hydrogen bonds far more often than the linkage oxygens. Secondly, information can be obtained about the geometries of nonbonded contacts; for example, hydrogen bonds to P-O groups rarely form along the extension of the P-O bond, whereas short contacts between oxygen and carbon-bound iodine show a strong preference for linear C-I ... O angles. Thirdly, the CSD can be searched for novel interactions which may be exploited in inhibitor design; for example, the I ... O contacts just mentioned, and N-H ... pi hydrogen bonds. Finally, the CSD can suggest synthetic targets for medicinal chemistry; for example, molecules containing delocalised electron deficient groups such as trimethylammonium, pyridinium, thaizolium and dinitrophenyl have a good chance of binding to an active-site tryptophan. Although the CSD contains small-molecule crystal structures, not protein-ligand complexes, there is considerable evidence that the contacts seen in the two types of structures are similar. We have illustrated this a number of times in the present review and additional evidence has been given previously by Klebe. The major advantages of the CSD are its size, diversity and experimental accuracy. For these reasons, it is a useful tool for modellers engaged in rational inhibitor design.

  10. Large scale identification and categorization of protein sequences using structured logistic regression.

    Directory of Open Access Journals (Sweden)

    Bjørn P Pedersen

    Full Text Available BACKGROUND: Structured Logistic Regression (SLR is a newly developed machine learning tool first proposed in the context of text categorization. Current availability of extensive protein sequence databases calls for an automated method to reliably classify sequences and SLR seems well-suited for this task. The classification of P-type ATPases, a large family of ATP-driven membrane pumps transporting essential cations, was selected as a test-case that would generate important biological information as well as provide a proof-of-concept for the application of SLR to a large scale bioinformatics problem. RESULTS: Using SLR, we have built classifiers to identify and automatically categorize P-type ATPases into one of 11 pre-defined classes. The SLR-classifiers are compared to a Hidden Markov Model approach and shown to be highly accurate and scalable. Representing the bulk of currently known sequences, we analysed 9.3 million sequences in the UniProtKB and attempted to classify a large number of P-type ATPases. To examine the distribution of pumps on organisms, we also applied SLR to 1,123 complete genomes from the Entrez genome database. Finally, we analysed the predicted membrane topology of the identified P-type ATPases. CONCLUSIONS: Using the SLR-based classification tool we are able to run a large scale study of P-type ATPases. This study provides proof-of-concept for the application of SLR to a bioinformatics problem and the analysis of P-type ATPases pinpoints new and interesting targets for further biochemical characterization and structural analysis.

  11. Revealing the Structural Complexity of Component Interactions of Topic-Specific PCK when Planning to Teach

    Science.gov (United States)

    Mavhunga, Elizabeth

    2018-04-01

    Teaching pedagogical content knowledge (PCK) at a topic-specific level requires clarity on the content-specific nature of the components employed, as well as the specific features that bring about the desirable depth in teacher explanations. Such understanding is often hazy; yet, it influences the nature of teacher tasks and learning opportunities afforded to pre-service teachers in a teaching program. The purpose of this study was twofold: firstly, to illuminate the emerging complexity when content-specific components of PCK interact when planning to teach a chemistry topic; and secondly, to identify the kinds of teacher tasks that promote the emergence of such complexity. Data collected were content representations (CoRes) in chemical equilibrium accompanied by expanded lesson outlines from 15 pre-service teachers in their final year of study towards a first degree in teaching (B Ed). The analysis involved extraction of episodes that exhibited component interaction by using a qualitative in-depth analysis method. The results revealed the structure in which the components of PCK in a topic interact among each other to be linear, interwoven, or a combination of the two. The interwoven interactions contained multiple components that connected explanations on different aspects of a concept, all working in a complementary manner. The most sophisticated component interactions emerged from teacher tasks on descriptions of a lesson sequence and a summary of a lesson. Recommendations in this study highlight core practices for making pedagogical transformation of topic content knowledge more accessible.

  12. The proteins of intra-nuclear bodies: a data-driven analysis of sequence, interaction and expression

    Directory of Open Access Journals (Sweden)

    Bodén Mikael

    2010-04-01

    Full Text Available Abstract Background Cajal bodies, nucleoli, PML nuclear bodies, and nuclear speckles are morpohologically distinct intra-nuclear structures that dynamically respond to cellular cues. Such nuclear bodies are hypothesized to play important regulatory roles, e.g. by sequestering and releasing transcription factors in a timely manner. While the nucleolus and nuclear speckles have received more attention experimentally, the PML nuclear body and the Cajal body are still incompletely characterized in terms of their roles and protein complement. Results By collating recent experimentally verified data, we find that almost 1000 proteins in the mouse nuclear proteome are known to associate with one or more of the nuclear bodies. Their gene ontology terms highlight their regulatory roles: splicing is confirmed to be a core activity of speckles and PML nuclear bodies house a range of proteins involved in DNA repair. We train support-vector machines to show that nuclear proteins contain discriminative sequence features that can be used to identify their intra-nuclear body associations. Prediction accuracy is highest for nucleoli and nuclear speckles. The trained models are also used to estimate the full protein complement of each nuclear body. Protein interactions are found primarily to link proteins in the nuclear speckles with proteins from other compartments. Cell cycle expression data provide support for increased activity in nucleoli, nuclear speckles and PML nuclear bodies especially during S and G2 phases. Conclusions The large-scale analysis of the mouse nuclear proteome sheds light on the functional organization of physically embodied intra-nuclear compartments. We observe partial support for the hypothesis that the physical organization of the nucleus mirrors functional modularity. However, we are unable to unambiguously identify proteins' intra-nuclear destination, suggesting that critical drivers behind of intra-nuclear translocation are yet to

  13. Analysis of fluid-structure interaction and structural respones of Chernobyl-4 reactor

    International Nuclear Information System (INIS)

    Wang, C.Y.; Pizzica, P.A.; Gvildys, J.; Spencer, B.W.

    1989-01-01

    The accident at Chernobyl-4 occurred during the running of a test to determine the turbogenerator's ability to provide in-house emergency power after shutting off its steam supply. The accident was the result of a large, destructive power excursion. This paper presents an analysis of the energetic events associated with the fuel failures, fuel-coolant thermal interactions, and the fluid-structure interaction

  14. Vorticity and turbulence effects in fluid structure interaction an application to hydraulic structure design

    CERN Document Server

    Brocchini, M

    2006-01-01

    This book contains a collection of 11 research and review papers devoted to the topic of fluid-structure interaction.The subject matter is divided into chapters covering a wide spectrum of recognized areas of research, such as: wall bounded turbulence; quasi 2-D turbulence; canopy turbulence; large eddy simulation; lake hydrodynamics; hydraulic hysteresis; liquid impacts; flow induced vibrations; sloshing flows; transient pipe flow and air entrainment in dropshaft.The purpose of each chapter is to summarize the main results obtained by the individual research unit through a year-long activity on a specific issue of the above list. The main feature of the book is to bring state of the art research on fluid structure interaction to the attention of the broad international community.This book is primarily aimed at fluid mechanics scientists, but it will also be of value to postgraduate students and practitioners in the field of fluid structure interaction.

  15. Structural models of the different trimers present in the core of phycobilisomes from Gracilaria chilensis based on crystal structures and sequences.

    Directory of Open Access Journals (Sweden)

    Jorge Dagnino-Leone

    Full Text Available Phycobilisomes (PBS are accessory light harvesting protein complexes that directionally transfer energy towards photosystems. Phycobilisomes are organized in a central core and rods radiating from it. Components of phycobilisomes in Gracilaria chilensis (Gch are Phycobiliproteins (PBPs, Phycoerythrin (PE, and Phycocyanin (PC in the rods, while Allophycocyanin (APC is found in the core, and linker proteins (L. The function of such complexes depends on the structure of each component and their interaction. The core of PBS from cyanobacteria is mainly composed by cylinders of trimers of α and β subunits forming heterodimers of Allophycocyanin, and other components of the core including subunits αII and β18. As for the linkers, Linker core (LC and Linker core membrane (LCM are essential for the final emission towards photoreaction centers. Since we have previously focused our studies on the rods of the PBS, in the present article we investigated the components of the core in the phycobilisome from the eukaryotic algae, Gracilaria chilensis and their organization into trimers. Transmission electron microscopy provided the information for a three cylinders core, while the three dimensional structure of Allophycocyanin purified from Gch was determined by X-ray diffraction method and the biological unit was determined as a trimer by size exclusion chromatography. The protein sequences of all the components of the core were obtained by sequencing the corresponding genes and their expression confirmed by transcriptomic analysis. These subunits have seldom been reported in red algae, but not in Gracilaria chilensis. The subunits not present in the crystallographic structure were modeled to build the different composition of trimers. This article proposes structural models for the different types of trimers present in the core of phycobilisomes of Gch as a first step towards the final model for energy transfer in this system.

  16. Undesirable Choice Biases with Small Differences in the Spatial Structure of Chance Stimulus Sequences.

    Directory of Open Access Journals (Sweden)

    David Herrera

    Full Text Available In two-alternative discrimination tasks, experimenters usually randomize the location of the rewarded stimulus so that systematic behavior with respect to irrelevant stimuli can only produce chance performance on the learning curves. One way to achieve this is to use random numbers derived from a discrete binomial distribution to create a 'full random training schedule' (FRS. When using FRS, however, sporadic but long laterally-biased training sequences occur by chance and such 'input biases' are thought to promote the generation of laterally-biased choices (i.e., 'output biases'. As an alternative, a 'Gellerman-like training schedule' (GLS can be used. It removes most input biases by prohibiting the reward from appearing on the same location for more than three consecutive trials. The sequence of past rewards obtained from choosing a particular discriminative stimulus influences the probability of choosing that same stimulus on subsequent trials. Assuming that the long-term average ratio of choices matches the long-term average ratio of reinforcers, we hypothesized that a reduced amount of input biases in GLS compared to FRS should lead to a reduced production of output biases. We compared the choice patterns produced by a 'Rational Decision Maker' (RDM in response to computer-generated FRS and GLS training sequences. To create a virtual RDM, we implemented an algorithm that generated choices based on past rewards. Our simulations revealed that, although the GLS presented fewer input biases than the FRS, the virtual RDM produced more output biases with GLS than with FRS under a variety of test conditions. Our results reveal that the statistical and temporal properties of training sequences interacted with the RDM to influence the production of output biases. Thus, discrete changes in the training paradigms did not translate linearly into modifications in the pattern of choices generated by a RDM. Virtual RDMs could be further employed to guide

  17. Undesirable Choice Biases with Small Differences in the Spatial Structure of Chance Stimulus Sequences.

    Science.gov (United States)

    Herrera, David; Treviño, Mario

    2015-01-01

    In two-alternative discrimination tasks, experimenters usually randomize the location of the rewarded stimulus so that systematic behavior with respect to irrelevant stimuli can only produce chance performance on the learning curves. One way to achieve this is to use random numbers derived from a discrete binomial distribution to create a 'full random training schedule' (FRS). When using FRS, however, sporadic but long laterally-biased training sequences occur by chance and such 'input biases' are thought to promote the generation of laterally-biased choices (i.e., 'output biases'). As an alternative, a 'Gellerman-like training schedule' (GLS) can be used. It removes most input biases by prohibiting the reward from appearing on the same location for more than three consecutive trials. The sequence of past rewards obtained from choosing a particular discriminative stimulus influences the probability of choosing that same stimulus on subsequent trials. Assuming that the long-term average ratio of choices matches the long-term average ratio of reinforcers, we hypothesized that a reduced amount of input biases in GLS compared to FRS should lead to a reduced production of output biases. We compared the choice patterns produced by a 'Rational Decision Maker' (RDM) in response to computer-generated FRS and GLS training sequences. To create a virtual RDM, we implemented an algorithm that generated choices based on past rewards. Our simulations revealed that, although the GLS presented fewer input biases than the FRS, the virtual RDM produced more output biases with GLS than with FRS under a variety of test conditions. Our results reveal that the statistical and temporal properties of training sequences interacted with the RDM to influence the production of output biases. Thus, discrete changes in the training paradigms did not translate linearly into modifications in the pattern of choices generated by a RDM. Virtual RDMs could be further employed to guide the selection of

  18. Pulsed Laser Interactions with Silicon Nano structures in Emitter Formation

    International Nuclear Information System (INIS)

    Huat, V.L.C.; Leong, C.S.; Kamaruzzaman Sopian, Saleem Hussain Zaidi

    2015-01-01

    Silicon wafer thinning is now approaching fundamental limits for wafer thickness owing to thermal expansion mismatch between Al and Si, reduced yields in wet-chemical processing as a result of fragility, and reduced optical absorption. An alternate manufacturing approach is needed to eliminate current manufacturing issues. In recent years, pulsed lasers have become readily available and costs have been significantly reduced. Pulsed laser interactions with silicon, in terms of micromachining, diffusions, and edge isolation, are well known, and have become industrial manufacturing tools. In this paper, pulsed laser interactions with silicon nano structures were identified as the most desirable solution for the fundamental limitations discussed above. Silicon nano structures have the capability for extremely high absorption that significantly reduces requirements for laser power, as well as thermal shock to the thinner wafer. Laser-assisted crystallization, in the presence of doping materials, leads to nano structure profiles that are highly desirable for sunlight absorption. The objective of this paper is the replacement of high temperature POCl_3 diffusion by laser-assisted phosphorus layers. With these improvements, complete low-temperature processing of thinner wafers was achievable with 3.7 % efficiency. Two-dimensional laser scanning was proved to be able to form uniformly annealed surfaces with higher fill factor and open-circuit voltage. (author)

  19. Embedment Effect test on soil-structure interaction

    International Nuclear Information System (INIS)

    Nasuda, Toshiaki; Akino, Kinji; Izumi, Masanori.

    1991-01-01

    A project consisting of laboratory test and field test has been conducted to clarify the embedment effect on soil-structure interaction. The objective of this project is to obtain the data for improving and preparing seismic analysis codes regarding the behavior of embedded reactor buildings during earthquakes. This project was planned to study the effect of soil-structure interaction using small size soil-structure models as well as the large scale models. The project was started in April, 1986, and is scheduled to end in March, 1994. The laboratory test models and field test models, and the measurement with accelerometers and others are described. As the interim results, the natural frequency and damping factor increased, and the amplitude decreased by the embedment of the test models. Some earthquakes were recorded in a soft rock site. The epicenters of the earthquakes occurred in 1989 are shown. The field tests were carried out in three sites. Two sites were used for the dynamic test with four test models having 8 m x 8 m plane size and 10 m height. One site was used for the static test with one concrete block as a specimen. Two models represent BWR type reactor buildings, and two models represent PWR type buildings. (K.I.)

  20. Control-structure interaction in precision pointing servo loops

    Science.gov (United States)

    Spanos, John T.

    1989-01-01

    The control-structure interaction problem is addressed via stability analysis of a generic linear servo loop model. With the plant described by the rigid body mode and a single elastic mode, structural flexibility is categorized into one of three types: (1) appendage, (2) in-the-loop minimum phase, and (3) in-the-loop nonminimum phase. Closing the loop with proportional-derivative (PD) control action and introducing sensor roll-off dynamics in the feedback path, stability conditions are obtained. Trade studies are conducted with modal frequency, modal participation, modal damping, loop bandwidth, and sensor bandwidth treated as free parameters. Results indicate that appendage modes are most likely to produce instability if they are near the sensor rolloff, whereas in-the-loop modes are most dangerous near the loop bandwidth. The main goal of this paper is to provide a fundamental understanding of the control-structure interaction problem so that it may benefit the design of complex spacecraft and pointing system servo loops. In this framework, the JPL Pathfinder gimbal pointer is considered as an example.

  1. Functional structural motifs for protein-ligand, protein-protein, and protein-nucleic acid interactions and their connection to supersecondary structures.

    Science.gov (United States)

    Kinjo, Akira R; Nakamura, Haruki

    2013-01-01

    Protein functions are mediated by interactions between proteins and other molecules. One useful approach to analyze protein functions is to compare and classify the structures of interaction interfaces of proteins. Here, we describe the procedures for compiling a database of interface structures and efficiently comparing the interface structures. To do so requires a good understanding of the data structures of the Protein Data Bank (PDB). Therefore, we also provide a detailed account of the PDB exchange dictionary necessary for extracting data that are relevant for analyzing interaction interfaces and secondary structures. We identify recurring structural motifs by classifying similar interface structures, and we define a coarse-grained representation of supersecondary structures (SSS) which represents a sequence of two or three secondary structure elements including their relative orientations as a string of four to seven letters. By examining the correspondence between structural motifs and SSS strings, we show that no SSS string has particularly high propensity to be found interaction interfaces in general, indicating any SSS can be used as a binding interface. When individual structural motifs are examined, there are some SSS strings that have high propensity for particular groups of structural motifs. In addition, it is shown that while the SSS strings found in particular structural motifs for nonpolymer and protein interfaces are as abundant as in other structural motifs that belong to the same subunit, structural motifs for nucleic acid interfaces exhibit somewhat stronger preference for SSS strings. In regard to protein folds, many motif-specific SSS strings were found across many folds, suggesting that SSS may be a useful description to investigate the universality of ligand binding modes.

  2. Seismic response analysis with liquid-structure interaction

    International Nuclear Information System (INIS)

    Thomas, R.G.; Harrop, L.P.

    1983-06-01

    A linear transient finite element stress analysis of a water filled tank has been carried out using the proprietary computer code ANSYS. The containment structure was represented as rigidly fixed to ground. The flexibility of the tank wall was modelled together with the hydrostatic and hydrodynamic effects of the water contents and attached concentrated masses. The foundations were considered to be laid in solid rock, and no soil-structure interaction effects were included. The seismic input was a ground response spectrum conservatively representing both the Temblor and Parkfield modified time history records. It was found that the response of the structure was greatest at the front end (furthest from the point at which the tank is connected to a rigid internal structure), and that this was dominated by the fundamental mode. Higher modes are important at the back end. Buckling at the front end of the tank has been identified as a potential failure mechanism, and attention has also been called to the tensile capacity of the wall to base junction in this region. The requirement for a proper criterion against which to assess the margin against plastic collapse in a safe shutdown analysis has been noted. In certain regions the structure does not shake-down under the repeated reversed cyclic loading, and the need for an assessment of the implications of this for fatigue resistance has been indicated. (author)

  3. Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function.

    Science.gov (United States)

    Rudolf, Jeffrey D; Chang, Chin-Yuan; Ma, Ming; Shen, Ben

    2017-08-30

    Covering: up to January 2017Cytochrome P450 enzymes (P450s) are some of the most exquisite and versatile biocatalysts found in nature. In addition to their well-known roles in steroid biosynthesis and drug metabolism in humans, P450s are key players in natural product biosynthetic pathways. Natural products, the most chemically and structurally diverse small molecules known, require an extensive collection of P450s to accept and functionalize their unique scaffolds. In this review, we survey the current catalytic landscape of P450s within the Streptomyces genus, one of the most prolific producers of natural products, and comprehensively summarize the functionally characterized P450s from Streptomyces. A sequence similarity network of >8500 P450s revealed insights into the sequence-function relationships of these oxygen-dependent metalloenzymes. Although only ∼2.4% and structurally characterized, respectively, the study of streptomycete P450s involved in the biosynthesis of natural products has revealed their diverse roles in nature, expanded their catalytic repertoire, created structural and mechanistic paradigms, and exposed their potential for biomedical and biotechnological applications. Continued study of these remarkable enzymes will undoubtedly expose their true complement of chemical and biological capabilities.

  4. Graphical analysis of NMR structural quality and interactive contact map of NOE assignments in ARIA

    Directory of Open Access Journals (Sweden)

    Malliavin Thérèse E

    2008-06-01

    Full Text Available Abstract Background The Ambiguous Restraints for Iterative Assignment (ARIA approach is widely used for NMR structure determination. It is based on simultaneously calculating structures and assigning NOE through an iterative protocol. The final solution consists of a set of conformers and a list of most probable assignments for the input NOE peak list. Results ARIA was extended with a series of graphical tools to facilitate a detailed analysis of the intermediate and final results of the ARIA protocol. These additional features provide (i an interactive contact map, serving as a tool for the analysis of assignments, and (ii graphical representations of structure quality scores and restraint statistics. The interactive contact map between residues can be clicked to obtain information about the restraints and their contributions. Profiles of quality scores are plotted along the protein sequence, and contact maps provide information of the agreement with the data on a residue pair level. Conclusion The graphical tools and outputs described here significantly extend the validation and analysis possibilities of NOE assignments given by ARIA as well as the analysis of the quality of the final structure ensemble. These tools are included in the latest version of ARIA, which is available at http://aria.pasteur.fr. The Web site also contains an installation guide, a user manual and example calculations.

  5. Combining sequence-based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations

    Directory of Open Access Journals (Sweden)

    Lees Jonathan G

    2008-01-01

    Full Text Available Abstract Background A number of sequence-based methods exist for protein secondary structure prediction. Protein secondary structures can also be determined experimentally from circular dichroism, and infrared spectroscopic data using empirical analysis methods. It has been proposed that comparable accuracy can be obtained from sequence-based predictions as from these biophysical measurements. Here we have examined the secondary structure determination accuracies of sequence prediction methods with the empirically determined values from the spectroscopic data on datasets of proteins for which both crystal structures and spectroscopic data are available. Results In this study we show that the sequence prediction methods have accuracies nearly comparable to those of spectroscopic methods. However, we also demonstrate that combining the spectroscopic and sequences techniques produces significant overall improvements in secondary structure determinations. In addition, combining the extra information content available from synchrotron radiation circular dichroism data with sequence methods also shows improvements. Conclusion Combining sequence prediction with experimentally determined spectroscopic methods for protein secondary structure content significantly enhances the accuracy of the overall results obtained.

  6. Dynamic Analysis of Partially Embedded Structures Considering Soil-Structure Interaction in Time Domain

    Directory of Open Access Journals (Sweden)

    Sanaz Mahmoudpour

    2011-01-01

    Full Text Available Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite element method and scaled boundary finite element method is applied. Finite element method is used to analyze the structure, and scaled boundary finite element method is applied in the analysis of unbounded soil region. Due to analytical solution in the radial direction, the radiation condition is satisfied exactly. The material behavior of soil and structure is assumed to be linear. The soil region is considered as a homogeneous half-space. The analysis is performed in time domain. A computer program is prepared to analyze the soil-structure system. Comparing the results with those in literature shows the exactness and competency of the proposed method.

  7. Soil structure interactions of eastern U.S. type earthquakes

    International Nuclear Information System (INIS)

    Chang Chen; Serhan, S.

    1991-01-01

    Two types of earthquakes have occurred in the eastern US in the past. One of them was the infrequent major events such as the 1811-1812 New Madrid Earthquakes, or the 1886 Charleston Earthquake. The other type was the frequent shallow earthquakes with high frequency, short duration and high accelerations. Two eastern US nuclear power plants, V.C Summer and Perry, went through extensive licensing effort to obtain fuel load licenses after this type of earthquake was recorded on sites and exceeded the design bases beyond 10 hertz region. This paper discusses the soil-structure interactions of the latter type of earthquakes

  8. Soil structure interaction calculations: a comparison of methods

    International Nuclear Information System (INIS)

    Wight, L.; Zaslawsky, M.

    1976-01-01

    Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes

  9. Soil structure interaction calculations: a comparison of methods

    Energy Technology Data Exchange (ETDEWEB)

    Wight, L.; Zaslawsky, M.

    1976-07-22

    Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes.

  10. Decorated Ising models with competing interactions and modulated structures

    International Nuclear Information System (INIS)

    Tragtenberg, M.H.R.; Yokoi, C.S.O.; Salinas, S.R.A.

    1988-01-01

    The phase diagrams of a variety of decorated Ising lattices are calculated. The competing interactions among the decorating spins may induce different types of modulated orderings. In particular, the effect of an applied field on the phase diagram of the two-dimensional mock ANNNI model is considered, where only the original horizontal bonds on a square lattice are decorated. Some Bravais lattices and Cayley trees where all bonds are equally decorated are then studied. The Bravais lattices display a few stable modulated structures. The Cayley trees, on the other hand, display a large number of modulated phases, which increases with the lattice coordination number. (authors) [pt

  11. Molecular cloning, sequencing and structural studies of granulocyte-macrophage colony-stimulating factor (GM-CSF) from Indian water buffalo (Bubalus bubalis)

    KAUST Repository

    Sugumar, Thennarasu; Ganesan, Pugalenthi; Harishankar, Murugesan; Dhinakar Raj, Gopal

    2013-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that is essential for growth and development of progenitors of granulocytes and monocytes/macrophages. In this study, we report molecular cloning, sequencing and characterization of GM-CSF from Indian water buffalo, Bubalus bubalis. In addition, we performed sequence and structural analysis for buffalo GM-CSF. Buffalo GM-CSF has been compared with 17 mammalian GM-CSFs using multiple sequence alignment and phylogenetic tree. Three-dimensional model for buffalo GM-CSF and human receptor complex was built using homology modelling to study cross-reactivity between two species. Detailed analysis was performed to study GM-CSF interface and various interactions at the interface. © 2013 John Wiley & Sons Ltd.

  12. Molecular cloning, sequencing and structural studies of granulocyte-macrophage colony-stimulating factor (GM-CSF) from Indian water buffalo (Bubalus bubalis)

    KAUST Repository

    Sugumar, Thennarasu

    2013-06-25

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that is essential for growth and development of progenitors of granulocytes and monocytes/macrophages. In this study, we report molecular cloning, sequencing and characterization of GM-CSF from Indian water buffalo, Bubalus bubalis. In addition, we performed sequence and structural analysis for buffalo GM-CSF. Buffalo GM-CSF has been compared with 17 mammalian GM-CSFs using multiple sequence alignment and phylogenetic tree. Three-dimensional model for buffalo GM-CSF and human receptor complex was built using homology modelling to study cross-reactivity between two species. Detailed analysis was performed to study GM-CSF interface and various interactions at the interface. © 2013 John Wiley & Sons Ltd.

  13. GLOBAL STAR FORMATION RATES AND DUST EMISSION OVER THE GALAXY INTERACTION SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Brassington, Nicola [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); Da Cunha, Elisabete [Max Planck Institute for Astronomy (MPIA), Koenigstuhl 17, D-69117, Heidelberg (Germany); Hayward, Christopher C. [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118, Heidelberg (Germany); Jonsson, Patrik, E-mail: llanz@head.cfa.harvard.edu [Space Exploration Technologies, 1 Rocket Road, Hawthorne, CA 90250 (United States)

    2013-05-01

    We measured and modeled spectral energy distributions (SEDs) in 28 bands from the ultraviolet to the far-infrared (FIR) for 31 interacting galaxies in 14 systems. The sample is drawn from the Spitzer Interacting Galaxy Survey, which probes a range of galaxy interaction parameters at multiple wavelengths with an emphasis on the infrared bands. The subset presented in this paper consists of all galaxies for which FIR Herschel SPIRE observations are publicly available. Our SEDs combine the Herschel photometry with multi-wavelength data from Spitzer, GALEX, Swift UVOT, and 2MASS. While the shapes of the SEDs are broadly similar across our sample, strongly interacting galaxies typically have more mid-infrared emission relative to their near-infrared and FIR emission than weakly or moderately interacting galaxies. We modeled the full SEDs to derive host galaxy star formation rates (SFRs), specific star formation rates (sSFRs), stellar masses, dust temperatures, dust luminosities, and dust masses. We find increases in the dust luminosity and mass, SFR, and cold (15-25 K) dust temperature as the interaction progresses from moderately to strongly interacting and between non-interacting and strongly interacting galaxies. We also find increases in the SFR between weakly and strongly interacting galaxies. In contrast, the sSFR remains unchanged across all the interaction stages. The ultraviolet photometry is crucial for constraining the age of the stellar population and the SFR, while dust mass is primarily determined by SPIRE photometry. The SFR derived from the SED modeling agrees well with rates estimated by proportionality relations that depend on infrared emission.

  14. Impact of Insertion Sequences and Recombination on the Population Structure of Staphylococcus haemolyticus.

    Directory of Open Access Journals (Sweden)

    Ons Bouchami

    Full Text Available Staphylococcus haemolyticus is one of the most common pathogens associated with medical-device related infections, but its molecular epidemiology is poorly explored. In the current study, we aimed to better understand the genetic mechanisms contributing to S. haemolyticus diversity in the hospital environment and their impact on the population structure and clinical relevant phenotypic traits. The analysis of a representative S. haemolyticus collection by multilocus sequence typing (MLST has identified a single highly prevalent and diverse genetic lineage of nosocomial S. haemolyticus clonal complex (CC 29 accounting for 91% of the collection of isolates disseminated worldwide. The examination of the sequence changes at MLST loci during clonal diversification showed that recombination had a higher impact than mutation in shaping the S. haemolyticus population. Also, we ascertained that another mechanism contributing significantly to clonal diversification and adaptation was mediated by insertion sequence (IS elements. We found that all nosocomial S. haemolyticus, belonging to different STs, were rich in IS1272 copies, as determined by Southern hybridization of macrorestriction patterns. In particular, we observed that the chromosome of a S. haemolyticus strain within CC29 was highly unstable during serial growth in vitro which paralleled with IS1272 transposition events and changes in clinically relevant phenotypic traits namely, mannitol fermentation, susceptibility to beta-lactams, biofilm formation and hemolysis. Our results suggest that recombination and IS transposition might be a strategy of adaptation, evolution and pathogenicity of the major S. haemolyticus prevalent lineage in the hospital environment.

  15. Soil structure interaction in offshore wind turbine collisions

    DEFF Research Database (Denmark)

    Samsonovs, Artjoms; Giuliani, Luisa; Zania, Varvara

    2014-01-01

    Vessel impact is one of the load cases which should be accounted for in the design of an offshore wind turbine (OWT) according to design codes, but little guidance or information is given on the employed methodology. This study focuses on the evaluation of the distress induced in a wind turbine...... after a ship collision, thus providing an insight on the consequences of a collision event and on the main aspects to be considered when designing for this load case. In particular, the role of the foundation soil properties (site conditions) on the response of the structural system is investigated....... Dynamic finite element analyses have been performed taking into account the geometric and material nonlinearity of the tower, and the effects of soil structure interaction (SSI) have been studied in two representative collision scenarios of a service vessel with the turbine: a moderate energy impact...

  16. Soil-Framed Structure Interaction Analysis - A New Interface Element

    Directory of Open Access Journals (Sweden)

    M. Dalili Shoaei

    Full Text Available AbstractInterfacial behavior between soil and shallow foundation has been found so influential to combined soil-footing performance and redistribution of forces in the superstructure. This study introduces a new thin-layer interface element formulated within the context of finite element method to idealize interfacial behavior of soil-framed structure interaction with new combination of degrees of freedom at top and bottom sides of the interface element, compatible with both isoparametric beam and quadrilateral element. This research also tends to conduct a parametric study on respective parameters of the new joint element. Presence of interface element showed considerable changes in the performance of the framed structure under quasi-static loading.

  17. The interacting role of media sequence and product involvement in cross-media campaigns

    NARCIS (Netherlands)

    Voorveld, H.A.M.; Neijens, P.C.; Smit, E.G.

    2012-01-01

    The aim of the study is to investigate the role of media sequence on consumers' responses to cross-media campaigns. To do so, we conducted an experiment in which we studied the effects of a combination of TV commercials and websites (TV commercial-website vs. website-TV commercial) for two different

  18. Interactions among Future Study Abroad Students: Exploring Potential Intercultural Learning Sequences

    Science.gov (United States)

    Borghetti, C.; Beaven, A.; Pugliese, R.

    2015-01-01

    The study presented in this article aims to explore if and how intercultural learning may take place in students' class interaction. It is grounded in the assumption that interculturality is not a clear-cut feature inherent to interactions occurring when individuals with presumed different linguistic and cultural/national backgrounds talk to each…

  19. VPAC receptors: structure, molecular pharmacology and interaction with accessory proteins.

    Science.gov (United States)

    Couvineau, Alain; Laburthe, Marc

    2012-05-01

    The vasoactive intestinal peptide (VIP) is a neuropeptide with wide distribution in both central and peripheral nervous systems, where it plays important regulatory role in many physiological processes. VIP displays a large biological functions including regulation of exocrine secretions, hormone release, fetal development, immune responses, etc. VIP appears to exert beneficial effect in neuro-degenerative and inflammatory diseases. The mechanism of action of VIP implicates two subtypes of receptors (VPAC1 and VPAC2), which are members of class B receptors belonging to the super-family of GPCR. This article reviews the current knowledge regarding the structure and molecular pharmacology of VPAC receptors. The structure-function relationship of VPAC1 receptor has been extensively studied, allowing to understand the molecular basis for receptor affinity, specificity, desensitization and coupling to adenylyl cyclase. Those studies have clearly demonstrated the crucial role of the N-terminal ectodomain (N-ted) of VPAC1 receptor in VIP recognition. By using different approaches including directed mutagenesis, photoaffinity labelling, NMR, molecular modelling and molecular dynamic simulation, it has been shown that the VIP molecule interacts with the N-ted of VPAC1 receptor, which is itself structured as a 'Sushi' domain. VPAC1 receptor also interacts with a few accessory proteins that play a role in cell signalling of receptors. Recent advances in the structural characterization of VPAC receptor and more generally of class B GPCRs will lead to the design of new molecules, which could have considerable interest for the treatment of inflammatory and neuro-degenerative diseases. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  20. Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species.

    Science.gov (United States)

    West, Claire; James, Stephen A; Davey, Robert P; Dicks, Jo; Roberts, Ian N

    2014-07-01

    The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of

  1. Structural Conservation Despite Huge Sequence Diversity Allows EPCR Binding by the PfEMP1 Family Implicated in Severe Childhood Malaria

    DEFF Research Database (Denmark)

    Lau, Clinton K.Y.; Turner, Louise; Jespersen, Jakob S.

    2015-01-01

    with severe childhood malaria. We combine crystal structures of CIDRa1:EPCR complexes with analysis of 885 CIDRa1 sequences, showing that the EPCR-binding surfaces of CIDRa1 domains are conserved in shape and bonding potential, despite dramatic sequence diversity. Additionally, these domains mimic features...... of the natural EPCR ligand and can block this ligand interaction. Using peptides corresponding to the EPCR-binding region, antibodies can be purified from individuals in malaria-endemic regions that block EPCR binding of diverse CIDRa1 variants. This highlights the extent to which such a surface protein family......The PfEMP1 family of surface proteins is central for Plasmodium falciparum virulence and must retain the ability to bind to host receptors while also diversifying to aid immune evasion. The interaction between CIDRa1 domains of PfEMP1 and endothelial protein C receptor (EPCR) is associated...

  2. Estimating Rheological Parameters of Anhydrite from Folded Evaporite sequences: Implications for Internal Dynamics of Salt Structure

    Science.gov (United States)

    Adamuszek, Marta; Dabrowski, Marcin; Schmalholz, Stefan M.; Urai, Janos L.; Raith, Alexander

    2015-04-01

    Salt structures have been identified as a potential target for hydrocarbon, CO2, or radioactive waste storage. The most suitable locations for magazines are considered in the thick and relatively homogeneous rock salt layers. However, salt structures often consist of the evaporite sequence including rock salt intercalated with other rock types e.g.: anhydrite, gypsum, potassium and magnesium salt, calcite, dolomite, or shale. The presence of such heterogeneities causes a serious disturbance in the structure management. Detailed analysis of the internal architecture and internal dynamics of the salt structure are crucial for evaluating them as suitable repositories and also their long-term stability. The goal of this study is to analyse the influence of the presence of anhydrite layers on the internal dynamics of salt structures. Anhydrite is a common rock in evaporite sequences. Its physical and mechanical properties strongly differ from the properties of rock salt. The density of anhydrite is much higher than the density of salt, thus anhydrite is likely to sink in salt causing the disturbance of the surrounding structures. This suggestion was the starting point to the discussion about the long-term stability of the magazines in salt structures [1]. However, the other important parameter that has to be taken into account is the viscosity of anhydrite. The high viscosity ratio between salt and anhydrite can restrain the layer from sinking. The rheological behaviour of anhydrite has been studied in laboratory experiments [2], but the results only provide information about the short-term behaviour. The long-term behaviour can be best predicted using indirect methods e.g. based on the analysis of natural structures that developed over geological time scale. One of the most promising are fold structures, the shape of which is very sensitive to the rheological parameters of the deforming materials. Folds can develop in mechanically stratified materials during layer

  3. Influence of seismic isolation systems and soil-structure interaction on the response of structures

    Directory of Open Access Journals (Sweden)

    Samah Hasrouri

    2018-01-01

    Full Text Available The reduction of cyclic loading triggering major damage in urban areas is a major challenge in earthquake engineering. The processes of structural control especially control structures for passive isolation systems and earthquake sinks of energy, which consists in superimposing on the structure a device which modifies the rigidity or the damping of the structural system without the demand for an external energy source and without introducing energy for its operation, these devices with taking account the effect of soilstructure interaction are currently regarded as effective solutions to these problem by reducing the level of acceleration imposed on the structure and consequently forces shear and the relative displacements in the superstructure. This reduction of shear forces and displacements will limit the structural damage.

  4. Fluid-structure interactions in PWR vessels during blowdown

    International Nuclear Information System (INIS)

    Schumann, U.; Enderle, G.; Katz, F.; Ludwig, A.; Moesinger, H.; Schlechtendahl, E.G.

    1979-01-01

    For analysis of blowdown loadings and dynamic response of PWR vessel internals several computer codes have been developed at Karlsruhe. The goal is to provide advanced codes which permit a 'best estimate' analysis of the deformations and stresses of the internal structures, in particular the core barrel, such that the safety margins can be evaluated. The stresses reach their maxima during the initial subcooled period of the blowdown in which two-phase phenomena are important in the blowdown pipe only. In this period, the computed results with and without fluid-structural interactions show that the coupling between the water in the downcomer and the rather thin elastic core barrel is of dominant importance. Without coupling the core barrel oscillates with much higher frequencies than with coupling. The amplitudes and stresses are about twice as large initially. Later, the decoupled analysis can result in a meaningless overestimation of the structural response. By comparison of computations for incompressible and for compressible fluid with and without coupling we have found that a correct treatment of the fluid-structure coupling is more important than the description of pressure waves. (orig.)

  5. A symmetric positive definite formulation for monolithic fluid structure interaction

    KAUST Repository

    Robinson-Mosher, Avi; Schroeder, Craig; Fedkiw, Ronald

    2011-01-01

    In this paper we consider a strongly coupled (monolithic) fluid structure interaction framework for incompressible flow, as opposed to a loosely coupled (partitioned) method. This requires solving a single linear system that combines the unknown velocities of the structure with the unknown pressures of the fluid. In our previous work, we were able to obtain a symmetric formulation of this coupled system; however, it was also indefinite, making it more difficult to solve. In fact in practice there have been cases where we have been unable to invert the system. In this paper we take a novel approach that consists of factoring the damping matrix of deformable structures and show that this can be used to obtain a symmetric positive definite system, at least to the extent that the uncoupled systems were symmetric positive definite. We use a traditional MAC grid discretization of the fluid and a fully Lagrangian discretization of the structures for the sake of exposition, noting that our procedure can be generalized to other scenarios. For the special case of rigid bodies, where there are no internal damping forces, we exactly recover the system of Batty et al. (2007) [4]. © 2010 Elsevier Inc.

  6. Fluid-structure interactions of photo-responsive polymer cantilevers

    Science.gov (United States)

    Bin, Jonghoon; Oates, William S.; Yousuff Hussaini, M.

    2013-02-01

    A new class of photomechanical liquid crystal networks (LCNs) has emerged, which generate large bending deformation and fast response times that scale with the resonance of the polymer films. Here, a numerical study is presented that describes the photomechanical structural dynamic behavior of an LCN in a fluid medium; however, the methodology is also applicable to fluid-structure interactions of a broader range of adaptive structures. Here, we simulate the oscillation of photomechanical cantilevers excited by light while simultaneously modeling the effect of the surrounding fluid at different ambient pressures. The photoactuated LCN is modeled as an elastic thin cantilever plate, and gradients in photostrain from the external light are computed from the assumptions of light absorption and photoisomerization through the film thickness. Numerical approximations of the equations governing the plate are based on cubic B-spline shape functions and a second order implicit Newmark central scheme for time integration. For the fluid, three dimensional unsteady incompressible Navier-Stokes equations are solved using the arbitrary Lagrangian-Eulerian (ALE) method, which employs a structured body-fitted curvilinear coordinate system where the solid-fluid interface is a mesh line of the system, and the complicated interface boundary conditions are accommodated in a conventional finite-volume formulation. Numerical examples are given which provide new insight into material behavior in a fluid medium as a function of ambient pressure.

  7. Magnetic monopole interactions: shell structure of meson and baryon states

    International Nuclear Information System (INIS)

    Akers, D.

    1986-01-01

    It is suggested that a low-mass magnetic monopole of Dirac charge g = (137/2)e may be interacting with a c-quark's magnetic dipole moment to produce Zeeman splitting of meson states. The mass M 0 = 2397 MeV of the monopole is in contrast to the 10 16 -GeV monopoles of grand unification theories (GUT). It is shown that shell structure of energy E/sub n/ = M 0 + 1/4nM 0 ... exists for meson states. The presence of symmetric meson states leads to the identification of the shell structure. The possible existence of the 2397-MeV magnetic monopole is shown to quantize quark masses in agreement with calculations of quantum chromodynamics (QCD). From the shell structure of meson states, the existence of two new mesons is predicted: eta(1814 +/- 50 MeV) with I/sup G/(J/sup PC/) = 0 + (0 -+ ) and eta/sub c/ (3907 +/- 100 MeV) with J/sup PC/ = 0 -+ . The presence of shell structure for baryon states is shown

  8. A symmetric positive definite formulation for monolithic fluid structure interaction

    KAUST Repository

    Robinson-Mosher, Avi

    2011-02-01

    In this paper we consider a strongly coupled (monolithic) fluid structure interaction framework for incompressible flow, as opposed to a loosely coupled (partitioned) method. This requires solving a single linear system that combines the unknown velocities of the structure with the unknown pressures of the fluid. In our previous work, we were able to obtain a symmetric formulation of this coupled system; however, it was also indefinite, making it more difficult to solve. In fact in practice there have been cases where we have been unable to invert the system. In this paper we take a novel approach that consists of factoring the damping matrix of deformable structures and show that this can be used to obtain a symmetric positive definite system, at least to the extent that the uncoupled systems were symmetric positive definite. We use a traditional MAC grid discretization of the fluid and a fully Lagrangian discretization of the structures for the sake of exposition, noting that our procedure can be generalized to other scenarios. For the special case of rigid bodies, where there are no internal damping forces, we exactly recover the system of Batty et al. (2007) [4]. © 2010 Elsevier Inc.

  9. Impact of soil-structure interaction on the probabilistic frequency variation of concrete structures

    International Nuclear Information System (INIS)

    Hadjian, A.H.; Hamilton, C.W.

    1975-01-01

    Earthquake response of equipment in nuclear power plants is characterized by floor response spectra. Since these spectra peak at the natural frequencies of the structure, it is important, both from safety and cost standpoints, to determine the degree of the expected variability of the calculated structural frequencies. A previous work is extended on the variability of the natural frequencies of structures due to the variations of concrete properties and a rigorous approach is presented to evaluate frequency variations based on the probability distributions of both the structural and soil parameters and jointly determine the distributions of the natural frequencies. It is assumed that the soil-structure interaction coefficients are normally distributed. With the proper choice of coordinates, the simultaneous random variations of both the structural properties and the interaction coefficients can be incorporated in the eigenvalue problem. The key methodology problem is to obtain the probability distribution of eigenvalues of matrices with random variable elements. Since no analytic relation exists between the eigenvalues and the elements, a numerical procedure had to be designed. It was found that the desired accuracy can be best achieved by splitting the joint variation into two parts: the marginal distribution of soil variations and the conditional distribution of structural variations at specific soil fractiles. Then after calculating the actual eigenvalues at judiciously selected paired values of soil and structure parameters, this information is recombined to obtain the desired cumulative distribution of natural frequencies

  10. Simulations of structure formation in interacting dark energy cosmologies

    International Nuclear Information System (INIS)

    Baldi, M.

    2009-01-01

    The evidence in favor of a dark energy component dominating the Universe, and driving its presently accelerated expansion, has progressively grown during the last decade of cosmological observations. If this dark energy is given by a dynamic scalar field, it may also have a direct interaction with other matter fields in the Universe, in particular with cold dark matter. Such interaction would imprint new features on the cosmological background evolution as well as on the growth of cosmic structure, like an additional long-range fifth-force between massive particles, or a variation in time of the dark matter particle mass. We present here the implementation of these new physical effects in the N-body code GADGET-2, and we discuss the outcomes of a series of high-resolution N-body simulations for a selected family of interacting dark energy models. We interestingly find, in contrast with previous claims, that the inner overdensity of dark matter halos decreases in these models with respect to ΛCDM, and consistently halo concentrations show a progressive reduction for increasing couplings. Furthermore, the coupling induces a bias in the overdensities of cold dark matter and baryons that determines a decrease of the halo baryon fraction below its cosmological value. These results go in the direction of alleviating tensions between astrophysical observations and the predictions of the ΛCDM model on small scales, thereby opening new room for coupled dark energy models as an alternative to the cosmological constant.

  11. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling

    Directory of Open Access Journals (Sweden)

    Juliana L. Dreyfuss

    2009-09-01

    Full Text Available Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam

  12. Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping.

    Science.gov (United States)

    Zhang, Yunxia; Cheng, Chunyan; Li, Ji; Yang, Shuqiong; Wang, Yunzhu; Li, Ziang; Chen, Jinfeng; Lou, Qunfeng

    2015-09-25

    Differentiation and copy number of repetitive sequences affect directly chromosome structure which contributes to reproductive isolation and speciation. Comparative cytogenetic mapping has been verified an efficient tool to elucidate the differentiation and distribution of repetitive sequences in genome. In present study, the distinct chromosomal structures of five Cucumis species were revealed through genomic in situ hybridization (GISH) technique and comparative cytogenetic mapping of major satellite repeats. Chromosome structures of five Cucumis species were investigated using GISH and comparative mapping of specific satellites. Southern hybridization was employed to study the proliferation of satellites, whose structural characteristics were helpful for analyzing chromosome evolution. Preferential distribution of repetitive DNAs at the subtelomeric regions was found in C. sativus, C hystrix and C. metuliferus, while majority was positioned at the pericentromeric heterochromatin regions in C. melo and C. anguria. Further, comparative GISH (cGISH) through using genomic DNA of other species as probes revealed high homology of repeats between C. sativus and C. hystrix. Specific satellites including 45S rDNA, Type I/II, Type III, Type IV, CentM and telomeric repeat were then comparatively mapped in these species. Type I/II and Type IV produced bright signals at the subtelomeric regions of C. sativus and C. hystrix simultaneously, which might explain the significance of their amplification in the divergence of Cucumis subgenus from the ancient ancestor. Unique positioning of Type III and CentM only at the centromeric domains of C. sativus and C. melo, respectively, combining with unique southern bands, revealed rapid evolutionary patterns of centromeric DNA in Cucumis. Obvious interstitial telomeric repeats were observed in chromosomes 1 and 2 of C. sativus, which might provide evidence of the fusion hypothesis of chromosome evolution from x = 12 to x = 7 in

  13. Numerically stable fluid–structure interactions between compressible flow and solid structures

    KAUST Repository

    Grétarsson, Jón Tómas

    2011-04-01

    We propose a novel method to implicitly two-way couple Eulerian compressible flow to volumetric Lagrangian solids. The method works for both deformable and rigid solids and for arbitrary equations of state. The method exploits the formulation of [11] which solves compressible fluid in a semi-implicit manner, solving for the advection part explicitly and then correcting the intermediate state to time tn+1 using an implicit pressure, obtained by solving a modified Poisson system. Similar to previous fluid-structure interaction methods, we apply pressure forces to the solid and enforce a velocity boundary condition on the fluid in order to satisfy a no-slip constraint. Unlike previous methods, however, we apply these coupled interactions implicitly by adding the constraint to the pressure system and combining it with any implicit solid forces in order to obtain a strongly coupled, symmetric indefinite system (similar to [17], which only handles incompressible flow). We also show that, under a few reasonable assumptions, this system can be made symmetric positive-definite by following the methodology of [16]. Because our method handles the fluid-structure interactions implicitly, we avoid introducing any new time step restrictions and obtain stable results even for high density-to-mass ratios, where explicit methods struggle or fail. We exactly conserve momentum and kinetic energy (thermal fluid-structure interactions are not considered) at the fluid-structure interface, and hence naturally handle highly non-linear phenomenon such as shocks, contacts and rarefactions. © 2011 Elsevier Inc.

  14. Diagnostic SNPs for inferring population structure in American mink (Neovison vison) identified through RAD sequencing

    DEFF Research Database (Denmark)

    2015-01-01

    Data from: "Diagnostic SNPs for inferring population structure in American mink (Neovison vison) identified through RAD sequencing" in Genomic Resources Notes accepted 1 October 2014 to 30 November 2014....

  15. Memory Efficient Sequence Analysis Using Compressed Data Structures (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Jared

    2011-10-13

    Wellcome Trust Sanger Institute's Jared Simpson on Memory efficient sequence analysis using compressed data structures at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  16. Underwound DNA under Tension: Structure, Elasticity, and Sequence-Dependent Behaviors

    Science.gov (United States)

    Sheinin, Maxim Y.; Forth, Scott; Marko, John F.; Wang, Michelle D.

    2011-09-01

    DNA melting under torsion plays an important role in a wide variety of cellular processes. In the present Letter, we have investigated DNA melting at the single-molecule level using an angular optical trap. By directly measuring force, extension, torque, and angle of DNA, we determined the structural and elastic parameters of torsionally melted DNA. Our data reveal that under moderate forces, the melted DNA assumes a left-handed structure as opposed to an open bubble conformation and is highly torsionally compliant. We have also discovered that at low forces melted DNA properties are highly dependent on DNA sequence. These results provide a more comprehensive picture of the global DNA force-torque phase diagram.

  17. DNA breaks and repair in interstitial telomere sequences: Influence of chromatin structure

    International Nuclear Information System (INIS)

    Revaud, D.

    2009-06-01

    Interstitial Telomeric Sequences (ITS) are over-involved in spontaneous and radiationinduced chromosome aberrations in chinese hamster cells. We have performed a study to investigate the origin of their instability, spontaneously or after low doses irradiation. Our results demonstrate that ITS have a particular chromatin structure: short nucleotide repeat length, less compaction of the 30 nm chromatin fiber, presence of G-quadruplex structures. These features would modulate breaks production and would favour the recruitment of alternative DNA repair mechanisms, which are prone to produce chromosome aberrations. These pathways could be at the origin of chromosome aberrations in ITS whereas NHEJ and HR Double Strand Break repair pathways are rather required for a correct repair in these regions. (author)

  18. Structural basis for sequence-specific recognition of DNA by TAL effectors

    KAUST Repository

    Deng, Dong

    2012-01-05

    TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications.

  19. Effects of non-structural components and soil-structure interaction on the seismic response of framed structures

    Science.gov (United States)

    Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Nigro, Antonella; Carlo Ponzo, Felice

    2017-04-01

    In this paper, several nonlinear numerical models of reinforced concrete framed structures have been defined in order to evaluate the effects of non-structural elements and soil-structure interaction on the elastic dynamic behaviour of buildings. In the last few years, many and various studies have highlighted the significant effects derived from the interaction between structural and non-structural components on the main dynamic characteristics of a building. Usually, structural and non-structural elements act together, adding both masses and stiffness. The presence of infill panels is generally neglected in the design process of structural elements, although these elements can significantly increase the lateral stiffness of a structure leading to a modification in the dynamic properties. Particularly, at the Damage Limit State (where an elastic behaviour is expected), soil-structure interaction effects and non-structural elements may further affect the elastic natural period of buildings, changing the spectral accelerations compared with those provided by seismic codes in case of static analyses. In this work, a parametric study has been performed in order to evaluate the elastic fundamental period of vibration of buildings as a function of structural morphology (height, plan area, ratio between plan dimensions), infills presence and distribution and soil characteristics. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the "Centre of Integrated Geomorphology for the Mediterranean Area - CGIAM" within the Framework Agreement with the University of Basilicata "Study, Research and Experimentation in the Field of Analysis and Monitoring of Seismic Vulnerability of Strategic and Relevant Buildings for the purposes of Civil Protection and Development of Innovative Strategies of Seismic Reinforcement".

  20. Cloning, sequencing, purification, and crystal structure of Grenache (Vitis vinifera) polyphenol oxidase.

    Science.gov (United States)

    Virador, Victoria M; Reyes Grajeda, Juan P; Blanco-Labra, Alejandro; Mendiola-Olaya, Elizabeth; Smith, Gary M; Moreno, Abel; Whitaker, John R

    2010-01-27

    The full-length cDNA sequence (P93622_VITVI) of polyphenol oxidase (PPO) cDNA from grape Vitis vinifera L., cv Grenache, was found to encode a translated protein of 607 amino acids with an expected molecular weight of ca. 67 kDa and a predicted pI of 6.83. The translated amino acid sequence was 99%, identical to that of a white grape berry PPO (1) (5 out of 607 amino acid potential sequence differences). The protein was purified from Grenache grape berries by using traditional methods, and it was crystallized with ammonium acetate by the hanging-drop vapor diffusion method. The crystals were orthorhombic, space group C222(1). The structure was obtained at 2.2 A resolution using synchrotron radiation using the 39 kDa isozyme of sweet potato PPO (PDB code: 1BT1 ) as a phase donor. The basic symmetry of the cell parameters (a, b, and c and alpha, beta, and gamma) as well as in the number of asymmetric units in the unit cell of the crystals of PPO, differed between the two proteins. The structures of the two enzymes are quite similar in overall fold, the location of the helix bundles at the core, and the active site in which three histidines bind each of the two catalytic copper ions, and one of the histidines is engaged in a thioether linkage with a cysteine residue. The possibility that the formation of the Cys-His thioether linkage constitutes the activation step is proposed. No evidence of phosphorylation or glycoslyation was found in the electron density map. The mass of the crystallized protein appears to be only 38.4 kDa, and the processing that occurs in the grape berry that leads to this smaller size is discussed.

  1. Genotyping-by-Sequencing Analysis for Determining Population Structure of Finger Millet Germplasm of Diverse Origins

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2016-07-01

    Full Text Available Finger millet [ (L. Gaertn.] is grown mainly by subsistence farmers in arid and semiarid regions of the world. To broaden its genetic base and to boost its production, it is of paramount importance to characterize and genotype the diverse gene pool of this important food and nutritional security crop. However, as a result of nonavailability of the genome sequence of finger millet, the progress could not be made in realizing the molecular basis of unique qualities of the crop. In the present investigation, attempts have been made to characterize the genetically diverse collection of 113 finger millet accessions through whole-genome genotyping-by-sequencing (GBS, which resulted in a genome-wide set of 23,000 single-nucleotide polymorphisms (SNPs segregating across the entire collection and several thousand SNPs segregating within every accession. A model-based population structure analysis reveals the presence of three subpopulations among the finger millet accessions, which are in parallel with the results of phylogenetic analysis. The observed population structure is consistent with the hypothesis that finger millet was domesticated first in Africa, and from there it was introduced to India some 3000 yr ago. A total of 1128 gene ontology (GO terms were assigned to SNP-carrying genes for three main categories: biological process, cellular component, and molecular function. Facilitated access to high-throughput genotyping and sequencing technologies are likely to improve the breeding process in developing countries, and as such, this data will be very useful to breeders who are working for the genetic improvement of finger millet.

  2. Genotyping-by-Sequencing Analysis for Determining Population Structure of Finger Millet Germplasm of Diverse Origins.

    Science.gov (United States)

    Kumar, Anil; Sharma, Divya; Tiwari, Apoorv; Jaiswal, J P; Singh, N K; Sood, Salej

    2016-07-01

    Finger millet [ (L.) Gaertn.] is grown mainly by subsistence farmers in arid and semiarid regions of the world. To broaden its genetic base and to boost its production, it is of paramount importance to characterize and genotype the diverse gene pool of this important food and nutritional security crop. However, as a result of nonavailability of the genome sequence of finger millet, the progress could not be made in realizing the molecular basis of unique qualities of the crop. In the present investigation, attempts have been made to characterize the genetically diverse collection of 113 finger millet accessions through whole-genome genotyping-by-sequencing (GBS), which resulted in a genome-wide set of 23,000 single-nucleotide polymorphisms (SNPs) segregating across the entire collection and several thousand SNPs segregating within every accession. A model-based population structure analysis reveals the presence of three subpopulations among the finger millet accessions, which are in parallel with the results of phylogenetic analysis. The observed population structure is consistent with the hypothesis that finger millet was domesticated first in Africa, and from there it was introduced to India some 3000 yr ago. A total of 1128 gene ontology (GO) terms were assigned to SNP-carrying genes for three main categories: biological process, cellular component, and molecular function. Facilitated access to high-throughput genotyping and sequencing technologies are likely to improve the breeding process in developing countries, and as such, this data will be very useful to breeders who are working for the genetic improvement of finger millet. Copyright © 2016 Crop Science Society of America.

  3. Ebola virus RNA editing depends on the primary editing site sequence and an upstream secondary structure.

    Directory of Open Access Journals (Sweden)

    Masfique Mehedi

    Full Text Available Ebolavirus (EBOV, the causative agent of a severe hemorrhagic fever and a biosafety level 4 pathogen, increases its genome coding capacity by producing multiple transcripts encoding for structural and nonstructural glycoproteins from a single gene. This is achieved through RNA editing, during which non-template adenosine residues are incorporated into the EBOV mRNAs at an editing site encoding for 7 adenosine residues. However, the mechanism of EBOV RNA editing is currently not understood. In this study, we report for the first time that minigenomes containing the glycoprotein gene editing site can undergo RNA editing, thereby eliminating the requirement for a biosafety level 4 laboratory to study EBOV RNA editing. Using a newly developed dual-reporter minigenome, we have characterized the mechanism of EBOV RNA editing, and have identified cis-acting sequences that are required for editing, located between 9 nt upstream and 9 nt downstream of the editing site. Moreover, we show that a secondary structure in the upstream cis-acting sequence plays an important role in RNA editing. EBOV RNA editing is glycoprotein gene-specific, as a stretch encoding for 7 adenosine residues located in the viral polymerase gene did not serve as an editing site, most likely due to an absence of the necessary cis-acting sequences. Finally, the EBOV protein VP30 was identified as a trans-acting factor for RNA editing, constituting a novel function for this protein. Overall, our results provide novel insights into the RNA editing mechanism of EBOV, further understanding of which might result in novel intervention strategies against this viral pathogen.

  4. Ebola virus RNA editing depends on the primary editing site sequence and an upstream secondary structure.

    Science.gov (United States)

    Mehedi, Masfique; Hoenen, Thomas; Robertson, Shelly; Ricklefs, Stacy; Dolan, Michael A; Taylor, Travis; Falzarano, Darryl; Ebihara, Hideki; Porcella, Stephen F; Feldmann, Heinz

    2013-01-01

    Ebolavirus (EBOV), the causative agent of a severe hemorrhagic fever and a biosafety level 4 pathogen, increases its genome coding capacity by producing multiple transcripts encoding for structural and nonstructural glycoproteins from a single gene. This is achieved through RNA editing, during which non-template adenosine residues are incorporated into the EBOV mRNAs at an editing site encoding for 7 adenosine residues. However, the mechanism of EBOV RNA editing is currently not understood. In this study, we report for the first time that minigenomes containing the glycoprotein gene editing site can undergo RNA editing, thereby eliminating the requirement for a biosafety level 4 laboratory to study EBOV RNA editing. Using a newly developed dual-reporter minigenome, we have characterized the mechanism of EBOV RNA editing, and have identified cis-acting sequences that are required for editing, located between 9 nt upstream and 9 nt downstream of the editing site. Moreover, we show that a secondary structure in the upstream cis-acting sequence plays an important role in RNA editing. EBOV RNA editing is glycoprotein gene-specific, as a stretch encoding for 7 adenosine residues located in the viral polymerase gene did not serve as an editing site, most likely due to an absence of the necessary cis-acting sequences. Finally, the EBOV protein VP30 was identified as a trans-acting factor for RNA editing, constituting a novel function for this protein. Overall, our results provide novel insights into the RNA editing mechanism of EBOV, further understanding of which might result in novel intervention strategies against this viral pathogen.

  5. Development of the tube bundle structure for fluid-structure interaction analysis model - Intermediate Report -

    International Nuclear Information System (INIS)

    Yoon, Kyung Ho; Kim, Jae Yong; Lee, Kang Hee; Lee, Young Ho; Kim, Hyung Kyu

    2009-07-01

    Tube bundle structures within a Boiler or heat exchanger are laid the fluid-structure, thermal-structure and fluid-thermal-structure coupled boundary condition. In these complicated boundary conditions, Fluid-structure interaction (FSI) occurs when fluid flow causes deformation of the structure. This deformation, in turn, changes the boundary conditions for the fluid flow. The structural analysis have been executed as follows. First of all, divide the fluid and structural analysis discipline, and then independently analyzed each other. However, the fluid dynamic force effect the behavior of the structure, and the vibration amplitude of the structure to fluid. FSI analysis model was separately created fluid and structure model, and then defined the fsi boundary condition, and simultaneously analyzed in one domain. The analysis results were compared with those of the experimental method for validating the analysis model. Flow-induced vibration test was executed with single rod configuration. The vibration amplitudes of a fuel rod were measured by the laser vibro-meter system in x and y-direction. The analyses results were not closely with the test data, but the trend was very similar with the test result. In fsi coupled analysis case, the turbulent model was very important with the reliability of the accuracy of the analysis model. Therefore, the analysis model will be needed to further study

  6. Functional and Structural Overview of G-Protein-Coupled Receptors Comprehensively Obtained from Genome Sequences

    Directory of Open Access Journals (Sweden)

    Makiko Suwa

    2011-04-01

    Full Text Available An understanding of the functional mechanisms of G-protein-coupled receptors (GPCRs is very important for GPCR-related drug design. We have developed an integrated GPCR database (SEVENS http://sevens.cbrc.jp/ that includes 64,090 reliable GPCR genes comprehensively identified from 56 eukaryote genome sequences, and overviewed the sequences and structure spaces of the GPCRs. In vertebrates, the number of receptors for biological amines, peptides, etc. is conserved in most species, whereas the number of chemosensory receptors for odorant, pheromone, etc. significantly differs among species. The latter receptors tend to be single exon type or a few exon type and show a high ratio in the numbers of GPCRs, whereas some families, such as Class B and Class C receptors, have long lengths due to the presence of many exons. Statistical analyses of amino acid residues reveal that most of the conserved residues in Class A GPCRs are found in the cytoplasmic half regions of transmembrane (TM helices, while residues characteristic to each subfamily found on the extracellular half regions. The 69 of Protein Data Bank (PDB entries of complete or fragmentary structures could be mapped on the TM/loop regions of Class A GPCRs covering 14 subfamilies.

  7. Structured Semantic Knowledge Can Emerge Automatically from Predicting Word Sequences in Child-Directed Speech

    Directory of Open Access Journals (Sweden)

    Philip A. Huebner

    2018-02-01

    Full Text Available Previous research has suggested that distributional learning mechanisms may contribute to the acquisition of semantic knowledge. However, distributional learning mechanisms, statistical learning, and contemporary “deep learning” approaches have been criticized for being incapable of learning the kind of abstract and structured knowledge that many think is required for acquisition of semantic knowledge. In this paper, we show that recurrent neural networks, trained on noisy naturalistic speech to children, do in fact learn what appears to be abstract and structured knowledge. We trained two types of recurrent neural networks (Simple Recurrent Network, and Long Short-Term Memory to predict word sequences in a 5-million-word corpus of speech directed to children ages 0–3 years old, and assessed what semantic knowledge they acquired. We found that learned internal representations are encoding various abstract grammatical and semantic features that are useful for predicting word sequences. Assessing the organization of semantic knowledge in terms of the similarity structure, we found evidence of emergent categorical and hierarchical structure in both models. We found that the Long Short-term Memory (LSTM and SRN are both learning very similar kinds of representations, but the LSTM achieved higher levels of performance on a quantitative evaluation. We also trained a non-recurrent neural network, Skip-gram, on the same input to compare our results to the state-of-the-art in machine learning. We found that Skip-gram achieves relatively similar performance to the LSTM, but is representing words more in terms of thematic compared to taxonomic relations, and we provide reasons why this might be the case. Our findings show that a learning system that derives abstract, distributed representations for the purpose of predicting sequential dependencies in naturalistic language may provide insight into emergence of many properties of the developing

  8. Structured Semantic Knowledge Can Emerge Automatically from Predicting Word Sequences in Child-Directed Speech

    Science.gov (United States)

    Huebner, Philip A.; Willits, Jon A.

    2018-01-01

    Previous research has suggested that distributional learning mechanisms may contribute to the acquisition of semantic knowledge. However, distributional learning mechanisms, statistical learning, and contemporary “deep learning” approaches have been criticized for being incapable of learning the kind of abstract and structured knowledge that many think is required for acquisition of semantic knowledge. In this paper, we show that recurrent neural networks, trained on noisy naturalistic speech to children, do in fact learn what appears to be abstract and structured knowledge. We trained two types of recurrent neural networks (Simple Recurrent Network, and Long Short-Term Memory) to predict word sequences in a 5-million-word corpus of speech directed to children ages 0–3 years old, and assessed what semantic knowledge they acquired. We found that learned internal representations are encoding various abstract grammatical and semantic features that are useful for predicting word sequences. Assessing the organization of semantic knowledge in terms of the similarity structure, we found evidence of emergent categorical and hierarchical structure in both models. We found that the Long Short-term Memory (LSTM) and SRN are both learning very similar kinds of representations, but the LSTM achieved higher levels of performance on a quantitative evaluation. We also trained a non-recurrent neural network, Skip-gram, on the same input to compare our results to the state-of-the-art in machine learning. We found that Skip-gram achieves relatively similar performance to the LSTM, but is representing words more in terms of thematic compared to taxonomic relations, and we provide reasons why this might be the case. Our findings show that a learning system that derives abstract, distributed representations for the purpose of predicting sequential dependencies in naturalistic language may provide insight into emergence of many properties of the developing semantic system. PMID

  9. Structural and interaction parameters of thermosensitive native α-elastin biohybrid microgel

    Science.gov (United States)

    Balaceanu, Andreea; Singh, Smriti; Demco, Dan E.; Möller, Martin

    2014-09-01

    The structural and water interaction parameters for native, α-elastin biohybrid microgel crosslinked with hydrophilic and hydrophobic crosslinkers are obtained from the volume phase transition temperature behaviour, 1H high-resolution magic-angle sample spinning transverse magnetization relaxation NMR, and modified Flory-Rehner swelling theory. Firstly, considering a homogeneous morphology the number of subchains in the biohybrid microgel, the residual water in deswollen state as a function of crosslink density and the temperature dependence of the Flory biopolymer-water interaction parameters are reported for the biohybrid microgels prepared with hydrophilic (PEG-DGE) and hydrophobic (BS3) crosslinkers. The Flory-Rehner classical approach is subsequently modified taking into account the heterogeneities observed by NMR transverse relaxation measurements. Two differently mobile regions are determined, a hydrophobic domain and a crosslinking domain with relative reduced mobility. For the first time, the influence of chain mobility on the Flory interaction parameter is investigated through a modified Flory state equation. The contributions of amino-acids located in the hydrophobic and crosslinking domains in the polypeptide sequence are separated while analyzing the biopolymer-water interaction.

  10. Molecular cloning, sequence and structural analysis of dehairing Mn(2+) dependent alkaline serine protease (MASPT) of Bacillus pumilus TMS55.

    Science.gov (United States)

    Ibrahim, Kalibulla Syed; Muniyandi, Jeyaraj; Pandian, Shunmugiah Karutha

    2011-10-01

    Leather industries release a large amount of pollution-causing chemicals which creates one of the major industrial pollutions. The development of enzyme based processes as a potent alternative to pollution-causing chemicals is useful to overcome this issue. Proteases are enzymes which have extensive applications in leather processing and in several bioremediation processes due to their high alkaline protease activity and dehairing efficacy. In the present study, we report cloning, characterization of a Mn2+ dependent alkaline serine protease gene (MASPT) of Bacillus pumilus TMS55. The gene encoding the protease from B. pumilus TMS55 was cloned and its nucleotide sequence was determined. This gene has an open reading frame (ORF) of 1,149 bp that encodes a polypeptide of 383 amino acid residues. Our analysis showed that this polypeptide is composed of 29 residues N-terminal signal peptide, a propeptide of 79 residues and a mature protein of 275 amino acids. We performed bioinformatics analysis to compare MASPT enzyme with other proteases. Homology modeling was employed to model three dimensional structure for MASPT. Structural analysis showed that MASPT structure is composed of nine α-helices and nine β-strands. It has 3 catalytic residues and 14 metal binding residues. Docking analysis showed that residues S223, A260, N263, T328 and S329 interact with Mn2+. This study allows initial inferences about the structure of the protease and will allow the rational design of its derivatives for structure-function studies and also for further improvement of the enzyme.

  11. Concealed by darkness: interactions between predatory bats and nocturnally migrating songbirds illuminated by DNA sequencing

    OpenAIRE

    Ibáñez, Carlos; Popa-Lisseanu, Ana G.; Pastor-Beviá, David; García-Mudarra, Juan L.; Juste, Javier

    2016-01-01

    Recently, several species of aerial-hawking bats have been found to prey on migrating songbirds, but details on this behaviour and its relevance for bird migration are still unclear. We sequenced avian DNA in feather-containing scats of the bird-feeding bat Nyctalus lasiopterus from Spain collected during bird migration seasons. We found very high prey diversity, with 31 bird species from eight families of Passeriformes, almost all of which were nocturnally flying sub-Saharan migrants. Moreov...

  12. Discovering approximate-associated sequence patterns for protein-DNA interactions

    KAUST Repository

    Chan, Tak Ming; Wong, Ka Chun; Lee, Kin Hong; Wong, Man Hon; Lau, Chi Kong; Tsui, Stephen Kwok Wing; Leung, Kwong Sak

    2010-01-01

    Motivation: The bindings between transcription factors (TFs) and transcription factor binding sites (TFBSs) are fundamental protein-DNA interactions in transcriptional regulation. Extensive efforts have been made to better understand the protein

  13. Temporal Sequence of Visuo-Auditory Interaction in Multiple Areas of the Guinea Pig Visual Cortex

    Science.gov (United States)

    Nishimura, Masataka; Song, Wen-Jie

    2012-01-01

    Recent studies in humans and monkeys have reported that acoustic stimulation influences visual responses in the primary visual cortex (V1). Such influences can be generated in V1, either by direct auditory projections or by feedback projections from extrastriate cortices. To test these hypotheses, cortical activities were recorded using optical imaging at a high spatiotemporal resolution from multiple areas of the guinea pig visual cortex, to visual and/or acoustic stimulations. Visuo-auditory interactions were evaluated according to differences between responses evoked by combined auditory and visual stimulation, and the sum of responses evoked by separate visual and auditory stimulations. Simultaneous presentation of visual and acoustic stimulations resulted in significant interactions in V1, which occurred earlier than in other visual areas. When acoustic stimulation preceded visual stimulation, significant visuo-auditory interactions were detected only in V1. These results suggest that V1 is a cortical origin of visuo-auditory interaction. PMID:23029483

  14. Nonlinear interaction and wave breaking with a submerged porous structure

    Science.gov (United States)

    Hsieh, Chih-Min; Sau, Amalendu; Hwang, Robert R.; Yang, W. C.

    2016-12-01

    Numerical simulations are performed to investigate interactive velocity, streamline, turbulent kinetic energy, and vorticity perturbations in the near-field of a submerged offshore porous triangular structure, as Stokes waves of different heights pass through. The wave-structure interaction and free-surface breaking for the investigated flow situations are established based on solutions of 2D Reynolds Averaged Navier-Stokes equations in a Cartesian grid in combination with K-ɛ turbulent closure and the volume of fluid methodology. The accuracy and stability of the adopted model are ascertained by extensive comparisons of computed data with the existing experimental and theoretical findings and through efficient predictions of the internal physical kinetics. Simulations unfold "clockwise" and "anticlockwise" rotation of fluid below the trough and the crest of the viscous waves, and the penetrated wave energy creates systematic flow perturbation in the porous body. The interfacial growths of the turbulent kinetic energy and the vorticity appear phenomenal, around the apex of the immersed structure, and enhanced significantly following wave breaking. Different values of porosity parameter and two non-porous cases have been examined in combination with varied incident wave height to reveal/analyze the nonlinear flow behavior in regard to local spectral amplification and phase-plane signatures. The evolution of leading harmonics of the undulating free-surface and the vertical velocity exhibits dominating roles of the first and the second modes in inducing the nonlinearity in the post-breaking near-field that penetrates well below the surface layer. The study further suggests the existence of a critical porosity that can substantially enhance the wave-shoaling and interface breaking.

  15. Structural organization of glycophorin A and B genes: Glycophorin B gene evolved by homologous recombination at Alu repeat sequences

    International Nuclear Information System (INIS)

    Kudo, Shinichi; Fukuda, Minoru

    1989-01-01

    Glycophorins A (GPA) and B (GPB) are two major sialoglycoproteins of the human erythrocyte membrane. Here the authors present a comparison of the genomic structures of GPA and GPB developed by analyzing DNA clones isolated from a K562 genomic library. Nucleotide sequences of exon-intron junctions and 5' and 3' flanking sequences revealed that the GPA and GPB genes consist of 7 and 5 exons, respectively, and both genes have >95% identical sequence from the 5' flanking region to the region ∼ 1 kilobase downstream from the exon encoding the transmembrane regions. In this homologous part of the genes, GPB lacks one exon due to a point mutation at the 5' splicing site of the third intron, which inactivates the 5' cleavage event of splicing and leads to ligation of the second to the fourth exon. Following these very homologous sequences, the genomic sequences for GPA and GPB diverge significantly and no homology can be detected in their 3' end sequences. The analysis of the Alu sequences and their flanking direct repeat sequences suggest that an ancestral genomic structure has been maintained in the GPA gene, whereas the GPB gene has arisen from the acquisition of 3' sequences different from those of the GPA gene by homologous recombination at the Alu repeats during or after gene duplication

  16. Structure of Plasmodium falciparum orotate phosphoribosyltransferase with autologous inhibitory protein–protein interactions

    International Nuclear Information System (INIS)

    Kumar, Shiva; Krishnamoorthy, Kalyanaraman; Mudeppa, Devaraja G.; Rathod, Pradipsinh K.

    2015-01-01

    P. falciparum orotate phosphoribosyltransferase, a potential target for antimalarial drugs and a conduit for prodrugs, crystallized as a structure with eight molecules per asymmetric unit that included some unique parasite-specific auto-inhibitory interactions between catalytic dimers. The most severe form of malaria is caused by the obligate parasite Plasmodium falciparum. Orotate phosphoribosyltransferase (OPRTase) is the fifth enzyme in the de novo pyrimidine-synthesis pathway in the parasite, which lacks salvage pathways. Among all of the malaria de novo pyrimidine-biosynthesis enzymes, the structure of P. falciparum OPRTase (PfOPRTase) was the only one unavailable until now. PfOPRTase that could be crystallized was obtained after some low-complexity sequences were removed. Four catalytic dimers were seen in the asymmetic unit (a total of eight polypeptides). In addition to revealing unique amino acids in the PfOPRTase active sites, asymmetric dimers in the larger structure pointed to novel parasite-specific protein–protein interactions that occlude the catalytic active sites. The latter could potentially modulate PfOPRTase activity in parasites and possibly provide new insights for blocking PfOPRTase functions

  17. Structure of Plasmodium falciparum orotate phosphoribosyltransferase with autologous inhibitory protein–protein interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Shiva; Krishnamoorthy, Kalyanaraman; Mudeppa, Devaraja G.; Rathod, Pradipsinh K., E-mail: rathod@chem.washington.edu [University of Washington, Seattle, WA 98195 (United States)

    2015-04-21

    P. falciparum orotate phosphoribosyltransferase, a potential target for antimalarial drugs and a conduit for prodrugs, crystallized as a structure with eight molecules per asymmetric unit that included some unique parasite-specific auto-inhibitory interactions between catalytic dimers. The most severe form of malaria is caused by the obligate parasite Plasmodium falciparum. Orotate phosphoribosyltransferase (OPRTase) is the fifth enzyme in the de novo pyrimidine-synthesis pathway in the parasite, which lacks salvage pathways. Among all of the malaria de novo pyrimidine-biosynthesis enzymes, the structure of P. falciparum OPRTase (PfOPRTase) was the only one unavailable until now. PfOPRTase that could be crystallized was obtained after some low-complexity sequences were removed. Four catalytic dimers were seen in the asymmetic unit (a total of eight polypeptides). In addition to revealing unique amino acids in the PfOPRTase active sites, asymmetric dimers in the larger structure pointed to novel parasite-specific protein–protein interactions that occlude the catalytic active sites. The latter could potentially modulate PfOPRTase activity in parasites and possibly provide new insights for blocking PfOPRTase functions.

  18. Influence of ground water on soil-structure interaction

    International Nuclear Information System (INIS)

    Costantino, C.J.; Lung, R.H.; Graves, H.L.

    1987-01-01

    The study of structural response to seismic inputs has been extensively studied and, particularly with the advent of the growth of digital computer capability, has lead to the development of numerical methods of analysis which are used as standard tools for the design of structures. One aspect of the soil-structure interaction (SSI) process which has not been developed to the same degree of sophistication is the impact of ground water (or pure water) on the response of the soil-structure system. There are very good reasons for his state of affairs, however, not the least of which is the difficulty of incorporating the true constitutive behavior of saturated soils into the analysis. At the large strain end of the spectrum, the engineer is concerned with the potential development of failure conditions under the structure, and is typically interested in the onset of liquefaction conditions. The current state of the art in this area is to a great extent based on empirical methods of analysis which were developed from investigations of limited failure data from specific sites around the world. Since it is known that analytic solutions are available for only the simplest of configurations, a numerical finite element solution process was developed. Again, in keeping with typical SSI analyses, in order to make the finite element approach yield resonable results, a comparable transmitting boundary formulation was included in the development. The purpose of the transmitting boundary is, of course, to allow for the treatment of extended soil/water half-space problems. For the calculations presented herein, a simple one dimensional transmitting boundary model was developed and utilized

  19. Creation and structure determination of an artificial protein with three complete sequence repeats

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Motoyasu, E-mail: adachi.motoyasu@jaea.go.jp; Shimizu, Rumi; Kuroki, Ryota [Japan Atomic Energy Agency, Shirakatashirane 2-4, Nakagun Tokaimura, Ibaraki 319-1195 (Japan); Blaber, Michael [Japan Atomic Energy Agency, Shirakatashirane 2-4, Nakagun Tokaimura, Ibaraki 319-1195 (Japan); Florida State University, Tallahassee, FL 32306-4300 (United States)

    2013-11-01

    An artificial protein with three complete sequence repeats was created and the structure was determined by X-ray crystallography. The structure showed threefold symmetry even though there is an amino- and carboxy-terminal. The artificial protein with threefold symmetry may be useful as a scaffold to capture small materials with C3 symmetry. Symfoil-4P is a de novo protein exhibiting the threefold symmetrical β-trefoil fold designed based on the human acidic fibroblast growth factor. First three asparagine–glycine sequences of Symfoil-4P are replaced with glutamine–glycine (Symfoil-QG) or serine–glycine (Symfoil-SG) sequences protecting from deamidation, and His-Symfoil-II was prepared by introducing a protease digestion site into Symfoil-QG so that Symfoil-II has three complete repeats after removal of the N-terminal histidine tag. The Symfoil-QG and SG and His-Symfoil-II proteins were expressed in Eschericha coli as soluble protein, and purified by nickel affinity chromatography. Symfoil-II was further purified by anion-exchange chromatography after removing the HisTag by proteolysis. Both Symfoil-QG and Symfoil-II were crystallized in 0.1 M Tris-HCl buffer (pH 7.0) containing 1.8 M ammonium sulfate as precipitant at 293 K; several crystal forms were observed for Symfoil-QG and II. The maximum diffraction of Symfoil-QG and II crystals were 1.5 and 1.1 Å resolution, respectively. The Symfoil-II without histidine tag diffracted better than Symfoil-QG with N-terminal histidine tag. Although the crystal packing of Symfoil-II is slightly different from Symfoil-QG and other crystals of Symfoil derivatives having the N-terminal histidine tag, the refined crystal structure of Symfoil-II showed pseudo-threefold symmetry as expected from other Symfoils. Since the removal of the unstructured N-terminal histidine tag did not affect the threefold structure of Symfoil, the improvement of diffraction quality of Symfoil-II may be caused by molecular characteristics of

  20. Development of the tube bundle structure for fluid-structure interaction analysis model

    International Nuclear Information System (INIS)

    Yoon, Kyung Ho; Kim, Jae Yong

    2010-02-01

    Tube bundle structures within a Boiler or heat exchanger are laid the fluid-structure, thermal-structure and fluid-thermal-structure coupled boundary condition. In these complicated boundary conditions, Fluid-structure interaction (FSI) occurs when fluid flow causes deformation of the structure. This deformation, in turn, changes the boundary conditions for the fluid flow. The structural analysis discipline, and then independently analyzed each other. However, the fluid dynamic force effect the behavior of the structure, and the vibration amplitude of the structure to fluid. FSI analysis model was separately created fluid and structure model, and then defined the fsi boundary condition, and simultaneously analyzed in one domain. The analysis results were compared with those of the experimental method for validating the analysis model. Flow-induced vibration test was executed with single rod configuration. The vibration amplitudes of a fuel rod were measured by the laser vibro-meter system in x and y-direction. The analyses results were not closely with the test data, but the trend was very similar with the test result. In fsi coupled analysis case, the turbulent model was very important with the reliability of the accuracy of the analysis model. Therefore, the analysis model will be needed to further study

  1. Structure homology and interaction redundancy for discovering virus–host protein interactions

    Science.gov (United States)

    de Chassey, Benoît; Meyniel-Schicklin, Laurène; Aublin-Gex, Anne; Navratil, Vincent; Chantier, Thibaut; André, Patrice; Lotteau, Vincent

    2013-01-01

    Virus–host interactomes are instrumental to understand global perturbations of cellular functions induced by infection and discover new therapies. The construction of such interactomes is, however, technically challenging and time consuming. Here we describe an original method for the prediction of high-confidence interactions between viral and human proteins through a combination of structure and high-quality interactome data. Validation was performed for the NS1 protein of the influenza virus, which led to the identification of new host factors that control viral replication. PMID:24008843

  2. Structure homology and interaction redundancy for discovering virus-host protein interactions.

    Science.gov (United States)

    de Chassey, Benoît; Meyniel-Schicklin, Laurène; Aublin-Gex, Anne; Navratil, Vincent; Chantier, Thibaut; André, Patrice; Lotteau, Vincent

    2013-10-01

    Virus-host interactomes are instrumental to understand global perturbations of cellular functions induced by infection and discover new therapies. The construction of such interactomes is, however, technically challenging and time consuming. Here we describe an original method for the prediction of high-confidence interactions between viral and human proteins through a combination of structure and high-quality interactome data. Validation was performed for the NS1 protein of the influenza virus, which led to the identification of new host factors that control viral replication.

  3. Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare).

    Science.gov (United States)

    Pandey, Bharati; Grover, Abhinav; Sharma, Pradeep

    2018-02-12

    about WRKY domain-DNA interactions. However, no structure base information reported to date for WRKY variants and their mechanism of interaction with DNA. Our findings highlighted the importance of selecting a sequence to generate newer transgenic plants that would be increasingly tolerance to stress conditions.

  4. Assessment of seismic wave effects on soil-structure interaction

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1977-01-01

    One of the most common hypotheses made for soil-structure interaction analyses is that the earthquake input motion is identical at all points beneath the structure. Several papers have recently shown that this assumption may be overly conservative and that the effect of wave passage is extremely important. These studies typically employ a relatively simple model, namely, the basemat is represented by a rectangular rigid foundation resting on top of the soil and connected to the soil by a continuously distributed set of soil springs. The seismic input is applied at the base of the soil springs and is assumed to be traveling at a constant wave velocity across the site. It ispossible to improve on the soil/structure model by use of finite element methods; however, little is known about how to model the input seismic energy and typically a simple travelling wave is used. In this paper, the author examines the available data to determine: (i) the appropriate wave velocity to use, and (ii) if the currently availble analytic models are adequate. (Auth.)

  5. Numerical simulation of fluid structure interaction in two flexible tubes

    International Nuclear Information System (INIS)

    Feng Zhipeng; Zang Fenggang; Zhang Yixiong

    2014-01-01

    In order to further investigate fluid structure interaction problems, occurring in the nuclear field such as the behavior of PWR fuel rods, steam generator and other heat exchanger tubes, a numerical model was presented. It is a three-dimensional fully coupled approach with solving the fluid flow and the structure vibration simultaneously, for the tube bundles in cross flow. The unsteady three-dimensional Navier-Stokes equation and LES turbulence model were solved with finite volume approach on structured grids combined with the technique of dynamic mesh. The dynamic equilibrium equation was discretized according to the finite element theory. The vibration response of a single tube in cross flow was calculated by the numerical model. Both the amplitude and frequency were compared with experimental data and existing models in the literature. It is shown that the present model is reasonable. The flow induced vibration characteristics, for both inline and parallel sets in cross flow, were investigated by the numerical model. The dynamic response and flow characteristics, for both inline tubes and parallel tubes with pitch ratio of 1.2, 1.6, 2, 3 and 4 under different incident velocities, were studied. Critical pitch and critical velocity were obtained. (authors)

  6. Rigorous assessment and integration of the sequence and structure based features to predict hot spots

    Directory of Open Access Journals (Sweden)

    Wang Yong

    2011-07-01

    Full Text Available Abstract Background Systematic mutagenesis studies have shown that only a few interface residues termed hot spots contribute significantly to the binding free energy of protein-protein interactions. Therefore, hot spots prediction becomes increasingly important for well understanding the essence of proteins interactions and helping narrow down the search space for drug design. Currently many computational methods have been developed by proposing different features. However comparative assessment of these features and furthermore effective and accurate methods are still in pressing need. Results In this study, we first comprehensively collect the features to discriminate hot spots and non-hot spots and analyze their distributions. We find that hot spots have lower relASA and larger relative change in ASA, suggesting hot spots tend to be protected from bulk solvent. In addition, hot spots have more contacts including hydrogen bonds, salt bridges, and atomic contacts, which favor complexes formation. Interestingly, we find that conservation score and sequence entropy are not significantly different between hot spots and non-hot spots in Ab+ dataset (all complexes. While in Ab- dataset (antigen-antibody complexes are excluded, there are significant differences in two features between hot pots and non-hot spots. Secondly, we explore the predictive ability for each feature and the combinations of features by support vector machines (SVMs. The results indicate that sequence-based feature outperforms other combinations of features with reasonable accuracy, with a precision of 0.69, a recall of 0.68, an F1 score of 0.68, and an AUC of 0.68 on independent test set. Compared with other machine learning methods and two energy-based approaches, our approach achieves the best performance. Moreover, we demonstrate the applicability of our method to predict hot spots of two protein complexes. Conclusion Experimental results show that support vector machine

  7. Rigorous assessment and integration of the sequence and structure based features to predict hot spots