WorldWideScience

Sample records for sensing zone method

  1. Remote sensing technology prospecting methods of interlayer oxidation zone type sandstone uranium deposit in Yili basin

    International Nuclear Information System (INIS)

    Huang Xianfang; Huang Shutao; Pan Wei; Feng Jie; Liu Dechang; Zhang Jingbo; Xuan Yanxiu; Rui Benshan

    1998-12-01

    Taking Yili Basin as an example, remote sensing technology and method of interlayer oxidation zone type sandstone uranium deposit have systematically been summarized. Firstly, principle, methods and procedures of the second development of scientific experimental satellite photograph have been elaborated in detail. Three dimensional stereo simulation, display, and multi-parameters extraction have been recommended. Secondarily, the research is focused on prospective section image features in different type images and their geological implications and on establishing recognition keys of promising areas. Finally, based on above research results, three graded predictions, i.e. regional prospect, promising sections and favourable location in the deposit have been made step by step and reconnaissance and prospecting range are gradually reduced. The practice has indicated that breakthrough progress has been made in application to prospect prognosis of interlayer oxidation zone type sandstone uranium deposit and good verified results have been obtained

  2. Ion sensing method

    Science.gov (United States)

    Smith, Richard Harding; Martin, Glenn Brian

    2004-05-18

    The present invention allows the determination of trace levels of ionic substances in a sample solution (ions, metal ions, and other electrically charged molecules) by coupling a separation method, such as liquid chromatography, with ion selective electrodes (ISE) prepared so as to allow detection at activities below 10.sup.-6 M. The separation method distributes constituent molecules into fractions due to unique chemical and physical properties, such as charge, hydrophobicity, specific binding interactions, or movement in an electrical field. The separated fractions are detected by means of the ISE(s). These ISEs can be used singly or in an array. Accordingly, modifications in the ISEs are used to permit detection of low activities, specifically, below 10.sup.-6 M, by using low activities of the primary analyte (the molecular species which is specifically detected) in the inner filling solution of the ISE. Arrays constructed in various ways allow flow-through sensing for multiple ions.

  3. Remote sensing applications for coastal zone management

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, L.V.G.

    stream_size 4 stream_content_type text/plain stream_name Trg_Course_Coast_Zone_Manage_1993_5.pdf.txt stream_source_info Trg_Course_Coast_Zone_Manage_1993_5.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset...

  4. Portraying Urban Functional Zones by Coupling Remote Sensing Imagery and Human Sensing Data

    Directory of Open Access Journals (Sweden)

    Wei Tu

    2018-01-01

    Full Text Available Portraying urban functional zones provides useful insights into understanding complex urban systems and establishing rational urban planning. Although several studies have confirmed the efficacy of remote sensing imagery in urban studies, coupling remote sensing and new human sensing data like mobile phone positioning data to identify urban functional zones has still not been investigated. In this study, a new framework integrating remote sensing imagery and mobile phone positioning data was developed to analyze urban functional zones with landscape and human activity metrics. Landscapes metrics were calculated based on land cover from remote sensing images. Human activities were extracted from massive mobile phone positioning data. By integrating them, urban functional zones (urban center, sub-center, suburbs, urban buffer, transit region and ecological area were identified by a hierarchical clustering. Finally, gradient analysis in three typical transects was conducted to investigate the pattern of landscapes and human activities. Taking Shenzhen, China, as an example, the conducted experiment shows that the pattern of landscapes and human activities in the urban functional zones in Shenzhen does not totally conform to the classical urban theories. It demonstrates that the fusion of remote sensing imagery and human sensing data can characterize the complex urban spatial structure in Shenzhen well. Urban functional zones have the potential to act as bridges between the urban structure, human activity and urban planning policy, providing scientific support for rational urban planning and sustainable urban development policymaking.

  5. Zone distillation: a new purification method

    International Nuclear Information System (INIS)

    Kravchenko, A.I.

    2011-01-01

    The features of zone distillation (with zone melting of refined material and with pulling of condensate) as a new purification method are shown. The method is based on similarity of equations of distillation and crystallization refining. The analogy between some distillation and condensation methods (particularly between zone distillation and zone recrystallization) is should up

  6. Displacement sensing system and method

    Science.gov (United States)

    VunKannon, Jr., Robert S

    2006-08-08

    A displacement sensing system and method addresses demanding requirements for high precision sensing of displacement of a shaft, for use typically in a linear electro-dynamic machine, having low failure rates over multi-year unattended operation in hostile environments. Applications include outer space travel by spacecraft having high-temperature, sealed environments without opportunity for servicing over many years of operation. The displacement sensing system uses a three coil sensor configuration, including a reference and sense coils, to provide a pair of ratio-metric signals, which are inputted into a synchronous comparison circuit, which is synchronously processed for a resultant displacement determination. The pair of ratio-metric signals are similarly affected by environmental conditions so that the comparison circuit is able to subtract or nullify environmental conditions that would otherwise cause changes in accuracy to occur.

  7. Environmental application of remote sensing methods to coastal zone land use and marine resource management. Appendix F: User's guide for advection, convection prototype. [southeastern Virginia

    Science.gov (United States)

    1972-01-01

    A user's manual is provided for the environmental computer model proposed for the Richmond-Cape Henry Environmental Laboratory (RICHEL) application project for coastal zone land use investigations and marine resources management. The model was developed around the hydrologic cycle and includes two data bases consisting of climate and land use variables. The main program is described, along with control parameters to be set and pertinent subroutines.

  8. Remote sensing in the mixing zone. [water pollution in Wisconsin

    Science.gov (United States)

    Villemonte, J. R.; Hoopes, J. A.; Wu, D. S.; Lillesand, T. M.

    1973-01-01

    Characteristics of dispersion and diffusion as the mechanisms by which pollutants are transported in natural river courses were studied with the view of providing additional data for the establishment of water quality guidelines and effluent outfall design protocols. Work has been divided into four basic categories which are directed at the basic goal of developing relationships which will permit the estimation of the nature and extent of the mixing zone as a function of those variables which characterize the outfall structure, the effluent, and the river, as well as climatological conditions. The four basic categories of effort are: (1) the development of mathematical models; (2) laboratory studies of physical models; (3) field surveys involving ground and aerial sensing; and (4) correlation between aerial photographic imagery and mixing zone characteristics.

  9. Femtosecond laser-ablated Fresnel zone plate fiber probe and sensing applications

    Science.gov (United States)

    Tan, Xiaoling; Geng, Youfu; Chen, Yan; Li, Shiguo; Wang, Xinzhong

    2018-02-01

    We investigate the Fresnel zone plate (FZP) inscribed on multimode fiber endface using femtosecond laser ablation and its application in sensing. The mode transmission through fiber tips with FZP is investigated both by the beam propagation method theoretically and by measuring the beam images with a charge-coupled device camera experimentally, which show a good agreement. Such devices are tested for surface-enhanced Raman scattering (SERS) using the aqueous solution of rhodamine 6G under a Raman spectroscopy. The experimental results demonstrate that the SERS signal is enhanced benefiting from focal ability of FZP, which is a promising method for the particular biochemical spectra sensing applications.

  10. Methods for converting industrial zones

    Science.gov (United States)

    Talipova, L.; Kosyakov, E.; Polyakova, Irina

    2017-10-01

    In this article, industrial zones of Saint Petersburg and Hong Kong were considered. Competitive projects aimed at developing the grey belt of Saint Petersburg were considered. The methodology of the survey of reconstruction of the industrial zone of Hong Kong is also analyzed. The potential of the city’s grey belt lies in its location on the border of the city’s historical centre. Rational use of this potential will make it possible to achieve numerous objectives, including development of the city’s transport infrastructure, positioning of business functions, and organization of housing and the city’s system of green public spaces.

  11. GNSS remote sensing theory, methods and applications

    CERN Document Server

    Jin, Shuanggen; Xie, Feiqin

    2014-01-01

    This book presents the theory and methods of GNSS remote sensing as well as its applications in the atmosphere, oceans, land and hydrology. It contains detailed theory and study cases to help the reader put the material into practice.

  12. Using remote sensing to inform integrated coastal zone management

    CSIR Research Space (South Africa)

    Roberts, W

    2010-06-01

    Full Text Available TO INFORM INTERGRATED COASTAL ZONE MANAGEMENT GISSA Western Cape Regional Meeting Wesley Roberts & Melanie Luck-Vogel 2 June 2010 CSIR NRE Ecosystems Earth Observation Group What is Integrated Coastal Zone Management? Integrated coastal management... D1D1 B a n d 1 Band 2 Quick theory of CVA Magnitude Direction ( ) ( )22 xaxbyaybM ?+?= Quadrant 1 (++) Accretion Quadrant 2 (-+) Quadrant 4 (+-) Quadrant 3 (--) Erosion CVA Results & Conclusions ? Change in image time series...

  13. Sensing Methods for Detecting Analog Television Signals

    Science.gov (United States)

    Rahman, Mohammad Azizur; Song, Chunyi; Harada, Hiroshi

    This paper introduces a unified method of spectrum sensing for all existing analog television (TV) signals including NTSC, PAL and SECAM. We propose a correlation based method (CBM) with a single reference signal for sensing any analog TV signals. In addition we also propose an improved energy detection method. The CBM approach has been implemented in a hardware prototype specially designed for participating in Singapore TV white space (WS) test trial conducted by Infocomm Development Authority (IDA) of the Singapore government. Analytical and simulation results of the CBM method will be presented in the paper, as well as hardware testing results for sensing various analog TV signals. Both AWGN and fading channels will be considered. It is shown that the theoretical results closely match with those from simulations. Sensing performance of the hardware prototype will also be presented in fading environment by using a fading simulator. We present performance of the proposed techniques in terms of probability of false alarm, probability of detection, sensing time etc. We also present a comparative study of the various techniques.

  14. Assessing recharge using remotely sensed data in the Guarani Aquifer System outcrop zone

    Science.gov (United States)

    Lucas, M. C.; Oliveira, P. T. S.; Melo, D. D.; Wendland, E.

    2014-12-01

    Groundwater recharge is an essential hydrology component for sustainable water withdrawal from an aquifer. The Guarani Aquifer System (GAS) is the largest (~1.2 million km2) transboundary groundwater reservoir in South America, supplying freshwater to four countries: Brazil, Argentina, Paraguay and Uruguay. However, recharge in the GAS outcrop zones is one of the least known hydrological variables, in part because studies from hydrological data are scarce or nonexistent. We assess recharge using the water-budget as the difference of precipitation (P) and evapotranspiration (ET). Data is derived from remotely sensed estimates of P (TRMM 3B42 V7) and ET (MOD16) in the Onça Creek watershed over the 2004­-12 period. This is an upland-flat watershed (slope steepness < 1%) dominated by sand soils and representative of the GAS outcrop zones. We compared the remote sensing approach against Water Table Fluctuation (WTF) method and another water-budget using ground-based measurements. Uncertainty propagation analysis were also performed. On monthly basis, TRMM P exhibited a great agreement with ground-based P data (R2 = 0.86 and RMSE = 41 mm). Historical (2004-12) mean(±sd) satellite-based recharge (Rsat) was 537(±224) mm y-1, while ground-based recharge using water-budget (Rgr) and WTF (Rwtf) method was 469 mm y-1 and 311(±150) mm y-1, respectively. We found that ~440 mm y-1 is a reasonable historical mean (between Rsat, Rgr and Rwtf) recharge for the study area over 2004-2012 period. The latter mean recharge estimate is about 29% of the mean historical P (1,514 mm y-1). Our results provide the first insight about an intercomparison of water budget from remote sensing and measured data to estimate recharge in the GAS outcrop zone. These results should be useful for future studies on assessing recharge in the GAS outcrop zones. Since accurate and precise recharge estimation still is a gap, our recharge satellite-based is considered acceptable for the Onça Creek

  15. The interpretation of remote sensing image on the stability of fault zone at HLW repository site

    International Nuclear Information System (INIS)

    Liu Linqing; Yu Yunxiang

    1994-01-01

    It is attempted to interpret the buried fault at the preselected HLW repository site in western Gansu province with a remote sensing image. The authors discuss the features of neotectonism of Shule River buried fault zone and its two sides in light of the remote sensing image, geomorphology, stream pattern, type and thickness difference of Quaternary sediments, and structural basin, etc.. The stability of Shule River fault zone is mainly dominated by the neotectonic movement pattern and strength of its two sides. Although there exist normal and differential vertical movements along it, their strengths are small. Therefore, this is a weakly-active passive fault zone. The east Beishan area north to Shule River fault zone is weakliest active and is considered as the target for further pre-selection for HLW repository site

  16. Designing Zoning of Remote Sensing Drones for Urban Applications: a Review

    Science.gov (United States)

    Norzailawati, M. N.; Alias, A.; Akma, R. S.

    2016-06-01

    This paper discusses on-going research related to zoning regulation for the remote sensing drone in the urban applications. Timestamped maps are presented here follow a citation-based approach, where significant information is retrieved from the scientific literature. The emergence of drones in domestic air raises lots understandable issues on privacy, security and uncontrolled pervasive surveillance that require a careful and alternative solution. The effective solution is to adopt a privacy and property rights approach that create a drone zoning and clear drone legislatures. In providing a differential trend to other reviews, this paper is not limited to drones zoning and regulations, but also, discuss on trend remote sensing drones specification in designing a drone zones. Remote sensing drone will specific according to their features and performances; size and endurance, maximum airspeed and altitude level and particular references are made to the drones range. The implementation of laws zoning could lie with the urban planners whereby, a zoning for drone could become a new tactic used to specify areas, where drones could be used, will provide remedies for the harm that arise from drones, and act as a different against irresponsible behaviour. Finally, underlines the need for next regulations on guidelines and standards which can be used as a guidance for urban decision makers to control the drones' operating, thus ensuring a quality and sustainability of resilience cities simultaneously encouraging the revolution of technology.

  17. Remote Sensing of Forest Cover in Boreal Zones of the Earth

    Science.gov (United States)

    Sedykh, V. N.

    2011-12-01

    historically formed ecological properties of the forest. Constantly updated information will permit the regulation of human pressure on forests to ensure that there is no reduction in their role in the biosphere processes of carbon accumulation and release. Satellite monitoring within identified landscape requires initial quantitative information about forest, about other biotic components of landscapes, and about their abiotic environment determined through both ground-based measurements and remote sensing. Thus, a kind of passport should be kept for each landscape as a starting point for subsequent updating of remote sensing monitoring of forests and their habitats and the assessment of their changes. Implementation of such monitoring across the entire boreal zone of the Earth is possible on the basis of geographical and genetic typology of forest and phyto-geomorphological method of aerospace image interpretation. Both approaches are based on the use of relationships between topography and vegetation, and were successfully applied by the author to aerospace monitoring of the forest cover of West Siberian Plain.

  18. Mapping of groundwater potential zones in the musi basin using remote sensing data and gis

    NARCIS (Netherlands)

    Ganapuram, Sreedhar; Vijaya Kumar, G.T.; Murali Krishna, I.V.; Kahya, Ercan; Demirel, M.C.

    2009-01-01

    The objective of this study is to explore the groundwater availability for agriculture in the Musi basin. Remote sensing data and geographic information system were used to locate potential zones for groundwater in the Musi basin. Various maps (i.e., base, hydrogeomorphological, geological,

  19. Relationships between soil-based management zones and canopy sensing for corn nitrogen management

    Science.gov (United States)

    Integrating soil-based management zones (MZ) with crop-based active canopy sensors to direct spatially variable nitrogen (N) applications has been proposed for improving N fertilizer management of corn (Zea mays L.). Analyses are needed to evaluate relationships between canopy sensing and soil-based...

  20. Method and apparatus for wavefront sensing

    Science.gov (United States)

    Bahk, Seung-Whan

    2018-03-20

    A method for performing optical wavefront sensing includes providing an amplitude transmission mask having a light input side, a light output side, and an optical transmission axis passing from the light input side to the light output side. The amplitude transmission mask is characterized by a checkerboard pattern having a square unit cell of size .LAMBDA.. The method also includes directing an incident light field having a wavelength $ \\lamda $ to be incident on the light input side and propagating the incident light field through the amplitude transmission mask. The method further includes producing a plurality of diffracted light fields on the light output side and detecting, at a detector disposed a distance L from the amplitude transmission mask, an interferogram associated with the plurality of diffracted light fields.

  1. A planar conducting microstructure to guide and confine magnetic beads to a sensing zone

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2011-08-01

    A novel planar conducting microstructure is proposed to transport and confine magnetic micro/nano beads to a sensing zone. Manipulation and concentration of magnetic beads are achieved by employing square-shaped conducting micro-loops, with a few hundred nano-meters in thickness, arranged in a unique fashion. These microstructures are designed to produce high magnetic field gradients which are directly proportional to the force applied to manipulate the magnetic beads. Furthermore, the size of the microstructures allows greater maneuverability and control of magnetic beads than what could be achieved by permanent magnets. The aim of the microstructures is to guide magnetic beads from a large area and confine them to a smaller area where for example quantification would take place. Experiments were performed with different concentrations of 2 μm diameter magnetic beads. Experimental results showed that magnetic beads could be successfully guided and confined to the sensing zone. © 2011 Elsevier B.V. All rights reserved.

  2. DESIGNING ZONING OF REMOTE SENSING DRONES FOR URBAN APPLICATIONS: A REVIEW

    OpenAIRE

    M. N. Norzailawati; A. Alias; R. S. Akma

    2016-01-01

    This paper discusses on-going research related to zoning regulation for the remote sensing drone in the urban applications. Timestamped maps are presented here follow a citation-based approach, where significant information is retrieved from the scientific literature. The emergence of drones in domestic air raises lots understandable issues on privacy, security and uncontrolled pervasive surveillance that require a careful and alternative solution. The effective solution is to adopt ...

  3. Evaluation of remotely sensed data for estimating recharge to an outcrop zone of the Guarani Aquifer System (South America)

    Science.gov (United States)

    Lucas, Murilo; Oliveira, Paulo T. S.; Melo, Davi C. D.; Wendland, Edson

    2015-08-01

    The Guarani Aquifer System (GAS) is the largest transboundary groundwater reservoir in South America, yet recharge in the GAS outcrop zones is one of the least known hydrological variables. The objective of this study was to assess the suitability of using remote sensing data in the water-budget equation for estimating recharge inter-annual patterns in a representative GAS outcropping area. Data were obtained from remotely sensed estimates of precipitation ( P) and evapotranspiration (ET) using TRMM 3B42 V7 and MOD16, respectively, in the Onça Creek watershed in Brazil over the 2004-2012 period. This is an upland flat watershed (slope steepness <1 %) dominated by sandy soils and representative of the GAS outcrop zones. The remote sensing approach was compared to the water-table fluctuation (WTF) method and another water-budget equation using ground-based measurements. On a monthly basis, the TRMM P estimate showed significant agreement with the ground-based P data ( r = 0.93 and RMSE = 41 mm). Mean(±SD) satellite-based recharge ( R sat) was 537(±224) mm year-1. Mean ground-based recharge using the water-budget ( R gr) and the WTF ( R wtf) methods were 469 mm year-1 and 311(±75) mm year-1, respectively. Results show that 440 mm year-1 is a mean (between R sat, R gr and R wtf) recharge for the study area over the 2004-2012 period. The latter mean recharge estimate is about 29 % of the mean historical P (1,514 mm year-1). These results are useful for future studies on assessing recharge in the GAS outcrop zones where data are scarce or nonexistent.

  4. Annotated bibliography of remote sensing methods for monitoring desertification

    Science.gov (United States)

    Walker, A.S.; Robinove, Charles J.

    1981-01-01

    Remote sensing techniques are valuable for locating, assessing, and monitoring desertification. Remotely sensed data provide a permanent record of the condition of the land in a format that allows changes in land features and condition to be measured. The annotated bibliography of 118 items discusses remote sensing methods that may be applied to desertification studies.

  5. Sense of shear and displacement estimates in the Abeibara-Rarhous late Pan-African shear zone, Adrar des Iforas, Mali

    Science.gov (United States)

    Boullier, Anne-Marie

    The late Pan-African Abeibara-Rarhous shear zone in the Adrar des Iforas (Mali) is described and studied with the aim of defining the direction, sense of movement and amount of displacement along the zone. It is a strike-slip shear zone, the dextral sense of which is demonstrated at the scale of the map by the rotation of the related mylonitic foliation and at the scale of the thin section with characteristic microstructures. Preferred orientation of quartz c-axes is tentatively used; three quartz-rich samples of 35% or more quartz indicate dextral strike-slip movement, but other samples do not show preferred orientation of quartz c-axes. Strain measurements have been performed on one half of the shear zone using established techniques and a new technique using the thickness of mylonitic layering. The results vary along the length of the shear zone when using the same method and for the same cross-section when using the three methods together. A mean value of 4 km is obtained for total displacement which is low when considering the apparent width of the shear zone. This result is discussed in view of the assumptions involved in the strain estimation. The tectonic history of the Abeibara-Rarhous shear zone and its significance in the Trans-Saharan Pan-African collisional belt are discussed.

  6. Study of test methods for radionuclide migration in aerated zone

    International Nuclear Information System (INIS)

    Li Shushen; Guo Zede; Wang Zhiming

    1993-01-01

    Aerated zone is an important natural barrier against transport of radionuclides released from disposal facilities of LLRW. This paper introduces study methods for radionuclide migration in aerated zone, including determination of water movement, laboratory simulation test, and field tracing test. For one purpose, results obtained with different methods are compared. These methods have been used in a five-year cooperative research project between CIRP and JAERI for an establishment of methodology for safety assessment on shallow land disposal of LLRW

  7. Change detection studies in coastal zone features of Goa, India by remote sensing

    Digital Repository Service at National Institute of Oceanography (India)

    ManiMurali, R.; Vethamony, P.; Saran, A.K.; Jayakumar, S.

    is the prime tourist destination of India, and the tourism industry is growing rapidly. Ass o- ciated with this growth, c hanges could be d e tected in the land - use, especially along the coastal belt such as co n- struction of buildings, environment...) have been studied using r e mote sensing data 3,4 . As Goa is one of the global tourist destination s of the world, more develo p- ment is expected along the coastal zone , and subs e quently there will be changes in the land - use/ land...

  8. Identification of Cracked Zone in Sutami dam Using Geoelectrical Method

    Directory of Open Access Journals (Sweden)

    Fina Fitriah

    2015-12-01

    Full Text Available We identified the craked zones based on geoelectrical resistivity method in Sutami Dam. There are four lines measurement of geoelectrical resistivity method with a length of 380-400 meters. The direction of each line is from the northeast to the southwest. All of the tracks are located at the top of Sutami Dam i.e. two tracks in the upstream and the others in the downstream. From the analysis we found that the lithology is detected by geoelectrical resistivty method showed two layers of design of Sutami Dam. The two layers that are detected are transition zone and filter zone. Transition zone consists of sandstone rock containing water (0.922 Ωm-9.57 Ωm and dry sandstone (>9.57 Ωm-320 Ωm. Filter zone consists of sand (>320 Ωm-4410 Ωm. Cracked zones spread in the upstream, downstream, and roadway at the top of Sutami Dam which are indicated by the presence of low resistivity (0.922 Ωm-9.57 Ωm based on 3D processing of data of geoelectrical resistivity. The distribution of cracked zone indicates that Sutami Dam is susceptible to ground movement.

  9. Thermal infrared remote sensing sensors, methods, applications

    CERN Document Server

    Kuenzer, Claudia

    2013-01-01

    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  10. Mapping Of The Hydrothermal Alteration Zones At Haimur Gold Mine Area, South Eastern Desert, Egypt, Using Remote Sensing Techniques

    International Nuclear Information System (INIS)

    Madani, A.A.; Abdel Rahman, E.M.; FA WZY, Kh.M.; EMAM, A.

    2003-01-01

    The utilization of the Landsat-7 ETM+ imagery and scanned aerial photograph for mapping hydrothermal alteration zones at the Haimur gold mine area, south Eastern Desert, Egypt and the production of large scale geologic image map, scale 1 :20 000, using fusion technique are the main tasks of this article. The study area lies at the conjunction of two shear zones, namely the Allaqi shear zone (NW-SE) and the Haimur shear zone (NE-SW). The basement rocks covering Haimur gold mine area include ophiolitic blocks and sheets that were tectonically thrusted over and mixed within a matrix of island arc rocks. Principal Component Analysis, band ratios and data fusion are the main remote sensing techniques applied in the present work. The eigenvalue of the first principal component (PCl) includes 95.9% of the information content of the image whereas PC2 and PC5 mark 3.03% and 0.10%, respectively. The PC5 image was found to represent the highly altered rocks in the study area (serpentinites and carbonates), which display dark image signatures. The metagabbros and metapyroclastics can be easily discriminated on the PC1:R, PC2:G and PC5:B false color composite image in which they have dark red and blue image signatures, respectively. The talc carbonates and the serpentinites have bright image signatures on 5/7 band ratio image whereas metapyroxenites have dark image signatures. The talc carbonates are composed mainly of talc, magnesite and calcite with subordinate amounts of fibrous antigorite. These minerals have absorption features near 2.35 m which lead to increase 5/7 band ratio value. The false color composite ratio image 5/7:R, 4/5:G and 3/1:B was merged with scanned high spatial resolution aerial photograph using IHS transformation method. The resultant fused image was then used to delineate the hydrothermal alteration zones as well as listwaenite ridges exposed at the Haimur gold mine area

  11. Digital methods and remote sensing in archaeology archaeology in the age of sensing

    CERN Document Server

    Campana, Stefano

    2016-01-01

    This volume debuts the new scope of Remote Sensing, which was first defined as the analysis of data collected by sensors that were not in physical contact with the objects under investigation (using cameras, scanners, and radar systems operating from spaceborne or airborne platforms). A wider characterization is now possible: Remote Sensing can be any non-destructive approach to viewing the buried and nominally invisible evidence of past activity. Spaceborne and airborne sensors, now supplemented by laser scanning, are united using ground-based geophysical instruments and undersea remote sensing, as well as other non-invasive techniques such as surface collection or field-walking survey. Now, any method that enables observation of evidence on or beneath the surface of the earth, without impact on the surviving stratigraphy, is legitimately within the realm of Remote Sensing. The new interfaces and senses engaged in Remote Sensing appear throughout the book. On a philosophical level, this is about the landscap...

  12. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  13. Blind compressed sensing image reconstruction based on alternating direction method

    Science.gov (United States)

    Liu, Qinan; Guo, Shuxu

    2018-04-01

    In order to solve the problem of how to reconstruct the original image under the condition of unknown sparse basis, this paper proposes an image reconstruction method based on blind compressed sensing model. In this model, the image signal is regarded as the product of a sparse coefficient matrix and a dictionary matrix. Based on the existing blind compressed sensing theory, the optimal solution is solved by the alternative minimization method. The proposed method solves the problem that the sparse basis in compressed sensing is difficult to represent, which restrains the noise and improves the quality of reconstructed image. This method ensures that the blind compressed sensing theory has a unique solution and can recover the reconstructed original image signal from a complex environment with a stronger self-adaptability. The experimental results show that the image reconstruction algorithm based on blind compressed sensing proposed in this paper can recover high quality image signals under the condition of under-sampling.

  14. Definition of a critical confining zone using surface geophysical methods

    International Nuclear Information System (INIS)

    Eddy-Dilek, C.A.; Hoekstra, P.; Harthill, N.; Blohm, M.; Phillips, D.R.

    1996-01-01

    Definition of the hydrogeologic framework in layered sediments of fluvial and deltaic origin is a difficult challenge for environmental characterization and remediation programs due to the lithologic and stratigraphic heterogeneities inherent in these settings. These heterogeneties often control contaminant transport and the effectiveness of remediation alternatives, Surface geophysical surveys can be cost-effective methods for characterization, but individual methods have inherent limitations in resolution and sensitivity. A synergistic approach, utilizing two geophysical survey methods was applied, to define and examine the nature and extent of a deep confining zone of regulatory importance, the Crouch Branch Confining Unit, in Coastal Plain sediments at the Savannah River Site. TDEM accurately maps the overall conductance (product of thickness and electrical conductivity) of a confining zone clay facies; from variation in conductance, changes in lithology of the conforming zone can be inferred. Shear wave seismic reflection surveys map the depth to the clay layers, and the clay layer thickness, but provides little information on the lithologic nature of the confining zone. Integrated interpretation of the combined data set (including all available borehole logs) allows for delineation of the lateral and vertical extent of clay-dominated zones, sand-dominated zones, key stratigraphic horizons, and erosional features associated with unconformities. This approach has resulted in the collection of critical information that will be used to optimize remedial system design, representing a significant cost savings to environmental restoration programs at the Savannah River Site

  15. Benchmarking of Remote Sensing Segmentation Methods

    Czech Academy of Sciences Publication Activity Database

    Mikeš, Stanislav; Haindl, Michal; Scarpa, G.; Gaetano, R.

    2015-01-01

    Roč. 8, č. 5 (2015), s. 2240-2248 ISSN 1939-1404 R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : benchmark * remote sensing segmentation * unsupervised segmentation * supervised segmentation Subject RIV: BD - Theory of Information Impact factor: 2.145, year: 2015 http://library.utia.cas.cz/separaty/2015/RO/haindl-0445995.pdf

  16. Deriving harmonised forest information in Europe using remote sensing methods

    DEFF Research Database (Denmark)

    Seebach, Lucia Maria

    the need for harmonised forest information can be satisfied using remote sensing methods. In conclusion, the study showed that it is possible to derive harmonised forest information of high spatial detail in Europe with remote sensing. The study also highlighted the imperative provision of accuracy...

  17. Remote sensing analysis for fault-zones detection in the Central Andean Plateau (Catamarca, Argentina)

    Science.gov (United States)

    Traforti, Anna; Massironi, Matteo; Zampieri, Dario; Carli, Cristian

    2015-04-01

    Remote sensing techniques have been extensively used to detect the structural framework of investigated areas, which includes lineaments, fault zones and fracture patterns. The identification of these features is fundamental in exploration geology, as it allows the definition of suitable sites for the exploitation of different resources (e.g. ore mineral, hydrocarbon, geothermal energy and groundwater). Remote sensing techniques, typically adopted in fault identification, have been applied to assess the geological and structural framework of the Laguna Blanca area (26°35'S-66°49'W). This area represents a sector of the south-central Andes localized in the Argentina region of Catamarca, along the south-eastern margin of the Puna plateau. The study area is characterized by a Precambrian low-grade metamorphic basement intruded by Ordovician granitoids. These rocks are unconformably covered by a volcano-sedimentary sequence of Miocene age, followed by volcanic and volcaniclastic rocks of Upper Miocene to Plio-Pleistocene age. All these units are cut by two systems of major faults, locally characterized by 15-20 m wide damage zones. The detection of main tectonic lineaments in the study area was firstly carried out by classical procedures: image sharpening of Landsat 7 ETM+ images, directional filters applied to ASTER images, medium resolution Digital Elevation Models analysis (SRTM and ASTER GDEM) and hill shades interpretation. In addition, a new approach in fault zone identification, based on multispectral satellite images classification, has been tested in the Laguna Blanca area and in other sectors of south-central Andes. In this perspective, several prominent fault zones affecting basement and granitoid rocks have been sampled. The collected fault gouge samples have been analyzed with a Field-Pro spectrophotometer mounted on a goniometer. We acquired bidirectional reflectance spectra, from 0.35μm to 2.5μm with 1nm spectral sampling, of the sampled fault rocks

  18. Artificial groundwater recharge zones mapping using remote sensing and GIS: a case study in Indian Punjab.

    Science.gov (United States)

    Singh, Amanpreet; Panda, S N; Kumar, K S; Sharma, Chandra Shekhar

    2013-07-01

    Artificial groundwater recharge plays a vital role in sustainable management of groundwater resources. The present study was carried out to identify the artificial groundwater recharge zones in Bist Doab basin of Indian Punjab using remote sensing and geographical information system (GIS) for augmenting groundwater resources. The study area has been facing severe water scarcity due to intensive agriculture for the past few years. The thematic layers considered in the present study are: geomorphology (2004), geology (2004), land use/land cover (2008), drainage density, slope, soil texture (2000), aquifer transmissivity, and specific yield. Different themes and related features were assigned proper weights based on their relative contribution to groundwater recharge. Normalized weights were computed using the Saaty's analytic hierarchy process. Thematic layers were integrated in ArcGIS for delineation of artificial groundwater recharge zones. The recharge map thus obtained was divided into four zones (poor, moderate, good, and very good) based on their influence to groundwater recharge. Results indicate that 15, 18, 37, and 30 % of the study area falls under "poor," "moderate," "good," and "very good" groundwater recharge zones, respectively. The highest recharge potential area is located towards western and parts of middle region because of high infiltration rates caused due to the distribution of flood plains, alluvial plain, and agricultural land. The least effective recharge potential is in the eastern and middle parts of the study area due to low infiltration rate. The results of the study can be used to formulate an efficient groundwater management plan for sustainable utilization of limited groundwater resources.

  19. A NDVI assisted remote sensing image adaptive scale segmentation method

    Science.gov (United States)

    Zhang, Hong; Shen, Jinxiang; Ma, Yanmei

    2018-03-01

    Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.

  20. A change detection method for remote sensing image based on LBP and SURF feature

    Science.gov (United States)

    Hu, Lei; Yang, Hao; Li, Jin; Zhang, Yun

    2018-04-01

    Finding the change in multi-temporal remote sensing image is important in many the image application. Because of the infection of climate and illumination, the texture of the ground object is more stable relative to the gray in high-resolution remote sensing image. And the texture features of Local Binary Patterns (LBP) and Speeded Up Robust Features (SURF) are outstanding in extracting speed and illumination invariance. A method of change detection for matched remote sensing image pair is present, which compares the similarity by LBP and SURF to detect the change and unchanged of the block after blocking the image. And region growing is adopted to process the block edge zone. The experiment results show that the method can endure some illumination change and slight texture change of the ground object.

  1. Data Analysis Of A Coastal Zone Remote Sensing Campaign By The Nasa C130 Airplane

    Science.gov (United States)

    Pippi, I.; Radicati, B.

    1988-01-01

    The principal goal of most of our remote sensing campaigns has been the choice of the best airborne sensors and the selection of the most efficient visible and infrared wavelengths for the remote sensing of the Italian coastal zone. The "1986 C130 European Program" was performed by NASA C130 airplane last summer. In this contest on 30th July a flight over the Tuscan islands and coast was performed. The airplane was equipped with the following main sensors: a Thematic Mapper Simulator (TMS), a Thermal Infrared Multispectral Scanner (TIMS) and an Airborne Imaging Spectrometer (AIS). The images acquired, were firstly corrected for the several types of instrumental noise and errors and after that were correlated with the flight parameters and geometrically corrected. Finally the data were reduced to physical units taking into account the sensors calibration. Particular attention was also paid to the atmospheric effects taken into account by the use of the spectral results of the computer program LOWTRAN-6. First results on sea temperature detection, especially near river or channel estuaries, were reported. At the same time comparison between the thermal infrared channel of the TMS and those of THIS was performed. In addition studies are being made on the relationships among chlorophyll, plankton, yellow substance, oil at sea, total suspended matter, fluorescence and sea color. On that basis, combining the bands of the TMS, tentative image processing is being performed to determinate alga and dissolved organic materials covering.

  2. Remote sensing for assessing the zone of benefit where deep drains improve productivity of land affected by shallow saline groundwater.

    Science.gov (United States)

    Kobryn, H T; Lantzke, R; Bell, R; Admiraal, R

    2015-03-01

    The installation of deep drains is an engineering approach to remediate land salinised by the influence of shallow groundwater. It is a costly treatment and its economic viability is, in part, dependent on the lateral extent to which the drain increases biological productivity by lowering water tables and soil salinity (referred to as the drains' zone of benefit). Such zones may be determined by assessing the biological productivity response of adjacent vegetation over time. We tested a multi-temporal satellite remote sensing method to analyse temporal and spatial changes in vegetation condition surrounding deep drainage sites at five locations in the Western Australian wheatbelt affected by dryland salinity-Morawa, Pithara, Beacon, Narembeen and Dumbleyung. Vegetation condition as a surrogate for biological productivity was assessed by Normalised Difference Vegetation Index (NDVI) during the peak growing season. Analysis was at the site scale within a 1000 m buffer zone from the drains. There was clear evidence of NDVI increasing with elevation, slope and distance from the drain. After accounting for elevation, slope and distance from the drain, there was a significant increase in NDVI across the five locations after installation of deep drains. Changes in NDVI after drainage were broadly consistent with measured changes at each site in groundwater levels after installation of the deep drains. However, this study assessed the lateral extent of benefit for biological productivity and gave a measure of the area of benefit along the entire length of the drain. The method demonstrated the utility of spring NDVI images for rapid and relatively simple assessment of the change in site condition after implementation of drainage, but approaches for further improvement of the procedure were identified. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Measurement Methods to Determine Air Leakage Between Adjacent Zones

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dickerhoff, Darryl J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-09-01

    Air leakage between adjacent zones of a building can lead to indoor air quality and energy efficiency concerns, however there is no existing standard for measuring inter-zonal leakage. In this study, synthesized data and field measurements are analyzed in order to explore the uncertainty associated with different methods for collecting and analyzing fan pressurization measurements to calculate interzone leakage.

  4. Estimation of CANDU reactor zone controller level by generalized perturbation method

    International Nuclear Information System (INIS)

    Kim, Do Heon; Kim, Jong Kyung; Choi, Hang Bok; Roh, Gyu Hong; Yang, Won Sik

    1998-01-01

    The zone controller level change due to refueling operation has been studied using a generalized perturbation method. The generalized perturbation method provides sensitivity of zone power to individual refueling operation and incremental change of zone controller level. By constructing a system equation for each zone power, the zone controller level change was obtained. The details and a proposed model for future work are described

  5. Two linearization methods for atmospheric remote sensing

    International Nuclear Information System (INIS)

    Doicu, A.; Trautmann, T.

    2009-01-01

    We present two linearization methods for a pseudo-spherical atmosphere and general viewing geometries. The first approach is based on an analytical linearization of the discrete ordinate method with matrix exponential and incorporates two models for matrix exponential calculation: the matrix eigenvalue method and the Pade approximation. The second method referred to as the forward-adjoint approach is based on the adjoint radiative transfer for a pseudo-spherical atmosphere. We provide a compact description of the proposed methods as well as a numerical analysis of their accuracy and efficiency.

  6. Review of Literature on Terminal Box Control, Occupancy Sensing Technology and Multi-zone Demand Control Ventilation (DCV)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Dasu, Aravind R.; Zhang, Jian

    2012-03-01

    This report presents an overall review of the standard requirement, the terminal box control, occupancy sensing technology and DCV. There is system-specific guidance for single-zone systems, but DCV application guidance for multi-zone variable air volume (VAV) systems is not available. No real-world implementation case studies have been found using the CO2-based DCV. The review results also show that the constant minimum air flow set point causes excessive fan power consumption and potential simultaneous heating and cooling. Occupancy-based control (OBC) is needed for the terminal box in order to achieve deep energy savings. Key to OBC is a technology for sensing the actual occupancy of the zone served in real time. Several technologies show promise, but none currently fully meets the need with adequate accuracy and sufficiently low cost.

  7. Transit Traffic Analysis Zone Delineating Method Based on Thiessen Polygon

    Directory of Open Access Journals (Sweden)

    Shuwei Wang

    2014-04-01

    Full Text Available A green transportation system composed of transit, busses and bicycles could be a significant in alleviating traffic congestion. However, the inaccuracy of current transit ridership forecasting methods is imposing a negative impact on the development of urban transit systems. Traffic Analysis Zone (TAZ delineating is a fundamental and essential step in ridership forecasting, existing delineating method in four-step models have some problems in reflecting the travel characteristics of urban transit. This paper aims to come up with a Transit Traffic Analysis Zone delineation method as supplement of traditional TAZs in transit service analysis. The deficiencies of current TAZ delineating methods were analyzed, and the requirements of Transit Traffic Analysis Zone (TTAZ were summarized. Considering these requirements, Thiessen Polygon was introduced into TTAZ delineating. In order to validate its feasibility, Beijing was then taken as an example to delineate TTAZs, followed by a spatial analysis of office buildings within a TTAZ and transit station departure passengers. Analysis result shows that the TTAZs based on Thiessen polygon could reflect the transit travel characteristic and is of in-depth research value.

  8. Adaptive-mesh zoning by the equipotential method

    Energy Technology Data Exchange (ETDEWEB)

    Winslow, A.M.

    1981-04-01

    An adaptive mesh method is proposed for the numerical solution of differential equations which causes the mesh lines to move closer together in regions where higher resolution in some physical quantity T is desired. A coefficient D > 0 is introduced into the equipotential zoning equations, where D depends on the gradient of T . The equations are inverted, leading to nonlinear elliptic equations for the mesh coordinates with source terms which depend on the gradient of D. A functional form of D is proposed.

  9. Hydrogen sensing method with a quartz sensor

    International Nuclear Information System (INIS)

    Suzuki, A.; Kurokawa, A.; Nonaka, H.

    2006-01-01

    The stability for hydrogen leakage detection was improved by impedance measurement with a quartz sensor (Q-sensor) instead of pressure measurement with a quartz friction pressure gauge (Q-gauge) previously used. Degree of the experimental fluctuation of the impedance from the Q-sensor and of the pressure from the Q-gauge was 0.06 and 0.2 % of each output, thus showing that the Q-sensor measurement was more stable than that by the Q-gauge. Estimated minimum detection limit for hydrogen by the Q-sensor impedance measurement is also improved compared to the Q-gauge pressure measurement. Low hydrogen concentration experiment presented that the Q-sensor impedance measurement detects the 0.05 vol.% hydrogen in air at atmospheric pressure more sensitively than the Q-gauge pressure measurement. It was proved that the Q-sensor impedance measurement was more sensitive and stable as a hydrogen leakage detection method than the Q-gauge pressure measurement. (authors)

  10. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques

    Directory of Open Access Journals (Sweden)

    N.S. Magesh

    2012-03-01

    Full Text Available Integration of remote sensing data and the geographical information system (GIS for the exploration of groundwater resources has become a breakthrough in the field of groundwater research, which assists in assessing, monitoring, and conserving groundwater resources. In the present paper, various groundwater potential zones for the assessment of groundwater availability in Theni district have been delineated using remote sensing and GIS techniques. Survey of India toposheets and IRS-1C satellite imageries are used to prepare various thematic layers viz. lithology, slope, land-use, lineament, drainage, soil, and rainfall were transformed to raster data using feature to raster converter tool in ArcGIS. The raster maps of these factors are allocated a fixed score and weight computed from multi influencing factor (MIF technique. Moreover, each weighted thematic layer is statistically computed to get the groundwater potential zones. The groundwater potential zones thus obtained were divided into four categories, viz., very poor, poor, good, and very good zones. The result depicts the groundwater potential zones in the study area and found to be helpful in better planning and management of groundwater resources.

  11. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid; van Oort, Eric; Patzek, Tadeusz

    2018-01-01

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  12. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid

    2018-05-17

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  13. POLARIZATION REMOTE SENSING PHYSICAL MECHANISM, KEY METHODS AND APPLICATION

    Directory of Open Access Journals (Sweden)

    B. Yang

    2017-09-01

    Full Text Available China's long-term planning major projects "high-resolution earth observation system" has been invested nearly 100 billion and the satellites will reach 100 to 2020. As to 2/3 of China's area covered by mountains,it has a higher demand for remote sensing. In addition to light intensity, frequency, phase, polarization is also the main physical characteristics of remote sensing electromagnetic waves. Polarization is an important component of the reflected information from the surface and the atmospheric information, and the polarization effect of the ground object reflection is the basis of the observation of polarization remote sensing. Therefore, the effect of eliminating the polarization effect is very important for remote sensing applications. The main innovations of this paper is as follows: (1 Remote sensing observation method. It is theoretically deduced and verified that the polarization can weaken the light in the strong light region, and then provide the polarization effective information. In turn, the polarization in the low light region can strengthen the weak light, the same can be obtained polarization effective information. (2 Polarization effect of vegetation. By analyzing the structure characteristics of vegetation, polarization information is obtained, then the vegetation structure information directly affects the absorption of biochemical components of leaves. (3 Atmospheric polarization neutral point observation method. It is proved to be effective to achieve the ground-gas separation, which can achieve the effect of eliminating the atmospheric polarization effect and enhancing the polarization effect of the object.

  14. Zoning method for environmental engineering geological patterns in underground coal mining areas.

    Science.gov (United States)

    Liu, Shiliang; Li, Wenping; Wang, Qiqing

    2018-09-01

    Environmental engineering geological patterns (EEGPs) are used to express the trend and intensity of eco-geological environment caused by mining in underground coal mining areas, a complex process controlled by multiple factors. A new zoning method for EEGPs was developed based on the variable-weight theory (VWT), where the weights of factors vary with their value. The method was applied to the Yushenfu mining area, Shaanxi, China. First, the mechanism of the EEGPs caused by mining was elucidated, and four types of EEGPs were proposed. Subsequently, 13 key control factors were selected from mining conditions, lithosphere, hydrosphere, ecosphere, and climatic conditions; their thematic maps were constructed using ArcGIS software and remote-sensing technologies. Then, a stimulation-punishment variable-weight model derived from the partition of basic evaluation unit of study area, construction of partition state-variable-weight vector, and determination of variable-weight interval was built to calculate the variable weights of each factor. On this basis, a zoning mathematical model of EEGPs was established, and the zoning results were analyzed. For comparison, the traditional constant-weight theory (CWT) was also applied to divide the EEGPs. Finally, the zoning results obtained using VWT and CWT were compared. The verification of field investigation indicates that VWT is more accurate and reliable than CWT. The zoning results are consistent with the actual situations and the key of planning design for the rational development of coal resources and protection of eco-geological environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Statistical mapping of zones of focused groundwater/surface-water exchange using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Mwakanyamale, Kisa; Day-Lewis, Frederick D.; Slater, Lee D.

    2013-01-01

    Fiber-optic distributed temperature sensing (FO-DTS) increasingly is used to map zones of focused groundwater/surface-water exchange (GWSWE). Previous studies of GWSWE using FO-DTS involved identification of zones of focused GWSWE based on arbitrary cutoffs of FO-DTS time-series statistics (e.g., variance, cross-correlation between temperature and stage, or spectral power). New approaches are needed to extract more quantitative information from large, complex FO-DTS data sets while concurrently providing an assessment of uncertainty associated with mapping zones of focused GSWSE. Toward this end, we present a strategy combining discriminant analysis (DA) and spectral analysis (SA). We demonstrate the approach using field experimental data from a reach of the Columbia River adjacent to the Hanford 300 Area site. Results of the combined SA/DA approach are shown to be superior to previous results from qualitative interpretation of FO-DTS spectra alone.

  16. Integration of Remote Sensing and other public GIS data source to identify suitable zones for groundwater exploitation by manual drilling

    Science.gov (United States)

    Fussi, Fabio; Fava, Francesco; Di Mauro, Biagio; Bonomi, Tullia; Fumagalli, Letizia; DI Leo, Margherita; Hamidou Kane, Cheik; Faye, Gayane; Niang, Magatte; Wade, Souleye; Hamidou, Barry; Colombo, Roberto

    2015-04-01

    In several countries of the world the situation of water supply is still critical, far from the international target defined by United Nations for 2015 (Millenium Development Goals) and producing a huge impact on health and living condition of the population. Manual drilling (it means techniques to drill boreholes for water using human or animal power) is well known and practiced for centuries in many countries. In recent years, it has been considered a potential strategy to increase water access in poor countries and has raised the attention of national governments and international organizations. Manual drilling is applicable only where hydrogeological context is suitable, according to the following conditions: thick layers of unconsolidated sediments and shallow water table. Mapping of zones with suitable hydrogeological context has been carried out in several countries in Africa, but the results have evident limitations; previous methods are based on existing direct data and qualitative experience, leading to unreliable interpretation when direct data are limited. This research aims to develop a methodology to estimate shallow hydrogeological features and asses the distribution of suitable zones for manual drilling through the integration of indirect information obtained from remote sensing and other existing source of data. The research is carried out in two different study areas, in Senegal and Guinea (Western Africa), with semi-arid climate, moderate vegetation cover, unconsolidated sandy and clay deposits overlaying sedimentary and igneous rocks A set of variables have been obtained through processing of three categories of data, listed below: - geology, geomorphology, soil and land cover, obtained from existing thematic maps; - vegetation phenology, apparent thermal inertia, and soil moisture, obtained from analysis of multitemporal optical (MOD13Q1), thermal (MOD11A1), and radar (ASAR) remotely sensed data: -morphometric parameters, obtained from public

  17. Simplified theory of plastic zones based on Zarka's method

    CERN Document Server

    Hübel, Hartwig

    2017-01-01

    The present book provides a new method to estimate elastic-plastic strains via a series of linear elastic analyses. For a life prediction of structures subjected to variable loads, frequently encountered in mechanical and civil engineering, the cyclically accumulated deformation and the elastic plastic strain ranges are required. The Simplified Theory of Plastic Zones (STPZ) is a direct method which provides the estimates of these and all other mechanical quantities in the state of elastic and plastic shakedown. The STPZ is described in detail, with emphasis on the fact that not only scientists but engineers working in applied fields and advanced students are able to get an idea of the possibilities and limitations of the STPZ. Numerous illustrations and examples are provided to support the reader's understanding.

  18. Regularization methods for inferential sensing in nuclear power plants

    International Nuclear Information System (INIS)

    Hines, J.W.; Gribok, A.V.; Attieh, I.; Uhrig, R.E.

    2000-01-01

    Inferential sensing is the use of information related to a plant parameter to infer its actual value. The most common method of inferential sensing uses a mathematical model to infer a parameter value from correlated sensor values. Collinearity in the predictor variables leads to an ill-posed problem that causes inconsistent results when data based models such as linear regression and neural networks are used. This chapter presents several linear and non-linear inferential sensing methods including linear regression and neural networks. Both of these methods can be modified from their original form to solve ill-posed problems and produce more consistent results. We will compare these techniques using data from Florida Power Corporation's Crystal River Nuclear Power Plant to predict the drift in a feedwater flow sensor. According to a report entitled 'Feedwater Flow Measurement in U.S. Nuclear Power Generation Stations' that was commissioned by the Electric Power Research Institute, venturi meter fouling is 'the single most frequent cause' for derating in Pressurized Water Reactors. This chapter presents several viable solutions to this problem. (orig.)

  19. Delineation of ground water potential zones using GIS and remote sensing - A case study from midland region of Vamanapuram river basin, Kerala, India

    Science.gov (United States)

    Prasad, Geena; Vinod P., G.; John, Shaleena Elizabeth

    2018-04-01

    In a highly rugged terrain, shielded by hard crystalline rocks like that of Kerala, locating potential zones of groundwater is found to be an unenviable task. Remote sensing and Geographical information system technologies have been attempted widely to delineate the potential regions in such terrain. Geographical information system tool has been used for delineation of groundwater prospect zones in midland physiographic zone (30-200m) of Vamanapuram river basin. The terrain variables are generated using satellite imageries, SRTM DEM data of 30m resolution and SOI toposheets. The groundwater prospect zones were delineated through the integration of the reclassified raster map layers of geomorphology, slope percent, geology, land use / land cover and soil texture using the weighted overlay analysis in the GIS platform. The groundwater prospects in the study area were grouped into five classes and their distribution are; `very high/high' (8.79%), `moderate' (39.08%), and `very low / low' (52.01%). The study result of the area has been validated with water level data of dug wells and bore wells of the area. The spatial distribution map of the water level of the region is overlaid on groundwater prospect map and shows a positive correlation i.e., the water level at shallow depth in higher prospect zones and at deeper depth in poor to very poor zones. The Groundwater prospect map of midland region of Vamanapuram river basin can be used as base level information which can be further investigated with geophysical methods to locate potential well sites for the execution of water supply schemes.

  20. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques.

    Science.gov (United States)

    Thilagavathi, N; Subramani, T; Suresh, M; Karunanidhi, D

    2015-04-01

    This study proposes to introduce the remote sensing and geographic information system (GIS) techniques in mapping the groundwater potential zones. Remote sensing and GIS techniques have been used to map the groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India. Charnockites and fissile hornblende biotite gneiss are the major rock types in this region. Dunites and peridodites are the ultramafic rocks which cut across the foliation planes of the gneisses and are highly weathered. It comprises magnesite and chromite deposits which are excavated by five mining companies by adopting bench mining. The thickness of weathered and fracture zone varies from 2.2 to 50 m in gneissic formation and 5.8 to 55 m in charnockite. At the contacts of gneiss and charnockite, the thickness ranges from 9.0 to 90.8 m favoring good groundwater potential. The mine lease area is underlined by fractured and sheared hornblende biotite gneiss where groundwater potential is good. Water catchment tanks in this area of 5 km radius are small to moderate in size and are only seasonal. They remain dry during summer seasons. As perennial water resources are remote, the domestic and agricultural activities in this region depend mainly upon the groundwater resources. The mines are located in gently slope area, and accumulation of water is not observed except in mine pits even during the monsoon period. Therefore, it is essential to map the groundwater potential zones for proper management of the aquifer system. Satellite imageries were also used to extract lineaments, hydrogeomorphic landforms, drainage patterns, and land use, which are the major controlling factors for the occurrence of groundwater. Various thematic layers pertaining to groundwater existence such as geology, geomorphology, land use/land cover, lineament, lineament density, drainage, drainage density, slope, and soil were generated using GIS tools. By integrating all the above thematic layers based on the ranks and

  1. Assimilation of a thermal remote sensing-based soil moisture proxy into a root-zone water balance model

    Science.gov (United States)

    Crow, W. T.; Kustas, W. P.

    2006-05-01

    Two types of Soil Vegetation Atmosphere Transfer (SVAT) modeling approaches are commonly applied to monitoring root-zone soil water availability. Water and Energy Balance (WEB) SVAT modeling are based forcing a prognostic water balance model with precipitation observations. In constrast, thermal Remote Sensing (RS) observations of canopy radiometric temperatures can be integrated into purely diagnostic SVAT models to predict the onset of vegetation water stress due to low root-zone soil water availability. Unlike WEB-SVAT models, RS-SVAT models do not require observed precipitation. Using four growings seasons (2001 to 2004) of profile soil moisture, micro-meteorology, and surface radiometric temperature observations at the USDA's OPE3 site, root-zone soil moisture predictions made by both WEB- and RS-SVAT modeling approaches are intercompared with each other and availible root- zone soil moisture observations. Results indicate that root-zone soil moisture estimates derived from a WEB- SVAT model have slightly more skill in detecting soil moisture anomalies at the site than comporable predictions from a competing RS-SVAT modeling approach. However, the relative advantage of the WEB-SVAT model disappears when it is forced with lower-quality rainfall information typical of continental and global-scale rainfall data sets. Most critically, root-zone soil moisture errors associated with both modeling approaches are sufficiently independent such that the merger of both information from both proxies - using either simple linear averaging or an Ensemble Kalman filter - creates a merge soil moisture estimate that is more accurate than either of its parent components.

  2. Assessment of Vegetation Variation on Primarily Creation Zones of the Dust Storms Around the Euphrates Using Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Jamil Amanollahi

    2012-06-01

    Full Text Available Recently, period frequency and effect domain of the dust storms that enter Iran from Iraq have increased. In this study, in addition to detecting the creation zones of the dust storms, the effect of vegetation cover variation on their creation was investigated using remote sensing. Moderate resolution image Spectroradiometer (MODIS and Landsat Thematic Mapper (TM5 have been utilized to identify the primarily creation zones of the dust storms and to assess the vegetation cover variation, respectively. Vegetation cover variation was studied using Normalized Differences Vegetation Index (NDVI obtained from band 3 and band 4 of the Landsate satellite. The results showed that the surrounding area of the Euphrates in Syria, the desert in the vicinity of this river in Iraq, including the deserts of Alanbar Province, and the north deserts of Saudi Arabia are the primarily creation zones of the dust storms entering west and south west of Iran. The results of NDVI showed that excluding the deserts in the border of Syria and Iraq, the area with very weak vegetation cover have increased between 2.44% and 20.65% from 1991 to 2009. In the meanwhile, the retention pound surface areas in the south deserts of Syria as well as the deserts in its border with Iraq have decreased 6320 and 4397 hectares, respectively. As it can be concluded from the findings, one of the main environmental parameters initiating these dust storms is the decrease in the vegetation cover in their primarily creation zones.

  3. CRESTA : consortium on remote sensing of freight flows in congested border crossings and work zones.

    Science.gov (United States)

    2011-03-01

    "The objectives of this project were to develop and demonstrate the use of remote sensing and : geospatial information technologies to provide useful information for applications related to : the times trucks incur in various activities (activity...

  4. Application of a GIS-/remote sensing-based approach for predicting groundwater potential zones using a multi-criteria data mining methodology.

    Science.gov (United States)

    Mogaji, Kehinde Anthony; Lim, Hwee San

    2017-07-01

    This study integrates the application of Dempster-Shafer-driven evidential belief function (DS-EBF) methodology with remote sensing and geographic information system techniques to analyze surface and subsurface data sets for the spatial prediction of groundwater potential in Perak Province, Malaysia. The study used additional data obtained from the records of the groundwater yield rate of approximately 28 bore well locations. The processed surface and subsurface data produced sets of groundwater potential conditioning factors (GPCFs) from which multiple surface hydrologic and subsurface hydrogeologic parameter thematic maps were generated. The bore well location inventories were partitioned randomly into a ratio of 70% (19 wells) for model training to 30% (9 wells) for model testing. Application results of the DS-EBF relationship model algorithms of the surface- and subsurface-based GPCF thematic maps and the bore well locations produced two groundwater potential prediction (GPP) maps based on surface hydrologic and subsurface hydrogeologic characteristics which established that more than 60% of the study area falling within the moderate-high groundwater potential zones and less than 35% falling within the low potential zones. The estimated uncertainty values within the range of 0 to 17% for the predicted potential zones were quantified using the uncertainty algorithm of the model. The validation results of the GPP maps using relative operating characteristic curve method yielded 80 and 68% success rates and 89 and 53% prediction rates for the subsurface hydrogeologic factor (SUHF)- and surface hydrologic factor (SHF)-based GPP maps, respectively. The study results revealed that the SUHF-based GPP map accurately delineated groundwater potential zones better than the SHF-based GPP map. However, significant information on the low degree of uncertainty of the predicted potential zones established the suitability of the two GPP maps for future development of

  5. A method for quantifying and comparing the costs and benefits of alternative riparian zone buffer widths

    Science.gov (United States)

    Chris B. LeDoux; Ethel Wilkerson

    2008-01-01

    We developed a method that can be used to quantify the opportunity costs and ecological benefits of implementing alternative streamside management zones/buffer zone widths. The opportunity costs are computed based on the net value of the timber left behind in the buffer zone, the stump-to-mill logging costs for the logging technology that would have been used to...

  6. An Efficient Method for Detecting Misbehaving Zone Manager in MANET

    Science.gov (United States)

    Rafsanjani, Marjan Kuchaki; Pakzad, Farzaneh; Asadinia, Sanaz

    In recent years, one of the wireless technologies increased tremendously is mobile ad hoc networks (MANETs) in which mobile nodes organize themselves without the help of any predefined infrastructure. MANETs are highly vulnerable to attack due to the open medium, dynamically changing network topology, cooperative algorithms, lack of centralized monitoring, management point and lack of a clear defense line. In this paper, we report our progress in developing intrusion detection (ID) capabilities for MANET. In our proposed scheme, the network with distributed hierarchical architecture is partitioned into zones, so that in each of them there is one zone manager. The zone manager is responsible for monitoring the cluster heads in its zone and cluster heads are in charge of monitoring their members. However, the most important problem is how the trustworthiness of the zone manager can be recognized. So, we propose a scheme in which "honest neighbors" of zone manager specify the validation of their zone manager. These honest neighbors prevent false accusations and also allow manager if it is wrongly misbehaving. However, if the manger repeats its misbehavior, then it will lose its management degree. Therefore, our scheme will be improved intrusion detection and also provide a more reliable network.

  7. Handling zone dividing method in packed bed liquid desiccant dehumidification/regeneration process

    International Nuclear Information System (INIS)

    Liu, X.H.; Jiang, Y.

    2009-01-01

    Dehumidifier and regenerator are the most significant components in liquid desiccant air-conditioning systems, in which air directly contacts liquid desiccant and heat and mass transfer process occurs between the two fluids. Heat transfer process and mass transfer process within dehumidifier/regenerator influence each other and should not be separately considered. Based on the previous reachable handling region analysis, a zonal method is proposed in present study. Four zones are divided in the psychrometric chart according to the relative position of inlet air to inlet desiccant including two dehumidification zones, zone A and zone D, and two regeneration zones, zone B and zone C. In zone A or C, mass transfer is key process, and counter-flow configuration has the best mass transfer performance and parallel-flow is the poorest in the same operating conditions. In zone B or D, heat transfer is governing process, parallel-flow has the best mass transfer performance and counter-flow is the poorest. In order to obtain better mass transfer performance, liquid desiccant should be cooled (in zone A) rather than air (in zone D) in dehumidifier, and liquid desiccant should be heated (in zone C) rather than air (in zone B) in regenerator. The divided zones and the corresponding zonal properties will be helpful to the design and optimization of dehumidifiers and regenerators.

  8. Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt

    Science.gov (United States)

    Amer, Reda; Kusky, Timothy; El Mezayen, Ahmed

    2012-01-01

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Phased Array L-band Synthetic Aperture Radar (PALSAR) images covering the Um Rus area in the Central Eastern Desert of Egypt were evaluated for mapping geologic structure, lithology, and gold-related alteration zones. The study area is covered by Pan-African basement rocks including gabbro and granodiorite intruded into a variable mixture of metavolcanics and metasediments. The first three principal component analyses (PCA1, PCA2, PCA3) in a Red-Green-Blue (RGB) of the visible through shortwave-infrared (VNIR + SWIR) ASTER bands enabled the discrimination between lithological units. The results show that ASTER band ratios ((2 + 4)/3, (5 + 7)/6, (7 + 9)/8) in RGB identifies the lithological units and discriminates the granodiorite very well from the adjacent rock units.The granodiorites are dissected by gold-bearing quartz veins surrounded by alteration zones. The microscopic examination of samples collected from the alteration zones shows sericitic and argillic alteration zones. The Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) supervised classification methods were applied using the reference spectra of the USGS spectral library. The results show that these classification methods are capable of mapping the alteration zones as indicated by field verification work. The PALSAR image was enhanced for fracture mapping using the second moment co-occurrence filter. Overlying extracted faults and alteration zone classification images show that the N30E and N-S fractures represent potential zones for gold exploration. It is concluded that the proposed methods can be used as a powerful tool for ore deposit exploration.

  9. [Remote sensing analysis of ecological change caused by construction of the new island city: Pingtan Comprehensive Experimental Zone, Fujian Province].

    Science.gov (United States)

    Wen, Xiao-le; Lin, Zheng-feng; Tang, Fei

    2015-02-01

    Pingtan Island was officially established as the 'Pingtan Comprehensive Experimental Zone of Fujian' in 2010, and it led to a surge of construction in the island city. Based on the Landsat-5 images for 2007 and the latest Landsat-8 images for 2013, this paper studied the ecological status, the temporal trends of the ecological changes and the reasons for those changes in Pingtan Comprehensive Experimental Zone at its early stage of construction, by using the remote sensing of ecological index (RSEI). The results showed that as an ecologically fragile area, Pingtan Island had a moderate level of overall ecological status. In the early construction period (from 2007 to 2013), the ecological status of the island showed a downward trend, with a 14% drop of RSEI from 0.511 in 2007 down to 0.450 in 2013, and approximately 36.5% of the area of the island faced the degradation of ecological status, which mainly occurred in the central and southwestern parts of the island. The reason for the degradation was mainly due to the large-scale construction which further damaged the scarce vegetation on the island. Therefore, in order to curb the downward trend of the ecological quality of Pingtan Comprehensive Experimental Zone, some effective ecological protection measures must be developed and implemented during the construction.

  10. MAPPING LOCAL CLIMATE ZONES WITH A VECTOR-BASED GIS METHOD

    Directory of Open Access Journals (Sweden)

    E. Lelovics

    2013-03-01

    Full Text Available In this study we determined Local Climate Zones in a South-Hungarian city, using vector-based and raster-based databases. We calculated seven of the originally proposed ten physical (geometric, surface cover and radiative properties for areas which are based on the mobile temperature measurement campaigns earlier carried out in this city.As input data we applied 3D building database (earlier created with photogrammetric methods, 2D road database, topographic map, aerial photographs, remotely sensed reflectance information from RapidEye satellite image and our local knowledge about the area. The values of the properties were calculated by GIS methods developed for this purpose.We derived for the examined areas and applied for classification sky view factor, mean building height, terrain roughness class, building surface fraction, pervious surface fraction, impervious surface fraction and albedo.Six built and one land cover LCZ classes could be detected with this method on our study area. From each class one circle area was selected, which is representative for that class. Their thermal reactions were examined with the application of mobile temperature measurement dataset. The comparison was made in cases, when the weather was clear and calm and the surface was dry. We found that compact built-in types have more temperature surplus than open ones, and midrise types also have more than lowrise ones. According to our primary results, these categories provide a useful opportunity for intra- and inter-urban comparisons.

  11. Modeling Flood Hazard Zones at the Sub-District Level with the Rational Model Integrated with GIS and Remote Sensing Approaches

    Directory of Open Access Journals (Sweden)

    Daniel Asare-Kyei

    2015-07-01

    Full Text Available Robust risk assessment requires accurate flood intensity area mapping to allow for the identification of populations and elements at risk. However, available flood maps in West Africa lack spatial variability while global datasets have resolutions too coarse to be relevant for local scale risk assessment. Consequently, local disaster managers are forced to use traditional methods such as watermarks on buildings and media reports to identify flood hazard areas. In this study, remote sensing and Geographic Information System (GIS techniques were combined with hydrological and statistical models to delineate the spatial limits of flood hazard zones in selected communities in Ghana, Burkina Faso and Benin. The approach involves estimating peak runoff concentrations at different elevations and then applying statistical methods to develop a Flood Hazard Index (FHI. Results show that about half of the study areas fall into high intensity flood zones. Empirical validation using statistical confusion matrix and the principles of Participatory GIS show that flood hazard areas could be mapped at an accuracy ranging from 77% to 81%. This was supported with local expert knowledge which accurately classified 79% of communities deemed to be highly susceptible to flood hazard. The results will assist disaster managers to reduce the risk to flood disasters at the community level where risk outcomes are first materialized.

  12. Testing the method of isolating fracture zones from tiltmeter data

    Energy Technology Data Exchange (ETDEWEB)

    Karmazina, T.S.; Bogdanov, A.P.; Ruban, V.A.

    1981-01-01

    In examples of West Ciscaucasian wells, the possibility is shown of determining the presence of fissures with a steep incline, measurement of the vertical length and azimuth of the fissure zones by determining the ellipticity of the well sections and measuring the azimuths of ellipticity.

  13. Identification of sewage leaks by active remote-sensing methods

    Science.gov (United States)

    Goldshleger, Naftaly; Basson, Uri

    2016-04-01

    The increasing length of sewage pipelines, and concomitant risk of leaks due to urban and industrial growth and development is exposing the surrounding land to contamination risk and environmental harm. It is therefore important to locate such leaks in a timely manner, to minimize the damage. Advances in active remote sensing Ground Penetrating Radar (GPR) and Frequency Domain Electromagnetic (FDEM) technologies was used to identify leaking potentially responsible for pollution and to identify minor spills before they cause widespread damage. This study focused on the development of these electromagnetic methods to replace conventional acoustic methods for the identification of leaks along sewage pipes. Electromagnetic methods provide an additional advantage in that they allow mapping of the fluid-transport system in the subsurface. Leak-detection systems using GPR and FDEM are not limited to large amounts of water, but enable detecting leaks of tens of liters per hour, because they can locate increases in environmental moisture content of only a few percentage along the pipes. The importance and uniqueness of this research lies in the development of practical tools to provide a snapshot and monitoring of the spatial changes in soil moisture content up to depths of about 3-4 m, in open and paved areas, at relatively low cost, in real time or close to real time. Spatial measurements performed using GPR and FDEM systems allow monitoring many tens of thousands of measurement points per hectare, thus providing a picture of the spatial situation along pipelines and the surrounding. The main purpose of this study was to develop a method for detecting sewage leaks using the above-proposed geophysical methods, since their contaminants can severely affect public health. We focused on identifying, locating and characterizing such leaks in sewage pipes in residential and industrial areas.

  14. A study on in-situ measuring method and modeling technique of an unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Hisashi [Hazama Corp., Tsukuba, Ibaraki (Japan). Technical Research Inst.; Amemiya, Kiyoshi; Nishida, Kaoru; Lin, Weiren; Lei, Xinglin

    1997-03-01

    It is generally considered that an unsaturated zone is generated in the vicinity of a drift after excavation. In such a zone, invasion of air containing oxygen possibly changes geochemical environment (redox condition) of the rock mass. However, no measurement technique for quantitative understanding of this unsaturated zone is currently available. This study has been started to develop the measuring method in the several years. This year, fundamental information has been obtained through analysis, laboratory experiments using homogeneous rock samples and field measurement described below. (1) experiments on the mechanism of undersaturation in rock. (2) experiments on the measuring method of the extend of unsaturated zone. (author)

  15. Application of remote sensing, GIS and MCA techniques for delineating groundwater prospect zones in Kashipur block, Purulia district, West Bengal

    Science.gov (United States)

    Nag, S. K.; Kundu, Anindita

    2018-03-01

    Demand of groundwater resources has increased manifold with population expansion as well as with the advent of modern civilization. Assessment, planning and management of groundwater resource are becoming crucial and extremely urgent in recent time. The study area belongs to Kashipur block, Purulia district, West Bengal. The area is characterized with dry climate and hard rock terrain. The objective of this study is to delineate groundwater potential zone for the assessment of groundwater availability using remote sensing, GIS and MCA techniques. Different thematic layers such as hydrogeomorphology, slope and lineament density maps have been transformed to raster data in TNT mips pro2012. To assign weights and ranks to different input factor maps, multi-influencing factor (MIF) technique has been used. The weights assigned to each factor have been computed statistically. Weighted index overlay modeling technique was used to develop a groundwater potential zone map with three weighted and scored parameters. Finally, the study area has been categorized into four distinct groundwater potential zones—excellent 1.5% (6.45 sq. km), good 53% (227.9 sq. km), moderate 45% (193.5 sq. km.) and poor 0.5% (2.15 sq. km). The outcome of the present study will help local authorities, researchers, decision makers and planners in formulating proper planning and management of groundwater resources in different hydrogeological situations.

  16. GEOLGICAL STRUCTURE MAPPING OF THE BENTONG-RAUB SUTURE ZONE, PENINSULAR MALAYSIA USING PALSAR REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2015-10-01

    Full Text Available The Bentong-Raub Suture Zone (BRSZ of peninsular Malaysia was selected as case study to evaluate the capability of the Phased Array type L-band Synthetic Aperture Radar (PALSAR satellite remote sensing data for structural geology mapping in tropical environments. The structural elements in the BRSZ were enhanced using multi-polarization configuration of PALSAR data at a regional scale. Adaptive local sigma and directional filters were applied to PALSAR data for detailed structural mapping. Numerous tectonic lineaments with consistent variation in trend, length and density were detected in the study area. Structural analysis of the BRSZ reveals that two distinct parts can be defined, a western part affected mainly by ductile fabrics in the Cameron Highlands and an eastern part affected mainly by brittle deformation in the BRSZ. Ductile deformation indicates several generation of folding in the Cameron Highlands. Several faults, joints and fractures represent brittle deformation events in the BRSZ. The results of this study demonstrate the usefulness of PALSAR satellite remote sensing data for mapping geological structures in tropical environments.

  17. Optimal exploration target zones

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-09-01

    Full Text Available -of-evidence (WofE) method logistic regression canonical favorability analysis neural networks evidential belief functions Optimal Exploration Target Zones Debba, Carranza, Stein, van der Meer Introduction to Remote Sensing Background and Objective of the study... for the following equation: n∑ i=r ( n i ) pi(1− p)n−i = 0.95 . (1) Optimal Exploration Target Zones Debba, Carranza, Stein, van der Meer Introduction to Remote Sensing Background and Objective of the study Methodology Results METHODS (cont. . . ): FITNESS FUNCTION...

  18. A quantitative method for zoning of protected areas and its spatial ecological implications.

    Science.gov (United States)

    Del Carmen Sabatini, María; Verdiell, Adriana; Rodríguez Iglesias, Ricardo M; Vidal, Marta

    2007-04-01

    Zoning is a key prescriptive tool for administration and management of protected areas. However, the lack of zoning is common for most protected areas in developing countries and, as a consequence, many protected areas are not effective in achieving the goals for which they were created. In this work, we introduce a quantitative method to expeditiously zone protected areas and we evaluate its ecological implications on hypothetical zoning cases. A real-world application is reported for the Talampaya National Park, a UNESCO World Heritage Site located in Argentina. Our method is a modification of the zoning forest model developed by Bos [Bos, J., 1993. Zoning in forest management: a quadratic assignment problem solved by simulated annealing. Journal of Environmental Management 37, 127-145.]. Main innovations involve a quadratic function of distance between land units, non-reciprocal weights for adjacent land uses (mathematically represented by a non-symmetric matrix), and the possibility of imposing a connectivity constraint. Due to its intrinsic spatial dimension, the zoning problem belongs to the NP-hard class, i.e. a solution can only be obtained in non-polynomial time [Nemhausser, G., Wolsey, L., 1988. Integer and Combinatorial Optimization. John Wiley, New York.]. For that purpose, we applied a simulated annealing heuristic implemented as a FORTRAN language routine. Our innovations were effective in achieving zoning designs more compatible with biological diversity protection. The quadratic distance term facilitated the delineation of core zones for elements of significance; the connectivity constraint minimized fragmentation; non-reciprocal land use weightings contributed to better representing management decisions, and influenced mainly the edge and shape of zones. This quantitative method can assist the zoning process within protected areas by offering many zonation scheme alternatives with minimum cost, time and effort. This ability provides a new tool to

  19. Resolution Enhancement Method Used for Force Sensing Resistor Array

    Directory of Open Access Journals (Sweden)

    Karen Flores De Jesus

    2015-01-01

    Full Text Available Tactile sensors are one of the major devices that enable robotic systems to interact with the surrounding environment. This research aims to propose a mathematical model to describe the behavior of a tactile sensor based on experimental and statistical analyses and moreover to develop a versatile algorithm that can be applied to different tactile sensor arrays to enhance the limited resolution. With the proposed algorithm, the resolution can be increased up to twenty times if multiple measurements are available. To verify if the proposed algorithm can be used for tactile sensor arrays that are used in robotic system, a 16×10 force sensing array (FSR is adopted. The acquired two-dimensional measurements were processed by a resolution enhancement method (REM to enhance the resolution, which can be used to improve the resolution for single image or multiple measurements. As a result, the resolution of the sensor is increased and it can be used as synthetic skin to identify accurate shapes of objects and applied forces.

  20. Ground Albedo Neutron Sensing (GANS) method for measurements of soil moisture in cropped fields

    Science.gov (United States)

    Andres Rivera Villarreyes, Carlos; Baroni, Gabriele; Oswald, Sascha E.

    2013-04-01

    Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only few methods are on the way to close this gap between point measurements and remote sensing. This study evaluates the applicability of the Ground Albedo Neutron Sensing (GANS) for integral quantification of seasonal soil moisture in the root zone at the scale of a field or small watershed, making use of the crucial role of hydrogen as neutron moderator relative to other landscape materials. GANS measurements were performed at two locations in Germany under different vegetative situations and seasonal conditions. Ground albedo neutrons were measured at (i) a lowland Bornim farmland (Brandenburg) cropped with sunflower in 2011 and winter rye in 2012, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains) since middle 2011. At both sites depth profiles of soil moisture were measured at several locations in parallel by frequency domain reflectometry (FDR) for comparison and calibration. Initially, calibration parameters derived from a previous study with corn cover were tested under sunflower and winter rye periods at the same farmland. GANS soil moisture based on these parameters showed a large discrepancy compared to classical soil moisture measurements. Therefore, two new calibration approaches and four different ways of integration the soil moisture profile to an integral value for GANS were evaluated in this study. This included different sets of calibration parameters based on different growing periods of sunflower. New calibration parameters showed a good agreement with FDR network during sunflower period (RMSE = 0.023 m3 m-3), but they underestimated soil moisture in the winter rye period. The GANS approach resulted to be highly affected by temporal changes of biomass and crop types which suggest the need of neutron corrections for long-term observations with crop rotation. Finally

  1. Remote sensing models and methods for image processing

    CERN Document Server

    Schowengerdt, Robert A

    2007-01-01

    Remote sensing is a technology that engages electromagnetic sensors to measure and monitor changes in the earth's surface and atmosphere. Normally this is accomplished through the use of a satellite or aircraft. This book, in its 3rd edition, seamlessly connects the art and science of earth remote sensing with the latest interpretative tools and techniques of computer-aided image processing. Newly expanded and updated, this edition delivers more of the applied scientific theory and practical results that helped the previous editions earn wide acclaim and become classroom and industry standa

  2. Methods of training the graduate level and professional geologist in remote sensing technology

    Science.gov (United States)

    Kolm, K. E.

    1981-01-01

    Requirements for a basic course in remote sensing to accommodate the needs of the graduate level and professional geologist are described. The course should stress the general topics of basic remote sensing theory, the theory and data types relating to different remote sensing systems, an introduction to the basic concepts of computer image processing and analysis, the characteristics of different data types, the development of methods for geological interpretations, the integration of all scales and data types of remote sensing in a given study, the integration of other data bases (geophysical and geochemical) into a remote sensing study, and geological remote sensing applications. The laboratories should stress hands on experience to reinforce the concepts and procedures presented in the lecture. The geologist should then be encouraged to pursue a second course in computer image processing and analysis of remotely sensed data.

  3. Identification of erosional and inundation hazard zones in Ken-Betwa river linking area, India, using remote sensing and GIS.

    Science.gov (United States)

    Avtar, Ram; Singh, Chander Kumar; Shashtri, Satayanarayan; Mukherjee, Saumitra

    2011-11-01

    Ken-Betwa river link is one of the pilot projects of the Inter Linking of Rivers program of Government of India in Bundelkhand Region. It will connect the Ken and Betwa rivers through a system of dams, reservoirs, and canals to provide storage for excess rainfall during the monsoon season and avoid floods. The main objective of this study is to identify erosional and inundation prone zones of Ken-Betwa river linking site in India using remote sensing and geographic information system tools. In this study, Landsat Thematic Mapper data of year 2005, digital elevation model from the Shuttle Radar Topographic Mission, and other ancillary data were analyzed to create various thematic maps viz. geomorphology, land use/land cover, NDVI, geology, soil, drainage density, elevation, slope, and rainfall. The integrated thematic maps were used for hazard zonation. This is based on categorizing the different hydrological and geomorphological processes influencing the inundation and erosion intensity. Result shows that the southern part of the study area which lies in Panna district of Madhya Pradesh, India, is more vulnerable than the other areas.

  4. Method for identification of fluid mixing zones subject to thermal fatigue damage

    International Nuclear Information System (INIS)

    Vole, O.; Beaud, F.

    2009-01-01

    High cycle thermal fatigue due to the mixing of hot and cold fluids may initiate cracking in pipes of safety related circuits. A method has been developed to identify such fluid mixing zones subjected to potential thermal fatigue damage. This method is based on a loading model and a mechanical model that depend on the main characteristics of the mixing zone and on the material properties. It is supported by a large experimental program. This method has been applied to all the mixing zones of safety related circuits of the EDF pressurised water reactors, allowing to identify sensitive zones and to apply an appropriate inspection program that ensures the control of the risk due to this damage mechanism. (authors)

  5. Investigation of the late summer Si-budget in the Sub-Antarctic and Polar Front Zones south of Tasmania (SAZ-SENSE)

    Science.gov (United States)

    Fripiat, F.; Leblanc, K.; Elskens, M.; Quéguiner, B.; Armand, L.; Cornet-Barthaux, V.; André, L.; Cardinal, D.

    2009-04-01

    In the surface ocean, the Si-biogeochemical budget can be estimated by the ratio between the integrated biogenic silica dissolution and production rates. However such data are scarce in the ocean mostly because of methodology limitation. This is especially true in the Sub-Antarctic Zone (SAZ) where only two profiles were measured so far, exhibiting large variation (dissolution: production ratio of 0.3 and 3.1 for spring and summer, respectively). Though, the SAZ plays a crucial role in the efficiency of the silicate pump and the fertility of the Sub-Antarctic Mode Waters which then replenish in nutrients the majority of the surface waters of the world ocean. Therefore, better constraining the dissolution: production ratios in this region will certainly improve our understanding of these processes. During the SAZ-SENSE cruise (Jan.-Feb. 2007), the Si-budget of three stations (two in the SAZ and one in the Polar Frontal Zone, PFZ, for a total of nine profiles) covering different biogeochemical properties (e.g., Fe enriched vs. depleted conditions, dominance of diatoms vs. other phytoplankton,…) was investigated. This was implemented in the framework of an exhaustive characterization of the Si-biogeochemical cycle using different parameters: PDMPO labelling, 32Si and 30Si spiked incubations, and, taxonomy. We have developed a new method for the determination of the production and dissolution rates from the 30Si isotopic dilution technique. We now measure the changes of the 30Si-abundances in particulate and liquid phases by High Resolution Sector Field Inductively Coupled Plasma Mass Spectrometer (HR-SF-ICP-MS). This method, which is faster, more sensitive and more precise than the traditional ones using an Isotope Ratio Mass Spectrometer (IRMS) or Thermal Ionization Mass Spectrometer (TIMS), will significantly aid in expanding the biogenic silica production-dissolution dataset in the ocean. The results obtained on Si budget indicate that the Si

  6. Compressed Sensing Methods in Radio Receivers Exposed to Noise and Interference

    DEFF Research Database (Denmark)

    Pierzchlewski, Jacek

    , there is a problem of interference, which makes digitization of radio receivers even more dicult. High-order low-pass lters are needed to remove interfering signals and secure a high-quality reception. In the mid-2000s a new method of signal acquisition, called compressed sensing, emerged. Compressed sensing...... the downconverted baseband signal and interference, may be replaced by low-order lters. Additional digital signal processing is a price to pay for this feature. Hence, the signal processing is moved from the analog to the digital domain. Filtering compressed sensing, which is a new application of compressed sensing...

  7. A method for processing the critical zone of a carbonate stratum

    Energy Technology Data Exchange (ETDEWEB)

    Dytyuk, L T; Barsukov, A V; Bragina, O A; Kalabina, A V; Samakayev, R Kh

    1982-01-01

    A method is proposed for processing the critical zone of a carbonate stratum by pumping a carbonate rock solvent into it. It is distinguished by the fact that in order to increase the penetration depth of the solvent into the stratum by reducing the speed of interaction of the solvent, a solution of beta-phenoxyvinylphosphonic acid is pumped into the critical zone of the stratum.

  8. Seasonal change detection of riparian zones with remote sensing images and genetic programming in a semi-arid watershed.

    Science.gov (United States)

    Makkeasorn, Ammarin; Chang, Ni-Bin; Li, Jiahong

    2009-02-01

    Riparian zones are deemed significant due to their interception capability of non-point source impacts and the maintenance of ecosystem integrity region wide. To improve classification and change detection of riparian buffers, this paper developed an evolutionary computational, supervised classification method--the RIparian Classification Algorithm (RICAL)--to conduct the seasonal change detection of riparian zones in a vast semi-arid watershed, South Texas. RICAL uniquely demonstrates an integrative effort to incorporate both vegetation indices and soil moisture images derived from LANDSAT 5 TM and RADARSAT-1 satellite images, respectively. First, an estimation of soil moisture based on RADARSAT-1 Synthetic Aperture Radar (SAR) images was conducted via the first-stage genetic programming (GP) practice. Second, for the statistical analyses and image classification, eight vegetation indices were prepared based on reflectance factors that were calculated as the response of the instrument on LANDSAT. These spectral vegetation indices were then independently used for discriminate analysis along with soil moisture images to classify the riparian zones via the second-stage GP practice. The practical implementation was assessed by a case study in the Choke Canyon Reservoir Watershed (CCRW), South Texas, which is mostly agricultural and range land in a semi-arid coastal environment. To enhance the application potential, a combination of Iterative Self-Organizing Data Analysis Techniques (ISODATA) and maximum likelihood supervised classification was also performed for spectral discrimination and classification of riparian varieties comparatively. Research findings show that the RICAL algorithm may yield around 90% accuracy based on the unseen ground data. But using different vegetation indices would not significantly improve the final quality of the spectral discrimination and classification. Such practices may lead to the formulation of more effective management strategies

  9. Proposal and Implementation of a Robust Sensing Method for DVB-T Signal

    Science.gov (United States)

    Song, Chunyi; Rahman, Mohammad Azizur; Harada, Hiroshi

    This paper proposes a sensing method for TV signals of DVB-T standard to realize effective TV White Space (TVWS) Communication. In the TVWS technology trial organized by the Infocomm Development Authority (iDA) of Singapore, with regard to the sensing level and sensing time, detecting DVB-T signal at the level of -120dBm over an 8MHz channel with a sensing time below 1 second is required. To fulfill such a strict sensing requirement, we propose a smart sensing method which combines feature detection and energy detection (CFED), and is also characterized by using dynamic threshold selection (DTS) based on a threshold table to improve sensing robustness to noise uncertainty. The DTS based CFED (DTS-CFED) is evaluated by computer simulations and is also implemented into a hardware sensing prototype. The results show that the DTS-CFED achieves a detection probability above 0.9 for a target false alarm probability of 0.1 for DVB-T signals at the level of -120dBm over an 8MHz channel with the sensing time equals to 0.1 second.

  10. Multi-offset GPR methods for hyporheic zone investigations

    Science.gov (United States)

    Brosten, T.R.; Bradford, J.H.; McNamara, J.P.; Gooseff, M.N.; Zarnetske, J.P.; Bowden, W.B.; Johnston, M.E.

    2009-01-01

    Porosity of stream sediments has a direct effect on hyporheic exchange patterns and rates. Improved estimates of porosity heterogeneity will yield enhanced simulation of hyporheic exchange processes. Ground-penetrating radar (GPR) velocity measurements are strongly controlled by water content thus accurate measures of GPR velocity in saturated sediments provides estimates of porosity beneath stream channels using petrophysical relationships. Imaging the substream system using surface based reflection measurements is particularly challenging due to large velocity gradients that occur at the transition from open water to saturated sediments. The continuous multi-offset method improves the quality of subsurface images through stacking and provides measurements of vertical and lateral velocity distributions. We applied the continuous multi-offset method to stream sites on the North Slope, Alaska and the Sawtooth Mountains near Boise, Idaho, USA. From the continuous multi-offset data, we measure velocity using reflection tomography then estimate water content and porosity using the Topp equation. These values provide detailed measurements for improved stream channel hydraulic and thermal modelling. ?? 2009 European Association of Geoscientists & Engineers.

  11. Novel Cooperative Spectrum Sensing Methods And Their Limitations

    DEFF Research Database (Denmark)

    Kiilerich Pratas, Nuno

    2012-01-01

    $-calculus, denoted as Bounded Broadcast Calculus. This analysis is done over centralized, decentralized and relay aided topologies. The outcome of this analysis is a theorem where it is stated, which properties a protocol should have so that it can be deemed correct, i.e. that it performs as intended, over each...... source. The node selection scheme is proposed in a centralized and in a decentralized version. These versions can complement each other and therefore lead to a more robust cooperative spectrum sensing mechanism....

  12. Prediction of supratidal Zones as turtle nesting sites using remote sensing and geographic information system, a case study in Pacitan, Southern Java Sea

    Science.gov (United States)

    Darmawan, A.; Saputra, D. K.; Wiadnya, D. G. R.; Gusmida, A. M.

    2018-04-01

    Turtles, the most threatened coastal-marine fauna, are protected through both national and global regulations. However, many of their nesting sites have been degraded in the past years. Completing natal homing, adult females emerged at night to lay-down eggs in the upper intertidal and supra-tidal zone of sandy beach from where they hatched. This study explained coastal topology of beaches usually used for nesting sites, covering 117 km coastline at Pacitan Regency, Southern Java Sea. The shift in beach morphology through times was figured out based on Landsat 8 and Sentinel 2a satellite imagery and remote sensing (GIS methods). This was combined with in-situ data on current coastline features, slope, and tide variations. Results showed a typical sandy beach, called Taman Ria Beach, a long time identified as nesting site for Lepidochelys olivacea, locally named as Penyu Lekang. Also, there was approximatelly 3.49 ha of supratidal area predicted in Taman Ria Beach according this study

  13. Dynamics of the transition zone in coastal zone color scanner-sensed ocean color in the North Pacific during oceanographic spring

    Science.gov (United States)

    Glover, David M.; Wroblewski, J. S.; Mcclain, Charles R.

    1994-01-01

    A transition zone in phytoplankton concentration running across the North Pacific basin at 30 deg to 40 deg north latitude corresponds to a basin-wide front in surface chlorophyll observed in a composite of coastal zone color scanner (CZCS) images for May, June, and July 1979-1986. This transition zone with low chlorophyll to the south and higher chlorophyll to the north can be simulated by a simple model of the concentration of phytoplankton, zooplankton, and dissolved nutrient (nitrate) in the surface mixed layer of the ocean applied to the North Pacific basin for the climatological conditions during oceanographic springtime (May, June, and July). The model is initialized with a 1 deg x 1 deg gridded estimate of wintertime (February, March, and April) mixed layer nitrate concentrations calculated from an extensive nutrient database and a similarly gridded mixed layer depth data set. Comparison of model predictions with CZCS data provides a means of evaluating the dynamics of the transition zone. We conclude that in the North Pacific, away from major boundary currents and coastal upwelling zones, wintertime vertical mixing determines the total nutrient available to the plankton ecosystem in the spring. The transition zone seen in basin-scale CZCS images is a reflection of the geographic variation in the wintertime mixed layer depth and the nitracline, leading to a latitudinal gradient in phytoplankton chlorophyll.

  14. A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods

    Directory of Open Access Journals (Sweden)

    Elahe Akbari

    2017-12-01

    Full Text Available Oceans/Seas are important components of Earth that are affected by global warming and climate change. Recent studies have indicated that the deeper oceans are responsible for climate variability by changing the Earth’s ecosystem; therefore, assessing them has become more important. Remote sensing can provide sea surface data at high spatial/temporal resolution and with large spatial coverage, which allows for remarkable discoveries in the ocean sciences. The deep layers of the ocean/sea, however, cannot be directly detected by satellite remote sensors. Therefore, researchers have examined the relationships between salinity, height, and temperature of the oceans/Seas to estimate their subsurface water temperature using dynamical models and model-based data assimilation (numerical based and statistical approaches, which simulate these parameters by employing remotely sensed data and in situ measurements. Due to the requirements of comprehensive perception and the importance of global warming in decision making and scientific studies, this review provides comprehensive information on the methods that are used to estimate ocean/sea subsurface water temperature from remotely and non-remotely sensed data. To clarify the subsurface processes, the challenges, limitations, and perspectives of the existing methods are also investigated.

  15. A comparative performance study of sound zoning methods in a reflective environment

    DEFF Research Database (Denmark)

    Olik, Marek; Francombe, Jon; Coleman, Philip

    2013-01-01

    Whilst sound zoning methods have typically been studied under anechoic conditions, it is desirable to evaluate the performance of various methods in a real room. Three control methods were implemented (delay and sum, DS; acoustic contrast control, ACC; and pressure matching, PM) on two regular 24...... monophonic auralisations from measured system responses to collect ratings of perceived distraction due to the alternate audio programme. Distraction ratings were a ected by control method and programme material....

  16. Regression Methods for Ophthalmic Glucose Sensing Using Metamaterials

    Directory of Open Access Journals (Sweden)

    Philipp Rapp

    2011-01-01

    Full Text Available We present a novel concept for in vivo sensing of glucose using metamaterials in combination with automatic learning systems. In detail, we use the plasmonic analogue of electromagnetically induced transparency (EIT as sensor and evaluate the acquired data with support vector machines. The metamaterial can be integrated into a contact lens. This sensor changes its optical properties such as reflectivity upon the ambient glucose concentration, which allows for in situ measurements in the eye. We demonstrate that estimation errors below 2% at physiological concentrations are possible using simulations of the optical properties of the metamaterial in combination with an appropriate electrical circuitry and signal processing scheme. In the future, functionalization of our sensor with hydrogel will allow for a glucose-specific detection which is insensitive to other tear liquid substances providing both excellent selectivity and sensitivity.

  17. Characterization of subarctic vegetation using ground based remote sensing methods

    Science.gov (United States)

    Finnell, D.; Garnello, A.; Palace, M. W.; Sullivan, F.; Herrick, C.; Anderson, S. M.; Crill, P. M.; Varner, R. K.

    2014-12-01

    Stordalen mire is located at 68°21'N and 19°02'E in the Swedish subarctic. Climate monitoring has revealed a warming trend spanning the past 150 years affecting the mires ability to hold stable palsa/hummock mounds. The micro-topography of the landscape has begun to degrade into thaw ponds changing the vegetation cover from ombrothrophic to minerotrophic. Hummocks are ecologically important due to their ability to act as a carbon sinks. Thaw ponds and sphagnum rich transitional zones have been documented as sources of atmospheric CH4. An objective of this project is to determine if a high resolution three band camera (RGB) and a RGNIR camera could detect differences in vegetation over five different site types. Species composition was collected for 50 plots with ten repetitions for each site type: palsa/hummock, tall shrub, semi-wet, tall graminoid, and wet. Sites were differentiated based on dominating species and features consisting of open water presence, sphagnum spp. cover, graminoid spp. cover, or the presence of dry raised plateaus/mounds. A pole based camera mount was used to collect images at a height of ~2.44m from the ground. The images were cropped in post-processing to fit a one-square meter quadrat. Texture analysis was performed on all images, including entropy, lacunarity, and angular second momentum. Preliminary results suggested that site type influences the number of species present. The p-values for the ability to predict site type using a t-test range from use of a stepwise regression of texture variables, actual vs. predicted percent of vegetation coverage provided R squared values of 0.73, 0.71, 0.67, and 0.89 for C. bigelowii, R. chamaemorus, Sphagnum spp., and open water respectively. These data have provided some support to the notion that texture analyses can be used for classification of mire site types. Future work will involve scaling up from the 50 plots through the use of data collected from two unmanned aerial systems (UAS), as

  18. Study of inverse methods in remote sensing with laser

    International Nuclear Information System (INIS)

    Jesus, Wellington Carlos de

    2009-01-01

    The Laboratory of Environmental Applications of Lasers at IPEN realizes a study about atmospherics properties, such as extinction and backscattering coefficient. These coefficient are estimated by an inverse method, whose estimate quality is difficult to measure. This work presents a method with good statistic approach to retrieval the same coefficients. The new method, however, offers a number of advantages compared to the first method in use, including (1) the ability to incorporate different kinds of information under a common retrieval philosophy and (2) the method provides number of ways for evaluating the quality of the retrieval. Thus we hope improve the accuracy of estimates. (author)

  19. Remote sensing of suspended sediment water research: principles, methods, and progress

    Science.gov (United States)

    Shen, Ping; Zhang, Jing

    2011-12-01

    In this paper, we reviewed the principle, data, methods and steps in suspended sediment research by using remote sensing, summed up some representative models and methods, and analyzes the deficiencies of existing methods. Combined with the recent progress of remote sensing theory and application in water suspended sediment research, we introduced in some data processing methods such as atmospheric correction method, adjacent effect correction, and some intelligence algorithms such as neural networks, genetic algorithms, support vector machines into the suspended sediment inversion research, combined with other geographic information, based on Bayesian theory, we improved the suspended sediment inversion precision, and aim to give references to the related researchers.

  20. Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method

    Science.gov (United States)

    Shi, Xiaohui; Huang, Xianwei; Nan, Suqin; Li, Hengxing; Bai, Yanfeng; Fu, Xiquan

    2018-04-01

    Detector noise has a significantly negative impact on ghost imaging at low light levels, especially for existing recovery algorithm. Based on the characteristics of the additive detector noise, a method named modified compressive sensing ghost imaging is proposed to reduce the background imposed by the randomly distributed detector noise at signal path. Experimental results show that, with an appropriate choice of threshold value, modified compressive sensing ghost imaging algorithm can dramatically enhance the contrast-to-noise ratio of the object reconstruction significantly compared with traditional ghost imaging and compressive sensing ghost imaging methods. The relationship between the contrast-to-noise ratio of the reconstruction image and the intensity ratio (namely, the average signal intensity to average noise intensity ratio) for the three reconstruction algorithms are also discussed. This noise suppression imaging technique will have great applications in remote-sensing and security areas.

  1. Solar-cycle Variations of Meridional Flows in the Solar Convection Zone Using Helioseismic Methods

    Science.gov (United States)

    Lin, Chia-Hsien; Chou, Dean-Yi

    2018-06-01

    The solar meridional flow is an axisymmetric flow in solar meridional planes, extending through the convection zone. Here we study its solar-cycle variations in the convection zone using SOHO/MDI helioseismic data from 1996 to 2010, including two solar minima and one maximum. The travel-time difference between northward and southward acoustic waves is related to the meridional flow along the wave path. Applying the ray approximation and the SOLA inversion method to the travel-time difference measured in a previous study, we obtain the meridional flow distributions in 0.67 ≤ r ≤ 0.96R ⊙ at the minimum and maximum. At the minimum, the flow has a three-layer structure: poleward in the upper convection zone, equatorward in the middle convection zone, and poleward again in the lower convection zone. The flow speed is close to zero within the error bar near the base of the convection zone. The flow distribution changes significantly from the minimum to the maximum. The change above 0.9R ⊙ shows two phenomena: first, the poleward flow speed is reduced at the maximum; second, an additional convergent flow centered at the active latitudes is generated at the maximum. These two phenomena are consistent with the surface meridional flow reported in previous studies. The change in flow extends all the way down to the base of the convection zone, and the pattern of the change below 0.9R ⊙ is more complicated. However, it is clear that the active latitudes play a role in the flow change: the changes in flow speed below and above the active latitudes have opposite signs. This suggests that magnetic fields could be responsible for the flow change.

  2. Remote Blood Pressure Waveform Sensing Method and Apparatus

    National Research Council Canada - National Science Library

    Antonelli, Lynn T

    2008-01-01

    The invention as disclosed is a non-contact method and apparatus for continuously monitoring a physiological event in a human or animal, such as blood pressure, which involves utilizing a laser-based...

  3. Development and Testing of Physically-Based Methods for Filling Gaps in Remotely Sensed River Data

    Science.gov (United States)

    2011-09-30

    Filling Gaps in Remotely Sensed River Data Jonathan M. Nelson US Geological Survey National Research Program Geomorphology and Sediment Transport...the research work carried out under this grant are to develop and test two methods for filling in gaps in remotely sensed river data. The first...information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215

  4. A boundary integral method for a dynamic, transient mode I crack problem with viscoelastic cohesive zone

    KAUST Repository

    Leise, Tanya L.

    2009-08-19

    We consider the problem of the dynamic, transient propagation of a semi-infinite, mode I crack in an infinite elastic body with a nonlinear, viscoelastic cohesize zone. Our problem formulation includes boundary conditions that preclude crack face interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation is preceeded by significant crazing in a thin region surrounding the crack tip. We present a combined analytical/numerical solution method that involves reducing the problem to a Dirichlet-to-Neumann map along the crack face plane, resulting in a differo-integral equation relating the displacement and stress along the crack faces and within the cohesive zone. © 2009 Springer Science+Business Media B.V.

  5. An injected gamma-tracer method for soil-moisture movement investigations in arid zones

    International Nuclear Information System (INIS)

    Nair, A.R.; Navada, S.V.; Rao, S.M.

    1980-01-01

    A method for the in-situ determination of soil-moisture transport rates using K 3 60 Co(CN) 6 is discussed. The tracer compares well with tritiated water in laboratory investigations and the results obtained in limited field studies are very encouraging. The method promises to be of specific interest in arid-zone investigations where the soil-moisture fluxes in liquid and vapour phases could cause complications for tritium tracer data interpretation. (author)

  6. Vegetation index methods for estimating evapotranspiration by remote sensing

    Science.gov (United States)

    Glenn, Edward P.; Nagler, Pamela L.; Huete, Alfredo R.

    2010-01-01

    Evapotranspiration (ET) is the largest term after precipitation in terrestrial water budgets. Accurate estimates of ET are needed for numerous agricultural and natural resource management tasks and to project changes in hydrological cycles due to potential climate change. We explore recent methods that combine vegetation indices (VI) from satellites with ground measurements of actual ET (ETa) and meteorological data to project ETa over a wide range of biome types and scales of measurement, from local to global estimates. The majority of these use time-series imagery from the Moderate Resolution Imaging Spectrometer on the Terra satellite to project ET over seasons and years. The review explores the theoretical basis for the methods, the types of ancillary data needed, and their accuracy and limitations. Coefficients of determination between modeled ETa and measured ETa are in the range of 0.45–0.95, and root mean square errors are in the range of 10–30% of mean ETa values across biomes, similar to methods that use thermal infrared bands to estimate ETa and within the range of accuracy of the ground measurements by which they are calibrated or validated. The advent of frequent-return satellites such as Terra and planed replacement platforms, and the increasing number of moisture and carbon flux tower sites over the globe, have made these methods feasible. Examples of operational algorithms for ET in agricultural and natural ecosystems are presented. The goal of the review is to enable potential end-users from different disciplines to adapt these methods to new applications that require spatially-distributed ET estimates.

  7. Remote sensing image ship target detection method based on visual attention model

    Science.gov (United States)

    Sun, Yuejiao; Lei, Wuhu; Ren, Xiaodong

    2017-11-01

    The traditional methods of detecting ship targets in remote sensing images mostly use sliding window to search the whole image comprehensively. However, the target usually occupies only a small fraction of the image. This method has high computational complexity for large format visible image data. The bottom-up selective attention mechanism can selectively allocate computing resources according to visual stimuli, thus improving the computational efficiency and reducing the difficulty of analysis. Considering of that, a method of ship target detection in remote sensing images based on visual attention model was proposed in this paper. The experimental results show that the proposed method can reduce the computational complexity while improving the detection accuracy, and improve the detection efficiency of ship targets in remote sensing images.

  8. Research on distributed optical fiber sensing data processing method based on LabVIEW

    Science.gov (United States)

    Li, Zhonghu; Yang, Meifang; Wang, Luling; Wang, Jinming; Yan, Junhong; Zuo, Jing

    2018-01-01

    The pipeline leak detection and leak location problem have gotten extensive attention in the industry. In this paper, the distributed optical fiber sensing system is designed based on the heat supply pipeline. The data processing method of distributed optical fiber sensing based on LabVIEW is studied emphatically. The hardware system includes laser, sensing optical fiber, wavelength division multiplexer, photoelectric detector, data acquisition card and computer etc. The software system is developed using LabVIEW. The software system adopts wavelet denoising method to deal with the temperature information, which improved the SNR. By extracting the characteristic value of the fiber temperature information, the system can realize the functions of temperature measurement, leak location and measurement signal storage and inquiry etc. Compared with traditional negative pressure wave method or acoustic signal method, the distributed optical fiber temperature measuring system can measure several temperatures in one measurement and locate the leak point accurately. It has a broad application prospect.

  9. A method of vehicle license plate recognition based on PCANet and compressive sensing

    Science.gov (United States)

    Ye, Xianyi; Min, Feng

    2018-03-01

    The manual feature extraction of the traditional method for vehicle license plates has no good robustness to change in diversity. And the high feature dimension that is extracted with Principal Component Analysis Network (PCANet) leads to low classification efficiency. For solving these problems, a method of vehicle license plate recognition based on PCANet and compressive sensing is proposed. First, PCANet is used to extract the feature from the images of characters. And then, the sparse measurement matrix which is a very sparse matrix and consistent with Restricted Isometry Property (RIP) condition of the compressed sensing is used to reduce the dimensions of extracted features. Finally, the Support Vector Machine (SVM) is used to train and recognize the features whose dimension has been reduced. Experimental results demonstrate that the proposed method has better performance than Convolutional Neural Network (CNN) in the recognition and time. Compared with no compression sensing, the proposed method has lower feature dimension for the increase of efficiency.

  10. Intelligent Detection of Structure from Remote Sensing Images Based on Deep Learning Method

    Science.gov (United States)

    Xin, L.

    2018-04-01

    Utilizing high-resolution remote sensing images for earth observation has become the common method of land use monitoring. It requires great human participation when dealing with traditional image interpretation, which is inefficient and difficult to guarantee the accuracy. At present, the artificial intelligent method such as deep learning has a large number of advantages in the aspect of image recognition. By means of a large amount of remote sensing image samples and deep neural network models, we can rapidly decipher the objects of interest such as buildings, etc. Whether in terms of efficiency or accuracy, deep learning method is more preponderant. This paper explains the research of deep learning method by a great mount of remote sensing image samples and verifies the feasibility of building extraction via experiments.

  11. Qualitative zoning of groundwater for drinking purposes in Lenjan plain using GQI method through GIS

    Directory of Open Access Journals (Sweden)

    Amin Mohebbi Tafreshi

    2017-09-01

    Full Text Available Background: A new method has been presented specifically for zoning the quality of groundwater for drinking purposes; this method is the groundwater quality index (GQI method. The present research used the GQI method to qualitatively zoning of the Lenjan groundwater for drinking purposes. Methods: Three phases were applied in this research. In the first phase, working on the quality data of 38 wells within the studied plain, the raster map of quality concentration parameters, including pH, TDS, Cl, SO4, Ca, Mg, and Na parameters, was provided by interpolation using the kriging method in the ArcGIS software. In the second phase, the mentioned maps were standardized so that various bits of data can follow a common standard and scale. In the third phase, weight was applied to each standardized map, and ultimately the classification map for each parameter was drawn. The final GQI map was created by combining the mentioned classification maps. Results: The GQI values for Lenjan plain were rated from the minimum (67.48 to the maximum (90.05. The results showed an average to acceptable level of quality for drinking water. Conclusion: According to the final map, the central and southern parts of Lenjan plain, which have acceptable GQI rankings, are the best zones from which to use groundwater for drinking purposes.

  12. Mapping Of Leptospirosis Environmental Risk Factors and Determining the Level of Leptospirosis Vulnerable Zone In Demak District Using Remote Sensing Image

    Science.gov (United States)

    Rahayu, Siti; Sakundarno Adi, Mateus; Saraswati, Lintang Dian

    2018-02-01

    Leptospirosis, a zoonotic disease, transmitted to human trough contact with contaminated animal urine and contaminated environment. Demak District is an endemic area where cases increased in the past 2 years. The aim of the study was to map environmental risk factor of Leptospirosis and to determine Leptospirosis vulnerable zone using cross-sectional study design. There were 42 cases mapped by GPS and overlaid using remote sensing (Quickbird image) by using ArcView program then interpreted by Spatial Feature and Spatial Analyses. Leptospirosis cases were spread out and grouped in Demak Sub District area. More cases were males (61.9%), 21-50 years old age group (59.3%) and farmers (40.4%). Spatial analyses showed that all the leptospirosis cases took place in the area with low plain profile (28.6%), tidal inundation's profile (7.1%), vegetation (59.5%). Leptospirosis high-risk zone was in 37,801.8 ha (41.32%), moderate risk zone was 43,570.23 ha (48.55%), and low-risk zone was 9,090.96 ha (10.13%). Densely populated housing, bad environment condition, and the presence of rat and puddles that were contaminated by rat's urine were risk factors of Leptospirosis cases in Demak District.

  13. Proposed frustrated-total-reflection acoustic sensing method

    International Nuclear Information System (INIS)

    Hull, J.R.

    1981-01-01

    Modulation of electromagnetic energy transmission through a frustrated-total-reflection device by pressure-induced changes in the index of refraction is proposed for use as an acoustic detector. Maximum sensitivity occurs for angles of incidence near the critical angle. The minimum detectable pressure in air is limited by Brownian noise. Acoustic propagation losses and diffraction of the optical beam by the acoustic signal limit the minimum acoustic wavelength to lengths of the order of the spatial extent of the optical beam. The response time of the method is fast enough to follow individual acoustic waves

  14. New methods of determination of the total electron content in the transverse zone

    International Nuclear Information System (INIS)

    Keroub, I.H.

    1976-01-01

    New methods for the determination of T.E.C. in the transverse zone are developed in the present study. The methods are mainly based on a rigorous calculation of the propagation of electromagnetic waves in an anisotropic geophysical plasma. The methods are described according to the recorded information (satellitic frequencies, universal time) involved in their utilization. Finally, it is show how to apply these methods to any station situated at a geomagnetic latitude comparable with that of Haifa by way of a suitable treatment of the available information

  15. Reliable clarity automatic-evaluation method for optical remote sensing images

    Science.gov (United States)

    Qin, Bangyong; Shang, Ren; Li, Shengyang; Hei, Baoqin; Liu, Zhiwen

    2015-10-01

    Image clarity, which reflects the sharpness degree at the edge of objects in images, is an important quality evaluate index for optical remote sensing images. Scholars at home and abroad have done a lot of work on estimation of image clarity. At present, common clarity-estimation methods for digital images mainly include frequency-domain function methods, statistical parametric methods, gradient function methods and edge acutance methods. Frequency-domain function method is an accurate clarity-measure approach. However, its calculation process is complicate and cannot be carried out automatically. Statistical parametric methods and gradient function methods are both sensitive to clarity of images, while their results are easy to be affected by the complex degree of images. Edge acutance method is an effective approach for clarity estimate, while it needs picking out the edges manually. Due to the limits in accuracy, consistent or automation, these existing methods are not applicable to quality evaluation of optical remote sensing images. In this article, a new clarity-evaluation method, which is based on the principle of edge acutance algorithm, is proposed. In the new method, edge detection algorithm and gradient search algorithm are adopted to automatically search the object edges in images. Moreover, The calculation algorithm for edge sharpness has been improved. The new method has been tested with several groups of optical remote sensing images. Compared with the existing automatic evaluation methods, the new method perform better both in accuracy and consistency. Thus, the new method is an effective clarity evaluation method for optical remote sensing images.

  16. Reflection seismic methods applied to locating fracture zones in crystalline rock

    International Nuclear Information System (INIS)

    Juhlin, C.

    1998-01-01

    The reflection seismic method is a potentially powerful tool for identifying and localising fracture zones in crystalline rock if used properly. Borehole sonic logs across fracture zones show that they have reduced P-wave velocities compared to the surrounding intact rock. Diagnostically important S-wave velocity log information across the fracture zones is generally lacking. Generation of synthetic reflection seismic data and subsequent processing of these data show that structures dipping up towards 70 degrees from horizontal can be reliably imaged using surface seismic methods. Two real case studies where seismic reflection methods have been used to image fracture zones in crystalline rock are presented. Two examples using reflection seismic are presented. The first is from the 5354 m deep SG-4 borehole in the Middle Urals, Russia where strong seismic reflectors dipping from 25 to 50 degrees are observed on surface seismic reflection data crossing over the borehole. On vertical seismic profile data acquired in the borehole, the observed P-wave reflectivity is weak from these zones, however, strong converted P to S waves are observed. This can be explained by the source of the reflectors being fracture zones with a high P wave to S wave velocity ratio compared to the surrounding rock resulting in a high dependence on the angle of incidence for the reflection coefficient. A high P wave to S wave velocity ratio (high Poisson's ratio) is to be expected in fluid filled fractured rock. The second case is from Aevroe, SE Sweden, where two 1 km long crossing high resolution seismic reflection lines were acquired in October 1996. An E-W line was shot with 5 m geophone and shotpoint spacing and a N-S one with 10 m geophone and shotpoint spacing. An explosive source with a charge size of 100 grams was used along both lines. The data clearly image three major dipping reflectors in the upper 200 ms (600 m). The dipping ones intersect or project to the surface at/or close to

  17. Parametric Method to Define Area of Allowable Configurations while Changing Position of Restricted Zones

    Science.gov (United States)

    Pritykin, F. N.; Nefedov, D. I.; Rogoza, Yu A.; Zinchenko, Yu V.

    2018-03-01

    The article presents the findings related to the development of the module for automatic collision detection of the manipulator with restricted zones for virtual motion modeling. It proposes the parametric method for specifying the area of allowable joint configurations. The authors study the cases when restricted zones are specified using the horizontal plane or front-projection planes. The joint coordinate space is specified by rectangular axes in the direction of which the angles defining the displacements in turning pairs are laid off. The authors present the results of modeling which enabled to develop a parametric method for specifying a set of cross-sections defining the shape and position of allowable configurations in different positions of a restricted zone. All joint points that define allowable configurations refer to the indicated sections. The area of allowable configurations is specified analytically by using several kinematic surfaces that limit it. A geometric analysis is developed based on the use of the area of allowable configurations characterizing the position of the manipulator and reported restricted zones. The paper presents numerical calculations related to virtual simulation of the manipulator path performed by the mobile robot Varan when using the developed algorithm and restricted zones. The obtained analytical dependencies allow us to define the area of allowable configurations, which is a knowledge pool to ensure the intelligent control of the manipulator path in a predefined environment. The use of the obtained region to synthesize a joint trajectory makes it possible to correct the manipulator path to foresee and eliminate deadlocks when synthesizing motions along the velocity vector.

  18. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    Science.gov (United States)

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  19. The separation-combination method of linear structures in remote sensing image interpretation and its application

    International Nuclear Information System (INIS)

    Liu Linqin

    1991-01-01

    The separation-combination method a new kind of analysis method of linear structures in remote sensing image interpretation is introduced taking northwestern Fujian as the example, its practical application is examined. The practice shows that application results not only reflect intensities of linear structures in overall directions at different locations, but also contribute to the zonation of linear structures and display their space distribution laws. Based on analyses of linear structures, it can provide more information concerning remote sensing on studies of regional mineralization laws and the guide to ore-finding combining with mineralization

  20. A Method for Optimal Load Dispatch of a Multi-zone Power System with Zonal Exchange Constraints

    Science.gov (United States)

    Hazarika, Durlav; Das, Ranjay

    2018-04-01

    This paper presented a method for economic generation scheduling of a multi-zone power system having inter zonal operational constraints. For this purpose, the generator rescheduling for a multi area power system having inter zonal operational constraints has been represented as a two step optimal generation scheduling problem. At first, the optimal generation scheduling has been carried out for the zone having surplus or deficient generation with proper spinning reserve using co-ordination equation. The power exchange required for the deficit zones and zones having no generation are estimated based on load demand and generation for the zone. The incremental transmission loss formulas for the transmission lines participating in the power transfer process among the zones are formulated. Using these, incremental transmission loss expression in co-ordination equation, the optimal generation scheduling for the zonal exchange has been determined. Simulation is carried out on IEEE 118 bus test system to examine the applicability and validity of the method.

  1. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors.

    Science.gov (United States)

    Zheng, Guang; Moskal, L Monika

    2009-01-01

    The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels.

  2. Seasonal variations in groundwater upwelling zones in a Danish lowland stream analyzed using Distributed Temperature Sensing (DTS)

    DEFF Research Database (Denmark)

    Matheswaran, Karthikeyan; Blemmer, Morten; Rosbjerg, Dan

    2014-01-01

    –night temperature difference were applied to three DTS datasets representing stream temperature responses to the variable meteorological and hydrological conditions prevailing in summer, winter and spring. The standard deviation criterion was useful to identify groundwater discharge zones in summer and spring......-term deployment covering variable meteorological and hydrological scenarios. Copyright © 2012 John Wiley & Sons, Ltd....

  3. Depth compensating calculation method of computer-generated holograms using symmetry and similarity of zone plates

    Science.gov (United States)

    Wei, Hui; Gong, Guanghong; Li, Ni

    2017-10-01

    Computer-generated hologram (CGH) is a promising 3D display technology while it is challenged by heavy computation load and vast memory requirement. To solve these problems, a depth compensating CGH calculation method based on symmetry and similarity of zone plates is proposed and implemented on graphics processing unit (GPU). An improved LUT method is put forward to compute the distances between object points and hologram pixels in the XY direction. The concept of depth compensating factor is defined and used for calculating the holograms of points with different depth positions instead of layer-based methods. The proposed method is suitable for arbitrary sampling objects with lower memory usage and higher computational efficiency compared to other CGH methods. The effectiveness of the proposed method is validated by numerical and optical experiments.

  4. Ion-step method for surface potential sensing of silicon nanowires

    NARCIS (Netherlands)

    Chen, S.; van Nieuwkasteele, Jan William; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    This paper presents a novel stimulus-response method for surface potential sensing of silicon nanowire (Si NW) field-effect transistors. When an "ion-step" from low to high ionic strength is given as a stimulus to the gate oxide surface, an increase of double layer capacitance is therefore expected.

  5. An adaptive reentry guidance method considering the influence of blackout zone

    Science.gov (United States)

    Wu, Yu; Yao, Jianyao; Qu, Xiangju

    2018-01-01

    Reentry guidance has been researched as a popular topic because it is critical for a successful flight. In view that the existing guidance methods do not take into account the accumulated navigation error of Inertial Navigation System (INS) in the blackout zone, in this paper, an adaptive reentry guidance method is proposed to obtain the optimal reentry trajectory quickly with the target of minimum aerodynamic heating rate. The terminal error in position and attitude can be also reduced with the proposed method. In this method, the whole reentry guidance task is divided into two phases, i.e., the trajectory updating phase and the trajectory planning phase. In the first phase, the idea of model predictive control (MPC) is used, and the receding optimization procedure ensures the optimal trajectory in the next few seconds. In the trajectory planning phase, after the vehicle has flown out of the blackout zone, the optimal reentry trajectory is obtained by online planning to adapt to the navigation information. An effective swarm intelligence algorithm, i.e. pigeon inspired optimization (PIO) algorithm, is applied to obtain the optimal reentry trajectory in both of the two phases. Compared to the trajectory updating method, the proposed method can reduce the terminal error by about 30% considering both the position and attitude, especially, the terminal error of height has almost been eliminated. Besides, the PIO algorithm performs better than the particle swarm optimization (PSO) algorithm both in the trajectory updating phase and the trajectory planning phases.

  6. Optimized computational imaging methods for small-target sensing in lens-free holographic microscopy

    Science.gov (United States)

    Xiong, Zhen; Engle, Isaiah; Garan, Jacob; Melzer, Jeffrey E.; McLeod, Euan

    2018-02-01

    Lens-free holographic microscopy is a promising diagnostic approach because it is cost-effective, compact, and suitable for point-of-care applications, while providing high resolution together with an ultra-large field-of-view. It has been applied to biomedical sensing, where larger targets like eukaryotic cells, bacteria, or viruses can be directly imaged without labels, and smaller targets like proteins or DNA strands can be detected via scattering labels like micro- or nano-spheres. Automated image processing routines can count objects and infer target concentrations. In these sensing applications, sensitivity and specificity are critically affected by image resolution and signal-to-noise ratio (SNR). Pixel super-resolution approaches have been shown to boost resolution and SNR by synthesizing a high-resolution image from multiple, partially redundant, low-resolution images. However, there are several computational methods that can be used to synthesize the high-resolution image, and previously, it has been unclear which methods work best for the particular case of small-particle sensing. Here, we quantify the SNR achieved in small-particle sensing using regularized gradient-descent optimization method, where the regularization is based on cardinal-neighbor differences, Bayer-pattern noise reduction, or sparsity in the image. In particular, we find that gradient-descent with sparsity-based regularization works best for small-particle sensing. These computational approaches were evaluated on images acquired using a lens-free microscope that we assembled from an off-the-shelf LED array and color image sensor. Compared to other lens-free imaging systems, our hardware integration, calibration, and sample preparation are particularly simple. We believe our results will help to enable the best performance in lens-free holographic sensing.

  7. Novel Door-opening Method for Six-legged Robots Based on Only Force Sensing

    Science.gov (United States)

    Chen, Zhi-Jun; Gao, Feng; Pan, Yang

    2017-09-01

    Current door-opening methods are mainly developed on tracked, wheeled and biped robots by applying multi-DOF manipulators and vision systems. However, door-opening methods for six-legged robots are seldom studied, especially using 0-DOF tools to operate and only force sensing to detect. A novel door-opening method for six-legged robots is developed and implemented to the six-parallel-legged robot. The kinematic model of the six-parallel-legged robot is established and the model of measuring the positional relationship between the robot and the door is proposed. The measurement model is completely based on only force sensing. The real-time trajectory planning method and the control strategy are designed. The trajectory planning method allows the maximum angle between the sagittal axis of the robot body and the normal line of the door plane to be 45º. A 0-DOF tool mounted to the robot body is applied to operate. By integrating with the body, the tool has 6 DOFs and enough workspace to operate. The loose grasp achieved by the tool helps release the inner force in the tool. Experiments are carried out to validate the method. The results show that the method is effective and robust in opening doors wider than 1 m. This paper proposes a novel door-opening method for six-legged robots, which notably uses a 0-DOF tool and only force sensing to detect and open the door.

  8. Lodenafil carbonate tablets: optimization and validation of a capillary zone electrophoresis method

    OpenAIRE

    Codevilla, Cristiane F; Ferreira, Pâmela Cristina L; Sangoi, Maximiliano S; Fröehlich, Pedro Eduardo; Bergold, Ana Maria

    2012-01-01

    A simple capillary zone electrophoresis (CZE) method was developed and validated for the analysis of lodenafil carbonate in tablets. Response surface methodology was used for optimization of the pH and concentration of the buffer, applied voltage and temperature. The method employed 50 mmol L-1 borate buffer at pH 10 as background electrolyte with an applied voltage of 15 kV. The separation was carried out in a fused-silica capillary maintained at 32.5 ºC and the detection wavelength was 214 ...

  9. Developing the remote sensing-based water environmental model for monitoring alpine river water environment over Plateau cold zone

    Science.gov (United States)

    You, Y.; Wang, S.; Yang, Q.; Shen, M.; Chen, G.

    2017-12-01

    Alpine river water environment on the Plateau (such as Tibetan Plateau, China) is a key indicator for water security and environmental security in China. Due to the complex terrain and various surface eco-environment, it is a very difficult to monitor the water environment over the complex land surface of the plateau. The increasing availability of remote sensing techniques with appropriate spatiotemporal resolutions, broad coverage and low costs allows for effective monitoring river water environment on the Plateau, particularly in remote and inaccessible areas where are lack of in situ observations. In this study, we propose a remote sense-based monitoring model by using multi-platform remote sensing data for monitoring alpine river environment. In this study some parameterization methodologies based on satellite remote sensing data and field observations have been proposed for monitoring the water environmental parameters (including chlorophyll-a concentration (Chl-a), water turbidity (WT) or water clarity (SD), total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC)) over the china's southwest highland rivers, such as the Brahmaputra. First, because most sensors do not collect multiple observations of a target in a single pass, data from multiple orbits or acquisition times may be used, and varying atmospheric and irradiance effects must be reconciled. So based on various types of satellite data, at first we developed the techniques of multi-sensor data correction, atmospheric correction. Second, we also built the inversion spectral database derived from long-term remote sensing data and field sampling data. Then we have studied and developed a high-precision inversion model over the southwest highland river backed by inversion spectral database through using the techniques of multi-sensor remote sensing information optimization and collaboration. Third, take the middle reaches of the Brahmaputra river as the study area, we validated the key

  10. Methods for Enhancing Geological Structures in Spectral Spatial Difference-Based on Remote-Sensing Image

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@In this paper, some image processing methods such as directional template (mask) matching enhancement, pseudocolor or false color enhancement, K-L transform enhancement are used to enhance a geological structure, one of important ore-controlling factors, shown in the remote-sensing images.This geological structure is regarded as image anomaly in the remote-sensing image, since considerable differences, based on the spatial spectral distribution pattern, in gray values (spectral), color tones and texture, are always present between the geological structure and background. Therefore,the enhancement of the geological structure in the remotesensing image is that of the spectral spatial difference.

  11. Modeling foam delivery mechanisms in deep vadose-zone remediation using method of characteristics

    International Nuclear Information System (INIS)

    Roostapour, A.; Kam, S.I.

    2012-01-01

    Highlights: ► A new mathematical framework established for vadose-zone foam remediation. ► Graphical solutions presented by Method of Characteristics quantitatively. ► Effects of design parameters in the field applications thoroughly investigated. ► Implication of modeling study for successful field treatment discussed. - Abstract: This study investigates foam delivery mechanisms in vadose-zone remediation by using Method of Characteristics (MoC), a mathematical tool long been used for the analysis of miscible and immiscible flooding in porous media in petroleum industry. MoC converts the governing material-balance partial differential equations into a series of ordinary differential equations, and the resulting solutions are in a form of wave propagation (more specifically, for chemical species and phase saturations) through the system as a function of time and space. Deep vadose-zone remediation has special features compared to other conventional remediation applications. They include, not limited to, a high level of heterogeneity, a very dry initial condition with low water saturation (S w ), pollutants such as metals and radionuclides fully dissolved in groundwater, and a serious concern about downward migration during the remediation treatments. For the vadose-zone remediation processes to be successful, the injected aqueous phase should carry chemicals to react with pollutants and precipitate them for immobilization and stabilization purposes. As a result, foams are believed to be an effective means, and understanding foam flow mechanism in situ is a key to the optimal design of field applications. Results show that foam delivery mechanism is indeed very complicated, making the optimum injection condition field-specific. The five major parameters selected (i.e., initial saturation of the medium, injection foam quality, surfactant adsorption, foam strength, and foam stability) are shown to be all important, interacting with each other. Results also

  12. Study on Method of Geohazard Change Detection Based on Integrating Remote Sensing and GIS

    International Nuclear Information System (INIS)

    Zhao, Zhenzhen; Yan, Qin; Liu, Zhengjun; Luo, Chengfeng

    2014-01-01

    Following a comprehensive literature review, this paper looks at analysis of geohazard using remote sensing information. This paper compares the basic types and methods of change detection, explores the basic principle of common methods and makes an respective analysis of the characteristics and shortcomings of the commonly used methods in the application of geohazard. Using the earthquake in JieGu as a case study, this paper proposes a geohazard change detection method integrating RS and GIS. When detecting the pre-earthquake and post-earthquake remote sensing images at different phases, it is crucial to set an appropriate threshold. The method adopts a self-adapting determination algorithm for threshold. We select a training region which is obtained after pixel information comparison and set a threshold value. The threshold value separates the changed pixel maximum. Then we apply the threshold value to the entire image, which could also make change detection accuracy maximum. Finally, we output the result to the GIS system to make change analysis. The experimental results show that this method of geohazard change detection based on integrating remote sensing and GIS information has higher accuracy with obvious advantages compared with the traditional methods

  13. Land surface temperature as an indicator of the unsaturated zone thickness: A remote sensing approach in the Atacama Desert.

    Science.gov (United States)

    Urqueta, Harry; Jódar, Jorge; Herrera, Christian; Wilke, Hans-G; Medina, Agustín; Urrutia, Javier; Custodio, Emilio; Rodríguez, Jazna

    2018-01-15

    Land surface temperature (LST) seems to be related to the temperature of shallow aquifers and the unsaturated zone thickness (∆Z uz ). That relationship is valid when the study area fulfils certain characteristics: a) there should be no downward moisture fluxes in an unsaturated zone, b) the soil composition in terms of both, the different horizon materials and their corresponding thermal and hydraulic properties, must be as homogeneous and isotropic as possible, c) flat and regular topography, and d) steady state groundwater temperature with a spatially homogeneous temperature distribution. A night time Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image and temperature field measurements are used to test the validity of the relationship between LST and ∆Z uz at the Pampa del Tamarugal, which is located in the Atacama Desert (Chile) and meets the above required conditions. The results indicate that there is a relation between the land surface temperature and the unsaturated zone thickness in the study area. Moreover, the field measurements of soil temperature indicate that shallow aquifers dampen both the daily and the seasonal amplitude of the temperature oscillation generated by the local climate conditions. Despite empirically observing the relationship between the LST and ∆Z uz in the study zone, such a relationship cannot be applied to directly estimate ∆Z uz using temperatures from nighttime thermal satellite images. To this end, it is necessary to consider the soil thermal properties, the soil surface roughness and the unseen water and moisture fluxes (e.g., capillarity and evaporation) that typically occur in the subsurface. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A facile fluorescent "turn-off" method for sensing paraquat based on pyranine-paraquat interaction

    Science.gov (United States)

    Zhao, Zuzhi; Zhang, Fengwei; Zhang, Zipin

    2018-06-01

    Development of a technically simple yet effective method for paraquat (PQ) detection is of great importance due to its high clinical and environmental relevance. In this study, we developed a pyranine-based fluorescent "turn-off" method for PQ sensing based on pyranine-PQ interaction. We investigated the dependence of analytical performance of this method on the experimental conditions, such as the ion strength, medium pH, and so on. Under the optimized conditions, the method is sensitive and selective, and could be used for PQ detection in real-world sample. This study essentially provides a readily accessible fluorescent system for PQ sensing which is cheap, robust, and technically simple, and it is envisaged to find more interesting clinical and environmental applications.

  15. Pixel-Wise Classification Method for High Resolution Remote Sensing Imagery Using Deep Neural Networks

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2018-03-01

    Full Text Available Considering the classification of high spatial resolution remote sensing imagery, this paper presents a novel classification method for such imagery using deep neural networks. Deep learning methods, such as a fully convolutional network (FCN model, achieve state-of-the-art performance in natural image semantic segmentation when provided with large-scale datasets and respective labels. To use data efficiently in the training stage, we first pre-segment training images and their labels into small patches as supplements of training data using graph-based segmentation and the selective search method. Subsequently, FCN with atrous convolution is used to perform pixel-wise classification. In the testing stage, post-processing with fully connected conditional random fields (CRFs is used to refine results. Extensive experiments based on the Vaihingen dataset demonstrate that our method performs better than the reference state-of-the-art networks when applied to high-resolution remote sensing imagery classification.

  16. Theoretical models for crustal displacement assessment and monitoring in Vrancea-Focsani seismic zone by integrated remote sensing and local geophysical data for seismic prognosis

    International Nuclear Information System (INIS)

    Zoran, Maria; Ciobanu, Mircea; Mitrea, Marius Gabriel; Talianu, Camelia; Cotarlan, Costel; Mateciuc, Doru; Radulescu, Florin; Biter Mircea

    2002-01-01

    The majority of strong Romanian earthquakes has the origin in Vrancea region. Subduction of the Black Sea Sub-Plate under the Pannonian Plate produces faulting processes. Crustal displacement identification and monitoring is very important for a seismically active area like Vrancea-Focsani. Earthquake displacements are very well revealed by satellite remote sensing data. At the same time, geomorphologic analysis of topographic maps is carried out and particularly longitudinal and transverse profiles are constructed, as well as structural-geomorphologic maps. Faults are interpreted by specific features in nature of relief, straightness of line of river beds and their tributaries, exits of springs, etc. Remote sensing analysis and field studies of active faults can provide a geologic history that overcomes many of the shortcomings of instrumental and historic records. Our theoretical models developed in the frame of this project are presented as follows: a) Spectral Mixture Analysis model of geomorphological and topographic characteristics for Vrancea region proposed for satellite images analysis which assumes that the different classes present in a pixel (image unit) contribute independently to its reflectance. Therefore, the reflectance of a pixel at a particular frequency is the sum of the reflectances of the components at that frequency. The same test region in Vrancea area is imaged at several different frequencies (spectral bands), leading to multispectral observations for each pixel. It is useful to merge different satellite data into a hybrid image with high spatial and spectral resolution to create detailed images map of the abundance of various materials within the scene based on material spectral fingerprint. Image fusion produces a high-resolution multispectral image that is then unmixed into high-resolution material maps. b) Model of seismic cross section analysis which is applied in seismic active zones morphology. Since a seismic section can be

  17. Integration of remote sensing, geochemical and field data in the Qena-Safaga shear zone: Implications for structural evolution of the Eastern Desert, Egypt

    Science.gov (United States)

    El-Din, Gamal Kamal; Abdelkareem, Mohamed

    2018-05-01

    The Qena-Safaga shear zone (QSSZ) represents a significant structural characteristic in the Eastern Desert of Egypt. Remote Sensing, field and geochemical data were utilized in the present study. The results revealed that the QSSZ dominated by metamorphic complex (MC) that intruded by syn-tectonic granitoids. The low angle thrust fault brings calc-alkaline metavolcanics to overlie MC and its association. Subsequently, the area is dissected by strike-slip faults and the small elongated basins of Hammamat sediments of Precambrian were accumulated. The MC intruded by late-to post-tectonic granites (LPG) and Dokhan Volcanics which comprise felsic varieties forming distinctive columnar joints. Remote sensing analysis and field data revealed that major sub-vertical conspicuous strike-slip faults (SSF) including sinistral NW-SE and dextral ca. E-W shaped the study area. Various shear zones that accompanying the SSF are running NW-SE, NE-SW, E-W, N-S and ENE-WSW. The obtained shear sense presented a multiphase of deformation on each trend. i.e., the predominant NW-SE strike-slip fault trend started with sinistral displacement and is reactivated during later events to be right (dextral) strike slip cutting with dextral displacement the E-W trending faults; while NE-SW movements are cut by both the N-S and NNW - SSE trends. Remote sensing data revealed that the NW-SE direction that dominated the area is associated with hydrothermal alteration processes. This allowed modifying the major and trace elements of the highly deformed rocks that showed depletion in SiO2 and enrichments in Fe2O3, MnO, Al2O3, TiO2, Na2O, K2O, Cu, Zn and Pb contents. The geochemical signatures of major and trace elements revealed two types of granites including I-type calc-alkaline granites (late-to post-tectonic) that formed during an extensional regime. However, syn-tectonic granitoids are related to subduction-related environment.

  18. Geochemical characterization of supraglacial debris via in situ and optical remote sensing methods: a case study in Khumbu Himalaya, Nepal

    Directory of Open Access Journals (Sweden)

    K. A. Casey

    2012-01-01

    Full Text Available Surface glacier debris samples and field spectra were collected from the ablation zones of Nepal Himalaya Ngozumpa and Khumbu glaciers in November and December 2009. Geochemical and mineral compositions of supraglacial debris were determined by X-ray diffraction and X-ray fluorescence spectroscopy. This composition data was used as ground truth in evaluating field spectra and satellite supraglacial debris composition and mapping methods. Satellite remote sensing methods for characterizing glacial surface debris include visible to thermal infrared hyper- and multispectral reflectance and emission signature identification, semi-quantitative mineral abundance indicies and spectral image composites. Satellite derived supraglacial debris mineral maps displayed the predominance of layered silicates, hydroxyl-bearing and calcite minerals on Khumbu Himalayan glaciers. Supraglacial mineral maps compared with satellite thermal data revealed correlations between glacier surface composition and glacier surface temperature. Glacier velocity displacement fields and shortwave, thermal infrared false color composites indicated the magnitude of mass flux at glacier confluences. The supraglacial debris mapping methods presented in this study can be used on a broader scale to improve, supplement and potentially reduce errors associated with glacier debris radiative property, composition, areal extent and mass flux quantifications.

  19. ZONE, Finite Elements Method Quadrilateral and Triangular Mesh Generator for 2-D Axisymmetric Geometry

    International Nuclear Information System (INIS)

    Burger, M. J.

    1981-01-01

    1 - Description of problem or function: The ZONE program is a finite element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is divided into a mesh of quadrilateral and triangular zones defined by node points taken in a counter-clockwise sequence. The zones are arranged sequentially in an ordered march through the geometry. The order can be chosen so that the minimum bandwidth is obtained. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. 2 - Method of solution: The basic concept used is the definition of a two-dimensional structure by the intersection of two sets of lines which describe the geometric and material boundaries. A set of lines called meridians define the geometric and material boundaries and generally run in the same direction. Another set of linear line segments called rays which intersect the meridians are also defined at the material and geometric boundaries. The section of the structure between successive rays is called a region. The ray segment between any two consecutive ray-meridian intersections or void area in the structure is called a layer and is described as passing through, or bounding a material. The boundaries can be directly defined as a sequence of straight line segments or can be computed in terms of elliptic segments or circular arcs. A meridian or ray can also be made to follow a previously-defined meridian or ray at a fixed distance by invoking an offset option. 3 - Restrictions on the complexity of the problem: The following are limited only by a DIMENSION statement. The code currently has a maxima of: 100 coordinate points defining a meridian or ray, 40 meridians, 40 layers. There are no limits on the number of zones or nodes for any problems

  20. An efficient cloud detection method for high resolution remote sensing panchromatic imagery

    Science.gov (United States)

    Li, Chaowei; Lin, Zaiping; Deng, Xinpu

    2018-04-01

    In order to increase the accuracy of cloud detection for remote sensing satellite imagery, we propose an efficient cloud detection method for remote sensing satellite panchromatic images. This method includes three main steps. First, an adaptive intensity threshold value combined with a median filter is adopted to extract the coarse cloud regions. Second, a guided filtering process is conducted to strengthen the textural features difference and then we conduct the detection process of texture via gray-level co-occurrence matrix based on the acquired texture detail image. Finally, the candidate cloud regions are extracted by the intersection of two coarse cloud regions above and we further adopt an adaptive morphological dilation to refine them for thin clouds in boundaries. The experimental results demonstrate the effectiveness of the proposed method.

  1. A Remote Sensing Image Fusion Method based on adaptive dictionary learning

    Science.gov (United States)

    He, Tongdi; Che, Zongxi

    2018-01-01

    This paper discusses using a remote sensing fusion method, based on' adaptive sparse representation (ASP)', to provide improved spectral information, reduce data redundancy and decrease system complexity. First, the training sample set is formed by taking random blocks from the images to be fused, the dictionary is then constructed using the training samples, and the remaining terms are clustered to obtain the complete dictionary by iterated processing at each step. Second, the self-adaptive weighted coefficient rule of regional energy is used to select the feature fusion coefficients and complete the reconstruction of the image blocks. Finally, the reconstructed image blocks are rearranged and an average is taken to obtain the final fused images. Experimental results show that the proposed method is superior to other traditional remote sensing image fusion methods in both spectral information preservation and spatial resolution.

  2. Data Collection Method for Mobile Control Sink Node in Wireless Sensor Network Based on Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Ling Yongfa

    2016-01-01

    Full Text Available The paper proposes a mobile control sink node data collection method in the wireless sensor network based on compressive sensing. This method, with regular track, selects the optimal data collection points in the monitoring area via the disc method, calcu-lates the shortest path by using the quantum genetic algorithm, and hence determines the data collection route. Simulation results show that this method has higher network throughput and better energy efficiency, capable of collecting a huge amount of data with balanced energy consumption in the network.

  3. HydroCube mission concept: P-Band signals of opportunity for remote sensing of snow and root zone soil moisture

    Science.gov (United States)

    Yueh, Simon; Shah, Rashmi; Xu, Xiaolan; Elder, Kelly; Chae, Chun Sik; Margulis, Steve; Liston, Glen; Durand, Michael; Derksen, Chris

    2017-09-01

    We have developed the HydroCube mission concept with a constellation of small satellites to remotely sense Snow Water Equivalent (SWE) and Root Zone Soil Moisture (RZSM). The HydroCube satellites would operate at sun-synchronous 3- day repeat polar orbits with a spatial resolution of about 1-3 Km. The mission goals would be to improve the estimation of terrestrial water storage and weather forecasts. Root-zone soil moisture and snow water storage in land are critical parameters of the water cycle. The HydroCube Signals of Opportunity (SoOp) concept utilizes passive receivers to detect the reflection of strong existing P-band radio signals from geostationary Mobile Use Objective System (MUOS) communication satellites. The SWE remote sensing measurement principle using the P-band SoOp is based on the propagation delay (or phase change) of radio signals through the snowpack. The time delay of the reflected signal due to the snowpack with respect to snow-free conditions is directly proportional to the snowpack SWE. To address the ionospheric delay at P-band frequencies, the signals from both MUOS bands (360-380 MHz and 250-270 MHz) would be used. We have conducted an analysis to trade off the spatial resolution for a space-based sensor and measurement accuracy. Through modeling analysis, we find that the dual-band MUOS signals would allow estimation of soil moisture and surface roughness together. From the two MUOS frequencies at 260 MHz and 370 MHz, we can retrieve the soil moisture from the reflectivity ratio scaled by wavenumbers using the two P-band frequencies for MUOS. A modeling analysis using layered stratified model has been completed to determine the sensitivity requirements of HydroCube measurements. For mission concept demonstration, a field campaign has been conducted at the Fraser Experimental Forest in Colorado since February 2016. The data acquired has provided support to the HydroCube concept.

  4. Extraction Method for Earthquake-Collapsed Building Information Based on High-Resolution Remote Sensing

    International Nuclear Information System (INIS)

    Chen, Peng; Wu, Jian; Liu, Yaolin; Wang, Jing

    2014-01-01

    At present, the extraction of earthquake disaster information from remote sensing data relies on visual interpretation. However, this technique cannot effectively and quickly obtain precise and efficient information for earthquake relief and emergency management. Collapsed buildings in the town of Zipingpu after the Wenchuan earthquake were used as a case study to validate two kinds of rapid extraction methods for earthquake-collapsed building information based on pixel-oriented and object-oriented theories. The pixel-oriented method is based on multi-layer regional segments that embody the core layers and segments of the object-oriented method. The key idea is to mask layer by layer all image information, including that on the collapsed buildings. Compared with traditional techniques, the pixel-oriented method is innovative because it allows considerably rapid computer processing. As for the object-oriented method, a multi-scale segment algorithm was applied to build a three-layer hierarchy. By analyzing the spectrum, texture, shape, location, and context of individual object classes in different layers, the fuzzy determined rule system was established for the extraction of earthquake-collapsed building information. We compared the two sets of results using three variables: precision assessment, visual effect, and principle. Both methods can extract earthquake-collapsed building information quickly and accurately. The object-oriented method successfully overcomes the pepper salt noise caused by the spectral diversity of high-resolution remote sensing data and solves the problem of same object, different spectrums and that of same spectrum, different objects. With an overall accuracy of 90.38%, the method achieves more scientific and accurate results compared with the pixel-oriented method (76.84%). The object-oriented image analysis method can be extensively applied in the extraction of earthquake disaster information based on high-resolution remote sensing

  5. A Saliency Guided Semi-Supervised Building Change Detection Method for High Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Bin Hou

    2016-08-01

    Full Text Available Characterizations of up to date information of the Earth’s surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD methods have been developed to solve them by utilizing remote sensing (RS images. The advent of high resolution (HR remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC segmentation. Then, saliency and morphological building index (MBI extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF. Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation.

  6. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    International Nuclear Information System (INIS)

    Qi Pei-Han; Li Zan; Si Jiang-Bo; Gao Rui

    2014-01-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds. (interdisciplinary physics and related areas of science and technology)

  7. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    Science.gov (United States)

    Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Gao, Rui

    2014-12-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.

  8. Prediction of Potential Fishing Zones for Skipjack Tuna During the Northwest Monsoon Using Remotely Sensed Satellite Data

    Directory of Open Access Journals (Sweden)

    Mukti Zainuddin

    2017-06-01

    Full Text Available One of economically important fish in the Bay of Bone is Skipjack tuna which their distribution and migration are influenced by surrounding environment.  This study aims to investigate the relationship between skipjack tuna and their environments, and to predict potential fishing zones (PFZs for the fish in the Bone Bay-Flores Sea using satellite-based oceanography and catch data. Generalized additive models (GAMs were used to assess the relationship. A generalized linear model(GLM constructed from GAMs was used for prediction. Monthly mean sea surface temperature (SST and chlorophyll-a during the northwest monsoon (December-January together with catch data were used for the year 2012-2013. We used the GAMs to assess the effect of the environment variables on skipjack tuna CPUE (catch per unit effort. The best GLM was selected to predict skipjack tuna abundance.  Results indicated that the highest CPUEs (fish/trip occurred in areas where SST and chlorophyll-a ranged from 29.5°-31.5°C and 0.15 - 0.25 mg m-3, respectively. The PFZs for skipjack were closely related to the spatial distribution of the optimum oceanographic conditions and these mainly developed in three locations, northern area of Bone Bay in December, in the middle area of the bay (4°-5.5°S and 120.5°-121.5°E during January and moved to the Flores Sea in February. The movement of skipjack concentration was consistent with the fishery data.  This suggests that the dynamics of the optimum oceanographic signatures provided a good indicator for predicting feeding grounds as hotspot areas for skipjack tuna in Bone Bay-Flores Sea during northwest monsoon.   Keywords:  skipjack tuna, potential fishing zones, satellite based-oceanographic data, Northwest monsoon

  9. Modeling foam delivery mechanisms in deep vadose-zone remediation using method of characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Roostapour, A. [Craft and Hawkins Department of Petroleum Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Kam, S.I., E-mail: kam@lsu.edu [Craft and Hawkins Department of Petroleum Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A new mathematical framework established for vadose-zone foam remediation. Black-Right-Pointing-Pointer Graphical solutions presented by Method of Characteristics quantitatively. Black-Right-Pointing-Pointer Effects of design parameters in the field applications thoroughly investigated. Black-Right-Pointing-Pointer Implication of modeling study for successful field treatment discussed. - Abstract: This study investigates foam delivery mechanisms in vadose-zone remediation by using Method of Characteristics (MoC), a mathematical tool long been used for the analysis of miscible and immiscible flooding in porous media in petroleum industry. MoC converts the governing material-balance partial differential equations into a series of ordinary differential equations, and the resulting solutions are in a form of wave propagation (more specifically, for chemical species and phase saturations) through the system as a function of time and space. Deep vadose-zone remediation has special features compared to other conventional remediation applications. They include, not limited to, a high level of heterogeneity, a very dry initial condition with low water saturation (S{sub w}), pollutants such as metals and radionuclides fully dissolved in groundwater, and a serious concern about downward migration during the remediation treatments. For the vadose-zone remediation processes to be successful, the injected aqueous phase should carry chemicals to react with pollutants and precipitate them for immobilization and stabilization purposes. As a result, foams are believed to be an effective means, and understanding foam flow mechanism in situ is a key to the optimal design of field applications. Results show that foam delivery mechanism is indeed very complicated, making the optimum injection condition field-specific. The five major parameters selected (i.e., initial saturation of the medium, injection foam quality, surfactant adsorption, foam

  10. Application of chaos analyses methods on East Anatolian Fault Zone fractures

    Energy Technology Data Exchange (ETDEWEB)

    Kamışlıoğlu, Miraç, E-mail: m.kamislioglu@gmail.com; Külahcı, Fatih, E-mail: fatihkulahci@firat.edu.tr [Nuclear Physics Division, Department of Physics, Faculty of Science, Fırat University, Elazig, TR-23119 (Turkey)

    2016-06-08

    Nonlinear time series analysis techniques have large application areas on the geoscience and geophysics fields. Modern nonlinear methods are provided considerable evidence for explain seismicity phenomena. In this study nonlinear time series analysis, fractal analysis and spectral analysis have been carried out for researching the chaotic behaviors of release radon gas ({sup 222}Rn) concentration occurring during seismic events. Nonlinear time series analysis methods (Lyapunov exponent, Hurst phenomenon, correlation dimension and false nearest neighbor) were applied for East Anatolian Fault Zone (EAFZ) Turkey and its surroundings where there are about 35,136 the radon measurements for each region. In this paper were investigated of {sup 222}Rn behavior which it’s used in earthquake prediction studies.

  11. A Multi-Stage Method for Connecting Participatory Sensing and Noise Simulations

    Directory of Open Access Journals (Sweden)

    Mingyuan Hu

    2015-01-01

    Full Text Available Most simulation-based noise maps are important for official noise assessment but lack local noise characteristics. The main reasons for this lack of information are that official noise simulations only provide information about expected noise levels, which is limited by the use of large-scale monitoring of noise sources, and are updated infrequently. With the emergence of smart cities and ubiquitous sensing, the possible improvements enabled by sensing technologies provide the possibility to resolve this problem. This study proposed an integrated methodology to propel participatory sensing from its current random and distributed sampling origins to professional noise simulation. The aims of this study were to effectively organize the participatory noise data, to dynamically refine the granularity of the noise features on road segments (e.g., different portions of a road segment, and then to provide a reasonable spatio-temporal data foundation to support noise simulations, which can be of help to researchers in understanding how participatory sensing can play a role in smart cities. This study first discusses the potential limitations of the current participatory sensing and simulation-based official noise maps. Next, we explain how participatory noise data can contribute to a simulation-based noise map by providing (1 spatial matching of the participatory noise data to the virtual partitions at a more microscopic level of road networks; (2 multi-temporal scale noise estimations at the spatial level of virtual partitions; and (3 dynamic aggregation of virtual partitions by comparing the noise values at the relevant temporal scale to form a dynamic segmentation of each road segment to support multiple spatio-temporal noise simulations. In this case study, we demonstrate how this method could play a significant role in a simulation-based noise map. Together, these results demonstrate the potential benefits of participatory noise data as dynamic

  12. A DATA FIELD METHOD FOR URBAN REMOTELY SENSED IMAGERY CLASSIFICATION CONSIDERING SPATIAL CORRELATION

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2016-06-01

    Full Text Available Spatial correlation between pixels is important information for remotely sensed imagery classification. Data field method and spatial autocorrelation statistics have been utilized to describe and model spatial information of local pixels. The original data field method can represent the spatial interactions of neighbourhood pixels effectively. However, its focus on measuring the grey level change between the central pixel and the neighbourhood pixels results in exaggerating the contribution of the central pixel to the whole local window. Besides, Geary’s C has also been proven to well characterise and qualify the spatial correlation between each pixel and its neighbourhood pixels. But the extracted object is badly delineated with the distracting salt-and-pepper effect of isolated misclassified pixels. To correct this defect, we introduce the data field method for filtering and noise limitation. Moreover, the original data field method is enhanced by considering each pixel in the window as the central pixel to compute statistical characteristics between it and its neighbourhood pixels. The last step employs a support vector machine (SVM for the classification of multi-features (e.g. the spectral feature and spatial correlation feature. In order to validate the effectiveness of the developed method, experiments are conducted on different remotely sensed images containing multiple complex object classes inside. The results show that the developed method outperforms the traditional method in terms of classification accuracies.

  13. Validated Method for the Determination of Piroxicam by Capillary Zone Electrophoresis and Its Application to Tablets

    Directory of Open Access Journals (Sweden)

    Arın Gül Dal

    2014-01-01

    piroxicam in tablets. The separation of piroxicam was conducted in a fused-silica capillary by using 10 mM borate buffer (pH 9.0 containing 10% (v/v methanol as background electrolyte. The optimum conditions determined were 25 kV for separation voltage and 1 s for injection time. Analysis was carried out with UV detection at 204 nm. Naproxen sodium was used as an internal standard. The method was linear over the range of 0.23–28.79 µg/mL. The accuracy and precision were found to be satisfied within the acceptable limits (<2%. The LOD and LOQ were found to be 0.07 and 0.19 µg/mL, respectively. The method described here was applied to tablet dosage forms and the content of a tablet was found in the limits of USP-24 suggestions. To compare the results of capillary electrophoretic method, UV spectrophotometric method was developed and the difference between two methods was found to be insignificant. The capillary zone electrophoretic method developed in this study is rapid, simple, and suitable for routine analysis of piroxicam in pharmaceutical tablets.

  14. Information operator approach and iterative regularization methods for atmospheric remote sensing

    International Nuclear Information System (INIS)

    Doicu, A.; Hilgers, S.; Bargen, A. von; Rozanov, A.; Eichmann, K.-U.; Savigny, C. von; Burrows, J.P.

    2007-01-01

    In this study, we present the main features of the information operator approach for solving linear inverse problems arising in atmospheric remote sensing. This method is superior to the stochastic version of the Tikhonov regularization (or the optimal estimation method) due to its capability to filter out the noise-dominated components of the solution generated by an inappropriate choice of the regularization parameter. We extend this approach to iterative methods for nonlinear ill-posed problems and derive the truncated versions of the Gauss-Newton and Levenberg-Marquardt methods. Although the paper mostly focuses on discussing the mathematical details of the inverse method, retrieval results have been provided, which exemplify the performances of the methods. These results correspond to the NO 2 retrieval from SCIAMACHY limb scatter measurements and have been obtained by using the retrieval processors developed at the German Aerospace Center Oberpfaffenhofen and Institute of Environmental Physics of the University of Bremen

  15. METHOD OF GROUP OBJECTS FORMING FOR SPACE-BASED REMOTE SENSING OF THE EARTH

    Directory of Open Access Journals (Sweden)

    A. N. Grigoriev

    2015-07-01

    Full Text Available Subject of Research. Research findings of the specific application of space-based optical-electronic and radar means for the Earth remote sensing are considered. The subject matter of the study is the current planning of objects survey on the underlying surface in order to increase the effectiveness of sensing system due to the rational use of its resources. Method. New concept of a group object, stochastic swath and stochastic length of the route is introduced. The overview of models for single, group objects and their parameters is given. The criterion for the existence of the group object based on two single objects is formulated. The method for group objects formation while current survey planning has been developed and its description is presented. The method comprises several processing stages for data about objects with the calculation of new parameters, the stochastic characteristics of space means and validates the spatial size of the object value of the stochastic swath and stochastic length of the route. The strict mathematical description of techniques for model creation of a group object based on data about a single object and onboard special complex facilities in difficult conditions of registration of spatial data is given. Main Results. The developed method is implemented on the basis of modern geographic information system in the form of a software tool layout with advanced tools of processing and analysis of spatial data in vector format. Experimental studies of the forming method for the group of objects were carried out on a different real object environment using the parameters of modern national systems of the Earth remote sensing detailed observation Canopus-B and Resurs-P. Practical Relevance. The proposed models and method are focused on practical implementation using vector spatial data models and modern geoinformation technologies. Practical value lies in the reduction in the amount of consumable resources by means of

  16. 3d noncontact humidity sensing technologies and methods of use thereof

    KAUST Repository

    Tai, Yanlong; Lubineau, Gilles

    2017-01-01

    Noncontact sensing components are provided herein, in an aspect, they can be for an electronic device. The noncontact sensing components can contain a semiconductor layer having a r-GO portion and a CNT portion. The noncontact sensing components can

  17. Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method

    Science.gov (United States)

    Karaduman, Irmak; Çorlu, Tugba; Yıldırım, M. Ali; Ateş, Aytunç; Acar, Selim

    2017-07-01

    Nanostructured NiO thin films have been synthesized by a facile, low-cost successive ionic layer adsorption and reaction (SILAR) method, and the effects of the film thickness on their hydrogen gas sensing properties investigated. The samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis, and energy-dispersive x-ray analysis. The XRD results revealed that the crystallinity improved with increasing thickness, exhibiting polycrystalline structure. SEM studies showed that all the films covered the glass substrate well. According to optical absorption measurements, the optical bandgap decreased with increasing film thickness. The gas sensing properties of the nanostructured NiO thin films were studied as a function of operating temperature and gas concentration. The samples showed good sensing performance of H2 gas with high response. The maximum response was 75% at operating temperature of 200°C for hydrogen gas concentration of 40 ppm. These results demonstrate that nanostructured NiO thin films synthesized by the SILAR method have potential for application in hydrogen detection.

  18. SERS-Fluorescence Dual-Mode pH-Sensing Method Based on Janus Microparticles.

    Science.gov (United States)

    Yue, Shuai; Sun, Xiaoting; Wang, Ning; Wang, Yaning; Wang, Yue; Xu, Zhangrun; Chen, Mingli; Wang, Jianhua

    2017-11-15

    A surface-enhanced Raman scattering (SERS)-fluorescence dual-mode pH-sensing method based on Janus microgels was developed, which combined the advantages of high specificity offered by SERS and fast imaging afforded by fluorescence. Dual-mode probes, pH-dependent 4-mercaptobenzoic acid, and carbon dots were individually encapsulated in the independent hemispheres of Janus microparticles fabricated via a centrifugal microfluidic chip. On the basis of the obvious volumetric change of hydrogels in different pHs, the Janus microparticles were successfully applied for sensitive and reliable pH measurement from 1.0 to 8.0, and the two hemispheres showed no obvious interference. The proposed method addressed the limitation that sole use of the SERS-based pH sensing usually failed in strong acidic media. The gastric juice pH and extracellular pH change were measured separately in vitro using the Janus microparticles, which confirmed the validity of microgels for pH sensing. The microparticles exhibited good stability, reversibility, biocompatibility, and ideal semipermeability for avoiding protein contamination, and they have the potential to be implantable sensors to continuously monitor pH in vivo.

  19. A stereo remote sensing feature selection method based on artificial bee colony algorithm

    Science.gov (United States)

    Yan, Yiming; Liu, Pigang; Zhang, Ye; Su, Nan; Tian, Shu; Gao, Fengjiao; Shen, Yi

    2014-05-01

    To improve the efficiency of stereo information for remote sensing classification, a stereo remote sensing feature selection method is proposed in this paper presents, which is based on artificial bee colony algorithm. Remote sensing stereo information could be described by digital surface model (DSM) and optical image, which contain information of the three-dimensional structure and optical characteristics, respectively. Firstly, three-dimensional structure characteristic could be analyzed by 3D-Zernike descriptors (3DZD). However, different parameters of 3DZD could descript different complexity of three-dimensional structure, and it needs to be better optimized selected for various objects on the ground. Secondly, features for representing optical characteristic also need to be optimized. If not properly handled, when a stereo feature vector composed of 3DZD and image features, that would be a lot of redundant information, and the redundant information may not improve the classification accuracy, even cause adverse effects. To reduce information redundancy while maintaining or improving the classification accuracy, an optimized frame for this stereo feature selection problem is created, and artificial bee colony algorithm is introduced for solving this optimization problem. Experimental results show that the proposed method can effectively improve the computational efficiency, improve the classification accuracy.

  20. Wind erosion in semiarid landscapes: Predictive models and remote sensing methods for the influence of vegetation

    Science.gov (United States)

    Musick, H. Brad

    1993-01-01

    The objectives of this research are: to develop and test predictive relations for the quantitative influence of vegetation canopy structure on wind erosion of semiarid rangeland soils, and to develop remote sensing methods for measuring the canopy structural parameters that determine sheltering against wind erosion. The influence of canopy structure on wind erosion will be investigated by means of wind-tunnel and field experiments using structural variables identified by the wind-tunnel and field experiments using model roughness elements to simulate plant canopies. The canopy structural variables identified by the wind-tunnel and field experiments as important in determining vegetative sheltering against wind erosion will then be measured at a number of naturally vegetated field sites and compared with estimates of these variables derived from analysis of remotely sensed data.

  1. A compressed sensing based method with support refinement for impulse noise cancelation in DSL

    KAUST Repository

    Quadeer, Ahmed Abdul

    2013-06-01

    This paper presents a compressed sensing based method to suppress impulse noise in digital subscriber line (DSL). The proposed algorithm exploits the sparse nature of the impulse noise and utilizes the carriers, already available in all practical DSL systems, for its estimation and cancelation. Specifically, compressed sensing is used for a coarse estimate of the impulse position, an a priori information based maximum aposteriori probability (MAP) metric for its refinement, followed by least squares (LS) or minimum mean square error (MMSE) estimation for estimating the impulse amplitudes. Simulation results show that the proposed scheme achieves higher rate as compared to other known sparse estimation algorithms in literature. The paper also demonstrates the superior performance of the proposed scheme compared to the ITU-T G992.3 standard that utilizes RS-coding for impulse noise refinement in DSL signals. © 2013 IEEE.

  2. Documentation of archaeological sites in northern iraq using remote sensing methods

    Science.gov (United States)

    Matoušková, E.; Pavelka, K.; Nováček, K.; Starková, L.

    2015-08-01

    The MULINEM (The Medieval Urban Landscape in Northeastern Mesopotamia) project is aiming to investigate a Late Sasanian and Islamic urban network in the land of Erbil, historic province of Hidyab (Adiabene) that is located in the northern Iraq. The research of the hierarchical urban network in a defined area belongs to approaches rarely used in the study of the Islamic urbanism. The project focuses on the cluster of urban sites of the 6th-17th centuries A.D. This paper focuses on remote sensing analysis of historical sites with special interest of FORMOSAT-2 data that have been gained through a research announcement: Free FORMOSAT-2 satellite Imagery. Documentation of two archaeological sites (Makhmúr al-Qadima and Kushaf) are introduced. FORMOSAT-2 data results have been compared to historic CORONA satellite data of mentioned historical sites purchased earlier by the University of West Bohemia. Remote sensing methods were completed using in-situ measurements.

  3. The Use of a Geographic Information System and Remote Sensing Technology for Monitoring Land Use and Soil Carbon Change in the Subtropical Dry Forest Life Zone of Puerto Rico

    Science.gov (United States)

    Velez-Rodriguez, Linda L. (Principal Investigator)

    1996-01-01

    Aerial photography, one of the first form of remote sensing technology, has long been an invaluable means to monitor activities and conditions at the Earth's surface. Geographic Information Systems or GIS is the use of computers in showing and manipulating spatial data. This report will present the use of geographic information systems and remote sensing technology for monitoring land use and soil carbon change in the subtropical dry forest life zone of Puerto Rico. This research included the south of Puerto Rico that belongs to the subtropical dry forest life zone. The Guanica Commonwealth Forest Biosphere Reserve and the Jobos Bay National Estuarine Research Reserve are studied in detail, because of their location in the subtropical dry forest life zone. Aerial photography, digital multispectral imagery, soil samples, soil survey maps, field inspections, and differential global positioning system (DGPS) observations were used.

  4. Coherent gradient sensing method for measuring thermal stress field of thermal barrier coating structures

    Directory of Open Access Journals (Sweden)

    Kang Ma

    2017-01-01

    Full Text Available Coherent gradient sensing (CGS method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film–substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.

  5. Evaluation of Different Methods for Soil Classifications by Using Geographic Information Systems and Remote Sensing

    Directory of Open Access Journals (Sweden)

    S. H Sanaeinejad

    2012-12-01

    Full Text Available Soil salinity is an important factor that affects plant growth and reduces production of plantat different growth stages Remote sensing technology and GIS have a great potential for monitoring dynamic soil processes such as salinity. In the present study the efficiency of remote sensing technology and its integration with GIS was examined to estimate soil salinity for Neyshabour basin. Different classification methods for soil salinity were also investigated. We used 6 bands of LandSat ETM+ for this study. Classification results obtained from applying mathematical models for the images were compared with different band combinations results. The area of saline and non saline soil classes were identified in the study area based on the both methods and also based on the combination of the two methods. The results showed that the best method for soil classification was using of the two methods in the first stage to separate two classes of saline and non saline soils and then classifying the non saline soils in the second stage. As the variation in the numerical values of the image for different soil salinity in the study area was small, it was concluded that there is a limit potential of LandSat ETM+ images for identifying and classification of soil salinity in such an area.

  6. A Method of Spatial Mapping and Reclassification for High-Spatial-Resolution Remote Sensing Image Classification

    Directory of Open Access Journals (Sweden)

    Guizhou Wang

    2013-01-01

    Full Text Available This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine. Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy.

  7. A Method of Road Extraction from High-resolution Remote Sensing Images Based on Shape Features

    Directory of Open Access Journals (Sweden)

    LEI Xiaoqi

    2016-02-01

    Full Text Available Road extraction from high-resolution remote sensing image is an important and difficult task.Since remote sensing images include complicated information,the methods that extract roads by spectral,texture and linear features have certain limitations.Also,many methods need human-intervention to get the road seeds(semi-automatic extraction,which have the great human-dependence and low efficiency.The road-extraction method,which uses the image segmentation based on principle of local gray consistency and integration shape features,is proposed in this paper.Firstly,the image is segmented,and then the linear and curve roads are obtained by using several object shape features,so the method that just only extract linear roads are rectified.Secondly,the step of road extraction is carried out based on the region growth,the road seeds are automatic selected and the road network is extracted.Finally,the extracted roads are regulated by combining the edge information.In experiments,the images that including the better gray uniform of road and the worse illuminated of road surface were chosen,and the results prove that the method of this study is promising.

  8. Thermal-hydraulic characteristics of reacting zone for TWR bundles based on CFD method

    International Nuclear Information System (INIS)

    Lu Chuan; Yan Mingyu; Lu Jianchao

    2013-01-01

    Thermal-hydraulic characteristics of reacting zone for TWR (travelling wave reactor) bundles were analysed by CFD method. The calculation results of 7, 19 and 37 fuel pin bundles show the similar characteristics. The hot coolant seems to congregate into the centre as flowing to the downstream area. The high temperature coolant always distributes in the inner area while the temperature shows distinct gradation in the outer area. The temperature difference is more than 100 ℃ for the bundle whose diameter is about 26 cm. The major temperature gradations mainly locate in the outermost fuel rods of two circles while other circles show much smaller temperature gradients. This conclusion is estimated to be true for more fuel pin bundles such as 217 fuel pin bundles. The fuel assembly structure of the existing TWR design should be optimized in future. (authors)

  9. Single-crystal growth of Group IVB and VB carbides by the floating-zone method

    International Nuclear Information System (INIS)

    Finch, C.B.; Chang, Y.K.; Abraham, M.M.

    1989-02-01

    The floating-zone method for the growth of Group IVB and VB carbides is described and reviewed. We have systematically investigated the technique and confirmed the growth of large single crystals of TiC/sub 0.95/, ZrC/sub 0.93/, ZrC/sub 0.98/, VC/sub 0.80/, NbC/sub 0.95/, TaC/sub 0.89/. Optimal growth conditions were in the 0.5-2.0 cm/h range under 8-12 atm helium. Good crystal growth results were achieved with hot-pressed starting rods of 90-95% density, using a ''double pancake'' induction coil and a 200-kHz/100- kW rf power supply. 36 refs., 5 figs., 3 tabs

  10. Homogeneous SiGe crystal growth in microgravity by the travelling liquidus-zone method

    International Nuclear Information System (INIS)

    Kinoshita, K; Arai, Y; Inatomi, Y; Sakata, K; Takayanagi, M; Yoda, S; Miyata, H; Tanaka, R; Sone, T; Yoshikawa, J; Kihara, T; Shibayama, H; Kubota, Y; Shimaoka, T; Warashina, Y

    2011-01-01

    Homogeneous SiGe crystal growth experiments will be performed on board the ISS 'Kibo' using a gradient heating furnace (GHF). A new crystal growth method invented for growing homogeneous mixed crystals named 'travelling liquidus-zone (TLZ) method' is evaluated by the growth of Si 0.5 Ge 0.5 crystals in space. We have already succeeded in growing homogeneous 2mm diameter Si 0.5 Ge 0.5 crystals on the ground but large diameter homogeneous crystals are difficult to be grown due to convection in a melt. In microgravity, larger diameter crystals can be grown with suppressing convection. Radial concentration profiles as well as axial profiles in microgravity grown crystals will be measured and will be compared with our two-dimensional TLZ growth model equation and compositional variation is analyzed. Results are beneficial for growing large diameter mixed crystals by the TLZ method on the ground. Here, we report on the principle of the TLZ method for homogeneous crystal growth, results of preparatory experiments on the ground and plan for microgravity experiments.

  11. Finite Element Method Analysis of An Out Flow With Free Surface In Transition Zones

    Science.gov (United States)

    Saoula, R. Iddir S.; Mokhtar, K. Ait

    The object of this work is to present this part of the fluid mechanics that relates to out-flows of the fluid to big speeds in transitions. Results usually gotten by the classic processes can only have a qualitative aspect. The method fluently used for the count of these out-flows to big speeds is the one of characteristics, this approach remains interesting so much that doesn't appear within the out-flow of intersections of shock waves, as well as of reflections of these. In the simple geometry case, the method of finite differences satisfying result, But when the complexity of this geometry imposes itself, it is the method of finite elements that is proposed to solve this type of prob- lem, in particular for problems Trans critic. The goal of our work is to analyse free surface flows in channels no prismatic has oblong transverse section in zone of tran- sition. (Convergent, divergent). The basic mathematical model of this study is Saint Venant derivatives partial equations. To solve these equations we use the finite ele- ment method, the element of reference is the triangular element with 6 nodes which are quadratic in speed and linear in height (pressure). Our results and their obtains by others are very close to experimental results.

  12. A Study by Remote Sensing Methods of Volcanism at Craters of the Moon National Park, Idaho

    Science.gov (United States)

    Haberle, C. W.; Hughes, S. S.; Kobs-Nawotniak, S. E.; Lim, D. S. S.; Garry, B.; Sears, D. W. G.; Downs, M.; Busto, J.; Skok, J. R.; Elphic, R. C.; Kobayashi, L.; Heldmann, J. L.; Christensen, P. R.

    2014-12-01

    Craters of the Moon (COTM) National Park, on the eastern Snake River Plain, and its associated lava fields are currently a focus of the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team. COTM was selected for study owing to similarities with volcanic features observed on the Moon, Mars and Vesta. The COTM basaltic lava fields emanate from an 80 km long rift zone where at least eight eruptive episodes, occurring 15,000 to 2,000 BP, have created an expansive volcanic field covering an area of approximately 1,650 km2. This polygenetic volcanic field hosts a diverse collection of basaltic volcanic edifices such as phreatic explosion craters, eruptive fissures, cinder cones, spatter cones, shield volcanoes and expansive lava flows. Engineering challenges and high cost limit the number of robotic and human field investigations of planetary bodies and, due to these constraints, exhaustive remote sensing investigations of planetary surface properties are undertaken prior to field deployment. This creates an unavoidable dependence upon remote sensing, a critical difference between field investigations of planetary bodies and most terrestrial field investigations. Studies of this nature have utility in terrestrial investigations as they can help link spatially encompassing datasets and conserve field resources. We present preliminary results utilizing Earth orbital datasets to determine the efficacy of products derived from remotely sensed data when compared to geologic field observations. Multispectral imaging data (ASTER, AVIRIS, TIMS) collected at a range of spatial and spectral resolutions are paired with high resolution imagery from both orbit and unmanned aircraft systems. This enables the creation of derived products detailing morphology, compositional variation, mineralogy, relative age and vegetation. The surface morphology of flows within COTM differs from flow to flow and observations of these properties can aid in

  13. Shape sensing methods: Review and experimental comparison on a wing-shaped plate

    Science.gov (United States)

    Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano

    2018-05-01

    Shape sensing, i.e., the reconstruction of the displacement field of a structure from some discrete surface strain measurements, is a fundamental capability for the structural health management of critical components. In this paper, a review of the shape sensing methodologies available in the open literature and of the different applications is provided. Then, for the first time, an experimental comparative study is presented among the main approaches in order to highlight their relative merits in presence of uncertainties affecting real applications. These approaches are, namely, the inverse Finite Element Method, the Modal Method and Ko's Displacement Theory. A brief description of these methods is followed by the presentation of the experimental test results. A cantilevered, wing-shaped aluminum plate is let deform under its own weight, leading to bending and twisting. Using the experimental strain measurements as input data, the deflection field of the plate is reconstructed using the three aforementioned approaches and compared with the actual measured deflection. The inverse Finite Element Method is proven to be slightly more accurate and particularly attractive because it is versatile with respect to the boundary conditions and it does not require any information about material properties and loading conditions.

  14. Compressed sensing method for human activity recognition using tri-axis accelerometer on mobile phone

    Institute of Scientific and Technical Information of China (English)

    Song Hui; Wang Zhongmin

    2017-01-01

    The diversity in the phone placements of different mobile users' dailylife increases the difficulty of recognizing human activities by using mobile phone accelerometer data.To solve this problem,a compressed sensing method to recognize human activities that is based on compressed sensing theory and utilizes both raw mobile phone accelerometer data and phone placement information is proposed.First,an over-complete dictionary matrix is constructed using sufficient raw tri-axis acceleration data labeled with phone placement information.Then,the sparse coefficient is evaluated for the samples that need to be tested by resolving L1 minimization.Finally,residual values are calculated and the minimum value is selected as the indicator to obtain the recognition results.Experimental results show that this method can achieve a recognition accuracy reaching 89.86%,which is higher than that of a recognition method that does not adopt the phone placement information for the recognition process.The recognition accuracy of the proposed method is effective and satisfactory.

  15. A demonstration of adjoint methods for multi-dimensional remote sensing of the atmosphere and surface

    International Nuclear Information System (INIS)

    Martin, William G.K.; Hasekamp, Otto P.

    2018-01-01

    Highlights: • We demonstrate adjoint methods for atmospheric remote sensing in a two-dimensional setting. • Searchlight functions are used to handle the singularity of measurement response functions. • Adjoint methods require two radiative transfer calculations to evaluate the measurement misfit function and its derivatives with respect to all unknown parameters. • Synthetic retrieval studies show the scalability of adjoint methods to problems with thousands of measurements and unknown parameters. • Adjoint methods and the searchlight function technique are generalizable to 3D remote sensing. - Abstract: In previous work, we derived the adjoint method as a computationally efficient path to three-dimensional (3D) retrievals of clouds and aerosols. In this paper we will demonstrate the use of adjoint methods for retrieving two-dimensional (2D) fields of cloud extinction. The demonstration uses a new 2D radiative transfer solver (FSDOM). This radiation code was augmented with adjoint methods to allow efficient derivative calculations needed to retrieve cloud and surface properties from multi-angle reflectance measurements. The code was then used in three synthetic retrieval studies. Our retrieval algorithm adjusts the cloud extinction field and surface albedo to minimize the measurement misfit function with a gradient-based, quasi-Newton approach. At each step we compute the value of the misfit function and its gradient with two calls to the solver FSDOM. First we solve the forward radiative transfer equation to compute the residual misfit with measurements, and second we solve the adjoint radiative transfer equation to compute the gradient of the misfit function with respect to all unknowns. The synthetic retrieval studies verify that adjoint methods are scalable to retrieval problems with many measurements and unknowns. We can retrieve the vertically-integrated optical depth of moderately thick clouds as a function of the horizontal coordinate. It is also

  16. Backtracking-Based Iterative Regularization Method for Image Compressive Sensing Recovery

    Directory of Open Access Journals (Sweden)

    Lingjun Liu

    2017-01-01

    Full Text Available This paper presents a variant of the iterative shrinkage-thresholding (IST algorithm, called backtracking-based adaptive IST (BAIST, for image compressive sensing (CS reconstruction. For increasing iterations, IST usually yields a smoothing of the solution and runs into prematurity. To add back more details, the BAIST method backtracks to the previous noisy image using L2 norm minimization, i.e., minimizing the Euclidean distance between the current solution and the previous ones. Through this modification, the BAIST method achieves superior performance while maintaining the low complexity of IST-type methods. Also, BAIST takes a nonlocal regularization with an adaptive regularizor to automatically detect the sparsity level of an image. Experimental results show that our algorithm outperforms the original IST method and several excellent CS techniques.

  17. Generalized transmission line method to study the far-zone radiation of antennas under a multilayer structure

    CERN Document Server

    Wu, Xuan Hui

    2008-01-01

    This book gives a step-by-step presentation of a generalized transmission line method to study the far-zone radiation of antennas under a multilayer structure. Normally, a radiation problem requires a full wave analysis which may be time consuming. The beauty of the generalized transmission line method is that it transforms the radiation problem for a specific type of structure, say the multilayer structure excited by an antenna, into a circuit problem that can be efficiently analyzed. Using the Reciprocity Theorem and far-field approximation, the method computes the far-zone radiation due to

  18. Estimating actual evapotranspiration from remote sensing imagery using R: the package 'TriangleMethod'.

    Science.gov (United States)

    Gampe, David; Huber García, Verena; Marzahn, Philip; Ludwig, Ralf

    2017-04-01

    Actual evaporation (Eta) is an essential variable to assess water availability, drought risk and food security, among others. Measurements of Eta are however limited to a small footprint, hampering a spatially explicit analysis and application and are very often not available at all. To overcome the problem of data scarcity, Eta can be assessed by various remote sensing approaches such as the Triangle Method (Jiang & Islam, 1999). Here, Eta is estimated by using the Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST). In this study, the R-package 'TriangleMethod' was compiled to efficiently perform the calculations of NDVI and processing LST to finally derive Eta from the applied data set. The package contains all necessary calculation steps and allows easy processing of a large data base of remote sensing images. By default, the parameterization for the Landsat TM and ETM+ sensors are implemented, however, the algorithms can be easily extended to additional sensors. The auxiliary variables required to estimate Eta with this method, such as elevation, solar radiation and air temperature at the overpassing time, can be processed as gridded information to allow for a better representation of the study area. The package was successfully applied in various studies in Spain, Palestine, Costa Rica and Canada.

  19. Detection of the power lines in UAV remote sensed images using spectral-spatial methods.

    Science.gov (United States)

    Bhola, Rishav; Krishna, Nandigam Hari; Ramesh, K N; Senthilnath, J; Anand, Gautham

    2018-01-15

    In this paper, detection of the power lines on images acquired by Unmanned Aerial Vehicle (UAV) based remote sensing is carried out using spectral-spatial methods. Spectral clustering was performed using Kmeans and Expectation Maximization (EM) algorithm to classify the pixels into the power lines and non-power lines. The spectral clustering methods used in this study are parametric in nature, to automate the number of clusters Davies-Bouldin index (DBI) is used. The UAV remote sensed image is clustered into the number of clusters determined by DBI. The k clustered image is merged into 2 clusters (power lines and non-power lines). Further, spatial segmentation was performed using morphological and geometric operations, to eliminate the non-power line regions. In this study, UAV images acquired at different altitudes and angles were analyzed to validate the robustness of the proposed method. It was observed that the EM with spatial segmentation (EM-Seg) performed better than the Kmeans with spatial segmentation (Kmeans-Seg) on most of the UAV images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Research on fiber Bragg grating heart sound sensing and wavelength demodulation method

    Science.gov (United States)

    Zhang, Cheng; Miao, Chang-Yun; Gao, Hua; Gan, Jing-Meng; Li, Hong-Qiang

    2010-11-01

    Heart sound includes a lot of physiological and pathological information of heart and blood vessel. Heart sound detecting is an important method to gain the heart status, and has important significance to early diagnoses of cardiopathy. In order to improve sensitivity and reduce noise, a heart sound measurement method based on fiber Bragg grating was researched. By the vibration principle of plane round diaphragm, a heart sound sensor structure of fiber Bragg grating was designed and a heart sound sensing mathematical model was established. A formula of heart sound sensitivity was deduced and the theoretical sensitivity of the designed sensor is 957.11pm/KPa. Based on matched grating method, the experiment system was built, by which the excursion of reflected wavelength of the sensing grating was detected and the information of heart sound was obtained. Experiments show that the designed sensor can detect the heart sound and the reflected wavelength variety range is about 70pm. When the sampling frequency is 1 KHz, the extracted heart sound waveform by using the db4 wavelet has the same characteristics with a standard heart sound sensor.

  1. Research on Horizontal Accuracy Method of High Spatial Resolution Remotely Sensed Orthophoto Image

    Science.gov (United States)

    Xu, Y. M.; Zhang, J. X.; Yu, F.; Dong, S.

    2018-04-01

    At present, in the inspection and acceptance of high spatial resolution remotly sensed orthophoto image, the horizontal accuracy detection is testing and evaluating the accuracy of images, which mostly based on a set of testing points with the same accuracy and reliability. However, it is difficult to get a set of testing points with the same accuracy and reliability in the areas where the field measurement is difficult and the reference data with high accuracy is not enough. So it is difficult to test and evaluate the horizontal accuracy of the orthophoto image. The uncertainty of the horizontal accuracy has become a bottleneck for the application of satellite borne high-resolution remote sensing image and the scope of service expansion. Therefore, this paper proposes a new method to test the horizontal accuracy of orthophoto image. This method using the testing points with different accuracy and reliability. These points' source is high accuracy reference data and field measurement. The new method solves the horizontal accuracy detection of the orthophoto image in the difficult areas and provides the basis for providing reliable orthophoto images to the users.

  2. A Spectrum Sensing Method Based on Signal Feature and Clustering Algorithm in Cognitive Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yongwei Zhang

    2017-01-01

    Full Text Available In order to solve the problem of difficulty in determining the threshold in spectrum sensing technologies based on the random matrix theory, a spectrum sensing method based on clustering algorithm and signal feature is proposed for Cognitive Wireless Multimedia Sensor Networks. Firstly, the wireless communication signal features are obtained according to the sampling signal covariance matrix. Then, the clustering algorithm is used to classify and test the signal features. Different signal features and clustering algorithms are compared in this paper. The experimental results show that the proposed method has better sensing performance.

  3. Temperature and electrolyte optimization of the α-hemolysin latch sensing zone for detection of base modification in double-stranded DNA.

    Science.gov (United States)

    Johnson, Robert P; Fleming, Aaron M; Jin, Qian; Burrows, Cynthia J; White, Henry S

    2014-08-19

    The latch region of the wild-type protein pore α-hemolysin (α-HL) constitutes a sensing zone for individual abasic sites (and furan analogs) in double-stranded DNA (dsDNA). The presence of an abasic site or furan within a DNA duplex, electrophoretically captured in the α-HL vestibule and positioned at the latch region, can be detected based on the current blockage prior to duplex unzipping. We investigated variations in blockage current as a function of temperature (12-35°C) and KCl concentration (0.15-1.0 M) to understand the origin of the current signature and to optimize conditions for identifying the base modification. In 1 M KCl solution, substitution of a furan for a cytosine base in the latch region results in an ∼ 8 kJ mol(-1) decrease in the activation energy for ion transport through the protein pore. This corresponds to a readily measured ∼ 2 pA increase in current at room temperature. Optimal resolution for detecting the presence of a furan in the latch region is achieved at lower KCl concentrations, where the noise in the measured blockage current is significantly lower. The noise associated with the blockage current also depends on the stability of the duplex (as measured from the melting temperature), where a greater noise in the measured blockage current is observed for less stable duplexes. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Assessment and mapping of water pollution indices in zone-III of municipal corporation of hyderabad using remote sensing and geographic information system.

    Science.gov (United States)

    Asadi, S S; Vuppala, Padmaja; Reddy, M Anji

    2005-01-01

    A preliminary survey of area under Zone-III of MCH was undertaken to assess the ground water quality, demonstrate its spatial distribution and correlate with the land use patterns using advance techniques of remote sensing and geographical information system (GIS). Twenty-seven ground water samples were collected and their chemical analysis was done to form the attribute database. Water quality index was calculated from the measured parameters, based on which the study area was classified into five groups with respect to suitability of water for drinking purpose. Thematic maps viz., base map, road network, drainage and land use/land cover were prepared from IRS ID PAN + LISS III merged satellite imagery forming the spatial database. Attribute database was integrated with spatial sampling locations map in Arc/Info and maps showing spatial distribution of water quality parameters were prepared in Arc View. Results indicated that high concentrations of total dissolved solids (TDS), nitrates, fluorides and total hardness were observed in few industrial and densely populated areas indicating deteriorated water quality while the other areas exhibited moderate to good water quality.

  5. An assessment of two methods for identifying undocumented levees using remotely sensed data

    Science.gov (United States)

    Czuba, Christiana R.; Williams, Byron K.; Westman, Jack; LeClaire, Keith

    2015-01-01

    Many undocumented and commonly unmaintained levees exist in the landscape complicating flood forecasting, risk management, and emergency response. This report describes a pilot study completed by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers to assess two methods to identify undocumented levees by using remotely sensed, high-resolution topographic data. For the first method, the U.S. Army Corps of Engineers examined hillshades computed from a digital elevation model that was derived from light detection and ranging (lidar) to visually identify potential levees and then used detailed site visits to assess the validity of the identifications. For the second method, the U.S. Geological Survey applied a wavelet transform to a lidar-derived digital elevation model to identify potential levees. The hillshade method was applied to Delano, Minnesota, and the wavelet-transform method was applied to Delano and Springfield, Minnesota. Both methods were successful in identifying levees but also identified other features that required interpretation to differentiate from levees such as constructed barriers, high banks, and bluffs. Both methods are complementary to each other, and a potential conjunctive method for testing in the future includes (1) use of the wavelet-transform method to rapidly identify slope-break features in high-resolution topographic data, (2) further examination of topographic data using hillshades and aerial photographs to classify features and map potential levees, and (3) a verification check of each identified potential levee with local officials and field visits.

  6. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images.

    Science.gov (United States)

    Gao, Han; Tang, Yunwei; Jing, Linhai; Li, Hui; Ding, Haifeng

    2017-10-24

    The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA). Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods.

  7. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Han Gao

    2017-10-01

    Full Text Available The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA. Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods.

  8. A Study on a Control Method with a Ventilation Requirement of a VAV System in Multi-Zone

    Directory of Open Access Journals (Sweden)

    Hyo-Jun Kim

    2017-11-01

    Full Text Available The objective of this study was to propose a control method with a ventilation requirement of variable air volume (VAV system in multi-zone. In order to control the VAV system inmulti-zone, it is essential to control the terminal unit installed in each zone. A VAV terminal unit with conventional control method using a fixed minimum air flow can cause indoor air quality (IAQ issues depending on the variation in the number of occupants. This research proposes a control method with a ventilation requirement of the VAV terminal unit and AHU inmulti-zone. The integrated control method with an air flow increase model in the VAV terminal unit, AHU, and outdoor air intake rate increase model in the AHU was based on the indoor CO2 concentration. The conventional and proposed control algorithms were compared through a TRNSYS simulation program. The proposed VAV terminal unit control method satisfies all the conditions of indoor temperature, IAQ, and stratification. An energy comparison with the conventional control method showed that the method satisfies not only the indoor thermal comfort, IAQ, and stratification issue, but also reduces the energy consumption.

  9. Evaluation of methods for delineating riparian zones in a semi-arid montane watershed

    Science.gov (United States)

    Jessica A. Salo; David M. Theobald; Thomas C. Brown

    2016-01-01

    Riparian zones in semi-arid, mountainous regions provide a disproportionate amount of the available wildlife habitat and ecosystem services. Despite their importance, there is little guidance on the best way to map riparian zones for broad spatial extents (e.g., large watersheds) when detailed maps from field data or high-resolution imagery and terrain data...

  10. Research and Application of Remote Sensing Monitoring Method for Desertification Land Under Time and Space Constraints

    Science.gov (United States)

    Zhang, Nannnan; Wang, Rongbao; Zhang, Feng

    2018-04-01

    Serious land desertification and sandified threaten the urban ecological security and the sustainable economic and social development. In recent years, a large number of mobile sand dunes in Horqin sandy land flow into the northwest of Liaoning Province under the monsoon, make local agriculture suffer serious harm. According to the characteristics of desertification land in northwestern Liaoning, based on the First National Geographical Survey data, the Second National Land Survey data and the 1984-2014 Landsat satellite long time sequence data and other multi-source data, we constructed a remote sensing monitoring index system of desertification land in Northwest Liaoning. Through the analysis of space-time-spectral characteristics of desertification land, a method for multi-spectral remote sensing image recognition of desertification land under time-space constraints is proposed. This method was used to identify and extract the distribution and classification of desertification land of Chaoyang City (a typical citie of desertification in northwestern Liaoning) in 2008 and 2014, and monitored the changes and transfers of desertification land from 2008 to 2014. Sandification information was added to the analysis of traditional landscape changes, improved the analysis model of desertification land landscape index, and the characteristics and laws of landscape dynamics and landscape pattern change of desertification land from 2008 to 2014 were analyzed and revealed.

  11. An Evaluation of Fractal Surface Measurement Methods for Characterizing Landscape Complexity from Remote-Sensing Imagery

    Science.gov (United States)

    Lam, Nina Siu-Ngan; Qiu, Hong-Lie; Quattrochi, Dale A.; Emerson, Charles W.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The rapid increase in digital data volumes from new and existing sensors necessitates the need for efficient analytical tools for extracting information. We developed an integrated software package called ICAMS (Image Characterization and Modeling System) to provide specialized spatial analytical functions for interpreting remote sensing data. This paper evaluates the three fractal dimension measurement methods: isarithm, variogram, and triangular prism, along with the spatial autocorrelation measurement methods Moran's I and Geary's C, that have been implemented in ICAMS. A modified triangular prism method was proposed and implemented. Results from analyzing 25 simulated surfaces having known fractal dimensions show that both the isarithm and triangular prism methods can accurately measure a range of fractal surfaces. The triangular prism method is most accurate at estimating the fractal dimension of higher spatial complexity, but it is sensitive to contrast stretching. The variogram method is a comparatively poor estimator for all of the surfaces, particularly those with higher fractal dimensions. Similar to the fractal techniques, the spatial autocorrelation techniques are found to be useful to measure complex images but not images with low dimensionality. These fractal measurement methods can be applied directly to unclassified images and could serve as a tool for change detection and data mining.

  12. Elevation change and remote-sensing mass-balance methods on the Greenland ice sheet

    DEFF Research Database (Denmark)

    Ahlstrøm, Andreas P.; Reeh, Niels; Christensen, Erik Lintz

    The mass balance of the Greenland Ice Sheet is virtually impossible to obtain with traditional ground-based methods alone due to its vast size. It is thus desirable to develop mass-balance methods depending on remote sensing instead and this field has experienced a dramatic development within...... of measured surface elevation change over a 50x50~km part of the western Greenland Ice-Sheet margin near Kangerlussuaq. In this region, the mean observed elevation change has been -0.5~m from 2000 to 2003. However, the change is unevenly distributed with the northern and central part generally in balance...... the last decade. Large amounts of data have been collected from satellite and airborne platforms, yielding surface elevation changes and surface velocity fields. Here we present data from the Greenland Ice-Sheet margin acquired with a new small-scale airborne system, designed for regional high...

  13. Optical power transfer and communication methods for wireless implantable sensing platforms.

    Science.gov (United States)

    Mujeeb-U-Rahman, Muhammad; Adalian, Dvin; Chang, Chieh-Feng; Scherer, Axel

    2015-09-01

    Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications.

  14. Application of remote sensing methods and GIS in erosive process investigations

    Directory of Open Access Journals (Sweden)

    Mustafić Sanja

    2007-01-01

    Full Text Available Modern geomorphologic investigations of condition and change of the intensity of erosive process should be based on application of remote sensing methods which are based on processing of aerial and satellite photographs. Using of these methods is very important because it enables good possibilities for realizing regional relations of the investigated phenomenon, as well as the estimate of spatial and temporal variability of all physical-geographical and anthropogenic factors influencing given process. Realizing process of land erosion, on the whole, is only possible by creating universal data base, as well as by using of appropriate software, more exactly by establishing uniform information system. Geographical information system, as the most effective one, the most complex and the most integral system of information about the space enables unification as well as analytical and synthetically processing of all data.

  15. Numerical tilting compensation in microscopy based on wavefront sensing using transport of intensity equation method

    Science.gov (United States)

    Hu, Junbao; Meng, Xin; Wei, Qi; Kong, Yan; Jiang, Zhilong; Xue, Liang; Liu, Fei; Liu, Cheng; Wang, Shouyu

    2018-03-01

    Wide-field microscopy is commonly used for sample observations in biological research and medical diagnosis. However, the tilting error induced by the oblique location of the image recorder or the sample, as well as the inclination of the optical path often deteriorates the imaging quality. In order to eliminate the tilting in microscopy, a numerical tilting compensation technique based on wavefront sensing using transport of intensity equation method is proposed in this paper. Both the provided numerical simulations and practical experiments prove that the proposed technique not only accurately determines the tilting angle with simple setup and procedures, but also compensates the tilting error for imaging quality improvement even in the large tilting cases. Considering its simple systems and operations, as well as image quality improvement capability, it is believed the proposed method can be applied for tilting compensation in the optical microscopy.

  16. Surface plasmon resonance based sensing of different chemical and biological samples using admittance loci method

    Science.gov (United States)

    Brahmachari, Kaushik; Ghosh, Sharmila; Ray, Mina

    2013-06-01

    The admittance loci method plays an important role in the design of multilayer thin film structures. In this paper, admittance loci method has been explored theoretically for sensing of various chemical and biological samples based on surface plasmon resonance (SPR) phenomenon. A dielectric multilayer structure consisting of a Boro silicate glass (BSG) substrate, calcium fluoride (CaF2) and zirconium dioxide (ZrO2) along with different dielectric layers has been investigated. Moreover, admittance loci as well as SPR curves of metal-dielectric multilayer structure consisting of the BSG substrate, gold metal film and various dielectric samples has been simulated in MATLAB environment. To validate the proposed simulation results, calibration curves have also been provided.

  17. A Decentralized Eigenvalue Computation Method for Spectrum Sensing Based on Average Consensus

    Science.gov (United States)

    Mohammadi, Jafar; Limmer, Steffen; Stańczak, Sławomir

    2016-07-01

    This paper considers eigenvalue estimation for the decentralized inference problem for spectrum sensing. We propose a decentralized eigenvalue computation algorithm based on the power method, which is referred to as generalized power method GPM; it is capable of estimating the eigenvalues of a given covariance matrix under certain conditions. Furthermore, we have developed a decentralized implementation of GPM by splitting the iterative operations into local and global computation tasks. The global tasks require data exchange to be performed among the nodes. For this task, we apply an average consensus algorithm to efficiently perform the global computations. As a special case, we consider a structured graph that is a tree with clusters of nodes at its leaves. For an accelerated distributed implementation, we propose to use computation over multiple access channel (CoMAC) as a building block of the algorithm. Numerical simulations are provided to illustrate the performance of the two algorithms.

  18. a Borehole-Dilution Method for Quantifying Vertical Darcy Fluxes in the Hyporheic Zone

    Science.gov (United States)

    Augustine, S. D.; Annable, M. D.; Cho, J.

    2017-12-01

    The borehole dilution method has consistently and successfully been used for estimating local water fluxes, however, this method can be relatively labor intensive and expensive. The focus of this research is aimed at developing a low-cost, borehole dilution method for quantifying vertical water fluxes in the hyporheic zone at the surface-groundwater interface. This would allow for the deployment of multiple units within a targeted surface water body and thus produce high-resolution, spatially distributed data on the infiltration rates over a short period of time with minimal set-up requirements. The device consists of a 2-inch, inner diameter PVC pipe containing short, screened sections in its upper and lower segments. The working unit is driven into the sediment and acts as a continuous flow reactor creating a pathway between the subsurface pore-water and the overlying surface water where the presence of a hydraulic gradient facilitates vertical movement. We developed a simple electrode and tracer-injection system housed within the unit to inject and measure salt tracer concentrations at the desired intervals while monitoring and storing those measurements using open-source Arduino technology. Preliminary lab and field scale trials provided data that was fit to both zero and first order reaction rate functions for analysis. The field test was conducted over approximately one day within a wet retention basin. The initial results estimated a vertical Darcy flux of 113.5 cm/d. Additional testing over a range of expected Darcy fluxes will be presented along with an evaluation considering enhanced water flow due to the high hydraulic conductivity of the device.

  19. From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2008-12-01

    Full Text Available A long term data acquisition effort of profile soil moisture is under way in southwestern France at 13 automated weather stations. This ground network was developed in order to validate remote sensing and model soil moisture estimates. In this paper, both those in situ observations and a synthetic data set covering continental France are used to test a simple method to retrieve root zone soil moisture from a time series of surface soil moisture information. A recursive exponential filter equation using a time constant, T, is used to compute a soil water index. The Nash and Sutcliff coefficient is used as a criterion to optimise the T parameter for each ground station and for each model pixel of the synthetic data set. In general, the soil water indices derived from the surface soil moisture observations and simulations agree well with the reference root-zone soil moisture. Overall, the results show the potential of the exponential filter equation and of its recursive formulation to derive a soil water index from surface soil moisture estimates. This paper further investigates the correlation of the time scale parameter T with soil properties and climate conditions. While no significant relationship could be determined between T and the main soil properties (clay and sand fractions, bulk density and organic matter content, the modelled spatial variability and the observed inter-annual variability of T suggest that a weak climate effect may exist.

  20. Research on remote sensing image pixel attribute data acquisition method in AutoCAD

    Science.gov (United States)

    Liu, Xiaoyang; Sun, Guangtong; Liu, Jun; Liu, Hui

    2013-07-01

    The remote sensing image has been widely used in AutoCAD, but AutoCAD lack of the function of remote sensing image processing. In the paper, ObjectARX was used for the secondary development tool, combined with the Image Engine SDK to realize remote sensing image pixel attribute data acquisition in AutoCAD, which provides critical technical support for AutoCAD environment remote sensing image processing algorithms.

  1. Method and System for Physiologically Modulating Videogames and Simulations which Use Gesture and Body Image Sensing Control Input Devices

    Science.gov (United States)

    Pope, Alan T. (Inventor); Stephens, Chad L. (Inventor); Habowski, Tyler (Inventor)

    2017-01-01

    Method for physiologically modulating videogames and simulations includes utilizing input from a motion-sensing video game system and input from a physiological signal acquisition device. The inputs from the physiological signal sensors are utilized to change the response of a user's avatar to inputs from the motion-sensing sensors. The motion-sensing system comprises a 3D sensor system having full-body 3D motion capture of a user's body. This arrangement encourages health-enhancing physiological self-regulation skills or therapeutic amplification of healthful physiological characteristics. The system provides increased motivation for users to utilize biofeedback as may be desired for treatment of various conditions.

  2. Advances in estimation methods of vegetation water content based on optical remote sensing techniques

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Quantitative estimation of vegetation water content(VWC) using optical remote sensing techniques is helpful in forest fire as-sessment,agricultural drought monitoring and crop yield estimation.This paper reviews the research advances of VWC retrieval using spectral reflectance,spectral water index and radiative transfer model(RTM) methods.It also evaluates the reli-ability of VWC estimation using spectral water index from the observation data and the RTM.Focusing on two main definitions of VWC-the fuel moisture content(FMC) and the equivalent water thickness(EWT),the retrieval accuracies of FMC and EWT using vegetation water indices are analyzed.Moreover,the measured information and the dataset are used to estimate VWC,the results show there are significant correlations among three kinds of vegetation water indices(i.e.,WSI,NDⅡ,NDWI1640,WI/NDVI) and canopy FMC of winter wheat(n=45).Finally,the future development directions of VWC detection based on optical remote sensing techniques are also summarized.

  3. Gas sensing properties of graphene–WO3 composites prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Chu, Xiangfeng; Hu, Tao; Gao, Feng; Dong, Yongping; Sun, Wenqi; Bai, Linshan

    2015-01-01

    Graphical abstract: - Highlights: • The amount of graphene had an effect on the morphology of graphene–WO 3 composites. • The optimum temperature of 0.1 wt% graphene–WO 3 sensor to acetaldehyde was 100 °C. • 0.1 wt% graphene–WO 3 sensor exhibited good selectivity to acetaldehyde at 100 °C. - Abstract: Graphene–WO 3 composites mixed with different amounts of graphene (0, 0.1, 0.5, 1 and 3 wt%) were prepared by hydrothermal method at 180 °C for 24 h. The as-prepared graphite oxide, graphene and graphene–WO 3 composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR) and Raman spectroscopy, respectively. The effect of the amount of graphene in the composites on the gas-sensing responses and the gas-sensing selectivity of the materials was investigated. The experimental results revealed that the sensor based on 0.1 wt% graphene–WO 3 composite exhibited high response and good selectivity to acetaldehyde vapor at 100 °C, the optimum operating temperature of this sensor to 1000 ppm acetaldehyde vapor decreased from 180 °C to 100 °C comparing with that of pure WO 3 . The response time and the recovery time for 100 ppm acetaldehyde vapor were 250 s and 225 s, respectively

  4. Benzo(a)pyrene accumulation in soils of technogenic emission zone by subcritical water extraction method

    Science.gov (United States)

    Sushkova, Svetlana; Minkina, Tatiana; Kizilkaya, Ridvan; Mandzhieva, Saglara; Batukaev, Abdulmalik; Bauer, Tatiana; Gulser, Coskun

    2016-04-01

    The purpose of research is the assessment of main marker of polycyclic aromatic hydrocarbons contamination, benzo[a]pyrene (BaP) content in soils of emission zone of the power complex plant in soils with use of ecologically clean and effective subcritical water extraction method. Studies were conducted on the soils of monitoring plots subjected to Novocherkassk Power Plant emissions from burning coal. In 2000, monitoring plots were established at different distances from the NPS (1.0-20.0 km). Soil samples for the determination of soil properties and the contents of BaP were taken from a depth of 0-20 cm. The soil cover in the region under study consisted of ordinary chernozems, meadow-chernozemic soils, and alluvial meadow soils. This soil revealed the following physical and chemical properties: Corg-3.1-5.0%, pH-7.3-7.6, ECE-31.2-47.6 mmol(+)/100g; CaCO3-0.2-1.0%, the content of physical clay - 51-67% and clay - 3-37%. BaP extraction from soils was carried out by a subcritical water extraction method. Subcritical water extraction of BaP from soil samples was conducted in a specially developed extraction cartridge made of stainless steel and equipped with screw-on caps at both ends. It was also equipped with a manometer that included a valve for pressure release to maintain an internal pressure of 100 atm. The extraction cartridge containing a sample and water was placed into an oven connected to a temperature regulator under temperature 250oC and pressure 60 atm. The BaP concentration in the acetonitrile extract was determined by HPLC. The efficiency of BaP extraction from soil was determined using a matrix spike. The main accumulation of pollutant in 20 cm layer of soils is noted directly in affected zone on the plots situated at 1.2, 1.6, 5.0, 8.0 km from emission source in the direction of prevailing winds. The maximum quantity of a pollutant was founded in the soil of the plot located mostly close to a source of pollution in the direction of prevailing winds

  5. Response of Gravity, Magnetic, and Geoelectrical Resistivity Methods on Ngeni Southern Blitar Mineralization Zone

    Science.gov (United States)

    Sunaryo

    2018-03-01

    The research with entitle response of gravity, magnetic, and geoelectrical resistivity methods on Ngeni Southern Blitar mineralization zone has been done. This study aims to find the response of several geophysical methods of gravity, magnetic, and geoelectrical resistivity in an integrated manner. Gravity data acquisition was acquired 224 data which covers the whole region of Blitar district by using Gravity Meter La Coste & Romberg Model “G”, and magnetic data acquisition were acquired 195 data which covers the southern Blitar district only by using Proton Precession Magnetometer G-856. Meanwhile geoelectrical resistivity data only done in Ngeni village which is the location of phyropilite mining with the composition content of Fe, Si, Ca, S, Cu, and Mn by using ABEM Terrameter SAS 300C. Gravity data processing was performed to obtain the Bouguer anomaly value, which included unit conversion, tidal correction, drift correction, correction of tie point, base station correction, free air correction, and Bouguer correction. Magnetic data processing has been done by some corrections i.e daily, drift, and IGRF(International Geomagnetic Refference Field) to obtain the total magnetic anomaly. From gravity data processing has been obtained the simple Bouguer anomaly value in range from -10mGal until 115mGal. From this data processing has been obtained the total magnetic anomaly value in range from -650nT until 800nT. Meanwhile from geoelectrical resistivity 3.03Ωm until 11249.91 Ωm. There is a correlation between gravity anomaly, magnetic anomaly, and geoelectrical resistivity anomaly that are associated with deep anomaly, middle anomaly, and shallow anomaly.

  6. A boundary integral method for a dynamic, transient mode I crack problem with viscoelastic cohesive zone

    KAUST Repository

    Leise, Tanya L.; Walton, Jay R.; Gorb, Yuliya

    2009-01-01

    interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation

  7. Application of a very detailed soil survey method in viticultural zoning in Catalonia, Spain

    Directory of Open Access Journals (Sweden)

    Josep Miquel Ubalde

    2009-06-01

    Significance and impact of study: This study showed how very detailed soil maps, which can be difficult to interpret and put into practice, can be valorised as viticultural zoning maps by means of a simple methodology.

  8. A simple method to assess unsaturated zone time lag in the travel time from ground surface to receptor.

    Science.gov (United States)

    Sousa, Marcelo R; Jones, Jon P; Frind, Emil O; Rudolph, David L

    2013-01-01

    In contaminant travel from ground surface to groundwater receptors, the time taken in travelling through the unsaturated zone is known as the unsaturated zone time lag. Depending on the situation, this time lag may or may not be significant within the context of the overall problem. A method is presented for assessing the importance of the unsaturated zone in the travel time from source to receptor in terms of estimates of both the absolute and the relative advective times. A choice of different techniques for both unsaturated and saturated travel time estimation is provided. This method may be useful for practitioners to decide whether to incorporate unsaturated processes in conceptual and numerical models and can also be used to roughly estimate the total travel time between points near ground surface and a groundwater receptor. This method was applied to a field site located in a glacial aquifer system in Ontario, Canada. Advective travel times were estimated using techniques with different levels of sophistication. The application of the proposed method indicates that the time lag in the unsaturated zone is significant at this field site and should be taken into account. For this case, sophisticated and simplified techniques lead to similar assessments when the same knowledge of the hydraulic conductivity field is assumed. When there is significant uncertainty regarding the hydraulic conductivity, simplified calculations did not lead to a conclusive decision. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Experience in studying of the iron mineralogy in the oxidation zone of uranium deposits by physical methods

    International Nuclear Information System (INIS)

    Kochenov, A.V.; Dobrovol'skaya, N.V.; Zajtseva, G.M.; Korovushkin, V.V.; Moiseev, V.M.; Yakubovskaya, N.Yu.

    1977-01-01

    Possibilities are considered of increasing the reliability of the diagnostics and the resolving power of the procedure for the determination of the minaral forms and percentage of iron oxides and hydroxides in the oxidized zone of uranium deposits using a combination of methods of nuclear gamma resonance, thermomagnetic analysis and the Faraday method. The apparatus used included a YaGRS-4 spectrometer in combination with an AI-236 analyzer and a vibration magnetometer. The essence of the methods and of the procedure of analyses is presented. Parameters of reference samples of goethite, maghemite, etc. which emerged from their analysis by the above combination of methods are given. The established diagnostic features have been used in the study of iron mineralogy of oxidized zones, uranium deposits of sedimantarycoal and sandstone types, as well as crusts of weathering of sedimentary rocks. It has been found that in zone of epigenetically altered rocks iron minerals are of mixed multicomponent composition reflecting the fact that the processes of formation of oxidized zones are multistage and not unidirectional in character. The procedure proposed allows one to diagnose finely dispersed, roentgenoamorphous or poorly crystallized minerals, to discover ferruginous minerals in complex multiphase systems and determine their percentages

  10. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods

    Science.gov (United States)

    Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P.

    2011-01-01

    Evapotranspiration (ET) is an important hydrological process that can be studied and estimated at multiple spatial scales ranging from a leaf to a river basin. We present a review of methods in estimating basin scale ET and its applications in understanding basin water balance dynamics. The review focuses on two aspects of ET: (i) how the basin scale water balance approach is used to estimate ET; and (ii) how ‘direct’ measurement and modelling approaches are used to estimate basin scale ET. Obviously, the basin water balance-based ET requires the availability of good precipitation and discharge data to calculate ET as a residual on longer time scales (annual) where net storage changes are assumed to be negligible. ET estimated from such a basin water balance principle is generally used for validating the performance of ET models. On the other hand, many of the direct estimation methods involve the use of remotely sensed data to estimate spatially explicit ET and use basin-wide averaging to estimate basin scale ET. The direct methods can be grouped into soil moisture balance modelling, satellite-based vegetation index methods, and methods based on satellite land surface temperature measurements that convert potential ET into actual ET using a proportionality relationship. The review also includes the use of complementary ET estimation principles for large area applications. The review identifies the need to compare and evaluate the different ET approaches using standard data sets in basins covering different hydro-climatic regions of the world.

  11. An Efficient Parallel Multi-Scale Segmentation Method for Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Haiyan Gu

    2018-04-01

    Full Text Available Remote sensing (RS image segmentation is an essential step in geographic object-based image analysis (GEOBIA to ultimately derive “meaningful objects”. While many segmentation methods exist, most of them are not efficient for large data sets. Thus, the goal of this research is to develop an efficient parallel multi-scale segmentation method for RS imagery by combining graph theory and the fractal net evolution approach (FNEA. Specifically, a minimum spanning tree (MST algorithm in graph theory is proposed to be combined with a minimum heterogeneity rule (MHR algorithm that is used in FNEA. The MST algorithm is used for the initial segmentation while the MHR algorithm is used for object merging. An efficient implementation of the segmentation strategy is presented using data partition and the “reverse searching-forward processing” chain based on message passing interface (MPI parallel technology. Segmentation results of the proposed method using images from multiple sensors (airborne, SPECIM AISA EAGLE II, WorldView-2, RADARSAT-2 and different selected landscapes (residential/industrial, residential/agriculture covering four test sites indicated its efficiency in accuracy and speed. We conclude that the proposed method is applicable and efficient for the segmentation of a variety of RS imagery (airborne optical, satellite optical, SAR, high-spectral, while the accuracy is comparable with that of the FNEA method.

  12. Discrete-ordinates finite-element method for atmospheric radiative transfer and remote sensing

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1985-01-01

    Advantages and disadvantages of modern discrete-ordinates finite-element methods for the solution of radiative transfer problems in meteorology, climatology, and remote sensing applications are evaluated. After the common basis of the formulation of radiative transfer problems in the fields of neutron transport and atmospheric optics is established, the essential features of the discrete-ordinates finite-element method are described including the limitations of the method and their remedies. Numerical results are presented for 1-D and 2-D atmospheric radiative transfer problems where integral as well as angular dependent quantities are compared with published results from other calculations and with measured data. These comparisons provide a verification of the discrete-ordinates results for a wide spectrum of cases with varying degrees of absorption, scattering, and anisotropic phase functions. Accuracy and computational speed are also discussed. Since practically all discrete-ordinates codes offer a builtin adjoint capability, the general concept of the adjoint method is described and illustrated by sample problems. Our general conclusion is that the strengths of the discrete-ordinates finite-element method outweight its weaknesses. We demonstrate that existing general-purpose discrete-ordinates codes can provide a powerful tool to analyze radiative transfer problems through the atmosphere, especially when 2-D geometries must be considered

  13. Turbidity retrieval and monitoring of Danube Delta waters using multi-sensor optical remote sensing data: An integrated view from the delta plain lakes to the western-northwestern Black Sea coastal zone

    OpenAIRE

    Guttler, Fabio; Niculescu, Simona; Gohin, Francis

    2013-01-01

    Based on multi-sensor optical remote sensing techniques, more than 80 medium and high spatial resolution satellite images were used for studying the turbidity patterns of Danube Delta waters. During a selected 4-year temporal coverage (2006 to 2009), the turbidity gradients were simultaneously analyzed in the delta plain lakes and in the Black Sea western-northwestern coastal zone. Two distinct, but complementary, methodologies for retrieving turbidity were employed, one for the lakes and the...

  14. Environmental hazards and distribution of radioactive black sand along the Rosetta coastal zone in Egypt using airborne spectrometric and remote sensing data.

    Science.gov (United States)

    Kaiser, M F; Aziz, A M; Ghieth, B M

    2014-11-01

    High-resolution airborne gamma ray spectrometry, conducted in 2003, was used to estimate radioactive elements spatial abundance along the Rosetta coastal zone area. It was noticed that both Uranium and Thorium are concentrated in the black sand deposits along the beach. In contrary, Potassium was observed in high level abundance at the cultivated Nile Delta lands due to the accumulated usage of fertilizers. Exposure Rate (ER), Absorbed Dose Rate (ADR) and Annual Effective Dose Rate (AEDR) were calculated to evaluate the radiation background influence in human. Results indicated that the human body in the study sites is subjected to radiation hazards exceeds the accepted limit for long duration exposure. In addition, the areas covered by the highest concentration of Uranium and Thorium show the highest level of radiogenic heat production. Detection the environmental hazards of the radioactive black sands in the study site encouraged this research to monitor the spatial and temporal distribution of these sediments. The Landsat Thematic Mapper images acquired in 1990, 2003 and 2013 were analyzed using remote sensing image processing techniques. Image enhancements, classification and changes detection indicated a positive significant relationship between the patterns of coastline changes and distribution of the radioactive black sand in the study sites. The radioactive black sands are usually concentrated in the eroded areas. Therefore, in 1990 high concentration of the radioactive black sands were observed along the eastern and western flanks of the Rosetta promontory. Distribution of these sediments decreased due to the construction of the protective sea walls. Most of the radioactive black sands are transported toward the east in Abu Khashaba bay under the effect of the longshore currents and toward the west in Alexandria and Abu Quir bay under the action of the seasonal reverse currents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A new method for detecting interactions between the senses in event-related potentials

    DEFF Research Database (Denmark)

    Gondan, Matthias; Röder, B.

    2006-01-01

    Event-related potentials (ERPs) can be used in multisensory research to determine the point in time when different senses start to interact, for example, the auditory and the visual system. For this purpose, the ERP to bimodal stimuli (AV) is often compared to the sum of the ERPs to auditory (A......) and visual (V) stimuli: AV - (A + V). If the result is non-zero, this is interpreted as an indicator for multisensory interactions. Using this method, several studies have demonstrated auditory-visual interactions as early as 50 ms after stimulus onset. The subtraction requires that A, V, and AV do...... not contain common activity: This activity would be subtracted twice from one ERP and would, therefore, contaminate the result. In the present study, ERPs to unimodal, bimodal, and trimodal auditory, visual, and tactile stimuli (T) were recorded. We demonstrate that (T + TAV) - (TA + TV) is equivalent to AV...

  16. A robust anomaly based change detection method for time-series remote sensing images

    Science.gov (United States)

    Shoujing, Yin; Qiao, Wang; Chuanqing, Wu; Xiaoling, Chen; Wandong, Ma; Huiqin, Mao

    2014-03-01

    Time-series remote sensing images record changes happening on the earth surface, which include not only abnormal changes like human activities and emergencies (e.g. fire, drought, insect pest etc.), but also changes caused by vegetation phenology and climate changes. Yet, challenges occur in analyzing global environment changes and even the internal forces. This paper proposes a robust Anomaly Based Change Detection method (ABCD) for time-series images analysis by detecting abnormal points in data sets, which do not need to follow a normal distribution. With ABCD we can detect when and where changes occur, which is the prerequisite condition of global change studies. ABCD was tested initially with 10-day SPOT VGT NDVI (Normalized Difference Vegetation Index) times series tracking land cover type changes, seasonality and noise, then validated to real data in a large area in Jiangxi, south of China. Initial results show that ABCD can precisely detect spatial and temporal changes from long time series images rapidly.

  17. Method of Making an Electroactive Sensing/Actuating Material for Carbon Nanotube Polymer Composite

    Science.gov (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive sensing or actuating material comprises a composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation of the composite when such composite is affected by an external stimulus. In another embodiment, the composite comprises a, third component of micro -sized to nano-sized particles of an electroactive ceramic that is also incorporated in the polymer matrix. The method for making the three-phase composite comprises either incorporating the carbon nanotubes in the polymer matrix before incorporation of the particles of ceramic or mixing the carbon nanotubes and particles of ceramic together in a solution before incorporation in the polymer matrix.

  18. [Near infrared distance sensing method for Chang'e-3 alpha particle X-ray spectrometer].

    Science.gov (United States)

    Liang, Xiao-Hua; Wu, Ming-Ye; Wang, Huan-Yu; Peng, Wen-Xi; Zhang, Cheng-Mo; Cui, Xing-Zhu; Wang, Jin-Zhou; Zhang, Jia-Yu; Yang, Jia-Wei; Fan, Rui-Rui; Gao, Min; Liu, Ya-Qing; Zhang, Fei; Dong, Yi-Fan; Guo, Dong-Ya

    2013-05-01

    Alpha particle X-ray spectrometer (APXS) is one of the payloads of Chang'E-3 lunar rover, the scientific objective of which is in-situ observation and off-line analysis of lunar regolith and rock. Distance measurement is one of the important functions for APXS to perform effective detection on the moon. The present paper will first give a brief introduction to APXS, and then analyze the specific requirements and constraints to realize distance measurement, at last present a new near infrared distance sensing algorithm by using the inflection point of response curve. The theoretical analysis and the experiment results verify the feasibility of this algorithm. Although the theoretical analysis shows that this method is not sensitive to the operating temperature and reflectance of the lunar surface, the solar infrared radiant intensity may make photosensor saturation. The solutions are reducing the gain of device and avoiding direct exposure to sun light.

  19. Photo-acoustic and video-acoustic methods for sensing distant sound sources

    Science.gov (United States)

    Slater, Dan; Kozacik, Stephen; Kelmelis, Eric

    2017-05-01

    Long range telescopic video imagery of distant terrestrial scenes, aircraft, rockets and other aerospace vehicles can be a powerful observational tool. But what about the associated acoustic activity? A new technology, Remote Acoustic Sensing (RAS), may provide a method to remotely listen to the acoustic activity near these distant objects. Local acoustic activity sometimes weakly modulates the ambient illumination in a way that can be remotely sensed. RAS is a new type of microphone that separates an acoustic transducer into two spatially separated components: 1) a naturally formed in situ acousto-optic modulator (AOM) located within the distant scene and 2) a remote sensing readout device that recovers the distant audio. These two elements are passively coupled over long distances at the speed of light by naturally occurring ambient light energy or other electromagnetic fields. Stereophonic, multichannel and acoustic beam forming are all possible using RAS techniques and when combined with high-definition video imagery it can help to provide a more cinema like immersive viewing experience. A practical implementation of a remote acousto-optic readout device can be a challenging engineering problem. The acoustic influence on the optical signal is generally weak and often with a strong bias term. The optical signal is further degraded by atmospheric seeing turbulence. In this paper, we consider two fundamentally different optical readout approaches: 1) a low pixel count photodiode based RAS photoreceiver and 2) audio extraction directly from a video stream. Most of our RAS experiments to date have used the first method for reasons of performance and simplicity. But there are potential advantages to extracting audio directly from a video stream. These advantages include the straight forward ability to work with multiple AOMs (useful for acoustic beam forming), simpler optical configurations, and a potential ability to use certain preexisting video recordings. However

  20. A Method of Particle Swarm Optimized SVM Hyper-spectral Remote Sensing Image Classification

    International Nuclear Information System (INIS)

    Liu, Q J; Jing, L H; Wang, L M; Lin, Q Z

    2014-01-01

    Support Vector Machine (SVM) has been proved to be suitable for classification of remote sensing image and proposed to overcome the Hughes phenomenon. Hyper-spectral sensors are intrinsically designed to discriminate among a broad range of land cover classes which may lead to high computational time in SVM mutil-class algorithms. Model selection for SVM involving kernel and the margin parameter values selection which is usually time-consuming, impacts training efficiency of SVM model and final classification accuracies of SVM hyper-spectral remote sensing image classifier greatly. Firstly, based on combinatorial optimization theory and cross-validation method, particle swarm algorithm is introduced to the optimal selection of SVM (PSSVM) kernel parameter σ and margin parameter C to improve the modelling efficiency of SVM model. Then an experiment of classifying AVIRIS in India Pine site of USA was performed for evaluating the novel PSSVM, as well as traditional SVM classifier with general Grid-Search cross-validation method (GSSVM). And then, evaluation indexes including SVM model training time, classification Overall Accuracy (OA) and Kappa index of both PSSVM and GSSVM are all analyzed quantitatively. It is demonstrated that OA of PSSVM on test samples and whole image are 85% and 82%, the differences with that of GSSVM are both within 0.08% respectively. And Kappa indexes reach 0.82 and 0.77, the differences with that of GSSVM are both within 0.001. While the modelling time of PSSVM can be only 1/10 of that of GSSVM, and the modelling. Therefore, PSSVM is an fast and accurate algorithm for hyper-spectral image classification and is superior to GSSVM

  1. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Yang Jun

    2016-02-01

    Full Text Available A multiple targets cognitive radar tracking method based on Compressed Sensing (CS is proposed. In this method, the theory of CS is introduced to the case of cognitive radar tracking process in multiple targets scenario. The echo signal is sparsely expressed. The designs of sparse matrix and measurement matrix are accomplished by expressing the echo signal sparsely, and subsequently, the restruction of measurement signal under the down-sampling condition is realized. On the receiving end, after considering that the problems that traditional particle filter suffers from degeneracy, and require a large number of particles, the particle swarm optimization particle filter is used to track the targets. On the transmitting end, the Posterior Cramér-Rao Bounds (PCRB of the tracking accuracy is deduced, and the radar waveform parameters are further cognitively designed using PCRB. Simulation results show that the proposed method can not only reduce the data quantity, but also provide a better tracking performance compared with traditional method.

  2. Measurement of dinitrogen fixation by Biological soil crust (BSC) from the Sahelian zone: an isotopic method.

    Science.gov (United States)

    Ehrhardt, F.; Alavoine, G.; Bertrand, I.

    2012-04-01

    Amongst the described ecological roles of Biological Soil Crust, N fixation is of importance for soil fertility, especially in arid and semi-arid ecosystems with low inputs. In BSC, the quantification of N fixation fluxes using an indirect method is widespread, usually with the Acetylene Reduction Assay (ARA) which consists in measuring the nitrogenase activity through the process of acetylene reduction into ethylene. A converting factor, still discussed in the literature and greatly depending of the constitutive organisms of the BSC, is the tool used to convert the amount of reduced ethylene into quantitative fixed Nitrogen. The aim of this poster is to describe an isotopic direct method to quantify the atmospheric dinitrogen fixation fluxes in BSC, while minimizing the variability due to manipulations. Nine different BSC from the Sahelian zone were selected and placed in an incubation room at 28° C in dark and light conditions during three days, while moisture equivalent to pF=2 was regularly adjusted using the gravimetric method with needles and deionized water, in order to activate and reach a dynamic stability of their metabolisms. Subsequently, each crust was placed into a gas-tight glass vial for incubation with a reconstituted 15N2 enriched atmosphere (31.61 % atom 15N, while the proportion of each main gas present in the air was conserved, i.e. 78% N2, 21% O2 and 0.04% CO2). Principal difficulties are to guarantee the airtighness of the system, to avoid crust desiccation and to keep the crust metabolically active under stable conditions for six hours. Several tests were performed to determine the optimum time for 15N2 incubation. Three replicated control samples per crust were also stabilized for three days and then dried at 105° C, without any incubation with 15N2 enriched atmosphere. Total N and 15N were then measured in the grounded (80μm) and dried (105° C) crust, using a Flash EA elemental analyzer (Eurovector, Milan, Italy) coupled to a Delta

  3. Rupture process of the 2013 Okhotsk deep mega earthquake from iterative backprojection and compress sensing methods

    Science.gov (United States)

    Qin, W.; Yin, J.; Yao, H.

    2013-12-01

    On May 24th 2013 a Mw 8.3 normal faulting earthquake occurred at a depth of approximately 600 km beneath the sea of Okhotsk, Russia. It is a rare mega earthquake that ever occurred at such a great depth. We use the time-domain iterative backprojection (IBP) method [1] and also the frequency-domain compressive sensing (CS) technique[2] to investigate the rupture process and energy radiation of this mega earthquake. We currently use the teleseismic P-wave data from about 350 stations of USArray. IBP is an improved method of the traditional backprojection method, which more accurately locates subevents (energy burst) during earthquake rupture and determines the rupture speeds. The total rupture duration of this earthquake is about 35 s with a nearly N-S rupture direction. We find that the rupture is bilateral in the beginning 15 seconds with slow rupture speeds: about 2.5km/s for the northward rupture and about 2 km/s for the southward rupture. After that, the northward rupture stopped while the rupture towards south continued. The average southward rupture speed between 20-35 s is approximately 5 km/s, lower than the shear wave speed (about 5.5 km/s) at the hypocenter depth. The total rupture length is about 140km, in a nearly N-S direction, with a southward rupture length about 100 km and a northward rupture length about 40 km. We also use the CS method, a sparse source inversion technique, to study the frequency-dependent seismic radiation of this mega earthquake. We observe clear along-strike frequency dependence of the spatial and temporal distribution of seismic radiation and rupture process. The results from both methods are generally similar. In the next step, we'll use data from dense arrays in southwest China and also global stations for further analysis in order to more comprehensively study the rupture process of this deep mega earthquake. Reference [1] Yao H, Shearer P M, Gerstoft P. Subevent location and rupture imaging using iterative backprojection for

  4. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing in Aerospace Applications

    Science.gov (United States)

    VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine an activation energy for the catalyst-assisted systems.

  5. A demonstration of adjoint methods for multi-dimensional remote sensing of the atmosphere and surface

    Science.gov (United States)

    Martin, William G. K.; Hasekamp, Otto P.

    2018-01-01

    In previous work, we derived the adjoint method as a computationally efficient path to three-dimensional (3D) retrievals of clouds and aerosols. In this paper we will demonstrate the use of adjoint methods for retrieving two-dimensional (2D) fields of cloud extinction. The demonstration uses a new 2D radiative transfer solver (FSDOM). This radiation code was augmented with adjoint methods to allow efficient derivative calculations needed to retrieve cloud and surface properties from multi-angle reflectance measurements. The code was then used in three synthetic retrieval studies. Our retrieval algorithm adjusts the cloud extinction field and surface albedo to minimize the measurement misfit function with a gradient-based, quasi-Newton approach. At each step we compute the value of the misfit function and its gradient with two calls to the solver FSDOM. First we solve the forward radiative transfer equation to compute the residual misfit with measurements, and second we solve the adjoint radiative transfer equation to compute the gradient of the misfit function with respect to all unknowns. The synthetic retrieval studies verify that adjoint methods are scalable to retrieval problems with many measurements and unknowns. We can retrieve the vertically-integrated optical depth of moderately thick clouds as a function of the horizontal coordinate. It is also possible to retrieve the vertical profile of clouds that are separated by clear regions. The vertical profile retrievals improve for smaller cloud fractions. This leads to the conclusion that cloud edges actually increase the amount of information that is available for retrieving the vertical profile of clouds. However, to exploit this information one must retrieve the horizontally heterogeneous cloud properties with a 2D (or 3D) model. This prototype shows that adjoint methods can efficiently compute the gradient of the misfit function. This work paves the way for the application of similar methods to 3D remote

  6. Research on horizontal displacement monitoring method of deep foundation pit based on laser projecting sensing technology

    Science.gov (United States)

    Liu, Peng; Xie, Shulin; Zhang, Lixiao; Zhou, Guangyi; Zhao, Xuefeng

    2018-03-01

    A certain level of horizontal displacement will occur during excavation or subsequent construction of deep foundation pit. If the support is improper and the horizontal displacement of the foundation pit is too large, it will cause collapse and even affect the buildings around the foundation pit, which will endanger people's life and property. Therefore, the horizontal displacement monitoring of deep foundation pit becomes more and more important. At present, the electronic total station is often used to monitor the horizontal displacement of the foundation pit, but this monitoring method is expensive, prone to accidental errors, and can not be used for real-time monitoring. Therefore, a method of monitoring the horizontal displacement of deep foundation pit by using laser projection sensing technique is proposed in this paper. The horizontal displacement of the foundation pit is replaced by the displacement of the laser spot emitted by the laser, and the horizontal displacement of the foundation pit can be obtained by identifying the displacement of the laser spot projected on the screen. A series of experiments show that the accuracy of this monitoring method meets the engineering requirements and greatly reduces the cost, which provides a new technology for the displacement monitoring of deep foundation pit.

  7. METHOD OF RADIOMETRIC DISTORTION CORRECTION OF MULTISPECTRAL DATA FOR THE EARTH REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    A. N. Grigoriev

    2015-07-01

    Full Text Available The paper deals with technologies of ground secondary processing of heterogeneous multispectral data. The factors of heterogeneous data include uneven illumination of objects on the Earth surface caused by different properties of the relief. A procedure for the image restoration of spectral channels by means of terrain distortion compensation is developed. The object matter of this paper is to improve the quality of the results during image restoration of areas with large and medium landforms. Methods. Researches are based on the elements of the digital image processing theory, statistical processing of the observation results and the theory of multi-dimensional arrays. Main Results. The author has introduced operations on multidimensional arrays: concatenation and elementwise division. Extended model description for input data about the area is given. The model contains all necessary data for image restoration. Correction method for multispectral data radiometric distortions of the Earth remote sensing has been developed. The method consists of two phases: construction of empirical dependences for spectral reflectance on the relief properties and restoration of spectral images according to semiempirical data. Practical Relevance. Research novelty lies in developme nt of the application theory of multidimensional arrays with respect to the processing of multispectral data, together with data on the topography and terrain objects. The results are usable for development of radiometric data correction tools. Processing is performed on the basis of a digital terrain model without carrying out ground works connected with research of the objects reflective properties.

  8. Fast and accurate denoising method applied to very high resolution optical remote sensing images

    Science.gov (United States)

    Masse, Antoine; Lefèvre, Sébastien; Binet, Renaud; Artigues, Stéphanie; Lassalle, Pierre; Blanchet, Gwendoline; Baillarin, Simon

    2017-10-01

    Restoration of Very High Resolution (VHR) optical Remote Sensing Image (RSI) is critical and leads to the problem of removing instrumental noise while keeping integrity of relevant information. Improving denoising in an image processing chain implies increasing image quality and improving performance of all following tasks operated by experts (photo-interpretation, cartography, etc.) or by algorithms (land cover mapping, change detection, 3D reconstruction, etc.). In a context of large industrial VHR image production, the selected denoising method should optimized accuracy and robustness with relevant information and saliency conservation, and rapidity due to the huge amount of data acquired and/or archived. Very recent research in image processing leads to a fast and accurate algorithm called Non Local Bayes (NLB) that we propose to adapt and optimize for VHR RSIs. This method is well suited for mass production thanks to its best trade-off between accuracy and computational complexity compared to other state-of-the-art methods. NLB is based on a simple principle: similar structures in an image have similar noise distribution and thus can be denoised with the same noise estimation. In this paper, we describe in details algorithm operations and performances, and analyze parameter sensibilities on various typical real areas observed in VHR RSIs.

  9. Method for Determining Appropriate Clustering Criteria of Location-Sensing Data

    Directory of Open Access Journals (Sweden)

    Youngmin Lee

    2016-08-01

    Full Text Available Large quantities of location-sensing data are generated from location-based social network services. These data are provided as point properties with location coordinates acquired from a global positioning system or Wi-Fi signal. To show the point data on multi-scale map services, the data should be represented by clusters following a grid-based clustering method, in which an appropriate grid size should be determined. Currently, there are no criteria for determining the proper grid size, and the modifiable areal unit problem has been formulated for the purpose of addressing this issue. The method proposed in this paper is applies a hexagonal grid to geotagged Twitter point data, considering the grid size in terms of both quantity and quality to minimize the limitations associated with the modifiable areal unit problem. Quantitatively, we reduced the original Twitter point data by an appropriate amount using Töpfer’s radical law. Qualitatively, we maintained the original distribution characteristics using Moran’s I. Finally, we determined the appropriate sizes of clusters from zoom levels 9–13 by analyzing the distribution of data on the graphs. Based on the visualized clustering results, we confirm that the original distribution pattern is effectively maintained using the proposed method.

  10. A method for geological hazard extraction using high-resolution remote sensing

    International Nuclear Information System (INIS)

    Wang, Q J; Chen, Y; Bi, J T; Lin, Q Z; Li, M X

    2014-01-01

    Taking Yingxiu, the epicentre of the Wenchuan earthquake, as the study area, a method for geological disaster extraction using high-resolution remote sensing imagery was proposed in this study. A high-resolution Digital Elevation Model (DEM) was used to create mask imagery to remove interfering factors such as buildings and water at low altitudes. Then, the mask imagery was diced into several small parts to reduce the large images' inconsistency, and they were used as the sources to be classified. After that, vector conversion was done on the classified imagery in ArcGIS. Finally, to ensure accuracy, other interfering factors such as buildings at high altitudes, bare land, and land covered by little vegetation were removed manually. Because the method can extract geological hazards in a short time, it is of great importance for decision-makers and rescuers who need to know the degree of damage in the disaster area, especially within 72 hours after an earthquake. Therefore, the method will play an important role in decision making, rescue, and disaster response planning

  11. Navigation and Remote Sensing Payloads and Methods of the Sarvant Unmanned Aerial System

    Science.gov (United States)

    Molina, P.; Fortuny, P.; Colomina, I.; Remy, M.; Macedo, K. A. C.; Zúnigo, Y. R. C.; Vaz, E.; Luebeck, D.; Moreira, J.; Blázquez, M.

    2013-08-01

    In a large number of scenarios and missions, the technical, operational and economical advantages of UAS-based photogrammetry and remote sensing over traditional airborne and satellite platforms are apparent. Airborne Synthetic Aperture Radar (SAR) or combined optical/SAR operation in remote areas might be a case of a typical "dull, dirty, dangerous" mission suitable for unmanned operation - in harsh environments such as for example rain forest areas in Brazil, topographic mapping of small to medium sparsely inhabited remote areas with UAS-based photogrammetry and remote sensing seems to be a reasonable paradigm. An example of such a system is the SARVANT platform, a fixed-wing aerial vehicle with a six-meter wingspan and a maximumtake- of-weight of 140 kilograms, able to carry a fifty-kilogram payload. SARVANT includes a multi-band (X and P) interferometric SAR payload, as the P-band enables the topographic mapping of densely tree-covered areas, providing terrain profile information. Moreover, the combination of X- and P-band measurements can be used to extract biomass estimations. Finally, long-term plan entails to incorporate surveying capabilities also at optical bands and deliver real-time imagery to a control station. This paper focuses on the remote-sensing concept in SARVANT, composed by the aforementioned SAR sensor and envisioning a double optical camera configuration to cover the visible and the near-infrared spectrum. The flexibility on the optical payload election, ranging from professional, medium-format cameras to mass-market, small-format cameras, is discussed as a driver in the SARVANT development. The paper also focuses on the navigation and orientation payloads, including the sensors (IMU and GNSS), the measurement acquisition system and the proposed navigation and orientation methods. The latter includes the Fast AT procedure, which performs close to traditional Integrated Sensor Orientation (ISO) and better than Direct Sensor Orientation (Di

  12. IMPLEMENTATION OF ACTIVE TEACHING METHODS AND EMERGING TOPICS IN PHOTOGRAMMETRY AND REMOTE SENSING SUBJECTS

    Directory of Open Access Journals (Sweden)

    M. Kosmatin Fras

    2016-06-01

    Full Text Available Fast technological developments in photogrammetry and remote sensing areas demand quick and steady changes in the education programme and its realization. The university teachers and assistants are faced with ensuring the learning materials, data and software for practical lessons, as well as project proposals for student’s team work and bachelor or master thesis. In this paper the emerging topics that already have a considerable impact in the practice are treated mostly from the educational aspect. These relatively new topics that are considered in this paper are unmanned aerial systems for spatial data collection, terrestrial and aerial laser scanning, mobile mapping systems, and novelties in satellite remote sensing. The focus is given to practical implementation of these topics into the teaching and learning programme of Geodesy and Geoinformation at the University of Ljubljana, Faculty of Civil and Geodetic Engineering, and experiences gained by the authors so far. Together with the technological advances, the teaching approaches must be modernized as well. Classical approaches of teaching, where a lecturer gives lecture ex cathedra and students are only listeners, are not effective enough. The didactics science of teaching has developed and proved in the practice many useful approaches that can better motivate students for more active learning. We can use different methods of team work like pro et contra debate, buzzing groups, press conference, moderated discussion etc. An experimental study on active teaching methods in the class of students of the Master programme of Geodesy and Geoinformation has been made and the results are presented. After using some new teaching methods in the class, the students were asked to answer two types of a questionnaire. First questionnaire was the standard form developed by Noel Entwistle, an educational psychologist who developed the Approaches to Studying Inventory (ASI for identifying deep and

  13. Implementation of Active Teaching Methods and Emerging Topics in Photogrammetry and Remote Sensing Subjects

    Science.gov (United States)

    Kosmatin Fras, M.; Grigillo, D.

    2016-06-01

    Fast technological developments in photogrammetry and remote sensing areas demand quick and steady changes in the education programme and its realization. The university teachers and assistants are faced with ensuring the learning materials, data and software for practical lessons, as well as project proposals for student's team work and bachelor or master thesis. In this paper the emerging topics that already have a considerable impact in the practice are treated mostly from the educational aspect. These relatively new topics that are considered in this paper are unmanned aerial systems for spatial data collection, terrestrial and aerial laser scanning, mobile mapping systems, and novelties in satellite remote sensing. The focus is given to practical implementation of these topics into the teaching and learning programme of Geodesy and Geoinformation at the University of Ljubljana, Faculty of Civil and Geodetic Engineering, and experiences gained by the authors so far. Together with the technological advances, the teaching approaches must be modernized as well. Classical approaches of teaching, where a lecturer gives lecture ex cathedra and students are only listeners, are not effective enough. The didactics science of teaching has developed and proved in the practice many useful approaches that can better motivate students for more active learning. We can use different methods of team work like pro et contra debate, buzzing groups, press conference, moderated discussion etc. An experimental study on active teaching methods in the class of students of the Master programme of Geodesy and Geoinformation has been made and the results are presented. After using some new teaching methods in the class, the students were asked to answer two types of a questionnaire. First questionnaire was the standard form developed by Noel Entwistle, an educational psychologist who developed the Approaches to Studying Inventory (ASI) for identifying deep and surface approaches to

  14. High resolution imaging of vadose zone transport using crosswell radar and seismic methods; TOPICAL

    International Nuclear Information System (INIS)

    Majer, Ernest L.; Williams, Kenneth H.; Peterson, John E.; Daley, Thomas E.

    2001-01-01

    The summary and conclusions are that overall the radar and seismic results were excellent. At the time of design of the experiments we did not know how well these two methods could penetrate or resolve the moisture content and structure. It appears that the radar could easily go up to 5, even 10 meters between boreholes at 200 Mhz and even father (up to 20 to 40 m) at 50 Mhz. The seismic results indicate that at several hundred hertz propagation of 20 to 30 meters giving high resolution is possible. One of the most important results, however is that together the seismic and radar are complementary in their properties estimation. The radar being primarily sensitive to changes in moisture content, and the seismic being primarily sensitive to porosity. Taken in a time lapse sense the radar can show the moisture content changes to a high resolution, with the seismic showing high resolution lithology. The significant results for each method are: Radar: (1) Delineated geological layers 0.25 to 3.5 meters thick with 0.25 m resolution; (2) Delineated moisture movement and content with 0.25 m resolution; (3) Compared favorably with neutron probe measurements; and (4) Penetration up to 30 m. Radar results indicate that the transport of the riverwater is different from that of the heavier and more viscous sodium thiosulfate. It appears that the heavier fluids are not mixing readily with the in-situ fluids and the transport may be influenced by them. Seismic: (1) Delineated lithology at .25 m resolution; (2) Penetration over 20 meters, with a possibility of up to 30 or more meters; and (3) Maps porosity and density differences of the sediments. Overall the seismic is mapping the porosity and density distribution. The results are consistent with the flow field mapped by the radar, there is a change in flow properties at the 10 to 11 meter depth in the flow cell. There also appears to be break through by looking at the radar data with the denser sodium thiosulfate finally

  15. UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method

    International Nuclear Information System (INIS)

    Fang, F; Futter, J; Markwitz, A; Kennedy, J

    2009-01-01

    The UV and humidity sensing properties of ZnO nanorods prepared by arc discharge have been studied. Scanning electron microscopy and photoluminescence spectroscopy were carried out to analyze the morphology and optical properties of the as-synthesized ZnO nanorods. Proton induced x-ray emission was used to probe the impurities in the ZnO nanorods. A large quantity of high purity ZnO nanorod structures were obtained with lengths of 0.5-1 μm. The diameters of the as-synthesized ZnO nanorods were found to be between 40 and 400 nm. The nanorods interlace with each other, forming 3D networks which make them suitable for sensing application. The addition of a polymeric film-forming agent (BASF LUVISKOL VA 64) improved the conductivity, as it facilitates the construction of conducting networks. Ultrasonication helped to separate the ZnO nanorods and disperse them evenly through the polymeric agent. Improved photoconductivity was measured for a ZnO nanorod sensor annealed in air at 200 deg. C for 30 min. The ZnO nanorod sensors showed a UV-sensitive photoconduction, where the photocurrent increased by nearly four orders of magnitude from 2.7 x 10 -10 to 1.0 x 10 -6 A at 18 V under 340 nm UV illumination. High humidity sensitivity and good stability were also measured. The resistance of the ZnO nanorod sensor decreased almost linearly with increasing relative humidity (RH). The resistance of the ZnO nanorods changed by approximately five orders of magnitude from 4.35 x 10 11 Ω in dry air (7% RH) to about 4.95 x 10 6 Ω in 95% RH air. It is experimentally demonstrated that ZnO nanorods obtained by the arc discharge method show excellent performance and promise for applications in both UV and humidity sensors.

  16. 3d noncontact humidity sensing technologies and methods of use thereof

    KAUST Repository

    Tai, Yanlong

    2017-09-08

    Noncontact sensing components are provided herein, in an aspect, they can be for an electronic device. The noncontact sensing components can contain a semiconductor layer having a r-GO portion and a CNT portion. The noncontact sensing components can be used to detect the presence or movement of a humidity source in the vicinity of the noncontact sensing component. The resistance/humidity response of the component can be based on the combined contribution of carbon nanotube (positive resistance variation) and reduced-graphene oxide (negative resistance variation) behaviors.

  17. Ethylene Gas Sensing Properties of Tin Oxide Nanowires Synthesized via CVD Method

    Science.gov (United States)

    Akhir, Maisara A. M.; Mohamed, Khairudin; Rezan, Sheikh A.; Arafat, M. M.; Haseeb, A. S. M. A.; Uda, M. N. A.; Nuradibah, M. A.

    2018-03-01

    This paper studies ethylene gas sensing performance of tin oxide (SnO2) nanowires (NWs) as sensing material synthesized using chemical vapor deposition (CVD) technique. The effect of NWs diameter on ethylene gas sensing characteristics were investigated. SnO2 NWs with diameter of ∼40 and ∼240 nm were deposited onto the alumina substrate with printed gold electrodes and tested for sensing characteristic toward ethylene gas. From the finding, the smallest diameter of NWs (42 nm) exhibit fast response and recovery time and higher sensitivity compared to largest diameter of NWs (∼240 nm). Both sensor show good reversibility features for ethylene gas sensor.

  18. A new method for wideband characterization of resonator-based sensing platforms

    International Nuclear Information System (INIS)

    Munir, Farasat; Wathen, Adam; Hunt, William D.

    2011-01-01

    A new approach to the electronic instrumentation for extracting data from resonator-based sensing devices (e.g., microelectromechanical, piezoelectric, electrochemical, and acoustic) is suggested and demonstrated here. Traditionally, oscillator-based circuitry is employed to monitor shift in the resonance frequency of the resonator. These circuits give a single point measurement at the frequency where the oscillation criterion is met. However, the resonator response itself is broadband and contains much more information than a single point measurement. Here, we present a method for the broadband characterization of a resonator using white noise as an excitation signal. The resonator is used in a two-port filter configuration, and the resonator output is subjected to frequency spectrum analysis. The result is a wideband spectral map analogous to the magnitude of the S21 parameters of a conventional filter. Compared to other sources for broadband excitation (e.g., frequency chirp, multisine, or narrow time domain pulse), the white noise source requires no design of the input signal and is readily available for very wide bandwidths (1 MHz-3 GHz). Moreover, it offers simplicity in circuit design as it does not require precise impedance matching; whereas such requirements are very strict for oscillator-based circuit systems, and can be difficult to fulfill. This results in a measurement system that does not require calibration, which is a significant advantage over oscillator circuits. Simulation results are first presented for verification of the proposed system, followed by measurement results with a prototype implementation. A 434 MHz surface acoustic wave (SAW) resonator and a 5 MHz quartz crystal microbalance (QCM) are measured using the proposed method, and the results are compared to measurements taken by a conventional bench-top network analyzer. Maximum relative differences in the measured resonance frequencies of the SAW and QCM resonators are 0.0004% and 0

  19. Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation

    Science.gov (United States)

    Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

    2000-08-29

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

  20. Modeling the dynamics of driver's dilemma zone perception using machine learning methods for safer intersection control.

    Science.gov (United States)

    2014-04-01

    The "dilemma zone" (DZ) is defined as the area where drivers approaching a signalized intersection must decide to either proceed or stop at the onset of the yellow indication. Drivers that might perceive themselves to be too close to an intersection ...

  1. Gas sensing properties of magnesium ferrite prepared by co-precipitation method

    International Nuclear Information System (INIS)

    Hankare, P.P.; Jadhav, S.D.; Sankpal, U.B.; Patil, R.P.; Sasikala, R.; Mulla, I.S.

    2009-01-01

    Polycrystalline magnesium ferrite (MgFe 2 O 4 ) was prepared by the co-precipitation method. The synthesized compound was characterized for their phase and morphology by X-ray diffraction and scanning electron microscopy, respectively. Conductance responses of the (MgFe 2 O 4 ) were measured towards gases like hydrogen sulfide (H 2 S), liquefied petroleum gas (LPG), ethanol vapors (C 2 H 5 OH), SO x , H 2 , NO x , NH 3, methanol, acetone and petrol. The gas sensing characterstics were obtained by measuring the sensitivity as a function of various controlling factors like operating temperatures and concentrations of gases. It was found that the sensor exhibited various responses towards these gases at different operating temperatures. Furthermore; the MgFe 2 O 4 based sensor exhibited a fast response and a good recovery towards petrol at temperature 250 deg. C. The results of the response towards petrol reveal that (MgFe 2 O 4 ) synthesized by a simple co-precipitation method, would be a suitable material for the fabrication of the petrol sensor.

  2. A High-Dynamic-Range Optical Remote Sensing Imaging Method for Digital TDI CMOS

    Directory of Open Access Journals (Sweden)

    Taiji Lan

    2017-10-01

    Full Text Available The digital time delay integration (digital TDI technology of the complementary metal-oxide-semiconductor (CMOS image sensor has been widely adopted and developed in the optical remote sensing field. However, the details of targets that have low illumination or low contrast in scenarios of high contrast are often drowned out because of the superposition of multi-stage images in digital domain multiplies the read noise and the dark noise, thus limiting the imaging dynamic range. Through an in-depth analysis of the information transfer model of digital TDI, this paper attempts to explore effective ways to overcome this issue. Based on the evaluation and analysis of multi-stage images, the entropy-maximized adaptive histogram equalization (EMAHE algorithm is proposed to improve the ability of images to express the details of dark or low-contrast targets. Furthermore, in this paper, an image fusion method is utilized based on gradient pyramid decomposition and entropy weighting of different TDI stage images, which can improve the detection ability of the digital TDI CMOS for complex scenes with high contrast, and obtain images that are suitable for recognition by the human eye. The experimental results show that the proposed methods can effectively improve the high-dynamic-range imaging (HDRI capability of the digital TDI CMOS. The obtained images have greater entropy and average gradients.

  3. Compressed sensing of ECG signal for wireless system with new fast iterative method.

    Science.gov (United States)

    Tawfic, Israa; Kayhan, Sema

    2015-12-01

    Recent experiments in wireless body area network (WBAN) show that compressive sensing (CS) is a promising tool to compress the Electrocardiogram signal ECG signal. The performance of CS is based on algorithms use to reconstruct exactly or approximately the original signal. In this paper, we present two methods work with absence and presence of noise, these methods are Least Support Orthogonal Matching Pursuit (LS-OMP) and Least Support Denoising-Orthogonal Matching Pursuit (LSD-OMP). The algorithms achieve correct support recovery without requiring sparsity knowledge. We derive an improved restricted isometry property (RIP) based conditions over the best known results. The basic procedures are done by observational and analytical of a different Electrocardiogram signal downloaded them from PhysioBankATM. Experimental results show that significant performance in term of reconstruction quality and compression rate can be obtained by these two new proposed algorithms, and help the specialist gathering the necessary information from the patient in less time if we use Magnetic Resonance Imaging (MRI) application, or reconstructed the patient data after sending it through the network. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Mapping and predicting sinkholes by integration of remote sensing and spectroscopy methods

    Science.gov (United States)

    Goldshleger, N.; Basson, U.; Azaria, I.

    2013-08-01

    The Dead Sea coastal area is exposed to the destructive process of sinkhole collapse. The increase in sinkhole activity in the last two decades has been substantial, resulting from the continuous decrease in the Dead Sea's level, with more than 1,000 sinkholes developing as a result of upper layer collapse. Large sinkholes can reach 25 m in diameter. They are concentrated mainly in clusters in several dozens of sites with different characteristics. In this research, methods for mapping, monitoring and predicting sinkholes were developed using active and passive remote-sensing methods: field spectrometer, geophysical ground penetration radar (GPR) and a frequency domain electromagnetic instrument (FDEM). The research was conducted in three stages: 1) literature review and data collection; 2) mapping regions abundant with sinkholes in various stages and regions vulnerable to sinkholes; 3) analyzing the data and translating it into cognitive and accessible scientific information. Field spectrometry enabled a comparison between the spectral signatures of soil samples collected near active or progressing sinkholes, and those collected in regions with no visual sign of sinkhole occurrence. FDEM and GPR investigations showed that electrical conductivity and soil moisture are higher in regions affected by sinkholes. Measurements taken at different time points over several seasons allowed monitoring the progress of an 'embryonic' sinkhole.

  5. Environmental hazards and distribution of radioactive black sand along the Rosetta coastal zone in Egypt using airborne spectrometric and remote sensing data

    International Nuclear Information System (INIS)

    Kaiser, M.F.; Aziz, A.M.; Ghieth, B.M.

    2014-01-01

    High-resolution airborne gamma ray spectrometry, conducted in 2003, was used to estimate radioactive elements spatial abundance along the Rosetta coastal zone area. It was noticed that both Uranium and Thorium are concentrated in the black sand deposits along the beach. In contrary, Potassium was observed in high level abundance at the cultivated Nile Delta lands due to the accumulated usage of fertilizers. Exposure Rate (ER), Absorbed Dose Rate (ADR) and Annual Effective Dose Rate (AEDR) were calculated to evaluate the radiation background influence in human. Results indicated that the human body in the study sites is subjected to radiation hazards exceeds the accepted limit for long duration exposure. In addition, the areas covered by the highest concentration of Uranium and Thorium show the highest level of radiogenic heat production. Detection the environmental hazards of the radioactive black sands in the study site encouraged this research to monitor the spatial and temporal distribution of these sediments. The Landsat Thematic Mapper images acquired in 1990, 2003 and 2013 were analyzed using remote sensing image processing techniques. Image enhancements, classification and changes detection indicated a positive significant relationship between the patterns of coastline changes and distribution of the radioactive black sand in the study sites. The radioactive black sands are usually concentrated in the eroded areas. Therefore, in 1990 high concentration of the radioactive black sands were observed along the eastern and western flanks of the Rosetta promontory. Distribution of these sediments decreased due to the construction of the protective sea walls. Most of the radioactive black sands are transported toward the east in Abu Khashaba bay under the effect of the longshore currents and toward the west in Alexandria and Abu Quir bay under the action of the seasonal reverse currents. - Highlights: • Spatial and temporal distributions of the black sand were

  6. Characterisation of Fractures and Fracture Zones in a Carbonate Aquifer Using Electrical Resistivity Tomography and Pricking Probe Methodes

    Science.gov (United States)

    Szalai, Sandor; Kovacs, Attila; Kuslits, Lukács; Facsko, Gabor; Gribovszki, Katalin; Kalmar, Janos; Szarka, Laszlo

    2018-04-01

    Position, width and fragmentation level of fracture zones and position, significance and characteristic distance of fractures were aimed to determine in a carbonate aquifer. These are fundamental parameters, e.g. in hydrogeological modelling of aquifers, due to their role in subsurface water movements. The description of small scale fracture systems is however a challenging task. In the test area (Kádárta, Bakony Mts, Hungary), two methods proved to be applicable to get reasonable information about the fractures: Electrical Resistivity Tomography (ERT) and Pricking-Probe (PriP). PriP is a simple mechanical tool which has been successfully applied in archaeological investigations. ERT results demonstrated its applicability in this small scale fracture study. PriP proved to be a good verification tool both for fracture zone mapping and detecting fractures, but in certain areas, it produced different results than the ERT. The applicability of this method has therefore to be tested yet, although its problems most probably origin from human activity which reorganises the near-surface debris distribution. In the test site, both methods displayed fracture zones including a very characteristic one and a number of individual fractures and determined their characteristic distance and significance. Both methods prove to be able to produce hydrogeologically important parameters even individually, but their simultaneous application is recommended to decrease the possible discrepancies.

  7. Remote Sensing Monitoring Methods for Detecting Invasive Weed Coverage in Delta Waterways and Bay Marshlands

    Science.gov (United States)

    Potter, Christopher

    2018-01-01

    This presentation is part of the Independent Science Board of the State of California Delta Stewardship Council brown bag seminar series on the "How the Delta is Monitored", followed with a panel discussion. Various remote sensing approaches for aquatic vegetation will be reviewed. Key research and application issues with remote sensing monitoring in the Delta will be addressed.

  8. DETERMINATION AND EVALUATION OF FREE SILICA IN THE RESPIRATORY ZONE OF GLASSWORKERS WITH X-RAY DIFFRACTION METHOD

    OpenAIRE

    H.Dehghan Shahreza; N. Razavizadeh

    1999-01-01

    This research was conducted from July 1993 to June 1994 on the total population (711 workers) of a glass factory. The purpose of this study was to determine the quantitative free silica (quartz) in respiratory zone of workers in glass industry. Field samples including 50 samples total dust and 37 samples respirable dust and standard simplex were collected on membrane filters using SKC dust sampler (NIOSH method). To include effects of uneven dust thickness on the filters, standard filters wer...

  9. Development of an evaluation method for fracture mechanical tests on small samples based on a cohesive zone model

    International Nuclear Information System (INIS)

    Mahler, Michael

    2016-01-01

    The safety and reliability of nuclear power plants of the fourth generation is an important issue. It is based on a reliable interpretation of the components for which, among other fracture mechanical material properties are required. The existing irradiation in the power plants significantly affects the material properties which therefore need to be determined on irradiated material. Often only small amounts of irradiated material are available for characterization. In that case it is not possible to manufacture sufficiently large specimens, which are necessary for fracture mechanical testing in agreement with the standard. Small specimens must be used. From this follows the idea of this study, in which the fracture toughness can be predicted with the developed method based on tests of small specimens. For this purpose, the fracture process including the crack growth is described with a continuum mechanical approach using the finite element method and the cohesive zone model. The experiments on small specimens are used for parameter identification of the cohesive zone model. The two parameters of the cohesive zone model are determined by tensile tests on notched specimens (cohesive stress) and by parameter fitting to the fracture behavior of smalls specimens (cohesive energy). To account the different triaxialities of the specimens, the cohesive stress is used depending on the triaxiality. After parameter identification a large specimen can be simulated with the cohesive zone parameters derived from small specimens. The predicted fracture toughness of this big specimen fulfills the size requirements in the standard (ASTM E1820 or ASTM E399) in contrast to the small specimen. This method can be used for ductile and brittle material behavior and was validated in this work. In summary, this method offers the possibility to determine the fracture toughness indirectly based on small specimen testing. Main advantage is the low required specimen volume. Thereby massively

  10. A Smart Washer for Bolt Looseness Monitoring Based on Piezoelectric Active Sensing Method

    Directory of Open Access Journals (Sweden)

    Heyue Yin

    2016-10-01

    Full Text Available Piezoceramic based active sensing methods have been researched to monitor preload on bolt connections. However, there is a saturation problem involved with this type of method. The transmitted energy is sometimes saturated before the maximum preload which is due to it coming into contact with flat surfaces. When it comes to flat contact surfaces, the true contact area will easily saturate with the preload. The design of a new type of bolt looseness monitoring sensor, a smart washer, is to mitigate the saturation problem. The smart washer is composed of two annular disks with contact surfaces that are machined into convex and concave respectively, to eliminate the complete flat contact surfaces and to reduce the saturation effect. One piezoelectric patch is bonded on the non-contact surface of each annular disk. These two mating annular disks form a smart washer. One of the two piezoelectric patches serves as an actuator to generate an ultrasonic wave that propagates through the contact surface; the other one serves as a sensor to detect the propagated waves. The wave energy propagated through the contact surface is proportional to the true contact area which is determined by the bolt preload. The time reversal method is used to extract the peak of the focused signal as the index of the transmission wave energy; then, the relationship between the signal peak and bolt preload is obtained. Experimental results show that the focused signal peak value changes with the bolt preload and presents an approximate linear relationship when the saturation problem is experienced. The proposed smart washer can monitor the full range of the rated preload.

  11. Turbidite event history--Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone

    Science.gov (United States)

    Goldfinger, Chris; Nelson, C. Hans; Morey, Ann E.; Johnson, Joel E.; Patton, Jason R.; Karabanov, Eugene B.; Gutierrez-Pastor, Julia; Eriksson, Andrew T.; Gracia, Eulalia; Dunhill, Gita; Enkin, Randolph J.; Dallimore, Audrey; Vallier, Tracy; Kayen, Robert; Kayen, Robert

    2012-01-01

    Turbidite systems along the continental margin of Cascadia Basin from Vancouver Island, Canada, to Cape Mendocino, California, United States, have been investigated with swath bathymetry; newly collected and archive piston, gravity, kasten, and box cores; and accelerator mass spectrometry radiocarbon dates. The purpose of this study is to test the applicability of the Holocene turbidite record as a paleoseismic record for the Cascadia subduction zone. The Cascadia Basin is an ideal place to develop a turbidite paleoseismologic method and to record paleoearthquakes because (1) a single subduction-zone fault underlies the Cascadia submarine-canyon systems; (2) multiple tributary canyons and a variety of turbidite systems and sedimentary sources exist to use in tests of synchronous turbidite triggering; (3) the Cascadia trench is completely sediment filled, allowing channel systems to trend seaward across the abyssal plain, rather than merging in the trench; (4) the continental shelf is wide, favoring disconnection of Holocene river systems from their largely Pleistocene canyons; and (5) excellent stratigraphic datums, including the Mazama ash and distinguishable sedimentological and faunal changes near the Pleistocene-Holocene boundary, are present for correlating events and anchoring the temporal framework. Multiple tributaries to Cascadia Channel with 50- to 150-km spacing, and a wide variety of other turbidite systems with different sedimentary sources contain 13 post-Mazama-ash and 19 Holocene turbidites. Likely correlative sequences are found in Cascadia Channel, Juan de Fuca Channel off Washington, and Hydrate Ridge slope basin and Astoria Fan off northern and central Oregon. A probable correlative sequence of turbidites is also found in cores on Rogue Apron off southern Oregon. The Hydrate Ridge and Rogue Apron cores also include 12-22 interspersed thinner turbidite beds respectively. We use 14C dates, relative-dating tests at channel confluences, and

  12. Validation of current acoustic dead-zone estimation methods in lakes with strongly sloped bottoms

    Czech Academy of Sciences Publication Activity Database

    Tušer, Michal; Balk, H.; Mrkvička, T.; Frouzová, Jaroslava; Čech, Martin; Muška, Milan; Kubečka, Jan

    2011-01-01

    Roč. 9, - (2011), s. 507-514 ISSN 1541-5856 R&D Projects: GA ČR(CZ) GA206/07/1392 Grant - others:EEA FM, NFM(CZ) CZ 0091 Institutional research plan: CEZ:AV0Z60170517 Keywords : acoustic dead zone * bottom slope * lentic freshwater habitats Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.535, year: 2011

  13. Application of GPR Method for Detection of Loose Zones in Flood Levee

    Science.gov (United States)

    Gołębiowski, Tomisław; Małysa, Tomasz

    2018-02-01

    In the paper the results of non-invasive georadar (GPR) surveys carried out for detection of loose zones located in the flood levee was presented. Terrain measurements were performed on the Vistula river flood levee in the village of Wawrzeńczyce near Cracow. In the investigation site, during the flood in 2010, leakages of levee were observed, so detection of inner water filtration paths was an important matter taking into account the stability of the levee during the next flood. GPR surveys had reconnaissance character, so they were carried out with the use of short-offset reflection profiling (SORP) technique and radargrams were subjected to standard signal processing. The results of surveys allowed to outline main loose zone in the levee which were the reason of leakages in 2010. Additionally gravel interbeddings in sand were detected which had an important influence, due to higher porosity of such zones, to water filtration inside of the levee. In the paper three solutions which allow to increase quality and resolution of radargrams were presented, i.e. changeable-polarisation surveys, advanced signal processing and DHA procedure.

  14. Resolution enhancement of tri-stereo remote sensing images by super resolution methods

    Science.gov (United States)

    Tuna, Caglayan; Akoguz, Alper; Unal, Gozde; Sertel, Elif

    2016-10-01

    Super resolution (SR) refers to generation of a High Resolution (HR) image from a decimated, blurred, low-resolution (LR) image set, which can be either a single frame or multi-frame that contains a collection of several images acquired from slightly different views of the same observation area. In this study, we propose a novel application of tri-stereo Remote Sensing (RS) satellite images to the super resolution problem. Since the tri-stereo RS images of the same observation area are acquired from three different viewing angles along the flight path of the satellite, these RS images are properly suited to a SR application. We first estimate registration between the chosen reference LR image and other LR images to calculate the sub pixel shifts among the LR images. Then, the warping, blurring and down sampling matrix operators are created as sparse matrices to avoid high memory and computational requirements, which would otherwise make the RS-SR solution impractical. Finally, the overall system matrix, which is constructed based on the obtained operator matrices is used to obtain the estimate HR image in one step in each iteration of the SR algorithm. Both the Laplacian and total variation regularizers are incorporated separately into our algorithm and the results are presented to demonstrate an improved quantitative performance against the standard interpolation method as well as improved qualitative results due expert evaluations.

  15. Methods for validating the performance of wearable motion-sensing devices under controlled conditions

    International Nuclear Information System (INIS)

    Bliley, Kara E; Kaufman, Kenton R; Gilbert, Barry K

    2009-01-01

    This paper presents validation methods for assessing the accuracy and precision of motion-sensing device (i.e. accelerometer) measurements. The main goals of this paper were to assess the accuracy and precision of these measurements against a gold standard, to determine if differences in manufacturing and assembly significantly affected device performance and to determine if measurement differences due to manufacturing and assembly could be corrected by applying certain post-processing techniques to the measurement data during analysis. In this paper, the validation of a posture and activity detector (PAD), a device containing a tri-axial accelerometer, is described. Validation of the PAD devices required the design of two test fixtures: a test fixture to position the device in a known orientation, and a test fixture to rotate the device at known velocities and accelerations. Device measurements were compared to these known orientations and accelerations. Several post-processing techniques were utilized in an attempt to reduce variability in the measurement error among the devices. In conclusion, some of the measurement errors due to the inevitable differences in manufacturing and assembly were significantly improved (p < 0.01) by these post-processing techniques

  16. A Method to Analyze the Potential of Optical Remote Sensing for Benthic Habitat Mapping

    Directory of Open Access Journals (Sweden)

    Rodrigo A. Garcia

    2015-10-01

    Full Text Available Quantifying the number and type of benthic classes that are able to be spectrally identified in shallow water remote sensing is important in understanding its potential for habitat mapping. Factors that impact the effectiveness of shallow water habitat mapping include water column turbidity, depth, sensor and environmental noise, spectral resolution of the sensor and spectral variability of the benthic classes. In this paper, we present a simple hierarchical clustering method coupled with a shallow water forward model to generate water-column specific spectral libraries. This technique requires no prior decision on the number of classes to output: the resultant classes are optically separable above the spectral noise introduced by the sensor, image based radiometric corrections, the benthos’ natural spectral variability and the attenuating properties of a variable water column at depth. The modeling reveals the effect reducing the spectral resolution has on the number and type of classes that are optically distinct. We illustrate the potential of this clustering algorithm in an analysis of the conditions, including clustering accuracy, sensor spectral resolution and water column optical properties and depth that enabled the spectral distinction of the seagrass Amphibolis antartica from benthic algae.

  17. Recent developments in sensing methods for eutrophying nutrients with a focus on automation for environmental applications.

    Science.gov (United States)

    Duffy, G; Regan, F

    2017-11-20

    The demand for autonomous sensors for unattended, continuous nutrient monitoring in water is rapidly growing with the increasing need for more frequent and widespread environmental pollution monitoring. Legislative bodies, local authorities and industries all require frequent water quality monitoring, however, this is time and labour intensive, and an expensive undertaking. Autonomous sensors allow for frequent, unattended data collection. While this solves the time and labour intensive aspects of water monitoring, sensors can be very expensive. Development of low-cost sensors is essential to realise the concept of Internet of Things (IoT). However there is much work yet to be done in this field. This article reviews current literature on the research and development efforts towards deployable autonomous sensors for phosphorus (in the form of phosphate) and nitrogen (in the form of nitrate), with a focus on analytical performance and cost considerations. Additionally, some recent sensing approaches that could be automated in the future are included, along with an overview of approaches to monitoring both nutrients. These approaches are compared with standard laboratory methods and also with commercially available sensors for both phosphate and nitrate. Application of nutrient sensors in agriculture is discussed as an example of how sensor networks can provide improvements in decision making.

  18. Method for calibration-free scanned-wavelength modulation spectroscopy for gas sensing

    Science.gov (United States)

    Hanson, Ronald K.; Jeffries, Jay B.; Sun, Kai; Sur, Ritobrata; Chao, Xing

    2018-04-10

    A method of calibration-free scanned-wavelength modulation spectroscopy (WMS) absorption sensing is provided by obtaining absorption lineshape measurements of a gas sample on a sensor using 1f-normalized WMS-2f where an injection current to an injection current-tunable diode laser (TDL) is modulated at a frequency f, where a wavelength modulation and an intensity modulation of the TDL are simultaneously generated, extracting using a numerical lock-in program and a low-pass filter appropriate band-width WMS-nf (n=1, 2, . . . ) signals, where the WMS-nf signals are harmonics of the f, determining a physical property of the gas sample according to ratios of the WMS-nf signals, determining the zero-absorption background using scanned-wavelength WMS, and determining non-absorption losses using at least two of the harmonics, where a need for a non-absorption baseline measurement is removed from measurements in environments where collision broadening has blended transition linewidths, where calibration free WMS measurements without knowledge of the transition linewidth is enabled.

  19. Studies of the subsurface zone created in aluminium and its alloys by means of positron annihilation and complementary methods

    International Nuclear Information System (INIS)

    Dryzek, E.

    2008-01-01

    There are presented the results of the studies of the subsurface zone created in aluminium and its alloys during sliding or other surface modification treatments. The application of the positron annihilation techniques due to their high sensitivity to crystal lattice defects enabled to determine defects profiles in the subsurface zone. The positron annihilation studies were correlated with other conventional measurements applied in tribology, i.e. microhardness measurements, scanning electron microscopy, X-ray diffraction and in a special case stress distribution calculated theoretically. It was shown that the positron annihilation spectroscopy is a useful tool for profiling of the subsurface zone created during sliding even for light metals their alloys and composites. The total range of the subsurface zone detected by the positron annihilation extends from 50 μm to 450 μm depending on the material studied and surface modification treatment. Additionally, the type of the main defects can be determined. The studies of the pure aluminium samples after dry sliding enabled to find the defect concentration of vacancy type in the depth less then 1 μm and to correlate its value with the size of crystallites. It supports the conclusion on recovery processes taking place in this layer. There was made the attempt to apply the Doppler broadening coincidence spectroscopy to the studies of aluminium alloy and composite. In view of the interdisciplinary character the present thesis enclose also the review of the basic issues of tribology, measurement methods applied to the subsurface zone studies and positron annihilation experimental techniques. (author)

  20. Estimation of Surface Soil Moisture from Thermal Infrared Remote Sensing Using an Improved Trapezoid Method

    Directory of Open Access Journals (Sweden)

    Yuting Yang

    2015-06-01

    Full Text Available Surface soil moisture (SM plays a fundamental role in energy and water partitioning in the soil–plant–atmosphere continuum. A reliable and operational algorithm is much needed to retrieve regional surface SM at high spatial and temporal resolutions. Here, we provide an operational framework of estimating surface SM at fine spatial resolutions (using visible/thermal infrared images and concurrent meteorological data based on a trapezoidal space defined by remotely sensed vegetation cover (Fc and land surface temperature (LST. Theoretical solutions of the wet and dry edges were derived to achieve a more accurate and effective determination of the Fc/LST space. Subjectivity and uncertainty arising from visual examination of extreme boundaries can consequently be largely reduced. In addition, theoretical derivation of the extreme boundaries allows a per-pixel determination of the VI/LST space such that the assumption of uniform atmospheric forcing over the entire domain is no longer required. The developed approach was tested at the Tibetan Plateau Soil Moisture/Temperature Monitoring Network (SMTMN site in central Tibet, China, from August 2010 to August 2011 using Moderate Resolution Imaging Spectroradiometer (MODIS Terra images. Results indicate that the developed trapezoid model reproduced the spatial and temporal patterns of observed surface SM reasonably well, with showing a root-mean-square error of 0.06 m3·m−3 at the site level and 0.03 m3·m−3 at the regional scale. In addition, a case study on 2 September 2010 highlighted the importance of the theoretically calculated wet and dry edges, as they can effectively obviate subjectivity and uncertainties in determining the Fc/LST space arising from visual interpretation of satellite images. Compared with Land Surface Models (LSMs in Global Land Data Assimilation System-1, the remote sensing-based trapezoid approach gave generally better surface SM estimates, whereas the LSMs showed

  1. Introducing two Random Forest based methods for cloud detection in remote sensing images

    Science.gov (United States)

    Ghasemian, Nafiseh; Akhoondzadeh, Mehdi

    2018-07-01

    Cloud detection is a necessary phase in satellite images processing to retrieve the atmospheric and lithospheric parameters. Currently, some cloud detection methods based on Random Forest (RF) model have been proposed but they do not consider both spectral and textural characteristics of the image. Furthermore, they have not been tested in the presence of snow/ice. In this paper, we introduce two RF based algorithms, Feature Level Fusion Random Forest (FLFRF) and Decision Level Fusion Random Forest (DLFRF) to incorporate visible, infrared (IR) and thermal spectral and textural features (FLFRF) including Gray Level Co-occurrence Matrix (GLCM) and Robust Extended Local Binary Pattern (RELBP_CI) or visible, IR and thermal classifiers (DLFRF) for highly accurate cloud detection on remote sensing images. FLFRF first fuses visible, IR and thermal features. Thereafter, it uses the RF model to classify pixels to cloud, snow/ice and background or thick cloud, thin cloud and background. DLFRF considers visible, IR and thermal features (both spectral and textural) separately and inserts each set of features to RF model. Then, it holds vote matrix of each run of the model. Finally, it fuses the classifiers using the majority vote method. To demonstrate the effectiveness of the proposed algorithms, 10 Terra MODIS and 15 Landsat 8 OLI/TIRS images with different spatial resolutions are used in this paper. Quantitative analyses are based on manually selected ground truth data. Results show that after adding RELBP_CI to input feature set cloud detection accuracy improves. Also, the average cloud kappa values of FLFRF and DLFRF on MODIS images (1 and 0.99) are higher than other machine learning methods, Linear Discriminate Analysis (LDA), Classification And Regression Tree (CART), K Nearest Neighbor (KNN) and Support Vector Machine (SVM) (0.96). The average snow/ice kappa values of FLFRF and DLFRF on MODIS images (1 and 0.85) are higher than other traditional methods. The

  2. Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling

    Science.gov (United States)

    Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.

    2016-01-01

    Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.

  3. A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing

    Directory of Open Access Journals (Sweden)

    Robert Vogel

    2016-09-01

    Full Text Available Background: Understanding the pathogenic role of extracellular vesicles (EVs in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations. Materials and Methods: A standardized methodology to measure the concentration of extracellular vesicles (EVs has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV and consecutively measured with tunable resistive pulse sensing (TRPS. Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets. Results: PCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV and EV (filtered with qEV concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs. Conclusion: The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements.

  4. Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Methods and Applications

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    1998-01-01

    Thermal Infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning. The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of

  5. A temporal and spatial scaling method for quantifying daily photosynthesis using remote sensing data

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Chen, W.; Sarich, M. [Intermap Technologies Ltd., Nepean, ON (Canada); Cihlar, J. [Canada Centre for Remote Sensing, Ottawa, ON (Canada); Goulden, M. [California Univ., Irvine, CA (United States)

    1998-06-01

    Remote sensing to monitor the behaviour of terrestrial ecosystems over large areas was discussed. For this type of application the boreal ecosystem productivity simulator (BEPS) was developed, with the subsequent incorporation of the more advanced photosynthetic model. The new model improves the methodology through analytical spatial and temporal integration of canopy photosynthesis processes, and is suitable for regional remote sensing applications at moderate resolutions of 250 to 1000 m. 10 refs., 1 tab., 3 figs.

  6. Room-Temperature H2 Gas Sensing Characterization of Graphene-Doped Porous Silicon via a Facile Solution Dropping Method

    Directory of Open Access Journals (Sweden)

    Nu Si A. Eom

    2017-11-01

    Full Text Available In this study, a graphene-doped porous silicon (G-doped/p-Si substrate for low ppm H2 gas detection by an inexpensive synthesis route was proposed as a potential noble graphene-based gas sensor material, and to understand the sensing mechanism. The G-doped/p-Si gas sensor was synthesized by a simple capillary force-assisted solution dropping method on p-Si substrates, whose porosity was generated through an electrochemical etching process. G-doped/p-Si was fabricated with various graphene concentrations and exploited as a H2 sensor that was operated at room temperature. The sensing mechanism of the sensor with/without graphene decoration on p-Si was proposed to elucidate the synergetic gas sensing effect that is generated from the interface between the graphene and p-type silicon.

  7. PARALLEL AND ADAPTIVE UNIFORM-DISTRIBUTED REGISTRATION METHOD FOR CHANG’E-1 LUNAR REMOTE SENSED IMAGERY

    Directory of Open Access Journals (Sweden)

    X. Ning

    2012-08-01

    To resolve the above-mentioned registration difficulties, a parallel and adaptive uniform-distributed registration method for CE-1 lunar remote sensed imagery is proposed in this paper. Based on 6 pairs of randomly selected images, both the standard SIFT algorithm and the parallel and adaptive uniform-distributed registration method were executed, the versatility and effectiveness were assessed. The experimental results indicate that: by applying the parallel and adaptive uniform-distributed registration method, the efficiency of CE-1 lunar remote sensed imagery registration were increased dramatically. Therefore, the proposed method in the paper could acquire uniform-distributed registration results more effectively, the registration difficulties including difficult to obtain results, time-consuming, non-uniform distribution could be successfully solved.

  8. Estimating the right allocation of resources on weekends and public holidays in Green Zone using hybrid methods

    Science.gov (United States)

    Yusoff, Nazhatul Sahima Mohd; Liong, Choong-Yeun; Ismail, Wan Rosmanira; Noh, Abu Yazid Md; Noor, Nur Amalina Mohd

    2018-04-01

    Long patient waiting time and congestion is a major problem faced by Green Zone in Emergency Department at Hospital Universiti Sains Malaysia (EDHUSM) especially during weekends and public holidays. Even though the Green Zone is servicing only the non-critical patients, patient waiting time, causing the department fails to achieve its Key Performance Indicator (KPI). The long waiting time is due to the insufficient resources provided during the weekends and public holidays versus the large number of patients. Currently, only two doctors supported by two nurses are scheduled for every shift during weekends and public holidays. The numbers of patients are higher during weekends and public holidays as compared to weekdays, but the scheduled number of doctors and nurses are the same as weekdays. Therefore, this study presents a hybrid method to estimate the right number of doctors and nurses for improving the services of the Green Zone during weekends and public holidays. Fifty scenarios based on current and proposed schedules of doctors and nurses are simulated and analysed using the hybrid method of Discrete Event Simulation (DES) and Data Envelopment Analysis (DEA). Banker, Charnes and Cooper (BCC) input-oriented model and Super-Efficiency models of DEA were used to analyse the efficiency of the scenarios. The results show that the best schedule is a combination of four doctors supported by four nurses in every shift during weekends and public holidays for the Green Zone. The findings show that such schedule will not only help the department to achieve its KPI but also enable a more optimal utilization of the resources.

  9. Residual Stress Distribution In Heat Affected Zone Of Welded Steel By Means Of Neutron Diffraction Method

    International Nuclear Information System (INIS)

    Fajar, Andika; Prasuad; Gunawan; Muslich, M. Rifai

    1996-01-01

    Three dimensional residual stress distribution in the heat affected zone of 10 mm thick welded steel by means of neutron diffraction technique has been measured. The results showed that the residual stress was distributed near the welded metal, namely within about 46,25 mm. The major tensile stresses occurred in the X-direction, and they attained a level greater than 2000 MPa through the position far away fram the weld. The tensile stresses in the Y and Z- directions lied between 500 and 1500 MPa, The results also suggest that the stress in the surface was greater than that in the middle of the sample

  10. Capillary zone electrophoresis method for a highly glycosylated and sialylated recombinant protein: development, characterization and application for process development.

    Science.gov (United States)

    Zhang, Le; Lawson, Ken; Yeung, Bernice; Wypych, Jette

    2015-01-06

    A purity method based on capillary zone electrophoresis (CZE) has been developed for the separation of isoforms of a highly glycosylated protein. The separation was found to be driven by the number of sialic acids attached to each isoform. The method has been characterized using orthogonal assays and shown to have excellent specificity, precision and accuracy. We have demonstrated the CZE method is a useful in-process assay to support cell culture and purification development of this glycoprotein. Compared to isoelectric focusing (IEF), the CZE method provides more quantitative results and higher sample throughput with excellent accuracy, qualities that are required for process development. In addition, the CZE method has been applied in the stability testing of purified glycoprotein samples.

  11. Benthic Habitat and Zone Maps of Puerto Rico 1999 - Prepared by Visual Interpretation from Remote Sensing Imagery Collected by NOAA, 1999

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — There are 208 habitat and zone maps of Puerto Rico and is major islands. This project is a cooperative effort between the National Ocean Service, National Centers...

  12. Benthic Habitat and Zone Maps of St. Thomas and St. John, U.S. Virgin Islands - Prepared by Visual Interpretation from Remote Sensing Imagery Collected by NOAA, 1999

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ther are 25 habitat and zone PDF products. This project is a cooperative effort between the National Ocean Service, National Centers for Coastal Ocean Science,...

  13. Refinement of a Method for Identifying Probable Archaeological Sites from Remotely Sensed Data

    Science.gov (United States)

    Tilton, James C.; Comer, Douglas C.; Priebe, Carey E.; Sussman, Daniel; Chen, Li

    2012-01-01

    To facilitate locating archaeological sites before they are compromised or destroyed, we are developing approaches for generating maps of probable archaeological sites, through detecting subtle anomalies in vegetative cover, soil chemistry, and soil moisture by analyzing remotely sensed data from multiple sources. We previously reported some success in this effort with a statistical analysis of slope, radar, and Ikonos data (including tasseled cap and NDVI transforms) with Student's t-test. We report here on new developments in our work, performing an analysis of 8-band multispectral Worldview-2 data. The Worldview-2 analysis begins by computing medians and median absolute deviations for the pixels in various annuli around each site of interest on the 28 band difference ratios. We then use principle components analysis followed by linear discriminant analysis to train a classifier which assigns a posterior probability that a location is an archaeological site. We tested the procedure using leave-one-out cross validation with a second leave-one-out step to choose parameters on a 9,859x23,000 subset of the WorldView-2 data over the western portion of Ft. Irwin, CA, USA. We used 100 known non-sites and trained one classifier for lithic sites (n=33) and one classifier for habitation sites (n=16). We then analyzed convex combinations of scores from the Archaeological Predictive Model (APM) and our scores. We found that that the combined scores had a higher area under the ROC curve than either individual method, indicating that including WorldView-2 data in analysis improved the predictive power of the provided APM.

  14. An index-based method to assess risks of climate-related hazards in coastal zones: The case of Tetouan

    Science.gov (United States)

    Satta, Alessio; Snoussi, Maria; Puddu, Manuela; Flayou, Latifa; Hout, Radouane

    2016-06-01

    . The CRI-LS provides a set of maps that allow identifying areas within the coastal hazard zone with relative higher risk from climate-related hazards. The method can be used to support coastal planning and management process in selecting the most suitable adaptation measures.

  15. Performance study of the simplified theory of plastic zones and the Twice-Yield method for the fatigue check

    International Nuclear Information System (INIS)

    Hübel, Hartwig; Willuweit, Adrian; Rudolph, Jürgen; Ziegler, Rainer; Lang, Hermann; Rother, Klemens; Deller, Simon

    2014-01-01

    As elastic–plastic fatigue analyses are still time consuming the simplified elastic–plastic analysis (e.g. ASME Section III, NB 3228.5, the French RCC-M code, paragraphs B 3234.3, B 3234.5 and B3234.6 and the German KTA rule 3201.2, paragraph 7.8.4) is often applied. Besides linearly elastic analyses and factorial plasticity correction (K e factors) direct methods are an option. In fact, calculation effort and accuracy of results are growing in the following graded scheme: a) linearly elastic analysis along with K e correction, b) direct methods for the determination of stabilized elastic–plastic strain ranges and c) incremental elastic–plastic methods for the determination of stabilized elastic–plastic strain ranges. The paper concentrates on option b) by substantiating the practical applicability of the simplified theory of plastic zones STPZ (based on Zarka's method) and – for comparison – the established Twice-Yield method. The Twice-Yield method is explicitly addressed in ASME Code, Section VIII, Div. 2. Application relevant aspects are particularly addressed. Furthermore, the applicability of the STPZ for arbitrary load time histories in connection with an appropriate cycle counting method is discussed. Note, that the STPZ is applicable both for the determination of (fatigue relevant) elastic–plastic strain ranges and (ratcheting relevant) locally accumulated strains. This paper concentrates on the performance of the method in terms of the determination of elastic–plastic strain ranges and fatigue usage factors. The additional performance in terms of locally accumulated strains and ratcheting will be discussed in a future publication. - Highlights: • Simplified elastic–plastic fatigue analyses. • Simplified theory of plastic zones. • Thermal cyclic loading. • Twice-Yield method. • Practical application examples

  16. Characterizing fractures and shear zones in crystalline rock using seismic and GPR methods

    Science.gov (United States)

    Doetsch, Joseph; Jordi, Claudio; Laaksonlaita, Niko; Gischig, Valentin; Schmelzbach, Cedric; Maurer, Hansruedi

    2016-04-01

    Understanding the natural or artificially created hydraulic conductivity of a rock mass is critical for the successful exploitation of enhanced geothermal systems (EGS). The hydraulic response of fractured crystalline rock is largely governed by the spatial organization of permeable fractures. Defining the 3D geometry of these fractures and their connectivity is extremely challenging, because fractures can only be observed directly at their intersections with tunnels or boreholes. Borehole-based and tunnel-based ground-penetrating radar (GPR) and seismic measurements have the potential to image fractures and other heterogeneities between and around boreholes and tunnels, and to monitor subtle time-lapse changes in great detail. We present the analysis of data acquired in the Grimsel rock laboratory as part of the In-situ Stimulation and Circulation (ISC) experiment, in which a series of stimulation experiments have been and will be performed. The experiments in the granitic rock range from hydraulic fracturing to controlled fault-slip experiments. The aim is to obtain a better understanding of coupled seismo-hydro-mechanical processes associated with high-pressure fluid injections in crystalline rocks and their impact on permeability creation and enhancement. GPR and seismic data have been recorded to improve the geological model and characterize permeable fractures and shear zones. The acquired and processed data include reflection GPR profiles measured from tunnel walls, single-borehole GPR images, and borehole-to-borehole and tunnel-to-tunnel seismic and GPR tomograms. The reflection GPR data reveal the geometry of shear zones up to a distance of 30 m from the tunnels and boreholes, but the interpretation is complicated by the geometrical ambiguity around tunnels and boreholes and by spurious reflections from man-made structures such as boreholes. The GPR and seismic traveltime tomography results reveal brittle fractured rock between two ductile shear zones. The

  17. Resistivity method contribution in determining of fault zone and hydro-geophysical characteristics of carbonate aquifer, eastern desert, Egypt

    Science.gov (United States)

    Ammar, A. I.; Kamal, K. A.

    2018-03-01

    Determination of fault zone and hydro-geophysical characteristics of the fractured aquifers are complicated, because their fractures are controlled by different factors. Therefore, 60 VESs were carried out as well as 17 productive wells for determining the locations of the fault zones and the characteristics of the carbonate aquifer at the eastern desert, Egypt. The general curve type of the recorded rock units was QKH. These curves were used in delineating the zones of faults according to the application of the new assumptions. The main aquifer was included at end of the K-curve type and front of the H-curve type. The subsurface layers classified into seven different geoelectric layers. The fractured shaly limestone and fractured limestone layers were the main aquifer and their resistivity changed from low to medium (11-93 Ω m). The hydro-geophysical properties of this aquifer such as the areas of very high, high, and intermediate fracture densities of high groundwater accumulations, salinity, shale content, porosity distribution, and recharging and flowing of groundwater were determined. The statistical analysis appeared that depending of aquifer resistivity on the water salinities (T.D.S.) and water resistivities add to the fracture density and shale content. The T.D.S. increasing were controlled by Na+, Cl-, Ca2+, Mg2+, and then (SO4)2-, respectively. The porosity was calculated and its average value was 19%. The hydrochemical analysis of groundwater appeared that its type was brackish and the arrangements of cation concentrations were Na+ > Ca2+ > Mg2+ > K+ and anion concentrations were Cl- > (SO4)2- > HCO3 - > CO3 -. The groundwater was characterized by sodium-bicarbonate and sodium-sulfate genetic water types and meteoric in origin. Hence, it can use the DC-resistivity method in delineating the fault zone and determining the hydro-geophysical characteristics of the fractured aquifer with taking into account the quality of measurements and interpretation.

  18. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining

    Directory of Open Access Journals (Sweden)

    Qiaokang Liang

    2016-11-01

    Full Text Available Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  19. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.

    Science.gov (United States)

    Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin

    2016-11-16

    Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  20. Connotations of pixel-based scale effect in remote sensing and the modified fractal-based analysis method

    Science.gov (United States)

    Feng, Guixiang; Ming, Dongping; Wang, Min; Yang, Jianyu

    2017-06-01

    Scale problems are a major source of concern in the field of remote sensing. Since the remote sensing is a complex technology system, there is a lack of enough cognition on the connotation of scale and scale effect in remote sensing. Thus, this paper first introduces the connotations of pixel-based scale and summarizes the general understanding of pixel-based scale effect. Pixel-based scale effect analysis is essentially important for choosing the appropriate remote sensing data and the proper processing parameters. Fractal dimension is a useful measurement to analysis pixel-based scale. However in traditional fractal dimension calculation, the impact of spatial resolution is not considered, which leads that the scale effect change with spatial resolution can't be clearly reflected. Therefore, this paper proposes to use spatial resolution as the modified scale parameter of two fractal methods to further analyze the pixel-based scale effect. To verify the results of two modified methods (MFBM (Modified Windowed Fractal Brownian Motion Based on the Surface Area) and MDBM (Modified Windowed Double Blanket Method)); the existing scale effect analysis method (information entropy method) is used to evaluate. And six sub-regions of building areas and farmland areas were cut out from QuickBird images to be used as the experimental data. The results of the experiment show that both the fractal dimension and information entropy present the same trend with the decrease of spatial resolution, and some inflection points appear at the same feature scales. Further analysis shows that these feature scales (corresponding to the inflection points) are related to the actual sizes of the geo-object, which results in fewer mixed pixels in the image, and these inflection points are significantly indicative of the observed features. Therefore, the experiment results indicate that the modified fractal methods are effective to reflect the pixel-based scale effect existing in remote sensing

  1. Some methodical questions of study of vertical geochemical zoning of ore deposits

    International Nuclear Information System (INIS)

    Sochevanov, N.N.; Gorelova, E.K.

    1975-01-01

    Taking a hydrothermal uranium deposit as an example, the advisability of dividing ore-localizing structures (for the purpose of making a calculation for a single geochemical zonality) into five zones, a supra-, an upper, a central, a lower and an infra-ore one, has been shown. It is recommended to determine the place of elements in the geochemical zonality sequence by taking into account the productivity of their aureoles and the location of the centre of gravity of their reserves in the ore, supra- and infra-ore horizons. When considering the peculiarities of a zonality, it is irrational to take account of elements determined with an insufficient sensitivity as well as of low-contrast or unstable ones. When calculating tracer ratios the most contrasting data can be obtained by using the most distant elements in the geochemical zonality sequence

  2. New application of the radioactive tracer method for sediment movement measurements in the surf zone

    International Nuclear Information System (INIS)

    Owczarczyk, A.; Strzelecki, M.; Szpilowski, S.; Wierzchnicki, R.; Basinski, T.

    1989-01-01

    The investigations of sediment movement with the use of radiotracers have been carried out in a surf zone of Lubiatowo. Inception of sand motion and sediment transport velocity were the objective of the experiment. The spider type construction was located at the depth of 0.7 m. An artificial sand made of iridium glass (γ = 2.660 kg/m 3 ) containing 0.25 weight per cent of 192 Ir was used as a tracer. The fraction of 0.15 to 0.20 mm has been chosen as the representative diameter of sand grains existing at the investigated bottom region. The inception of sand movement versus current velocity and wave conditions as well as displacement velocity of tracer mass were determined. An improved construction was designed and tested. (author)

  3. Extraction methods for determination of Pu and Am contents in soil samples from the Chernobyl' NPP 30-km zone

    International Nuclear Information System (INIS)

    Shvetsov, I.K.; Yakovlev, N.G.; Kalinichenko, B.S.; Kulakov, V.M.; Kulazhko, V.G.; Vlasov, M.M.; Shubko, V.M.; Pchelkin, V.A.; Rodionov, Yu.F.; Lisin, S.K.

    1989-01-01

    The possibilities for decreasing the time of soil sample analysis for Pu, Am, Cm isotope concentrations with simultaneous increasing the sensitivity and analysis representativity are demonstrated. It is achieved due to changing the total sample break-down by oxidizing leaching, and the procedure of ion-exchange separation by single extraction using trioctylamine. Experience in the method applications for analysis of soil samples in the Chernobyl' NPP 30-km zone aimed at determination of correlation coefficients for Pu/Ce-144 and Pu/Am-241 is generalized. 4 refs.; 4 figs.; 1 tab

  4. Optical properties of Ni-doped MgGa2O4 single crystals grown by floating zone method

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Hughes, Mark; Ohishi, Yasutake

    2010-01-01

    The single crystal growth conditions and spectroscopic characterization of Ni-doped MgGa 2 O 4 with inverse-spinel structure crystal family are described. Single crystals of this material have been grown by floating zone method. Ni-doped MgGa 2 O 4 single crystals have broadband fluorescence in the 1100-1600 nm wavelength range, 1.6 ms room temperature lifetime, 56% quantum efficiency and 1.05x10 -21 cm 2 stimulated emission cross section at the emission peak. This new material is very promising for tunable laser applications covering the important optical communication and eye safe wavelength region.

  5. Determination of nitrate and nitrite in Hanford defense waste (HDW) by reverse polarity capillary zone electrophoresis (RPCE) method

    International Nuclear Information System (INIS)

    Metcalf, S.G.

    1998-01-01

    This paper describes the first application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in Hanford Defense Waste (HDW). The method development was carried out by using Synthetic Hanford Waste (SHW), followed by the analysis of 4 real HDW samples. Hexamethonium bromide (HMB) was used as electroosmotic flow modifier in borate buffer at pH 9.2 to decrease the electroosmotic flow (EOF) in order to enhance the speed of analysis and the resolution of nitrate and nitrite in high ionic strength HDW samples. The application of this capillary zone electrophoresis method, when compared with ion chromatography for two major components of HDW, nitrate and nitrite slightly reduced analysis time, eliminated most pre-analysis handling of the highly radioactive sample, and cut analysis wastes by more than 2 orders of magnitude. The analysis of real HDW samples that were validated by using sample spikes showed a concentration range of 1.03 to 1.42 M for both nitrate. The migration times of the real HDW and the spiked HDW samples were within a precision of less than 3% relative standard deviation. The selectivity ratio test used for peak confirmation of the spiked samples was within 96% of the real sample. Method reliability was tested by spiking the matrix with 72.4 mM nitrate and nitrite. Recoveries for these spiked samples were 93-103%

  6. Measurements methods and variability assesment of the Norway spruce total leaf area. Implications for remote sensing

    Czech Academy of Sciences Publication Activity Database

    Homolová, L.; Lukeš, Petr; Malenovský, Z.; Lhotáková, Z.; Kaplan, Věroslav; Hanuš, Jan

    2013-01-01

    Roč. 27, č. 1 (2013), s. 111-121 ISSN 0931-1890 R&D Projects: GA ČR GA205/09/ 1989 Institutional support: RVO:67179843 Keywords : chlorophyll content * conversion factor * Picea abies * projected leaf area * remote sensing * total leaf area Subject RIV: EH - Ecology, Behaviour Impact factor: 1.869, year: 2013

  7. Measurement methods and variability assessment of the Norway spruce total leaf area: Implications for remote sensing

    NARCIS (Netherlands)

    Homolova, L.; Lukes, P.; Malenovsky, Z.; Lhotakova, Z.; Kaplan, V.; Hanus, J.

    2013-01-01

    Estimation of total leaf area (LAT) is important to express biochemical properties in plant ecology and remote sensing studies. A measurement of LAT is easy in broadleaf species, but it remains challenging in coniferous canopies. We proposed a new geometrical model to estimate Norway spruce LAT and

  8. Using remote sensing in support of environmental management: A framework for selecting products, algorithms and methods

    CSIR Research Space (South Africa)

    De Klerk, HM

    2016-11-01

    Full Text Available Traditionally, to map environmental features using remote sensing, practitioners will use training data to develop models on various satellite data sets using a number of classification approaches and use test data to select a single ‘best performer...

  9. Ultra-fast scintillation properties of β-Ga2O3 single crystals grown by Floating Zone method

    Science.gov (United States)

    He, Nuotian; Tang, Huili; Liu, Bo; Zhu, Zhichao; Li, Qiu; Guo, Chao; Gu, Mu; Xu, Jun; Liu, Jinliang; Xu, Mengxuan; Chen, Liang; Ouyang, Xiaoping

    2018-04-01

    In this investigation, β-Ga2O3 single crystals were grown by the Floating Zone method. At room temperature, the X-ray excited emission spectrum includes ultraviolet and blue emission bands. The scintillation light output is comparable to the commercial BGO scintillator. The scintillation decay times are composed of the dominant ultra-fast component of 0.368 ns and a small amount of slightly slow components of 8.2 and 182 ns. Such fast component is superior to most commercial inorganic scintillators. In contrast to most semiconductor crystals prepared by solution method such as ZnO, β-Ga2O3 single crystals can be grown by traditional melt-growth method. Thus we can easily obtain large bulk crystals and mass production.

  10. A preliminary verification of the floating reference measurement method for non-invasive blood glucose sensing

    Science.gov (United States)

    Min, Xiaolin; Liu, Rong; Fu, Bo; Xu, Kexin

    2017-06-01

    In the non-invasive sensing of blood glucose by near-infrared diffuse reflectance spectroscopy, the spectrum is highly susceptible to the unstable and complicated background variations from the human body and the environment. In in vitro analyses, background variations are usually corrected by the spectrum of a standard reference sample that has similar optical properties to the analyte of interest. However, it is hard to find a standard sample for the in vivo measurement. Therefore, the floating reference measurement method is proposed to enable relative measurements in vivo, where the spectra under some special source-detector distance, defined as the floating reference position, are insensitive to the changes in glucose concentration due to the absorption effect and scattering effect. Because the diffuse reflectance signals at the floating reference positions only reflect the information on background variations during the measurement, they can be used as the internal reference. In this paper, the theoretical basis of the floating reference positions in a semi-infinite turbid medium was discussed based on the steady-state diffusion equation and its analytical solutions in a semi-infinite turbid medium (under the extrapolated boundary conditions). Then, Monte-Carlo (MC) simulations and in vitro experiments based on a custom-built continuous-moving spatially resolving double-fiber NIR measurement system, configured with two types of light source, a super luminescent diode (SLD) and a super-continuum laser, were carried out to verify the existence of the floating reference position in 5%, 10% and 20% Intralipid solutions. The results showed that the simulation values of the floating reference positions are close to the theoretical results, with a maximum deviation of approximately 0.3 mm in 1100-1320 nm. Great differences can be observed in 1340-1400 nm because the optical properties of Intralipid in this region don not satisfy the conditions of the steady

  11. Studies and Application of Remote Sensing Retrieval Method of Soil Moisture Content in Land Parcel Units in Irrigation Area

    Science.gov (United States)

    Zhu, H.; Zhao, H. L.; Jiang, Y. Z.; Zang, W. B.

    2018-05-01

    Soil moisture is one of the important hydrological elements. Obtaining soil moisture accurately and effectively is of great significance for water resource management in irrigation area. During the process of soil moisture content retrieval with multiremote sensing data, multi- remote sensing data always brings multi-spatial scale problems which results in inconformity of soil moisture content retrieved by remote sensing in different spatial scale. In addition, agricultural water use management has suitable spatial scale of soil moisture information so as to satisfy the demands of dynamic management of water use and water demand in certain unit. We have proposed to use land parcel unit as the minimum unit to do soil moisture content research in agricultural water using area, according to soil characteristics, vegetation coverage characteristics in underlying layer, and hydrological characteristic into the basis of study unit division. We have proposed division method of land parcel units. Based on multi thermal infrared and near infrared remote sensing data, we calculate the ndvi and tvdi index and make a statistical model between the tvdi index and soil moisture of ground monitoring station. Then we move forward to study soil moisture remote sensing retrieval method on land parcel unit scale. And the method has been applied in Hetao irrigation area. Results show that compared with pixel scale the soil moisture content in land parcel unit scale has displayed stronger correlation with true value. Hence, remote sensing retrieval method of soil moisture content in land parcel unit scale has shown good applicability in Hetao irrigation area. We converted the research unit into the scale of land parcel unit. Using the land parcel units with unified crops and soil attributes as the research units more complies with the characteristics of agricultural water areas, avoids the problems such as decomposition of mixed pixels and excessive dependence on high-resolution data

  12. Measurement agreement between a newly developed sensing insole and traditional laboratory-based method for footstrike pattern detection in runners

    OpenAIRE

    Cheung, Roy T. H.; An, Winko W.; Au, Ivan P. H.; Zhang, Janet H.; Chan, Zoe Y. S.; Man, Alfred; Lau, Fannie O. Y.; Lam, Melody K. Y.; Lau, K. K.; Leung, C. Y.; Tsang, N. W.; Sze, Louis K. Y.; Lam, Gilbert W. K.

    2017-01-01

    This study introduced a novel but simple method to continuously measure footstrike patterns in runners using inexpensive force sensors. Two force sensing resistors were firmly affixed at the heel and second toe of both insoles to collect the time signal of foot contact. A total of 109 healthy young adults (42 males and 67 females) were recruited in this study. They ran on an instrumented treadmill at 0°, +10°, and -10° inclinations and attempted rearfoot, midfoot, and forefoot landings using ...

  13. Hybridization of Sensing Methods of the Search Domain and Adaptive Weighted Sum in the Pareto Approximation Problem

    Directory of Open Access Journals (Sweden)

    A. P. Karpenko

    2015-01-01

    Full Text Available We consider the relatively new and rapidly developing class of methods to solve a problem of multi-objective optimization, based on the preliminary built finite-dimensional approximation of the set, and thereby, the Pareto front of this problem as well. The work investigates the efficiency of several modifications of the method of adaptive weighted sum (AWS. This method proposed in the paper of Ryu and Kim Van (JH. Ryu, S. Kim, H. Wan is intended to build Pareto approximation of the multi-objective optimization problem.The AWS method uses quadratic approximation of the objective functions in the current sub-domain of the search space (the area of trust based on the gradient and Hessian matrix of the objective functions. To build the (quadratic meta objective functions this work uses methods of the experimental design theory, which involves calculating the values of these functions in the grid nodes covering the area of trust (a sensing method of the search domain. There are two groups of the sensing methods under consideration: hypercube- and hyper-sphere-based methods. For each of these groups, a number of test multi-objective optimization tasks has been used to study the efficiency of the following grids: "Latin Hypercube"; grid, which is uniformly random for each measurement; grid, based on the LP  sequences.

  14. Method for Forming Fiber Reinforced Composite Bodies with Graded Composition and Stress Zones

    Science.gov (United States)

    Singh, Mrityunjay (Inventor); Levine, Stanley R. (Inventor); Smialek, James A. (Inventor)

    1999-01-01

    A near-net, complex shaped ceramic fiber reinforced silicon carbide based composite bodies with graded compositions and stress zones is disclosed. To provide the composite a fiber preform is first fabricated and an interphase is applied by chemical vapor infiltration, sol-gel or polymer processes. This first body is further infiltrated with a polymer mixture containing carbon, and/or silicon carbide, and additional oxide, carbide, or nitride phases forming a second body. One side of the second body is spray coated or infiltrated with slurries containing high thermal expansion and oxidation resistant. crack sealant phases and the other side of this second body is coated with low expansion phase materials to form a third body. This third body consisting of porous carbonaceous matrix surrounding the previously applied interphase materials, is then infiltrated with molten silicon or molten silicon-refractory metal alloys to form a fourth body. The resulting fourth body comprises dense composites consisting of fibers with the desired interphase which are surrounded by silicon carbide and other second phases materials at the outer and inner surfaces comprising material of silicon, germanium, refractory metal suicides, borides, carbides, oxides, and combinations thereof The resulting composite fourth body has different compositional patterns from one side to the other.

  15. Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    DineshKumar, P.K.; Gopinath, G.; Seralathan, P.

    on the movement and behaviour of the groundwater of this basin. The integration of conventional and remote sensing data has been made through geographic information system (GIS) and it is found that about 50% of the area can be identified as very good or good...

  16. Adapting Better Interpolation Methods to Model Amphibious MT Data Along the Cascadian Subduction Zone.

    Science.gov (United States)

    Parris, B. A.; Egbert, G. D.; Key, K.; Livelybrooks, D.

    2016-12-01

    Magnetotellurics (MT) is an electromagnetic technique used to model the inner Earth's electrical conductivity structure. MT data can be analyzed using iterative, linearized inversion techniques to generate models imaging, in particular, conductive partial melts and aqueous fluids that play critical roles in subduction zone processes and volcanism. For example, the Magnetotelluric Observations of Cascadia using a Huge Array (MOCHA) experiment provides amphibious data useful for imaging subducted fluids from trench to mantle wedge corner. When using MOD3DEM(Egbert et al. 2012), a finite difference inversion package, we have encountered problems inverting, particularly, sea floor stations due to the strong, nearby conductivity gradients. As a work-around, we have found that denser, finer model grids near the land-sea interface produce better inversions, as characterized by reduced data residuals. This is partly to be due to our ability to more accurately capture topography and bathymetry. We are experimenting with improved interpolation schemes that more accurately track EM fields across cell boundaries, with an eye to enhancing the accuracy of the simulated responses and, thus, inversion results. We are adapting how MOD3DEM interpolates EM fields in two ways. The first seeks to improve weighting functions for interpolants to better address current continuity across grid boundaries. Electric fields are interpolated using a tri-linear spline technique, where the eight nearest electrical field estimates are each given weights determined by the technique, a kind of weighted average. We are modifying these weights to include cross-boundary conductivity ratios to better model current continuity. We are also adapting some of the techniques discussed in Shantsev et al (2014) to enhance the accuracy of the interpolated fields calculated by our forward solver, as well as to better approximate the sensitivities passed to the software's Jacobian that are used to generate a new

  17. Identification of groundwater prospective zones by using remote ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 114; Issue 5. Identification of groundwater prospective zones by using remote sensing and geoelectrical methods in Jharia and Raniganj coalfields, Dhanbad district, Jharkhand state. Basudeo Rai A Tiwari V S Dubey. Volume 114 Issue 5 October 2005 pp 515-522 ...

  18. Thermal transport during the growth of crystalline fibers by the laser-heated float zone method

    International Nuclear Information System (INIS)

    Feigelson, R.S.

    1990-01-01

    Single crystal fibers may someday prove useful in a variety of advanced device applications. At the current time, fibers for optical, superconducting, and structural applications are under investigation. The advantage of single crystal fibers for optical devices lies in the enhanced light guiding properties one can obtain compared to a bulk crystal of the same material. Potential fiber-optic applications include optical transmission lines for remote temperature sensing and spectroscopy, solid-state lasers and amplifiers, and nonlinear devices such as harmonic generators, Raman shifters and optical parameters oscillators. In the area of superconductivity, the potential for producing long flexible fibers of the Bi 2 Sr 2 CaCu 2 O 8 high temperature superconductor which are capable of carrying high electrical current has been demonstrated. This superconductor, like other high T c materials is incongruently melting and growth rates (fiber throughput), therefore, have to be reduced to optimize the superconducting properties. Interest in single crystal fibers for structural applications stems from a strong technological interest in high strength, light weight fiber-matrix composites capable of operating at elevated temperatures. The very high crystalline perfection possible in single crystal fibers of certain materials, for example Al 2 O 3 , make them very attractive for special high temperature structural applications. Single crystal fibers are noted for having greater lower defects and hence higher strength than comparable bulk crystals. For most of the fiber applications mentioned above, stringent requirements exist for uniform diameter, homogeneous composition, and a low density of crystalline defects. Excellent growth stability is needed to obtain such fibers

  19. Convergence of Chahine's nonlinear relaxation inversion method used for limb viewing remote sensing

    Science.gov (United States)

    Chu, W. P.

    1985-01-01

    The application of Chahine's (1970) inversion technique to remote sensing problems utilizing the limb viewing geometry is discussed. The problem considered here involves occultation-type measurements and limb radiance-type measurements from either spacecraft or balloon platforms. The kernel matrix of the inversion problem is either an upper or lower triangular matrix. It is demonstrated that the Chahine inversion technique always converges, provided the diagonal elements of the kernel matrix are nonzero.

  20. A Simulation Method for High-Cycle Fatigue-Driven Delamination using a Cohesive Zone Model

    DEFF Research Database (Denmark)

    Bak, Brian Lau Verndal; Turon, A.; Lindgaard, Esben

    2016-01-01

    on parameter fitting of any kind. The method has been implemented as a zero-thickness eight-node interface element for Abaqus and as a spring element for a simple finite element model in MATLAB. The method has been validated in simulations of mode I, mode II, and mixed-mode crack loading for both self...

  1. Growth of large size lithium niobate single crystals of high quality by tilting-mirror-type floating zone method

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Abdur Razzaque, E-mail: razzaque_ru2000@yahoo.com [Department of Physics, University of Rajshahi (Bangladesh)

    2016-05-15

    Large size high quality LiNbO{sub 3} single crystals were grown successfully by tilting-mirror-type floating zone (TMFZ) technique. The grown crystals were characterized by X-ray diffraction, etch pits density measurement, Impedance analysis, Vibrating sample magnetometry (VSM) and UV-Visible spectrometry. The effect of mirror tilting during growth on the structural, electrical, optical properties and defect density of the LiNbO{sub 3} crystals were investigated. It was found that the defect density in the crystals reduced for tilting the mirror in the TMFZ method. The chemical analysis revealed that the grown crystals were of high quality with uniform composition. The single crystals grown by TMFZ method contains no low-angle grain boundaries, indicating that they can be used for high efficiency optoelectronic devices. (author)

  2. A Residential Area Extraction Method for High Resolution Remote Sensing Imagery by Using Visual Saliency and Perceptual Organization

    Directory of Open Access Journals (Sweden)

    CHEN Yixiang

    2017-12-01

    Full Text Available Inspired by human visual cognitive mechanism,a method of residential area extraction from high-resolution remote sensing images was proposed based on visual saliency and perceptual organization. Firstly,the data field theory of cognitive physics was introduced to model the visual saliency and the candidate residential areas were produced by adaptive thresholding. Then,the exact residential areas were obtained and refined by perceptual organization based on the high-frequency features of multi-scale wavelet transform. Finally,the validity of the proposed method was verified by experiments conducted on ZY-3 and Quickbird image data sets.

  3. Simplified web-based decision support method for traffic management and work zone analysis.

    Science.gov (United States)

    2015-06-01

    Traffic congestion mitigation is one of the key challenges that transportation planners and operations engineers face when : planning for construction and maintenance activities. There is a wide variety of approaches and methods that address work : z...

  4. Parameters of Higuchi's method to characterize primary waves in some seismograms from the Mexican subduction zone

    Science.gov (United States)

    Gálvez-Coyt, Gonzalo; Muñoz-Diosdado, Alejandro; Peralta, José; Balderas-López, José; Angulo-Brown, Fernando

    2012-06-01

    Higuchi's method is a procedure that, if applied appropriately, can determine in a reliable way the fractal dimension D of time series; this fractal dimension permits to characterize the degree of correlation of the series. However, when analyzing some time series with Higuchi's method, there are oscillations at the right-hand side of the graph, which can cause a mistaken determination of the fractal dimension. In this work, an appropriate explanation is given to this type of behaviour. Using the seismogram as a time series and the properties of the P and S waves, it is possible to use the properties of Higuchi's method to previously detect the arrival of the earthquake shacking stage, some seconds in advance, approximately 30-35 s in the case of Mexico City. Thus, we propose the Higuchi's method to characterize and detect the P waves in order to estimate the strength of the forthcoming S waves.

  5. Error characterization methods for surface soil moisture products from remote sensing

    International Nuclear Information System (INIS)

    Doubková, M.

    2012-01-01

    To support the operational use of Synthetic Aperture Radar (SAR) earth observation systems, the European Space Agency (ESA) is developing Sentinel-1 radar satellites operating in C-band. Much like its SAR predecessors (Earth Resource Satellite, ENVISAT, and RADARSAT), the Sentinel-1 will operate at a medium spatial resolution (ranging from 5 to 40 m), but with a greatly improved revisit period, especially over Europe (∼2 days). Given the planned high temporal sampling and the operational configuration Sentinel-1 is expected to be beneficial for operational monitoring of dynamic processes in hydrology and phenology. The benefit of a C-band SAR monitoring service in hydrology has already been demonstrated within the scope of the Soil Moisture for Hydrometeorologic Applications (SHARE) project using data from the Global Mode (GM) of the Advanced Synthetic Aperture Radar (ASAR). To fully exploit the potential of the SAR soil moisture products, well characterized error needs to be provided with the products. Understanding errors of remotely sensed surface soil moisture (SSM) datasets was indispensible for their application in models, for extractions of blended SSM products, as well as for their usage in evaluation of other soil moisture datasets. This thesis has several objectives. First, it provides the basics and state of the art methods for evaluating measures of SSM, including both the standard (e.g. Root Mean Square Error, Correlation coefficient) and the advanced (e.g. Error propagation, Triple collocation) evaluation measures. A summary of applications of soil moisture datasets is presented and evaluation measures are suggested for each application according to its requirement on the dataset quality. The evaluation of the Advanced Synthetic Aperture Radar (ASAR) Global Mode (GM) SSM using the standard and advanced evaluation measures comprises a second objective of the work. To achieve the second objective, the data from the Australian Water Assessment System

  6. Digitise this! A quick and easy remote sensing method to monitor the daily extent of dredge plumes.

    Directory of Open Access Journals (Sweden)

    Richard D Evans

    Full Text Available Technological advancements in remote sensing and GIS have improved natural resource managers' abilities to monitor large-scale disturbances. In a time where many processes are heading towards automation, this study has regressed to simple techniques to bridge a gap found in the advancement of technology. The near-daily monitoring of dredge plume extent is common practice using Moderate Resolution Imaging Spectroradiometer (MODIS imagery and associated algorithms to predict the total suspended solids (TSS concentration in the surface waters originating from floods and dredge plumes. Unfortunately, these methods cannot determine the difference between dredge plume and benthic features in shallow, clear water. This case study at Barrow Island, Western Australia, uses hand digitising to demonstrate the ability of human interpretation to determine this difference with a level of confidence and compares the method to contemporary TSS methods. Hand digitising was quick, cheap and required very little training of staff to complete. Results of ANOSIM R statistics show remote sensing derived TSS provided similar spatial results if they were thresholded to at least 3 mg L(-1. However, remote sensing derived TSS consistently provided false-positive readings of shallow benthic features as Plume with a threshold up to TSS of 6 mg L(-1, and began providing false-negatives (excluding actual plume at a threshold as low as 4 mg L(-1. Semi-automated processes that estimate plume concentration and distinguish between plumes and shallow benthic features without the arbitrary nature of human interpretation would be preferred as a plume monitoring method. However, at this stage, the hand digitising method is very useful and is more accurate at determining plume boundaries over shallow benthic features and is accessible to all levels of management with basic training.

  7. Dynamics and controls of urban heat sink and island phenomena in a desert city: Development of a local climate zone scheme using remotely-sensed inputs

    Science.gov (United States)

    Nassar, Ahmed K.; Blackburn, G. Alan; Whyatt, J. Duncan

    2016-09-01

    This study aims to determine the dynamics and controls of Surface Urban Heat Sinks (SUHS) and Surface Urban Heat Islands (SUHI) in desert cities, using Dubai as a case study. A Local Climate Zone (LCZ) schema was developed to subdivide the city into different zones based on similarities in land cover and urban geometry. Proximity to the Gulf Coast was also determined for each LCZ. The LCZs were then used to sample seasonal and daily imagery from the MODIS thermal sensor to determine Land Surface Temperature (LST) variations relative to desert sand. Canonical correlation techniques were then applied to determine which factors explained the variability between urban and desert LST. Our results indicate that the daytime SUHS effect is greatest during the summer months (typically ∼3.0 °C) with the strongest cooling effects in open high-rise zones of the city. In contrast, the night-time SUHI effect is greatest during the winter months (typically ∼3.5 °C) with the strongest warming effects in compact mid-rise zones of the city. Proximity to the Arabian Gulf had the largest influence on both SUHS and SUHI phenomena, promoting daytime cooling in the summer months and night-time warming in the winter months. However, other parameters associated with the urban environment such as building height had an influence on daytime cooling, with larger buildings promoting shade and variations in airflow. Likewise, other parameters such as sky view factor contributed to night-time warming, with higher temperatures associated with limited views of the sky.

  8. A Novel Application of the Multichannel Analysis of Surface Waves (MASW) Method for Estimating the Critical Zone Thicknes

    Science.gov (United States)

    Nelson, S.; Yaede, J.; McBride, J. H.; Park, C.; Turnbull, S. J.; Tingey, D. G.

    2014-12-01

    MASW approaches are suitable for the accurate measurement of variably thick weathering profiles by producing shear-wave (Vs) profiles. The critical zone (CZ) base is usually a transitional boundary, which is captured by MASW but not by conventional seismic reflection techniques. Modified MASW methods were used in Hawaii, USA to extend the investigative depth of saprolite (kaolin clays, Fe-oxides) thickness calibrated against wells with geologic logs. Active-source ± passive dispersion curves produced improved low-frequency fundamental modes by combining records with varying source-receiver offsets, enabling the generation of Vs profiles to >50 m depth. The top of unaltered bedrock occurs at a Vs of >~500 m/s. Intra-saprolite high Vs zones probably represent aa flow interiors with fewer primary discontinuities (vesicles and fractures), therefore imparting higher secondary stiffness than altered pahoehoe and pyroclastic material. The MASW approach permits measuring CZ thicknesses at discrete locations rapidly, inexpensively, and without drilling. For example, employed on slopes of the Koolau Volcano (neither aggrading nor degrading), the downward rate of advance of the weathering front of the CZ varies from 0.02 to 0.03 mm/yr in wet and ~0.01 mm/yr in dry areas. This compares well with recent work based on solute mass fluxes averaged over large areas. MASW can be deployed in a variety of settings where rapid estimation of the CZ thickness at particular locations is desired.

  9. The fast gamma spectrometric method of the Am-241 determination in Chernobyl restricted zone soils

    International Nuclear Information System (INIS)

    Gleisberg, B.; Lukachina, V.V.; Kirsenko, V.N.; Tepikin, V.E.; Rajevsky, V.S.; Libman, V.A.; Stoljarevsky, I.P.; Isajev, A.G.

    1997-01-01

    The known methods of the 241 Am contents determination in environmental objects, as a rule, is based on ion-chromatographic or extraction separation techniques. This approach reflects widespread opinion, that only the α-spectrometric analysis termination is suitable to ensure necessary sensitivity of the overall method of 241 Am actively determination. Really, the minimal detectable activity for such methods is about 0.05 Bq/kg (considering that Am is usually concentrated during separation procedure). However, because of α-spectrometry does not permit to separate the α-peaks of the 241 Am, and 238 Pu, but also in view of high requests to the α-spectrometric specimen purity, the multistage and laborious chemical procedures to separate 241 Am from plutonium radionuclides and other elements (with a thorough control of each separation stage) are needed

  10. Optimization of capillary zone electrophoresis for charge heterogeneity testing of biopharmaceuticals using enhanced method development principles.

    Science.gov (United States)

    Moritz, Bernd; Locatelli, Valentina; Niess, Michele; Bathke, Andrea; Kiessig, Steffen; Entler, Barbara; Finkler, Christof; Wegele, Harald; Stracke, Jan

    2017-12-01

    CZE is a well-established technique for charge heterogeneity testing of biopharmaceuticals. It is based on the differences between the ratios of net charge and hydrodynamic radius. In an extensive intercompany study, it was recently shown that CZE is very robust and can be easily implemented in labs that did not perform it before. However, individual characteristics of some examined proteins resulted in suboptimal resolution. Therefore, enhanced method development principles were applied here to investigate possibilities for further method optimization. For this purpose, a high number of different method parameters was evaluated with the aim to improve CZE separation. For the relevant parameters, design of experiments (DoE) models were generated and optimized in several ways for different sets of responses like resolution, peak width and number of peaks. In spite of product specific DoE optimization it was found that the resulting combination of optimized parameters did result in significant improvement of separation for 13 out of 16 different antibodies and other molecule formats. These results clearly demonstrate generic applicability of the optimized CZE method. Adaptation to individual molecular properties may sometimes still be required in order to achieve optimal separation but the set screws discussed in this study [mainly pH, identity of the polymer additive (HPC versus HPMC) and the concentrations of additives like acetonitrile, butanolamine and TETA] are expected to significantly reduce the effort for specific optimization. 2017 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Formation Mechanism and Gas-Sensing Performance of La/ZnO Nanoplates Synthesized by a Facile Hydrothermal Method

    Science.gov (United States)

    Li, Yan; Chen, Li-Li; Lian, Xiao-Xue; Li, Jiao

    2018-03-01

    La/ZnO nanoplates were successfully synthesized by a facile hydrothermal method. The structure and morphology of the products were characterized using x-ray diffraction and scanning electron microscopy. The gas-sensing properties of the as-prepared La/ZnO were also tested with a series of target gases, and a possible gas sensing mechanism was discussed. The results show that the as-prepared La/ZnO nanoparticles are mainly composde of a wurtzite ZnO and a little La2O3 phase with face-centered structure, showing a uniform plate-like morphology with a thickness of about 50 nm. The La/ZnO nanoplate-based sensors display a significantly better sensing performance than pure ZnO for the detection of acetone and ethanol. The 3 mol.% La/ZnO sensor shows high sensitivity (127) to 200 ppm acetone at a low working temperature (330°C), and 120-200 ppm ethanol at 300°C. Moreover, its response and recovery time for acetone and ethanol were 3 s and 4 s, 18 s and 11 s, respectively. This work demonstrates that La/ZnO nanoplate-based sensors have potential applications as practical sensors for acetone and ethanol.

  12. A new optimization method using a compressed sensing inspired solver for real-time LDR-brachytherapy treatment planning

    Science.gov (United States)

    Guthier, C.; Aschenbrenner, K. P.; Buergy, D.; Ehmann, M.; Wenz, F.; Hesser, J. W.

    2015-03-01

    This work discusses a novel strategy for inverse planning in low dose rate brachytherapy. It applies the idea of compressed sensing to the problem of inverse treatment planning and a new solver for this formulation is developed. An inverse planning algorithm was developed incorporating brachytherapy dose calculation methods as recommended by AAPM TG-43. For optimization of the functional a new variant of a matching pursuit type solver is presented. The results are compared with current state-of-the-art inverse treatment planning algorithms by means of real prostate cancer patient data. The novel strategy outperforms the best state-of-the-art methods in speed, while achieving comparable quality. It is able to find solutions with comparable values for the objective function and it achieves these results within a few microseconds, being up to 542 times faster than competing state-of-the-art strategies, allowing real-time treatment planning. The sparse solution of inverse brachytherapy planning achieved with methods from compressed sensing is a new paradigm for optimization in medical physics. Through the sparsity of required needles and seeds identified by this method, the cost of intervention may be reduced.

  13. A new optimization method using a compressed sensing inspired solver for real-time LDR-brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Guthier, C; Aschenbrenner, K P; Buergy, D; Ehmann, M; Wenz, F; Hesser, J W

    2015-01-01

    This work discusses a novel strategy for inverse planning in low dose rate brachytherapy. It applies the idea of compressed sensing to the problem of inverse treatment planning and a new solver for this formulation is developed. An inverse planning algorithm was developed incorporating brachytherapy dose calculation methods as recommended by AAPM TG-43. For optimization of the functional a new variant of a matching pursuit type solver is presented. The results are compared with current state-of-the-art inverse treatment planning algorithms by means of real prostate cancer patient data. The novel strategy outperforms the best state-of-the-art methods in speed, while achieving comparable quality. It is able to find solutions with comparable values for the objective function and it achieves these results within a few microseconds, being up to 542 times faster than competing state-of-the-art strategies, allowing real-time treatment planning. The sparse solution of inverse brachytherapy planning achieved with methods from compressed sensing is a new paradigm for optimization in medical physics. Through the sparsity of required needles and seeds identified by this method, the cost of intervention may be reduced. (paper)

  14. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    Science.gov (United States)

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-01-01

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor. PMID:28218700

  15. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts.

    Science.gov (United States)

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-02-18

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.

  16. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    Directory of Open Access Journals (Sweden)

    Markus Feulner

    2017-02-01

    Full Text Available Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF. The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.

  17. METHODS FOR PORE WATER EXTRACTION FROM UNSATURATED ZONE TUFF, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    K.M. SCOFIELD

    2006-01-01

    Assessing the performance of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, requires an understanding of the chemistry of the water that moves through the host rock. The uniaxial compression method used to extract pore water from samples of tuffaceous borehole core was successful only for nonwelded tuff. An ultracentrifugation method was adopted to extract pore water from samples of the densely welded tuff of the proposed repository horizon. Tests were performed using both methods to determine the efficiency of pore water extraction and the potential effects on pore water chemistry. Test results indicate that uniaxial compression is most efficient for extracting pore water from nonwelded tuff, while ultracentrifugation is more successful in extracting pore water from densely welded tuff. Pore water splits taken from a single nonwelded tuff core during uniaxial compression tests have shown changes in pore water chemistry with increasing pressure for calcium, chloride, sulfate, and nitrate, while the chemistry of pore water splits from welded and nonwelded tuffs using ultracentrifugation indicates that there is no significant fractionation of solutes

  18. A Building Energy Efficiency Optimization Method by Evaluating the Effective Thermal Zones Occupancy

    Directory of Open Access Journals (Sweden)

    Franco Cotana

    2012-12-01

    Full Text Available Building energy efficiency is strongly linked to the operations and control systems, together with the integrated performance of passive and active systems. In new high quality buildings in particular, where these two latter aspects have been already implemented at the design stage, users’ perspective, obtained through post-occupancy assessment, has to be considered to reduce whole energy requirement during service life. This research presents an innovative and low-cost methodology to reduce buildings’ energy requirements through post-occupancy assessment and optimization of energy operations using effective users’ attitudes and requirements as feedback. As a meaningful example, the proposed method is applied to a multipurpose building located in New York City, NY, USA, where real occupancy conditions are assessed. The effectiveness of the method is tested through dynamic simulations using a numerical model of the case study, calibrated through real monitoring data collected on the building. Results show that, for the chosen case study, the method provides optimized building energy operations which allow a reduction of primary energy requirements for HVAC, lighting, room-electricity, and auxiliary supply by about 21%. This paper shows that the proposed strategy represents an effective way to reduce buildings’ energy waste, in particular in those complex and high-efficiency buildings that are not performing as well as expected during the concept-design-commissioning stage, in particular due to the lack of feedback after the building handover.

  19. A convenient method for estimating the contaminated zone of a subsurface aquifer resulting from radioactive waste disposal into ground

    International Nuclear Information System (INIS)

    Fukui, Masami; Katsurayama, Kousuke; Uchida, Shigeo.

    1981-01-01

    Studies were conducted to estimate the contamination spread resulting from the radioactive waste disposal into a subsurface aquifer. A general equation, expressing the contaminated zone as a function of radioactive decay, the physical and chemical parameters of soil is presented. A distribution coefficient was also formulated which can be used to judge the suitability of a site for waste disposal. Moreover, a method for predicting contaminant concentration in groundwater at a site boundary is suggested for a heterogeneous media where the subsurface aquifer has different values of porosity, density, flow velocity, distribution coefficient and so on. A general equation was also developed to predict the distribution of radionuclides resulting from the disposal of a solid waste material. The distributions of contamination was evaluated for 90 Sr and 239 Pu which obey a linear adsorption model and a first order kinetics respectively. These equations appear to have practical utility for easily estimating groundwater contamination. (author)

  20. The Vertical Flux Method (VFM) for regional estimates of temporally and spatially varying nitrate fluxes in unsaturated zone and groundwater

    Science.gov (United States)

    Green, C. T.; Liao, L.; Nolan, B. T.; Juckem, P. F.; Ransom, K.; Harter, T.

    2017-12-01

    Process-based modeling of regional NO3- fluxes to groundwater is critical for understanding and managing water quality. Measurements of atmospheric tracers of groundwater age and dissolved-gas indicators of denitrification progress have potential to improve estimates of NO3- reactive transport processes. This presentation introduces a regionalized version of a vertical flux method (VFM) that uses simple mathematical estimates of advective-dispersive reactive transport with regularization procedures to calibrate estimated tracer concentrations to observed equivalents. The calibrated VFM provides estimates of chemical, hydrologic and reaction parameters (source concentration time series, recharge, effective porosity, dispersivity, reaction rate coefficients) and derived values (e.g. mean unsaturated zone travel time, eventual depth of the NO3- front) for individual wells. Statistical learning methods are used to extrapolate parameters and predictions from wells to continuous areas. The regional VFM was applied to 473 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3-, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and triogiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with independent estimates. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams (2) fractions of N leached to groundwater have changed over time, with increasing fractions from manure and decreasing fractions from fertilizer, and (3) under current practices and conditions, 60% of the shallow aquifer will eventually be affected by NO3- contamination. Based on GIS coverages of variables related to soils, land use and hydrology, the VFM results at individual wells were extrapolated regionally using boosted regression trees, a statistical learning approach, that related

  1. The influence of electromyographic recording methods and the innervation zone on the mean power frequency-torque relationships.

    Science.gov (United States)

    Herda, Trent J; Zuniga, Jorge M; Ryan, Eric D; Camic, Clayton L; Bergstrom, Haley C; Smith, Doug B; Weir, Joseph P; Cramer, Joel T; Housh, Terry J

    2015-06-01

    This study examined the effects of electromyographic (EMG) recording methods and innervation zone (IZ) on the mean power frequency (MPF)-torque relationships. Nine subjects performed isometric ramp muscle actions of the leg extensors from 5% to 100% of maximal voluntary contraction with an eight channel linear electrode array over the IZ of the vastus lateralis. The slopes were calculated from the log-transformed monopolar and bipolar EMG MPF-torque relationships for each channel and subject and 95% confidence intervals (CI) were constructed around the slopes for each relationship and the composite of the slopes. Twenty-two to 55% of the subjects exhibited 95% CIs that did not include a slope of zero for the monopolar EMG MPF-torque relationships while 25-75% of the subjects exhibited 95% CIs that did not include a slope of zero for the bipolar EMG MPF-torque relationships. The composite of the slopes from the EMG MPF-torque relationships were not significantly different from zero for any method or channel, however, the method and IZ location slightly influenced the number of significant slopes on a subject-by-subject basis. The log-transform model indicated that EMG MPF-torque patterns were nonlinear regardless of recording method or distance from the IZ. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The use of experimental design for the development of a capillary zone electrophoresis method for the quantitation of captopril.

    Science.gov (United States)

    Mukozhiwa, S Y; Khamanga, S M M; Walker, R B

    2017-09-01

    A capillary zone electrophoresis (CZE) method for the quantitation of captopril (CPT) using UV detection was developed. Influence of electrolyte concentration and system variables on electrophoretic separation was evaluated and a central composite design (CCD) was used to optimize the method. Variables investigated were pH, molarity, applied voltage and capillary length. The influence of sodium metabisulphite on the stability of test solutions was also investigated. The use of sodium metabisulphite prevented degradation of CPT over 24 hours. A fused uncoated silica capillary of 67.5cm total and 57.5 cm effective length was used for analysis. The applied voltage and capillary length affected the migration time of CPT significantly. A 20 mM phosphate buffer adjusted to pH 7.0 was used as running buffer and an applied voltage of 23.90 kV was suitable to effect a separation. The optimized electrophoretic conditions produced sharp, well-resolved peaks for CPT and sodium metabisulphite. Linear regression analysis of the response for CPT standards revealed the method was linear (R2 = 0.9995) over the range 5-70 μg/mL. The limits of quantitation and detection were 5 and 1.5 μg/mL. A simple, rapid and reliable CZE method has been developed and successfully applied to the analysis of commercially available CPT products.

  3. A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals.

    Science.gov (United States)

    Castañón-Puga, Manuel; Salazar, Abby Stephanie; Aguilar, Leocundo; Gaxiola-Pacheco, Carelia; Licea, Guillermo

    2015-12-02

    The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs). This approach takes advantage of wireless local area networks (WLANs) over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi-Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information.

  4. A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals

    Directory of Open Access Journals (Sweden)

    Manuel Castañón–Puga

    2015-12-01

    Full Text Available The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs. This approach takes advantage of wireless local area networks (WLANs over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi–Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information.

  5. Comparing Three Approaches of Evapotranspiration Estimation in Mixed Urban Vegetation: Field-Based, Remote Sensing-Based and Observational-Based Methods

    Directory of Open Access Journals (Sweden)

    Hamideh Nouri

    2016-06-01

    Full Text Available Despite being the driest inhabited continent, Australia has one of the highest per capita water consumptions in the world. In addition, instead of having fit-for-purpose water supplies (using different qualities of water for different applications, highly treated drinking water is used for nearly all of Australia’s urban water supply needs, including landscape irrigation. The water requirement of urban landscapes, particularly urban parklands, is of growing concern. The estimation of evapotranspiration (ET and subsequently plant water requirements in urban vegetation needs to consider the heterogeneity of plants, soils, water, and climate characteristics. This research contributes to a broader effort to establish sustainable irrigation practices within the Adelaide Parklands in Adelaide, South Australia. In this paper, two practical ET estimation approaches are compared to a detailed Soil Water Balance (SWB analysis over a one year period. One approach is the Water Use Classification of Landscape Plants (WUCOLS method, which is based on expert opinion on the water needs of different classes of landscape plants. The other is a remote sensing approach based on the Enhanced Vegetation Index (EVI from Moderate Resolution Imaging Spectroradiometer (MODIS sensors on the Terra satellite. Both methods require knowledge of reference ET calculated from meteorological data. The SWB determined that plants consumed 1084 mm·yr−1 of water in ET with an additional 16% lost to drainage past the root zone, an amount sufficient to keep salts from accumulating in the root zone. ET by MODIS EVI was 1088 mm·yr−1, very close to the SWB estimate, while WUCOLS estimated the total water requirement at only 802 mm·yr−1, 26% lower than the SWB estimate and 37% lower than the amount actually added including the drainage fraction. Individual monthly ET by MODIS was not accurate, but these errors were cancelled out to give good agreement on an annual time step. We

  6. Weak Learner Method for Estimating River Discharges using Remotely Sensed Data: Central Congo River as a Testbed

    Science.gov (United States)

    Kim, D.; Lee, H.; Yu, H.; Beighley, E.; Durand, M. T.; Alsdorf, D. E.; Hwang, E.

    2017-12-01

    River discharge is a prerequisite for an understanding of flood hazard and water resource management, yet we have poor knowledge of it, especially over remote basins. Previous studies have successfully used a classic hydraulic geometry, at-many-stations hydraulic geometry (AMHG), and Manning's equation to estimate the river discharge. Theoretical bases of these empirical methods were introduced by Leopold and Maddock (1953) and Manning (1889), and those have been long used in the field of hydrology, water resources, and geomorphology. However, the methods to estimate the river discharge from remotely sensed data essentially require bathymetric information of the river or are not applicable to braided rivers. Furthermore, the methods used in the previous studies adopted assumptions of river conditions to be steady and uniform. Consequently, those methods have limitations in estimating the river discharge in complex and unsteady flow in nature. In this study, we developed a novel approach to estimating river discharges by applying the weak learner method (here termed WLQ), which is one of the ensemble methods using multiple classifiers, to the remotely sensed measurements of water levels from Envisat altimetry, effective river widths from PALSAR images, and multi-temporal surface water slopes over a part of the mainstem Congo. Compared with the methods used in the previous studies, the root mean square error (RMSE) decreased from 5,089 m3s-1 to 3,701 m3s-1, and the relative RMSE (RRMSE) improved from 12% to 8%. It is expected that our method can provide improved estimates of river discharges in complex and unsteady flow conditions based on the data-driven prediction model by machine learning (i.e. WLQ), even when the bathymetric data is not available or in case of the braided rivers. Moreover, it is also expected that the WLQ can be applied to the measurements of river levels, slopes and widths from the future Surface Water Ocean Topography (SWOT) mission to be

  7. A Decision Mixture Model-Based Method for Inshore Ship Detection Using High-Resolution Remote Sensing Images.

    Science.gov (United States)

    Bi, Fukun; Chen, Jing; Zhuang, Yin; Bian, Mingming; Zhang, Qingjun

    2017-06-22

    With the rapid development of optical remote sensing satellites, ship detection and identification based on large-scale remote sensing images has become a significant maritime research topic. Compared with traditional ocean-going vessel detection, inshore ship detection has received increasing attention in harbor dynamic surveillance and maritime management. However, because the harbor environment is complex, gray information and texture features between docked ships and their connected dock regions are indistinguishable, most of the popular detection methods are limited by their calculation efficiency and detection accuracy. In this paper, a novel hierarchical method that combines an efficient candidate scanning strategy and an accurate candidate identification mixture model is presented for inshore ship detection in complex harbor areas. First, in the candidate region extraction phase, an omnidirectional intersected two-dimension scanning (OITDS) strategy is designed to rapidly extract candidate regions from the land-water segmented images. In the candidate region identification phase, a decision mixture model (DMM) is proposed to identify real ships from candidate objects. Specifically, to improve the robustness regarding the diversity of ships, a deformable part model (DPM) was employed to train a key part sub-model and a whole ship sub-model. Furthermore, to improve the identification accuracy, a surrounding correlation context sub-model is built. Finally, to increase the accuracy of candidate region identification, these three sub-models are integrated into the proposed DMM. Experiments were performed on numerous large-scale harbor remote sensing images, and the results showed that the proposed method has high detection accuracy and rapid computational efficiency.

  8. Towards a new paradigm for innovative training methods for capacity building in remote sensing

    Science.gov (United States)

    Gupta, R. K.; Manikavelu, P. M. Bala; Vijayan, D.; Prasad, T. S.

    2006-01-01

    Everybody uses a bulb to illustrate an idea but nobody shows where the current comes from. Majority of remote sensing user community comes from natural and social sciences domain while remote sensing technology evolves from physical and engineering sciences. To ensure inculcation and internalization of remote sensing technology by application/resource scientists, trainer needs to transfer physical and engineering concepts in geometric manner. Here, the steering for the transfer of knowledge (facts, procedures, concepts and principles) and skills (thinking, acting, reacting and interacting) needs to take the trainees from Known to Unknown, Concrete to Abstract, Observation to Theory and Simple to Complex. In the initial stage of training/education, experiential learning by instructor led exploring of thematic details in false colour composite (FCC) as well as in individual black and white spectral band(s) imagery by trainees not only creates interest, confidence build-up and orientation towards purposeful learning but also helps them to overcome their inhibitions towards the physical and engineering basal. The methodology to be adopted has to inculcate productive learning, emphasizing more on thinking and trial and error aspects as opposed to reproductive learning based dominantly on being told and imitation. The delivery by trainer needs to ensure dynamic, stimulating and effective discussions through deluging questions pertaining to analysis, synthesis and evaluation nature. This would ensure proactive participation from trainees. Hands-on module leads to creative concretization of concepts. To keep the trainees inspired to learn in an auto mode during post-training period, they need to consciously swim in the current and emerging knowledge pool during training programme. This is achieved through assignment of seminar delivery task to the trainees. During the delivery of seminar, peers and co-trainees drive the trainee to communicate the seminar content not only

  9. SU-8 Cantilevers for Bio/chemical Sensing; Fabrication, Characterisation and Development of Novel Read-out Methods

    OpenAIRE

    Anja Boisen; Mogens Havsteen-Jakobsen; Gabriela Blagoi; Daniel Haefliger; Søren Dohn; Alicia Johansson; Michael Lillemose; Stephan Keller; Maria Nordström

    2008-01-01

    Here, we present the activities within our research group over the last five years with cantilevers fabricated in the polymer SU-8. We believe that SU-8 is an interesting polymer for fabrication of cantilevers for bio/chemical sensing due to its simple processing and low Young's modulus. We show examples of different integrated read-out methods and their characterisation. We also show that SU-8 cantilevers have a reduced sensitivity to changes in the environmental temperature and pH of the bu...

  10. Dating of pre hispanic ceramics from the archaeological zone of Zoque by thermoluminescence method

    International Nuclear Information System (INIS)

    Valdes, J.V.; Gonzalez, P.R.; Mendoza, D.; Tenorio, D.; Terreros, E.; Ramirez, A.

    2007-01-01

    Full text: The dating of pre hispanic ceramics resides permitting us to located them in a certain period of the history; allows us to verify it origin. The thermoluminescence is a technique that permits us to estimate the absolute age of the archaeological samples. The present work is directed in determining the age by the method of thermoluminescence of archaeological samples of the grotto of Concubac, located in the Serrana Region of Tabasco. To determine the mineralogical composition of the samples, analysis of diffraction of X rays and Energy Dispersive X-ray Spectroscopy (EDS) have been conducted. The radiation emitted by the ground where the samples were buried and the contribution of the cosmic radiation was measured with thermoluminescent dosimeters of LiF:Mg,Cu,P+PTFE. The feasibility of dating of the studied samples is broadly disputed in function of the contents of minerals, as well as the procedure and management of the sample. (Author)

  11. Role of Remote Sensing and Geographyc Information System Mapping for Protected Areas Land Rice Field Subak, Buffer Zones, and Area Conversion (Case Studies In Gianyar Regency, Bali Province)

    Science.gov (United States)

    Lanya, Indayati; Netera Subadiyasa, N.

    2016-11-01

    Conversion of rice fields in Bali 2579 ha/year, Law Number 41 of 2009 [1] and five of Government Regulation (GR), mandates the Local Government (LG) has a Regional Regulation (RR) or Rule Regent/Mayor, on the protection of agricultural land sustainable food (PALSF). Yet none provincial government of Bali has PALSF; although Subak as world cultural heritage. Similarly, Gianyar regency development strategy directed to integrate agriculture with tourism. Landsat 8 images, Word View Coverage 2015 Gianyar district and ArcGIS 10.3 software used for of rice field mapping and zoning of land protection Subak. Ten thematic maps (watersheds, land use, irrigation, relief/slope, rainfall, spatial planning, land suitability, productivity, the distance from downtown) as a variable parameter, weighted and balanced numerically. Numerical classification agricultura land using for the overlay menu and reselek. The total value of >125 as rice need to be protected, 100-125 value for buffer zone, and the value of 100, 50-100 and development of the region downstream to the access road Ida Bagus Matera (Jln. Province / national) in the coastal areas of Gianyar.

  12. An Energy Efficient Neuromorphic Computing System Using Real Time Sensing Method

    DEFF Research Database (Denmark)

    Farkhani, Hooman; Tohidi, Mohammad; Farkhani, Sadaf

    2017-01-01

    In spintronic-based neuromorphic computing systems (NCS), the switching of magnetic moment in a magnetic tunnel junction (MTJ) is used to mimic neuron firing. However, the stochastic switching behavior of the MTJ and process variations effect leads to extra stimulation time. This leads to extra...... energy consumption and delay of such NCSs. In this paper, a new real-time sensing (RTS) circuit is proposed to track the MTJ state and terminate stimulation phase immediately after MTJ switching. This leads to significant degradation in energy consumption and delay of NCS. The simulation results using...... a 65-nm CMOS technology and a 40-nm MTJ technology confirm that the energy consumption of a RTS-based NCS is improved by 50% in comparison with a typical NCS. Moreover, utilizing RTS circuit improves the overall speed of an NCS by 2.75x....

  13. A remote sensing method for estimating regional reservoir area and evaporative loss

    Science.gov (United States)

    Zhang, Hua; Gorelick, Steven M.; Zimba, Paul V.; Zhang, Xiaodong

    2017-12-01

    Evaporation from the water surface of a reservoir can significantly affect its function of ensuring the availability and temporal stability of water supply. Current estimations of reservoir evaporative loss are dependent on water area derived from a reservoir storage-area curve. Such curves are unavailable if the reservoir is located in a data-sparse region or questionable if long-term sedimentation has changed the original elevation-area relationship. We propose a remote sensing framework to estimate reservoir evaporative loss at the regional scale. This framework uses a multispectral water index to extract reservoir area from Landsat imagery and estimate monthly evaporation volume based on pan-derived evaporative rates. The optimal index threshold is determined based on local observations and extended to unobserved locations and periods. Built on the cloud computing capacity of the Google Earth Engine, this framework can efficiently analyze satellite images at large spatiotemporal scales, where such analysis is infeasible with a single computer. Our study involves 200 major reservoirs in Texas, captured in 17,811 Landsat images over a 32-year period. The results show that these reservoirs contribute to an annual evaporative loss of 8.0 billion cubic meters, equivalent to 20% of their total active storage or 53% of total annual water use in Texas. At five coastal basins, reservoir evaporative losses exceed the minimum freshwater inflows required to sustain ecosystem health and fishery productivity of the receiving estuaries. Reservoir evaporative loss can be significant enough to counterbalance the positive effects of impounding water and to offset the contribution of water conservation and reuse practices. Our results also reveal the spatially variable performance of the multispectral water index and indicate the limitation of using scene-level cloud cover to screen satellite images. This study demonstrates the advantage of combining satellite remote sensing and

  14. Survey and Zoning of Soil Physical and Chemical Properties Using Geostatistical Methods in GIS (Case Study: Miankangi Region in Sistan

    Directory of Open Access Journals (Sweden)

    M. Hashemi

    2017-02-01

    Full Text Available Introduction: In order to provide a database, it is essential having access to accurate information on soil spatial variation for soil sustainable management such as proper application of fertilizers. Spatial variations in soil properties are common but it is important for understanding these changes, particularly in agricultural lands for careful planning and land management. Materials and Methods: To this end, in winter 1391, 189 undisturbed soil samples (0-30 cm depth in a regular lattice with a spacing of 500 m were gathered from the surface of Miankangi land, Sistan plain, and their physical and chemical properties were studied. The land area of the region is about 4,500 hectares; the average elevation of studied area is 489.2 meters above sea level with different land uses. Soil texture was measured by the hydrometer methods (11, Also EC and pH (39, calcium carbonate equivalent (37 and the saturation percentage of soils were determined. Kriging, Co-Kriging, Inverse Distance Weighting and Local Polynomial Interpolation techniques were evaluated to produce a soil characteristics map of the study area zoning and to select the best geostatistical methods. Cross-validation techniques and Root Mean Square Error (RMSE were used. Results and Discussion: Normalized test results showed that all of the soil properties except calcium carbonate and soil clay content had normal distribution. In addition, the results of correlation test showed that the soil saturation percentage was positively correlated with silt content (r=0.43 and p

  15. Simulating subduction zone earthquakes using discrete element method: a window into elusive source processes

    Science.gov (United States)

    Blank, D. G.; Morgan, J.

    2017-12-01

    Large earthquakes that occur on convergent plate margin interfaces have the potential to cause widespread damage and loss of life. Recent observations reveal that a wide range of different slip behaviors take place along these megathrust faults, which demonstrate both their complexity, and our limited understanding of fault processes and their controls. Numerical modeling provides us with a useful tool that we can use to simulate earthquakes and related slip events, and to make direct observations and correlations among properties and parameters that might control them. Further analysis of these phenomena can lead to a more complete understanding of the underlying mechanisms that accompany the nucleation of large earthquakes, and what might trigger them. In this study, we use the discrete element method (DEM) to create numerical analogs to subduction megathrusts with heterogeneous fault friction. Displacement boundary conditions are applied in order to simulate tectonic loading, which in turn, induces slip along the fault. A wide range of slip behaviors are observed, ranging from creep to stick slip. We are able to characterize slip events by duration, stress drop, rupture area, and slip magnitude, and to correlate the relationships among these quantities. These characterizations allow us to develop a catalog of rupture events both spatially and temporally, for comparison with slip processes on natural faults.

  16. Quantifying submarine groundwater discharge in the coastal zone via multiple methods

    International Nuclear Information System (INIS)

    Burnett, W.C.; Aggarwal, P.K.; Aureli, A.; Bokuniewicz, H.; Cable, J.E.; Charette, M.A.; Kontar, E.; Krupa, S.; Kulkarni, K.M.; Loveless, A.; Moore, W.S.; Oberdorfer, J.A.; Oliveira, J.; Ozyurt, N.; Povinec, P.; Privitera, A.M.G.; Rajar, R.; Ramessur, R.T.; Scholten, J.; Stieglitz, T.; Taniguchi, M.; Turner, J.V.

    2006-01-01

    Submarine groundwater discharge (SGD) is now recognized as an important pathway between land and sea. As such, this flow may contribute to the biogeochemical and other marine budgets of near-shore waters. These discharges typically display significant spatial and temporal variability making assessments difficult. Groundwater seepage is patchy, diffuse, temporally variable, and may involve multiple aquifers. Thus, the measurement of its magnitude and associated chemical fluxes is a challenging enterprise. A joint project of UNESCO and the International Atomic Energy Agency (IAEA) has examined several methods of SGD assessment and carried out a series of five intercomparison experiments in different hydrogeologic environments (coastal plain, karst, glacial till, fractured crystalline rock, and volcanic terrains). This report reviews the scientific and management significance of SGD, measurement approaches, and the results of the intercomparison experiments. We conclude that while the process is essentially ubiquitous in coastal areas, the assessment of its magnitude at any one location is subject to enough variability that measurements should be made by a variety of techniques and over large enough spatial and temporal scales to capture the majority of these changing conditions. We feel that all the measurement techniques described here are valid although they each have their own advantages and disadvantages. It is recommended that multiple approaches be applied whenever possible. In addition, a continuing effort is required in order to capture long-period tidal fluctuations, storm effects, and seasonal variations

  17. Quantifying submarine groundwater discharge in the coastal zone via multiple methods

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, W.C. [Department of Oceanography, Florida State University, Tallahassee, FL 32306 (United States); Aggarwal, P.K.; Kulkarni, K.M. [Isotope Hydrology Section, International Atomic Energy Agency (Austria); Aureli, A. [Department Water Resources Management, University of Palermo, Catania (Italy); Bokuniewicz, H. [Marine Science Research Center, Stony Brook University (United States); Cable, J.E. [Department Oceanography, Louisiana State University (United States); Charette, M.A. [Department Marine Chemistry, Woods Hole Oceanographic Institution (United States); Kontar, E. [Shirshov Institute of Oceanology (Russian Federation); Krupa, S. [South Florida Water Management District (United States); Loveless, A. [University of Western Australia (Australia); Moore, W.S. [Department Geological Sciences, University of South Carolina (United States); Oberdorfer, J.A. [Department Geology, San Jose State University (United States); Oliveira, J. [Instituto de Pesquisas Energeticas e Nucleares (Brazil); Ozyurt, N. [Department Geological Engineering, Hacettepe (Turkey); Povinec, P.; Scholten, J. [Marine Environment Laboratory, International Atomic Energy Agency (Monaco); Privitera, A.M.G. [U.O. 4.17 of the G.N.D.C.I., National Research Council (Italy); Rajar, R. [Faculty of Civil and Geodetic Engineering, University of Ljubljana (Slovenia); Ramessur, R.T. [Department Chemistry, University of Mauritius (Mauritius); Stieglitz, T. [Mathematical and Physical Sciences, James Cook University (Australia); Taniguchi, M. [Research Institute for Humanity and Nature (Japan); Turner, J.V. [CSIRO, Land and Water, Perth (Australia)

    2006-08-31

    Submarine groundwater discharge (SGD) is now recognized as an important pathway between land and sea. As such, this flow may contribute to the biogeochemical and other marine budgets of near-shore waters. These discharges typically display significant spatial and temporal variability making assessments difficult. Groundwater seepage is patchy, diffuse, temporally variable, and may involve multiple aquifers. Thus, the measurement of its magnitude and associated chemical fluxes is a challenging enterprise. A joint project of UNESCO and the International Atomic Energy Agency (IAEA) has examined several methods of SGD assessment and carried out a series of five intercomparison experiments in different hydrogeologic environments (coastal plain, karst, glacial till, fractured crystalline rock, and volcanic terrains). This report reviews the scientific and management significance of SGD, measurement approaches, and the results of the intercomparison experiments. We conclude that while the process is essentially ubiquitous in coastal areas, the assessment of its magnitude at any one location is subject to enough variability that measurements should be made by a variety of techniques and over large enough spatial and temporal scales to capture the majority of these changing conditions. We feel that all the measurement techniques described here are valid although they each have their own advantages and disadvantages. It is recommended that multiple approaches be applied whenever possible. In addition, a continuing effort is required in order to capture long-period tidal fluctuations, storm effects, and seasonal variations. (author)

  18. Large-area gold nanohole arrays fabricated by one-step method for surface plasmon resonance biochemical sensing.

    Science.gov (United States)

    Qi, Huijie; Niu, Lihong; Zhang, Jie; Chen, Jian; Wang, Shujie; Yang, Jingjing; Guo, Siyi; Lawson, Tom; Shi, Bingyang; Song, Chunpeng

    2018-04-01

    Surface plasmon resonance (SPR) nanosensors based on metallic nanohole arrays have been widely reported to detect binding interactions in biological specimens. A simple and effective method for constructing nanoscale arrays is essential for the development of SPR nanosensors. In this work, we report a one-step method to fabricate nanohole arrays by thermal nanoimprinting in the matrix of IPS (Intermediate Polymer Stamp). No additional etching process or supporting substrate is required. The preparation process is simple, time-saving and compatible for roll-to-roll process, potentially allowing mass production. Moreover, the nanohole arrays were integrated into detection platform as SPR sensors to investigate different types of biological binding interactions. The results demonstrate that our one-step method can be used to efficiently fabricate large-area and uniform nanohole arrays for biochemical sensing.

  19. Method to estimate drag coefficient at the air/ice interface over drifting open pack ice from remotely sensed data

    Science.gov (United States)

    Feldman, U.

    1984-01-01

    A knowledge in near real time, of the surface drag coefficient for drifting pack ice is vital for predicting its motions. And since this is not routinely available from measurements it must be replaced by estimates. Hence, a method for estimating this variable, as well as the drag coefficient at the water/ice interface and the ice thickness, for drifting open pack ice was developed. These estimates were derived from three-day sequences of LANDSAT-1 MSS images and surface weather charts and from the observed minima and maxima of these variables. The method was tested with four data sets in the southeastern Beaufort sea. Acceptable results were obtained for three data sets. Routine application of the method depends on the availability of data from an all-weather air or spaceborne remote sensing system, producing images with high geometric fidelity and high resolution.

  20. Delineation of a quick clay zone at Smørgrav, Norway, with electromagnetic methods under geotechnical constraints

    Science.gov (United States)

    Kalscheuer, Thomas; Bastani, Mehrdad; Donohue, Shane; Persson, Lena; Aspmo Pfaffhuber, Andreas; Reiser, Fabienne; Ren, Zhengyong

    2013-05-01

    In many coastal areas of North America and Scandinavia, post-glacial clay sediments have emerged above sea level due to iso-static uplift. These clays are often destabilised by fresh water leaching and transformed to so-called quick clays as at the investigated area at Smørgrav, Norway. Slight mechanical disturbances of these materials may trigger landslides. Since the leaching increases the electrical resistivity of quick clay as compared to normal marine clay, the application of electromagnetic (EM) methods is of particular interest in the study of quick clay structures. For the first time, single and joint inversions of direct-current resistivity (DCR), radiomagnetotelluric (RMT) and controlled-source audiomagnetotelluric (CSAMT) data were applied to delineate a zone of quick clay. The resulting 2-D models of electrical resistivity correlate excellently with previously published data from a ground conductivity metre and resistivity logs from two resistivity cone penetration tests (RCPT) into marine clay and quick clay. The RCPT log into the central part of the quick clay identifies the electrical resistivity of the quick clay structure to lie between 10 and 80 Ω m. In combination with the 2-D inversion models, it becomes possible to delineate the vertical and horizontal extent of the quick clay zone. As compared to the inversions of single data sets, the joint inversion model exhibits sharper resistivity contrasts and its resistivity values are more characteristic of the expected geology. In our preferred joint inversion model, there is a clear demarcation between dry soil, marine clay, quick clay and bedrock, which consists of alum shale and limestone.

  1. Characterization and hydrogen gas sensing properties of TiO{sub 2} thin films prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Haidry, Azhar Ali [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (Slovakia); Puskelova, Jarmila [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava (Slovakia); Plecenik, Tomas; Durina, Pavol; Gregus, Jan; Truchly, Martin; Roch, Tomas; Zahoran, Miroslav [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (Slovakia); Vargova, Melinda [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava (Slovakia); Kus, Peter; Plecenik, Andrej [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (Slovakia); Plesch, Gustav, E-mail: plesch@fns.uniba.sk [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava (Slovakia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Preparation and characterization of hydrogen sensing TiO{sub 2} thin films by sol-gel method. Black-Right-Pointing-Pointer The annealing effect on the structure, electrical, optical and sensing properties was studied. Black-Right-Pointing-Pointer The best sensitivity show the films composed of rutile with grain size of {approx}100 nm. - Abstract: Thin films of titanium dioxide with thickness of about 150 nm were deposited by spin coating method on a sapphire substrate from a sol-gel and annealed at various temperatures (from 600 Degree-Sign C to 1000 Degree-Sign C). Structural, optical and hydrogen gas sensing properties of the films were investigated. The annealing temperatures from 600 to 800 Degree-Sign C led to anatase phase with grain size in the range of 14-28 nm. Further increase of the annealing temperature resulted in transformation to rutile phase with larger grain size of about 100-120 nm. The optical band gap tended to decrease with increasing annealing temperature. The estimated values of activation energy for charge transport were in the range of 0.6-1.0 eV for films annealed at temperatures from 600 Degree-Sign C to 800 Degree-Sign C and 0.37-0.38 eV for films annealed at 900 Degree-Sign C and 1000 Degree-Sign C. The films annealed at 900 Degree-Sign C and 1000 Degree-Sign C showed better hydrogen sensitivity, what can be at least partially caused by their higher surface roughness.

  2. Calibration method of liquid zone controller using the ex-core detector signal of CANDU 6 reactor

    International Nuclear Information System (INIS)

    Park, D.H.; Lee, E.K.; Shin, H.C.; Bae, S.M.; Hong, S.Y.

    2013-01-01

    Highlights: ► We developed a new LZC calibration method and measurement system. ► Photo-neutron effect, reactor core size, and detector position were evaluated and tested. ► We applied the new method and system to Wolsong NPP Unit 1. ► The LZC calibration test was well completed, and the requirement of the test was satisfied. - Abstract: The Phase-B test (low-power reactor physics test) is one of the commissioning tests for Canada Deuterium Uranium (CANDU) reactors that ensures the safe and reliable operation of the core during the design lifetime. The Phase-B test, which includes the approach to the first criticality at low reactor powers, is performed to verify the feasibility of the reactor’s physics design and to ensure the integrity of the control and protection facilities. The commissioning testing of pressurized heavy water moderated reactors (PHWRs) is usually performed only once (at the initial commissioning after construction). The large-scale facilities of the Wolsong nuclear power plant (NPP) Unit 1 have been gradually improved since May 2009 to extend its lifetime. The refurbishment was completed in April 2011 – then this NPP has been in operation again. We discusses the new methodology and measurement system that uses an ex-core detector signal for liquid zone controller (LZC) calibration of the Phase-B test instead of conventional methods. The inverse kinetic equation in the reactivity calculator is modified to treat the 17 delayed neutron groups including 11 photo-neutron fractions. The signal acquisition resolution of the reactivity calculator was enhanced and installed reactivity calculating module by each channel. The ex-core detector was confirmed to be applicable to a large reactor core, such as the CANDU 6 by comparison with the in-core flux detector signal. A preliminary test was performed in Wolsong NPP Unit 2 to verify the robustness of the reactivity calculator. This test convincingly demonstrated that the reactivity calculator

  3. Application of a clustering-remote sensing method in analyzing security patterns

    Science.gov (United States)

    López-Caloca, Alejandra; Martínez-Viveros, Elvia; Chapela-Castañares, José Ignacio

    2009-04-01

    In Mexican academic and government circles, research on criminal spatial behavior has been neglected. Only recently has there been an interest in criminal data geo-reference. However, more sophisticated spatial analyses models are needed to disclose spatial patterns of crime and pinpoint their changes overtime. The main use of these models lies in supporting policy making and strategic intelligence. In this paper we present a model for finding patterns associated with crime. It is based on a fuzzy logic algorithm which finds the best fit within cluster numbers and shapes of groupings. We describe the methodology for building the model and its validation. The model was applied to annual data for types of felonies from 2005 to 2006 in the Mexican city of Hermosillo. The results are visualized as a standard deviational ellipse computed for the points identified to be a "cluster". These areas indicate a high to low demand for public security, and they were cross-related to urban structure analyzed by SPOT images and statistical data such as population, poverty levels, urbanization, and available services. The fusion of the model results with other geospatial data allows detecting obstacles and opportunities for crime commission in specific high risk zones and guide police activities and criminal investigations.

  4. A Novel Compressed Sensing Method for Magnetic Resonance Imaging: Exponential Wavelet Iterative Shrinkage-Thresholding Algorithm with Random Shift

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2016-01-01

    Full Text Available Aim. It can help improve the hospital throughput to accelerate magnetic resonance imaging (MRI scanning. Patients will benefit from less waiting time. Task. In the last decade, various rapid MRI techniques on the basis of compressed sensing (CS were proposed. However, both computation time and reconstruction quality of traditional CS-MRI did not meet the requirement of clinical use. Method. In this study, a novel method was proposed with the name of exponential wavelet iterative shrinkage-thresholding algorithm with random shift (abbreviated as EWISTARS. It is composed of three successful components: (i exponential wavelet transform, (ii iterative shrinkage-thresholding algorithm, and (iii random shift. Results. Experimental results validated that, compared to state-of-the-art approaches, EWISTARS obtained the least mean absolute error, the least mean-squared error, and the highest peak signal-to-noise ratio. Conclusion. EWISTARS is superior to state-of-the-art approaches.

  5. A Novel Compressed Sensing Method for Magnetic Resonance Imaging: Exponential Wavelet Iterative Shrinkage-Thresholding Algorithm with Random Shift

    Science.gov (United States)

    Zhang, Yudong; Yang, Jiquan; Yang, Jianfei; Liu, Aijun; Sun, Ping

    2016-01-01

    Aim. It can help improve the hospital throughput to accelerate magnetic resonance imaging (MRI) scanning. Patients will benefit from less waiting time. Task. In the last decade, various rapid MRI techniques on the basis of compressed sensing (CS) were proposed. However, both computation time and reconstruction quality of traditional CS-MRI did not meet the requirement of clinical use. Method. In this study, a novel method was proposed with the name of exponential wavelet iterative shrinkage-thresholding algorithm with random shift (abbreviated as EWISTARS). It is composed of three successful components: (i) exponential wavelet transform, (ii) iterative shrinkage-thresholding algorithm, and (iii) random shift. Results. Experimental results validated that, compared to state-of-the-art approaches, EWISTARS obtained the least mean absolute error, the least mean-squared error, and the highest peak signal-to-noise ratio. Conclusion. EWISTARS is superior to state-of-the-art approaches. PMID:27066068

  6. Catalyst-Free Vapor-Phase Method for Direct Integration of Gas Sensing Nanostructures with Polymeric Transducing Platforms

    Directory of Open Access Journals (Sweden)

    Stella Vallejos

    2014-01-01

    Full Text Available Tungsten oxide nanoneedles (NNs are grown and integrated directly with polymeric transducing platforms for gas sensors via aerosol-assisted chemical vapor deposition (AACVD method. Material analysis shows the feasibility to grow highly crystalline nanomaterials in the form of NNs with aspect ratios between 80 and 200 and with high concentration of oxygen vacancies at the surface, whereas gas testing demonstrates moderate sensing responses to hydrogen at concentrations between 10 ppm and 50 ppm, which are comparable with results for tungsten oxide NNs grown on silicon transducing platforms. This method is demonstrated to be an attractive route to fabricate next generation of gas sensors devices, provided with flexibility and functionality, with great potential in a cost effective production for large-scale applications.

  7. PREFACE: 1st METECH workshop - From deep-sea to coastal zones: Methods and Techniques for studying Palaeoenvironments

    Science.gov (United States)

    Veiga-Pires, C.; St-Onge, G.

    2008-10-01

    Reconstructing past climate and past ocean circulation demands the highest possible precision and accuracy which urges the scientific community to look at different sediment records such as the ones from coastal zones to deep-sea with a more complete set of technical and methodological tools. However, the information given by each tool varies in precision, accuracy and in significance according to their environmental settings. It is therefore essential to compare tools. With that in mind, and as part of the International year of Planet Earth, a workshop entitled `From deep-sea to coastal zones: Methods and Techniques for studying palaeoenvironments' took place in Faro (Portugal), from 25-29 February 2008 in order to: present several methods and techniques that can be used for studying sediments from deep-sea to coastal zones, namely for reconstructing palaeoenvironments in order to document past climatic changes and short to long-term environmental processes; allow cross experience between different fields and specialties, either from deep-sea to coastal zones or from micropaleontology to geochemistry; give the opportunity to students from different universities and countries to attend the workshop; publish a special volume on the presented methods and techniques during the workshop. The workshop was organized in four non-parallel sessions dealing with the use of micropaleontology, isotopes, biogeochemistry and sedimentology, as tools for palaeoenvironmental studies. The present IOP Conference Series: Earth and Environmental Science proceedings reflect this organization and papers are published in each theme. The papers are either short reviews or case studies and are highlighted below. The remains of microorganisms found in sediments are the main proxies used in micropaleontological studies. However, the link between fossilized remains and their living origin is not easy to reconstruct only based on the geologic/sedimentary record. Accordingly, Barbosa presents a

  8. Mapping the environmental and biogeographic complexity of the Amazon basin using remote sensing methods

    Science.gov (United States)

    Streher, A. S.; Cordeiro, C. L. O.; Silva, T. S. F.

    2017-12-01

    Mapping environmental envelopes onto geographical space has been classically important for understanding biogeographical patterns. Knowing the biotic and abiotic limits defining these envelopes, we can better understand the requirements limiting species distributions. Most present efforts in this regard have focused on single-species distribution models, but the current breadth and accessibility of quantitative, spatially explicit environmental information can also be explored from an environment-first perspective. We thus used remote sensing to determine the occurrence of environmental discontinuities in the Amazon region and evaluated if such discontinuities may act as barriers to determine species distribution and range limits, forming clear environmental envelopes. We combined data on topography (SRTM), precipitation (CHIRPS), vegetation descriptors (PALSAR-1 backscattering, biomass, NDVI) and temperature (MODIS), using object-based image analysis and unsupervised learning to map environmental envelopes. We identified 14 environmental envelopes for the Amazon sensu latissimo region, mainly delimited by changes in vegetation, topography and precipitation. The resulting envelopes were compared to the distribution of 120 species of Trogonidae, Galbulidae, Bucconidae, Cebidae, Hylidae and Lecythidaceae, amounting to 22,649 occurrence records within the Amazonregion. We determined species prevalence in each envelope by calculating the ratio between species relative frequency per envelope and envelope relative frequency (area) in the complete map. Values closer to 1 indicate a high degree of prevalence. We found strong envelope associations (prevalence > 0.5) for 20 species (17% of analyzed taxa). Although several biogeographical and ecological factors will influence the distribution of a species, our results show that not only geographical barriers, but also modern environmental discontinuities may limit the distribution of some species., and may have also done so

  9. Application of remote sensing methods for detection of water pollution degree in rivers and water reservoirs

    International Nuclear Information System (INIS)

    Krzyworzeka, M.; Piasek, Z.

    1997-01-01

    The paper presents non-contact registration methods of the electromagnetic radiation which can be used for the detection of water pollution in rivers and water reservoirs. These methods include aerial photographs, satellite images and thermograms. The satellite images need reprocessing to obtain the mutual comparability of the images from various multispectral scanners (TM and MSS)

  10. Evaluation and application of passive and active optical remote sensing methods for the measurement of atmospheric aerosol properties

    Energy Technology Data Exchange (ETDEWEB)

    Mielonen, T.

    2010-07-01

    Atmospheric aerosol particles affect the atmosphere's radiation balance by scattering and absorbing sunlight. Moreover, the particles act as condensation nuclei for clouds and affect their reflectivity. In addition, aerosols have negative health effects and they reduce visibility. Aerosols are emitted into the atmosphere from both natural and anthropogenic sources. Different types of aerosols have different effects on the radiation balance, thus global monitoring and typing of aerosols is of vital importance. In this thesis, several remote sensing methods used in the measurement of atmospheric aerosols are evaluated. Remote sensing of aerosols can be done with active and passive instruments. Passive instruments measure radiation emitted by the sun and the Earth while active instruments have their own radiation source, for example a black body radiator or laser. The instruments utilized in these studies were sun photometers (PFR, Cimel), lidars (POLLYXT, CALIOP), transmissiometer (OLAF) and a spectroradiometer (MODIS). Retrieval results from spaceborne instruments (MODIS, CALIOP) were evaluated with ground based measurements (PFR, Cimel). In addition, effects of indicative aerosol model assumptions on the calculated radiative transfer were studied. Finally, aerosol particle mass at the ground level was approximated from satellite measurements and vertical profiles of aerosols measured with a lidar were analyzed. For the evaluation part, these studies show that the calculation of aerosol induced attenuation of radiation based on aerosol size distribution measurements is not a trivial task. In addition to dry aerosol size distribution, the effect of ambient relative humidity on the size distribution and the optical properties of the aerosols need to be known in order to achieve correct results from the calculations. Furthermore, the results suggest that aerosol size parameters retrieved from passive spaceborne measurements depend heavily on surgace reflectance

  11. Cybernetic group method of data handling (GMDH) statistical learning for hyperspectral remote sensing inverse problems in coastal ocean optics

    Science.gov (United States)

    Filippi, Anthony Matthew

    For complex systems, sufficient a priori knowledge is often lacking about the mathematical or empirical relationship between cause and effect or between inputs and outputs of a given system. Automated machine learning may offer a useful solution in such cases. Coastal marine optical environments represent such a case, as the optical remote sensing inverse problem remains largely unsolved. A self-organizing, cybernetic mathematical modeling approach known as the group method of data handling (GMDH), a type of statistical learning network (SLN), was used to generate explicit spectral inversion models for optically shallow coastal waters. Optically shallow water light fields represent a particularly difficult challenge in oceanographic remote sensing. Several algorithm-input data treatment combinations were utilized in multiple experiments to automatically generate inverse solutions for various inherent optical property (IOP), bottom optical property (BOP), constituent concentration, and bottom depth estimations. The objective was to identify the optimal remote-sensing reflectance Rrs(lambda) inversion algorithm. The GMDH also has the potential of inductive discovery of physical hydro-optical laws. Simulated data were used to develop generalized, quasi-universal relationships. The Hydrolight numerical forward model, based on radiative transfer theory, was used to compute simulated above-water remote-sensing reflectance Rrs(lambda) psuedodata, matching the spectral channels and resolution of the experimental Naval Research Laboratory Ocean PHILLS (Portable Hyperspectral Imager for Low-Light Spectroscopy) sensor. The input-output pairs were for GMDH and artificial neural network (ANN) model development, the latter of which was used as a baseline, or control, algorithm. Both types of models were applied to in situ and aircraft data. Also, in situ spectroradiometer-derived Rrs(lambda) were used as input to an optimization-based inversion procedure. Target variables

  12. Development and validation of a stability-indicating capillary zone electrophoretic method for the assessment of entecavir and its correlation with liquid chromatographic methods.

    Science.gov (United States)

    Dalmora, Sergio Luiz; Nogueira, Daniele Rubert; D'Avila, Felipe Bianchini; Souto, Ricardo Bizogne; Leal, Diogo Paim

    2011-01-01

    A stability-indicating capillary zone electrophoresis (CZE) method was validated for the analysis of entecavir in pharmaceutical formulations, using nimesulide as an internal standard. A fused-silica capillary (50 µm i.d.; effective length, 40 cm) was used while being maintained at 25°C; the applied voltage was 25 kV. A background electrolyte solution consisted of a 20 mM sodium tetraborate solution at pH 10. Injections were performed using a pressure mode at 50 mbar for 5 s, with detection at 216 nm. The specificity and stability-indicating capability were proven through forced degradation studies, evaluating also the in vitro cytotoxicity test of the degraded products. The method was linear over the concentration range of 1-200 µg mL(-1) (r(2) = 0.9999), and was applied for the analysis of entecavir in tablet dosage forms. The results were correlated to those of validated conventional and fast LC methods, showing non-significant differences (p > 0.05).

  13. Using NOAA/AVHRR based remote sensing data and PCR method for estimation of Aus rice yield in Bangladesh

    Science.gov (United States)

    Nizamuddin, Mohammad; Akhand, Kawsar; Roytman, Leonid; Kogan, Felix; Goldberg, Mitch

    2015-06-01

    Rice is a dominant food crop of Bangladesh accounting about 75 percent of agricultural land use for rice cultivation and currently Bangladesh is the world's fourth largest rice producing country. Rice provides about two-third of total calorie supply and about one-half of the agricultural GDP and one-sixth of the national income in Bangladesh. Aus is one of the main rice varieties in Bangladesh. Crop production, especially rice, the main food staple, is the most susceptible to climate change and variability. Any change in climate will, thus, increase uncertainty regarding rice production as climate is major cause year-to-year variability in rice productivity. This paper shows the application of remote sensing data for estimating Aus rice yield in Bangladesh using official statistics of rice yield with real time acquired satellite data from Advanced Very High Resolution Radiometer (AVHRR) sensor and Principal Component Regression (PCR) method was used to construct a model. The simulated result was compared with official agricultural statistics showing that the error of estimation of Aus rice yield was less than 10%. Remote sensing, therefore, is a valuable tool for estimating crop yields well in advance of harvest, and at a low cost.

  14. Time-lag Method for Detecting Following and Leadership Behavior of Pedestrians from Mobile Sensing Data

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Blunck, Henrik; Wüstenberg, Markus

    2013-01-01

    that quantify how humans move, interact and group. In this paper we propose methods for detecting two common pedestrian movement patterns, namely individual following relations and group leadership. The proposed methods for identifying following patterns employ machine learning on features derived using...... similarity analysis on time lagged sequences of WiFi measurements containing either raw signal strength values or derived locations. To detect leadership we combine the individual following relations into directed graphs and detect leadership within groups by graph link analysis. Methods for detecting...... for following patterns and up to twenty percentage points for leadership patterns. Our method is, contrary to state of the art, also applicable in challenging indoor environments, e.g., multi-story buildings. This implies that even quite small samples allow us to detect information such as how events...

  15. Study of time dynamics of seismicity for the Mexican subduction zone by means of the visibility graph method.

    Science.gov (United States)

    Ramírez-Rojas, Alejandro; Telesca, Luciano; Lovallo, Michele; Flores, Leticia

    2015-04-01

    By using the method of the visibility graph (VG), five magnitude time series extracted from the seismic catalog of the Mexican subduction zone were investigated. The five seismic sequences represent the seismicity which occurred between 2005 and 2012 in five seismic areas: Guerrero, Chiapas, Oaxaca, Jalisco and Michoacan. Among the five seismic sequences, the Jalisco sequence shows VG properties significantly different from those shown by the other four. Such a difference could be inherent in the different tectonic settings of Jalisco with respect to those characterizing the other four areas. The VG properties of the seismic sequences have been put in relationship with the more typical seismological characteristics (b-value and a-value of the Gutenberg-Richter law). The present study was supported by the Bilateral Project Italy-Mexico "Experimental Stick-slip models of tectonic faults: innovative statistical approaches applied to synthetic seismic sequences", jointly funded by MAECI (Italy) and AMEXCID (Mexico) in the framework of the Bilateral Agreement for Scientific and Technological Cooperation PE 2014-2016

  16. Anisotropy in Ba2Cu3O4Cl2 single crystals grown by the traveling solvent floating zone method

    International Nuclear Information System (INIS)

    Yamada, Shigeki; Iwagaki, Yohei; Noro, Sumiko

    2007-01-01

    Magnetic and electrical properties of layered copper oxychloride Ba 2 Cu 3 O 4 Cl 2 single crystals are measured. Single crystal growth of Ba 2 Cu 3 O 4 Cl 2 by the traveling solvent floating zone method is attempted using Ba 3 Cu 2 O 4 Cl 2 as solvent. By optimization of the growth conditions, large single crystals of (φ5mmx30mm) of Ba 2 Cu 3 O 4 Cl 2 are grown. The resistivity with the current parallel to the c-axis is 10 2 -10 3 times larger than that with the current perpendicular to the a-axis. The temperature dependence of the dielectric spectrum for each direction is measured and analyzed by using the Debye model. The spectrum width, which is related to the effective number of electrons (n/m), does not show an appreciable dependence on temperature. The characteristic frequencies at which the dielectric constant changes, which are related to the dissipation (γ), increase with warming. The temperature dependence is almost the same as the resistivity curve. This indicates that the hopping process dominates both DC- and AC-type electrical transport. The spectrum width with the electric field parallel to the a-axis is 30 times larger than that with the electric field parallel to the c-axis. On the other hand, the characteristic frequencies do not show an appreciable dependence on electric field direction

  17. Development of a Three Dimensional Neural Sensing Device by a Stacking Method

    Directory of Open Access Journals (Sweden)

    Chih-Wei Chang

    2010-04-01

    Full Text Available This study reports a new stacking method for assembling a 3-D microprobe array. To date, 3-D array structures have usually been assembled with vertical spacers, snap fasteners and a supporting platform. Such methods have achieved 3-D structures but suffer from complex assembly steps, vertical interconnection for 3-D signal transmission, low structure strength and large implantable opening. By applying the proposed stacking method, the previous techniques could be replaced by 2-D wire bonding. In this way, supporting platforms with slots and vertical spacers were no longer needed. Furthermore, ASIC chips can be substituted for the spacers in the stacked arrays to achieve system integration, design flexibility and volume usage efficiency. To avoid overflow of the adhesive fluid during assembly, an anti-overflow design which made use of capillary action force was applied in the stacking method as well. Moreover, presented stacking procedure consumes only 35 minutes in average for a 4 × 4 3-D microprobe array without requiring other specially made assembly tools. To summarize, the advantages of the proposed stacking method for 3-D array assembly include simplified assembly process, high structure strength, smaller opening area and integration ability with active circuits. This stacking assembly technique allows an alternative method to create 3-D structures from planar components.

  18. Combining the Pixel-based and Object-based Methods for Building Change Detection Using High-resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    ZHANG Zhiqiang

    2018-01-01

    Full Text Available Timely and accurate change detection of buildings provides important information for urban planning and management.Accompanying with the rapid development of satellite remote sensing technology,detecting building changes from high-resolution remote sensing images have received wide attention.Given that pixel-based methods of change detection often lead to low accuracy while object-based methods are complicated for uses,this research proposes a method that combines pixel-based and object-based methods for detecting building changes from high-resolution remote sensing images.First,based on the multiple features extracted from the high-resolution images,a random forest classifier is applied to detect changed building at the pixel level.Then,a segmentation method is applied to segement the post-phase remote sensing image and to get post-phase image objects.Finally,both changed building at the pixel level and post-phase image objects are fused to recognize the changed building objects.Multi-temporal QuickBird images are used as experiment data for building change detection with high-resolution remote sensing images,the results indicate that the proposed method could reduce the influence of environmental difference,such as light intensity and view angle,on building change detection,and effectively improve the accuracies of building change detection.

  19. Low-Complexity Spatial-Temporal Filtering Method via Compressive Sensing for Interference Mitigation in a GNSS Receiver

    Directory of Open Access Journals (Sweden)

    Chung-Liang Chang

    2014-01-01

    Full Text Available A compressive sensing based array processing method is proposed to lower the complexity, and computation load of array system and to maintain the robust antijam performance in global navigation satellite system (GNSS receiver. Firstly, the spatial and temporal compressed matrices are multiplied with array signal, which results in a small size array system. Secondly, the 2-dimensional (2D minimum variance distortionless response (MVDR beamformer is employed in proposed system to mitigate the narrowband and wideband interference simultaneously. The iterative process is performed to find optimal spatial and temporal gain vector by MVDR approach, which enhances the steering gain of direction of arrival (DOA of interest. Meanwhile, the null gain is set at DOA of interference. Finally, the simulated navigation signal is generated offline by the graphic user interface tool and employed in the proposed algorithm. The theoretical analysis results using the proposed algorithm are verified based on simulated results.

  20. Metode za otkrivanje promjena kod daljinskih istraživanja : Methods for change detection in remote sensing

    Directory of Open Access Journals (Sweden)

    Admir Mulahusić

    2011-03-01

    Full Text Available U ovom radu predstavljeni su različiti načini identifikovanja promjena kod daljinskih istraživanja. Različiti autori su predstavljali različite metode otkrivanja promjena na površini zemlje. Otkrivanje promjena je, između ostalog, veoma važno zbog praćenja promjena, kao i procjene promjena i međusobnih odnosa prirodnih i vještačkih objekata. Sve to vodi ka boljem razumijevanju potencijalnih uzroka promjena. : In this paper, the different ways to identify changes in remote sensing are given. Various authors have presented different methods of detecting changes on the Earth's surface. Detection of changes, among other things, are very important for tracking changes, as well as assessment and evaluation of changes and interrelations of natural and artificial objects. All this leads to better understanding of potential causes of change.

  1. TEM Microstructure and Chemical Composition of Transition Zone Between Steel Tube and An Inconel 625 Weld Overlay Coating Produced by CMT Method

    Directory of Open Access Journals (Sweden)

    Rozmus-Górnikowska M.

    2017-06-01

    Full Text Available The aim of this work was to investigate the microstructure and chemical composition of the transition zone between 16Mo3 steel and Inconel 625 weld overlay coating produced by the Cold Metal Transfer (CMT method. Investigations were primarily carried out through transmission electron microscopy (TEM on thin foils prepared by FIB (Focus Ion Beam.

  2. Traditional Beach Template vs Cross Shore Swash Zone (CSSZ) Placement Methods at Egmont Key, FL: High Silt Content Beneficial Use Placement

    Science.gov (United States)

    2015-10-15

    Relationships • Swash Zone samples carried 13.2% of the Discharge Slurry fines out of the beach template, thus leaving 5.2% on the beach. *Sampling methods...Tina Underwood , Ms. Erin Duffy USACE Jacksonville District – Mr. Bryan Merrill, Mr. Mike Hensch, Mr. Vic Wilhelm, Mr. Tom Spencer. USACE Engineer

  3. A method for spatially resolved local intracellular mechanochemical sensing and organelle manipulation

    NARCIS (Netherlands)

    Shekhar, S.; Cambi, A.; Figdor, Carl; Subramaniam, Vinod; Kanger, Johannes S.

    2012-01-01

    Because both the chemical and mechanical properties of living cells play crucial functional roles, there is a strong need for biophysical methods to address these properties simultaneously. Here we present a novel (to our knowledge) approach to measure local intracellular micromechanical and

  4. A method for spatially resolved local intracellular mechanochemical sensing and organelle manipulation.

    NARCIS (Netherlands)

    Shekhar, S.; Cambi, A.; Figdor, C.G.; Subramaniam, V.; Kanger, J.S.

    2012-01-01

    Because both the chemical and mechanical properties of living cells play crucial functional roles, there is a strong need for biophysical methods to address these properties simultaneously. Here we present a novel (to our knowledge) approach to measure local intracellular micromechanical and

  5. Systematic analysis of geo-location and spectrum sensing as access methods to TV white space

    CSIR Research Space (South Africa)

    Mauwa, H

    2016-11-01

    Full Text Available Access to the television white space by white space devices comes with a major technical challenge: white space devices can potentially interfere with existing television signals. Two methods have been suggested in the literature to help white space...

  6. Inertial Sensing Based Assessment Methods to Quantify the Effectiveness of Post-Stroke Rehabilitation

    Directory of Open Access Journals (Sweden)

    Hsin-Ta Li

    2015-07-01

    Full Text Available In clinical settings, traditional stroke rehabilitation evaluation methods are subjectively scored by occupational therapists, and the assessment results vary individually. To address this issue, this study aims to develop a stroke rehabilitation assessment system by using inertial measurement units. The inertial signals from the upper extremities were acquired, from which three quantitative indicators were extracted to reflect rehabilitation performance during stroke patients’ movement examination, i.e., shoulder flexion. Both healthy adults and stroke patients were recruited to correlate the proposed quantitative evaluation indices and traditional rehab assessment scales. Especially, as a unique feature of the study the weight for each of three evaluation indicators was estimated by the least squares method. The quantitative results demonstrate the proposed method accurately reflects patients’ recovery from pre-rehabilitation, and confirm the feasibility of applying inertial signals to evaluate rehab performance through feature extraction. The implemented assessment scheme appears to have the potential to overcome some shortcomings of traditional assessment methods and indicates rehab performance correctly.

  7. Dielectric properties-based method for rapid and nondestructive moisture sensing in almonds

    Science.gov (United States)

    A dielectric-based method is presented for moisture determination in almonds independent of bulk density. The dielectric properties of almond were measured between 5 and 15 GHz, with a 1-GHz increments, for samples with moisture contents ranging from 4.8% to 16.5%, wet basis, bulk densities ranging ...

  8. Damage identification method for continuous girder bridges based on spatially-distributed long-gauge strain sensing under moving loads

    Science.gov (United States)

    Wu, Bitao; Wu, Gang; Yang, Caiqian; He, Yi

    2018-05-01

    A novel damage identification method for concrete continuous girder bridges based on spatially-distributed long-gauge strain sensing is presented in this paper. First, the variation regularity of the long-gauge strain influence line of continuous girder bridges which changes with the location of vehicles on the bridge is studied. According to this variation regularity, a calculation method for the distribution regularity of the area of long-gauge strain history is investigated. Second, a numerical simulation of damage identification based on the distribution regularity of the area of long-gauge strain history is conducted, and the results indicate that this method is effective for identifying damage and is not affected by the speed, axle number and weight of vehicles. Finally, a real bridge test on a highway is conducted, and the experimental results also show that this method is very effective for identifying damage in continuous girder bridges, and the local element stiffness distribution regularity can be revealed at the same time. This identified information is useful for maintaining of continuous girder bridges on highways.

  9. Method for sensing and measuring a concentration or partial pressure of a reactant used in a redox reaction

    Science.gov (United States)

    Findl, E.

    1984-12-21

    A method for sensing or measuring the partial pressure or concentration of an electroactive species used in conjunction with an electrolyte, the method being characterized by providing a constant current between an anode and a cathode of an electrolyte-containing cell, while measuring changes in voltage that occur between either the anode and cathode or between a reference electrode and one of the main electrodes of the cell, thereby to determine the concentration or partial pressure of the electro-active species as a function of said measured voltage changes. The method of the invention can be practiced using either a cell having only an anode and a cathode, or using a cell having an anode and a cathode in combination with a reference electrode. Accurate measurements of small concentrations or partial pressures of electro-active species are obtainable with the method of the invention, by using constant currents of only a few microamperes between the anode and cathode of the cell, while the concentration-determining voltage is measured.

  10. New insights into urban planning of Caričin Grad: The application of modern sensing and detection methods

    Directory of Open Access Journals (Sweden)

    Ivanišević Vujadin

    2016-01-01

    Full Text Available Caričin Grad, Justiniana Prima, urban planning, fortification, settlement, aerial photography, geophysical surveys, LiDAR, photogrammetry, excavations, GIS. Thanks to the application of modern non-destructive sensing and detection methods, in recent years a series of new data on urban planning in Caričin Grad was obtained. For the most part, the current research programme studies the Upper Town’s northern plateau, wooded until recently and hence the only previously unexplored unit of the city. In the course of this programme, the classical research method - the excavations started in 2009 - is for the first time combined with the systematic application of airborne and terrestrial sensing and detection techniques. The analysis of historic aerial photographs and topographic plans proved to be very useful as well. Along with them, LiDAR-derived DTMs, photogrammetric DEMs, different geophysical and orthophotographic plans are stored in the GIS database for Caričin Grad and the Leskovac Basin. In this way almost 80 percent of the plateau area was defined, and the obtained plan is hypothetical only to a small extent, which particularly refers to the unexcavated northern rampart of the Upper Town. Each source provided relevant information for the reconstruction of both the rampart and the settlement, which points to the value of a holistic approach to documentation from various dates. The first source to be studied were archival aerial photographs of Caričin Grad from 1938 and 1947 (Figs. 1, 2.1. The latter one was originally processed by Aleksandar Deroko and Svetozar Radojči}, who drew the plan of the town after it, labelling the unexplored Upper Town’s northern plateau as “a probable habitation area”. The route of the northern rampart was aslo rather precisely determined by the authors (Fig. 2.2. Recently, these photographs were rectified and georeferenced in the GIS. The 1938 shot reveals the position of some towers as well, and it is

  11. Non-Invasive Imaging Method of Microwave Near Field Based on Solid State Quantum Sensing

    OpenAIRE

    Yang, Bo; Du, Guanxiang; Dong, Yue; Liu, Guoquan; Hu, Zhenzhong; Wang, Yongjin

    2018-01-01

    In this paper, we propose a non-invasive imaging method of microwave near field using a diamond containing nitrogen-vacancy centers. We applied synchronous pulsed sequence combined with charge coupled device camera to measure the amplitude of the microwave magnetic field. A full reconstruction formulation of the local field vector, including the amplitude and phase, is developed by measuring both left and right circular polarizations along the four nitrogen-vacancy axes. Compared to the raste...

  12. A method to incorporate uncertainty in the classification of remote sensing images

    OpenAIRE

    Gonçalves, Luísa M. S.; Fonte, Cidália C.; Júlio, Eduardo N. B. S.; Caetano, Mario

    2009-01-01

    The aim of this paper is to investigate if the incorporation of the uncertainty associated with the classification of surface elements into the classification of landscape units (LUs) increases the results accuracy. To this end, a hybrid classification method is developed, including uncertainty information in the classification of very high spatial resolution multi-spectral satellite images, to obtain a map of LUs. The developed classification methodology includes the following...

  13. Comparison of Laboratory and Field Remote Sensing Methods to Measure Forage Quality

    OpenAIRE

    Guo, Xulin; Wilmshurst, John F.; Li, Zhaoqin

    2010-01-01

    Recent research in range ecology has emphasized the importance of forage quality as a key indicator of rangeland condition. However, we lack tools to evaluate forage quality at scales appropriate for management. Using canopy reflectance data to measure forage quality has been conducted at both laboratory and field levels separately, but little work has been conducted to evaluate these methods simultaneously. The objective of this study is to find a reliable way of assessing grassland quality ...

  14. A High-Fidelity Haze Removal Method Based on HOT for Visible Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Hou Jiang

    2016-10-01

    Full Text Available Spatially varying haze is a common feature of most satellite images currently used for land cover classification and mapping and can significantly affect image quality. In this paper, we present a high-fidelity haze removal method based on Haze Optimized Transformation (HOT, comprising of three steps: semi-automatic HOT transform, HOT perfection and percentile based dark object subtraction (DOS. Since digital numbers (DNs of band red and blue are highly correlated in clear sky, the R-squared criterion is utilized to search the relative clearest regions of the whole scene automatically. After HOT transform, spurious HOT responses are first masked out and filled by means of four-direction scan and dynamic interpolation, and then homomorphic filter is performed to compensate for loss of HOT of masked-out regions with large areas. To avoid patches and halo artifacts, a procedure called percentile DOS is implemented to eliminate the influence of haze. Scenes including various land cover types are selected to validate the proposed method, and a comparison analysis with HOT and Background Suppressed Haze Thickness Index (BSHTI is performed. Three quality assessment indicators are selected to evaluate the haze removed effect on image quality from different perspective and band profiles are utilized to analyze the spectral consistency. Experiment results verify the effectiveness of the proposed method for haze removal and the superiority of it in preserving the natural color of object itself, enhancing local contrast, and maintaining structural information of original image.

  15. Regional Estimation of Remotely Sensed Evapotranspiration Using the Surface Energy Balance-Advection (SEB-A Method

    Directory of Open Access Journals (Sweden)

    Suhua Liu

    2016-08-01

    Full Text Available Evapotranspiration (ET is an essential part of the hydrological cycle and accurately estimating it plays a crucial role in water resource management. Surface energy balance (SEB models are widely used to estimate regional ET with remote sensing. The presence of horizontal advection, however, perturbs the surface energy balance system and contributes to the uncertainty of energy influxes. Thus, it is vital to consider horizontal advection when applying SEB models to estimate ET. This study proposes an innovative and simplified approach, the surface energy balance-advection (SEB-A method, which is based on the energy balance theory and also takes into account the horizontal advection to determine ET by remote sensing. The SEB-A method considers that the actual ET consists of two parts: the local ET that is regulated by the energy balance system and the exotic ET that arises from horizontal advection. To evaluate the SEB-A method, it was applied to the middle region of the Heihe River in China. Instantaneous ET for three days were acquired and assessed with ET measurements from eddy covariance (EC systems. The results demonstrated that the ET estimates had a high accuracy, with a correlation coefficient (R2 of 0.713, a mean average error (MAE of 39.3 W/m2 and a root mean square error (RMSE of 54.6 W/m2 between the estimates and corresponding measurements. Percent error was calculated to more rigorously assess the accuracy of these estimates, and it ranged from 0% to 35%, with over 80% of the locations within a 20% error. To better understand the SEB-A method, the relationship between the ET estimates and land use types was analyzed, and the results indicated that the ET estimates had spatial distributions that correlated with vegetation patterns and could well demonstrate the ET differences caused by different land use types. The sensitivity analysis suggested that the SEB-A method requested accurate estimation of the available energy, R n − G

  16. Extended Finite Element Method XFEM for ductile tearing: Large crack growth modelization based on the transition from a continuous medium to the crack via a cohesive zone model

    International Nuclear Information System (INIS)

    Simatos, A.

    2010-01-01

    This work extends the applicability of local models for ductile fracture to large crack growth modelization for ductile tearing. This is done inserting a cohesive zone model whose constitutive law is identified in order to be consistent with the local model. The consistency is obtained through the cohesive law incremental construction which ensures the equivalence of the energy and of the mechanical response of the models. The extension of the applicability domain of the local modelization is enabled via the XFEM framework which allows for maintaining the mechanical energy during the crack extension step. This method permits also to introduce the cohesive zone model during the calculation without regards to the mesh of the structure for its maximal tensile stress. To apply the XFEM to ductile tearing, this method is extended to non linear problems (Updated Lagrangian Formulation, large scale yield plasticity). The cohesive zone model grows when the criterion defined in term of porosity, tested at the front of the cohesive crack front, is verified. The cohesive zone growth criterion is determined in order to model most of the damaging phase with the local model to ensure that the modelization takes into account the triaxiality ratio history accurately. The proposed method is applied to the Rousselier local model for ductile fracture in the XFEM framework of Cast3M, the FE software of the CEA. (author) [fr

  17. Derivation, evidence and physical validity of a weighted beam-zone method for dose determination in blocked photon fields of arbitrary shape

    International Nuclear Information System (INIS)

    Glaeser, L.; Quast, U.

    1981-01-01

    A simple, practical procedure for dose determination at any point of an arbitrarily shaped field has been derived: Square-field photon beams are sectioned into a set of pyramid-shell-like parts (beam zones), nested into each other around the smallest realizable square field, of different sizes but with equal dose contributions (thus weighted) with respect to a central dose reference point. The dose at any reference point in an irregular field can be determined simply by counting the number of non-shielded dose-contributing zones (or zone fractions), leading to the associated order of square-field size (with the same number of zones), the equivalent field with known dose. For experimental evidence of the validity of the weighted beam-zone method, measurements were carried out with different high-energy photon beams with one or more beam zones shielded by absorbing blocks. Measurements were made at points in unshielded and shielded parts of the field, on and off the beam axis and at different depths in a phantom. Calculations and measurements were compared. While relative depth doses were shown to be equal to within +-2% over a range of 5 cm ahead of and behind the dose reference point, the absolute dose deviations were within +-4%. The sources of error were analysed. They were mainly determined by scattered radiation from the beam limiting device and the partial shielding deriving from the shielding blocks. The same errors also occur in most of the known methods of dose calculation in irregular fields. (author)

  18. You Don't Need Richards'... A New General 1-D Vadose Zone Solution Method that is Reliable

    Science.gov (United States)

    Ogden, F. L.; Lai, W.; Zhu, J.; Steinke, R. C.; Talbot, C. A.

    2015-12-01

    Hydrologic modelers and mathematicians have strived to improve 1-D Richards' equation (RE) solution reliability for predicting vadose zone fluxes. Despite advances in computing power and the numerical solution of partial differential equations since Richards first published the RE in 1931, the solution remains unreliable. That is to say that there is no guarantee that for a particular set of soil constitutive relations, moisture profile conditions, or forcing input that a numerical RE solver will converge to an answer. This risk of non-convergence renders prohibitive the use of RE solvers in hydrological models that need perhaps millions of infiltration solutions. In lieu of using unreliable numerical RE solutions, researchers have developed a wide array of approximate solutions that more-or-less mimic the behavior of the RE, with some notable deficiencies such as parameter insensitivity or divergence over time. The improved Talbot-Ogden (T-O) finite water-content scheme was shown by Ogden et al. (2015) to be an extremely good approximation of the 1-D RE solution, with a difference in cumulative infiltration of only 0.2 percent over an 8 month simulation comparing the improved T-O scheme with a RE numerical solver. The reason is that the newly-derived fundamental flow equation that underpins the improved T-O method is equivalent to the RE minus a term that is equal to the diffusive flux divided by the slope of the wetting front. Because the diffusive flux has zero mean, this term is not important in calculating the mean flux. The wetting front slope is near infinite (sharp) in coarser soils that produce more significant hydrological interactions between surface and ground waters, which also makes this missing term 1) disappear in the limit, and, 2) create stability challenges for the numerical solution of RE. The improved T-O method is a replacement for the 1-D RE in soils that can be simulated as homogeneous layers, where the user is willing to neglect the effects

  19. Method for rapid particle size analysis by hydrosizing and nuclear sensing

    International Nuclear Information System (INIS)

    Daellenbach, C.B.; Mahan, W.M.

    1977-01-01

    A method and apparatus to practice the method for rapidly determining the size and mass distribution of a sample of randomly sized particles of a known total mass are described. A series of substantially identical hydrocyclones are connected by conduits to each other and to a temperature controlled water feed. By restricting the cross-sectional areas of these conduits to progressively smaller values, the slurry containing the sample particles is caused to increase its velocity as it moves from hydrocyclone to hydrocyclone. As described by the Stokesian theory which relates particle diameter and settling velocity, the largest sized particles are suspended in the closed apex of the first hydrocyclone with smaller sized particles, in given size ranges, being suspended in the next succeeding hydrocyclone's apexes. In this manner, the particles are separated into discrete fractional sizes with a residual slurry of the very smallest particles being discharged. Before the discrete fractions of particles are suspended in their hydrocyclone apexes, a combined photon source, like a gamma ray source, and detector are calibrated with the water temperature kept constant. When the suspension of particles takes place, an attenuation of the radiation from the source is observed at the detector. This attenuation can be related to the mass or weight of the discrete fractions of suspended particles. Electronic circuitry is used to indicate what this fractional mass or weight is as it relates to the total weight of the sample. 6 claims, 4 figs

  20. Comparison of laboratory and field remote sensing methods to measure forage quality.

    Science.gov (United States)

    Guo, Xulin; Wilmshurst, John F; Li, Zhaoqin

    2010-09-01

    Recent research in range ecology has emphasized the importance of forage quality as a key indicator of rangeland condition. However, we lack tools to evaluate forage quality at scales appropriate for management. Using canopy reflectance data to measure forage quality has been conducted at both laboratory and field levels separately, but little work has been conducted to evaluate these methods simultaneously. The objective of this study is to find a reliable way of assessing grassland quality through measuring forage chemistry with reflectance. We studied a mixed grass ecosystem in Grasslands National Park of Canada and surrounding pastures, located in southern Saskatchewan. Spectral reflectance was collected at both in-situ field level and in the laboratory. Vegetation samples were collected at each site, sorted into the green grass portion, and then sent to a chemical company for measuring forage quality variables, including protein, lignin, ash, moisture at 135 °C, Neutral Detergent Fiber (NDF), Acid Detergent Fiber (ADF), Total Digestible, Digestible Energy, Net Energy for Lactation, Net Energy for Maintenance, and Net Energy for Gain. Reflectance data were processed with the first derivative transformation and continuum removal method. Correlation analysis was conducted on spectral and forage quality variables. A regression model was further built to investigate the possibility of using canopy spectral measurements to predict the grassland quality. Results indicated that field level prediction of protein of mixed grass species was possible (r² = 0.63). However, the relationship between canopy reflectance and the other forage quality variables was not strong.

  1. Comparison of Laboratory and Field Remote Sensing Methods to Measure Forage Quality

    Directory of Open Access Journals (Sweden)

    Zhaoqin Li

    2010-09-01

    Full Text Available Recent research in range ecology has emphasized the importance of forage quality as a key indicator of rangeland condition. However, we lack tools to evaluate forage quality at scales appropriate for management. Using canopy reflectance data to measure forage quality has been conducted at both laboratory and field levels separately, but little work has been conducted to evaluate these methods simultaneously. The objective of this study is to find a reliable way of assessing grassland quality through measuring forage chemistry with reflectance. We studied a mixed grass ecosystem in Grasslands National Park of Canada and surrounding pastures, located in southern Saskatchewan. Spectral reflectance was collected at both in-situ field level and in the laboratory. Vegetation samples were collected at each site, sorted into the green grass portion, and then sent to a chemical company for measuring forage quality variables, including protein, lignin, ash, moisture at 135 ºC, Neutral Detergent Fiber (NDF, Acid Detergent Fiber (ADF, Total Digestible, Digestible Energy, Net Energy for Lactation, Net Energy for Maintenance, and Net Energy for Gain. Reflectance data were processed with the first derivative transformation and continuum removal method. Correlation analysis was conducted on spectral and forage quality variables. A regression model was further built to investigate the possibility of using canopy spectral measurements to predict the grassland quality. Results indicated that field level prediction of protein of mixed grass species was possible (r2 = 0.63. However, the relationship between canopy reflectance and the other forage quality variables was not strong.

  2. Robust one pot synthesis of colloidal silver nanoparticles by simple redox method and absorbance recovered sensing.

    Science.gov (United States)

    Salman, Muhammad; Iqbal, Mahwish; El Ashry, El Sayed H; Kanwal, Shamsa

    2012-01-01

    Conventional synthesis of silver nanoparticles employs a reducing agent and a capping agent. In this report water-soluble silver nanoparticles (AgNPs) were prepared facilely by chemical reduction of Ag(I) ions. 4-Amino-3-(d-gluco-pentitol-1-yl)-4,5-dihydro-1,2,4-triazole-5-thione (AGTT) was used both as reducing and stabilizing agent. Direct heating methodology was found to be more suitable for achieving particles with a hydrodynamic diameter of ~20 nm. AGTT exists as tautomer in solution form and our studies indicate that -NH(2) group is involved in the reduction and stabilization of Ag(+) and thione (Δ=S) group of AGTT is possibly involved in stabilizing the nanoparticles via coordinate covalent linkage. Characterization of synthesized silver nanoparticles was performed by UV-vis, FT-IR and by FESEM. Based on the absorption properties of synthesized AgNPs, we used AgNPs to detect bovine serum albumin (BSA) and AgNPs-BSA composite nanoprobe was further applied to detect Cu(2+) based on absorbance recovery. The proposed method has advantages over existing methods in terms of rapid synthesis and stability of AgNPs and their applications. Analysis is reproducible, cost effective and highly sensitive. The lowest detectable concentration of BSA in this approach is 3 nM, and for Cu(2+) it can detect upto 200 pM. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Selected contribution: ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality.

    Science.gov (United States)

    Romanovsky, Andrej A; Ivanov, Andrei I; Shimansky, Yury P

    2002-06-01

    There is a misbelief that the same animal has the same thermoneutral zone (TNZ) in different experimental setups. In reality, TNZ strongly depends on the physical environment and varies widely across setups. Current methods for determining TNZ require elaborate equipment and can be applied only to a limited set of experimental conditions. A new, broadly applicable approach that rapidly determines whether given conditions are neutral for a given animal is needed. Consistent with the definition of TNZ [the range of ambient temperature (T(a)) at which body core temperature (T(c)) regulation is achieved only by control of sensible heat loss], we propose three criteria of thermoneutrality: 1) the presence of high-magnitude fluctuations in skin temperature (T(sk)) of body parts serving as specialized heat exchangers with the environment (e.g., rat tail), 2) the closeness of T(sk) to the median of its operational range, and 3) a strong negative correlation between T(sk) and T(c). Thermocouple thermometry and liquid crystal thermography were performed in five rat strains at 13 T(a). Under the conditions tested (no bedding or filter tops, no group thermoregulation), the T(a) range of 29.5-30.5 degrees C satisfied all three TNZ criteria in Wistar, BDIX, Long-Evans, and Zucker lean rats; Zucker fatty rats had a slightly lower TNZ (28.0-29.0 degrees C). Skin thermometry or thermography is a definition-based, simple, and inexpensive technique to determine whether experimental or housing conditions are neutral, subneutral, or supraneutral for a given animal.

  4. A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods

    International Nuclear Information System (INIS)

    Choi, Kihwan; Li, Ruijiang; Nam, Haewon; Xing, Lei

    2014-01-01

    As a solution to iterative CT image reconstruction, first-order methods are prominent for the large-scale capability and the fast convergence rate O(1/k 2 ). In practice, the CT system matrix with a large condition number may lead to slow convergence speed despite the theoretically promising upper bound. The aim of this study is to develop a Fourier-based scaling technique to enhance the convergence speed of first-order methods applied to CT image reconstruction. Instead of working in the projection domain, we transform the projection data and construct a data fidelity model in Fourier space. Inspired by the filtered backprojection formalism, the data are appropriately weighted in Fourier space. We formulate an optimization problem based on weighted least-squares in the Fourier space and total-variation (TV) regularization in image space for parallel-beam, fan-beam and cone-beam CT geometry. To achieve the maximum computational speed, the optimization problem is solved using a fast iterative shrinkage-thresholding algorithm with backtracking line search and GPU implementation of projection/backprojection. The performance of the proposed algorithm is demonstrated through a series of digital simulation and experimental phantom studies. The results are compared with the existing TV regularized techniques based on statistics-based weighted least-squares as well as basic algebraic reconstruction technique. The proposed Fourier-based compressed sensing (CS) method significantly improves both the image quality and the convergence rate compared to the existing CS techniques. (paper)

  5. A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods.

    Science.gov (United States)

    Choi, Kihwan; Li, Ruijiang; Nam, Haewon; Xing, Lei

    2014-06-21

    As a solution to iterative CT image reconstruction, first-order methods are prominent for the large-scale capability and the fast convergence rate [Formula: see text]. In practice, the CT system matrix with a large condition number may lead to slow convergence speed despite the theoretically promising upper bound. The aim of this study is to develop a Fourier-based scaling technique to enhance the convergence speed of first-order methods applied to CT image reconstruction. Instead of working in the projection domain, we transform the projection data and construct a data fidelity model in Fourier space. Inspired by the filtered backprojection formalism, the data are appropriately weighted in Fourier space. We formulate an optimization problem based on weighted least-squares in the Fourier space and total-variation (TV) regularization in image space for parallel-beam, fan-beam and cone-beam CT geometry. To achieve the maximum computational speed, the optimization problem is solved using a fast iterative shrinkage-thresholding algorithm with backtracking line search and GPU implementation of projection/backprojection. The performance of the proposed algorithm is demonstrated through a series of digital simulation and experimental phantom studies. The results are compared with the existing TV regularized techniques based on statistics-based weighted least-squares as well as basic algebraic reconstruction technique. The proposed Fourier-based compressed sensing (CS) method significantly improves both the image quality and the convergence rate compared to the existing CS techniques.

  6. Pervasive sensing

    Science.gov (United States)

    Nagel, David J.

    2000-11-01

    The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.

  7. Paleopiezometry – the new investigation method applied to the Penninic suture zone in comparison to the Meliata-Hallstatt suture zone

    Directory of Open Access Journals (Sweden)

    Barbora Zákršmidová

    2016-04-01

    thin-sections from Bôrka nappe (23.7 – 42.7.m; but also 174.0 – 403.20.m in the case of grains, which undergone the static recrystallization in the rear parts of the Bôrka nappe. Based on all these measurements, the method of paleopiezometry seems to be a usable tool for determination of differential stresses, which contribute to reveal a geological and tectonic interpretation of geodynamic history.

  8. A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing

    DEFF Research Database (Denmark)

    Zhu, Yansong; Jha, Abhinav K.; Dreyer, Jakob K.

    2017-01-01

    Fluorescence molecular tomography (FMT) is a promising tool for real time in vivo quantification of neurotransmission (NT) as we pursue in our BRAIN initiative effort. However, the acquired image data are noisy and the reconstruction problem is ill-posed. Further, while spatial sparsity of the NT...... matrix coherence. The resultant image data are input to a homotopy-based reconstruction strategy that exploits sparsity via ℓ1 regularization. The reconstructed image is then input to a maximum-likelihood expectation maximization (MLEM) algorithm that retains the sparseness of the input estimate...... and improves upon the quantitation by accurate Poisson noise modeling. The proposed reconstruction method was evaluated in a three-dimensional simulated setup with fluorescent sources in a cuboidal scattering medium with optical properties simulating human brain cortex (reduced scattering coefficient: 9.2 cm-1...

  9. Non-contact current and voltage sensing method using a clamshell housing and a ferrite cylinder

    Science.gov (United States)

    Carpenter, Gary D.; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C.; Schappert, Michael

    2016-04-26

    A method of measurement using a detachable current and voltage sensor provides an isolated and convenient technique for to measuring current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  10. Delineation of Gold Mineralization Zone using Resistivity and Very Low Frequency Electromagnetic Methods around, North Singhbhum Mobile Belt, India.

    Science.gov (United States)

    Upadhyay, A.; Panda, K. P.; Singh, A.; Sharma, S. P.

    2017-12-01

    The results of electrical resistivity and VLF electromagnetic surveys are presented in this study to delineate the suitable geological structure associated with gold mineralization near Lawa Village (Seraikela-Kharsawan, Jharkhand), India. The area under observation lies in North Singhbhum Mobile Belt (NSMB) which is bounded by Chotanagpur Gneiss Complex in north and Archean Singhbhum Craton in the south. Shear zone of the study area, trending E-W, is mainly associated with Cu-U mineralization which is also associated with gold. Previous geological studies have revealed that this region can be a potential site for gold prospects within NSMB. A comprehensive electrical resistivity imaging and very low frequency surveys have been performed around Lawa village to outline appropriate conducting zones, with their lateral extension and depth extent, which may be associated with gold mineralization. Resistivity survey done using Dipole-Dipole multi-electrode array reveals multiple zones of mineralization separated by variable distances. The VLF data in the current study was tainted by non-stationary and non-linear noises which cannot be eliminated by standard filtering techniques. Therefore to restore signals with significant geologic information empirical mode decomposition (EMD) technique was used. The noise free data obtained was then processed using Fast Imaging technique to obtain apparent current density pseudo-sections for interpretation. Interpretation and analysis of results from each investigating survey demonstrate a steeply dipping conductor with E-W strike direction along the shear zone. These conductive zones are characterized by low resistivity and high current density values.

  11. Estimating Composite Curve Number Using an Improved SCS-CN Method with Remotely Sensed Variables in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Qihao Weng

    2013-03-01

    Full Text Available The rainfall and runoff relationship becomes an intriguing issue as urbanization continues to evolve worldwide. In this paper, we developed a simulation model based on the soil conservation service curve number (SCS-CN method to analyze the rainfall-runoff relationship in Guangzhou, a rapid growing metropolitan area in southern China. The SCS-CN method was initially developed by the Natural Resources Conservation Service (NRCS of the United States Department of Agriculture (USDA, and is one of the most enduring methods for estimating direct runoff volume in ungauged catchments. In this model, the curve number (CN is a key variable which is usually obtained by the look-up table of TR-55. Due to the limitations of TR-55 in characterizing complex urban environments and in classifying land use/cover types, the SCS-CN model cannot provide more detailed runoff information. Thus, this paper develops a method to calculate CN by using remote sensing variables, including vegetation, impervious surface, and soil (V-I-S. The specific objectives of this paper are: (1 To extract the V-I-S fraction images using Linear Spectral Mixture Analysis; (2 To obtain composite CN by incorporating vegetation types, soil types, and V-I-S fraction images; and (3 To simulate direct runoff under the scenarios with precipitation of 57mm (occurred once every five years by average and 81mm (occurred once every ten years. Our experiment shows that the proposed method is easy to use and can derive composite CN effectively.

  12. AN ANALYTIC METHOD TO DETERMINE HABITABLE ZONES FOR S-TYPE PLANETARY ORBITS IN BINARY STAR SYSTEMS

    International Nuclear Information System (INIS)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Gyergyovits, Markus; Funk, Barbara; Georgakarakos, Nikolaos

    2012-01-01

    With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical habitable zone have arisen. Do the radiative and gravitational perturbations of the second star influence the extent of the habitable zone significantly, or is it sufficient to consider the host star only? In this article, we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting a Sun-like primary. We present time-independent analytical estimates and compare them to insolation statistics gained via high precision numerical orbit calculations. Results suggest a strong dependence of permanent habitability on the binary's eccentricity, as well as a possible extension of habitable zones toward the secondary in close binary systems.

  13. Method for establishing a combustion zone in an in situ oil shale retort having a pocket at the top

    Science.gov (United States)

    Cha, Chang Y.

    1980-01-01

    An in situ oil shale retort having a top boundary of unfragmented formation and containing a fragmented permeable mass has a pocket at the top, that is, an open space between a portion of the top of the fragmented mass and the top boundary of unfragmented formation. To establish a combustion zone across the fragmented mass, a combustion zone is established in a portion of the fragmented mass which is proximate to the top boundary. A retort inlet mixture comprising oxygen is introduced to the fragmented mass to propagate the combustion zone across an upper portion of the fragmented mass. Simultaneously, cool fluid is introduced to the pocket to prevent overheating and thermal sloughing of formation from the top boundary into the pocket.

  14. A Novel Passive Wireless Sensing Method for Concrete Chloride Ion Concentration Monitoring

    Directory of Open Access Journals (Sweden)

    Shuangxi Zhou

    2017-12-01

    Full Text Available In this paper, a novel approach for concrete chloride ion concentration measuring based on passive and wireless sensor tag is proposed. The chloride ion sensor based on RFID communication protocol is consisting of an energy harvesting and management circuit, a low dropout voltage regulator, a MCU, a RFID tag chip and a pair of electrodes. The proposed sensor harvests energy radiated by the RFID reader to power its circuitry. To improve the stability of power supply, a three-stage boost rectifier is customized to rectify the harvested power into dc power and step-up the voltage. Since the measured data is wirelessly transmitted, it contains miscellaneous noises which would decrease the accuracy of measuring. Thus, in this paper, the wavelet denoising method is adopted to denoise the raw data. Besides, a monitoring software is developed to display the measurement results in real-time. The measurement results indicate that the proposed passive sensor tag can achieve a reliable communication distance of 16.3 m and can reliably measure the chloride ion concentration in concrete.

  15. A Novel Passive Wireless Sensing Method for Concrete Chloride Ion Concentration Monitoring.

    Science.gov (United States)

    Zhou, Shuangxi; Sheng, Wei; Deng, Fangming; Wu, Xiang; Fu, Zhihui

    2017-12-11

    In this paper, a novel approach for concrete chloride ion concentration measuring based on passive and wireless sensor tag is proposed. The chloride ion sensor based on RFID communication protocol is consisting of an energy harvesting and management circuit, a low dropout voltage regulator, a MCU, a RFID tag chip and a pair of electrodes. The proposed sensor harvests energy radiated by the RFID reader to power its circuitry. To improve the stability of power supply, a three-stage boost rectifier is customized to rectify the harvested power into dc power and step-up the voltage. Since the measured data is wirelessly transmitted, it contains miscellaneous noises which would decrease the accuracy of measuring. Thus, in this paper, the wavelet denoising method is adopted to denoise the raw data. Besides, a monitoring software is developed to display the measurement results in real-time. The measurement results indicate that the proposed passive sensor tag can achieve a reliable communication distance of 16.3 m and can reliably measure the chloride ion concentration in concrete.

  16. A Poisson method application to the assessment of the earthquake hazard in the North Anatolian Fault Zone, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Türker, Tuğba, E-mail: tturker@ktu.edu.tr [Karadeniz Technical University, Department of Geophysics, Trabzon/Turkey (Turkey); Bayrak, Yusuf, E-mail: ybayrak@agri.edu.tr [Ağrı İbrahim Çeçen University, Ağrı/Turkey (Turkey)

    2016-04-18

    North Anatolian Fault (NAF) is one from the most important strike-slip fault zones in the world and located among regions in the highest seismic activity. The NAFZ observed very large earthquakes from the past to present. The aim of this study; the important parameters of Gutenberg-Richter relationship (a and b values) estimated and this parameters taking into account, earthquakes were examined in the between years 1900-2015 for 10 different seismic source regions in the NAFZ. After that estimated occurrence probabilities and return periods of occurring earthquakes in fault zone in the next years, and is being assessed with Poisson method the earthquake hazard of the NAFZ. The Region 2 were observed the largest earthquakes for the only historical period and hasn’t been observed large earthquake for the instrumental period in this region. Two historical earthquakes (1766, M{sub S}=7.3 and 1897, M{sub S}=7.0) are included for Region 2 (Marmara Region) where a large earthquake is expected in the next years. The 10 different seismic source regions are determined the relationships between the cumulative number-magnitude which estimated a and b parameters with the equation of LogN=a-bM in the Gutenberg-Richter. A homogenous earthquake catalog for M{sub S} magnitude which is equal or larger than 4.0 is used for the time period between 1900 and 2015. The database of catalog used in the study has been created from International Seismological Center (ISC) and Boğazici University Kandilli observation and earthquake research institute (KOERI). The earthquake data were obtained until from 1900 to 1974 from KOERI and ISC until from 1974 to 2015 from KOERI. The probabilities of the earthquake occurring are estimated for the next 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 years in the 10 different seismic source regions. The highest earthquake occur probabilities in 10 different seismic source regions in the next years estimated that the region Tokat-Erzincan (Region 9) %99

  17. A Poisson method application to the assessment of the earthquake hazard in the North Anatolian Fault Zone, Turkey

    International Nuclear Information System (INIS)

    Türker, Tuğba; Bayrak, Yusuf

    2016-01-01

    North Anatolian Fault (NAF) is one from the most important strike-slip fault zones in the world and located among regions in the highest seismic activity. The NAFZ observed very large earthquakes from the past to present. The aim of this study; the important parameters of Gutenberg-Richter relationship (a and b values) estimated and this parameters taking into account, earthquakes were examined in the between years 1900-2015 for 10 different seismic source regions in the NAFZ. After that estimated occurrence probabilities and return periods of occurring earthquakes in fault zone in the next years, and is being assessed with Poisson method the earthquake hazard of the NAFZ. The Region 2 were observed the largest earthquakes for the only historical period and hasn’t been observed large earthquake for the instrumental period in this region. Two historical earthquakes (1766, M_S=7.3 and 1897, M_S=7.0) are included for Region 2 (Marmara Region) where a large earthquake is expected in the next years. The 10 different seismic source regions are determined the relationships between the cumulative number-magnitude which estimated a and b parameters with the equation of LogN=a-bM in the Gutenberg-Richter. A homogenous earthquake catalog for M_S magnitude which is equal or larger than 4.0 is used for the time period between 1900 and 2015. The database of catalog used in the study has been created from International Seismological Center (ISC) and Boğazici University Kandilli observation and earthquake research institute (KOERI). The earthquake data were obtained until from 1900 to 1974 from KOERI and ISC until from 1974 to 2015 from KOERI. The probabilities of the earthquake occurring are estimated for the next 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 years in the 10 different seismic source regions. The highest earthquake occur probabilities in 10 different seismic source regions in the next years estimated that the region Tokat-Erzincan (Region 9) %99 with an earthquake

  18. A standardised graphic method for describing data privacy frameworks in primary care research using a flexible zone model.

    Science.gov (United States)

    Kuchinke, Wolfgang; Ohmann, Christian; Verheij, Robert A; van Veen, Evert-Ben; Arvanitis, Theodoros N; Taweel, Adel; Delaney, Brendan C

    2014-12-01

    To develop a model describing core concepts and principles of data flow, data privacy and confidentiality, in a simple and flexible way, using concise process descriptions and a diagrammatic notation applied to research workflow processes. The model should help to generate robust data privacy frameworks for research done with patient data. Based on an exploration of EU legal requirements for data protection and privacy, data access policies, and existing privacy frameworks of research projects, basic concepts and common processes were extracted, described and incorporated into a model with a formal graphical representation and a standardised notation. The Unified Modelling Language (UML) notation was enriched by workflow and own symbols to enable the representation of extended data flow requirements, data privacy and data security requirements, privacy enhancing techniques (PET) and to allow privacy threat analysis for research scenarios. Our model is built upon the concept of three privacy zones (Care Zone, Non-care Zone and Research Zone) containing databases, data transformation operators, such as data linkers and privacy filters. Using these model components, a risk gradient for moving data from a zone of high risk for patient identification to a zone of low risk can be described. The model was applied to the analysis of data flows in several general clinical research use cases and two research scenarios from the TRANSFoRm project (e.g., finding patients for clinical research and linkage of databases). The model was validated by representing research done with the NIVEL Primary Care Database in the Netherlands. The model allows analysis of data privacy and confidentiality issues for research with patient data in a structured way and provides a framework to specify a privacy compliant data flow, to communicate privacy requirements and to identify weak points for an adequate implementation of data privacy. Copyright © 2014 Elsevier Ireland Ltd. All rights

  19. Investigation of flow distribution in a fracture zone at the Stripa mine, using the radar method, results and interpretation

    International Nuclear Information System (INIS)

    Andersson, P.; Andersson, P.; Gustafsson, E.; Olsson, O.

    1989-12-01

    The objective of the current project was to map the steady state flow distribution in a fracture zone in the Stripa mine when water was injected into the zone from a borehole. The basic idea was to map the flow paths by taking the difference between radar results obtained prior to and after injection of a saline tracer (KBr) into the fracture zone. The radar experiments were combined with a more conventional migration experiment to provide validation and calibration of the radar results. Difference tomography using borehole radar was a valuable and successful tool in mapping groundwater flow paths in fractured rock. The data presented were of good quality and sufficiently consistent throughout the investigated rock volume. The interpreted results verified previous findings in the surveyed granite volume as well as contributed to new and unique information about the transport properties of the rock at the site. The inflow data and the tracer breakthrough data has served as a useful aid in the interpretation of the flow distribution within the investigated zone and also within the surrounding rock mass. From the differential attenuation tomograms the migration of the injected tracer was mapped and presented both in the fracture zone of interest and in the entire investigated granite volume. From the radar tomographic model, the major tracer migration was found to be concentrated to a few major flow paths. Two additional fracture zones originally detected within this project, were found to transport portions of the injected tracer. The radar results combined with the tracer breakthrough data were used to estimate the area with tracer transport as well as flow porosity and the wetted surface. (orig.)

  20. Early forecasting of crop condition using an integrative remote sensing method for corn and soybeans in Iowa and Illinois, USA

    Science.gov (United States)

    Seo, Bumsuk; Lee, Jihye; Kang, Sinkyu

    2017-04-01

    The weather-related risks in crop production is not only crucial for farmers but also for market participants and policy makers since securing food supply is an important issue for society. While crop growth condition and phenology are essential information about such risks, the extensive observations on those are often non-existent in many parts of the world. In this study, we have developed a novel integrative approach to remotely sense crop growth condition and phenology at a large scale. For corn and soybeans in Iowa and Illinois of USA (2003-2014), we assessed crop growth condition and crop phenology by EO data and validated it against the United States Department of Agriculture (USDA) National Agriculture Statistics System (NASS) crop statistics. For growth condition, we used two distinguished approaches to acquire crop condition indicators: a process-based crop growth modelling and a satellite NDVI based method. Based on their pixel-wise historic distributions, we determined relative growth conditions and scaled-down to the state-level. For crop phenology, we calculated three crop phenology metrics [i.e., start of season (SOS), end of season (EOS), and peak of season (POS)] at the pixel level from MODIS 8-day Normalized Difference Vegetation Index (NDVI). The estimates were compared with the Crop Progress and Condition (CPC) data of NASS. For the condition, the state-level 10-day estimates showed a moderate agreement (RMSE 70%). Notably, the condition estimates corresponded to the severe soybeans disease in 2003 and the drought in 2012 for both crops. For the phenology, the average RMSE of the estimates was 8.6 day for the all three metrics. The average |ME| was smaller than 1.0 day after bias correction. The proposed method enables us to evaluate crop growth at any given period and place. Global climate changes are increasing the risk in agricultural production such as long-term drought. We hope that the presented remote sensing method for crop condition

  1. Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty

    Science.gov (United States)

    Katharine White; Jennifer Pontius; Paul Schaberg

    2014-01-01

    Current remote sensing studies of phenology have been limited to coarse spatial or temporal resolution and often lack a direct link to field measurements. To address this gap, we compared remote sensing methodologies using Landsat Thematic Mapper (TM) imagery to extensive field measurements in a mixed northern hardwood forest. Five vegetation indices, five mathematical...

  2. Seismotectonic zoning of Azerbaijan territory

    Science.gov (United States)

    Kangarli, Talat; Aliyev, Ali; Aliyev, Fuad; Rahimov, Fuad

    2017-04-01

    Studying of the space-time correlation and consequences effect between tectonic events and other geological processes that have created modern earth structure still remains as one of the most important problems in geology. This problem is especially important for the East Caucasus-South Caspian geodynamic zone. Being situated at the eastern part of the Caucasian strait, this zone refers to a center of Alpine-Himalayan active folded belt, and is known as a complex tectonic unit with jointing heterogeneous structural-substantial complexes arising from different branches of the belt (Doburja-Caucasus-Kopetdag from the north and Pyrenean-Alborz from the south with Kura and South Caspian zone). According to GPS and precise leveling data, activity of regional geodynamic processes shows intensive horizontal and vertical movements of the Earth's crust as conditioned by collision of the Arabian and Eurasian continental plates continuing since the end of Miocene. So far studies related to the regional of geology-geophysical data, periodically used for the geological and tectonic modeling of the environment mainly based on the fixing ideology. There still remains a number of uncertainties in solution of issues related to regional geology, tectonics and magmatism, structure and interrelation of different structural zones, space-time interrelations between onshore and offshore complexes, etc. At the same time large dataset produced by surface geological surveys, deep geological mapping of on- and offshore areas with the use of seismic and electrical reconnaissance and geophysical field zoning methods, deep well drilling and remote sensing activities. Conducted new studies produced results including differentiation of formerly unknown nappe complexes of the different ages and scales within the structure of mountain-fold zones, identification of new zones containing ophiolites in their section, outlining of currently active faulting areas, geophysical interpretation of the deep

  3. The Linearized Bregman Method for Frugal Full-waveform Inversion with Compressive Sensing and Sparsity-promoting

    Science.gov (United States)

    Chai, Xintao; Tang, Genyang; Peng, Ronghua; Liu, Shaoyong

    2018-03-01

    Full-waveform inversion (FWI) reconstructs the subsurface properties from acquired seismic data via minimization of the misfit between observed and simulated data. However, FWI suffers from considerable computational costs resulting from the numerical solution of the wave equation for each source at each iteration. To reduce the computational burden, constructing supershots by combining several sources (aka source encoding) allows mitigation of the number of simulations at each iteration, but it gives rise to crosstalk artifacts because of interference between the individual sources of the supershot. A modified Gauss-Newton FWI (MGNFWI) approach showed that as long as the difference between the initial and true models permits a sparse representation, the ℓ _1-norm constrained model updates suppress subsampling-related artifacts. However, the spectral-projected gradient ℓ _1 (SPGℓ _1) algorithm employed by MGNFWI is rather complicated that makes its implementation difficult. To facilitate realistic applications, we adapt a linearized Bregman (LB) method to sparsity-promoting FWI (SPFWI) because of the efficiency and simplicity of LB in the framework of ℓ _1-norm constrained optimization problem and compressive sensing. Numerical experiments performed with the BP Salt model, the Marmousi model and the BG Compass model verify the following points. The FWI result with LB solving ℓ _1-norm sparsity-promoting problem for the model update outperforms that generated by solving ℓ _2-norm problem in terms of crosstalk elimination and high-fidelity results. The simpler LB method performs comparably and even superiorly to the complicated SPGℓ _1 method in terms of computational efficiency and model quality, making the LB method a viable alternative for realistic implementations of SPFWI.

  4. Soil processes and functions across an international network of critical zone observations: introduction to experimental methods and initial results

    NARCIS (Netherlands)

    Banwart, S.; Menon, M.; Bernasconi, S.M.; Bloem, J.; Ruiter, de P.C.; Weng, L.P.

    2012-01-01

    Growth in human population and demand for wealth creates ever-increasing pressure on global soils, leading to soil losses and degradation worldwide. Critical Zone science studies the impact linkages between these pressures, the resulting environmental state of soils, and potential interventions to

  5. Selected geomorphological methods assessing neotectonic evolution of the seismoactive Hronov-Poříčí Fault Zone

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Vladimír; Štěpančíková, Petra; Vilímek, V.

    2006-01-01

    Roč. 6, č. 1 (2006), s. 14-22 ISSN 1335-9541 R&D Projects: GA ČR(CZ) GD205/05/H020 Institutional research plan: CEZ:AV0Z30460519 Keywords : Hronov-Poříčí Fault Zone * seismic activity * neotectonic evolution Subject RIV: DB - Geology ; Mineralogy

  6. A simple method to correct the results of acoustic surveys for fish hidden in the dead zone

    Czech Academy of Sciences Publication Activity Database

    Tušer, Michal; Prchalová, Marie; Mrkvička, Tomáš; Frouzová, Jaroslava; Čech, Martin; Peterka, Jiří; Jůza, Tomáš; Vašek, Mojmír; Kratochvíl, Michal; Draštík, Vladislav; Kubečka, Jan

    2013-01-01

    Roč. 29, č. 2 (2013), s. 358-363 ISSN 0175-8659 R&D Projects: GA MZe(CZ) QH81046 Institutional support: RVO:60077344 Keywords : acoustic dead zone * benthic gillnet * freshwater benthic habitats * bottom slope Subject RIV: EH - Ecology, Behaviour Impact factor: 0.903, year: 2013

  7. [Use of modern contraceptive methods in the Democratic Republic of the Congo: prevalence and barriers in the health zone of Dibindi, Mbuji-Mayi].

    Science.gov (United States)

    Ntambue, Abel Mukengeshayi; Tshiala, Rachel Ngalula; Malonga, Françoise Kaj; Ilunga, Tabitha Mpoyi; Kamonayi, Josaphat Mulumba; Kazadi, Simon Tshimankinda; Matungulu, Charles Matungu; Musau, Angel Nkola; Mulamba, Diese; Dramaix-Wilmet, Michèle; Donnen, Philippe

    2017-01-01

    This study aimed to determine modern contraceptive prevalence and the barriers to using modern contraceptive methods among the couples in Dibindi health zone, Mbuji-Mayi, in the Democratic Republic of the Congo. We conducted a cross-sectional descriptive study from May to June 2015. Nonpregnant married women aged 15-49 years old at the time of the investigation, living in Dibindi health zone for two years and having freely consented to participate in the study were included. Data were collected by open-ended interview of these women. Modern contraceptive prevalence was referred to women who were currently using, at the time of the investigation, modern contraceptives. The comparison between proportions was performed at the significance threshold of 5%. Bonferroni's test was used to compare, two by two, the proportions of barriers to using modern contraceptive methods. Modern contraceptive prevalence in Dibindi was 18.4% in 2015. It was low with regard to family planning services available in this health zone. Several women refused to use modern contraceptive methods despite available information because of their desire for motherhood, religious prohibition, opposition on the part of their husband and fear of side effects. Sufficient client-centered or couple-centered information and family planning information should be strengthened in order to eliminate the false beliefs and to increase the use of modern contraceptive methods.

  8. Estimation of bias with the single-zone assumption in measurement of residential air exchange using the perfluorocarbon tracer gas method.

    Science.gov (United States)

    Van Ryswyk, K; Wallace, L; Fugler, D; MacNeill, M; Héroux, M È; Gibson, M D; Guernsey, J R; Kindzierski, W; Wheeler, A J

    2015-12-01

    Residential air exchange rates (AERs) are vital in understanding the temporal and spatial drivers of indoor air quality (IAQ). Several methods to quantify AERs have been used in IAQ research, often with the assumption that the home is a single, well-mixed air zone. Since 2005, Health Canada has conducted IAQ studies across Canada in which AERs were measured using the perfluorocarbon tracer (PFT) gas method. Emitters and detectors of a single PFT gas were placed on the main floor to estimate a single-zone AER (AER(1z)). In three of these studies, a second set of emitters and detectors were deployed in the basement or second floor in approximately 10% of homes for a two-zone AER estimate (AER(2z)). In total, 287 daily pairs of AER(2z) and AER(1z) estimates were made from 35 homes across three cities. In 87% of the cases, AER(2z) was higher than AER(1z). Overall, the AER(1z) estimates underestimated AER(2z) by approximately 16% (IQR: 5-32%). This underestimate occurred in all cities and seasons and varied in magnitude seasonally, between homes, and daily, indicating that when measuring residential air exchange using a single PFT gas, the assumption of a single well-mixed air zone very likely results in an under prediction of the AER. The results of this study suggest that the long-standing assumption that a home represents a single well-mixed air zone may result in a substantial negative bias in air exchange estimates. Indoor air quality professionals should take this finding into consideration when developing study designs or making decisions related to the recommendation and installation of residential ventilation systems. © 2014 Her Majesty the Queen in Right of Canada. Indoor Air published by John Wiley & Sons Ltd Reproduced with the permission of the Minister of Health Canada.

  9. Stope Stability Assessment and Effect of Horizontal to Vertical Stress Ratio on the Yielding and Relaxation Zones Around Underground Open Stopes Using Empirical and Finite Element Methods

    Science.gov (United States)

    Sepehri, Mohammadali; Apel, Derek; Liu, Wei

    2017-09-01

    Predicting the stability of open stopes can be a challenging task for underground mine engineers. For decades, the stability graph method has been used as the first step of open stope design around the world. However, there are some shortcomings with this method. For instance, the stability graph method does not account for the relaxation zones around the stopes. Another limitation of the stability graph is that this method cannot to be used to evaluate the stability of the stopes with high walls made of backfill materials. However, there are several analytical and numerical methods that can be used to overcome these limitations. In this study, both empirical and numerical methods have been used to assess the stability of an open stope located between mine levels N9225 and N9250 at Diavik diamond underground mine. It was shown that the numerical methods can be used as complementary methods along with other analytical and empirical methods to assess the stability of open stopes. A three dimensional elastoplastic finite element model was constructed using Abaqus software. In this paper a sensitivity analysis was performed to investigate the impact of the stress ratio "k" on the extent of the yielding and relaxation zones around the hangingwall and footwall of the understudy stope.

  10. Smart Sensing of the Aux. Feed-water Pump Performance in NPP Severe Accidents Using Advanced GMDH Method

    Energy Technology Data Exchange (ETDEWEB)

    No, Young Gyu; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    In order to develop and verify the models, a number of data obtained by simulating station black out (SBO) scenario for the optimized power reactor 1000 (OPR1000) using MARS code were used. Most of monitoring systems for component have been suggested by using the directly measured data. However, it is very difficult to acquire data related to safety-critical component' status. Therefore, it is necessary to develop the new method that combines the data-based equipped with learning system and data miming technique. Many data-based modeling methods have been applied successfully to nuclear engineering area, such as signal validation, plant diagnostics and event identification. Also, the data miming is the process of analyzing data from different perspectives and summarizing it into useful information. In this study, the smart sensing technique was developed using advanced group method of data handing (GMDH) model. The original GMDH is an inductive self organizing algebraic model. The advanced GMDH model is equipped with a fuzzy concept. The proposed advanced GMDH model enhances the original GMDH model by reducing the effect of outliers and noise. The advanced GMDH uses different weightings according to their importance which is specified by the fuzzy membership grade. The developed model was verified using SBO accident simulation data for the OPR1000 nuclear power plant acquired with MARS code. Also, the advanced GMDH model was trained using the simulated development data and verified with simulated test data. The development and test data sets were independent. The simulation results show that the performance of the developed advanced GMDH model was very satisfactory, as shown in Table 1. Therefore, if the developed model can be optimized using diverse and specific data, it will be possible to predict the performance of Aux. feed water pump accurately.

  11. Automatic Extraction of Urban Built-Up Area Based on Object-Oriented Method and Remote Sensing Data

    Science.gov (United States)

    Li, L.; Zhou, H.; Wen, Q.; Chen, T.; Guan, F.; Ren, B.; Yu, H.; Wang, Z.

    2018-04-01

    Built-up area marks the use of city construction land in the different periods of the development, the accurate extraction is the key to the studies of the changes of urban expansion. This paper studies the technology of automatic extraction of urban built-up area based on object-oriented method and remote sensing data, and realizes the automatic extraction of the main built-up area of the city, which saves the manpower cost greatly. First, the extraction of construction land based on object-oriented method, the main technical steps include: (1) Multi-resolution segmentation; (2) Feature Construction and Selection; (3) Information Extraction of Construction Land Based on Rule Set, The characteristic parameters used in the rule set mainly include the mean of the red band (Mean R), Normalized Difference Vegetation Index (NDVI), Ratio of residential index (RRI), Blue band mean (Mean B), Through the combination of the above characteristic parameters, the construction site information can be extracted. Based on the degree of adaptability, distance and area of the object domain, the urban built-up area can be quickly and accurately defined from the construction land information without depending on other data and expert knowledge to achieve the automatic extraction of the urban built-up area. In this paper, Beijing city as an experimental area for the technical methods of the experiment, the results show that: the city built-up area to achieve automatic extraction, boundary accuracy of 2359.65 m to meet the requirements. The automatic extraction of urban built-up area has strong practicality and can be applied to the monitoring of the change of the main built-up area of city.

  12. Controlled synthesis of ZnO hollow microspheres via precursor-template method and its gas sensing property

    International Nuclear Information System (INIS)

    Tian, Yu; Li, Jinchai; Xiong, Hui; Dai, Jiangnan

    2012-01-01

    Highlights: ► Zn powder as precursor template for synthesis ZnO hollow spheres. ► Different precursor templates result in different ZnO nanostructures. ► Different experimental conditions enable growth of different surface morphologies of ZnO sphere. ► ZnO hollow sphere materials have good gas sensing performance for detecting ethanol gas. - Abstract: Using Zn powder as precursor templates, ZnO hollow microspheres were successfully prepared by thermal evaporation method and characterized by X-ray diffraction analysis, scanning electron microscope and transmission electron microscope. It was found that different size and shape of precursor resulted in different ZnO nanostructures. When varying experimental conditions, such as air flow rate and working pressure, ZnO hollow spheres with different surface morphologies could be obtained. The advantages of the present synthetic technology are simple, relatively low cost, and high reproducibility. A gas sensor was fabricated from the as-prepared ZnO hollow microspheres and tested to the ethanol gas at different operating temperatures.

  13. Measurement agreement between a newly developed sensing insole and traditional laboratory-based method for footstrike pattern detection in runners.

    Directory of Open Access Journals (Sweden)

    Roy T H Cheung

    Full Text Available This study introduced a novel but simple method to continuously measure footstrike patterns in runners using inexpensive force sensors. Two force sensing resistors were firmly affixed at the heel and second toe of both insoles to collect the time signal of foot contact. A total of 109 healthy young adults (42 males and 67 females were recruited in this study. They ran on an instrumented treadmill at 0°, +10°, and -10° inclinations and attempted rearfoot, midfoot, and forefoot landings using real time visual biofeedback. Intra-step strike index and onset time difference between two force sensors were measured and analyzed with univariate linear regression. We analyzed 25,655 footfalls and found that onset time difference between two sensors explained 80-84% of variation in the prediction model of strike index (R-squared = 0.799-0.836, p<0.001. However, the time windows to detect footstrike patterns on different surface inclinations were not consistent. These findings may allow laboratory-based gait retraining to be implemented in natural running environments to aid in both injury prevention and performance enhancement.

  14. The preparation of ZnO based gas-sensing thin films by ink-jet printing method

    International Nuclear Information System (INIS)

    Shen Wenfeng; Zhao Yan; Zhang Caibei

    2005-01-01

    An ink-jet printing technique was applied to prepare ZnO based gas-sensing thin films. ZnO inks with appropriate viscosity and surface tension were prepared by sol-gel techniques, and printed onto substrates using a commercial printer. After the drying and heating treatment processes, continuous ZnO films were formed and studied by scanning electron microscopy, X-ray diffraction and by a home-made gas sensitivity measuring system. It was found that the morphology and electrical properties of the films changed significantly with the thickness of the films, which can be adjusted simply by printing on the film with increasing frequency. Highest resistance and sensitivity to acetone vapor were obtained when the film was prepared by printing only once on it. Different dopants with certain concentrations could be added into the films by printing with different dopant inks and printing frequency. All Pd, Ag, and ZrO 2 dopants increased both the resistivity and the sensitivity of the films (180 ppm acetone). This work showed that the ink-jet printing technique was a convenient and low cost method to prepare films with controlled film thickness and dopant concentration

  15. Measurement agreement between a newly developed sensing insole and traditional laboratory-based method for footstrike pattern detection in runners

    Science.gov (United States)

    Cheung, Roy T. H.; An, Winko W.; Au, Ivan P. H.; Zhang, Janet H.; Chan, Zoe Y. S.; Man, Alfred; Lau, Fannie O. Y.; Lam, Melody K. Y.; Lau, K. K.; Leung, C. Y.; Tsang, N. W.; Sze, Louis K. Y.; Lam, Gilbert W. K.

    2017-01-01

    This study introduced a novel but simple method to continuously measure footstrike patterns in runners using inexpensive force sensors. Two force sensing resistors were firmly affixed at the heel and second toe of both insoles to collect the time signal of foot contact. A total of 109 healthy young adults (42 males and 67 females) were recruited in this study. They ran on an instrumented treadmill at 0°, +10°, and -10° inclinations and attempted rearfoot, midfoot, and forefoot landings using real time visual biofeedback. Intra-step strike index and onset time difference between two force sensors were measured and analyzed with univariate linear regression. We analyzed 25,655 footfalls and found that onset time difference between two sensors explained 80–84% of variation in the prediction model of strike index (R-squared = 0.799–0.836, p<0.001). However, the time windows to detect footstrike patterns on different surface inclinations were not consistent. These findings may allow laboratory-based gait retraining to be implemented in natural running environments to aid in both injury prevention and performance enhancement. PMID:28599003

  16. STUDY ON LANDSLIDE DISASTER EXTRACTION METHOD BASED ON SPACEBORNE SAR REMOTE SENSING IMAGES – TAKE ALOS PALSAR FOR AN EXAMPLE

    Directory of Open Access Journals (Sweden)

    D. Xue

    2018-04-01

    Full Text Available In this paper, sequence ALOS PALSAR data and airborne SAR data of L-band from June 5, 2008 to September 8, 2015 are used. Based on the research of SAR data preprocessing and core algorithms, such as geocode, registration, filtering, unwrapping and baseline estimation, the improved Goldstein filtering algorithm and the branch-cut path tracking algorithm are used to unwrap the phase. The DEM and surface deformation information of the experimental area were extracted. Combining SAR-specific geometry and differential interferometry, on the basis of composite analysis of multi-source images, a method of detecting landslide disaster combining coherence of SAR image is developed, which makes up for the deficiency of single SAR and optical remote sensing acquisition ability. Especially in bad weather and abnormal climate areas, the speed of disaster emergency and the accuracy of extraction are improved. It is found that the deformation in this area is greatly affected by faults, and there is a tendency of uplift in the southeast plain and western mountainous area, while in the southwest part of the mountain area there is a tendency to sink. This research result provides a basis for decision-making for local disaster prevention and control.

  17. Object-oriented Method of Hierarchical Urban Building Extraction from High-resolution Remote-Sensing Imagery

    Directory of Open Access Journals (Sweden)

    TAO Chao

    2016-02-01

    Full Text Available An automatic urban building extraction method for high-resolution remote-sensing imagery,which combines building segmentation based on neighbor total variations with object-oriented analysis,is presented in this paper. Aimed at different extraction complexity from various buildings in the segmented image,a hierarchical building extraction strategy with multi-feature fusion is adopted. Firstly,we extract some rectangle buildings which remain intact after segmentation through shape analysis. Secondly,in order to ensure each candidate building target to be independent,multidirectional morphological road-filtering algorithm is designed which can separate buildings from the neighboring roads with similar spectrum. Finally,we take the extracted buildings and the excluded non-buildings as samples to establish probability model respectively,and Bayesian discriminating classifier is used for making judgment of the other candidate building objects to get the ultimate extraction result. The experimental results have shown that the approach is able to detect buildings with different structure and spectral features in the same image. The results of performance evaluation also support the robustness and precision of the approach developed.

  18. Deforestation and Rice: Using Methods in Modeling and Remote Sensing to Project Patterns of Forest Change in Eastern Madagascar

    Science.gov (United States)

    Armstrong, A. H.; Fatoyinbo, T. E.; Fischer, R.; Huth, A.; Shugart, H. H.

    2013-12-01

    In the species rich tropics, forest conservation is often eclipsed by anthropogenic disturbance, resulting in a heightened need for an accurate assessment of biomass and the gaining of predictive capability before these ecosystems disappear. The combination of multi-temporal remote sensing data, field data and forest growth modeling to quantify carbon stocks and flux is therefore of great importance. In this study, we utilize these methods to (1) improve forest biomass and carbon flux estimates for the study region in Eastern Madagascar, and (2) initialize an individual-based growth model that incorporates the anthropogenic factors causing deforestation to project ecosystem response to future environmental change. Recent studies have shown that there is a direct correlation between the international rice market and rates of deforestation in tropical countries such as Madagascar (see Minten et al., 2006). Further, although law protects the remaining forest areas, dictatorships and recent political unrest have lead to poor or non-existent enforcement of precious wood and forest protection over the past 35 years. Our approach combined multi-temporal remote sensing analysis and ecological modeling using a theoretical and mathematical approach to assess biomass change and to understand how tree growth and life history (growth response patterns) relate to past and present economic variability in Madagascar forests of the eastern Toamasina region. We measured rates of change of deforestation with respect to politics and the price of rice by classifying and comparing biomass using 30m Landsat during 5 political regime time periods (1985-1992, 1993-1996, 1997-2001, 2002-2008, 2009 to present). Forest biomass estimations were calibrated using forest inventory data collected over 3 growing seasons over the study region (130 small circular plots in primary forest). This information was then built into the previously parameterized (Armstrong et al., in prep and Fischer et al in

  19. The approximate thermal-model-testing method for non-stationary temperature fields in central zones of fast reactor assemblies

    International Nuclear Information System (INIS)

    Mikhin, V.I.; Matukhin, N.M.

    2000-01-01

    The approach to generalization of the non-stationary heat exchange data for the central zones of the nuclear reactor fuel assemblies and the approximate thermal-model-testing criteria are proposed. The fuel assemblies of fast and water-cooled reactors with different fuel compositions have been investigated. The reason of the non-stationary heat exchange is the fuel-energy-release time dependence. (author)

  20. A Method for Deriving All-Sky Evapotranspiration From the Synergistic Use of Remotely Sensed Images and Meteorological Data

    Science.gov (United States)

    Leng, Pei; Li, Zhao-Liang; Duan, Si-Bo; Tang, Ronglin; Gao, Mao-Fang

    2017-12-01

    Evapotranspiration (ET) is an important component of the water and energy cycle. The present study develops a practical approach for generating all-sky ET with the synergistic use of satellite images and meteorological data. In this approach, the ET over clear-sky pixels is estimated from a two-stage land surface temperature (LST)/fractional vegetation cover feature space method where the dry/wet edges are determined from theoretical calculations. For cloudy pixels, the Penman-Monteith equation is used to calculate the ET where no valid remotely sensed LST is available. An evaluation of the method with ET collected at ground-based large aperture scintillometer measurements at the Yucheng Comprehensive Experimental Station (YCES) in China is performed over a growth period from April to October 2010. The results show that the root-mean-square error (RMSE) and bias over clear-sky pixels are 57.3 W/m2 and 18.2 W/m2, respectively, whereas an RMSE of 69.3 W/m2 with a bias of 12.3 W/m2 can be found over cloudy pixels. Moreover, a reasonable overall RMSE of 65.3 W/m2 with a bias of 14.4 W/m2 at the YCES can be obtained under all-sky conditions, indicating a promising prospect for the derivation of all-sky ET using currently available satellite and meteorological data at a regional or global scale in future developments.

  1. Making sense of child, early and forced marriage among Syrian refugee girls: a mixed methods study in Lebanon

    Science.gov (United States)

    Bartels, Susan Andrea; Michael, Saja; Roupetz, Sophie; Garbern, Stephanie; Kilzar, Lama; Bergquist, Harveen; Bakhache, Nour; Davison, Colleen; Bunting, Annie

    2018-01-01

    Introduction The Syrian conflict has resulted in over 2.3 million child refugees in the Middle East and the prevalence of early marriage has reportedly increased among displaced Syrian families. This study explores the underlying factors contributing to child marriage among Syrian refugees in Lebanon with the goal of informing community-based strategies to address the issue. Methods In July–August 2016, trained interviewers collected self-interpreted stories in Lebanon using Cognitive Edge’s SenseMaker, a mixed-method data collection tool. Participants included married and unmarried Syrian girls, Syrian parents as well as married and unmarried men. Each participant shared a story about the experiences of Syrian girls and then interpreted the story by plotting their perspectives on a variety of questions. Patterns in the responses were analysed in SPSS and the accompanying qualitative narratives were reviewed to facilitate interpretation of the quantitative results. Results 1422 self-interpreted stories from 1346 unique participants were collected with 40% of shared stories focused on (n=332) or mentioning (n=245) child marriage. Quantitative data summarised the different perspectives of female and male participants. Syrian girls and mothers were more likely to share stories about protection/security and/or education and were more likely to report that girls were overprotected. Male participants were more likely to share stories about financial security as well as sexual exploitation of girls and more often reported that girls were not protected enough. Despite these gendered perspectives, many of the shared narratives highlighted similar themes of financial hardship, lack of educational opportunities and safety concerns around sexual and gender-based violence (SGBV). Conclusions A complex myriad of factors contribute to early marriage including poverty, lack of educational opportunities and concerns about SGBV. Sexual exploitation under the guise of marriage

  2. A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing..

    Science.gov (United States)

    Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying...

  3. System and method for determination of the reflection wavelength of multiple low-reflectivity bragg gratings in a sensing optical fiber

    Science.gov (United States)

    Moore, Jason P. (Inventor)

    2009-01-01

    A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.

  4. Method and apparatus for sensing a desired component of an incident magnetic field using magneto resistive elements biased in different directions

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    1999-01-01

    A method and apparatus for sensing a desired component of a magnetic field using an isotropic magnetoresistive material. This is preferably accomplished by providing a bias field that is parallel to the desired component of the applied magnetic field. The bias field is applied in a first direction relative to a first set of magnetoresistive sensor elements, and in an opposite direction relative to a second set of magnetoresistive sensor elements. In this configuration, the desired component of the incident magnetic field adds to the bias field incident on the first set of magnetoresistive sensor elements, and subtracts from the bias field incident on the second set of magnetoresistive sensor elements. The magnetic field sensor may then sense the desired component of the incident magnetic field by simply sensing the difference in resistance of the first set of magnetoresistive sensor elements and the second set of magnetoresistive sensor elements.

  5. A Novel Wireless Power Transfer-Based Weighed Clustering Cooperative Spectrum Sensing Method for Cognitive Sensor Networks.

    Science.gov (United States)

    Liu, Xin

    2015-10-30

    In a cognitive sensor network (CSN), the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs) becomes very large. In this paper, a novel wireless power transfer (WPT)-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF) energy of the primary node (PN) to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.

  6. A Novel Wireless Power Transfer-Based Weighed Clustering Cooperative Spectrum Sensing Method for Cognitive Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2015-10-01

    Full Text Available In a cognitive sensor network (CSN, the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs becomes very large. In this paper, a novel wireless power transfer (WPT-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF energy of the primary node (PN to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.

  7. A micro-kinematic framework for vorticity analysis in polyphase shear zones using integrated field, microstructural and crystallographic orientation-dispersion methods

    Science.gov (United States)

    Kruckenberg, S. C.; Michels, Z. D.; Parsons, M. M.

    2017-12-01

    We present results from integrated field, microstructural and textural analysis in the Burlington mylonite zone (BMZ) of eastern Massachusetts to establish a unified micro-kinematic framework for vorticity analysis in polyphase shear zones. Specifically, we define the vorticity-normal surface based on lattice-scale rotation axes calculated from electron backscatter diffraction data using orientation statistics. In doing so, we objectively identify a suitable reference frame for rigid grain methods of vorticity analysis that can be used in concert with textural studies to constrain field- to plate-scale deformation geometries without assumptions that may bias tectonic interpretations, such as relationships between kinematic axes and fabric forming elements or the nature of the deforming zone (e.g., monoclinic vs. triclinic shear zones). Rocks within the BMZ comprise a heterogeneous mix of quartzofeldspathic ± hornblende-bearing mylonitic gneisses and quartzites. Vorticity axes inferred from lattice rotations lie within the plane of mylonitic foliation perpendicular to lineation - a pattern consistent with monoclinic deformation geometries involving simple shear and/or wrench-dominated transpression. The kinematic vorticity number (Wk) is calculated using Rigid Grain Net analysis and ranges from 0.25-0.55, indicating dominant general shear. Using the calculated Wk values and the dominant geographic fabric orientation, we constrain the angle of paleotectonic convergence between the Nashoba and Avalon terranes to 56-75º with the convergence vector trending 142-160° and plunging 3-10°. Application of the quartz recrystallized grain size piezometer suggests differential stresses in the BMZ mylonites ranging from 44 to 92 MPa; quartz CPO patterns are consistent with deformation at greenschist- to amphibolite-facies conditions. We conclude that crustal strain localization in the BMZ involved a combination of pure and simple shear in a sinistral reverse transpressional

  8. A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System, Atlas Mountains and adjacent zones

    Science.gov (United States)

    Fullea, J.; Fernàndez, M.; Zeyen, H.; Vergés, J.

    2007-02-01

    We present a method based on the combination of elevation and geoid anomaly data together with thermal field to map crustal and lithospheric thickness. The main assumptions are local isostasy and a four-layered model composed of crust, lithospheric mantle, sea water and the asthenosphere. We consider a linear density gradient for the crust and a temperature dependent density for the lithospheric mantle. We perform sensitivity tests to evaluate the effect of the variation of the model parameters and the influence of RMS error of elevation and geoid anomaly databases. The application of this method to the Gibraltar Arc System, Atlas Mountains and adjacent zones reveals the presence of a lithospheric thinning zone, SW-NE oriented. This zone affects the High and Middle Atlas and extends from the Canary Islands to the eastern Alboran Basin and is probably linked with a similarly trending zone of thick lithosphere constituting the western Betics, eastern Rif, Rharb Basin, and Gulf of Cadiz. A number of different, even mutually opposite, geodynamic models have been proposed to explain the origin and evolution of the study area. Our results suggest that a plausible slab-retreating model should incorporate tear and asymmetric roll-back of the subducting slab to fit the present-day observed lithosphere geometry. In this context, the lithospheric thinning would be caused by lateral asthenospheric flow. An alternative mechanism responsible for lithospheric thinning is the presence of a hot magmatic reservoir derived from a deep ancient plume centred in the Canary Island, and extending as far as Central Europe.

  9. A Bayesian method to quantify azimuthal anisotropy model uncertainties: application to global azimuthal anisotropy in the upper mantle and transition zone

    Science.gov (United States)

    Yuan, K.; Beghein, C.

    2018-04-01

    Seismic anisotropy is a powerful tool to constrain mantle deformation, but its existence in the deep upper mantle and topmost lower mantle is still uncertain. Recent results from higher mode Rayleigh waves have, however, revealed the presence of 1 per cent azimuthal anisotropy between 300 and 800 km depth, and changes in azimuthal anisotropy across the mantle transition zone boundaries. This has important consequences for our understanding of mantle convection patterns and deformation of deep mantle material. Here, we propose a Bayesian method to model depth variations in azimuthal anisotropy and to obtain quantitative uncertainties on the fast seismic direction and anisotropy amplitude from phase velocity dispersion maps. We applied this new method to existing global fundamental and higher mode Rayleigh wave phase velocity maps to assess the likelihood of azimuthal anisotropy in the deep upper mantle and to determine whether previously detected changes in anisotropy at the transition zone boundaries are robustly constrained by those data. Our results confirm that deep upper-mantle azimuthal anisotropy is favoured and well constrained by the higher mode data employed. The fast seismic directions are in agreement with our previously published model. The data favour a model characterized, on average, by changes in azimuthal anisotropy at the top and bottom of the transition zone. However, this change in fast axes is not a global feature as there are regions of the model where the azimuthal anisotropy direction is unlikely to change across depths in the deep upper mantle. We were, however, unable to detect any clear pattern or connection with surface tectonics. Future studies will be needed to further improve the lateral resolution of this type of model at transition zone depths.

  10. Making sense of child, early and forced marriage among Syrian refugee girls: a mixed methods study in Lebanon.

    Science.gov (United States)

    Bartels, Susan Andrea; Michael, Saja; Roupetz, Sophie; Garbern, Stephanie; Kilzar, Lama; Bergquist, Harveen; Bakhache, Nour; Davison, Colleen; Bunting, Annie

    2018-01-01

    The Syrian conflict has resulted in over 2.3 million child refugees in the Middle East and the prevalence of early marriage has reportedly increased among displaced Syrian families. This study explores the underlying factors contributing to child marriage among Syrian refugees in Lebanon with the goal of informing community-based strategies to address the issue. In July-August 2016, trained interviewers collected self-interpreted stories in Lebanon using Cognitive Edge's SenseMaker, a mixed-method data collection tool. Participants included married and unmarried Syrian girls, Syrian parents as well as married and unmarried men. Each participant shared a story about the experiences of Syrian girls and then interpreted the story by plotting their perspectives on a variety of questions. Patterns in the responses were analysed in SPSS and the accompanying qualitative narratives were reviewed to facilitate interpretation of the quantitative results. 1422 self-interpreted stories from 1346 unique participants were collected with 40% of shared stories focused on (n=332) or mentioning (n=245) child marriage. Quantitative data summarised the different perspectives of female and male participants. Syrian girls and mothers were more likely to share stories about protection/security and/or education and were more likely to report that girls were overprotected. Male participants were more likely to share stories about financial security as well as sexual exploitation of girls and more often reported that girls were not protected enough. Despite these gendered perspectives, many of the shared narratives highlighted similar themes of financial hardship, lack of educational opportunities and safety concerns around sexual and gender-based violence (SGBV). A complex myriad of factors contribute to early marriage including poverty, lack of educational opportunities and concerns about SGBV. Sexual exploitation under the guise of marriage is a reality for some Syrian girls. Gender

  11. Method for detecting and locating sand-producing zones in friable, unconsolidated sandstone formations of subterranean formations

    International Nuclear Information System (INIS)

    Sparlin, D.D.

    1976-01-01

    A sand-producing zone in a friable, unconsolidated sandstone formation traversed by a well bore is found by first introducing into the reservoir about 0.1--10 gallons of a radioactive mixture per foot of vertical formation being treated, the mixture containing about 0.1--1 lb of radioactive material per gallon of carrier fluid. A dispersing agent containing a deemulsifying surfactant may then be injected into the formation. The radioactivity in the well bore is recorded and the reservoir is returned to production. Another radioactivity log is run and a decrease in radioactivity indicates the location of the sand-producing portions of the formation

  12. Harmful Algal Blooms of the West Florida Shelf and Campeche Bank: Visualization and Quantification using Remote Sensing Methods

    Science.gov (United States)

    Soto Ramos, Inia Mariel

    Harmful Algal Blooms (HABs) in the Gulf of Mexico (GOM) are natural phenomena that can have negative impacts on marine ecosystems on which human health and the economy of some Gulf States depends. Many of the HABs in the GOM are dominated by the toxic dinoflagellate Karenia brevis. Non-toxic phytoplankton taxa such as Scrippsiella sp. also form intense blooms off the Mexican coast that result in massive fish mortality and economic losses, particularly as they may lead to anoxia. The main objectives of this dissertation were to (1) evaluate and improve the techniques developed for detection of Karenia spp. blooms on the West Florida Shelf (WFS) using satellite remote sensing methods, (2) test the use of these methods for waters in the GOM, and (3) use the output of these techniques to better understand the dynamics and evolution of Karenia spp. blooms in the WFS and off Mexico. The first chapter of this dissertation examines the performance of several Karenia HABs detection techniques using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images and historical ground truth observations collected on the WFS from August 2002 to December 2011. A total of 2323 in situ samples collected by the Florida Fish and Wildlife Research Institute to test for Karenia spp. matched pixels with valid ocean color satellite observations over this period. This dataset was used to systematically optimize variables and coefficients used in five published HAB detection methods. Each technique was tested using a set of metrics that included the F-Measure (FM). Before optimization, the average FM for all techniques was 0.47. After optimization, the average FM increased to 0.59, and false positives decreased ~50%. The addition of a Fluorescence Line Height (FLH) criterion improved the performance of every method. A new practical method was developed using a combination of FLH and Remote Sensing Reflectance at 555 nm (Rrs555-FLH). The new method resulted in an FM of 0.62 and 3

  13. Fault zone hydrogeology

    Science.gov (United States)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.

  14. Rock face stability analysis and 3D geological mapping in Yosemite Valley (California): new remote sensing methods

    Science.gov (United States)

    Matasci, Battista; Carrea, Dario; Jaboyedoff, Michel; Metzger, Richard; Stock, Greg; Putnam, Roger

    2013-04-01

    a TLS point cloud. We validated the mapping with field observations and high resolution digital photographs. TLS provides 3D data to precisely characterize the morphology of vertical and overhanging rock faces. With the recently developed methods it is possible to remotely map geologic limits and exfoliation joints, as well as to assess the density of potential failure mechanisms directly on the TLS point clouds. These advances in remote sensing methods provide new tools to locate the most probable future rockfall sources and provide key elements needed to evaluate the potential rockfall hazard of every area of the cliffs in Yosemite Valley.

  15. Discrimination of plant root zone water status in greenhouse production based on phenotyping and machine learning techniques

    OpenAIRE

    Guo, Doudou; Juan, Jiaxiang; Chang, Liying; Zhang, Jingjin; Huang, Danfeng

    2017-01-01

    Plant-based sensing on water stress can provide sensitive and direct reference for precision irrigation system in greenhouse. However, plant information acquisition, interpretation, and systematical application remain insufficient. This study developed a discrimination method for plant root zone water status in greenhouse by integrating phenotyping and machine learning techniques. Pakchoi plants were used and treated by three root zone moisture levels, 40%, 60%, and 80% relative water content...

  16. GIS based Grid overlay method versus modeling approach – A comparative study for landslide hazard zonation (LHZ in Meta Robi District of West Showa Zone in Ethiopia

    Directory of Open Access Journals (Sweden)

    Tarun Kumar Raghuvanshi

    2015-12-01

    Full Text Available The present study area is located in Meta Robi District of West Showa Zone in Oromiya Regional State in Ethiopia. The main objective of the present study was to evaluate landslide hazard zonation (LHZ by utilizing ‘Grid overlay’ and ‘GIS modeling’ approaches. Also, it was attempted to know the effectiveness of the two methods. The methodology followed was based on the analysis of past landslides in the area. For the present study six causative factors namely; slope material, slope, aspect, elevation, land use and land cover and groundwater surface traces were considered. Later, Landslide Susceptibility Index (LSI was computed based on the relative influence of causative factors on past landslides. For the ‘Grid overlay’ method a grid with cells 10 m by 10 m was overlaid over the study area and later it was geo-processed to delineate various sub-classes of each causative factor. LSI values were assigned to each sub-causative factor within each grid cell and a ‘Total Landslide Susceptibility Index’ was calculated to produce the LHZ map. For ‘GIS modeling’ the same causative factors and similar LSI values were utilized. In the case of LHZ map prepared by the ‘Grid overlay’ method about 82% of past landslides fall within ‘very high hazard’ or ‘high hazard’ zones whereas in the case of ‘GIS modeling’ about 95% of past landslides fall within ‘very high hazard’ or ‘high hazard’ zones. Finally, the validation showed that ‘GIS modeling’ produced better LHZ map. Also, ‘Grid overlay’ method is more tedious and time consuming as compared to GIS modeling.

  17. Optimal Control Method of Parabolic Partial Differential Equations and Its Application to Heat Transfer Model in Continuous Cast Secondary Cooling Zone

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2015-01-01

    Full Text Available Our work is devoted to a class of optimal control problems of parabolic partial differential equations. Because of the partial differential equations constraints, it is rather difficult to solve the optimization problem. The gradient of the cost function can be found by the adjoint problem approach. Based on the adjoint problem approach, the gradient of cost function is proved to be Lipschitz continuous. An improved conjugate method is applied to solve this optimization problem and this algorithm is proved to be convergent. This method is applied to set-point values in continuous cast secondary cooling zone. Based on the real data in a plant, the simulation experiments show that the method can ensure the steel billet quality. From these experiment results, it is concluded that the improved conjugate gradient algorithm is convergent and the method is effective in optimal control problem of partial differential equations.

  18. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2014-06-01

    after the withdrawal of water, for the estimation of damage and flood recovery. Usage of satellite images in detectingearthquakes Remote sensing is widely used in the procedure of detecting and locating earthquakes. Earthquakes can be detected by the combination of geophysical methods with multispectral and radar images. By combining these nethods, we can monitor the conditions of seizmic areas. The obtained information can be computed and sent to information centres in stationary stations where the modelling of earthquake-affected terrains is carried out. Usage of satellite images in monitoring volcanos Remote sensing has been used ifor examining a large number of active vulcanos. Monitoring is performed several times, during and after eruptions. The modelling of volcanic areas enables the definition of lava-effusion zones,and  potentially dangerous zones, which is further used for  planning the protection of affected areas. Usage of satellite images in monitoring fire (blaze One of important methods of investigating, forecasting and monitoring forest fires is remote sensing. Satellite images are valuable in discovering fires and in mapping affected areas within the geographical-information system (GIS, as well as in the estimation of demage caused by fire. Satellite images can also be usedto estimate the temperature on the Earth surface. Conclusion Remote sensing becomes an increasingly important and unavoidable method of the acquisition of data on  geospacein general. The importance of thus obtained data  is invaluable in all phases of monitoring  catastrophic events, from detecting their onsets through monitoring their spreading and effects  to the phase of recovery. New generations of sensors enable systematic monitoring, recording and measuring different data important for detecting changes and processes in the sea, on the ground and in the atmosphere. The procedures of remote sensing enable surveying (recording and registration of different natural

  19. Method to map one-dimensional electronic wave function by using multiple Brillouin zone angle resolved photoemission

    Directory of Open Access Journals (Sweden)

    Dong-Wook Lee

    2010-10-01

    Full Text Available Angle resolved photoemission spectroscopy (ARPES is a powerful tool to investigate electronic structures in solids and has been widely used in studying various materials. The electronic structure information by ARPES is obtained in the momentum space. However, in the case of one-dimensional system, we here show that we extract the real space information from ARPES data taken over multiple Brillouin zones (BZs. Intensities in the multiple BZs are proportional to the photoemission matrix element which contains information on the coefficient of the Bloch wave function. It is shown that the Bloch wave function coefficients can be extracted from ARPES data, which allows us to construct the real space wave function. As a test, we use ARPES data from proto-typical one-dimensional system SrCuO2 and construct the real space wave function.

  20. SU-8 cantilevers for bio/chemical sensing; Fabrication, characterisation and development of novel read-out methods

    DEFF Research Database (Denmark)

    Nordström, M.; Keller, Stephan Urs; Lillemose, Michael

    2008-01-01

    Here, we present the activities within our research group over the last five years with cantilevers fabricated in the polymer SU-8. We believe that SU-8 is an interesting polymer for fabrication of cantilevers for bio/chemical sensing due to its simple processing and low Young's modulus. We show...

  1. An impedance method for spatial sensing of 3D cell constructs – towards applications in tissue engineering

    DEFF Research Database (Denmark)

    Canali, Chiara; Mazzoni, Chiara; Larsen, Layla Bashir

    2015-01-01

    ) cells were encapsulated in gelatin to form artificial 3D cell constructs and detected when placed in different positions inside large gelatin scaffolds. Taken together, these results open new perspectives for impedance-based sensing technologies for non-invasive monitoring in tissue engineering...

  2. Preparation of Pr-doped SnO{sub 2} hollow nanofibers by electrospinning method and their gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.Q.; Ma, S.Y., E-mail: lwq19891013@126.com; Li, Y.F.; Li, X.B.; Wang, C.Y.; Yang, X.H.; Cheng, L.; Mao, Y.Z.; Luo, J.; Gengzang, D.J.; Wan, G.X.; Xu, X.L.

    2014-08-25

    Highlights: • Pr-doped SnO{sub 2} hollow nanofibers were fabricated by electrospinning. • The crystal structures, surface morphology, chemical state and gas sensing performance were investigated. • The Pr-doped SnO{sub 2} hollow structure exhibited good gas-sensing properties to ethanol at 300 °C. • The relationships between response time (recovery time) and temperature, response time (recovery time) and concentration were investigated. • A sensor mechanism of hollow nanofibers depend on temperature was discussed. - Abstract: Pure and Pr-doped SnO{sub 2} hollow nanofibers were fabricated through a facile single capillary electrospinning and followed by calcination. The properties of as-synthesized nanofibers were characterized by scanning electron microscopy, Brunauer–Emmett–Teller, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Compared with pure fibers, Pr-doped SnO{sub 2} nanofibers exhibited excellent ethanol sensing properties at the optimum temperature of 300 °C. Maximum sensing response to ethanol was received in the fibers with 0.6 wt% Pr. The relationships between response time (recovery time) and temperature, response time (recovery time) and concentration were investigated. The results demonstrated that the high response and relatively short response/recovery time were related to surface area, adsorbed oxygen species and oxygen vacancies.

  3. Hyperspectral sensing of forests

    Science.gov (United States)

    Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash

    2007-11-01

    Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.

  4. Dosimetric sensing and optical properties of ZnO–SnO2 nanocomposites synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Baitha, Pankaj Kr.; Pal, Partha P.; Manam, J.

    2014-01-01

    In this study an effort has been made to investigate the dosimetric sensing and optical properties of ZnO–SnO 2 nanocomposites at different pH values. The nanocomposites samples are irradiated by X-ray and then thermoluminescence (TL) analysis is carried out to investigate the response. The structural details of nanocomposites are characterized by Scanning Electron microscope, X-Ray Powder Diffraction and Fourier Transform Infrared Spectroscopy. Similarly, optical properties were characterized by UV–vis spectroscopy and Photoluminescence spectroscopy. The XRD studies revealed good crystallnity of samples with presence of both phases, ZnO as well as SnO 2 simultaneously. The SEM image revealed nanoflakes and nanoflower shape of ZnO–SnO 2 nanocomposite for sample synthesized at pH 7. Also, nanocube and nanosphere can be seen at higher pH value of 9. The room temperature photoluminescence spectra of ZnO–SnO 2 nanocomposite contain multi peaks at 398 nm, 410 nm, 451 nm, 469 nm, 484 nm, 493 nm and 545 nm at an excitation wavelength of 225 nm, which arises mainly due to oxygen and zinc related defects. The TL glow curve shows intense glow peaks at 346°, 261°, 209° and 153° for the samples synthesized at pH 3, pH 5, pH 7 and pH 9 respectively. The peaks are found to be increased with higher pH values. The peaks are found to be shifted towards lower temperature with higher pH values. The study shows that the ZnO–SnO 2 nano-composite is more developed material than singly ZnO compound or SnO 2 with enhanced opto-electronic and thermal properties and great applications in thermal dosimetry. - Highlights: • ZnO–CNT nanocomposites prepared by coprecipitation method at different pH values. • Sample at different pH show different nanostructures as revealed by SEM. • PL spectra indicate intense peaks related to O 2 and Zn defects for all samples. • TL spectra show peak shift with increasing pH values of samples. • ZnO–CNTs are very effective for both

  5. Photoinduced triplet-state electron transfer of platinum porphyrin: a one-step direct method for sensing iodide with an unprecedented detection limit

    KAUST Repository

    Masih, Dilshad

    2015-02-05

    Here, we report for the first time a one-step direct method for sensing halides in aqueous solution using phosphorescence quenching of platinum-cationic porphyrin. This method offers an easy, rapid, environmentally friendly, ultra-sensitive (with a previously unattained detection limit of 1 × 10−12 M) and economical method for the determination of iodide. To fully understand the reaction mechanism responsible for the phosphorescence quenching process, we have employed cutting-edge time-resolved laser spectroscopy with broadband capabilities.

  6. Numerical and experimental evaluation of the residual stress relaxation and the influence zone due to application of the crack compliance method

    International Nuclear Information System (INIS)

    Sandoval-Pineda, J M; Garcia-Lira, J; Urriolagoitia-Sosa, G; Urriolagoitia-Calderon, G; Hernandez-Gomez, L H; Beltran-Fernandez, J A; RodrIguez-Martinez, R

    2009-01-01

    This paper presents the results concerning an evaluation of the crack compliance method. The research was focused on the relaxation caused by a cut induced to obtain the data required to calculate the residual stress field. The main objective in this research is to establish the optimum place to cut in a specimen that has suffered a failure and how extended is the zone of relaxed stresses. It has been recognized that a crack vanishes the beneficial or detrimental effects of the residual stress fields. This research has been performed in a numerical and experimental way, so results can be compared and FEM on this topic can be assessed.

  7. Numerical and experimental evaluation of the residual stress relaxation and the influence zone due to application of the crack compliance method

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval-Pineda, J M; Garcia-Lira, J [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de IngenierIa Mecanica y Electrica (ESIME), Unidad profesional, Azcapotzalco, Av. de las Granjas No. 682, Col. Sta. Catarina Azcapotzalco, C.P. 02550, Mexico D.F. Mexico (Mexico); Urriolagoitia-Sosa, G; Urriolagoitia-Calderon, G; Hernandez-Gomez, L H; Beltran-Fernandez, J A; RodrIguez-Martinez, R, E-mail: jsandovalp@ipn.m, E-mail: guiurri@hotmail.co [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME). Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. Mexico (Mexico)

    2009-08-01

    This paper presents the results concerning an evaluation of the crack compliance method. The research was focused on the relaxation caused by a cut induced to obtain the data required to calculate the residual stress field. The main objective in this research is to establish the optimum place to cut in a specimen that has suffered a failure and how extended is the zone of relaxed stresses. It has been recognized that a crack vanishes the beneficial or detrimental effects of the residual stress fields. This research has been performed in a numerical and experimental way, so results can be compared and FEM on this topic can be assessed.

  8. Single crystal growth of pure and Nd-doped Y2O3 by flotating zone method with Xe arc lamp imaging furnace

    International Nuclear Information System (INIS)

    Tsuiki, H.; Kitazawa, K.; Fueki, K.; Masumoto, T.; Shiroki, K.

    1980-01-01

    Single crystals of undoped and Nd-doped yttrium oxide were grown by the floating zone method with a Xe arc lamp imaging furnace. The crystals were grown in the and directions. Transparent and subgrain-free single crystals were obtained at a growth rate of 30-60 mm/h for the undoped yttrium oxide. Facets of the cubic [100] and [211] were observed though the high temperature phase of the crystal is hexagonal. Dislocation densities of undoped yttrium oxide are given. (orig./WE)

  9. Land use zones and land use patterns in the Atlantic Zone of Costa Rica : a pattern recognition approach to land use inventory at the sub-regional scale, using remote sensing and GIS, applying an object-oriented and data-driven strategy

    NARCIS (Netherlands)

    Huising, J.

    1993-01-01

    This thesis describes an approach to land use inventory at the sub-regional scale in the Guacimo-Rio Jiménez-Siquirres (GRS) area in the Atlantic Zone of Costa Rica. Therefore, the concept of "land use zones" is introduced. The land use zone (LUZ) plays a central role in the definition of

  10. Mini-lidar sensor for the remote stand-off sensing of chemical/biological substances and method for sensing same

    Science.gov (United States)

    Ray, Mark D.; Sedlacek, Arthur J.

    2003-08-19

    A method and apparatus for remote, stand-off, and high efficiency spectroscopic detection of biological and chemical substances. The apparatus including an optical beam transmitter which transmits a beam having an axis of transmission to a target, the beam comprising at least a laser emission. An optical detector having an optical detection path to the target is provided for gathering optical information. The optical detection path has an axis of optical detection. A beam alignment device fixes the transmitter proximal to the detector and directs the beam to the target along the optical detection path such that the axis of transmission is within the optical detection path. Optical information gathered by the optical detector is analyzed by an analyzer which is operatively connected to the detector.

  11. Mobile teleoperator remote sensing

    International Nuclear Information System (INIS)

    Hall, E.L.

    1986-01-01

    Sensing systems are an important element of mobile teleoperators and robots. This paper discusses certain problems and limitations of vision and other sensing systems with respect to operations in a radiological accident environment. Methods which appear promising for near-term improvements to sensor technology are described. 3 refs

  12. Characterization of textural and hydric heterogeneities in argillaceous geo-materials using induced polarization method: application to the excavation damaged zone (EDZ) of the Tournemire experimental station

    International Nuclear Information System (INIS)

    Okay, Gonca

    2011-01-01

    This Ph-D thesis investigates the potential of clay rocks for deep geological disposal of radioactive waste. Underground excavations are responsible in their vicinity a region, where the clay-rock is damaged or disturbed. This region must to be characterized to ensure the safety of repositories. The extension of the excavation damaged zone (EDZ) and its evolution over time have been investigated thought electrical resistivity and induced polarization methods from three galleries belonging to the French Institute of Radioprotection and Nuclear Safety (IRSN)'s experimental underground research laboratory of Tournemire (Aveyron, France). Time domain induced polarisation indicates the presence of mineralization (e.g., especially pyrite) located in the structural discontinuities such as tectonic fractures (mm-cm), tectonic fault (m) and calcareous nodules (cm). Combined electrical resistivity and Induced Polarization methods show the possibility to delineate textural changes associated to desaturation of the clay-rock induced by the ventilation of galleries. The impact of the desaturation is particularly observed on the gallery's walls. In addition, Spectral Induced Polarization (SIP) tomography results can be used to discriminate the responses of the de-saturated zones from the fractured zones. We have performed laboratory experiments (in the range 1.4 mHz - 12 kHz) using saturated unconsolidated sand-clay mixtures. The results illustrate that the amplitude of polarization is strongly affected by the surface properties of these mixtures (e.g., cation exchange capacity, specific surface area) and by the volumetric clay content. However, the amplitude of polarization is independent of the concentration of electrolyte. The SIP response is also strongly sensitive to the mineralogy of the clays. (author)

  13. A simple, low-cost and robust capillary zone electrophoresis Method with capacitively coupled contactless conductivity detection for the routine determination of four selected penicillins in Money-constrained laboratories

    NARCIS (Netherlands)

    Paul, Prasanta; Sänger-van de Griend, Cari; Adams, Erwin; Van Schepdael, Ann

    2018-01-01

    A simple and robust capillary zone electrophoresis Method was developed and validated for the determination of amoxicillin and clavulanate, ampicillin, phenoxymethyl penicillin (Pen V) as well as flucloxacillin. Capacitively coupled contactless conductivity detection was employed as detection Mode

  14. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  15. Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method

    Science.gov (United States)

    Tian, Li; Wang, Shuxian; Wu, Kui; Wang, Baolin; Yu, Haohai; Zhang, Huaijin; Cai, Huaqiang; Huang, Hui

    2013-12-01

    A neodymium-doped gadolinium scandium gallium garnet (Nd:GSGG) single crystal with dimensions of Φ 5 × 20 mm2 has been grown by means of optical floating zone (OFZ). X-ray powder diffraction (XRPD) result shows that the as-grown Nd:GSGG crystal possesses a cubic structure with space group Ia3d and a cell parameter of a = 1.2561 nm. Effective elemental segregation coefficients of the Nd:GSGG as-grown crystal were calculated by using X-ray fluorescence (XRF). The thermal properties of the Nd:GSGG crystal were systematically studied by measuring the specific heat, thermal expansion and thermal diffusion coefficient, and the thermal conductivity of this crystal was calculated. The absorption and luminescence spectra of Nd:GSGG were measured at room temperature (RT). By using the Judd-Ofelt (J-O) theory, the theoretical radiative lifetime was calculated and compared with the experimental result. Continuous wave (CW) laser performance was achieved with the Nd:GSGG at the wavelength of 1062 nm when it was pumped by a laser diode (LD). A maximum output power of 0.792 W at 1062 nm was obtained with a slope efficiency of 11.89% under a pump power of 7.36 W, and an optical-optical conversion efficiency of 11.72%.

  16. Gas sampling method for determining pollutant concentrations in the flame zone of two swirl-can combustor modules

    Science.gov (United States)

    Duerr, R. A.

    1975-01-01

    A gas sampling probe and traversing mechanism were developed to obtain detailed measurements of gaseous pollutant concentrations in the primary and mixing regions of combustors in order to better understand how pollutants are formed. The gas sampling probe was actuated by a three-degree-of-freedom traversing mechanism and the samples obtained were analyzed by an on-line gas analysis system. The pollutants in the flame zone of two different swirl-can combustor modules were measured at an inlet-air temperature of 590 K, pressure of 6 atmospheres, and reference velocities of 23 and 30 meters per second at a fuel-air ratio of 0.02. Typical results show large spatial gradients in the gaseous pollutant concentration close to the swirl-can module. Average concentrations of unburned hydrocarbons and carbon monoxide decrease rapidly in the downstream wake regions of each module. By careful and detailed probing, the effect of various module design features on pollutant formation can be assessed. The techniques presently developed seem adequate to obtain the desired information.

  17. Influence of gravitational and vibrational convection on the heat- and mass transfer in the melt during crystal growing by Bridgman and floating zone methods

    Science.gov (United States)

    Fedorov, Oleg

    2016-07-01

    Space materials science is one of the priorities of different national and international space programs. The physical processes of heat and mass transfer in microgravity (including effect of g-jitter) is far from complete clarity, especially for important practical technology for producing crystals from the melt. The idea of the impact on crystallizing melt by low frequency vibration includes not only the possibility to suppress unwanted microaccelerations, but also to actively influence the structure of the crystallization front. This approach is one of the most effective ways to influence the quality of materials produced in flight conditions. The subject of this work is the effect of vibrations on the thermal and hydrodynamic processes during crystal growth using Bridgman and floating zone techniques, which have the greatest prospect of practical application in space. In the present approach we consider the gravitational convection, Marangoni convection, as well as the effect of vibration on the melt for some special cases. The results of simulation were compared with some experimental data obtained by the authors using a transparent model substance - succinonitrile (Bridgman method), and silicon (floating zone method). Substances used, process parameters and characteristics of the experimental units correspond the equipment developed for onboard research and serve as a basis for selecting optimum conditions vibration exposure as a factor affecting the solidification pattern. The direction of imposing vibrations coincides with the axis of the crystal, the frequency is presented by the harmonic law, and the force of gravity was varied by changing its absolute value. Mathematical model considered axisymmetric approximation of joint convective-conductive energy transfer in the system crystal - melt. Upon application of low-frequency oscillations of small amplitude along the axis of growing it was found the suppression of the secondary vortex flows near the

  18. The integrated analyses of digital field mapping techniques and traditional field methods: implications from the Burdur-Fethiye Shear Zone, SW Turkey as a case-study

    Science.gov (United States)

    Elitez, İrem; Yaltırak, Cenk; Zabcı, Cengiz; Şahin, Murat

    2015-04-01

    The precise geological mapping is one of the most important issues in geological studies. Documenting the spatial distribution of geological bodies and their contacts play a crucial role on interpreting the tectonic evolution of any region. Although the traditional field techniques are still accepted to be the most fundamental tools in construction of geological maps, we suggest that the integration of digital technologies to the classical methods significantly increases the resolution and the quality of such products. We simply follow the following steps in integration of the digital data with the traditional field observations. First, we create the digital elevation model (DEM) of the region of interest by interpolating the digital contours of 1:25000 scale topographic maps to 10 m of ground pixel resolution. The non-commercial Google Earth satellite imagery and geological maps of previous studies are draped over the interpolated DEMs in the second stage. The integration of all spatial data is done by using the market leading GIS software, ESRI ArcGIS. We make the preliminary interpretation of major structures as tectonic lineaments and stratigraphic contacts. These preliminary maps are controlled and precisely coordinated during the field studies by using mobile tablets and/or phablets with GPS receivers. The same devices are also used in measuring and recording the geologic structures of the study region. Finally, all digitally collected measurements and observations are added to the GIS database and we finalise our geological map with all available information. We applied this integrated method to map the Burdur-Fethiye Shear Zone (BFSZ) in the southwest Turkey. The BFSZ is an active sinistral 60-to-90 km-wide shear zone, which prolongs about 300 km-long between Suhut-Cay in the northeast and Köyceğiz Lake-Kalkan in the southwest on land. The numerous studies suggest contradictory models not only about the evolution but also about the fault geometry of this

  19. Investigation of the dynamics of ephemeral gully erosion on arable land of the forest-steppe and steppe zone of the East of the Russian Plain from remote sensing data

    Science.gov (United States)

    Platoncheva, E. V.

    2018-01-01

    Spatio-temporal estimation of the erosion of arable soils is still an urgent task, in spite of the numerous methods of such assessments. Development of information technologies, the emergence of high and ultra-high resolution images allows reliable identification of linear forms of erosion to determine its dynamics on arable land. The study drew attention to the dynamics of the most active erosion unit - an ephemeral gully. The estimation of the dynamics was carried out on the basis of different space images for the maximum possible period (from 1986 to 2016). The cartographic method was used as the main research method. Identification of a belt of ephemeral gully erosion based on materials of multi-zone space surveys and GIS-technology of their processing was carried out. In the course of work with satellite imagery and subsequent verification of the received data on the ground, the main signs of deciphering the ephemeral gully network were determined. A methodology for geoinformation mapping of the dynamics of ephemeral gully erosion belt was developed and a system of indicators quantitatively characterizing its development on arable slopes was proposed. The evaluation of the current ephemeral gully network based on the interpretation of space images includes the definition of such indicators of ephemeral gully erosion as the density of the ephemeral gully net, the density of the ephemeral gullies, the area and linear dynamics of the ephemeral gully network. Preliminary results of the assessment of the dynamics of the belt erosion showed an increase in all quantitative indicators of ephemeral gully erosion for the observed period.

  20. Room Temperature Gas Sensing Properties of Sn-Substituted Nickel Ferrite (NiFe2O4) Thin Film Sensors Prepared by Chemical Co-Precipitation Method

    Science.gov (United States)

    Manikandan, V.; Li, Xiaogan; Mane, R. S.; Chandrasekaran, J.

    2018-04-01

    Tin (Sn) substituted nickel ferrite (NiFe2O4) thin film sensors were prepared by a simple chemical co-precipitation method, which initially characterized their structure and surface morphology with the help of x-ray diffraction and scanning electron microscopy. Surface morphology of the sensing films reveals particles stick together with nearer particles and this formation leads to a large specific area as a large specific area is very useful for easy adsorption of gas molecules. Transmission electron microscopy and selected area electron diffraction pattern images confirm particle size and nanocrystallnity as due to formation of circular rings. Fourier transform infrared analysis has supported the presence of functional groups. The 3.69 eV optical band gap of the film was found which enabled better gas sensing. Gas sensors demonstrate better response and recovery characteristics, and the maximum response was 68.43%.

  1. The gas-sensing properties of thick film sensors based on nano-ZnFe2O4 prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Chu Xiangfeng; Jiang Dongli; Zheng Chenmou

    2006-01-01

    ZnFe 2 O 4 sensors were fabricated from nano-ZnFe 2 O 4 powders prepared by hydrothermal method and their gas-sensing properties were investigated. It was found that the phase composition of the product and the gas-sensing properties greatly depend on the reaction pH value and the reaction temperature. Nano-ZnFe 2 O 4 powders could be obtained at a pH of 8-10 and the sensor based on the nano-ZnFe 2 O 4 powder prepared at 220 deg. C exhibited the best performance, characterized by high sensitivity to low concentrations of C 2 H 5 OH at 180 deg. C, especially, the sensitivity to 100 ppm C 2 H 5 OH was as high as 76

  2. Development of a NDI system using the magneto-optical method. 2. Remote sensing using the novel magneto-optical inspection system

    International Nuclear Information System (INIS)

    Lee, Jinyi; Shoji, Tetsuo

    1999-01-01

    A new remote sensing system using the magneto-optical method is developed for inspection of flaws introduced during service operation where routine inspection is difficult because of difficult inaccessibility to the components. Among the advantages of non-destructive inspection (NDI) based on the magneto-optical sensor are: real time inspection, elimination of electrical noise and high spatial resolution. Remote sensing of flaws is achieved using the basic principles of Faraday effect, optical permeability, and diffraction of a laser by the domain walls. This paper describes a novel remote NDI system using the principles of optics and LMF. The main characteristic of the system is that image data and LMF information can be obtained simultaneously. It is possible to carry out remote and high speed inspection of cracks from the intensity of reflected light, and to estimate the size of a crack effectively with their diverse data. The advantages of this NDI system are demonstrated using two specimens. (author)

  3. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  4. Methods to homogenize electrochemical concentration cell (ECC ozonesonde measurements across changes in sensing solution concentration or ozonesonde manufacturer

    Directory of Open Access Journals (Sweden)

    T. Deshler

    2017-06-01

    Full Text Available Ozone plays a significant role in the chemical and radiative state of the atmosphere. For this reason there are many instruments used to measure ozone from the ground, from space, and from balloons. Balloon-borne electrochemical cell ozonesondes provide some of the best measurements of the ozone profile up to the mid-stratosphere, providing high vertical resolution, high precision, and a wide geographic distribution. From the mid-1990s to the late 2000s the consistency of long-term records from balloon-borne ozonesondes has been compromised by differences in manufacturers, Science Pump (SP and ENSCI (EN, and differences in recommended sensor solution concentrations, 1.0 % potassium iodide (KI and the one-half dilution: 0.5 %. To investigate these differences, a number of organizations have independently undertaken comparisons of the various ozonesonde types and solution concentrations, resulting in 197 ozonesonde comparison profiles. The goal of this study is to derive transfer functions to allow measurements outside of standard recommendations, for sensor composition and ozonesonde type, to be converted to a standard measurement and thus homogenize the data to the expected accuracy of 5 % (10 % in the stratosphere (troposphere. Subsets of these data have been analyzed previously and intermediate transfer functions derived. Here all the comparison data are analyzed to compare (1 differences in sensor solution composition for a single ozonesonde type, (2 differences in ozonesonde type for a single sensor solution composition, and (3 the World Meteorological Organization's (WMO and manufacturers' recommendations of 1.0 % KI solution for Science Pump and 0.5 % KI for ENSCI. From the recommendations it is clear that ENSCI ozonesondes and 1.0 % KI solution result in higher amounts of ozone sensed. The results indicate that differences in solution composition and in ozonesonde type display little pressure dependence at pressures

  5. Relationship of transpiration and evapotranspiration to solar radiation and spectral reflectance in soybean [Glycine max] canopies: A simple method for remote sensing of canopy transpiration

    International Nuclear Information System (INIS)

    Choi, E.N.; Inoue, Y.

    2004-01-01

    Abstract The study investigated diurnal and seasonal dynamics of evapotranspiration (ET) and transpiration (Tr) in a soybean canopy, as well as the relationships among ET, Tr, solar radiation and remotely sensed spectral reflectance. The eddy covariance method (ECM) and stem heat balance method (SHBM) were used for independent measurement of ET and Tr, respectively. Micrometeorological, soil, and spectral reflectance data were acquired for the entire growing season. The instantaneous values of canopy-Tr estimated by SHBM and ET by ECM were well synchronized with each other, and both were strongly affected by the solar radiation. The daily values canopy-Tr increased rapidly with increasing leaf area index (LAI), and got closer to the ET even at a low value of LAI such as 1.5-2. The daily values of ET were moderately correlated with global solar radiation (Rs), and more closely with the potential evapotranspiration (ETp), estimated by the 'radiation method.' This fact supported the effectiveness of the simple radiation method in estimation of evapotranspiration. The ratio of Tr/ET as well as the ratio of ground heat flux (G) to Rs (G/Rs) was closely related to LAI, and LAI was a key variable in determining the energy partitioning to soil and vegetation. It was clearly shown that a remotely sensed vegetation index such as SAVI (soil adjusted vegetation index) was effective for estimating LAI, and further useful for directly estimating energy partitioning to soil and vegetation. The G and Tr/ET were both well estimated by the vegetation index. It was concluded that the combination of a simple radiation method with remotely sensed information can provide useful information on energy partitioning and Tr/ET in vegetation canopies

  6. Optical sensing method to analyze germination rate of Capsicum annum seeds treated with growth-promoting chemical compounds using optical coherence tomography

    Science.gov (United States)

    Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Kim, Pilun; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun

    2017-09-01

    Seed germination rate differs based on chemical treatments, and nondestructive measurements of germination rate have become an essential requirement in the field of agriculture. Seed scientists and other biologists are interested in optical sensing technologies-based biological discoveries due to nondestructive detection capability. Optical coherence tomography (OCT) has recently emerged as a powerful method for biological and plant material discoveries. We report an extended application of OCT by monitoring the germination rate acceleration of chemically primed seeds. To validate the versatility of the method, Capsicum annum seeds were primed using three chemical compounds: sterile distilled water (SDW), butandiol, and 1-hexadecene. Monitoring was performed using a 1310-nm swept source OCT system. The results confirmed more rapid morphological variations in the seeds treated with 1-hexadecene medium than the seeds treated with SDW and butandiol within 8 consecutive days. In addition, fresh weight measurements (gold standard) of seeds were monitored for 15 days, and the obtained results were correlated with the OCT results. Thus, such a method can be used in various agricultural fields, and OCT shows potential as a rigorous sensing method for selecting the optimal plant growth-promoting chemical compounds rapidly, when compared with the gold standard methods.

  7. Manure placement method influenced growth, phenology and bunch yield of three Musagenotypes in a humid zone of Southern Nigeria

    OpenAIRE

    A. Tenkouano; O. O. Ndukwe; K. P. Baiyeri

    2013-01-01

    Manure placement methods earlier evaluated in a greenhouse using the banana cultivar PITA 14 as a test-crop significantly influenced root system development, vegetative growth, nutrient uptake, whole plant dry matter yield and distribution of the crop. These placement methods plus an additional treatment were re-evaluated in a field experiment over two cropping cycles using three Musa genotypes. The treatments were: a full dose of poultry manure placed on the soil surface – top dressing(T1),a...

  8. Experimental quantification of solute transport through the vadose zone under dynamic boundary conditions with dye tracers and optical methods.

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa

    2017-04-01

    transport through the material interface which differs between the stationary (unilateral) and dynamic cases (bilateral). This qualitative observation is confirmed by breakthrough curves for dynamic experiments which generally show the trend of faster initial breakthrough and increased tailing when compared to stationary infiltration results. Literature Cremer, C.J.M., I. Neuweiler, M. Bechtold, J. Vanderborght (2016): Solute Transport in Heterogeneous Soil with Time-Dependent Boundary Conditions, Vadose Zone Journal 15 (6) DOI: 10.2136/vzj2015.11.0144

  9. Metode za otkrivanje promjena kod daljinskih istraživanja : Methods for change detection in remote sensing

    OpenAIRE

    Admir Mulahusić; Nedim Tuno

    2011-01-01

    U ovom radu predstavljeni su različiti načini identifikovanja promjena kod daljinskih istraživanja. Različiti autori su predstavljali različite metode otkrivanja promjena na površini zemlje. Otkrivanje promjena je, između ostalog, veoma važno zbog praćenja promjena, kao i procjene promjena i međusobnih odnosa prirodnih i vještačkih objekata. Sve to vodi ka boljem razumijevanju potencijalnih uzroka promjena. : In this paper, the different ways to identify changes in remote sensing are given. V...

  10. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  11. Make Sense?

    DEFF Research Database (Denmark)

    Gyrd-Jones, Richard; Törmälä, Minna

    Purpose: An important part of how we sense a brand is how we make sense of a brand. Sense-making is naturally strongly connected to how we cognize about the brand. But sense-making is concerned with multiple forms of knowledge that arise from our interpretation of the brand-related stimuli......: Declarative, episodic, procedural and sensory. Knowledge is given meaning through mental association (Keller, 1993) and / or symbolic interaction (Blumer, 1969). These meanings are centrally related to individuals’ sense of identity or “identity needs” (Wallpach & Woodside, 2009). The way individuals make...... sense of brands is related to who people think they are in their context and this shapes what they enact and how they interpret the brand (Currie & Brown, 2003; Weick, Sutcliffe, & Obstfeld, 2005; Weick, 1993). Our subject of interest in this paper is how stakeholders interpret and ascribe meaning...

  12. Facile Synthesis of Polyaniline Nanotubes Using Self-Assembly Method Based on the Hydrogen Bonding: Mechanism and Application in Gas Sensing

    Directory of Open Access Journals (Sweden)

    Changqing Yin

    2017-10-01

    Full Text Available Based on hydrogen bonding, the highly uniform polyaniline (PANI nanotubes were synthesized by self-assembly method using citric acid (CA as the dopant and the structure-directing agent by optimizing the molar ratio of CA to aniline monomer (Ani. Synthesis conditions like reaction temperature and mechanical stirring were considered to explore the effects of hydrogen bonding on the morphologies. The effects of CA on the final morphology of the products were also investigated. The as-synthesized CA doped polyaniline (PANI nanomaterials were further deposited on the plate electrodes for the test of gas sensing performance to ammonia (NH3. The sensitivity to various concentrations of NH3, the repeatability, and the stability of the sensors were also tested and analyzed. As a result, it was found that the PANI nanomaterial synthesized at the CA/Ani molar ratio of 0.5 has highly uniform tubular morphology and shows the best sensing performance to NH3. It makes the PANI nanotubes a promising material for high performance gas sensing to NH3.

  13. Combining remote sensing and on-site monitoring methods to investigate footpath erosion within a popular recreational heathland environment.

    Science.gov (United States)

    Rodway-Dyer, Sue; Ellis, Nicola

    2018-06-01

    Footpaths are a prominent consequence of natural area tourism and reflect damage caused to valuable, sensitive habitats by people pressure. Degradation impacts on vegetation, wildlife, on and off-site soil movement and loss, creation of additional informal off-path footpaths (desire lines), and visual destruction of landscapes. Impacts need to be measured and monitored on a large temporal and spatial scale to aid in land management to maintain access and preserve natural environments. This study combined remote sensing (Light Detection and Ranging [LiDAR] and aerial photography) with on-site measurement of footpaths within a sensitive heathland habitat (Land's End, Cornwall, UK). Soil loss, slope angle change, vegetation damage and a hydrology model were combined to comprehensively study the site. Results showed 0.09 m mean soil loss over five years, footpath widening, increasing grass cover into heathland, and water channelling on the footpaths exacerbating erosion. The environments surrounding the footpaths were affected with visitors walking off path, requiring further management and monitoring. Multiple remote sensing techniques were highly successful in comprehensively assessing the area, particularly the hydrology model, demonstrating the potential of providing a valuable objective and quantitative monitoring and management tool. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Estimation of Evapotranspiration from Fields with and without Cover Crops Using Remote Sensing and in situ Methods

    Directory of Open Access Journals (Sweden)

    Christopher Hay

    2012-11-01

    Full Text Available Estimation of actual evapotranspiration (ETa based on remotely sensed imagery is very valuable in agricultural regions where ETa rates can vary greatly from field to field. This research utilizes the image processing model METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration to estimate late season, post-harvest ETa rates from fields with a cover crop planted after a cash crop (in this case, a rye/radish/pea mixture planted after spring wheat. Remotely sensed EToF (unit-less fraction of grass-based reference ET, ETo maps were generated using Erdas Imagine software for a 260 km2 area in northeastern South Dakota, USA. Meteorological information was obtained from a Bowen-Ratio Energy Balance System (BREBS located within the image. Nine image dates were used for the growing season, from May through October. Five of those nine were captured during the cover crop season. METRIC was found to successfully differentiate between fields with and without cover crops. In a blind comparison, METRIC compared favorably with the estimated ETa rates found using the BREBS (ETλE, with a difference in total estimated ETa for the cover crop season of 7%.

  15. An Improved STARFM with Help of an Unmixing-Based Method to Generate High Spatial and Temporal Resolution Remote Sensing Data in Complex Heterogeneous Regions.

    Science.gov (United States)

    Xie, Dengfeng; Zhang, Jinshui; Zhu, Xiufang; Pan, Yaozhong; Liu, Hongli; Yuan, Zhoumiqi; Yun, Ya

    2016-02-05

    Remote sensing technology plays an important role in monitoring rapid changes of the Earth's surface. However, sensors that can simultaneously provide satellite images with both high temporal and spatial resolution haven't been designed yet. This paper proposes an improved spatial and temporal adaptive reflectance fusion model (STARFM) with the help of an Unmixing-based method (USTARFM) to generate the high spatial and temporal data needed for the study of heterogeneous areas. The results showed that the USTARFM had higher accuracy than STARFM methods in two aspects of analysis: individual bands and of heterogeneity analysis. Taking the predicted NIR band as an example, the correlation coefficients (r) for the USTARFM, STARFM and unmixing methods were 0.96, 0.95, 0.90, respectively (p-value data fusion problems faced when using STARFM. Additionally, the USTARFM method could help researchers achieve better performance than STARFM at a smaller window size from its heterogeneous land surface quantitative representation.

  16. EVALUATION AND DEVELOPMENT OF E-LEARNING TOOLS AND METHODS IN DIGITAL PHOTOGRAMMETRY AND REMOTE SENSING FOR NON EXPERTS FROM ACADEMIA AND INDUSTRY

    Directory of Open Access Journals (Sweden)

    E. Gülch

    2012-07-01

    Full Text Available There does already exist a wide variety of tutorials and on-line courses on Photogrammetry and Remote Sensing very often used in academia. Many of them are still rather static and tedious or target high-knowledge learners. E-learning is, however, increasingly applied by many organizations and companies for life-long learning (like e.g. the EduServ courses of EuroSDR, but also for training of resellers and in order to save the expenses and time of travelling. A new issue of this project when taking into account the ethnic mentality in some countries like Saudi Arabia where it is impossible to mix the females and males at any institution type or for instance to teach ladies by a male teacher face to face, many academic workshops have been done separately twice by foreign organizations to adapt this situation. This paper will focus on these issues and present experiences gathered from a Master Thesis on "E-learning in Digital Photogrammetry and Remote Sensing for Non Experts using Moodle" at HFT Stuttgart in co-operation with a software vendor and a reseller and experiences from a current European Tempus IV project GIDEC (Geographic information technology for sustainable development in Eastern neighouring countries. The aim of this research is to provide an overview on available methods and tools and classify and judge their feasibility for the above mentioned scenarios. A more detailed description is given on the development of e-learning applications for Digital Photogrammetry and Remote Sensing using the open source package Moodle as platform. A first item covers the experiences from setting up and handling of Moodle for non-experts. The major emphasis is then on developing and analyzing some few case studies for lectures, exercises, and software training in the fields of Digital Photogrammetry and Remote Sensing. Feedback from students and company staff will be evaluated and incorporated in an improved design and sample implementation. A

  17. Interinstrument comparison of remote-sensing devices and a new method for calculating on-road nitrogen oxides emissions and validation of vehicle-specific power.

    Science.gov (United States)

    Rushton, Christopher E; Tate, James E; Shepherd, Simon P; Carslaw, David C

    2018-02-01

    Emissions of nitrogen oxides (NOx) by vehicles in real driving environments are only partially understood. This has been brought to the attention of the world with recent revelations of the cheating of the type of approval tests exposed in the dieselgate scandal. Remote-sensing devices offer investigators an opportunity to directly measure in situ real driving emissions of tens of thousands of vehicles. Remote-sensing NO 2 measurements are not as widely available as would be desirable. The aim of this study is to improve the ability of investigators to estimate the NO 2 emissions and to improve the confidence of the total NOx results calculated from standard remote-sensing device (RSD) measurements. The accuracy of the RSD speed and acceleration module was also validated using state-of-the-art onboard global positioning system (GPS) tracking. Two RSDs used in roadside vehicle emissions surveys were tested side by side under off-carriageway conditions away from transient pollution sources to ascertain the consistency of their measurements. The speed correlation was consistent across the range of measurements at 95% confidence and the acceleration correlation was consistent at 95% confidence intervals for all but the most extreme acceleration cases. VSP was consistent at 95% confidence across all measurements except for those at VSP ≥ 15 kW t -1 , which show a small underestimate. The controlled distribution gas nitric oxide measurements follow a normal distribution with 2σ equal to 18.9% of the mean, compared to 15% observed during factory calibration indicative of additional error introduced into the system. Systematic errors of +84 ppm were observed but within the tolerance of the control gas. Interinstrument correlation was performed, with the relationship between the FEAT and the RSD4600 being linear with a gradient of 0.93 and an R 2 of 0.85, indicating good correlation. A new method to calculate NOx emissions using fractional NO 2 combined with NO

  18. Evaluation and Development of E-Learning Tools and Methods in Digital Photogrammetry and Remote Sensing for Non Experts from Academia and Industry

    Science.gov (United States)

    Gülch, E.; Al-Ghorani, N.; Quedenfeldt, B.; Braun, J.

    2012-07-01

    There does already exist a wide variety of tutorials and on-line courses on Photogrammetry and Remote Sensing very often used in academia. Many of them are still rather static and tedious or target high-knowledge learners. E-learning is, however, increasingly applied by many organizations and companies for life-long learning (like e.g. the EduServ courses of EuroSDR), but also for training of resellers and in order to save the expenses and time of travelling. A new issue of this project when taking into account the ethnic mentality in some countries like Saudi Arabia where it is impossible to mix the females and males at any institution type or for instance to teach ladies by a male teacher face to face, many academic workshops have been done separately twice by foreign organizations to adapt this situation. This paper will focus on these issues and present experiences gathered from a Master Thesis on "E-learning in Digital Photogrammetry and Remote Sensing for Non Experts using Moodle" at HFT Stuttgart in co-operation with a software vendor and a reseller and experiences from a current European Tempus IV project GIDEC (Geographic information technology for sustainable development in Eastern neighouring countries). The aim of this research is to provide an overview on available methods and tools and classify and judge their feasibility for the above mentioned scenarios. A more detailed description is given on the development of e-learning applications for Digital Photogrammetry and Remote Sensing using the open source package Moodle as platform. A first item covers the experiences from setting up and handling of Moodle for non-experts. The major emphasis is then on developing and analyzing some few case studies for lectures, exercises, and software training in the fields of Digital Photogrammetry and Remote Sensing. Feedback from students and company staff will be evaluated and incorporated in an improved design and sample implementation. A further focus is on free

  19. Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments.

    Science.gov (United States)

    Song, Shuang; Zhang, Changchun; Liu, Li; Meng, Max Q-H

    2018-02-01

    Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation. We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved. Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is [Formula: see text] mm, while the maximum error is 3.2 mm. The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.

  20. Modelling of Effective Dose in the Forests of the Chernobyl Zone on the Basis of the Monte-Carlo Method

    International Nuclear Information System (INIS)

    Savushkin, I.A.; Gurko, O.B.; Ravkova, E.I.; Lurjanov, A.V.

    1999-01-01

    The mathematical code for evaluation of external gamma- radiation does rate in three-dimensional geometry on the basis of Monte-CarIo method was developed and realized. Using this code the results, which can be applied in practice were obtained. The does rate estimations in radioactive forest for different gamma-emitters allow to work out the safest scenario of forest harvesting work in the contaminated territories from a point of view of the radioactive protection of staff

  1. Coastal zone

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on the coastal zone focuses on the impact of climate change on Canada's marine and Great Lakes coasts with tips on how to deal with the impacts associated with climate change in sensitive environments. This report is aimed at the sectors that will be most affected by adaptation decisions in the coastal zone, including fisheries, tourism, transportation and water resources. The impact of climate change in the coastal zone may include changes in water levels, wave patterns, storm surges, and thickness of seasonal ice cover. The Intergovernmental Panel on Climate Change projects global average sea level will rise between 9 and 88 centimetres between 1990 to 2100, but not all areas of Canada will experience the same rate of future sea level change. The main physical impact would be shoreline change that could result in a range of biophysical and socio-economic impacts, some beneficial, some negative. The report focuses on issues related to infrastructure and communities in coastal regions. It is noted that appropriate human adaptation will play a vital role in reducing the extent of potential impacts by decreasing the vulnerability of average zone to climate change. The 3 main trends in coastal adaptation include: (1) increase in soft protection, retreat and accommodation, (2) reliance on technology such as geographic information systems to manage information, and (3) awareness of the need for coastal adaptation that is appropriate for local conditions. 61 refs., 7 figs

  2. Application of bimodal distribution to the detection of changes in uranium concentration in drinking water collected by random daytime sampling method from a large water supply zone.

    Science.gov (United States)

    Garboś, Sławomir; Święcicka, Dorota

    2015-11-01

    The random daytime (RDT) sampling method was used for the first time in the assessment of average weekly exposure to uranium through drinking water in a large water supply zone. Data set of uranium concentrations determined in 106 RDT samples collected in three runs from the water supply zone in Wroclaw (Poland), cannot be simply described by normal or log-normal distributions. Therefore, a numerical method designed for the detection and calculation of bimodal distribution was applied. The extracted two distributions containing data from the summer season of 2011 and the winter season of 2012 (nI=72) and from the summer season of 2013 (nII=34) allowed to estimate means of U concentrations in drinking water: 0.947 μg/L and 1.23 μg/L, respectively. As the removal efficiency of uranium during applied treatment process is negligible, the effect of increase in uranium concentration can be explained by higher U concentration in the surface-infiltration water used for the production of drinking water. During the summer season of 2013, heavy rains were observed in Lower Silesia region, causing floods over the territory of the entire region. Fluctuations in uranium concentrations in surface-infiltration water can be attributed to releases of uranium from specific sources - migration from phosphate fertilizers and leaching from mineral deposits. Thus, exposure to uranium through drinking water may increase during extreme rainfall events. The average chronic weekly intakes of uranium through drinking water, estimated on the basis of central values of the extracted normal distributions, accounted for 3.2% and 4.1% of tolerable weekly intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. An efficient and target-oriented sample enrichment method for preparative separation of minor alkaloids by pH-zone-refining counter-current chromatography.

    Science.gov (United States)

    Feng, Rui-Hong; Hou, Jin-Jun; Zhang, Yi-Bei; Pan, Hui-Qin; Yang, Wenzhi; Qi, Peng; Yao, Shuai; Cai, Lu-Ying; Yang, Min; Jiang, Bao-Hong; Liu, Xuan; Wu, Wan-Ying; Guo, De-An

    2015-08-28

    An efficient and target-oriented sample enrichment method was established to increase the content of the minor alkaloids in crude extract by using the corresponding two-phase solvent system applied in pH-zone-refining counter-current chromatography. The enrichment and separation of seven minor indole alkaloids from Uncaria rhynchophylla (Miq.) Miq. ex Havil(UR) were selected as an example to show the advantage of this method. An optimized two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (3:7:1:9, v/v) was used in this study, where triethylamine (TEA) as the retainer and hydrochloric acid (HCl) as the eluter were added at the equimolar of 10mM. Crude alkaloids of UR dissolved in the corresponding upper phase (containing 10mM TEA) were extracted twice with lower phase (containing 10mM TEA) and lower phase (containing 10mM HCl), respectively, the second lower phase extract was subjected to pH-zone-refining CCC separation after alkalization and desalination. Finally, from 10g of crude alkaloids, 4g of refined alkaloids was obtained and the total content of seven target indole alkaloids was increased from 4.64% to 15.78%. Seven indole alkaloids, including 54mg isocorynoxeine, 21mg corynoxeine, 46mg isorhynchophylline, 35mg rhynchophylline, 65mg hirsutine, 51mg hirsuteine and 27mg geissoschizine methylether were all simultaneously separated from 2.5g of refined alkaloids, with the purity of 86.4%, 97.5%, 90.3%, 92.1%, 98.5%, 92.3%, and 92.8%, respectively. The total content and purities of the seven minor indole alkaloids were tested by HPLC and their chemical structures were elucidated by ESI-HRMS and (1)H NMR. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Basic Remote Sensing Investigations for Beach Reconnaissance.

    Science.gov (United States)

    Progress is reported on three tasks designed to develop remote sensing beach reconnaissance techniques applicable to the benthic, beach intertidal...and beach upland zones. Task 1 is designed to develop remote sensing indicators of important beach composition and physical parameters which will...ultimately prove useful in models to predict beach conditions. Task 2 is designed to develop remote sensing techniques for survey of bottom features in

  5. A compressive sensing-based computational method for the inversion of wide-band ground penetrating radar data

    Science.gov (United States)

    Gelmini, A.; Gottardi, G.; Moriyama, T.

    2017-10-01

    This work presents an innovative computational approach for the inversion of wideband ground penetrating radar (GPR) data. The retrieval of the dielectric characteristics of sparse scatterers buried in a lossy soil is performed by combining a multi-task Bayesian compressive sensing (MT-BCS) solver and a frequency hopping (FH) strategy. The developed methodology is able to benefit from the regularization capabilities of the MT-BCS as well as to exploit the multi-chromatic informative content of GPR measurements. A set of numerical results is reported in order to assess the effectiveness of the proposed GPR inverse scattering technique, as well as to compare it to a simpler single-task implementation.

  6. SU-8 Cantilevers for Bio/chemical Sensing; Fabrication, Characterisation and Development of Novel Read-out Methods

    Directory of Open Access Journals (Sweden)

    Anja Boisen

    2008-03-01

    Full Text Available Here, we present the activities within our research group over the last five yearswith cantilevers fabricated in the polymer SU-8. We believe that SU-8 is an interestingpolymer for fabrication of cantilevers for bio/chemical sensing due to its simple processingand low Young’s modulus. We show examples of different integrated read-out methodsand their characterisation. We also show that SU-8 cantilevers have a reduced sensitivity tochanges in the environmental temperature and pH of the buffer solution. Moreover, weshow that the SU-8 cantilever surface can be functionalised directly with receptormolecules for analyte detection, thereby avoiding gold-thiol chemistry.

  7. AgriSense-STARS: Advancing Methods of Agricultural Monitoring for Food Security in Smallholder Regions - the Case for Tanzania

    Science.gov (United States)

    Dempewolf, J.; Becker-Reshef, I.; Nakalembe, C. L.; Tumbo, S.; Maurice, S.; Mbilinyi, B.; Ntikha, O.; Hansen, M.; Justice, C. J.; Adusei, B.; Kongo, V.

    2015-12-01

    In-season monitoring of crop conditions provides critical information for agricultural policy and decision making and most importantly for food security planning and management. Nationwide agricultural monitoring in countries dominated by smallholder farming systems, generally relies on extensive networks of field data collectors. In Tanzania, extension agents make up this network and report on conditions across the country, approaching a "near-census". Data is collected on paper which is resource and time intensive, as well as prone to errors. Data quality is ambiguous and there is a general lack of clear and functional feedback loops between farmers, extension agents, analysts and decision makers. Moreover, the data are not spatially explicit, limiting the usefulness for analysis and quality of policy outcomes. Despite significant advances in remote sensing and information communication technologies (ICT) for monitoring agriculture, the full potential of these new tools is yet to be realized in Tanzania. Their use is constrained by the lack of resources, skills and infrastructure to access and process these data. The use of ICT technologies for data collection, processing and analysis is equally limited. The AgriSense-STARS project is developing and testing a system for national-scale in-season monitoring of smallholder agriculture using a combination of three main tools, 1) GLAM-East Africa, an automated MODIS satellite image processing system, 2) field data collection using GeoODK and unmanned aerial vehicles (UAVs), and 3) the Tanzania Crop Monitor, a collaborative online portal for data management and reporting. These tools are developed and applied in Tanzania through the National Food Security Division of the Ministry of Agriculture, Food Security and Cooperatives (MAFC) within a statistically representative sampling framework (area frame) that ensures data quality, representability and resource efficiency.

  8. Time-sensitive remote sensing

    CERN Document Server

    Lippitt, Christopher; Coulter, Lloyd

    2015-01-01

    This book documents the state of the art in the use of remote sensing to address time-sensitive information requirements. Specifically, it brings together a group of authors who are both researchers and practitioners, who work toward or are currently using remote sensing to address time-sensitive information requirements with the goal of advancing the effective use of remote sensing to supply time-sensitive information. The book addresses the theoretical implications of time-sensitivity on the remote sensing process, assessments or descriptions of methods for expediting the delivery and improving the quality of information derived from remote sensing, and describes and analyzes time-sensitive remote sensing applications, with an emphasis on lessons learned. This book is intended for remote sensing scientists, practitioners (e.g., emergency responders or administrators of emergency response agencies), and students, but will also be of use to those seeking to understand the potential of remote sensing to addres...

  9. Remote sensing and avian influenza: A review of image processing methods for extracting key variables affecting avian influenza virus survival in water from Earth Observation satellites

    Science.gov (United States)

    Tran, Annelise; Goutard, Flavie; Chamaillé, Lise; Baghdadi, Nicolas; Lo Seen, Danny

    2010-02-01

    Recent studies have highlighted the potential role of water in the transmission of avian influenza (AI) viruses and the existence of often interacting variables that determine the survival rate of these viruses in water; the two main variables are temperature and salinity. Remote sensing has been used to map and monitor water bodies for several decades. In this paper, we review satellite image analysis methods used for water detection and characterization, focusing on the main variables that influence AI virus survival in water. Optical and radar imagery are useful for detecting water bodies at different spatial and temporal scales. Methods to monitor the temperature of large water surfaces are also available. Current methods for estimating other relevant water variables such as salinity, pH, turbidity and water depth are not presently considered to be effective.

  10. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  11. Overview of the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 (BEAREX08): A field experiment evaluating methods for quantifying ET at multiple scales

    Science.gov (United States)

    Evett, Steven R.; Kustas, William P.; Gowda, Prasanna H.; Anderson, Martha C.; Prueger, John H.; Howell, Terry A.

    2012-12-01

    In 2008, scientists from seven federal and state institutions worked together to investigate temporal and spatial variations of evapotranspiration (ET) and surface energy balance in a semi-arid irrigated and dryland agricultural region of the Southern High Plains in the Texas Panhandle. This Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 (BEAREX08) involved determination of micrometeorological fluxes (surface energy balance) in four weighing lysimeter fields (each 4.7 ha) containing irrigated and dryland cotton and in nearby bare soil, wheat stubble and rangeland fields using nine eddy covariance stations, three large aperture scintillometers, and three Bowen ratio systems. In coordination with satellite overpasses, flux and remote sensing aircraft flew transects over the surrounding fields and region encompassing an area contributing fluxes from 10 to 30 km upwind of the USDA-ARS lysimeter site. Tethered balloon soundings were conducted over the irrigated fields to investigate the effect of advection on local boundary layer development. Local ET was measured using four large weighing lysimeters, while field scale estimates were made by soil water balance with a network of neutron probe profile water sites and from the stationary flux systems. Aircraft and satellite imagery were obtained at different spatial and temporal resolutions. Plot-scale experiments dealt with row orientation and crop height effects on spatial and temporal patterns of soil surface temperature, soil water content, soil heat flux, evaporation from soil in the interrow, plant transpiration and canopy and soil radiation fluxes. The BEAREX08 field experiment was unique in its assessment of ET fluxes over a broad range in spatial scales; comparing direct and indirect methods at local scales with remote sensing based methods and models using aircraft and satellite imagery at local to regional scales, and comparing mass balance-based ET ground truth with eddy covariance

  12. Mapping sense(s) of place

    DEFF Research Database (Denmark)

    Skovse, Astrid Ravn; Hovy, Dirk; Johannsen, Anders Trærup

    2016-01-01

    , the question of how to tap into this constitutes a methodological challenge to researchers (Latham 2003, Hall 2009). This paper presents an experimental method aimed at eliciting data on sense of place and everyday mobility in a feasible and low-tech manner through the use of mental maps and mobility maps...... for answering questions about the relationship between places, speakers and linguistic practice....

  13. Radiophysical methods of diagnostics the Earth's ionosphere and the underlying earth's surface by remote sensing in the short-wave range of radio waves

    Science.gov (United States)

    Belov, S. Yu.; Belova, I. N.

    2017-11-01

    Monitoring of the earth's surface by remote sensing in the short-wave band can provide quick identification of some characteristics of natural systems. This band range allows one to diagnose subsurface aspects of the earth, as the scattering parameter is affected by irregularities in the dielectric permittivity of subsurface structures. This method based on the organization of the monitoring probe may detect changes in these environments, for example, to assess seismic hazard, hazardous natural phenomena such as earthquakes, as well as some man-made hazards and etc. The problem of measuring and accounting for the scattering power of the earth's surface in the short-range of radio waves is important for a number of purposes, such as diagnosing properties of the medium, which is of interest for geological, environmental studies. In this paper, we propose a new method for estimating the parameters of incoherent signal/noise ratio. The paper presents the results of comparison of the measurement method from the point of view of their admissible relative analytical errors. The new method is suggested. Analysis of analytical error of estimation of this parameter allowed to recommend new method instead of standard method. A comparative analysis and shows that the analytical (relative) accuracy of the determination of this parameter new method on the order exceeds the widely-used standard method.

  14. Drilling and coring methods that minimize the disturbance of cuttings, core, and rock formation in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Hammermeister, D.P.; Blout, D.O.; McDaniel, J.C.

    1985-01-01

    A drilling-and-casing method (Odex 115 system) utilizing air as a drilling fluid was used successfully to drill through various rock types within the unsaturated zone at Yucca Mountain, Nevada. This paper describes this method and the equipment used to rapidly penetrate bouldery alluvial-colluvial deposits, poorly consolidated bedded and nonwelded tuff, and fractured, densely welded tuff to depths of about 130 meters. A comparison of water-content and water-potential data from drill cuttings with similar measurements on rock cores indicates that drill cuttings were only slightly disturbed for several of the rock types penetrated. Coring, sampling, and handling methods were devised to obtain minimally disturbed drive core from bouldery alluvial-colluvial deposits. Bulk-density values obtained from bulk samples dug from nearby trenches were compared to bulk-density values obtained from drive core to determine the effects of drive coring on the porosity of the core. Rotary coring methods utilizing a triple-tube core barrel and air as the drilling fluid were used to obtain core from welded and nonwelded tuff. Results indicate that the disturbance of the water content of the core was minimal. Water-content distributions in alluvium-colluvium were determined before drilling occurred by drive-core methods. After drilling, water-content distributions were determined by nuclear-logging methods. A comparison of the water-content distributions made before and after drilling indicates that Odex 115 drilling minimally disturbs the water content of the formation rock. 10 refs., 12 figs., 4 tabs

  15. Imaging disturbance zones ahead of a tunnel by elastic full-waveform inversion: Adjoint gradient based inversion vs. parameter space reduction using a level-set method

    Directory of Open Access Journals (Sweden)

    Andre Lamert

    2018-03-01

    Full Text Available We present and compare two flexible and effective methodologies to predict disturbance zones ahead of underground tunnels by using elastic full-waveform inversion. One methodology uses a linearized, iterative approach based on misfit gradients computed with the adjoint method while the other uses iterative, gradient-free unscented Kalman filtering in conjunction with a level-set representation. Whereas the former does not involve a priori assumptions on the distribution of elastic properties ahead of the tunnel, the latter introduces a massive reduction in the number of explicit model parameters to be inverted for by focusing on the geometric form of potential disturbances and their average elastic properties. Both imaging methodologies are validated through successful reconstructions of simple disturbances. As an application, we consider an elastic multiple disturbance scenario. By using identical synthetic time-domain seismograms as test data, we obtain satisfactory, albeit different, reconstruction results from the two inversion methodologies. The computational costs of both approaches are of the same order of magnitude, with the gradient-based approach showing a slight advantage. The model parameter space reduction approach compensates for this by additionally providing a posteriori estimates of model parameter uncertainty. Keywords: Tunnel seismics, Full waveform inversion, Seismic waves, Level-set method, Adjoint method, Kalman filter

  16. METHOD FOR SIMULTANEOUS 90SR AND 137CS IN-VIVO MEASUREMENTS OF SMALL ANIMALS AND OTHER ENVIRONMENTAL MEDIA DEVELOPED FOR THE CONDITIONS OF THE CHERNOBYL EXCLUSION ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Jannik, T.

    2011-10-01

    To perform in vivo simultaneous measurements of the {sup 90}Sr and {sup 137}Cs content in the bodies of animals living in the Chernobyl Exclusion Zone (ChEZ), an appropriate method and equipment were developed and installed in a mobile gamma beta spectrometry laboratory. This technique was designed for animals of relatively small sizes (up to 50 g). The {sup 90}Sr content is measured by a beta spectrometer with a 0.1 mm thick scintillation plastic detector. The spectrum processing takes into account the fact that the measured object is 'thick-layered' and contains a comparable quantity of {sup 137}Cs, which is a characteristic condition of the ChEZ. The {sup 137}Cs content is measured by a NaI scintillation detector that is part of the combined gamma beta spectrometry system. For environmental research performed in the ChEZ, the advantages of this method and equipment (rapid measurements, capability to measure live animals directly in their habitat, and the capability of simultaneous {sup 90}Sr and {sup 137}Cs measurements) far outweigh the existing limitations (considerations must be made for background radiation and the animal size, skeletal shape and body mass). The accuracy of these in vivo measurements is shown to be consistent with standard spectrometric and radiochemical methods. Apart from the in vivo measurements, the proposed methodology, after a very simple upgrade that is also described in the article, works even more accurately with samples of other media, such as soil and plants.