WorldWideScience

Sample records for sense information-lossy type

  1. Ambipolar Organic Phototransistors with p-Type/n-Type Conjugated Polymer Bulk Heterojunction Light-Sensing Layers

    KAUST Repository

    Nam, Sungho; Han, Hyemi; Seo, Jooyeok; Song, Myeonghun; Kim, Hwajeong; Anthopoulos, Thomas D.; McCulloch, Iain; Bradley, Donal D C; Kim, Youngkyoo

    2016-01-01

    Ambipolar organic phototransistors with sensing channel layers, featuring p-type and n-type conjugated polymer bulk heterojunctions, exhibit outstanding light-sensing characteristics in both p-channel and n-channel sensing operation modes.

  2. Ambipolar Organic Phototransistors with p-Type/n-Type Conjugated Polymer Bulk Heterojunction Light-Sensing Layers

    KAUST Repository

    Nam, Sungho

    2016-11-18

    Ambipolar organic phototransistors with sensing channel layers, featuring p-type and n-type conjugated polymer bulk heterojunctions, exhibit outstanding light-sensing characteristics in both p-channel and n-channel sensing operation modes.

  3. Low cost sensing technology for type 2 diabetes monitoring

    Science.gov (United States)

    Sarswat, Prashant; Free, Michael

    2015-03-01

    Alpha-hydroxybutyrate (2-hydroxybutyrate or α-HB) is becoming more widely recognized as an important metabolic biomarker that has been shown to be highly correlated with prediabetes and other metabolic diseases. In 2012 there were 86 million Americans with prediabetes, many of whom are not aware they have prediabetes, but could be diagnosed and treated to prevent type 2 diabetes if a simple, low-cost, convenient test were available. We have developed new, low-cost, accurate α-HB detection methods that can be used for the detection and monitoring of diseases such as prediabetes, type 2 diabetes, β-cell dysfunction, and early hyperglycemia. The new sensing method utilizes a diol recognition moiety, additives and a photoinitiator to detect α-HB at levels near 1 micro g/l in the presence of serum compounds such as lactic acid, sodium pyruvate, and glucose. The objective of this research is to improve the understanding of the interactions that enhance α-HB detection to enable additional improvements in α-HB detection as well as improvements in other biosensor applications.

  4. A new type of intelligent wireless sensing network for health monitoring of large-size structures

    Science.gov (United States)

    Lei, Ying; Liu, Ch.; Wu, D. T.; Tang, Y. L.; Wang, J. X.; Wu, L. J.; Jiang, X. D.

    2009-07-01

    In recent years, some innovative wireless sensing systems have been proposed. However, more exploration and research on wireless sensing systems are required before wireless systems can substitute for the traditional wire-based systems. In this paper, a new type of intelligent wireless sensing network is proposed for the heath monitoring of large-size structures. Hardware design of the new wireless sensing units is first studied. The wireless sensing unit mainly consists of functional modules of: sensing interface, signal conditioning, signal digitization, computational core, wireless communication and battery management. Then, software architecture of the unit is introduced. The sensing network has a two-level cluster-tree architecture with Zigbee communication protocol. Important issues such as power saving and fault tolerance are considered in the designs of the new wireless sensing units and sensing network. Each cluster head in the network is characterized by its computational capabilities that can be used to implement the computational methodologies of structural health monitoring; making the wireless sensing units and sensing network have "intelligent" characteristics. Primary tests on the measurement data collected by the wireless system are performed. The distributed computational capacity of the intelligent sensing network is also demonstrated. It is shown that the new type of intelligent wireless sensing network provides an efficient tool for structural health monitoring of large-size structures.

  5. Linking remotely sensed aerosol types to their chemical composition

    Science.gov (United States)

    Dawson, K. W.; Kacenelenbogen, M. S.; Johnson, M. S.; Burton, S. P.; Hostetler, C. A.; Meskhidze, N.

    2016-12-01

    Aerosol types measured during the Ship-Aircraft Bio-Optical Research (SABOR) experiment are related to GEOS-Chem model chemical composition. The application for this procedure to link model chemical components to aerosol type is desirable for understanding aerosol evolution over time. The Mahalanobis distance (DM) statistic is used to cluster model groupings of five chemical components (organic carbon, black carbon, sea salt, dust and sulfate) in a way analogous to the methods used by Burton et al. [2012] and Russell et al. [2014]. First, model-to-measurement evaluation is performed by collocating vertically resolved aerosol extinction from SABOR High Spectral Resolution LiDAR (HSRL) to the GEOS-Chem nested high-resolution data. Comparisons of modeled-to-measured aerosol extinction are shown to be within 35% ± 14%. Second, the model chemical components are calculation into five variables to calculate the DM and cluster means and covariances for each HSRL-retrieved aerosol type. The layer variables from the model are aerosol optical depth (AOD) ratios of (i) sea salt and (ii) dust to total AOD, mass ratios of (iii) total carbon (i.e. sum of organic and black carbon) to the sum of total carbon and sulfate (iv) organic carbon to black carbon, and (v) the natural log of the aerosol-to-molecular extinction ratio. Third, the layer variables and at most five out of twenty SABOR flights are used to form the pre-specified clusters for calculating DM and to assign an aerosol type. After determining the pre-specified clusters, model aerosol types are produced for the entire vertically resolved GEOS-Chem nested domain over the United States and the model chemical component distributions relating to each type are recorded. Resulting aerosol types are Dust/Dusty Mix, Maritime, Smoke, Urban and Fresh Smoke (separated into `dark' and `light' by a threshold of the organic to black carbon ratio). Model-calculated DM not belonging to a specific type (i.e. not meeting a threshold

  6. Semiconductor type n for applications in gas sensing film

    International Nuclear Information System (INIS)

    Cerón Hurtado, Nathalie Marcela; Rodríguez Páez, Jorge Enrique

    2008-01-01

    Semiconductors are materials commonly used in the conformation of the active material in gas sensors, in this paper the synthesis routes are shown for obtaining raw material Sn02-Ti02 system, n-type semiconductor material, methods of characterization the same and the formation of thick films. The synthesis was performed using the methods of precipitation Controlled Polymeric Precursor, characterization of ceramic powders are made using techniques of differential thermal analysis and thermogravimetric (DTA / TG), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM ) and Scanning Electron Microscopy (SEM); Finally they settled in thick films by screen printing method and microstructurally characterized by Optical Microscopy (M0) and Scanning Electron Microscopy (SEM), besides this electrically characterized. The ceramic powders obtained are nanoscale high chemical purity and respond favorably formed films in the presence of oxygen and carbon monoxide.

  7. New types of time domain reflectometry sensing waveguides for bridge scour monitoring

    Science.gov (United States)

    Lin, Chih-Ping; Wang, Kai; Chung, Chih-Chung; Weng, Yu-Wen

    2017-07-01

    Scour is a major threat to bridge safety, especially in harsh fluvial environments. Real-time monitoring of bridge scour is still very limited due to the lack of robust and economic scour monitoring device. Time domain reflectometry (TDR) is an emerging waveguide-based technique holding great promise to develop more durable scour monitoring devices. This study presents new types of TDR sensing waveguides in forms of either sensing rod or sensing wire, taking into account of the measurement range, durability, and ease of field installation. The sensing rod is composed of a hollow grooved steel rod paired up with a metal strip on the insulating groove, while the sensing wire consists of two steel strands with one of them coated with an insulating jacket. The measurement sensitivity is inevitably sacrificed when other properties such as the measurement range, field durability, and installation easiness are enhanced. Factors affecting the measurement sensitivity were identified and experimentally evaluated for better arranging the waveguide conductors. A data reduction method for scour-depth estimation without the need for identifying the sediment/water reflection and a two-step calibration procedure for rating propagation velocities were proposed to work with the new types of TDR sensing waveguides. Both the calibration procedure and the data reduction method were experimentally validated. The test results indicated that the new TDR sensing waveguide provides accurate scour depth measurements regardless of the sacrificed sensitivity. The insulating coating of the new TDR sensing waveguide was also demonstrated to be effective in extending the measurement range up to at least 15 m.

  8. Pointwise Multipliers on Spaces of Homogeneous Type in the Sense of Coifman and Weiss

    Directory of Open Access Journals (Sweden)

    Yanchang Han

    2014-01-01

    homogeneous type in the sense of Coifman and Weiss, pointwise multipliers of inhomogeneous Besov and Triebel-Lizorkin spaces are obtained. We make no additional assumptions on the quasi-metric or the doubling measure. Hence, the results of this paper extend earlier related results to a more general setting.

  9. Sensing disks for slug-type calorimeters have higher temperature stability

    Science.gov (United States)

    1967-01-01

    Graphite sensing disk for slug-type radiation calorimeters exhibits better performance at high temperatures than copper and nickel disks. The graphite is heat-soaked to stabilize its emittance and the thermocouple is protected from the graphite so repeated temperature cycling does not change its sensitivity.

  10. Remote sensing information acquisition of paleo-channel sandstone-type uranium deposit in Nuheting area

    International Nuclear Information System (INIS)

    Liu Jianjun

    2000-01-01

    The author briefly describes the genesis and ore-formation mechanism of paleo-channel sandstone-type uranium deposit in Nuheting area. Techniques such as remote sensing digital image data processing and data enhancement, as well as 3-dimension quantitative analysis of drill hole data are applied to extract information on metallogenic environment of paleo-channel sandstone-type uranium deposit and the distribution of paleo-channel

  11. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection

    Directory of Open Access Journals (Sweden)

    San-Shan Hung

    2016-12-01

    Full Text Available A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2′-bipyridyl dichlororuthenium(II hexahydrate and Tris(bipyridineruthenium(II chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.

  12. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection.

    Science.gov (United States)

    Hung, San-Shan; Chang, Hsing-Cheng; Chang, I-Nan

    2016-12-08

    A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate and Tris(bipyridine)ruthenium(II) chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.

  13. Factors related to sense of coherence in adult patients with Type 2 diabetes.

    Science.gov (United States)

    Odajima, Yuki; Sumi, Naomi

    2018-02-01

    The influence of a diabetic person's sense of burden and blood sugar control through sense of coherence (SOC) on self-management has yet to be sufficiently clarified. The purpose of this study was to examine the utility of salutogenesis, which has sense of coherence at its core, for the self-management of patients with type 2 diabetes. A total of 258 questionnaires were distributed to patients who were seen at one of three hospitals in an urban area in Japan, after obtaining consent from the patient. They were between 20 and 75 years old and regularly received care. Of the 185 responses, 177 were valid. The responses were analyzed by referring to the framework of salutogenesis, and the relationship between patient characteristics, SOC, the Problem Areas In Diabetes survey (PAID), and glycosylated hemoglobin (HbA1c) were studied with structural equation modeling (SEM). SOC had a main effect on PAID scores and an indirect effect on HbA1c. Moreover, age influenced SOC positively. The SOC of patients with type 2 diabetes in the present study was comparatively high. These observations suggest a direct effect of SOC on reducing the sense of burden from having diabetes and an indirect effect on decreasing HbA1c. This research suggested the possibility that diabetes can be controlled by improving SOC.

  14. Remote sensing technology prospecting methods of interlayer oxidation zone type sandstone uranium deposit in Yili basin

    International Nuclear Information System (INIS)

    Huang Xianfang; Huang Shutao; Pan Wei; Feng Jie; Liu Dechang; Zhang Jingbo; Xuan Yanxiu; Rui Benshan

    1998-12-01

    Taking Yili Basin as an example, remote sensing technology and method of interlayer oxidation zone type sandstone uranium deposit have systematically been summarized. Firstly, principle, methods and procedures of the second development of scientific experimental satellite photograph have been elaborated in detail. Three dimensional stereo simulation, display, and multi-parameters extraction have been recommended. Secondarily, the research is focused on prospective section image features in different type images and their geological implications and on establishing recognition keys of promising areas. Finally, based on above research results, three graded predictions, i.e. regional prospect, promising sections and favourable location in the deposit have been made step by step and reconnaissance and prospecting range are gradually reduced. The practice has indicated that breakthrough progress has been made in application to prospect prognosis of interlayer oxidation zone type sandstone uranium deposit and good verified results have been obtained

  15. Spaceborne Remote Sensing of Aerosol Type: Global Distribution, Model Evaluation and Translation into Chemical Speciation

    Science.gov (United States)

    Kacenelenbogen, M. S.; Tan, Q.; Johnson, M. S.; Burton, S. P.; Redemann, J.; Hasekamp, O. P.; Dawson, K. W.; Hair, J. W.; Ferrare, R. A.; Butler, C. F.; Holben, B. N.; Beyersdorf, A. J.; Ziemba, L. D.; Froyd, K. D.; Dibb, J. E.; Shingler, T.; Sorooshian, A.; Jimenez, J. L.; Campuzano Jost, P.; Jacob, D.; Kim, P. S.; Travis, K.; Lacagnina, C.

    2016-12-01

    It is essential to evaluate and refine aerosol classification methods applied to passive satellite remote sensing. We have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground-based passive remote sensing instruments [1]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. We apply the SCMC method to inversions from the ground-based AErosol RObotic NETwork (AERONET [2]) and retrievals from the space-borne Polarization and Directionality of Earth's Reflectances instrument (POLDER, [3]). The POLDER retrievals that we use differ from the standard POLDER retrievals [4] as they make full use of multi-angle, multispectral polarimetric data [5]. We analyze agreement in the aerosol types inferred from both AERONET and POLDER and evaluate GEOS-Chem [6] simulations over the globe. Finally, we use in-situ observations from the SEAC4RS airborne field experiment to bridge the gap between remote sensing-inferred qualitative SCMC aerosol types and their corresponding quantitative chemical speciation. We apply the SCMC method to airborne in-situ observations from the NASA Langley Aerosol Research Group Experiment (LARGE, [7]) and the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP, [8]) instruments; we then relate each coarsely defined SCMC type to a sum of percentage of individual aerosol species, using in-situ observations from the Particle Analysis by Laser Mass Spectrometry (PALMS, [9]), the Soluble Acidic Gases and Aerosol (SAGA, [10]), and the High - Resolution Time - of - Flight Aerosol Mass Spectrometer (HR ToF AMS, [11]). [1] Russell P. B., et al., JGR, 119.16 (2014) [2] Holben B. N., et al., RSE, 66.1 (1998) [3] Tanré D., et al., AMT, 4.7 (2011

  16. Expression and Quorum Sensing Regulation of Type III Secretion System Genes of Vibrio harveyi during Infection of Gnotobiotic Brine Shrimp.

    Directory of Open Access Journals (Sweden)

    H A Darshanee Ruwandeepika

    Full Text Available Type III secretion systems enable pathogens to inject their virulence factors directly into the cytoplasm of the host cells. The type III secretion system of Vibrio harveyi, a major pathogen of aquatic organisms and a model species in quorum sensing studies, is repressed by the quorum sensing master regulator LuxR. In this study, we found that during infection of gnotobiotic brine shrimp larvae, the expression levels of three type III secretion operons in V. harveyi increased within the first 12h after challenge and decreased again thereafter. The in vivo expression levels were highest in a mutant with a quorum sensing system that is locked in low cell density configuration (minimal LuxR levels and lowest in a mutant with a quorum sensing system that is locked in the high cell density configuration (maximal LuxR levels, which is consistent with repression of type III secretion by LuxR. Remarkably, in vivo expression levels of the type III secretion system genes were much (> 1000 fold higher than the in vitro expression levels, indicating that (currently unknown host factors significantly induce the type III secretion system. Given the fact that type III secretion is energy-consuming, repression by the quorum sensing master regulators might be a mechanism to save energy under conditions where it does not provide an advantage to the cells.

  17. Application research on remote sensing geology of sandstone-type uranium deposit in Yili basin

    International Nuclear Information System (INIS)

    Wang Huaiwu

    2002-01-01

    Based on remote sensing images and practical materials, and new ideas of laying particular emphasis on the research of regional geologic structures, and large in-situ leachable sandstone-type uranium deposits, applying the theory of plate tectonics, the author makes a comprehensive analysis on the uranium metallogenic environments, characteristics of regional geologic structures, the ore-controlling mechanism and factors, and uranium metallogeny. Authors propose that large interlayer oxidation zone sandstone-type uranium deposits are controlled by the combination of the stable block in Meso-Cenozoic compressive-shearing faulted subsided basin on the Yili multiphase massif in Tianshan paleo-island arc system, and the specific paleo-geographic environments and its' structural terrace'. The origin of hydrogenic sandstone-type uranium deposits is summarized by the authors as the 'mixing and neutralization' genetic model, and the 'eight ore-controlling factors merge into an organic whole' prospecting model. The above mentioned provides clear prospecting direction and new ideas for the forecasting direction for prospecting large sandstone-type uranium deposits

  18. A Novel Type of Non-coding RNA, nc886, Implicated in Tumor Sensing and Suppression

    Directory of Open Access Journals (Sweden)

    Yong Sun Lee

    2015-06-01

    Full Text Available nc886 (=vtRNA2-1, pre-miR-886, or CBL3 is a newly identified non-coding RNA (ncRNA that represses the activity of protein kinase R (PKR. nc886 is transcribed by RNA polymerase III (Pol III and is intriguingly the first case of a Pol III gene whose expression is silenced by CpG DNA hypermethylation in several types of cancer. PKR is a sensor protein that recognizes evading viruses and induces apoptosis to eliminate infected cells. Like viral infection, nc886 silencing activates PKR and induces apoptosis. Thus, the significance of the nc886:PKR pathway in cancer is to sense and eliminate pre-malignant cells, which is analogous to PKR's role in cellular innate immunity. Beyond this tumor sensing role, nc886 plays a putative tumor suppressor role as supported by experimental evidence. Collectively, nc886 provides a novel example how epigenetic silencing of a ncRNA contributes to tumorigenesis by controlling the activity of its protein ligand.

  19. Mesenchymal Stem Cells Sense Three Dimensional Type I Collagen through Discoidin Domain Receptor 1.

    Science.gov (United States)

    Lund, A W; Stegemann, J P; Plopper, G E

    2009-01-01

    The extracellular matrix provides structural and organizational cues for tissue development and defines and maintains cellular phenotype during cell fate determination. Multipotent mesenchymal stem cells use this matrix to tightly regulate the balance between their differentiation potential and self-renewal in the native niche. When understood, the mechanisms that govern cell-matrix crosstalk during differentiation will allow for efficient engineering of natural and synthetic matrices to specifically direct and maintain stem cell phenotype. This work identifies the discoidin domain receptor 1 (DDR1), a collagen activated receptor tyrosine kinase, as a potential link through which stem cells sense and respond to the 3D organization of their extracellular matrix microenvironment. DDR1 is dependent upon both the structure and proteolytic state of its collagen ligand and is specifically expressed and localized in three dimensional type I collagen culture. Inhibition of DDR1 expression results in decreased osteogenic potential, increased cell spreading, stress fiber formation and ERK1/2 phosphorylation. Additionally, loss of DDR1 activity alters the cell-mediated organization of the naïve type I collagen matrix. Taken together, these results demonstrate a role for DDR1 in the stem cell response to and interaction with three dimensional type I collagen. Dynamic changes in cell shape in 3D culture and the tuning of the local ECM microstructure, directs crosstalk between DDR1 and two dimensional mechanisms of osteogenesis that can alter their traditional roles.

  20. Analysis of the SNR and sensing ability of different sensor types in a LIDAR system

    Science.gov (United States)

    Choi, Gyudong; Han, Munhyun; Seo, Hongseok; Mheen, Bongki

    2017-10-01

    LIDAR (light distance and ranging) systems use sensors to detect reflected signals. The performance of the sensors significantly affects the specification of the LIDAR system. Especially, the number and size of the sensors determine the FOV (field of view) and resolution of the system, regardless of which sensors are used. The resolution of an array-type sensor normally depends on the number of pixels in the array. In this type of sensor, there are several limitations to increase the number of pixels in an array for higher resolution, specifically complexity, cost, and size limitations. Another type of sensors uses multiple pairs of transmitter and receiver channels. Each channel detects different points with the corresponding directions indicated by the laser points of each channel. In this case, in order to increase the resolution, it is required to increase the number of channels, resulting in bigger sensor head size and deteriorated reliability due to heavy rotating head module containing all the pairs. In this paper, we present a method to overcome these limitations and improve the performance of the LIDAR system. ETRI developed a type of scanning LIDAR system called a STUD (static unitary detector) LIDAR system. It was developed to solve the problems associated with the aforementioned sensors. The STUD LIDAR system can use a variety of sensors without any limitations on the size or number of sensors, unlike other LIDAR systems. Since it provides optimal performance in terms of range and resolution, the detailed analysis was conducted in the STUD LIDAR system by applying different sensor type to have improved sensing performance.

  1. [Object-oriented stand type classification based on the combination of multi-source remote sen-sing data].

    Science.gov (United States)

    Mao, Xue Gang; Wei, Jing Yu

    2017-11-01

    The recognition of forest type is one of the key problems in forest resource monitoring. The Radarsat-2 data and QuickBird remote sensing image were used for object-based classification to study the object-based forest type classification and recognition based on the combination of multi-source remote sensing data. In the process of object-based classification, three segmentation schemes (segmentation with QuickBird remote sensing image only, segmentation with Radarsat-2 data only, segmentation with combination of QuickBird and Radarsat-2) were adopted. For the three segmentation schemes, ten segmentation scale parameters were adopted (25-250, step 25), and modified Euclidean distance 3 index was further used to evaluate the segmented results to determine the optimal segmentation scheme and segmentation scale. Based on the optimal segmented result, three forest types of Chinese fir, Masson pine and broad-leaved forest were classified and recognized using Support Vector Machine (SVM) classifier with Radial Basis Foundation (RBF) kernel according to different feature combinations of topography, height, spectrum and common features. The results showed that the combination of Radarsat-2 data and QuickBird remote sensing image had its advantages of object-based forest type classification over using Radarsat-2 data or QuickBird remote sensing image only. The optimal scale parameter for QuickBirdRadarsat-2 segmentation was 100, and at the optimal scale, the accuracy of object-based forest type classification was the highest (OA=86%, Kappa=0.86), when using all features which were extracted from two kinds of data resources. This study could not only provide a reference for forest type recognition using multi-source remote sensing data, but also had a practical significance for forest resource investigation and monitoring.

  2. Surface accumulation conduction controlled sensing characteristic of p-type CuO nanorods induced by oxygen adsorption

    International Nuclear Information System (INIS)

    Wang, C; Fu, X Q; Xue, X Y; Wang, Y G; Wang, T H

    2007-01-01

    P-type CuO nanorods were synthesized by a hydrothermal method and the ethanol-sensing properties of sensors based on CuO were investigated. The sensor resistance increased when it was exposed to ethanol and decreased in the air, which is contrary to the case for sensors realized from n-type semiconductor. The resistance of the CuO-based sensor was about 2 kΩ in air and 6 kΩ in ethanol vapour with concentration of 2000 ppm. Such a sensing property is attributed to surface accumulation conduction. Sensors based on CuO nanorods have potential applications in detecting ethanol in low concentration

  3. Development of a sensing system to detect C-telopeptide of type-I collagen

    KAUST Repository

    Afsarimanesh, Nasrin

    2016-03-30

    This research work describes a non-invasive and label-free immunosensing technique to detect the C-telopeptide of type-I collagen (CTX-1) by Electrochemical Impedance Spectroscopy (EIS). A planar interdigital capacitive sensor is used to evaluate the properties of the material under test. This sensor was fabricated on the basis of thin film micro-electromechanical system (MEMS) semiconductor device fabrication technology. EIS was used in conjunction with the sensor to detect collagen type-I in blood plasma. At the first stage, the Serum CrossLaps® ELISA was used to measure some known samples in order to obtain a standard curve. Streptavidin agarose was successfully immobilized on the sensing area of the sensor. After that the experiments were done with antibody solution and three known samples of CTX-1, zero concentration which was considered as control, 2.669 ng/ml and 0.798 ng/ml concentration. The results are encouraging for further investigation.

  4. Remote Sensing of plant functional types: Relative importance of biochemical and structural plant traits

    Science.gov (United States)

    Kattenborn, Teja; Schmidtlein, Sebastian

    2017-04-01

    Monitoring ecosystems is a key priority in order to understand vegetation patterns, underlying resource cycles and changes their off. Driven by biotic and abiotic factors, plant species within an ecosystem are likely to share similar structural, physiological or phenological traits and can therefore be grouped into plant functional types (PFT). It can be assumed that plants which share similar traits also share similar optical characteristics. Therefore optical remote sensing was identified as a valuable tool for differentiating PFT. Although several authors list structural and biochemical plant traits which are important for differentiating PFT using hyperspectral remote sensing, there is no quantitative or qualitative information on the relative importance of these traits. Thus, little is known about the explicit role of plant traits for an optical discrimination of PFT. One of the main reasons for this is that various optical traits affect the same wavelength regions and it is therefore difficult to isolate the discriminative power of a single trait. A way to determine the effect of single plant traits on the optical reflectance of plant canopies is given by radiative transfer models. The most established radiative transfer model is PROSAIL, which incorporates biochemical and structural plant traits, such as pigment contents or leaf area index. In the present study 25 grassland species of different PFT were cultivated and traits relevant for PROSAIL were measured for the entire vegetation season of 2016. The information content of each trait for differentiating PFTs was determined by applying a Multi-response Permutation Procedure on the actual traits, as well as on simulated canopy spectra derived from PROSAIL. According to our results some traits, especially biochemical traits, show a weaker separability of PFT on a spectral level than compared to the actual trait measurements. Overall structural traits (leaf angle and leaf area index) are more important for

  5. Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation

    DEFF Research Database (Denmark)

    Balestrino, D.; Haagensen, Janus Anders Juul; Rich, C.

    2005-01-01

    Quorum sensing is a process by which bacteria communicate by using secreted chemical signaling molecules called autoinducers. Many bacterial species modulate the expression of a wide variety of physiological functions in response to changes in population density by this mechanism. In this study, ...... steps of biofilm formation. These data suggest that a LuxS-dependent signal plays a role in the early stages of biofilm formation by K. pneumoniae....... observed in minimal medium supplemented with glycerol. To determine the potential role of luxS in colonization processes, a K. pneumoniae luxS isogenic mutant was constructed and tested for its capacity to form biofilms in vitro on an abiotic surface and to colonize the intestinal tract in a murine model....... No difference was observed in the level of intestinal colonization between the wild-type strain and the luxS mutant. Microscopic analysis of biofilm structures revealed that the luxS mutant was able to form a mature biofilm but with reduced capacities in the development of microcolonies, mostly in the early...

  6. The response of type 2 quorum sensing in Klebsiella pneumoniae to a fluctuating culture environment.

    Science.gov (United States)

    Zhu, Hu; Liu, Hui-Jun; Ning, Shou-Jiao; Gao, Yu-Li

    2012-04-01

    Bacterial cells communicate with one another using chemical signaling molecules. This phenomenon is termed quorum sensing (QS). QS in Klebsiella pneumoniae is mediated by the synthesis of interspecies autoinducer 2 (AI-2), a furanosyl borate diester molecule. The response of Type 2 QS to environmental cues such as carbon sources, the initial pH of the medium, and boracic acid was investigated in the present study using a Vibrio harveyi BB170 reporter assay and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. The results show that glucose can affect AI-2 synthesis to the greatest extent, and 3.0% glucose can stimulate K. pneumoniae to produce more AI-2, with a four times increase in activity compared with that of the control culture. According to our previous research, Type 2 QS in K. pneumoniae is luxS dependent. Therefore, the close relationship between glucose concentration and luxS transcription level was confirmed with qRT-PCR technology. The results show that the response of QS to a fluctuating glucose concentration was observed as a change in the amount of luxS RNA transcripts. A maximum of luxS transcription appeared during the exponential growth phase when the glucose concentration was 30.0 g/L. At the same time, AI-2 production was also slightly impacted by the low initial pH. It is noteworthy that the addition of boracic acid at microdosage (0.1 g/L) can also induce AI-2 synthesis. Presumably, in K. pneumoniae, the 4,5-dihydroxy-2,3-pentanedione cyclizes by the addition of borate and loss of water, is hydrated, and is converted to the final AI-2 signaling molecule.

  7. Remote Sensing of Rock Type in the Visible and Near-Infrared,

    Science.gov (United States)

    Visible and near-infrared spectra of minerals and rocks have been measured and evaluated in terms of remote sensing applications. The authors...difficult or impossible to use in a generalized remote sensing effort in which the composition of all rocks is to be mapped. Instead, this spectral

  8. Supervised Classification High-Resolution Remote-Sensing Image Based on Interval Type-2 Fuzzy Membership Function

    Directory of Open Access Journals (Sweden)

    Chunyan Wang

    2018-05-01

    Full Text Available Because of the degradation of classification accuracy that is caused by the uncertainty of pixel class and classification decisions of high-resolution remote-sensing images, we proposed a supervised classification method that is based on an interval type-2 fuzzy membership function for high-resolution remote-sensing images. We analyze the data features of a high-resolution remote-sensing image and construct a type-1 membership function model in a homogenous region by supervised sampling in order to characterize the uncertainty of the pixel class. On the basis of the fuzzy membership function model in the homogeneous region and in accordance with the 3σ criterion of normal distribution, we proposed a method for modeling three types of interval type-2 membership functions and analyze the different types of functions to improve the uncertainty of pixel class expressed by the type-1 fuzzy membership function and to enhance the accuracy of classification decision. According to the principle that importance will increase with a decrease in the distance between the original, upper, and lower fuzzy membership of the training data and the corresponding frequency value in the histogram, we use the weighted average sum of three types of fuzzy membership as the new fuzzy membership of the pixel to be classified and then integrated into the neighborhood pixel relations, constructing a classification decision model. We use the proposed method to classify real high-resolution remote-sensing images and synthetic images. Additionally, we qualitatively and quantitatively evaluate the test results. The results show that a higher classification accuracy can be achieved with the proposed algorithm.

  9. Remote sensing based crop type mapping and evapotranspiration estimates at the farm level in arid regions of the globe

    Science.gov (United States)

    Ozdogan, M.; Serrat-Capdevila, A.; Anderson, M. C.

    2017-12-01

    Despite increasing scarcity of freshwater resources, there is dearth of spatially explicit information on irrigation water consumption through evapotranspiration, particularly in semi-arid and arid geographies. Remote sensing, either alone or in combination with ground surveys, is increasingly being used for irrigation water management by quantifying evaporative losses at the farm level. Increased availability of observations, sophisticated algorithms, and access to cloud-based computing is also helping this effort. This presentation will focus on crop-specific evapotranspiration estimates at the farm level derived from remote sensing in a number of water-scarce regions of the world. The work is part of a larger effort to quantify irrigation water use and improve use efficiencies associated with several World Bank projects. Examples will be drawn from India, where groundwater based irrigation withdrawals are monitored with the help of crop type mapping and evapotranspiration estimates from remote sensing. Another example will be provided from a northern irrigation district in Mexico, where remote sensing is used for detailed water accounting at the farm level. These locations exemplify the success stories in irrigation water management with the help of remote sensing with the hope that spatially disaggregated information on evapotranspiration can be used as inputs for various water management decisions as well as for better water allocation strategies in many other water scarce regions.

  10. Efficient crop type mapping based on remote sensing in the Central Valley, California

    Science.gov (United States)

    Zhong, Liheng

    Most agricultural systems in California's Central Valley are purposely flexible and intentionally designed to meet the demands of dynamic markets. Agricultural land use is also impacted by climate change and urban development. As a result, crops change annually and semiannually, which makes estimating agricultural water use difficult, especially given the existing method by which agricultural land use is identified and mapped. A minor portion of agricultural land is surveyed annually for land-use type, and every 5 to 8 years the entire valley is completely evaluated. So far no effort has been made to effectively and efficiently identify specific crop types on an annual basis in this area. The potential of satellite imagery to map agricultural land cover and estimate water usage in the Central Valley is explored. Efforts are made to minimize the cost and reduce the time of production during the mapping process. The land use change analysis shows that a remote sensing based mapping method is the only means to map the frequent change of major crop types. The traditional maximum likelihood classification approach is first utilized to map crop types to test the classification capacity of existing algorithms. High accuracy is achieved with sufficient ground truth data for training, and crop maps of moderate quality can be timely produced to facilitate a near-real-time water use estimate. However, the large set of ground truth data required by this method results in high costs in data collection. It is difficult to reduce the cost because a trained classification algorithm is not transferable between different years or different regions. A phenology based classification (PBC) approach is developed which extracts phenological metrics from annual vegetation index profiles and identifies crop types based on these metrics using decision trees. According to the comparison with traditional maximum likelihood classification, this phenology-based approach shows great advantages

  11. Creating Aerosol Types from CHemistry (CATCH): A New Algorithm to Extend the Link Between Remote Sensing and Models

    Science.gov (United States)

    Dawson, K. W.; Meskhidze, N.; Burton, S. P.; Johnson, M. S.; Kacenelenbogen, M. S.; Hostetler, C. A.; Hu, Y.

    2017-11-01

    Current remote sensing methods can identify aerosol types within an atmospheric column, presenting an opportunity to incrementally bridge the gap between remote sensing and models. Here a new algorithm was designed for Creating Aerosol Types from CHemistry (CATCH). CATCH-derived aerosol types—dusty mix, maritime, urban, smoke, and fresh smoke—are based on first-generation airborne High Spectral Resolution Lidar (HSRL-1) retrievals during the Ship-Aircraft Bio-Optical Research (SABOR) campaign, July/August 2014. CATCH is designed to derive aerosol types from model output of chemical composition. CATCH-derived aerosol types are determined by multivariate clustering of model-calculated variables that have been trained using retrievals of aerosol types from HSRL-1. CATCH-derived aerosol types (with the exception of smoke) compare well with HSRL-1 retrievals during SABOR with an average difference in aerosol optical depth (AOD) methods. In the future, spaceborne HSRL-1 and CATCH can be used to gain insight into chemical composition of aerosol types, reducing uncertainties in estimates of aerosol radiative forcing.

  12. Remote sensing depth invariant index parameters in shallow benthic habitats for bottom type classification.

    Science.gov (United States)

    Gapper, J.; El-Askary, H. M.; Linstead, E.

    2017-12-01

    Ground cover prediction of benthic habitats using remote sensing imagery requires substantial feature engineering. Artifacts that confound the ground cover characteristics must be severely reduced or eliminated while the distinguishing features must be exposed. In particular, the impact of wavelength attenuation in the water column means that a machine learning algorithm will primarily detect depth. However, the per pixel depths are difficult to know on a grand scale. Previous research has taken an in situ approach to applying depth invariant index on a small area of interest within a Landsat 8 scene. We aim to abstract this process for application to entire Landsat scene as well as other locations in order to study change detection in shallow benthic zones on a global scale. We have developed a methodology and applied it to more than 25 different Landsat 8 scenes. The images were first preprocessed to mask land, clouds, and other distortions then atmospheric correction via dark pixel subtraction was applied. Finally, depth invariant indices were calculated for each location and associated parameters recorded. Findings showed how robust the resulting parameters (deep-water radiance, depth invariant constant, band radiance variance/covariance, and ratio of attenuation) were across all scenes. We then created false color composite images of the depth invariant indices for each location. We noted several artifacts within some sites in the form of patterns or striations that did not appear to be aligned with variations in subsurface ground cover types. Further research into depth surveys for these sites revealed depths consistent with one or more wavelengths fully attenuating. This result showed that our model framework is generalizing well but limited to the penetration depths due to wavelength attenuation. Finally, we compared the parameters associated with the depth invariant calculation which were consistent across most scenes and explained any outliers observed

  13. Au@NiO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism

    KAUST Repository

    Majhi, Sanjit Manohar

    2018-04-25

    In this work, Au@NiO core-shell nanoparticles (C-S NPs) as a p-type gas sensing material was synthesized by a facile wet-chemical method, and evaluated their gas sensing properties as compared to the pristine NiO NPs gas sensors. Transmission electron microscope (TEM) results exhibited the well-dispersed formation of Au@NiO C-S NPs having the total size of 70–120 nm and NiO shells having 30–50 nm thickness. The C-S morphology as well as the overall particle sizes are unchanged even at 500 °C. The gas sensing result reveals that the response of Au@NiO C-S NPs gas sensor is higher than pristine NiO NPs gas sensor for 100 ppm of ethanol at 200 °C operating temperature. The baseline resistance in the air for Au@NiO C-S NPs sensor is lowered as compared to pristine NiO NPs, which is due to the increased number of holes as charge carriers in Au@NiO C-S NPs. The high response of Au@NiO core-shell NPs as compared to pristine NiO NPs is attributed to electronic and chemical sensitization effects of Au. In Au@NiO C-S structure, the contact between metal (Au) and semiconductor (NiO) formed a Schottky junction since Au metal acted as electron acceptor, a withdrawal of electrons from NiO by Au metal core leaved behind number of holes as charge carriers in Au@NiO C-S NPs. Therefore, the baseline resistance of Au@NiO C-S NPs greatly decreased than pristine NiO NPs, as a result the Au@NiO C-S NPs showed higher response. On the other hand, in chemical sensitization effect, Au NPs catalyzed to dissociate O2 molecules into ionic species. This work will give some clue to the researchers for the further development of p-type based C-S NPs sensors.

  14. Force-Sensing Actuator with a Compliant Flexure-Type Joint for a Robotic Manipulator

    Directory of Open Access Journals (Sweden)

    Mathieu Grossard

    2015-12-01

    Full Text Available This paper deals with the mechatronic design of a novel self-sensing motor-to-joint transmission to be used for the actuation of robotic dexterous manipulators. Backdrivability, mechanical simplicity and efficient flexure joint structures are key concepts that have guided the mechanical design rationale to provide the actuator with force sensing capabilities. Indeed, a self-sensing characteristic is achieved by the specific design of high-resolution cable-driven actuators based on a DC motor, a ball-screw and a monolithic compliant anti-rotation system together with a novel flexure pivot providing a frictionless mechanical structure. That novel compliant pivot with a large angular range and a small center shift has been conceived of to provide the inter-phalangeal rotational degree of freedom of the fingers’ joints to be used for integration in a multi-fingered robotic gripper. Simultaneously, it helps to remove friction at the joint level of the mechanism. Experimental tests carried out on a prototype show an accurate matching between the model and the real behavior. Overall, this mechatronic design contributes to the improvement of the manipulation skills of robotic grippers, thanks to the combination of high performance mechanics, high sensitivity to external forces and compliance control capability.

  15. MCL and mincle: C-type lectin receptors that sense damaged self and pathogen associated molecular patterns

    Directory of Open Access Journals (Sweden)

    Mark B Richardson

    2014-06-01

    Full Text Available MCL (macrophage C-type lectin and mincle (macrophage inducible C-type lectin comprise part of an extensive repertoire of pattern recognition receptors with the ability to sense damage associated and pathogen associated molecular patterns. In this review we cover the discovery and molecular characterization of these C-type lectin receptors, and highlight recent advances in the understanding of their roles in orchestrating the response of the immune system to bacterial and fungal infection, and damaged self. We also discuss the identification and structure-activity relationships of activating ligands, particularly trehalose dimycolate (TDM and related mycobacterial glycolipids, which have significant potential in the development of TH1/TH17 vaccination strategies.

  16. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors.

    Science.gov (United States)

    Deng, Liufu; Liang, Hua; Xu, Meng; Yang, Xuanming; Burnette, Byron; Arina, Ainhoa; Li, Xiao-Dong; Mauceri, Helena; Beckett, Michael; Darga, Thomas; Huang, Xiaona; Gajewski, Thomas F; Chen, Zhijian J; Fu, Yang-Xin; Weichselbaum, Ralph R

    2014-11-20

    Ionizing radiation-mediated tumor regression depends on type I interferon (IFN) and the adaptive immune response, but several pathways control I IFN induction. Here, we demonstrate that adaptor protein STING, but not MyD88, is required for type I IFN-dependent antitumor effects of radiation. In dendritic cells (DCs), STING was required for IFN-? induction in response to irradiated-tumor cells. The cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) mediated sensing of irradiated-tumor cells in DCs. Moreover, STING was essential for radiation-induced adaptive immune responses, which relied on type I IFN signaling on DCs. Exogenous IFN-? treatment rescued the cross-priming by cGAS or STING-deficient DCs. Accordingly, activation of STING by a second messenger cGAMP administration enhanced antitumor immunity induced by radiation. Thus radiation-mediated antitumor immunity in immunogenic tumors requires a functional cytosolic DNA-sensing pathway and suggests that cGAMP treatment might provide a new strategy to improve radiotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Endogenous Isoquinoline Alkaloids Agonists of Acid-Sensing Ion Channel Type 3

    Directory of Open Access Journals (Sweden)

    Dmitry I. Osmakov

    2017-09-01

    Full Text Available Acid-sensing ion channels (ASICs ASIC3 expressed mainly in peripheral sensory neurons play an important role in pain perception and inflammation development. In response to acidic stimuli, they can generate a unique biphasic current. At physiological pH 7.4, human ASIC3 isoform (hASIC3 is desensitized and able to generate only a sustained current. We found endogenous isoquinoline alkaloids (EIAs, which restore hASIC3 from desensitization and recover the transient component of the current. Similarly, rat ASIC3 isoform (rASIC3 can also be restored from desensitization (at pH < 7.0 by EIAs with the same potency. At physiological pH and above, EIAs at high concentrations were able to effectively activate hASIC3 and rASIC3. Thus, we found first endogenous agonists of ASIC3 channels that could both activate and prevent or reverse desensitization of the channel. The decrease of EIA levels could be suggested as a novel therapeutic strategy for treatment of pain and inflammation.

  18. Sensing of Bacterial Type IV Secretion via the Unfolded Protein Response

    NARCIS (Netherlands)

    de Jong, Maarten F.; Starr, Tregei; Winter, Maria G.; den Hartigh, Andreas B.; Child, Robert; Knodler, Leigh A.; van Dijl, Jan Maarten; Celli, Jean; Tsolis, Renee M.

    2013-01-01

    Host cytokine responses to Brucella abortus infection are elicited predominantly by the deployment of a type IV secretion system (T4SS). However, the mechanism by which the T4SS elicits inflammation remains unknown. Here we show that translocation of the T4SS substrate VceC into host cells induces

  19. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.

    Science.gov (United States)

    Huang, Yijen A; Maruyama, Yutaka; Stimac, Robert; Roper, Stephen D

    2008-06-15

    Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.

  20. Characterization and Distribution of Lunar Mare Basalt Types Using Remote Sensing Techniques. Ph.D. Thesis

    Science.gov (United States)

    Pieters, C.

    1977-01-01

    The types of basal to be found on the moon were identified using reflectance spectra from a variety of lunar mare surfaces and craters as well as geochemical interpretations of laboratory measurements of reflectance from lunar, terrestrial, and meteoritic samples. Findings indicate that major basaltic units are not represented in lunar sample collections. The existence of late stage high titanium basalts is confirmed. All maria contain lateral variations of compositionally heterogenous basalts; some are vertically inhomogenous with distinctly different subsurface composition. Some basalt types are spectrally gradational, suggesting minor variations in composition. Mineral components of unsampled units can be defined if spectra are obtained with sufficient spectral coverage (.3 to 2.5 micron m) and spatial resolution (approximating .5 km).

  1. Molecular model of a type III secretion system needle: Implications for host-cell sensing.

    Science.gov (United States)

    Deane, Janet E; Roversi, Pietro; Cordes, Frank S; Johnson, Steven; Kenjale, Roma; Daniell, Sarah; Booy, Frank; Picking, William D; Picking, Wendy L; Blocker, Ariel J; Lea, Susan M

    2006-08-15

    Type III secretion systems are essential virulence determinants for many Gram-negative bacterial pathogens. The type III secretion system consists of cytoplasmic, transmembrane, and extracellular domains. The extracellular domain is a hollow needle protruding above the bacterial surface and is held within a basal body that traverses both bacterial membranes. Effector proteins are translocated, via this external needle, directly into host cells, where they subvert normal cell functions to aid infection. Physical contact with host cells initiates secretion and leads to formation of a pore, thought to be contiguous with the needle channel, in the host-cell membrane. Here, we report the crystal structure of the Shigella flexneri needle subunit MxiH and a complete model for the needle assembly built into our three-dimensional EM reconstruction. The model, combined with mutagenesis data, reveals that signaling of host-cell contact is relayed through the needle via intersubunit contacts and suggests a mode of binding for a tip complex.

  2. The use of Kodak aerochrome infrared color film, type 2443, as a remote sensing tool

    Science.gov (United States)

    Cooper, G. R.; Bowen, R. L.; Gausman, H. W.

    1972-01-01

    An infrared color film, Kodak Aerochrome, type 2443, has replaced the 8443 film. The 2443 has lower contrast than the 8443 film, and allows deeper probing into areas that appear as solid black shadows on the 8443 film. The cyan layer of 2443 is approximately 1 1/2 stops slower, at a density of 1.4, than the yellow and magenta emulsion layers.

  3. A unified approach to infrared aerosol remote sensing and type specification

    Directory of Open Access Journals (Sweden)

    L. Clarisse

    2013-02-01

    Full Text Available Atmospheric aerosols impact air quality and global climate. Space based measurements are the best way to observe their spatial and temporal distributions, and can also be used to gain better understanding of their chemical, physical and optical properties. Aerosol composition is the key parameter affecting the refractive index, which determines how much radiation is scattered and absorbed. Composition of aerosols is unfortunately not measured by state of the art satellite remote sounders. Here we use high resolution infrared measurements for aerosol type differentiation, exploiting, in that part of spectrum, the dependency of their refractive index on wavelength. We review existing detection methods and present a unified detection method based on linear discrimination analysis. We demonstrate this method on measurements of the Infrared Atmospheric Sounding Interferometer (IASI and five different aerosol types, namely volcanic ash, windblown sand, sulfuric acid droplets, ammonium sulfate and smoke particles. We compare these with traditional MODIS AOD measurements. The detection of the last three types is unprecedented in the infrared in nadir mode, but is very promising, especially for sulfuric acid droplets which are detected in the lower troposphere and up to 6 months after injection in the upper troposphere/lower stratosphere.

  4. Is sense of coherence a predictor of lifestyle changes in subjects at risk for type 2 diabetes?

    Science.gov (United States)

    Nilsen, V; Bakke, P S; Rohde, G; Gallefoss, F

    2015-02-01

    To determine whether the sense of coherence (SOC) could predict the outcome of an 18-month lifestyle intervention program for subjects at risk of type 2 diabetes. Subjects at high risk of type 2 diabetes mellitus were recruited to a low-intensity lifestyle intervention program by their general practitioners. Weight reduction ≥ 5% and improvement in exercise capacity of ≥ 10% from baseline to follow-up indicated a clinically significant lifestyle change. SOC was measured using the 13-item SOC questionnaire. The study involved 213 subjects with a mean body mass index of 37 (SD ± 6). Complete follow-up data were obtained for 131 (62%). Twenty-six participants had clinically significant lifestyle changes. There was a 21% increase in the odds of a clinically significant lifestyle change for each point increase in the baseline SOC score (odds ratio = 1.21; confidence interval = 1.11-1.32). The success rate was 14 times higher in the highest SOC score tertile group compared with the lowest. High SOC scores were good predictors of successful lifestyle change in subjects at risk of type 2 diabetes. SOC-13 can be used in daily practice to increase clinical awareness on the impact of mastery on the outcome of life-style intervention programs. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Paijo

    2016-04-01

    Full Text Available Human cytomegalovirus (HCMV infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS senses cytosolic DNA and catalyzes formation of the cyclic di-nucleotide cGAMP, which triggers stimulator of interferon genes (STING and thus induces antiviral type I interferon (IFN-I responses. We found that plasmacytoid dendritic cells (pDC as well as monocyte-derived DC and macrophages constitutively expressed cGAS and STING. HCMV infection further induced cGAS, whereas STING expression was only moderately affected. Although pDC expressed particularly high levels of cGAS, and the cGAS/STING axis was functional down-stream of STING, as indicated by IFN-I induction upon synthetic cGAMP treatment, pDC were not susceptible to HCMV infection and mounted IFN-I responses in a TLR9-dependent manner. Conversely, HCMV infected monocyte-derived cells synthesized abundant cGAMP levels that preceded IFN-I production and that correlated with the extent of infection. CRISPR/Cas9- or siRNA-mediated cGAS ablation in monocytic THP-1 cells and primary monocyte-derived cells, respectively, impeded induction of IFN-I responses following HCMV infection. Thus, cGAS is a key sensor of HCMV for IFN-I induction in primary human monocyte-derived DC and macrophages.

  6. Clinical characterization of a novel calcium sensing receptor genetic alteration in a Greek patient with autosomal dominant hypocalcemia type 1.

    Science.gov (United States)

    Papadopoulou, Anna; Gole, Evangelia; Melachroinou, Katerina; Trangas, Theoni; Bountouvi, Evaggelia; Papadimitriou, Anastasios

    2017-04-01

    Autosomal dominant hypocalcemia (ADH) is a rare familial or sporadic syndrome associated with activating mutations in the calcium sensing receptor (CaSR) gene. The aim of this study was to assess the functional significance of a novel CaSR mutation and, moreover, to present the clinical characteristics and the bone mineral density (BMD) progression from early childhood to late puberty in a patient with ADH. Genetic analysis of the CaSR gene was performed in a patient who presented in the neonatal period with hypocalcemic seizures and biochemical features of ADH. The functional impact of the novel mutation identified was assessed in cultured HEK 293T cells, transfected with either the wild type (WT) or mutant CaSR, by evaluating intracellular calcium ([Ca2+]i) influx after stimulation with extracellular calcium (Ca2+). Several BMD measurements were performed during the patient's follow-up until late puberty. A novel CaSR mutation (p.L123S) was identified, which, as demonstrated by functional analysis, renders CaSR more sensitive to extracellular changes of Ca2+ compared with the WT, although the difference is not statistically significant. BMD measurements, from early childhood to late puberty, revealed high normal to elevated BMD. We present the first Greek patient, to our knowledge, with sporadic ADH due to a novel gain-of-function mutation of the CaSR gene.

  7. Cholesterol trafficking and raft-like membrane domain composition mediate scavenger receptor class B type 1-dependent lipid sensing in intestinal epithelial cells.

    Science.gov (United States)

    Morel, Etienne; Ghezzal, Sara; Lucchi, Géraldine; Truntzer, Caroline; Pais de Barros, Jean-Paul; Simon-Plas, Françoise; Demignot, Sylvie; Mineo, Chieko; Shaul, Philip W; Leturque, Armelle; Rousset, Monique; Carrière, Véronique

    2018-02-01

    Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Religious and secular students' sense of self-efficacy and attitudes towards inclusion of pupils with intellectual disability and other types of needs.

    Science.gov (United States)

    Lifshitz, H; Glaubman, R

    2002-06-01

    The aim of the present study was to investigate whether Judaism's positive attitudes toward people with disabilities would influence greater willingness towards inclusion of such people in regular classes and a greater sense of self-efficacy in working with them. The present authors compared religious (n = 175) and secular (n = 420) Jewish students at a teacher's college with regard to these variables. The authors used the Regular Education Initiative questionnaire, which investigates teachers' self-efficacy and attitudes towards including pupils with different types of disabilities in regular education. They analysed the results according to the college students' major and the type of disability (five types at three levels of severity). The results indicate that religious students are more willing than non-religious students to consider the inclusion of people with four types of disabilities and have a greater sense of efficacy for dealing with all types of disabilities. The hypothesis that the milder the disability, the higher would be the teacher's sense of self-efficacy and her/his willingness for such children to be included in a regular class was sustained. The religious special education students were the only ones who exhibited willingness to include pupils with intellectual disability, and moderate and severe emotional disturbances. Students who majored in special education scored higher than all their counterparts on both measures. The results also sustain the hypothesis that there would be a positive correlation between both measures. To facilitate inclusive education amongst teachers and students, the present authors recommend an intervention programme designed to help students acquire knowledge and strategies about inclusion. They also suggest enriching this programme with Jewish religious sources, which reflect positive attitudes toward people with disabilities.

  9. Mobile Sensing Systems

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-01-01

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high. PMID:24351637

  10. Mobile sensing systems.

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-12-16

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  11. Mobile Sensing Systems

    Directory of Open Access Journals (Sweden)

    Elsa Macias

    2013-12-01

    Full Text Available Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  12. Remote-sensing and geological information for prospective area selection of in-situ leachable sandstone-type uranium deposit in Songliao and Liaohe faulted-depressed basins

    International Nuclear Information System (INIS)

    Yu Baoshan

    1998-01-01

    On the basis of remote-sensing information and geological environments for the formation of in-situ leachable sandstone-type uranium deposits such as geomorphic features, distribution of drainage system, and paleo-alluvial (diluvial) fans and time-space distribution regularities of orehosting rocks and sandstone bodies in Songliao and Liaohe faulted-depressed basins, image features, tectonic patterns and paleo-geographic environment of the prospective areas are discussed for both basins, and based on a great number of petroleum-geological data and comparison analysis, a remote sensing-geological prospecting model for in-situ leachable sandstonetype uranium deposits in the region is established, providing indications for selection of prospective area

  13. Modified vaccinia virus Ankara triggers type I IFN production in murine conventional dendritic cells via a cGAS/STING-mediated cytosolic DNA-sensing pathway.

    Directory of Open Access Journals (Sweden)

    Peihong Dai

    2014-04-01

    Full Text Available Modified vaccinia virus Ankara (MVA is an attenuated poxvirus that has been engineered as a vaccine against infectious agents and cancers. Our goal is to understand how MVA modulates innate immunity in dendritic cells (DCs, which can provide insights to vaccine design. In this study, using murine bone marrow-derived dendritic cells, we assessed type I interferon (IFN gene induction and protein secretion in response to MVA infection. We report that MVA infection elicits the production of type I IFN in murine conventional dendritic cells (cDCs, but not in plasmacytoid dendritic cells (pDCs. Transcription factors IRF3 (IFN regulatory factor 3 and IRF7, and the positive feedback loop mediated by IFNAR1 (IFN alpha/beta receptor 1, are required for the induction. MVA induction of type I IFN is fully dependent on STING (stimulator of IFN genes and the newly discovered cytosolic DNA sensor cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase. MVA infection of cDCs triggers phosphorylation of TBK1 (Tank-binding kinase 1 and IRF3, which is abolished in the absence of cGAS and STING. Furthermore, intravenous delivery of MVA induces type I IFN in wild-type mice, but not in mice lacking STING or IRF3. Treatment of cDCs with inhibitors of endosomal and lysosomal acidification or the lysosomal enzyme Cathepsin B attenuated MVA-induced type I IFN production, indicating that lysosomal enzymatic processing of virions is important for MVA sensing. Taken together, our results demonstrate a critical role of the cGAS/STING-mediated cytosolic DNA-sensing pathway for type I IFN induction in cDCs by MVA. We present evidence that vaccinia virulence factors E3 and N1 inhibit the activation of IRF3 and the induction of IFNB gene in MVA-infected cDCs.

  14. New discovery in study of remote sensing image characteristics at sandstone-type uranium deposits in China and its important significance

    International Nuclear Information System (INIS)

    Liu Dechang; Huang Xianfang; Ye Fawang

    2004-01-01

    Sandstone-type uranium deposit now is one of main targets in uranium prospecting in China. During the prospecting, the study is often emphasized on those ore-controlling factors such as the lithology and lithofacies of ore-hosting strata. While the ore-controlling factor of fault structure is usually neglected. By means of systematic research on remote sensing image features of sandstone-type uranium deposits, it is found that fault structure is always present at most main sandstone-type uranium ore districts. Based on above research achievements characteristics of ore-controlling fault and its ore-controlling role are analysed and a new metallogenetic model--'structural-geochemical barrier model' is put forward. Finally, the difference between the sturctural-geochemical barrier model and traditional interlayer oxidation zone front model is elaborated and its important significance is discussed. (authors)

  15. Human plasmacytoid dentritic cells elicit a Type I Interferon response by sensing DNA via the cGAS-STING signaling pathway.

    Science.gov (United States)

    Bode, Christian; Fox, Mario; Tewary, Poonam; Steinhagen, Almut; Ellerkmann, Richard K; Klinman, Dennis; Baumgarten, Georg; Hornung, Veit; Steinhagen, Folkert

    2016-07-01

    Plasmacytoid dendritic cells (pDCs) are a major source of type I interferon (IFN) and are important for host defense by sensing microbial DNA via TLR9. pDCs also play a critical role in the pathogenesis of IFN-driven autoimmune diseases. Yet, this autoimmune reaction is caused by the recognition of self-DNA and has been linked to TLR9-independent pathways. Increasing evidence suggests that the cytosolic DNA receptor cyclic GMP-AMP (cGAMP) synthase (cGAS) is a critical component in the detection of pathogens and contributes to autoimmune diseases. It has been shown that binding of DNA to cGAS results in the synthesis of cGAMP and the subsequent activation of the stimulator of interferon genes (STING) adaptor to induce IFNs. Our results show that the cGAS-STING pathway is expressed and activated in human pDCs by cytosolic DNA leading to a robust type I IFN response. Direct activation of STING by cyclic dinucleotides including cGAMP also activated pDCs and knockdown of STING abolished this IFN response. These results suggest that pDCs sense cytosolic DNA and cyclic dinucleotides via the cGAS-STING pathway and that targeting this pathway could be of therapeutic interest. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A LysR-Type Transcriptional Regulator, RovM, Senses Nutritional Cues Suggesting that It Is Involved in Metabolic Adaptation of Yersinia pestis to the Flea Gut.

    Directory of Open Access Journals (Sweden)

    Viveka Vadyvaloo

    Full Text Available Yersinia pestis has evolved as a clonal variant of Yersinia pseudotuberculosis to cause flea-borne biofilm-mediated transmission of the bubonic plague. The LysR-type transcriptional regulator, RovM, is highly induced only during Y. pestis infection of the flea host. RovM homologs in other pathogens regulate biofilm formation, nutrient sensing, and virulence; including in Y. pseudotuberculosis, where RovM represses the major virulence factor, RovA. Here the role that RovM plays during flea infection was investigated using a Y. pestis KIM6+ strain deleted of rovM, ΔrovM. The ΔrovM mutant strain was not affected in characteristic biofilm gut blockage, growth, or survival during single infection of fleas. Nonetheless, during a co-infection of fleas, the ΔrovM mutant exhibited a significant competitive fitness defect relative to the wild type strain. This competitive fitness defect was restored as a fitness advantage relative to the wild type in a ΔrovM mutant complemented in trans to over-express rovM. Consistent with this, Y. pestis strains, producing elevated transcriptional levels of rovM, displayed higher growth rates, and differential ability to form biofilm in response to specific nutrients in comparison to the wild type. In addition, we demonstrated that rovA was not repressed by RovM in fleas, but that elevated transcriptional levels of rovM in vitro correlated with repression of rovA under specific nutritional conditions. Collectively, these findings suggest that RovM likely senses specific nutrient cues in the flea gut environment, and accordingly directs metabolic adaptation to enhance flea gut colonization by Y. pestis.

  17. Dosimeter-Type NOx Sensing Properties of KMnO4 and Its Electrical Conductivity during Temperature Programmed Desorption

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2013-04-01

    Full Text Available An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT for NOx storage catalysts (NSC enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD. The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1 time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2 during the short-term thermal NOx release.

  18. GOLD MINERAL PROSPECTING USING PHASED ARRAY TYPE L-BAND SYNTHETIC APERTURE RADAR (PALSAR SATELLITE REMOTE SENSING DATA, CENTRAL GOLD BELT, MALAYSIA

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2016-06-01

    Full Text Available The Bentong-Raub Suture Zone (BRSZ of Peninsular Malaysia is one of the significant structural zones in Sundaland, Southeast Asia. It forms the boundary between the Gondwana-derived Sibumasu terrane in the west and Sukhothai arc in the east. The BRSZ is also genetically related to the sediment-hosted/orogenic gold deposits associated with the major lineaments and form-lines in the central gold belt Central Gold Belt of Peninsular Malaysia. In tropical environments, heavy tropical rainforest and intense weathering makes it impossible to map geological structures over long distances. Advances in remote sensing technology allow the application of Synthetic Aperture Radar (SAR data in geological structural analysis for tropical environments. In this investigation, the Phased Array type L-band Synthetic Aperture Radar (PALSAR satellite remote sensing data were used to analyse major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and form-lines in the BRSZ, as well as its implication for sediment-hosted/orogenic gold exploration in tropical environments. The major geological structure directions of the BRSZ are N-S, NNE-SSW, NE-SW and NW-SE, which derived from directional filtering analysis to PALSAR data. The pervasive array of N-S faults in the study area and surrounding terrain is mainly linked to the N-S trending of the Suture Zone. N-S striking lineaments are often cut by younger NE-SW and NW-SE-trending lineaments. Gold mineralized trends lineaments are associated with the intersection of N-S, NE-SW, NNW-SSE and ESE-WNW faults and curvilinear features in shearing and alteration zones. Lineament analysis on PALSAR satellite remote sensing data is a useful tool for detecting the boundary between the Gondwana-derived terranes and major geological features associated with suture zone especially for large inaccessible regions in tropical environments.

  19. Human skeletal muscle type 1 fibre distribution and response of stress-sensing proteins along the titin molecule after submaximal exhaustive exercise.

    Science.gov (United States)

    Koskinen, Satu O A; Kyröläinen, Heikki; Flink, Riina; Selänne, Harri P; Gagnon, Sheila S; Ahtiainen, Juha P; Nindl, Bradley C; Lehti, Maarit

    2017-11-01

    Early responses of stress-sensing proteins, muscle LIM protein (MLP), ankyrin repeat proteins (Ankrd1/CARP and Ankrd2/Arpp) and muscle-specific RING finger proteins (MuRF1 and MuRF2), along the titin molecule were investigated in the present experiment after submaximal exhaustive exercise. Ten healthy men performed continuous drop jumping unilaterally on a sledge apparatus with a submaximal height until complete exhaustion. Five stress-sensing proteins were analysed by mRNA measurements from biopsies obtained immediately and 3 h after the exercise from exercised vastus lateralis muscle while control biopsies were obtained from non-exercised legs before the exercise. Decreased maximal jump height and increased serum creatine kinase activities as indirect markers for muscle damage and HSP27 immunostainings on muscle biopsies as a direct marker for muscle damage indicated that the current exercised protocol caused muscle damage. mRNA levels for four (MLP, Ankrd1/CARP, MuRF1 and MuRF2) out of the five studied stress sensors significantly (p exercise. The magnitude of MLP and Ankrd2 responses was related to the proportion of type 1 myofibres. Our data showed that the submaximal exhaustive exercise with subject's own physical fitness level activates titin-based stretch-sensing proteins. These results suggest that both degenerative and regenerative pathways are activated in very early phase after the exercise or probably already during the exercise. Activation of these proteins represents an initial step forward adaptive remodelling of the exercised muscle and may also be involved in the initiation of myofibre repair.

  20. Sensitive optical bio-sensing of p-type WSe2 hybridized with fluorescent dye attached DNA by doping and de-doping effects

    Science.gov (United States)

    Han, Kyu Hyun; Kim, Jun Young; Jo, Seong Gi; Seo, Changwon; Kim, Jeongyong; Joo, Jinsoo

    2017-10-01

    Layered transition metal dichalcogenides, such as MoS2, WSe2 and WS2, are exciting two-dimensional (2D) materials because they possess tunable optical and electrical properties that depend on the number of layers. In this study, the nanoscale photoluminescence (PL) characteristics of the p-type WSe2 monolayer, and WSe2 layers hybridized with the fluorescent dye Cy3 attached to probe-DNA (Cy3/p-DNA), have been investigated as a function of the concentration of Cy3/DNA by using high-resolution laser confocal microscopy. With increasing concentration of Cy3/p-DNA, the measured PL intensity decreases and its peak is red-shifted, suggesting that the WSe2 layer has been p-type doped with Cy3/p-DNA. Then, the PL intensity of the WSe2/Cy3/p-DNA hybrid system increases and the peak is blue-shifted through hybridization with relatively small amounts of target-DNA (t-DNA) (50-100 nM). This effect originates from charge and energy transfer from the Cy3/DNA to the WSe2. For t-DNA detection, our systems using p-type WSe2 have the merit in terms of the increase of PL intensity. The p-type WSe2 monolayers can be a promising nanoscale 2D material for sensitive optical bio-sensing based on the doping and de-doping responses to biomaterials.

  1. Novel glucose-sensing technology and hypoglycaemia in type 1 diabetes: a multicentre, non-masked, randomised controlled trial.

    Science.gov (United States)

    Bolinder, Jan; Antuna, Ramiro; Geelhoed-Duijvestijn, Petronella; Kröger, Jens; Weitgasser, Raimund

    2016-11-05

    Tight control of blood glucose in type 1 diabetes delays onset of macrovascular and microvascular diabetic complications; however, glucose levels need to be closely monitored to prevent hypoglycaemia. We aimed to assess whether a factory-calibrated, sensor-based, flash glucose-monitoring system compared with self-monitored glucose testing reduced exposure to hypoglycaemia in patients with type 1 diabetes. In this multicentre, prospective, non-masked, randomised controlled trial, we enrolled adult patients with well controlled type 1 diabetes (HbA 1c ≤58 mmol/mol [7·5%]) from 23 European diabetes centres. After 2 weeks of all participants wearing the blinded sensor, those with readings for at least 50% of the period were randomly assigned (1:1) to flash sensor-based glucose monitoring (intervention group) or to self-monitoring of blood glucose with capillary strips (control group). Randomisation was done centrally using the biased-coin minimisation method dependent on study centre and type of insulin administration. Participants, investigators, and study staff were not masked to group allocation. The primary outcome was change in time in hypoglycaemia (diabetes spent in hypoglycaemia. Future studies are needed to assess the effectiveness of this technology in patients with less well controlled diabetes and in younger age groups. Abbott Diabetes Care. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Enhanced H2S Sensing Performance of a p-type Semiconducting PdO-NiO Nanoscale Heteromixture

    Science.gov (United States)

    Balamurugan, C.; Jeong, Y. J.; Lee, D. W.

    2017-10-01

    Semiconducting nanocrystalline nickel oxide (NiO) and PdO-doped NiO heteromixture (2, 5 and 10 wt%) have been synthesized via a metal-citrate complex method. The obtained materials were further characterized using TG/DTA, FT-IR, UV-vis, XRD, XPS, BET/BJH, SEM and TEM analyses to determine their structural and morphological properties. The results indicated that the spherical, uniform PdO nanoparticles were densely deposited on the NiO surface mainly in diameters of 10-15 nm. Moreover, the existence of various defect states was also analyzed with the help of photoluminescence (PL) spectroscopy. The gas response characteristics of synthesized materials were evaluated in the presence and absence of toxic gases such as hydrogen sulfide (H2S), carbon monoxide (CO), liquid petroleum gas (LPG), and ethanol (C2H5OH). The experimental results revealed that the sensitivity and selectivity of the NiO-based sensor material are dependent on the weight% of PdO loading in the NiO nanopowder. Among the investigated compound, the 5 wt% PdO-doped NiO sensor material showed excellent sensitivity and selectivity to 100 ppm H2S with a fast response/recovery characteristics of 6 s and 10 s, respectively. Furthermore, the 5 wt% PdO-doped NiO based sensor showed a linear relationship between the different concentrations of H2S gas and a significantly higher response to H2S even at the low concentration of 20 ppm (43%) at 60 °C. The dominant H2S gas sensing mechanisms in the NiO and 5 wt% PdO-doped NiO nanomaterials are systematically discussed based on the obtained characterization results.

  3. High-Speed Tactile Sensing for Array-Type Tactile Sensor and Object Manipulation Based on Tactile Information

    Directory of Open Access Journals (Sweden)

    Wataru Fukui

    2011-01-01

    Full Text Available We have developed a universal robot hand with tactile and other sensors. An array-type tactile sensor is crucial for dexterous manipulation of objects using a robotic hand, since this sensor can measure the pressure distribution on finger pads. The sensor has a very high resolution, and the shape of a grasped object can be classified by using this sensor. The more the number of measurement points provided, the higher the accuracy of the classification, but with a corresponding lengthening of the measurement cycle. In this paper, the problem of slow response time is resolved by using software for an array-type tactile sensor with high resolution that emulates the human sensor system. The validity of the proposed method is demonstrated through experiments.

  4. Sense of coherence, self-esteem, and health locus of control in subjects with type 1 diabetes mellitus with/without satisfactory metabolic control.

    Science.gov (United States)

    Nuccitelli, C; Valentini, A; Caletti, M T; Caselli, C; Mazzella, N; Forlani, G; Marchesini, G

    2018-03-01

    Despite intensive training, a few individuals with Type 1 diabetes mellitus (T1DM) fail to reach the desired metabolic targets. To evaluate the association between disease-related emotional and cognitive aspects and metabolic control in subjects with T1DM. Health locus of control (HLOC), sense of coherence (SOC), and self-esteem were assessed in T1DM subjects using validated questionnaires. Sixty-seven consecutive subjects who did not attain the desired HbA1c target (mean HbA1c, 8.3% [67 mmol/mol]) were compared with 30 cases in satisfactory metabolic control (HbA1c levels satisfactory metabolic control tend to rely on significant others, trusting in the physicians' skills or on the efficiency of the health-care system. Strategies aimed at increasing self-efficacy and SOC, based on personal ability, are eagerly awaited to help patients improve diabetes care.

  5. Airborne Spectral BRDF of Various Surface Types (Ocean, Vegetation, Snow, Desert, Wetlands, Cloud Decks, Smoke Layers) for Remote Sensing Applications

    Science.gov (United States)

    Gatebe, Charles K.; King, Michael D.

    2016-01-01

    In this paper we describe measurements of the bidirectional reflectance-distribution function (BRDF) acquired over a 30-year period (1984-2014) by the National Aeronautics and Space Administration's (NASA's) Cloud Absorption Radiometer (CAR). Our BRDF database encompasses various natural surfaces that are representative of many land cover or ecosystem types found throughout the world. CAR's unique measurement geometry allows a comparison of measurements acquired from different satellite instruments with various geometrical configurations, none of which are capable of obtaining such a complete and nearly instantaneous BRDF. This database is therefore of great value in validating many satellite sensors and assessing corrections of reflectances for angular effects. These data can also be used to evaluate the ability of analytical models to reproduce the observed directional signatures, to develop BRDF models that are suitable for sub-kilometer-scale satellite observations over both homogeneous and heterogeneous landscape types, and to test future spaceborne sensors. All of these BRDF data are publicly available and accessible in hierarchical data format (http:car.gsfc.nasa.gov/).

  6. User-centered design of a web-based self-management site for individuals with type 2 diabetes - providing a sense of control and community.

    Science.gov (United States)

    Yu, Catherine H; Parsons, Janet A; Hall, Susan; Newton, David; Jovicic, Aleksandra; Lottridge, Danielle; Shah, Baiju R; Straus, Sharon E

    2014-07-23

    To design and test a web-based self-management tool for patients with type 2 diabetes for its usability and feasibility. An evidence-based, theory-driven website was created for patients with type 2 diabetes. Twenty-three patients with type 2 diabetes aged ≥ 25 years were recruited from 2 diabetes care centers in Toronto, Canada. We employed focus group methodology to assess acceptability, sustainability, strengths and weaknesses of the self-management website. Based on these results, revisions were made to the website. Three cycles of individual usability testing sessions using cognitive task analysis were conducted with patients with type 2 diabetes. Revisions to the website were made based on results from this testing. We identified five themes concerning participants' experiences of health care and related unmet needs: 1) Desire for information and for greater access to timely and personalized care to gain a sense of control of their disease; 2) Desire for community (sharing experiences with others) to fulfill practical and emotional needs; 3) Potential roles of an online self-management website in self-empowerment, behavior change, self-management and health care delivery; 4) Importance of a patient-centered perspective in presenting content (e.g. common assumptions, medical nomenclature, language, messaging, sociocultural context); 5) Barriers and facilitators to use of a self-management website (including perceived relevance of content, incorporation into usual routine, availability for goal-directed use, usability issues). Participants outlined a series of unmet health care needs, and stated that they wanted timely access to tailored knowledge about their condition, mechanisms to control and track their disease, and opportunities to share experiences with other patients. These findings have implications for patients with type 2 diabetes of diverse ages, socioeconomic backgrounds, and disease severity, as well as to the design of other computer

  7. The Biochemistry of Sensing: Enteric Pathogens Regulate Type III Secretion in Response to Environmental and Host Cues.

    Science.gov (United States)

    De Nisco, Nicole J; Rivera-Cancel, Giomar; Orth, Kim

    2018-01-16

    Enteric pathogens employ sophisticated strategies to colonize and infect mammalian hosts. Gram-negative bacteria, such as Escherichia coli , Salmonella , and Campylobacter jejuni , are among the leading causes of gastrointestinal tract infections worldwide. The virulence strategies of many of these Gram-negative pathogens rely on type III secretion systems (T3SSs), which are macromolecular syringes that translocate bacterial effector proteins directly into the host cytosol. However, synthesis of T3SS proteins comes at a cost to the bacterium in terms of growth rate and fitness, both in the environment and within the host. Therefore, expression of the T3SS must be tightly regulated to occur at the appropriate time and place during infection. Enteric pathogens have thus evolved regulatory mechanisms to control expression of their T3SSs in response to specific environmental and host cues. These regulatory cascades integrate multiple physical and chemical signals through complex transcriptional networks. Although the power of bacterial genetics has allowed elucidation of many of these networks, the biochemical interactions between signal and sensor that initiate the signaling cascade are often poorly understood. Here, we review the physical and chemical signals that Gram-negative enteric pathogens use to regulate T3SS expression during infection. We highlight the recent structural and functional studies that have elucidated the biochemical properties governing both the interaction between sensor and signal and the mechanisms of signal transduction from sensor to downstream transcriptional networks. Copyright © 2018 De Nisco et al.

  8. The Biochemistry of Sensing: Enteric Pathogens Regulate Type III Secretion in Response to Environmental and Host Cues

    Directory of Open Access Journals (Sweden)

    Nicole J. De Nisco

    2018-01-01

    Full Text Available Enteric pathogens employ sophisticated strategies to colonize and infect mammalian hosts. Gram-negative bacteria, such as Escherichia coli, Salmonella, and Campylobacter jejuni, are among the leading causes of gastrointestinal tract infections worldwide. The virulence strategies of many of these Gram-negative pathogens rely on type III secretion systems (T3SSs, which are macromolecular syringes that translocate bacterial effector proteins directly into the host cytosol. However, synthesis of T3SS proteins comes at a cost to the bacterium in terms of growth rate and fitness, both in the environment and within the host. Therefore, expression of the T3SS must be tightly regulated to occur at the appropriate time and place during infection. Enteric pathogens have thus evolved regulatory mechanisms to control expression of their T3SSs in response to specific environmental and host cues. These regulatory cascades integrate multiple physical and chemical signals through complex transcriptional networks. Although the power of bacterial genetics has allowed elucidation of many of these networks, the biochemical interactions between signal and sensor that initiate the signaling cascade are often poorly understood. Here, we review the physical and chemical signals that Gram-negative enteric pathogens use to regulate T3SS expression during infection. We highlight the recent structural and functional studies that have elucidated the biochemical properties governing both the interaction between sensor and signal and the mechanisms of signal transduction from sensor to downstream transcriptional networks.

  9. Positioning of the sensor cell on the sensing area using cell trapping pattern in incubation type planar patch clamp biosensor.

    Science.gov (United States)

    Wang, Zhi-Hong; Takada, Noriko; Uno, Hidetaka; Ishizuka, Toru; Yawo, Hiromu; Urisu, Tsuneo

    2012-08-01

    Positioning the sensor cell on the micropore of the sensor chip and keeping it there during incubation are problematic tasks for incubation type planar patch clamp biosensors. To solve these problems, we formed on the Si sensor chip's surface a cell trapping pattern consisting of a lattice pattern with a round area 5 μm deep and with the micropore at the center of the round area. The surface of the sensor chip was coated with extra cellular matrix collagen IV, and HEK293 cells on which a chimera molecule of channel-rhodopsin-wide-receiver (ChR-WR) was expressed, were then seeded. We examined the effects of this cell trapping pattern on the biosensor's operation. In the case of a flat sensor chip without a cell trapping pattern, it took several days before the sensor cell covered the micropore and formed an almost confluent state. As a result, multi-cell layers easily formed and made channel current measurements impossible. On the other hand, the sensor chip with cell trapping pattern easily trapped cells in the round area, and formed the colony consisted of the cell monolayer covering the micropore. A laser (473 nm wavelength) induced channel current was observed from the whole cell arrangement formed using the nystatin perforation technique. The observed channel current characteristics matched measurements made by using a pipette patch clamp. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Plasmonic sensing

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo

    2015-01-01

    Plasmonic sensors typically rely on detection of changes in the refractive index of the surrounding medium. Here, an alternative approach is reported based on electrical surface screening and controlled dissolution of ultrasmall silver nanoparticles (NPs; R ... in the plasmon band. This is demonstrated by using the strong nucleophiles, cyanide and cysteamine, as ligands. The “dissolution paths” in terms of peak wavelength and amplitude shifts differ significantly between different types of analytes, which are suggested as a means to obtain selectivity of the detection...... that cannot be obtained by traditional refractive index sensing, without the use of bioprobes. A simple modified Drude model is used to account for shifts in the plasmon band position due to electrical charging. Here, a screening parameter is introduced in the expression for the free electron density...

  11. Electrodeposited and Sol-gel Precipitated p-type SrTi1-xFexO3-δ Semiconductors for Gas Sensing

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2007-09-01

    Full Text Available In the present contribution, three methods for the preparation of nanoscaledSrTi1-xFexO3-δ sensor films for hydrocarbon sensing were investigated. Besides screen-printed thick films based on sol-precipitated nanopowders, two novel synthesis methods,electrospinning and electrospraying, were tested successfully. All of these sensor devicesshowed improved sensor functionality in comparison to conventional microscaled thickfilms. In order to explain the impact of the enhanced surface-to-volume ratio on sensorproperties in a quantitative way, a mechanistic model was applied to micro- and nanoscaleddevices. In contrast to the conventional diffusion-reaction model that has been proposed forn-type semiconducting sensors, it contained novel approaches with respect to themicroscopic mechanism. With very few fit variables, the present model was found torepresent well sensor functionality of p-type conducting SrTi0.8Fe0.2O3-δ films. In additionto the temperature dependency of the sensor response, the effect of the specific surface areaon the sensor response was predicted.

  12. National-scale crop type mapping and area estimation using multi-resolution remote sensing and field survey

    Science.gov (United States)

    Song, X. P.; Potapov, P.; Adusei, B.; King, L.; Khan, A.; Krylov, A.; Di Bella, C. M.; Pickens, A. H.; Stehman, S. V.; Hansen, M.

    2016-12-01

    Reliable and timely information on agricultural production is essential for ensuring world food security. Freely available medium-resolution satellite data (e.g. Landsat, Sentinel) offer the possibility of improved global agriculture monitoring. Here we develop and test a method for estimating in-season crop acreage using a probability sample of field visits and producing wall-to-wall crop type maps at national scales. The method is first illustrated for soybean cultivated area in the US for 2015. A stratified, two-stage cluster sampling design was used to collect field data to estimate national soybean area. The field-based estimate employed historical soybean extent maps from the U.S. Department of Agriculture (USDA) Cropland Data Layer to delineate and stratify U.S. soybean growing regions. The estimated 2015 U.S. soybean cultivated area based on the field sample was 341,000 km2 with a standard error of 23,000 km2. This result is 1.0% lower than USDA's 2015 June survey estimate and 1.9% higher than USDA's 2016 January estimate. Our area estimate was derived in early September, about 2 months ahead of harvest. To map soybean cover, the Landsat image archive for the year 2015 growing season was processed using an active learning approach. Overall accuracy of the soybean map was 84%. The field-based sample estimated area was then used to calibrate the map such that the soybean acreage of the map derived through pixel counting matched the sample-based area estimate. The strength of the sample-based area estimation lies in the stratified design that takes advantage of the spatially explicit cropland layers to construct the strata. The success of the mapping was built upon an automated system which transforms Landsat images into standardized time-series metrics. The developed method produces reliable and timely information on soybean area in a cost-effective way and could be implemented in an operational mode. The approach has also been applied for other crops in

  13. The cross-sectional associations between sense of coherence and diabetic microvascular complications, glycaemic control, and patients' conceptions of type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Saraheimo Markku

    2010-11-01

    Full Text Available Abstract Background Sense of coherence (SOC has been associated with various self-care behaviours in the general population. As the management of type 1 diabetes heavily relies on self-management, the SOC concept could also prove important in this population. This paper is a report of a study conducted among patients with type 1 diabetes to assess the associations between SOC and glycaemic control, microvascular complications, and patients' conceptions of their disease. Methods Altogether 1,264 adult patients (45% men, age range 18-82 years with type 1 diabetes participated in this cross-sectional study. SOC was evaluated using a 13-item SOC questionnaire. Standardized assays were used to determine HbA1c. Nephropathy status was based on albumin excretion rate and retinal laser-treatment was used as an indication of severe retinopathy. Patients' subjective conceptions of diabetes were studied using a questionnaire. Results Higher SOC scores, reflecting stronger SOC, were associated with lower HbA1c values. Strong SOC was independently associated with reaching the HbA1c level 1c, weak SOC was associated with the presence of nephropathy among men, but not women. No associations were observed between SOC and severe retinopathy. Four dimensions describing patients' conceptions of HbA1c, complications, diabetes control and hypoglycaemia were formed from the diabetes questionnaire. Weak SOC was independently associated with worse subjective conceptions in the dimensions of HbA1c and hypoglycaemia. Furthermore among men, an association between weak SOC and the complications factor was observed. Conclusion Interventions to improve patients' SOC, if available, could improve patients' metabolic control and therefore also reduce the incidence of diabetic complications.

  14. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  15. Multifunctional uranyl hybrid materials: structural diversities as a function of pH, luminescence with potential nitrobenzene sensing, and photoelectric behavior as p-type semiconductors.

    Science.gov (United States)

    Song, Jian; Gao, Xue; Wang, Zhi-Nan; Li, Cheng-Ren; Xu, Qi; Bai, Feng-Ying; Shi, Zhong-Feng; Xing, Yong-Heng

    2015-09-21

    A series of uranyl-organic frameworks (UOFs), {[(UO2)2(H2TTHA)(H2O)]·4,4'-bipy·2H2O}n (1), {[(UO2)3(TTHA)(H2O)3]}n (2), and {[(UO2)5(TTHA) (HTTHA)(H2O)3]·H3O}n (3), have been obtained by the hydrothermal reaction of uranyl acetate with a flexible hexapodal ligand (1,3,5-triazine-2,4,6-triamine hexaacetic acid, H6TTHA). These compounds exhibited three distinct 3D self-assembly architectures as a function of pH by single-crystal structural analysis, although the used ligand was the same in each reaction. Surprisingly, all of the coordination modes of the H6TTHA ligand in this work are first discovered. Furthermore, the photoluminescent results showed that these compounds displayed high-sensitivity luminescent sensing functions for nitrobenzene. Additionally, the surface photovoltage spectroscopy and electric-field-induced surface photovoltage spectroscopy showed that compounds 1-3 could behave as p-type semiconductors.

  16. Mating type gene homologues and putative sex pheromone-sensing pathway in arbuscular mycorrhizal fungi, a presumably asexual plant root symbiont.

    Directory of Open Access Journals (Sweden)

    Sébastien Halary

    Full Text Available The fungal kingdom displays a fascinating diversity of sex-determination systems. Recent advances in genomics provide insights into the molecular mechanisms of sex, mating type determination, and evolution of sexual reproduction in many fungal species in both ancient and modern phylogenetic lineages. All major fungal groups have evolved sexual differentiation and recombination pathways. However, sexuality is unknown in arbuscular mycorrhizal fungi (AMF of the phylum Glomeromycota, an ecologically vital group of obligate plant root symbionts. AMF are commonly considered an ancient asexual lineage dating back to the Ordovician, approximately 460 M years ago. In this study, we used genomic and transcriptomic surveys of several AMF species to demonstrate the presence of conserved putative sex pheromone-sensing mitogen-activated protein (MAP kinases, comparable to those described in Ascomycota and Basidiomycota. We also find genes for high mobility group (HMG transcription factors, homologous to SexM and SexP genes in the Mucorales. The SexM genes show a remarkable sequence diversity among multiple copies in the genome, while only a single SexP sequence was detected in some isolates of Rhizophagus irregularis. In the Mucorales and Microsporidia, the sexM gene is flanked by genes for a triosephosphate transporter (TPT and a RNA helicase, but we find no evidence for synteny in the vicinity of the Sex locus in AMF. Nonetheless, our results, together with previous observations on meiotic machinery, suggest that AMF could undergo a complete sexual reproduction cycle.

  17. C-terminal modulatory domain controls coupling of voltage-sensing to pore opening in Cav1.3 L-type Ca(2+) channels.

    Science.gov (United States)

    Lieb, Andreas; Ortner, Nadine; Striessnig, Jörg

    2014-04-01

    Activity of voltage-gated Cav1.3 L-type Ca(2+) channels is required for proper hearing as well as sinoatrial node and brain function. This critically depends on their negative activation voltage range, which is further fine-tuned by alternative splicing. Shorter variants miss a C-terminal regulatory domain (CTM), which allows them to activate at even more negative potentials than C-terminally long-splice variants. It is at present unclear whether this is due to an increased voltage sensitivity of the Cav1.3 voltage-sensing domain, or an enhanced coupling of voltage-sensor conformational changes to the subsequent opening of the activation gate. We studied the voltage-dependence of voltage-sensor charge movement (QON-V) and of current activation (ICa-V) of the long (Cav1.3L) and a short Cav1.3 splice variant (Cav1.342A) expressed in tsA-201 cells using whole cell patch-clamp. Charge movement (QON) of Cav1.3L displayed a much steeper voltage-dependence and a more negative half-maximal activation voltage than Cav1.2 and Cav3.1. However, a significantly higher fraction of the total charge had to move for activation of Cav1.3 half-maximal conductance (Cav1.3: 68%; Cav1.2: 52%; Cav3.1: 22%). This indicated a weaker coupling of Cav1.3 voltage-sensor charge movement to pore opening. However, the coupling efficiency was strengthened in the absence of the CTM in Cav1.342A, thereby shifting ICa-V by 7.2 mV to potentials that were more negative without changing QON-V. We independently show that the presence of intracellular organic cations (such as n-methyl-D-glucamine) induces a pronounced negative shift of QON-V and a more negative activation of ICa-V of all three channels. These findings illustrate that the voltage sensors of Cav1.3 channels respond more sensitively to depolarization than those of Cav1.2 or Cav3.1. Weak coupling of voltage sensing to pore opening is enhanced in the absence of the CTM, allowing short Cav1.342A splice variants to activate at lower voltages

  18. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  19. Make Sense?

    DEFF Research Database (Denmark)

    Gyrd-Jones, Richard; Törmälä, Minna

    Purpose: An important part of how we sense a brand is how we make sense of a brand. Sense-making is naturally strongly connected to how we cognize about the brand. But sense-making is concerned with multiple forms of knowledge that arise from our interpretation of the brand-related stimuli......: Declarative, episodic, procedural and sensory. Knowledge is given meaning through mental association (Keller, 1993) and / or symbolic interaction (Blumer, 1969). These meanings are centrally related to individuals’ sense of identity or “identity needs” (Wallpach & Woodside, 2009). The way individuals make...... sense of brands is related to who people think they are in their context and this shapes what they enact and how they interpret the brand (Currie & Brown, 2003; Weick, Sutcliffe, & Obstfeld, 2005; Weick, 1993). Our subject of interest in this paper is how stakeholders interpret and ascribe meaning...

  20. Thermal signatures of urban land cover types: High-resolution thermal infrared remote sensing of urban heat island in Huntsville, AL

    Science.gov (United States)

    Lo, Chor Pang

    1996-01-01

    The main objective of this research is to apply airborne high-resolution thermal infrared imagery for urban heat island studies, using Huntsville, AL, a medium-sized American city, as the study area. The occurrence of urban heat islands represents human-induced urban/rural contrast, which is caused by deforestation and the replacement of the land surface by non-evaporating and non-porous materials such as asphalt and concrete. The result is reduced evapotranspiration and more rapid runoff of rain water. The urban landscape forms a canopy acting as a transitional zone between the atmosphere and the land surface. The composition and structure of this canopy have a significant impact on the thermal behavior of the urban environment. Research on the trends of surface temperature at rapidly growing urban sites in the United States during the last 30 to 50 years suggests that significant urban heat island effects have caused the temperatures at these sites to rise by 1 to 2 C. Urban heat islands have caused changes in urban precipitation and temperature that are at least similar to, if not greater than, those predicted to develop over the next 100 years by global change models. Satellite remote sensing, particularly NOAA AVHRR thermal data, has been used in the study of urban heat islands. Because of the low spatial resolution (1.1 km at nadir) of the AVHRR data, these studies can only examine and map the phenomenon at the macro-level. The present research provides the rare opportunity to utilize 5-meter thermal infrared data acquired from an airplane to characterize more accurately the thermal responses of different land cover types in the urban landscape as input to urban heat island studies.

  1. Accuracy comparison of remotely sensed evapotranspiration products and their associated water stress footprints under different land cover types in Korean peninsula

    KAUST Repository

    Liaqat, Umar Waqas; Choi, Minha

    2016-01-01

    product of MOD16 evapotranspiration was raised from cropland regions. Overall, this study revealed the performance and suitability of two distinctive remote sensing approaches for characterizing the footprints of water fluxes in the Korean peninsula

  2. Assessment of Plant Functional Types in Tropical Arid and Semi-Arid Ecosystems of India Using Remote Sensing Data and GIS

    Science.gov (United States)

    Sudhakar Reddy, C.; Krishna, P. Hari; Murthy, M. S. R.

    2011-09-01

    Tropical ecosystems undergo changes caused by season, climate or multiple anthropogenic impacts. Such changes may cause gradual or rapid shifts from one state to another. There has been a focus on functional classifications of plants to find tools for monitoring and assessing species status in changing environments. It has been recognised that plant biological characteristics can be related to their response to predominant environmental factors and interactions between other organisms. These findings have resulted in a search for plant functional types (PFTs) that are user-defined groups of species with similar response to environmental resources and disturbance associated to common biological traits. Now, identification of plant functional types is priority area in the climate change research. Satellite Earth observation data is an important tool in providing considerable information on extracting PFT information at global and regional levels. From the modelling perspective, some of the current needs are the refinement of processes that govern community assembly, such as natural and anthropogenic disturbances. PFTs used in large-scale models are insufficient to represent the diversity of responses in natural plant communities. The currently available MODIS PFT map was generated by re-labeling the IGBP land cover type classes. However, the error magnitudes of the MODIS PFT product and their spatial and temporal distributions have not been fully characterized. Remotely sensed derived information of the phenology, community composition and vegetation structure are the key inputs to integrate with the variability in precipitation and temperature to map the spatial distribution of Plant functional types. PFTs allows accurate representation of the land surface by separately specifying the composition and structure of PFTs within a grid cell. Very little research efforts are discernible in India that explicitly address the PFTs. In the present study five natural

  3. Electroactive polymers for sensing

    Science.gov (United States)

    2016-01-01

    Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846

  4. Accuracy comparison of remotely sensed evapotranspiration products and their associated water stress footprints under different land cover types in Korean peninsula

    KAUST Repository

    Liaqat, Umar Waqas

    2016-09-09

    Robust spatial information of evapotranspiration from multiple land cover types is deemed critical for several applications in agriculture and water balance studies. Energy balance models, used in association with satellite observations, are beneficial to map spatial variability of evapotranspiration which is mainly governed by different vegetation practices and local environmental conditions. This study utilize the Surface Energy Balance System model to estimate actual evapotranspiration and water scarcity footprints under complex landscape of Korean peninsula using Moderate-Resolution Imaging Spectroradiometer satellite data for a complete hydrological year of 2012. The modeled evapotranspiration was compared with flux tower measurements obtained from a subhumid cropland and temperate forest sites for the accuracy assessment. This accuracy comparison at daily scale had good agreement yielding reasonable coefficient of determination (0.72, 0.51), bias (0.41 mm day−1, 1.01 mm day−1) and root mean squared error (0.92 mm day−1, 1.53 mm day−1) at two observation (cropland, forest) sites, respectively. Furthermore, the monthly aggregated evapotranspiration from Surface Energy Balance System showed promising results than those of obtained from Moderate-Resolution Imaging Spectroradiometer based readymade global evapotranspiration product, i.e., MOD16, when both products were compared with unclosed and closed flux tower measurements. However, the variations in monthly evapotranspiration obtained from both products were significantly controlled by several climate factors and vegetation characteristics. Water stress mapping at regional and monthly scale also revealed strong contrast between the products of two approaches. Highest mean water stress (0.74) was observed for land use areas associated with evergreen forest and under sparsely vegetation condition by using estimated evapotranspiration from Surface Energy Balance System while an extreme mean water stress

  5. Radar Remote Sensing

    Science.gov (United States)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  6. Studying Sensing-Based Systems

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    2013-01-01

    Recent sensing-based systems involve a multitude of users, devices, and places. These types of systems challenge existing approaches for conducting valid system evaluations. Here, the author discusses such evaluation challenges and revisits existing system evaluation methodologies....

  7. Pervasive sensing

    Science.gov (United States)

    Nagel, David J.

    2000-11-01

    The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.

  8. Sensing in tissue bioreactors

    Science.gov (United States)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  9. Quorum Sensing of Periodontal Pathogens

    Directory of Open Access Journals (Sweden)

    Darije Plančak

    2015-01-01

    Full Text Available The term ‘quorum sensing’ describes intercellular bacterial communication which regulates bacterial gene expression according to population cell density. Bacteria produce and secrete small molecules, named autoinducers, into the intercellular space. The concentration of these molecules increases as a function of population cell density. Once the concentration of the stimulatory threshold is reached, alteration in gene expression occurs. Gram-positive and Gram-negative bacteria possess different types of quorum sensing systems. Canonical LuxI/R-type/acyl homoserine lactone mediated quorum sensing system is the best studied quorum sensing circuit and is described in Gram-negative bacteria which employ it for inter-species communication mostly. Grampositive bacteria possess a peptide-mediated quorum sensing system. Bacteria can communicate within their own species (intra-species but also between species (inter-species, for which they employ an autoinducer-2 quorum sensing system which is called the universal language of the bacteria. Periodontal pathogenic bacteria possess AI-2 quorum sensing systems. It is known that they use it for regulation of biofilm formation, iron uptake, stress response and virulence factor expression. A better understanding of bacterial communication mechanisms will allow the targeting of quorum sensing with quorum sensing inhibitors to prevent and control disease.

  10. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  11. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  12. Remote earth sensing experiments

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, Yu V

    1981-01-01

    Description of data devices for deriving multi-spectral measuring television measurement data of middle and high resolution through use of second generation Meteor-type satellites. Options for developing a permanent and active remote sensing system in USSR are discussed. It is noted that the present experiment is an important step in that direction. Design and structural data for this particular device and its application in the experiment are covered.

  13. Flash Glucose-Sensing Technology as a Replacement for Blood Glucose Monitoring for the Management of Insulin-Treated Type 2 Diabetes: a Multicenter, Open-Label Randomized Controlled Trial.

    Science.gov (United States)

    Haak, Thomas; Hanaire, Hélène; Ajjan, Ramzi; Hermanns, Norbert; Riveline, Jean-Pierre; Rayman, Gerry

    2017-02-01

    Glycemic control in participants with insulin-treated diabetes remains challenging. We assessed safety and efficacy of new flash glucose-sensing technology to replace self-monitoring of blood glucose (SMBG). This open-label randomized controlled study (ClinicalTrials.gov, NCT02082184) enrolled adults with type 2 diabetes on intensive insulin therapy from 26 European diabetes centers. Following 2 weeks of blinded sensor wear, 2:1 (intervention/control) randomization (centrally, using biased-coin minimization dependant on study center and insulin administration) was to control (SMBG) or intervention (glucose-sensing technology). Participants and investigators were not masked to group allocation. Primary outcome was difference in HbA1c at 6 months in the full analysis set. Prespecified secondary outcomes included time in hypoglycemia, effect of age, and patient satisfaction. Participants (n = 224) were randomized (149 intervention, 75 controls). At 6 months, there was no difference in the change in HbA1c between intervention and controls: -3.1 ± 0.75 mmol/mol, [-0.29 ± 0.07% (mean ± SE)] and -3.4 ± 1.04 mmol/mol (-0.31 ± 0.09%) respectively; p = 0.8222. A difference was detected in participants aged glucose-sensing technology use in type 2 diabetes with intensive insulin therapy results in no difference in HbA1c change and reduced hypoglycemia, thus offering a safe, effective replacement for SMBG. ClinicalTrials.gov identifier: NCT02082184. Abbott Diabetes Care.

  14. HORIZON SENSING

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Stolarczyk

    2003-03-18

    With the aid of a DOE grant (No. DE-FC26-01NT41050), Stolar Research Corporation (Stolar) developed the Horizon Sensor (HS) to distinguish between the different layers of a coal seam. Mounted on mining machine cutter drums, HS units can detect or sense the horizon between the coal seam and the roof and floor rock, providing the opportunity to accurately mine the section of the seam most desired. HS also enables accurate cutting of minimum height if that is the operator's objective. Often when cutting is done out-of-seam, the head-positioning function facilitates a fixed mining height to minimize dilution. With this technology, miners can still be at a remote location, yet cut only the clean coal, resulting in a much more efficient overall process. The objectives of this project were to demonstrate the feasibility of horizon sensing on mining machines and demonstrate that Horizon Sensing can allow coal to be cut cleaner and more efficiently. Stolar's primary goal was to develop the Horizon Sensor (HS) into an enabling technology for full or partial automation or ''agile mining''. This technical innovation (R&D 100 Award Winner) is quickly demonstrating improvements in productivity and miner safety at several prominent coal mines in the United States. In addition, the HS system can enable the cutting of cleaner coal. Stolar has driven the HS program on the philosophy that cutting cleaner coal means burning cleaner coal. The sensor, located inches from the cutting bits, is based upon the physics principles of a Resonant Microstrip Patch Antenna (RMPA). When it is in proximity of the rock-coal interface, the RMPA impedance varies depending on the thickness of uncut coal. The impedance is measured by the computer-controlled electronics and then sent by radio waves to the mining machine. The worker at the machine can read the data via a Graphical User Interface, displaying a color-coded image of the coal being cut, and direct the machine

  15. Amino alcohol- (NPS-2143 and quinazolinone-derived calcilytics (ATF936 and AXT914 differentially mitigate excessive signalling of calcium-sensing receptor mutants causing Bartter syndrome Type 5 and autosomal dominant hypocalcemia.

    Directory of Open Access Journals (Sweden)

    Saskia Letz

    Full Text Available Activating calcium sensing receptor (CaSR mutations cause autosomal dominant hypocalcemia (ADH characterized by low serum calcium, inappropriately low PTH and relative hypercalciuria. Four activating CaSR mutations cause additional renal wasting of sodium, chloride and other salts, a condition called Bartter syndrome (BS type 5. Until today there is no specific medical treatment for BS type 5 and ADH. We investigated the effects of different allosteric CaSR antagonists (calcilytics on activating CaSR mutants.All 4 known mutations causing BS type 5 and five ADH mutations were expressed in HEK 293T cells and receptor signalling was studied by measurement of intracellular free calcium in response to extracellular calcium ([Ca2+]o. To investigate the effect of calcilytics, cells were stimulated with 3 mM [Ca2+]o in the presence or absence of NPS-2143, ATF936 or AXT914.All BS type 5 and ADH mutants showed enhanced signalling activity to [Ca2+]o with left shifted dose response curves. In contrast to the amino alcohol NPS-2143, which was only partially effective, the quinazolinone calcilytics ATF936 and AXT914 significantly mitigated excessive cytosolic calcium signalling of all BS type 5 and ADH mutants studied. When these mutants were co-expressed with wild-type CaSR to approximate heterozygosity in patients, ATF936 and AXT914 were also effective on all mutants.The calcilytics ATF936 and AXT914 are capable of attenuating enhanced cytosolic calcium signalling activity of CaSR mutations causing BS type 5 and ADH. Quinazolinone calcilytics might therefore offer a novel treatment option for patients with activating CaSR mutations.

  16. LANDFIRE 2015 Remap – Utilization of Remotely Sensed Data to Classify Existing Vegetation Type and Structure to Support Strategic Planning and Tactical Response

    Science.gov (United States)

    Picotte, Joshua J.; Long, Jordan; Peterson, Birgit; Nelson, Kurtis

    2017-01-01

    The LANDFIRE Program produces national scale vegetation, fuels, fire regimes, and landscape disturbance data for the entire U.S. These data products have been used to model the potential impacts of fire on the landscape [1], the wildfire risks associated with land and resource management [2, 3], and those near population centers and accompanying Wildland Urban Interface zones [4], as well as many other applications. The initial LANDFIRE National Existing Vegetation Type (EVT) and vegetation structure layers, including vegetation percent cover and height, were mapped circa 2001 and released in 2009 [5]. Each EVT is representative of the dominant plant community within a given area. The EVT layer has since been updated by identifying areas of landscape change and modifying the vegetation types utilizing a series of rules that consider the disturbance type, severity of disturbance, and time since disturbance [6, 7]. Non-disturbed areas were adjusted for vegetation growth and succession. LANDFIRE vegetation structure layers also have been updated by using data modeling techniques [see 6 for a full description]. The subsequent updated versions of LANDFIRE include LANDFIRE 2008, 2010, 2012, and LANDFIRE 2014 is being incrementally released, with all data being released in early 2017. Additionally, a comprehensive remap of the baseline data, LANDFIRE 2015 Remap, is being prototyped, and production is tentatively planned to begin in early 2017 to provide a more current baseline for future updates.

  17. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  18. Herpes simplex virus infection is sensed by both Toll-like receptors and retinoic acid-inducible gene- like receptors, which synergize to induce type I interferon production

    DEFF Research Database (Denmark)

    Rasmussen, Simon B; Jensen, Søren B; Nielsen, Christoffer

    2009-01-01

    The innate antiviral response is initiated by pattern recognition receptors, which recognize viral pathogen-associated molecular patterns. Here we show that retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) in cooperation with Toll-like receptor (TLR) 9 is required for expression of type I...... interferons (IFNs) after infection with herpes simplex virus (HSV). Our work also identified RNase L as a critical component in IFN induction. Moreover, we found that TLR9 and RLRs activate distinct, as well as overlapping, intracellular signalling pathways. Thus, RLRs are important for recognition of HSV...

  19. Improving the Remote Sensing Retrieval of Phytoplankton Functional Types (PFT Using Empirical Orthogonal Functions: A Case Study in a Coastal Upwelling Region

    Directory of Open Access Journals (Sweden)

    Marco Correa-Ramirez

    2018-03-01

    Full Text Available An approach that improves the spectral-based PHYSAT method for identifying phytoplankton functional types (PFT in satellite ocean-color imagery is developed and applied to one study case. This new approach, called PHYSTWO, relies on the assumption that the dominant effect of chlorophyll-a (Chl-a in the normalized water-leaving radiance (nLw spectrum can be effectively isolated from the signal of accessory pigment biomarkers of different PFT by using Empirical Orthogonal Function (EOF decomposition. PHYSTWO operates in the dimensionless plane composed by the first two EOF modes generated through the decomposition of a space–nLw matrix at seven wavelengths (412, 443, 469, 488, 531, 547, and 555 nm. PFT determination is performed using orthogonal models derived from the acceptable ranges of anomalies proposed by PHYSAT but adjusted with the available regional and global data. In applying PHYSTWO to study phytoplankton community structures in the coastal upwelling system off central Chile, we find that this method increases the accuracy of PFT identification, extends the application of this tool to waters with high Chl-a concentration, and significantly decreases (~60% the undetermined retrievals when compared with PHYSAT. The improved accuracy of PHYSTWO and its applicability for the identification of new PFT are discussed.

  20. Effects of simultaneously elevated temperature and CO2 levels on Nicotiana benthamiana and its infection by different positive-sense RNA viruses are cumulative and virus type-specific.

    Science.gov (United States)

    Del Toro, Francisco J; Rakhshandehroo, Farshad; Larruy, Beatriz; Aguilar, Emmanuel; Tenllado, Francisco; Canto, Tomás

    2017-11-01

    We have studied how simultaneously elevated temperature and CO 2 levels [climate change-related conditions (CCC) of 30°C, 970 parts-per-million (ppm) of CO 2 vs. standard conditions (SC) of 25°C, ~ 405ppm CO 2 ] affect physiochemical properties of Nicotiana benthamiana leaves, and also its infection by several positive-sense RNA viruses. In previous works we had studied effects of elevated temperature, CO 2 levels separately. Under CCC, leaves of healthy plants almost doubled their area relative to SC but contained less protein/unit-of-area, similarly to what we had found under conditions of elevated CO 2 alone. CCC also affected the sizes/numbers of different foliar cell types differently. Under CCC, infection outcomes in titers and symptoms were virus type-specific, broadly similar to those observed under elevated temperature alone. Under either condition, infections did not significantly alter the protein content of leaf discs. Therefore, effects of elevated temperature and CO 2 combined on properties of the pathosystems studied were overall cumulative. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Sentido cromático: tipos de defeitos e testes de avaliação clínica Chromatic sense: types of defects and clinical evaluation tests

    Directory of Open Access Journals (Sweden)

    Lígia Fernanda Bruni

    2006-10-01

    Full Text Available A avaliação do senso cromático tem grande valor na clínica oftalmológica, tanto para diagnóstico dos defeitos congênitos (daltonismo, como para diagnóstico e acompanhamento dos defeitos adquiridos. Diversos testes clínicos podem ser aplicados para esse fim. Porém, é necessário conhecermos a proposta e a sensibilidade de cada um deles, pois existem grandes variações de resultados, dependendo da doença que se procura diagnosticar, se congênita ou adquirida. Buscamos com este trabalho revisar os tipos de defeitos da sensibilidade cromática e fornecer informações sobre os principais testes utilizados, bem como sua melhor aplicação. Enfatizamos, ainda, a importância da padronização da iluminação do ambiente onde são aplicados esses testes.Evaluation of the chromatic sense has a great value in ophthalmic practice, both for diagnosis of the congenital defects (daltonism, as well as for diagnosis and follow-up of acquired defects. Many clinical tests are available to be used for this purpose. However it is necessary to know the details and sensitivity of each test, since there are many variations in the results, depending on the searched condition, if congenital or acquired pathologies. Our goal is to review the types of defects of the chromatic sense and provide information about the main current available tests and their best purpose. We further emphasize the importance of standard illumination procedure in the application of the tests.

  2. Sensing at the nanoscale

    Science.gov (United States)

    Demming, Anna; Hierold, Christofer

    2013-11-01

    label-free detection of DNA at concentrations as low as 1-10 fM, a sensitivity comparable to the best signal amplification-assisted electrochemical sensors reported [12]. In another study actin-conjugated gold and silver nanorods are used to detect ATP, a common indicator of cell viability [13]. They show how aggregation induced by ATP-induced polymerization of the G-actin gives rise to a measurable change in the plasmon resonance absorbance of the nanorods. A review of the use of fluorescent silica nanoparticles for biomedical applications is provided by researchers at Dublin City University in Ireland [14]. The first scanning tunnelling microscope in the early 1980s and subsequent scanning probe developments brought the world of nanoscale structures into view in a manner that gorged the imaginations of scientists and the public. New ways of probing structures at this scale revealed a wealth of curious properties that triggered a surge of research activity in nanotechnology, now a multibillion dollar industry. One good turn deserves another and in fact nanostructures provide the perfect tools for the type of sensing and imaging applications that brought such widespread research interest to nanotechnology. This special issue highlights just how broad and innovative the range of sensing nanotechnologies has grown. References [1] Zappa D, Comini E and Sberveglieri G 2013 Thermally-oxidized zinc oxide nanowires chemical sensors Nanotechnology 24 444008 [2] Kemmler J A, Pokhrel S, Mädler L, Weimar U and Barsan N 2013 Flame spray pyrolysis for sensing at the nanoscale Nanotechnology 24 442001 [3] Bache M et al 2013 Nanomechanical recognition of prognostic biomarker suPAR with DVD-ROM optical technology Nanotechnology 24 444011 [4] Hu C-F, Wang J-Y, Liu Y-C, Tsai M-H and Fang W 2013 Development of 3D carbon nanotubes interdigitated finger electrodes on polymer substrate for flexible capacitive sensor application Nanotechnology 24 444006 [5] Neumann C, Volk C, Engels S and

  3. Diabetes HealthSense: Resources for Living Well

    Medline Plus

    Full Text Available ... National Diabetes Education Program HealthSense Home Make a Plan Articles About HealthSense Diabetes HealthSense Title/Keywords: Go ... Your Weight Small Steps. Big Rewards. Your GAME PLAN to Prevent Type 2 Diabetes: Information for Patients ...

  4. Sense of Efficacy among Beginning Teachers in Sarawak

    Science.gov (United States)

    Murshidi, Rahmah; Konting, Mohd Majid; Elias, Habibah; Fooi, Foo Say

    2006-01-01

    This study examined the level of teachers' sense of efficacy among beginning teachers in Sarawak, Malaysia. It also sought to investigate whether there is any difference in beginning teachers' sense of efficacy in relation to gender, race and types of teacher preparation program. The study was conducted by using the teacher sense of efficacy…

  5. Nano-bio-sensing

    CERN Document Server

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  6. Introduction to remote sensing

    CERN Document Server

    Cracknell, Arthur P

    2007-01-01

    Addressing the need for updated information in remote sensing, Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations in the field. The authors discuss the physical principles of common remote sensing systems and examine the processing, interpretation, and applications of data. This new edition features updated and expanded material, including greater coverage of applications from across earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed colo

  7. Sense of moving

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Grünbaum, Thor

    2017-01-01

    In this chapter, we assume the existence of a sense of “movement activity” that arises when a person actively moves a body part. This sense is usually supposed to be part of sense of agency (SoA). The purpose of the chapter is to determine whether the already existing experimental paradigms can...

  8. Transcriptional regulator GntR of Brucella abortus regulates cytotoxicity, induces the secretion of inflammatory cytokines and affects expression of the type IV secretion system and quorum sensing system in macrophages.

    Science.gov (United States)

    Li, Zhiqiang; Wang, Shuli; Zhang, Hui; Zhang, Jinliang; Xi, Li; Zhang, Junbo; Chen, Chuangfu

    2017-03-01

    The pathogenic mechanisms of Brucella are still poorly understood. GntR is a transcriptional regulator and plays an important role in the intracellular survival of Brucella. To investigate whether GntR is involved in the cytotoxicity of Brucella abortus (B. abortus), we created a 2308ΔgntR mutant of B. abortus 2308 (S2308). Lactate dehydrogenase (LDH) cytotoxicity assays using a murine macrophage cell line (RAW 264.7) show that high-dose infection with the parental strain produces a high level of cytotoxicity to macrophages, but the 2308ΔgntR mutant exhibits a very low level of cytotoxicity, indicating that mutation of GntR impairs the cytotoxicity of B. abortus to macrophages. After the macrophages are infected with 2308ΔgntR, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8) increase and are slightly higher than that for the S2308 infected group, indicating that the 2308ΔgntR mutant could induce the secretion of inflammatory cytokines. The virulence factor detection experiments indicate that genes involved in the type IV secretion system (T4SS) and quorum sensing system (QSS) are down-regulated in 2308ΔgntR. The lower levels of survival of 2308ΔgntR under various stress conditions and the increased sensitivity of 2308ΔgntR to polymyxin B suggest that GntR is a virulence factor and that deletion of gntR reduces of B. abortus to stress conditions. Taken together, our results demonstrate that GntR is involved in the cytotoxicity, virulence and intracellular survival of B. abortus during its infection.

  9. Revised (Mixed-Effects) Estimation for Forest Burning Emissions of Gases and Smoke, Fire/Emission Factor Typology, and Potential Remote Sensing Classification of Types for Ozone and Black-Carbon Simulation

    Science.gov (United States)

    Chatfield, Robert B.; Segal Rozenhaimer, M.

    2014-01-01

    We summarize recent progress (a) in correcting biomass burning emissions factors deduced from airborne sampling of forest fire plumes, (b) in understanding the variability in reactivity of the fresh plumes sampled in ARCTAS (2008), DC3 (2012), and SEAC4RS (2013) airborne missions, and (c) in a consequent search for remotely sensed quantities that help classify forest-fire plumes. Particle properties, chemical speciation, and smoke radiative properties are related and mutually informative, as pictures below suggest (slopes of lines of same color are similar). (a) Mixed-effects (random-effects) statistical modeling provides estimates of both emission factors and a reasonable description of carbon-burned simultaneously. Different fire plumes will have very different contributions to volatile organic carbon reactivity; this may help explain differences of free NOx(both gas- and particle-phase), and also of ozone production, that have been noted for forest-fire plumes in California. Our evaluations check or correct emission factors based on sequential measurements (e.g., the Normalized Ratio Enhancement and similar methods). We stress the dangers of methods relying on emission-ratios to CO. (b) This work confirms and extends many reports of great situational variability in emissions factors. VOCs vary in OH reactivity and NOx-binding. Reasons for variability are not only fuel composition, fuel condition, etc., but are confused somewhat by rapid transformation and mixing of emissions. We use "unmixing" (distinct from mixed-effects) statistics and compare briefly to approaches like neural nets. We focus on one particularly intense fire the notorious Yosemite Rim Fire of 2013. In some samples, NOx activity was not so suppressed by binding into nitrates as in other fires. While our fire-typing is evolving and subject to debate, the carbon-burned delta(CO2+CO) estimates that arise from mixed effects models, free of confusion by background-CO2 variation, should provide a

  10. Tango, senses and sensuality

    Directory of Open Access Journals (Sweden)

    María de los Angeles Montes

    2014-11-01

    Full Text Available One of the most important contributions of the Peircean paradigm to semiotics consists in its opening the sign to development and modification. Sense, meaning, is no longer a static and fixed property. The Peircean paradigm allows us to wonder about how signs are interpreted, how they make sense in actual reception practices. The purpose of this paper is to address the problem of the relationship between appropriation practices (Montes, 2011 and significance processes from the analysis of an empirical case, observing how signs of sensuality are produced in the ballroom tango dance. Tango has earned international reputation mainly as a sensuality dance thanks to its spectacularization and subsequent mediatization. However, as I expect to demonstrate, at the moment of reception, people put those discourses in interaction with specific appropriation practices that shape very special interpretive habits. I will address the issue from an empirical investigation, especially focused on the production of interpretants (emotional, energetic, and logical, that is to say, looking back to the sign reception from the body to the mind. From a corpus of 25 focused interviews with people who got to know tango through mass media but that afterwards learnt to dance it as a social dance, it is my intention to show what sensuality means to them today, and how that current practice interacts with other external and previous discourses to produce interpretive habits. Finally, I wish to offer a theoretical reflection about the relationship between these three types of interpretants, their interaction with the discourse of the mass media and the place corporality has in the reception processes.

  11. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  12. REMOTE SENSING IN OCEANOGRAPHY.

    Science.gov (United States)

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  13. Remote Sensing of shallow sea floor for digital earth environment

    International Nuclear Information System (INIS)

    Yahya, N N; Hashim, M; Ahmad, S

    2014-01-01

    Understanding the sea floor biodiversity requires spatial information that can be acquired from remote sensing satellite data. Species volume, spatial patterns and species coverage are some of the information that can be derived. Current approaches for mapping sea bottom type have evolved from field observation, visual interpretation from aerial photography, mapping from remote sensing satellite data along with field survey and hydrograhic chart. Remote sensing offers most versatile technique to map sea bottom type up to a certain scale. This paper reviews the technical characteristics of signal and light interference within marine features, space and remote sensing satellite. In addition, related image processing techniques that are applicable to remote sensing satellite data for sea bottom type digital mapping is also presented. The sea bottom type can be differentiated by classification method using appropriate spectral bands of satellite data. In order to verify the existence of particular sea bottom type, field observations need to be carried out with proper technique and equipment

  14. Hyperspectral sensing of forests

    Science.gov (United States)

    Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash

    2007-11-01

    Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.

  15. LIGO sensing system performance

    CERN Document Server

    Landry, M

    2002-01-01

    The optical sensing subsystem of a LIGO interferometer is described. The system includes two complex interferometric sensing schemes to control test masses in length and alignment. The length sensing system is currently employed on all LIGO interferometers to lock coupled cavities on resonance. Auto-alignment is to be accomplished by a wavefront-sensing scheme which automatically corrects for angular fluctuations of the test masses. Improvements in lock stability and duration are noted when the wavefront auto-alignment system is employed. Preliminary results from the commissioning of the 2 km detector in Washington are shown.

  16. Intelligent environmental sensing

    CERN Document Server

    Mukhopadhyay, Subhas

    2015-01-01

    Developing environmental sensing and monitoring technologies become essential especially for industries that may cause severe contamination. Intelligent environmental sensing uses novel sensor techniques, intelligent signal and data processing algorithms, and wireless sensor networks to enhance environmental sensing and monitoring. It finds applications in many environmental problems such as oil and gas, water quality, and agriculture. This book addresses issues related to three main approaches to intelligent environmental sensing and discusses their latest technological developments. Key contents of the book include:   Agricultural monitoring Classification, detection, and estimation Data fusion Geological monitoring Motor monitoring Multi-sensor systems Oil reservoirs monitoring Sensor motes Water quality monitoring Wireless sensor network protocol  

  17. Advanced Remote Sensing Research

    Science.gov (United States)

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  18. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  19. Electrochemical sensing carcinogens in beverages

    CERN Document Server

    Zia, Asif Iqbal

    2016-01-01

    This book describes a robust, low-cost electrochemical sensing system that is able to detect hormones and phthalates – the most ubiquitous endocrine disruptor compounds – in beverages and is sufficiently flexible to be readily coupled with any existing chemical or biochemical sensing system. A novel type of silicon substrate-based smart interdigital transducer, developed using MEMS semiconductor fabrication technology, is employed in conjunction with electrochemical impedance spectroscopy to allow real-time detection and analysis. Furthermore, the presented interdigital capacitive sensor design offers a sufficient penetration depth of the fringing electric field to permit bulk sample testing. The authors address all aspects of the development of the system and fully explain its benefits. The book will be of wide interest to engineers, scientists, and researchers working in the fields of physical electrochemistry and biochemistry at the undergraduate, postgraduate, and research levels. It will also be high...

  20. Spectroelectrochemical sensing: planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Susan E.; Shi Yining; Seliskar, Carl J.; Heineman, William R

    2003-09-30

    The spectroelectrochemical sensor combines in a single device electrochemistry, spectroscopy, and selective partitioning into a film, giving improved selectivity for applications that involve complex samples. Sensing is based on the change in optical signal that accompanies electrochemical modulation of analyte that has partitioned into the film. Two classes of optical quality chemically-selective films based on two different host materials, namely, sol-gel processed silica and cross-linked poly(vinyl alcohol) have been developed. Films are typically 400-700 nm thick. Three types of sensor platforms are discussed: a multiple internal reflection (MIR) optic consisting of a bilayer of an indium tin oxide (ITO) optically transparent electrode deposited on a 1-mm thick glass substrate, a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide (5-9 {mu}m thick) was over-coated with a thin film of ITO, and a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide channel was formed and a pair of electrodes deposited along side the channel. These sensors were evaluated with ferrocyanide and a selective film of PDMDAAC-SiO{sub 2}, where PDMDAAC=poly(dimethyl diallylammonium chloride)

  1. Spectroelectrochemical sensing: planar waveguides

    International Nuclear Information System (INIS)

    Ross, Susan E.; Shi Yining; Seliskar, Carl J.; Heineman, William R.

    2003-01-01

    The spectroelectrochemical sensor combines in a single device electrochemistry, spectroscopy, and selective partitioning into a film, giving improved selectivity for applications that involve complex samples. Sensing is based on the change in optical signal that accompanies electrochemical modulation of analyte that has partitioned into the film. Two classes of optical quality chemically-selective films based on two different host materials, namely, sol-gel processed silica and cross-linked poly(vinyl alcohol) have been developed. Films are typically 400-700 nm thick. Three types of sensor platforms are discussed: a multiple internal reflection (MIR) optic consisting of a bilayer of an indium tin oxide (ITO) optically transparent electrode deposited on a 1-mm thick glass substrate, a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide (5-9 μm thick) was over-coated with a thin film of ITO, and a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide channel was formed and a pair of electrodes deposited along side the channel. These sensors were evaluated with ferrocyanide and a selective film of PDMDAAC-SiO 2 , where PDMDAAC=poly(dimethyl diallylammonium chloride)

  2. Calcium sensing in exocytosis

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wu, Bingbing; Han, Weiping

    2012-01-01

    an increase in intracellular calcium levels. Besides the triggering role, calcium signaling modulates the precise amount and kinetics of vesicle release. Thus, it is a central question to understand the molecular machineries responsible for calcium sensing in exocytosis. Here we provide an overview of our...... current understanding of calcium sensing in neurotransmitter release and hormone secretion....

  3. Sense and Sensibility

    NARCIS (Netherlands)

    Austen, Jane

    2005-01-01

    Two sisters of opposing temperament but who share the pangs of tragic love provide the subjects for Sense and Sensibility. Elinor, practical and conventional, the epitome of sense, desires a man who is promised to another woman. Marianne, emotional and sentimental, the epitome of sensibility, loses

  4. Mobile teleoperator remote sensing

    International Nuclear Information System (INIS)

    Hall, E.L.

    1986-01-01

    Sensing systems are an important element of mobile teleoperators and robots. This paper discusses certain problems and limitations of vision and other sensing systems with respect to operations in a radiological accident environment. Methods which appear promising for near-term improvements to sensor technology are described. 3 refs

  5. Deterministic Compressed Sensing

    Science.gov (United States)

    2011-11-01

    39 4.3 Digital Communications . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Group Testing ...deterministic de - sign matrices. All bounds ignore the O() constants. . . . . . . . . . . 131 xvi List of Algorithms 1 Iterative Hard Thresholding Algorithm...sensing is information theoretically possible using any (2k, )-RIP sensing matrix . The following celebrated results of Candès, Romberg and Tao [54

  6. Hyperspectral remote sensing

    CERN Document Server

    Eismann, Michael

    2012-01-01

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications that builds on the principles of material spectroscopy, radiative transfer, imaging spectrometry, and hyperspectral data processing. This book provides a holistic treatment that captures its multidisciplinary nature, emphasizing the physical principles of hyperspectral remote sensing.

  7. Mapping sense(s) of place

    DEFF Research Database (Denmark)

    Skovse, Astrid Ravn; Hovy, Dirk; Johannsen, Anders Trærup

    2016-01-01

    , the question of how to tap into this constitutes a methodological challenge to researchers (Latham 2003, Hall 2009). This paper presents an experimental method aimed at eliciting data on sense of place and everyday mobility in a feasible and low-tech manner through the use of mental maps and mobility maps...... for answering questions about the relationship between places, speakers and linguistic practice....

  8. Hydroball string sensing system

    International Nuclear Information System (INIS)

    Hurwitz, M.J.; Ekeroth, D.E.; Squarer, D.

    1991-01-01

    This patent describes a hydroball string sensing system for a nuclear reactor having a core containing a fluid at a fluid pressure. It comprises a tube connectable to the nuclear reactor so that the fluid can flow within the tube at a fluid pressure that is substantially the same as the fluid pressure of the nuclear reactor core; a hydroball string including - a string member having objects positioned therealong with a specified spacing, the object including a plurality of hydroballs, and bullet members positioned at opposing ends of the string member; first sensor means, positioned outside a first segment of the tube, for sensing one of the objects being positioned within the first segment, and for providing a sensing signal responsive to the sensing of the first sensing means

  9. Comprehensive, integrated, remote sensing at DOE sites

    International Nuclear Information System (INIS)

    Lackey, J.G.; Burson, Z.G.

    1985-01-01

    The Department of Energy has established a program called Comprehensive, Integrated Remote Sensing (CIRS). The overall objective of the program is to provide a state-of-the-art data base of remotely sensed data for all users of such information at large DOE sites. The primary types of remote sensing provided, at present, consist of the following: large format aerial photography, video from aerial platforms, multispectral scanning, and airborne nuclear radiometric surveys. Implementation of the CIRS Program by EG and G Energy Measurements, Inc. began with field operations at the Savannah River Plant in 1982 and is continuing at that DOE site at a level of effort of about $1.5 m per year. Integrated remote sensing studies were subsequently extended to the West Valley Demonstration Project in this summer and fall of 1984. It is expected that the Program will eventually be extended to cover all large DOE sites on a continuing basis

  10. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  11. A Remote Sensing Survey of Deepwater Port Group on Yangtze River Delta

    National Research Council Canada - National Science Library

    Lou, Dong; Zhiu, Bingjian; Zhu, Yingbo

    2005-01-01

    ...+, SPOT, ESR- 2SAR and NOAA-AVHRR remote sensing data as well as other general data. TM/ETM+ and SPOT remote sensing images were used to obtain the information about port conditions, shoreline types and storage fields...

  12. Tank type LMFBR type reactors

    International Nuclear Information System (INIS)

    Shimizu, Hiroshi

    1985-01-01

    Purpose: To detect the abnormality in the suspended body or reactor core supporting structures thereby improve the safety and reliability of tank type LMFBR reactors. Constitution: Upon inspection during reactor operation period, the top end of the gripper sensing rod of a fuel exchanger is abutted against a supporting bed and the position of the reactor core supporting structures from the roof slab is measured by a stroke measuring device. Then, the sensing rod is pulled upwardly to abut against the arm portion and the position is measured by the stroke measuring device. The measuring procedures are carried out for all of the sensing rods and the measured values are compared with a previously determined value at the initial stage of the reactor operation. As a result, it is possible to detect excess distortions and abnormal deformation in the suspended body or reactor core supporting structures. Furthermore, integrity of the suspended body against thermal stresses can be secured by always measuring the coolant liquid level by the level measuring sensor. (Kamimura, M.)

  13. Remote Sensing Information Gateway

    Science.gov (United States)

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  14. Hyperspectral remote sensing

    National Research Council Canada - National Science Library

    Eismann, Michael Theodore

    2012-01-01

    ..., and hyperspectral data processing. While there are many resources that suitably cover these areas individually and focus on specific aspects of the hyperspectral remote sensing field, this book provides a holistic treatment...

  15. REMOTE SENSING FOR ENVIRONMENTAL COMPLIANCE MONITORING

    Science.gov (United States)

    I. Remote Sensing Basics A. The electromagnetic spectrum demonstrates what we can see both in the visible and beyond the visible part of the spectrum through the use of various types of sensors. B. Resolution refers to what a remote sensor can see and how often. 1. Sp...

  16. High temperature humidity sensing materials

    International Nuclear Information System (INIS)

    Tsai, P.P.; Tanase, S.; Greenblatt, M.

    1989-01-01

    This paper reports on new proton conducting materials prepared and characterized for potential applications in humidity sensing at temperatures higher than 100 degrees C by complex impedance or galvanic cell type techniques. Calcium metaphosphate, β-Ca(PO 3 ) 2 as a galvanic cell type sensor material yields reproducible signals in the range from 5 to 200 mm Hg water vapor pressure at 578 degrees C, with short response time (∼ 30 sec). Polycrystalline samples of α-Zr(HPO 4 ) 2 and KMo 3 P 5.8 Si 2 O 25 , and the gel converted ceramic, 0.10Li 2 O-0.25P 2 O 5 -0.65SiO 2 as impedance sensor materials show decreases in impedance with increasing humidity in the range from 9 mm Hg to 1 atm water vapor pressure at 179 degrees C

  17. Study on cooperative active sensing system

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Kita, Nobuyuki; Hirai, Shigeoki; Kuniyoshi, Yasuo; Hara, Isao; Matsui, Toshihiro

    1999-01-01

    In order to realize autonomous type nuclear plant, three-dimensional geometrical modelling method, and a basic technology on information collection and processing system preparation in some nuclear basic technology developments such as 'study on system evaluation of nuclear facility furnished with artificial intelligence for nuclear power' and 'study on adaptability evaluation of information collection and processing system into autonomous type plant' had already been developed. In this study, a study on sensing system required for constructing robot groups capable of conducting autonomously traveling inspection and maintenance in large scale, complicated and diverse plant has been processed by aiming at establishment of dispersed cooperative intelligent system technology. In 1997 fiscal year, integration of cooperative visual sensing technique was attempted. And, at the same time, upgrading of individual element technology and transportation method essential to the integrated system were investigated. As a result, an operative active sensing prototype system due to transportation robot groups furnished with real time processing capacity on diverse informations by integration of cooperative active sensing technique and real time active sensing technique developed independently plural transportation robot. (G.K.)

  18. Compressive sensing using optimized sensing matrix for face verification

    Science.gov (United States)

    Oey, Endra; Jeffry; Wongso, Kelvin; Tommy

    2017-12-01

    Biometric appears as one of the solutions which is capable in solving problems that occurred in the usage of password in terms of data access, for example there is possibility in forgetting password and hard to recall various different passwords. With biometrics, physical characteristics of a person can be captured and used in the identification process. In this research, facial biometric is used in the verification process to determine whether the user has the authority to access the data or not. Facial biometric is chosen as its low cost implementation and generate quite accurate result for user identification. Face verification system which is adopted in this research is Compressive Sensing (CS) technique, in which aims to reduce dimension size as well as encrypt data in form of facial test image where the image is represented in sparse signals. Encrypted data can be reconstructed using Sparse Coding algorithm. Two types of Sparse Coding namely Orthogonal Matching Pursuit (OMP) and Iteratively Reweighted Least Squares -ℓp (IRLS-ℓp) will be used for comparison face verification system research. Reconstruction results of sparse signals are then used to find Euclidean norm with the sparse signal of user that has been previously saved in system to determine the validity of the facial test image. Results of system accuracy obtained in this research are 99% in IRLS with time response of face verification for 4.917 seconds and 96.33% in OMP with time response of face verification for 0.4046 seconds with non-optimized sensing matrix, while 99% in IRLS with time response of face verification for 13.4791 seconds and 98.33% for OMP with time response of face verification for 3.1571 seconds with optimized sensing matrix.

  19. Health Participatory Sensing Networks

    Directory of Open Access Journals (Sweden)

    Andrew Clarke

    2014-01-01

    Full Text Available The use of participatory sensing in relation to the capture of health-related data is rapidly becoming a possibility due to the widespread consumer adoption of emerging mobile computing technologies and sensing platforms. This has the potential to revolutionize data collection for population health, aspects of epidemiology, and health-related e-Science applications and as we will describe, provide new public health intervention capabilities, with the classifications and capabilities of such participatory sensing platforms only just beginning to be explored. Such a development will have important benefits for access to near real-time, large-scale, up to population-scale data collection. However, there are also numerous issues to be addressed first: provision of stringent anonymity and privacy within these methodologies, user interface issues, and the related issue of how to incentivize participants and address barriers/concerns over participation. To provide a step towards describing these aspects, in this paper we present a first classification of health participatory sensing models, a novel contribution to the literature, and provide a conceptual reference architecture for health participatory sensing networks (HPSNs and user interaction example case study.

  20. Offshore winds mapped from satellite remote sensing

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    2014-01-01

    the uncertainty on the model results on the offshore wind resource, it is necessary to compare model results with observations. Observations from ground-based wind lidar and satellite remote sensing are the two main technologies that can provide new types of offshore wind data at relatively low cost....... The advantages of microwave satellite remote sensing are 1) horizontal spatial coverage, 2) long data archives and 3) high spatial detail both in the coastal zone and of far-field wind farm wake. Passive microwave ocean wind speed data are available since 1987 with up to 6 observations per day with near...

  1. Diabetes HealthSense: Resources for Living Well

    Medline Plus

    Full Text Available ... E-MAIL UPDATES External Link Disclaimer National Diabetes Education Program HealthSense Home Make a Plan Articles About ... Manage Your Weight Small Steps. Big Rewards. Your GAME PLAN to Prevent Type 2 Diabetes: Information for ...

  2. Sensing of RNA viruses

    DEFF Research Database (Denmark)

    Jensen, Søren; Thomsen, Allan Randrup

    2012-01-01

    pathogen-associated molecular patterns have emerged in great detail. This review presents an overview of our current knowledge regarding the receptors used to detect RNA virus invasion, the molecular structures these receptors sense, and the involved downstream signaling pathways.......Our knowledge regarding the contribution of the innate immune system in recognizing and subsequently initiating a host response to an invasion of RNA virus has been rapidly growing over the last decade. Descriptions of the receptors involved and the molecular mechanisms they employ to sense viral...

  3. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  4. Introduction to remote sensing

    CERN Document Server

    Campbell, James B

    2012-01-01

    A leading text for undergraduate- and graduate-level courses, this book introduces widely used forms of remote sensing imagery and their applications in plant sciences, hydrology, earth sciences, and land use analysis. The text provides comprehensive coverage of principal topics and serves as a framework for organizing the vast amount of remote sensing information available on the Web. Including case studies and review questions, the book's four sections and 21 chapters are carefully designed as independent units that instructors can select from as needed for their courses. Illustrations in

  5. A framework for developing remote sensing applications

    International Nuclear Information System (INIS)

    Ahmad, T.; Hayat, M.F.; Afzal, M.; Asif, H.M.S.; Asif, K.H.

    2014-01-01

    Remote Sensing Application (RSA) is important as one of the critical enabler of e-systems such as e- governments, e-commerce, and e-sciences. In this study, we argued that owning to the specialized needs of RSA such as volatility and interactive nature, a customized Software Engineering (SE) approach should be adapted for their development. Based on this argument we have also identified the shortcomings of the conventional SE approaches and the classical waterfall software development life cycle model. In this study, we have proposed a modification to the classical waterfall software development life cycle model for proposing a customized software development Framework for RSAs. We have identified four (4) different types of changes that can occur to an already developed RS application. The proposed framework was capable to incorporate all four types of changes. Remote Sensing, software engineering, functional requirements, types of changes. (author)

  6. Neuronal regulation of homeostasis by nutrient sensing.

    Science.gov (United States)

    Lam, Tony K T

    2010-04-01

    In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.

  7. Phenomenology in Its Original Sense.

    Science.gov (United States)

    van Manen, Max

    2017-05-01

    In this article, I try to think through the question, "What distinguishes phenomenology in its original sense?" My intent is to focus on the project and methodology of phenomenology in a manner that is not overly technical and that may help others to further elaborate on or question the singular features that make phenomenology into a unique qualitative form of inquiry. I pay special attention to the notion of "lived" in the phenomenological term "lived experience" to demonstrate its critical role and significance for understanding phenomenological reflection, meaning, analysis, and insights. I also attend to the kind of experiential material that is needed to focus on a genuine phenomenological question that should guide any specific research project. Heidegger, van den Berg, and Marion provide some poignant exemplars of the use of narrative "examples" in phenomenological explorations of the phenomena of "boredom," "conversation," and "the meaningful look in eye-contact." Only what is given or what gives itself in lived experience (or conscious awareness) are proper phenomenological "data" or "givens," but these givens are not to be confused with data material that can be coded, sorted, abstracted, and accordingly analyzed in some "systematic" manner. The latter approach to experiential research may be appropriate and worthwhile for various types of qualitative inquiry but not for phenomenology in its original sense. Finally, I use the mythical figure of Kairos to show that the famous phenomenological couplet of the epoché-reduction aims for phenomenological insights that require experiential analysis and attentive (but serendipitous) methodical inquiry practices.

  8. A Sense of Place

    Directory of Open Access Journals (Sweden)

    Rachel Black

    2012-09-01

    Full Text Available People increasingly want to know where their food and wine comes from and who produces it. This is part of developing a taste of place, or what the French call terroir. The academic and industry debates surrounding the concept of terroir are explored, and the efforts of Massachusetts wine producers to define their sense of place are discussed.

  9. Remote sensing: best practice

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gareth [Sgurr Energy (Canada)

    2011-07-01

    This paper presents remote sensing best practice in the wind industry. Remote sensing is a technique whereby measurements are obtained from the interaction of laser or acoustic pulses with the atmosphere. There is a vast diversity of tools and techniques available and they offer wide scope for reducing project uncertainty and risk but best practice must take into account versatility and flexibility. It should focus on the outcome in terms of results and data. However, traceability of accuracy requires comparison with conventional instruments. The framework for the Boulder protocol is given. Overviews of the guidelines for IEA SODAR and IEA LIDAR are also mentioned. The important elements of IEC 61400-12-1, an international standard for wind turbines, are given. Bankability is defined based on the Boulder protocol and a pie chart is presented that illustrates the uncertainty area covered by remote sensing. In conclusion it can be said that remote sensing is changing perceptions about how wind energy assessments can be made.

  10. The sense of agency

    DEFF Research Database (Denmark)

    Ritterband-Rosenbaum, Anina

    Imagine that you are reaching for a cup of coffee. You experience that you are moving and that you have control of the movement you are executing. This feeling of control of your own body and the movements it is performing is called the sense of agency. This thesis consists of four studies which ...

  11. Temporal compressive sensing systems

    Science.gov (United States)

    Reed, Bryan W.

    2017-12-12

    Methods and systems for temporal compressive sensing are disclosed, where within each of one or more sensor array data acquisition periods, one or more sensor array measurement datasets comprising distinct linear combinations of time slice data are acquired, and where mathematical reconstruction allows for calculation of accurate representations of the individual time slice datasets.

  12. Engaging All the Senses

    DEFF Research Database (Denmark)

    Schleicher, Marianne

    2017-01-01

    Based on an analysis of the process of making and inaugurating a Torah scroll, this article describes what is likely to trigger sensory responses in the participants in each phase of the process and the function of activating the five senses of touch, hearing, vision, smell, and taste. By disting...

  13. Section summary: Remote sensing

    Science.gov (United States)

    Belinda Arunarwati Margono

    2013-01-01

    Remote sensing is an important data source for monitoring the change of forest cover, in terms of both total removal of forest cover (deforestation), and change of canopy cover, structure and forest ecosystem services that result in forest degradation. In the context of Intergovernmental Panel on Climate Change (IPCC), forest degradation monitoring requires information...

  14. Sense and Sanitation

    NARCIS (Netherlands)

    Vliet, van B.J.M.; Spaargaren, G.

    2010-01-01

    Historically, sanitation infrastructures have been designed to do away with sensory experiences. As in the present phase of modernity the senses are assigned a crucial role in the perception of risks, a paradigm shift has emerged in the infrastructural provision of energy, water and waste services.

  15. Carbon for sensing devices

    CERN Document Server

    Tagliaferro, Alberto

    2015-01-01

    This book reveals why carbon is playing such an increasingly prominent role as a sensing material. The various steps that transform a raw material in a sensing device are thoroughly presented and critically discussed.  The authors deal with all aspects of carbon-based sensors, starting from the various hybridization and allotropes of carbon, with specific focus on micro and nanosized carbons (e.g., carbon nanotubes, graphene) and their growth processes. The discussion then moves to the role of functionalization and the different routes to achieve it. Finally, a number of sensing applications in various fields are presented, highlighting the connection with the basic properties of the various carbon allotropes.  Readers will benefit from this book’s bottom-up approach, which starts from the local bonding in carbon solids and ends with sensing applications, linking the local hybridization of carbon atoms and its modification by functionalization to specific device performance. This book is a must-have in th...

  16. Oil spill remote sensing sensors and aircraft

    International Nuclear Information System (INIS)

    Fingas, M.; Fruhwirth, M.; Gamble, L.

    1992-01-01

    The most common form of remote sensing as applied to oil spills is aerial remote sensing. The technology of aerial remote sensing, mainly from aircraft, is reviewed along with aircraft-mounted remote sensors and aircraft modifications. The characteristics, advantages, and limitations of optical techniques, infrared and ultraviolet sensors, fluorosensors, microwave and radar sensors, and slick thickness sensors are discussed. Special attention is paid to remote sensing of oil under difficult circumstances, such as oil in water or oil on ice. An infrared camera is the first sensor recommended for oil spill work, as it is the cheapest and most applicable device, and is the only type of equipment that can be bought off-the-shelf. The second sensor recommended is an ultraviolet and visible-spectrum device. The laser fluorosensor offers the only potential for discriminating between oiled and un-oiled weeds or shoreline, and for positively identifying oil pollution on ice and in a variety of other situations. However, such an instrument is large and expensive. Radar, although low in priority for purchase, offers the only potential for large-area searches and foul-weather remote sensing. Most other sensors are experimental or do not offer good potential for oil detection or mapping. 48 refs., 8 tabs

  17. Gas sensing in 2D materials

    Science.gov (United States)

    Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai

    2017-06-01

    Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.

  18. Remote sensing of vegetation fires and its contribution to a fire management information system

    Science.gov (United States)

    Stephane P. Flasse; Simon N. Trigg; Pietro N. Ceccato; Anita H. Perryman; Andrew T. Hudak; Mark W. Thompson; Bruce H. Brockett; Moussa Drame; Tim Ntabeni; Philip E. Frost; Tobias Landmann; Johan L. le Roux

    2004-01-01

    In the last decade, research has proven that remote sensing can provide very useful support to fire managers. This chapter provides an overview of the types of information remote sensing can provide to the fire community. First, it considers fire management information needs in the context of a fire management information system. An introduction to remote sensing then...

  19. Head and neck position sense.

    Science.gov (United States)

    Armstrong, Bridget; McNair, Peter; Taylor, Denise

    2008-01-01

    fails to be appropriately integrated in the CNS, errors in head position may occur, resulting in an inaccurate reference for HNPS, and conversely if neck proprioceptive information is inaccurate, then control of head position may be affected. The cerebellum and cortex also play a role in control of head position, providing feed-forward and modulatory influences depending on the task requirements. Position-matching tasks have been the most popular means of testing position sense in the cervical spine. These allow the appreciation of absolute, constant and variable errors in positioning and have been shown to be reliable. The results of such tests indicate that errors are relatively low (2-5 degrees). It is apparent that error is not consistently affected by age, a finding similar to studies undertaken in peripheral joints. Furthermore, the range of motion in which subjects are tested does not consistently affect accuracy in a predictable manner. However, it is evident that impairments in position sense are observed in individuals who have experienced whiplash-type injuries and individuals with chronic head and neck pain of non-traumatic origin (e.g. cervical spondylosis). While researchers advocate comprehensive retraining protocols, which include eye and neck motion targeting tasks and coordination exercises, as well as co-contraction exercises to reduce such impairments, some studies show that more general exercises and manipulation may be of benefit. Overall, there is limited information concerning the efficacy of treatment programmes.

  20. Tiltmeter Indicates Sense of Slope

    Science.gov (United States)

    Lonborg, J. O.

    1985-01-01

    Tiltmeter indicates sense and magnitude of slope used in locations where incline not visible to operator. Use of direct rather than alternating current greatly simplifies design of instrument capable of indicating sense of slope.

  1. Remote sensing for water quality

    International Nuclear Information System (INIS)

    Giardino, Claudia

    2006-01-01

    The application of remote sensing to the study of lakes is begun in years 80 with the lunch of the satellites of second generation. Many experiences have indicated the contribution of remote sensing for the limnology [it

  2. Time-sensitive remote sensing

    CERN Document Server

    Lippitt, Christopher; Coulter, Lloyd

    2015-01-01

    This book documents the state of the art in the use of remote sensing to address time-sensitive information requirements. Specifically, it brings together a group of authors who are both researchers and practitioners, who work toward or are currently using remote sensing to address time-sensitive information requirements with the goal of advancing the effective use of remote sensing to supply time-sensitive information. The book addresses the theoretical implications of time-sensitivity on the remote sensing process, assessments or descriptions of methods for expediting the delivery and improving the quality of information derived from remote sensing, and describes and analyzes time-sensitive remote sensing applications, with an emphasis on lessons learned. This book is intended for remote sensing scientists, practitioners (e.g., emergency responders or administrators of emergency response agencies), and students, but will also be of use to those seeking to understand the potential of remote sensing to addres...

  3. Smart Sensing Using Wavelets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Further refinements to the FOSS technologies are focusing on “smart” sensing techniques that adjust sensing parameters as needed in real time so that...

  4. Microelectromechanical acceleration-sensing apparatus

    Science.gov (United States)

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  5. Methods of training the graduate level and professional geologist in remote sensing technology

    Science.gov (United States)

    Kolm, K. E.

    1981-01-01

    Requirements for a basic course in remote sensing to accommodate the needs of the graduate level and professional geologist are described. The course should stress the general topics of basic remote sensing theory, the theory and data types relating to different remote sensing systems, an introduction to the basic concepts of computer image processing and analysis, the characteristics of different data types, the development of methods for geological interpretations, the integration of all scales and data types of remote sensing in a given study, the integration of other data bases (geophysical and geochemical) into a remote sensing study, and geological remote sensing applications. The laboratories should stress hands on experience to reinforce the concepts and procedures presented in the lecture. The geologist should then be encouraged to pursue a second course in computer image processing and analysis of remotely sensed data.

  6. Making Sense of Natural Selection

    Science.gov (United States)

    Passmore, Cynthia; Coleman, Elizabeth; Horton, Jennifer; Parker, Heather

    2013-01-01

    At its core, science is about making sense of the world around us. Therefore, science education should engage students in that sense-making process. Helping students make sense of disciplinary core ideas and crosscutting concepts by engaging in scientific practices is the key innovation of the "Next Generation Science Standards"…

  7. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  8. Nanomaterials in glucose sensing

    CERN Document Server

    Burugapalli, Krishna

    2013-01-01

    The smartness of nano-materials is attributed to their nanoscale and subsequently unique physicochemical properties and their use in glucose sensing has been aimed at improving performance, reducing cost and miniaturizing the sensor and its associated instrumentation. So far, portable (handheld) glucose analysers were introduced for hospital wards, emergency rooms and physicians' offices; single-use strip systems achieved nanolitre sampling for painless and accurate home glucose monitoring; advanced continuous monitoring devices having 2 to 7 days operating life are in clinical and home use; and continued research efforts are being made to develop and introduce increasingly advanced glucose monitoring systems for health as well as food, biotechnology, cell and tissue culture industries. Nanomaterials have touched every aspect of biosensor design and this chapter reviews their role in the development of advanced technologies for glucose sensing, and especially for diabetes. Research shows that overall, nanomat...

  9. Taste sensing FET (TSFET)

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K.; Yasuda, R.; Ezaki, S. [Kyushu University, Fukuoka (Japan); Fujiyoshi, T. [Kumamoto University, Kumamoto (Japan). Faculty of Engineering

    1997-12-20

    Taste can be quantified using a multichannel taste sensor with lipid/polymer membranes. Its sensitivity and stability are superior to those of humans. A present study is concerned with the first step of miniaturization and integration of the taste sensor with lipid/polymer membranes using FET. As a result, it was found that gate-source voltage of the taste sensing FET showed the same behaviors as the conventional taste sensor utilizing the membrane-potential change due to five kinds of taste substances. Discrimination of foodstuffs was very easy. A thin lipid membrane formed using LB technique was also tried. These results will open doors to fabrication of a miniaturized, integrated taste sensing system. 12 refs., 6 figs.

  10. The sense of beauty.

    Science.gov (United States)

    Hagman, George

    2002-06-01

    This paper proposes an integrative psychoanalytic model of the sense of beauty. The following definition is used: beauty is an aspect of the experience of idealisation in which an object(s), sound(s) or concept(s) is believed to possess qualities of formal perfection. The psychoanalytic literature regarding beauty is explored in depth and fundamental similarities are stressed. The author goes on to discuss the following topics: (1) beauty as sublimation: beauty reconciles the polarisation of self and world; (2) idealisation and beauty: the love of beauty is an indication of the importance of idealisation during development; (3) beauty as an interactive process: the sense of beauty is interactive and intersubjective; (4) the aesthetic and non-aesthetic emotions: specific aesthetic emotions are experienced in response to the formal design of the beautiful object; (5) surrendering to beauty: beauty provides us with an occasion for transcendence and self-renewal; (6) beauty's restorative function: the preservation or restoration of the relationship to the good object is of utmost importance; (7) the self-integrative function of beauty: the sense of beauty can also reconcile and integrate self-states of fragmentation and depletion; (8) beauty as a defence: in psychopathology, beauty can function defensively for the expression of unconscious impulses and fantasies, or as protection against self-crisis; (9) beauty and mortality: the sense of beauty can alleviate anxiety regarding death and feelings of vulnerability. In closing the paper, the author offers a new understanding of Freud'semphasis on love of beauty as a defining trait of civilisation. For a people not to value beauty would mean that they cannot hope and cannot assert life over the inevitable and ubiquitous forces of entropy and death.

  11. Liquid Level Sensing System

    Science.gov (United States)

    Korman, Valentin (Inventor); Wiley, John T. (Inventor); Duffell, Amanda G. (Inventor)

    2014-01-01

    A liquid level sensing system includes waveguides disposed in a liquid and distributed along a path with a gap between adjacent waveguides. A source introduces electromagnetic energy into the waveguides at a first end of the path. A portion of the electromagnetic energy exits the waveguides at a second end of the path. A detector measures the portion of the electromagnetic energy exiting the second end of the path.

  12. Making Sense of Austerity

    DEFF Research Database (Denmark)

    Seabrooke, Leonard; Riisbjerg Thomsen, Rune

    2016-01-01

    such as ‘scroungers’ and ‘corporate criminals’ are identified, as are scenes such as the decline of the welfare state and the rise of technocracy. We link the storysets, story-lines, and plots together to understand how Brits and Danes are making sense of austerity. Their explanations and frustrations improve our...... understanding of who acts in everyday politics, and how everyday narratives are formed and maintained....

  13. Sensing interrail mobility

    DEFF Research Database (Denmark)

    Jensen, Martin Trandberg

    methodologies, this doctoral thesis explores the analytical prospects of non-representational theories in tourism research. The dissertation points toward a richer understanding of the ‘social’ which encompasses under-researched topics such as the implications of affective atmospheres, the sensuous and vibrant...... of Culture and Global Studies, Aalborg University, Campus Copenhagen. ’Sensing interrail mobility: Towards multimodal methodologies’ is his Ph.d. dissertation....

  14. Toward practical SERS sensing

    Science.gov (United States)

    Zhao, Yiping

    2012-06-01

    Since its discovery more than 30 years ago, surface-enhanced Raman scattering (SERS) has been recognized as a highly sensitive detection technique for chemical and biological sensing and medical diagnostics. However, the practical application of this remarkably sensitive technique has not been widely accepted as a viable diagnostic method due to the difficulty in preparing robust and reproducible substrates that provide maximum SERS enhancement. Here, we demonstrate that the aligned silver nanorod (AgNR) array substrates engineered by the oblique angle deposition method are capable of providing extremely high SERS enhancement factors (>108). The substrates are large area, uniform, reproducible, and compatible with general microfabrication process. The enhancement factor depends strongly on the length and shape of the Ag nanorods and the underlying substrate coating. By optimizing AgNR SERS substrates, we show that SERS is able to detect trace amount of toxins, virus, bacteria, or other chemical and biological molecules, and distinguish different viruses/bacteria and virus/bacteria strains. The substrate can be tailored into a multi-well chip for high throughput screening, integrated into fiber tip for portable sensing, incorporated into fluid/microfluidic devices for in situ real-time monitoring, fabricated onto a flexible substrate for tracking and identification, or used as on-chip separation device for ultra-thin layer chromatography and diagnostics. By combining the unique SERS substrates with a handheld Raman system, it can become a practical and portable sensor system for field applications. All these developments have demonstrated that AgNR SERS substrates could play an important role in the future for practical clinical, industrial, defense, and security sensing applications.

  15. Sensing in the collaborative Internet of Things.

    Science.gov (United States)

    Borges Neto, João B; Silva, Thiago H; Assunção, Renato Martins; Mini, Raquel A F; Loureiro, Antonio A F

    2015-03-19

    We are entering a new era of computing technology, the era of Internet of Things (IoT). An important element for this popularization is the large use of off-the-shelf sensors. Most of those sensors will be deployed by different owners, generally common users, creating what we call the Collaborative IoT. This collaborative IoT helps to increase considerably the amount and availability of collected data for different purposes, creating new interesting opportunities, but also several challenges. For example, it is very challenging to search for and select a desired sensor or a group of sensors when there is no description about the provided sensed data or when it is imprecise. Given that, in this work we characterize the properties of the sensed data in the Internet of Things, mainly the sensed data contributed by several sources, including sensors from common users. We conclude that, in order to safely use data available in the IoT, we need a filtering process to increase the data reliability. In this direction, we propose a new simple and powerful approach that helps to select reliable sensors. We tested our method for different types of sensed data, and the results reveal the effectiveness in the correct selection of sensor data.

  16. Sensing in the Collaborative Internet of Things

    Science.gov (United States)

    Borges Neto, João B.; Silva, Thiago H.; Assunção, Renato Martins; Mini, Raquel A. F.; Loureiro, Antonio A. F.

    2015-01-01

    We are entering a new era of computing technology, the era of Internet of Things (IoT). An important element for this popularization is the large use of off-the-shelf sensors. Most of those sensors will be deployed by different owners, generally common users, creating what we call the Collaborative IoT. This collaborative IoT helps to increase considerably the amount and availability of collected data for different purposes, creating new interesting opportunities, but also several challenges. For example, it is very challenging to search for and select a desired sensor or a group of sensors when there is no description about the provided sensed data or when it is imprecise. Given that, in this work we characterize the properties of the sensed data in the Internet of Things, mainly the sensed data contributed by several sources, including sensors from common users. We conclude that, in order to safely use data available in the IoT, we need a filtering process to increase the data reliability. In this direction, we propose a new simple and powerful approach that helps to select reliable sensors. We tested our method for different types of sensed data, and the results reveal the effectiveness in the correct selection of sensor data. PMID:25808766

  17. Sensing in the Collaborative Internet of Things

    Directory of Open Access Journals (Sweden)

    João B. Borges Neto

    2015-03-01

    Full Text Available We are entering a new era of computing technology, the era of Internet of Things (IoT. An important element for this popularization is the large use of off-the-shelf sensors. Most of those sensors will be deployed by different owners, generally common users, creating what we call the Collaborative IoT. This collaborative IoT helps to increase considerably the amount and availability of collected data for different purposes, creating new interesting opportunities, but also several challenges. For example, it is very challenging to search for and select a desired sensor or a group of sensors when there is no description about the provided sensed data or when it is imprecise. Given that, in this work we characterize the properties of the sensed data in the Internet of Things, mainly the sensed data contributed by several sources, including sensors from common users. We conclude that, in order to safely use data available in the IoT, we need a filtering process to increase the data reliability. In this direction, we propose a new simple and powerful approach that helps to select reliable sensors. We tested our method for different types of sensed data, and the results reveal the effectiveness in the correct selection of sensor data.

  18. Sound & The Senses

    DEFF Research Database (Denmark)

    Schulze, Holger

    2012-01-01

    How are those sounds you hear right now technically generated and post-produced, how are they aesthetically conceptualized and how culturally dependant are they really? How is your ability to hear intertwined with all the other senses and their cultural, biographical and technological constructio...... over time? And how is listening and sounding a deeply social activity – constructing our way of living together in cities as well as in apartment houses? A radio feature with Jonathan Sterne, AGF a.k.a Antye Greie, Jens Gerrit Papenburg & Holger Schulze....

  19. Semantics in mobile sensing

    CERN Document Server

    Yan, Zhixian

    2014-01-01

    The dramatic progress of smartphone technologies has ushered in a new era of mobile sensing, where traditional wearable on-body sensors are being rapidly superseded by various embedded sensors in our smartphones. For example, a typical smartphone today, has at the very least a GPS, WiFi, Bluetooth, triaxial accelerometer, and gyroscope. Alongside, new accessories are emerging such as proximity, magnetometer, barometer, temperature, and pressure sensors. Even the default microphone can act as an acoustic sensor to track noise exposure for example. These sensors act as a ""lens"" to understand t

  20. A sense of agency

    DEFF Research Database (Denmark)

    Laerkner, Eva; Egerod, Ingrid; Olesen, Finn

    2017-01-01

    familiar in the unfamiliar situation" and "Awareness of surrounding activities". Patients had the ability to interact from the first days of critical illness and a sense of agency was expressed through initiating, directing and participating in communication and other activities. Patients appreciated...... competent and compassionate nurses who were attentive and involved them as individual persons. Initiatives to enhance familiar aspects such as relatives, personal items and care, continuity and closeness of nurses contributed to the patients' experience of feeling safe and secure in the unfamiliar setting...

  1. Democracy and Sense

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    Democracy and sense questions practically all that happens in society today. Its aim is to raise a debate on the most urgent problems of economy, democracy, sustainable conduct and the framework for industry and business. A number of untraditional solutions are suggested, but without support...... to either rightwing or leftwing politics. In fact, one of the key points is that political parties have reduced democracy to one day of voting followed by four years of oligarchy. To regain a functioning democracy we must strengthen direct democracy and make the distance between population and government...

  2. Fourier Domain Sensing

    Science.gov (United States)

    Feldkhun, Daniel (Inventor); Wagner, Kelvin H. (Inventor)

    2013-01-01

    Methods and systems are disclosed of sensing an object. A first radiation is spatially modulated to generate a structured second radiation. The object is illuminated with the structured second radiation such that the object produces a third radiation in response. Apart from any spatially dependent delay, a time variation of the third radiation is spatially independent. With a single-element detector, a portion of the third radiation is detected from locations on the object simultaneously. At least one characteristic of a sinusoidal spatial Fourier-transform component of the object is estimated from a time-varying signal from the detected portion of the third radiation.

  3. Differentially Private Distributed Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Glenn A.

    2016-12-11

    The growth of the Internet of Things (IoT) creates the possibility of decentralized systems of sensing and actuation, potentially on a global scale. IoT devices connected to cloud networks can offer Sensing and Actuation as a Service (SAaaS) enabling networks of sensors to grow to a global scale. But extremely large sensor networks can violate privacy, especially in the case where IoT devices are mobile and connected directly to the behaviors of people. The thesis of this paper is that by adapting differential privacy (adding statistically appropriate noise to query results) to groups of geographically distributed sensors privacy could be maintained without ever sending all values up to a central curator and without compromising the overall accuracy of the data collected. This paper outlines such a scheme and performs an analysis of differential privacy techniques adapted to edge computing in a simulated sensor network where ground truth is known. The positive and negative outcomes of employing differential privacy in distributed networks of devices are discussed and a brief research agenda is presented.

  4. Compressed sensing electron tomography

    International Nuclear Information System (INIS)

    Leary, Rowan; Saghi, Zineb; Midgley, Paul A.; Holland, Daniel J.

    2013-01-01

    The recent mathematical concept of compressed sensing (CS) asserts that a small number of well-chosen measurements can suffice to reconstruct signals that are amenable to sparse or compressible representation. In addition to powerful theoretical results, the principles of CS are being exploited increasingly across a range of experiments to yield substantial performance gains relative to conventional approaches. In this work we describe the application of CS to electron tomography (ET) reconstruction and demonstrate the efficacy of CS–ET with several example studies. Artefacts present in conventional ET reconstructions such as streaking, blurring of object boundaries and elongation are markedly reduced, and robust reconstruction is shown to be possible from far fewer projections than are normally used. The CS–ET approach enables more reliable quantitative analysis of the reconstructions as well as novel 3D studies from extremely limited data. - Highlights: • Compressed sensing (CS) theory and its application to electron tomography (ET) is described. • The practical implementation of CS–ET is outlined and its efficacy demonstrated with examples. • High fidelity tomographic reconstruction is possible from a small number of images. • The CS–ET reconstructions can be more reliably segmented and analysed quantitatively. • CS–ET is applicable to different image content by choice of an appropriate sparsifying transform

  5. Common Sense Biblical Hermeneutics

    Directory of Open Access Journals (Sweden)

    Michael B. Mangini

    2014-12-01

    Full Text Available Since the noetics of moderate realism provide a firm foundation upon which to build a hermeneutic of common sense, in the first part of his paper the author adopts Thomas Howe’s argument that the noetical aspect of moderate realism is a necessary condition for correct, universally valid biblical interpretation, but he adds, “insofar as it gives us hope in discovering the true meaning of a given passage.” In the second part, the author relies on John Deely’s work to show how semiotics may help interpreters go beyond meaning and seek the significance of the persons, places, events, ideas, etc., of which the meaning of the text has presented as objects to be interpreted. It is in significance that the unity of Scripture is found. The chief aim is what every passage of the Bible signifies. Considered as a genus, Scripture is composed of many parts/species that are ordered to a chief aim. This is the structure of common sense hermeneutics; therefore in the third part the author restates Peter Redpath’s exposition of Aristotle and St. Thomas’s ontology of the one and the many and analogously applies it to the question of how an exegete can discern the proper significance and faithfully interpret the word of God.

  6. Geological remote sensing

    Science.gov (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek

    2018-02-01

    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  7. Monitoring Traffic Information with a Developed Acceleration Sensing Node

    Directory of Open Access Journals (Sweden)

    Zhoujing Ye

    2017-12-01

    Full Text Available In this paper, an acceleration sensing node for pavement vibration was developed to monitor traffic information, including vehicle speed, vehicle types, and traffic flow, where a hardware design with low energy consumption and node encapsulation could be accomplished. The service performance of the sensing node was evaluated, by methods including waterproof test, compression test, sensing performance analysis, and comparison test. The results demonstrate that the sensing node is low in energy consumption, high in strength, IPX8 waterproof, and high in sensitivity and resolution. These characteristics can be applied to practical road environments. Two sensing nodes were spaced apart in the direction of travelling. In the experiment, three types of vehicles passed by the monitoring points at several different speeds and values of d (the distance between the sensor and the nearest tire center line. Based on cross-correlation with kernel pre-smoothing, a calculation method was applied to process the raw data. New algorithms for traffic flow, speed, and axle length were proposed. Finally, the effects of vehicle speed, vehicle weight, and d value on acceleration amplitude were statistically evaluated. It was found that the acceleration sensing node can be used for traffic flow, vehicle speed, and other types of monitoring.

  8. Monitoring Traffic Information with a Developed Acceleration Sensing Node.

    Science.gov (United States)

    Ye, Zhoujing; Wang, Linbing; Xu, Wen; Gao, Zhifei; Yan, Guannan

    2017-12-05

    In this paper, an acceleration sensing node for pavement vibration was developed to monitor traffic information, including vehicle speed, vehicle types, and traffic flow, where a hardware design with low energy consumption and node encapsulation could be accomplished. The service performance of the sensing node was evaluated, by methods including waterproof test, compression test, sensing performance analysis, and comparison test. The results demonstrate that the sensing node is low in energy consumption, high in strength, IPX8 waterproof, and high in sensitivity and resolution. These characteristics can be applied to practical road environments. Two sensing nodes were spaced apart in the direction of travelling. In the experiment, three types of vehicles passed by the monitoring points at several different speeds and values of d (the distance between the sensor and the nearest tire center line). Based on cross-correlation with kernel pre-smoothing, a calculation method was applied to process the raw data. New algorithms for traffic flow, speed, and axle length were proposed. Finally, the effects of vehicle speed, vehicle weight, and d value on acceleration amplitude were statistically evaluated. It was found that the acceleration sensing node can be used for traffic flow, vehicle speed, and other types of monitoring.

  9. Lunar remote sensing and measurements

    Science.gov (United States)

    Moore, H.J.; Boyce, J.M.; Schaber, G.G.; Scott, D.H.

    1980-01-01

    Remote sensing and measurements of the Moon from Apollo orbiting spacecraft and Earth form a basis for extrapolation of Apollo surface data to regions of the Moon where manned and unmanned spacecraft have not been and may be used to discover target regions for future lunar exploration which will produce the highest scientific yields. Orbital remote sensing and measurements discussed include (1) relative ages and inferred absolute ages, (2) gravity, (3) magnetism, (4) chemical composition, and (5) reflection of radar waves (bistatic). Earth-based remote sensing and measurements discussed include (1) reflection of sunlight, (2) reflection and scattering of radar waves, and (3) infrared eclipse temperatures. Photographs from the Apollo missions, Lunar Orbiters, and other sources provide a fundamental source of data on the geology and topography of the Moon and a basis for comparing, correlating, and testing the remote sensing and measurements. Relative ages obtained from crater statistics and then empirically correlated with absolute ages indicate that significant lunar volcanism continued to 2.5 b.y. (billion years) ago-some 600 m.y. (million years) after the youngest volcanic rocks sampled by Apollo-and that intensive bombardment of the Moon occurred in the interval of 3.84 to 3.9 b.y. ago. Estimated fluxes of crater-producing objects during the last 50 m.y. agree fairly well with fluxes measured by the Apollo passive seismic stations. Gravity measurements obtained by observing orbiting spacecraft reveal that mare basins have mass concentrations and that the volume of material ejected from the Orientale basin is near 2 to 5 million km 3 depending on whether there has or has not been isostatic compensation, little or none of which has occurred since 3.84 b.y. ago. Isostatic compensation may have occurred in some of the old large lunar basins, but more data are needed to prove it. Steady fields of remanent magnetism were detected by the Apollo 15 and 16 subsatellites

  10. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Lange, Julia

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy...... state-of-the-art ‘guideline’ available for people involved in Remote Sensing in Wind Energy....

  11. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus......-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  12. Remote Sensing and Imaging Physics

    Science.gov (United States)

    2012-03-07

    Program Manager AFOSR/RSE Air Force Research Laboratory Remote Sensing and Imaging Physics 7 March 2012 Report Documentation Page Form...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Remote Sensing And Imaging Physics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Imaging of Space Objects •Information without Imaging •Predicting the Location of Space Objects • Remote Sensing in Extreme Conditions •Propagation

  13. Mobile Atmospheric Sensing using Vision Approach

    International Nuclear Information System (INIS)

    Huang, Yuchun; Cui, Weihong; Rui, Yi

    2014-01-01

    Air quality monitoring, especially the atmospheric phenomenon of thick haze, has been an acute problem in most countries and a hot topic in the atmospheric sensing. Recently thick haze occurs more frequently in most cities of China due to the rapid growth of traffic, farming, wildfires, and industrial development. It forms a low-hanging shroud that impairs visibility and becomes a respiratory health threat. Traditionally the dust, smoke, and other particles in relatively dry sky are reported at fixed meteorological stations. The coverage of these sampling stations is limited and cannot accommodate with the emergent incidence of thick haze from industrial pollution. In addition, the visual effect of thick haze is not yet investigated in the current practice. Thick haze appears colorful veil (e.g., yellowish, brownish-grey, etc) in video log images and results in a loss of contrast in the subject due to the light scattering through haze particles. This paper proposes an intuitive and mobile atmospheric sensing using vision approach. Based on the video log images collected by a mobile sensing vehicle, a Haze Veil Index (HVI) is proposed to identify the type and severity level of thick haze from the color and texture perspective. HVI characterizes the overall veil effect of haze spatially. HVI first identifies the haze color from the color deviation histogram of the white-balanced hazy image. The white-balancing is conducted with the most haze-opaque pixels in the dark channel and seed growing strategy. Then pixel-wise haze severity level of atmospheric veil is inferred by approximating the upper veil limit with the dark color of each pixel in a hazy image. The proposed method is tested on a diverse set of actual hazy video log images under varying atmospheric conditions and backgrounds in Wuhan City, China. Experimental results show the proposed HVI is effective for visually atmospheric sensing. The proposed method is promising for haze monitoring and prediction in

  14. Quorum sensing: a quantum perspective.

    Science.gov (United States)

    Majumdar, Sarangam; Pal, Sukla

    2016-09-01

    Quorum sensing is the efficient mode of communication in the bacterial world. After a lot of advancements in the classical theory of quorum sensing few basic questions of quorum sensing still remain unanswered. The sufficient progresses in quantum biology demands to explain these questions from the quantum perspective as non trivial quantum effects already have manifested in various biological processes like photosynthesis, magneto-reception etc. Therefore, it's the time to review the bacterial communications from the quantum view point. In this article we carefully accumulate the latest results and arguments to strengthen quantum biology through the addition of quorum sensing mechanism in the light of quantum mechanics.

  15. Compressive sensing for urban radar

    CERN Document Server

    Amin, Moeness

    2014-01-01

    With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki

  16. Terahertz wave reflective sensing and imaging

    Science.gov (United States)

    Zhong, Hua

    Sensing and imaging technologies using terahertz (THz) radiation have found diverse applications as they approach maturity. Since the burgeoning of this technique in the 1990's, many THz sensing and imaging investigations have been designed and conducted in transmission geometry, which provides sufficient phase and amplitude contrast for the study of the spectral properties of targets in the THz domain. Driven by rising expectations that THz technology will be a potential candidate in the next generation of security screening, remote sensing, biomedical imaging and non-destructive testing (NDT), most THz sensing and imaging modalities are being extended to reflection geometry, which offers unique and adaptive solutions, and multi-dimensional information in many real scenarios. This thesis takes an application-focused approach to the advancement of THz wave reflective sensing and imaging systems: The absorption signature of the explosive material hexahydro-1,3,5-trinitro-1,3,5triazine (RDX) is measured at 30 m---the longest standoff distance so far attained by THz time-domain spectroscopy (THz-TDS). The standoff distance sensing ability of THz-TDS is investigated along with discussions specifying the influences of a variety of factors such as propagation distance, water vapor absorption and collection efficiency. Highly directional THz radiation from four-wave mixing in laser-induced air plasmas is first observed and measured, which provides a potential solution for the atmospheric absorption effect in standoff THz sensing. The simulations of the beam profiles also illuminate the underlying physics behind the interaction of the optical beam with the plasma. THz wave reflective spectroscopic focal-plane imaging is realized the first time. Absorption features of some explosives and related compounds (ERCs) and biochemical materials are identified by using adaptive feature extraction method. Good classification results using multiple pattern recognition methods are

  17. Inventory - Dollars and sense

    International Nuclear Information System (INIS)

    Samson, J.R.

    1992-01-01

    Nuclear utilities are becoming more aware of the importance of having an inventory investment that supports two opposing philosophies. The business philosophy wants a minimal inventory investment to support a better return on invested dollars. This increase in return comes from having the dollars available to invest versus having the money tied up in inventory sitting on the shelf. The opposing viewpoint is taken by maintenance/operations organizations, which desire the maximum inventory available on-site to repair any component at any time to keep the units on-line at all times. Financial managers also want to maintain cash flow throughout operations so that plants run without interruptions. Inventory management is therefore a mixture of financial logistics with an operation perspective in mind. A small amount of common sense and accurate perception also help. The challenge to the materials/inventory manager is to optimize effectiveness of the inventory by having high material availability at the lowest possible cost

  18. Making Sense for Society

    Science.gov (United States)

    van der Heide, J. J.; Grus, M. M.; Nouwens, J. C. A. J.

    2017-09-01

    The Netherlands is a densely populated country. Cities in the metropolitan area (Randstad) will be growing at a fast pace in the coming decades1. Cities like Amsterdam and Rotterdam are being overrun by tourists. Climate change effects are noticed in cities (heavy rains for instance). Call for circular economy rises. Traffic increases. People are more self-reliant. Public space is shared by many functions. These challenges call for smart answers, more specific and directly than ever before. Sensor data is a cornerstone of these answers. In this paper we'll discuss the approaches of Dutch initiatives using sensor data as the new language to live a happy life in our cities. Those initiatives have been bundled in a knowledge platform called "Making sense for society" 1 https://www.cbs.nl/nl-nl/nieuws/2016/37/pbl-cbs-prognose-groei-steden-zet-door (in dutch)

  19. Environmental radiation sensing technologies

    International Nuclear Information System (INIS)

    Nishizawa, Hiroshi; Inomata, Kenji; Tamuro, Masaru; Fujita, Kazuhiko

    2013-01-01

    After the Fukushima nuclear accident, environmental radiation monitoring and radioactivity measurement of contamination of wastes, soils, food and drinking water were needed in accurate and reliable way. Based on radiation sensing technologies and radiation and light coupled analysis method, new environmental radiation measurement system for simple monitoring post without exclusive house and also portable monitoring post for temporary use were developed with low cost. Measurement accuracy was improved by real-time processing of detected pulses and corrected non-linearity of low-energy range by analysis. Environmental performance was upgraded to assure detector gain with compensated against temperature change and aging. Inspection and maintenance were also simplified using touch panel display with standardized application menu and data format. (T. Tanaka)

  20. Ion sensing method

    Science.gov (United States)

    Smith, Richard Harding; Martin, Glenn Brian

    2004-05-18

    The present invention allows the determination of trace levels of ionic substances in a sample solution (ions, metal ions, and other electrically charged molecules) by coupling a separation method, such as liquid chromatography, with ion selective electrodes (ISE) prepared so as to allow detection at activities below 10.sup.-6 M. The separation method distributes constituent molecules into fractions due to unique chemical and physical properties, such as charge, hydrophobicity, specific binding interactions, or movement in an electrical field. The separated fractions are detected by means of the ISE(s). These ISEs can be used singly or in an array. Accordingly, modifications in the ISEs are used to permit detection of low activities, specifically, below 10.sup.-6 M, by using low activities of the primary analyte (the molecular species which is specifically detected) in the inner filling solution of the ISE. Arrays constructed in various ways allow flow-through sensing for multiple ions.

  1. Gamification for Word Sense Labeling

    NARCIS (Netherlands)

    Venhuizen, Noortje; Basile, Valerio; Evang, Kilian; Bos, Johan; Erk, Kartin; Koller, Alexander

    2013-01-01

    Obtaining gold standard data for word sense disambiguation is important but costly. We show how it can be done using a “Game with a Purpose” (GWAP) called Wordrobe. This game consists of a large set of multiple-choice questions on word senses generated from the Groningen Meaning Bank. The players

  2. Remote Sensing and the Earth.

    Science.gov (United States)

    Brosius, Craig A.; And Others

    This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…

  3. Teaching Game Sense in Soccer

    Science.gov (United States)

    Pill, Shane

    2012-01-01

    "Game sense" is a sport-specific iteration of the teaching games for understanding model, designed to balance physical development of motor skill and fitness with the development of game understanding. Game sense can foster a shared vision for sport learning that bridges school physical education and community sport. This article explains how to…

  4. Quality as Sense-Making

    Science.gov (United States)

    Marshall, Stephen

    2016-01-01

    Sense-making is a process of engaging with complex and dynamic environments that provides organisations and their leaders with a flexible and agile model of the world. The seven key properties of sense-making describe a process that is social and that respects the range of different stakeholders in an organisation. It also addresses the need to…

  5. Science & the Senses: Perceptions & Deceptions

    Science.gov (United States)

    Stansfield, William D.

    2012-01-01

    Science requires the acquisition and analysis of empirical (sense-derived) data. Given the same physical objects or phenomena, the sense organs of all people do not respond equally to these stimuli, nor do their minds interpret sensory signals identically. Therefore, teachers should develop lectures on human sensory systems that include some…

  6. Discrimination of bacteria by rapid sensing their metabolic volatiles using an aspiration-type ion mobility spectrometer (a-IMS) and gas chromatography-mass spectrometry GC-MS.

    Science.gov (United States)

    Ratiu, Ileana Andreea; Bocos-Bintintan, Victor; Patrut, Adrian; Moll, Victor Hugo; Turner, Matthew; Thomas, C L Paul

    2017-08-22

    The objective of our study was to investigate whether one may quickly and reliably discriminate different microorganism strains by direct monitoring of the headspace atmosphere above their cultures. Headspace samples above a series of in vitro bacterial cultures were directly interrogated using an aspiration type ion mobility spectrometer (a-IMS), which produced distinct profiles ("fingerprints") of ion currents generated simultaneously by the detectors present inside the ion mobility cell. Data processing and analysis using principal component analysis showed net differences in the responses produced by volatiles emitted by various bacterial strains. Fingerprint assignments were conferred on the basis of product ion mobilities; ions of differing size and mass were deflected in a different degree upon their introduction of a transverse electric field, impacting finally on a series of capacitors (denominated as detectors, or channels) placed in a manner analogous to sensor arrays. Three microorganism strains were investigated - Escherichia coli, Bacillus subtilis and Staphylococcus aureus; all strains possess a relatively low pathogenic character. Samples of air with a 5 cm 3 volume from the headspace above the bacterial cultures in agar growth medium were collected using a gas-tight chromatographic syringe and injected inside the closed-loop pneumatic circuit of the breadboard a-IMS instrument model ChemPro-100i (Environics Oy, Finland), at a distance of about 1 cm from the ionization source. The resulting chemical fingerprints were produced within two seconds from the moment of injection. The sampling protocol involved to taking three replicate samples from each of 10 different cultures for a specific strain, during a total period of 72 h after the initial incubation - at 24, 48 and 72 h, respectively. Principal component analysis (PCA) was used to discriminate between the IMS fingerprints. PCA was found to successfully discriminate between bacteria at three

  7. Compressive sensing in medical imaging.

    Science.gov (United States)

    Graff, Christian G; Sidky, Emil Y

    2015-03-10

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

  8. Cognitive Radio Transceivers: RF, Spectrum Sensing, and Learning Algorithms Review

    Directory of Open Access Journals (Sweden)

    Lise Safatly

    2014-01-01

    reconfigurable radio frequency (RF parts, enhanced spectrum sensing algorithms, and sophisticated machine learning techniques. In this paper, we present a review of the recent advances in CR transceivers hardware design and algorithms. For the RF part, three types of antennas are presented: UWB antennas, frequency-reconfigurable/tunable antennas, and UWB antennas with reconfigurable band notches. The main challenges faced by the design of the other RF blocks are also discussed. Sophisticated spectrum sensing algorithms that overcome main sensing challenges such as model uncertainty, hardware impairments, and wideband sensing are highlighted. The cognitive engine features are discussed. Moreover, we study unsupervised classification algorithms and a reinforcement learning (RL algorithm that has been proposed to perform decision-making in CR networks.

  9. Bridge SHM system based on fiber optical sensing technology

    Science.gov (United States)

    Li, Sheng; Fan, Dian; Fu, Jiang-hua; Huang, Xing; Jiang, De-sheng

    2015-09-01

    The latest progress of our lab in recent 10 years on the area of bridge structural health monitoring (SHM) based on optical fiber sensing technology is introduced. Firstly, in the part of sensing technology, optical fiber force test-ring, optical fiber vibration sensor, optical fiber smart cable, optical fiber prestressing loss monitoring method and optical fiber continuous curve mode inspection system are developed, which not only rich the sensor types, but also provides new monitoring means that are needed for the bridge health monitoring system. Secondly, in the optical fiber sensing network and computer system platform, the monitoring system architecture model is designed to effectively meet the integration scale and effect requirement of engineering application, especially the bridge expert system proposed integration of sensing information and informatization manual inspection to realize the mode of multi index intelligence and practical monitoring, diagnosis and evaluation. Finally, the Jingyue bridge monitoring system as the representative, the research on the technology of engineering applications are given.

  10. Subsurface remote sensing

    International Nuclear Information System (INIS)

    Schweitzer, Jeffrey S.; Groves, Joel L.

    2002-01-01

    Subsurface remote sensing measurements are widely used for oil and gas exploration, for oil and gas production monitoring, and for basic studies in the earth sciences. Radiation sensors, often including small accelerator sources, are used to obtain bulk properties of the surrounding strata as well as to provide detailed elemental analyses of the rocks and fluids in rock pores. Typically, instrument packages are lowered into a borehole at the end of a long cable, that may be as long as 10 km, and two-way data and instruction telemetry allows a single radiation instrument to operate in different modes and to send the data to a surface computer. Because these boreholes are often in remote locations throughout the world, the data are frequently transmitted by satellite to various locations around the world for almost real-time analysis and incorporation with other data. The complete system approach that permits rapid and reliable data acquisition, remote analysis and transmission to those making decisions is described

  11. Motion sensing energy controller

    International Nuclear Information System (INIS)

    Saphir, M.E.; Reed, M.A.

    1984-01-01

    A moving object sensing processor responsive to slowly varying motions of a human being or other moving object in a zone of interest employs high frequency pulse modulated non-visible radiation generated by a radiation generating source, such as an LED, and detected by a detector sensitive to radiation of a preselected wavelength which generates electrical signals representative of the reflected radiation received from the zone of interest. The detectorsignals are processed to normalize the base level and remove variations due to background level changes, and slowly varying changes in the signals are detected by a bi-polar threshold detector. The control signals generated by the threshold detector in response to slowly varying motion are used to control the application of power to a utilization device, such as a set of fluoroescent lights in a room, the power being applied in response to detection of such motion and being automatically terminated in the absence of such motion after a predetermined time period established by a settable incrementable counter

  12. Common sense codified

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    At CERN, people of more than a hundred different nationalities and hundreds of different professions work together towards a common goal. The new Code of Conduct is a tool that has been designed to help us keep our workplace pleasant and productive through common standards of behaviour. Its basic principle is mutual respect and common sense. This is only natural, but not trivial…  The Director-General announced it in his speech at the beginning of the year, and the Bulletin wrote about it immediately afterwards. "It" is the new Code of Conduct, the document that lists our Organization's values and describes the basic standards of behaviour that we should both adopt and expect from others. "The Code of Conduct is not going to establish new rights or new obligations," explains Anne-Sylvie Catherin, Head of the Human Resources Department (HR). But what it will do is provide a framework for our existing rights and obligations." The aim of a co...

  13. Making sense of corporate venture capital.

    Science.gov (United States)

    Chesbrough, Henry W

    2002-03-01

    Large companies have long sensed the potential value of investing in external start-ups, but more often than not, they fail to get it right. Remember the dash to invest in new ventures in the late 1990s and the hasty retreat when the economy turned? This article presents a framework that will help a company decide whether it should invest in a particular start-up by first understanding what kind of benefit might be realized from the investment. The framework--illustrated with examples from Intel, Lucent, and others--explains why certain types of corporate VC investments proliferate only when financial returns are high, why other types persist in good times and in bad, and why still others make little sense in any phase of the business cycle. The framework describes four types of corporate VC investments, each defined by its primary goal--strategic and financial--and by the degree of operational linkage between the start-up and the investing company. Driving investments are characterized by a strong strategic rationale and tight operational links. Enabling investments are also made primarily for strategic reasons, but the operational links are loose. Emergent investments, which are characterized by tight operational links, have little current--but significant potential--strategic value. Passive investments, offering few potential strategic benefits and only loose operational links, are made primarily for financial reasons. Passive corporate VC investments dry up in a down economy, but enabling and driving investments usually have more staying power. That's because their potential returns are primarily strategic, not financial. In other words, they can foster business growth. Emergent investments may make sense even in a weak market because of their potential strategic value--that is, their ability to help companies identify and spark the growth of future businesses.

  14. TRACKING FARM MANAGEMENT PRACTICES WITH REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    J. P. Stals

    2017-11-01

    Full Text Available Earth observation (EO data is effective in monitoring agricultural cropping activity over large areas. An example of such an application is the GeoTerraImage crop type classification for the South African Crop Estimates Committee (CEC. The satellite based classification of crop types in South Africa provides a large scale, spatial and historical record of agricultural practices in the main crop growing areas. The results from these classifications provides data for the analysis of trends over time, in order to extract valuable information that can aid decision making in the agricultural sector. Crop cultivation practices change over time as farmers adapt to demand, exchange rate and new technology. Through the use of remote sensing, grain crop types have been identified at field level since 2008, providing a historical data set of cropping activity for the three most important grain producing provinces of Mpumalanga, Freestate and North West province in South Africa. This historical information allows the analysis of farm management practices to identify changes and trends in crop rotation and irrigation practices. Analysis of crop type classification over time highlighted practices such as: frequency of cultivation of the same crop on a field, intensified cultivation on centre pivot irrigated fields with double cropping of a winter grain followed by a summer grain in the same year and increasing cultivation of certain types of crops over time such as soyabeans. All these practices can be analysed in a quantitative spatial and temporal manner through the use of the remote sensing based crop type classifications.

  15. Remote sensing applied in uranium exploration

    International Nuclear Information System (INIS)

    Conradsen, K.; Nilsson, G.; Thyrsted, T.

    1985-01-01

    A research project, aiming at investigation the use of remote sensing in uranium exploration, has been accomplished on data from South Greenland. During the project, analyses have been done on pure remote sensing data (Landsat MSS) and on integrated data of various types, including geochemical, aeromagnetic, radiometric and geological data in addition to the MSS data. Ratioing, factor analysis and discriminant analysis were used for enhancement of colour anomalies which correspond to oxidation zones. Some of the anomalies coincide with U and Nb mineralizations. Lineaments were mapped visually from photoprints, digitized and analysed statistically. A sinusoidal model could be applied to the general directional frequency distribution and was used to define ten classes of significant directions. Three of these directions were of major geological significance. Thus some of the major alkaline intrusions are situated at the intersections of some of the lineaments, a particular NE-SW trending lineament coincides with a geochemical boundary and pitchblende occurrences may be related to a WNW-ESE direction. The various types of data set were brought onto format of the Landsat images and collected in a data base. Representing three different types of data (Landsat MSS-band 7, aeromagnetic data and the geochemical Fe-content of stream sediments) on basis of intensity, hue and saturation revealed new features among which can be mentioned a possible indication of a subsurface continuation of one of the major alkaline intrusions. (author)

  16. Robotic Tactile Sensing Technologies and System

    CERN Document Server

    Dahiya, Ravinder S

    2013-01-01

    Future robots are expected to work closely and interact safely with real-world objects and humans alike. Sense of touch is important in this context, as it helps estimate properties such as shape, texture, hardness, material type and many more; provides action related information, such as slip detection; and helps carrying out actions such as rolling an object between fingers without dropping it. This book presents an in-depth description of the solutions available for gathering tactile data, obtaining aforementioned tactile information from the data and effectively using the same in various robotic tasks. Better integration of tactile sensors on a robot’s body is prerequisite for the effective utilization of tactile data. For this reason, the hardware, software and application related issues (and resulting trade-offs) that must be considered to make tactile sensing an effective component of robotic platforms are discussed in-depth.To this end, human touch sensing has also been explored. The design hints co...

  17. Development of printed sensors for taste sensing

    KAUST Repository

    Nag, Anindya

    2018-01-30

    The paper presents an idea of developing taste sensors using novel printed sensors. The raw materials used for developing the sensors were commercial polymer films. Powered graphene was produced using laser induction technique. This powder was separately transferred to Kapton tapes to developed flexible graphene sensors. The fabricated sensors were tested with different chemicals having specific attributes with the idea to develop a taste sensor. Three different types of chemicals were tested and analyzed to verify the ability of the developed sensor patch to differentiate between the individual chemicals. The initial results have provided a significant platform in the process of developing a fully functionalized taste sensing system.

  18. Ratiometric fluorescent nanoparticles for sensing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hong-Shang, E-mail: hillphs@yahoo.com.cn; Huang, Shi-Hua [Beijing Jiaotong University, Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology (China); Wolfbeis, Otto S. [University of Regensburg, Institute of Analytical Chemistry, Chemo- and Biosensors (Germany)

    2010-10-15

    A ratiometric type of fluorescent nanoparticle was prepared via an encapsulation-reprecipitation method. By introducing an alkoxysilanized dye as a reference, the nanoparticles (NPs) give both a green and a red fluorescence under one single-wavelength excitation. The resulted ratiometric fluorescence is found to be highly temperature-dependent in the physiological range (25-45 {sup o}C), with an intensity temperature sensitivity of -4.0%/{sup o}C. Given the small size (20-30 nm in diameter) and biocompatible nature (silica out layer), such kind of NPs were very promising as temperature nanosensors for cellular sensing and imaging.

  19. Development of printed sensors for taste sensing

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas; Kosel, Jü rgen

    2018-01-01

    The paper presents an idea of developing taste sensors using novel printed sensors. The raw materials used for developing the sensors were commercial polymer films. Powered graphene was produced using laser induction technique. This powder was separately transferred to Kapton tapes to developed flexible graphene sensors. The fabricated sensors were tested with different chemicals having specific attributes with the idea to develop a taste sensor. Three different types of chemicals were tested and analyzed to verify the ability of the developed sensor patch to differentiate between the individual chemicals. The initial results have provided a significant platform in the process of developing a fully functionalized taste sensing system.

  20. [Analysis of related factors of slope plant hyperspectral remote sensing].

    Science.gov (United States)

    Sun, Wei-Qi; Zhao, Yun-Sheng; Tu, Lin-Ling

    2014-09-01

    In the present paper, the slope gradient, aspect, detection zenith angle and plant types were analyzed. In order to strengthen the theoretical discussion, the research was under laboratory condition, and modeled uniform slope for slope plant. Through experiments we found that these factors indeed have influence on plant hyperspectral remote sensing. When choosing slope gradient as the variate, the blade reflection first increases and then decreases as the slope gradient changes from 0° to 36°; When keeping other factors constant, and only detection zenith angle increasing from 0° to 60°, the spectral characteristic of slope plants do not change significantly in visible light band, but decreases gradually in near infrared band; With only slope aspect changing, when the dome meets the light direction, the blade reflectance gets maximum, and when the dome meets the backlit direction, the blade reflectance gets minimum, furthermore, setting the line of vertical intersection of incidence plane and the dome as an axis, the reflectance on the axis's both sides shows symmetric distribution; In addition, spectral curves of different plant types have a lot differences between each other, which means that the plant types also affect hyperspectral remote sensing results of slope plants. This research breaks through the limitations of the traditional vertical remote sensing data collection and uses the multi-angle and hyperspectral information to analyze spectral characteristics of slope plants. So this research has theoretical significance to the development of quantitative remote sensing, and has application value to the plant remote sensing monitoring.

  1. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Badger, Merete

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy...... colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art ‘guideline’ available for people involved in Remote Sensing...

  2. Sensing voltage across lipid membranes

    Science.gov (United States)

    Swartz, Kenton J.

    2009-01-01

    The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1-S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to fully understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing. PMID:19092925

  3. Predicting word sense annotation agreement

    DEFF Research Database (Denmark)

    Martinez Alonso, Hector; Johannsen, Anders Trærup; Lopez de Lacalle, Oier

    2015-01-01

    High agreement is a common objective when annotating data for word senses. However, a number of factors make perfect agreement impossible, e.g. the limitations of the sense inventories, the difficulty of the examples or the interpretation preferences of the annotations. Estimating potential...... agreement is thus a relevant task to supplement the evaluation of sense annotations. In this article we propose two methods to predict agreement on word-annotation instances. We experiment with a continuous representation and a three-way discretization of observed agreement. In spite of the difficulty...

  4. Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid

    Directory of Open Access Journals (Sweden)

    Anders Lyngvi Fougner

    2016-04-01

    Full Text Available Rapid, accurate and robust glucose measurements are needed to make a safe artificial pancreas for the treatment of diabetes mellitus type 1 and 2. The present gold standard of continuous glucose sensing, subcutaneous (SC glucose sensing, has been claimed to have slow response and poor robustness towards local tissue changes such as mechanical pressure, temperature changes, etc. The present study aimed at quantifying glucose dynamics from central circulation to intraperitoneal (IP sensor sites, as an alternative to the SC location. Intraarterial (IA and IP sensors were tested in three anaesthetized non-diabetic pigs during experiments with intravenous infusion of glucose boluses, enforcing rapid glucose level excursions in the range 70--360 mg/dL (approximately 3.8--20 mmol/L. Optical interferometric sensors were used for IA and IP measurements. A first-order dynamic model with time delay was fitted to the data after compensating for sensor dynamics. Additionally, off-the-shelf Medtronic Enlite sensors were used for illustration of SC glucose sensing. The time delay in glucose excursions from central circulation (IA to IP sensor location was found to be in the range 0--26 s (median: 8.5 s, mean: 9.7 s, SD 9.5 s, and the time constant was found to be 0.5--10.2 min (median: 4.8 min, mean: 4.7 min, SD 2.9 min. IP glucose sensing sites have a substantially faster and more distinctive response than SC sites when sensor dynamics is ignored, and the peritoneal fluid reacts even faster to changes in intravascular glucose levels than reported in previous animal studies. This study may provide a benchmark for future, rapid IP glucose sensors.

  5. Quorum sensing inhibition

    DEFF Research Database (Denmark)

    Persson, T.; Givskov, Michael Christian; Nielsen, J.

    2005-01-01

    /receptor transcriptional regulator in some clinically relevant Gram-negative bacteria. The present review contains all reported compound types that are currently known to inhibit the QS transcriptional regulator in Gram-negative bacteria. These compounds are sub-divided into two main groups, one comprising structural...

  6. Humidity Sensing in Drosophila.

    Science.gov (United States)

    Enjin, Anders; Zaharieva, Emanuela E; Frank, Dominic D; Mansourian, Suzan; Suh, Greg S B; Gallio, Marco; Stensmyr, Marcus C

    2016-05-23

    Environmental humidity influences the fitness and geographic distribution of all animals [1]. Insects in particular use humidity cues to navigate the environment, and previous work suggests the existence of specific sensory mechanisms to detect favorable humidity ranges [2-5]. Yet, the molecular and cellular basis of humidity sensing (hygrosensation) remains poorly understood. Here we describe genes and neurons necessary for hygrosensation in the vinegar fly Drosophila melanogaster. We find that members of the Drosophila genus display species-specific humidity preferences related to conditions in their native habitats. Using a simple behavioral assay, we find that the ionotropic receptors IR40a, IR93a, and IR25a are all required for humidity preference in D. melanogaster. Yet, whereas IR40a is selectively required for hygrosensory responses, IR93a and IR25a mediate both humidity and temperature preference. Consistent with this, the expression of IR93a and IR25a includes thermosensory neurons of the arista. In contrast, IR40a is excluded from the arista but is expressed (and required) in specialized neurons innervating pore-less sensilla of the sacculus, a unique invagination of the third antennal segment. Indeed, calcium imaging showed that IR40a neurons directly respond to changes in humidity, and IR40a knockdown or IR93a mutation reduced their responses to stimuli. Taken together, our results suggest that the preference for a specific humidity range depends on specialized sacculus neurons, and that the processing of environmental humidity can happen largely in parallel to that of temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. When paranoia makes sense.

    Science.gov (United States)

    Kramer, Roderick M

    2002-07-01

    On September 11, 2001, in the space of a few horrific minutes, Americans realized the fragility of trust. The country's evident vulnerability to deadly terrorism rocked our faith in the systems we rely on for security. Our trust was shaken again only a few months later with the stunning collapse of Enron, forcing us to question many of the methods and assumptions underpinning the way we work. These two crises are obviously very different, yet both serve as reminders of the perils of trusting too much. The abiding belief that trust is a strength now seems dangerously naive. This new doubtfulness runs contrary to most management literature, which has traditionally touted trust as an organizational asset. It's an easy case to make. When there are high levels of trust, employees can fully commit themselves to the organization because they can be confident that their efforts will be recognized and rewarded. Trust also means that leaders don't have to worry so much about putting the right spin on things. They can act and speak forthrightly and focus on essentials. In short, trust is an organizational superglue. Nevertheless, two decades of research on trust and cooperation in organizations have convinced social psychologist Roderick Kramer that--despite its costs--distrust can be beneficial in the workplace. Kramer has observed that a moderate form of suspicion, which he calls prudent paranoia, can in many cases prove highly beneficial to the distrustful individual or organization. In this article, he describes situations in which prudent paranoia makes sense and shows how, when properly deployed, it can serve as a powerful morale booster--even a competitive weapon--for organizations.

  8. Remote Sensing Information Sciences Research Group, Santa Barbara Information Sciences Research Group, year 3

    Science.gov (United States)

    Estes, J. E.; Smith, T.; Star, J. L.

    1986-01-01

    Research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. The focus is on remote sensing and application for the Earth Observing System (Eos) and Space Station, including associated polar and co-orbiting platforms. The remote sensing research activities are being expanded, integrated, and extended into the areas of global science, georeferenced information systems, machine assissted information extraction from image data, and artificial intelligence. The accomplishments in these areas are examined.

  9. Remotely sensed phenology for mapping biomes and vegetation functional types

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2009-07-01

    Full Text Available clearly captured in Fig. 3. The majority of the pixels in the Savanna have a start of growing season in late October, midposition in February and end in June (Fig. 3). In contrast, the winter rainfall Succulent Karoo have a start of growing season... initially split the biomes based on vegetation production and then by the seasonality of growth IV - 1035 (Fig. 4). The three arid biomes (Desert, Succulent and Nama Figure 3. Frequency histograms of the mean START, midposition (MID) and END date...

  10. Polar Remote Sensing by CryoSat-type Radar Altimetry

    DEFF Research Database (Denmark)

    Stenseng, Lars

    The Earth’s climate is changing and during the last 30 years the extent of the sea-ice has been decreasing steadily. At the same time the major icecaps in Greenland and Antarctica have experienced an increased melt. The extent of the sea-ice can be determined quite accurately with current satelli...

  11. Displacement sensing system and method

    Science.gov (United States)

    VunKannon, Jr., Robert S

    2006-08-08

    A displacement sensing system and method addresses demanding requirements for high precision sensing of displacement of a shaft, for use typically in a linear electro-dynamic machine, having low failure rates over multi-year unattended operation in hostile environments. Applications include outer space travel by spacecraft having high-temperature, sealed environments without opportunity for servicing over many years of operation. The displacement sensing system uses a three coil sensor configuration, including a reference and sense coils, to provide a pair of ratio-metric signals, which are inputted into a synchronous comparison circuit, which is synchronously processed for a resultant displacement determination. The pair of ratio-metric signals are similarly affected by environmental conditions so that the comparison circuit is able to subtract or nullify environmental conditions that would otherwise cause changes in accuracy to occur.

  12. Remote sensing of oil slicks

    Digital Repository Service at National Institute of Oceanography (India)

    Fondekar, S.P.; Rao, L.V.G.

    the drawback of expensive conventional surveying methods. An airborne remote sensing system used for monitoring and surveillance of oil comprises different sensors such as side-looking airborne radar, synthetic aperture radar, infrared/ultraviolet line scanner...

  13. Compressed sensing for distributed systems

    CERN Document Server

    Coluccia, Giulio; Magli, Enrico

    2015-01-01

    This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to...

  14. Time and constitution of sense

    Directory of Open Access Journals (Sweden)

    Pedro Gerardo Acosta

    2014-06-01

    Full Text Available This article proposes a reflection over our time-consciousness under the Phenomenology of Edmund Husserl. The idea is make a release the key role of the sense constitution like the fundament and development of the ongoing intentionality, a shape that make the possibility to catch sight of the sense of every life situation like conscience experience that displays itself over the time, and open the world of the Phenomenon World, constituted in the flux and flow of our live experience. The immanent time in which the things served in a lived-present inevitably displays to its own immediate-past of retentions, then of commemorations, constituting and enabling, not just the sense of ever present, but the sense of our own past like memory and our future like expectative. This reflection is based and supporter over the text “Phenomenology Lesson of the Internal Time-Consiusness” (Husserl, 2002.

  15. Remote sensing technology: symposium proceedings

    International Nuclear Information System (INIS)

    1985-01-01

    Papers were presented in four subject areas: applications of remote sensing; data analysis, digital and analog; acquisition systems; and general. Abstracts of individual items from the conference were prepared separately for the data base

  16. Classification of remotely sensed images

    CSIR Research Space (South Africa)

    Dudeni, N

    2008-10-01

    Full Text Available For this research, the researchers examine various existing image classification algorithms with the aim of demonstrating how these algorithms can be applied to remote sensing images. These algorithms are broadly divided into supervised...

  17. Environmental sensing and combustion diagnostics

    International Nuclear Information System (INIS)

    Santoleri, J.J.

    1991-01-01

    This book contains proceedings of Environmental Sensing and Combustion Diagnostics. Topics covered include: Incineration Systems Applications, Permitting, And Monitoring Overview; Infrared Techniques Applied to Incineration Systems; Continuous Emission Monitors; Analyzers and Sensors for Process Control And Environmental Monitoring

  18. Compressive Sensing in Communication Systems

    DEFF Research Database (Denmark)

    Fyhn, Karsten

    2013-01-01

    . The need for cheaper, smarter and more energy efficient wireless devices is greater now than ever. This thesis addresses this problem and concerns the application of the recently developed sampling theory of compressive sensing in communication systems. Compressive sensing is the merging of signal...... acquisition and compression. It allows for sampling a signal with a rate below the bound dictated by the celebrated Shannon-Nyquist sampling theorem. In some communication systems this necessary minimum sample rate, dictated by the Shannon-Nyquist sampling theorem, is so high it is at the limit of what...... with using compressive sensing in communication systems. The main contribution of this thesis is two-fold: 1) a new compressive sensing hardware structure for spread spectrum signals, which is simpler than the current state-of-the-art, and 2) a range of algorithms for parameter estimation for the class...

  19. Sensing our Environment: Remote sensing in a physics classroom

    Science.gov (United States)

    Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit

    2017-04-01

    Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora

  20. Philosophy vs the common sense

    OpenAIRE

    V. V. Chernyshov

    2017-01-01

    The paper deals with the antinomy of philosophy and the common sense. Philosophy emerges as a way of specifically human knowledge, which purposes analytics of the reality of subjective experience. The study reveals that in order to alienate philosophy from the common sense it was essential to revise the understanding of wisdom. The new, philosophical interpretation of wisdom – offered by Pythagoras – has laid the foundation of any future philosophy. Thus, philosophy emerges, alienating itself...

  1. Remote sensing for vineyard management

    Science.gov (United States)

    Philipson, W. R.; Erb, T. L.; Fernandez, D.; Mcleester, J. N.

    1980-01-01

    Cornell's Remote Sensing Program has been involved in a continuing investigation to assess the value of remote sensing for vineyard management. Program staff members have conducted a series of site and crop analysis studies. These include: (1) panchromatic aerial photography for planning artificial drainage in a new vineyard; (2) color infrared aerial photography for assessing crop vigor/health; and (3) color infrared aerial photography and aircraft multispectral scanner data for evaluating yield related factors. These studies and their findings are reviewed.

  2. Scale issues in remote sensing

    CERN Document Server

    Weng, Qihao

    2014-01-01

    This book provides up-to-date developments, methods, and techniques in the field of GIS and remote sensing and features articles from internationally renowned authorities on three interrelated perspectives of scaling issues: scale in land surface properties, land surface patterns, and land surface processes. The book is ideal as a professional reference for practicing geographic information scientists and remote sensing engineers as well as a supplemental reading for graduate level students.

  3. Remote sensing and resource exploration

    International Nuclear Information System (INIS)

    El-Baz, F.; Hassan, M.H.A.; Cappellini, V.

    1989-01-01

    The purpose of the Workshop was to study in depth the application of remote sensing technology to the fields of archaeology, astronomy, geography, geology, and physics. Some emphasis was placed on utilizing remote sensing methods and techniques in the search for water, mineral and land resources. The Workshop was attended by 90 people from 35 countries. The proceedings of this meeting includes 15 papers, 12 of them have a separate abstract in the INIS Database. Refs, figs and tabs

  4. Uncovering Prepositional Senses

    DEFF Research Database (Denmark)

    Lassen, Tine

    of these data stem from a small pre-defined set of relations, and the ontological type information stems from the SIMPLE ontology. The resulting data set was used as input to a machine-learning algorithm, and the result was a set of rules that predict the semantic relation of a preposition based...... language wordnet, DanNet, as a source of ontological type information, while the relations stem from a larger set of relations which were the result of an analysis of dictionary entries and corpus evidences containing prepositions. Again, machine learning was applied, and the result was a set of rules...... called the skeleton ontology, and a set of production rules (cf. generative grammars) that allows for production of compound concepts. We represent such compound concepts in the ontology language ONTOLOG. In this language, compound concepts are represented as conceptual feature structures of the form c...

  5. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.

    Science.gov (United States)

    Tang, Yongsheng; Wu, Zhishen

    2016-02-25

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures.

  6. Sensing the wind profile

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.

    2009-03-15

    This thesis consists of two parts. The first is a synopsis of the theoretical progress of the study that is based on a number of journal papers. The papers, which constitute the second part of the report, aim to analyze, measure, and model the wind prole in and beyond the surface layer by combining observations from cup anemometers with lidars. The lidar is necessary to extend the measurements on masts at the Horns Rev offshore wind farm and over at land at Hoevsoere, Denmark. Both sensing techniques show a high degree of agreement for wind speed measurements performed at either sites. The wind speed measurements are averaged for several stability conditions and compare well with the surface-layer wind profile. At Hoevsoere, it is sufficient to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added, due to the variant roughness length. This new scaling is coupled to wind prole models derived for flow over the sea and tested against the wind proles up to 160 m at Horns Rev. The models, which account for the boundary-layer height in stable conditions, show better agreement with the measurements than compared to the traditional theory. Mixing-length parameterizations for the neutral wind prole compare well with length-scale measurements up to 300 m at Hoevsoere and 950 m at Leipzig. The mixing-length-derived wind proles strongly deviate from the logarithmic wind prole, but agree better with the wind speed measurements. The length-scale measurements are compared to the length scale derived from a spectral analysis performed up to 160 m at Hoevsoere showing high agreement. Mixing-length parameterizations are corrected to account for stability and used to derive wind prole models. These compared better to wind speed measurements up to 300 m at Hoevsoere than the surface-layer wind prole. The boundary-layer height is derived in nearneutral and stable conditions based on turbulent momentum uxes only and in unstable conditions

  7. Smart sensing surveillance system

    Science.gov (United States)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    An effective public safety sensor system for heavily-populated applications requires sophisticated and geographically-distributed infrastructures, centralized supervision, and deployment of large-scale security and surveillance networks. Artificial intelligence in sensor systems is a critical design to raise awareness levels, improve the performance of the system and adapt to a changing scenario and environment. In this paper, a highly-distributed, fault-tolerant, and energy-efficient Smart Sensing Surveillance System (S4) is presented to efficiently provide a 24/7 and all weather security operation in crowded environments or restricted areas. Technically, the S4 consists of a number of distributed sensor nodes integrated with specific passive sensors to rapidly collect, process, and disseminate heterogeneous sensor data from near omni-directions. These distributed sensor nodes can cooperatively work to send immediate security information when new objects appear. When the new objects are detected, the S4 will smartly select the available node with a Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR camera to track the objects and capture associated imagery. The S4 provides applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. Other imaging processes can be updated to meet specific requirements and operations. In the S4, all the sensor nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology. This UWB RF technology can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The Service Oriented Architecture of S4 enables remote applications to interact with the S4

  8. Smart sensing surveillance system

    Science.gov (United States)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    Unattended ground sensor (UGS) networks have been widely used in remote battlefield and other tactical applications over the last few decades due to the advances of the digital signal processing. The UGS network can be applied in a variety of areas including border surveillance, special force operations, perimeter and building protection, target acquisition, situational awareness, and force protection. In this paper, a highly-distributed, fault-tolerant, and energyefficient Smart Sensing Surveillance System (S4) is presented to efficiently provide 24/7 and all weather security operation in a situation management environment. The S4 is composed of a number of distributed nodes to collect, process, and disseminate heterogeneous sensor data. Nearly all S4 nodes have passive sensors to provide rapid omnidirectional detection. In addition, Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR cameras are integrated to selected nodes to track the objects and capture associated imagery. These S4 camera-connected nodes will provide applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. In the S4, all the nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology, which can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The S4 utilizes a Service Oriented Architecture such that remote applications can interact with the S4 network and use the specific presentation methods. The S4 capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded

  9. Use of the VS-sense swab in diagnosing vulvovaginitis.

    Science.gov (United States)

    Sobel, Jack D; Nyirjesy, Paul; Kessary, Hadar; Ferris, Daron G

    2009-09-01

    Although pH assessment of vaginal secretions is beneficial for diagnosing vaginitis, it is not commonly done. The purpose of this study was to determine the performance characteristics of the VS-Sense (pH test) swab (Common Sense, Ltd., Caesarea, Israel) in augmenting the diagnosis of vaginitis. We prospectively studied 193 women with acute vulvovaginal symptoms and 74 asymptomatic controls at three medical centers. The VS-Sense swab was administered intravaginally, and results were interpreted by a nurse. These results were compared with final clinical and laboratory diagnoses. In women with an elevated pH caused by bacterial vaginosis (BV), trichomonas, and other types of vaginitis, the VS-Sense test sensitivity and specificity were 82.3% (102 of 124) (95% CI 74.4%-88.5%) and 94.2% (129 of 137) (95% CI 88.8%-97.4%), respectively. There was an 86.2% (95% CI 81.3%-90.1%) overall agreement between pH paper and VS-Sense swab results. The VS-Sense test offers an alternative approach to measuring vaginal pH with nitrazine paper. Use of this simple, more rapid test may facilitate the diagnosis of vulvovaginitis.

  10. Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing

    Science.gov (United States)

    Potyrailo, Radislav; Naik, Rajesh R.

    2013-07-01

    At present, monitoring of air at the workplace, in urban environments, and on battlefields; exhaled air from medical patients; air in packaged food containers; and so forth can be accomplished with different types of analytical instruments. Vapor sensors have their niche in these measurements when an unobtrusive, low-power, and cost-sensitive technical solution is required. Unfortunately, existing vapor sensors often degrade their vapor-quantitation accuracy in the presence of high levels of interferences and cannot quantitate several components in complex gas mixtures. Thus, new sensing approaches with improved sensor selectivity are required. This technological task can be accomplished by the careful design of sensing materials with new performance properties and by coupling these materials with the suitable physical transducers. This review is focused on the assessment of the capabilities of bionanomaterials and bioinspired nanostructures for selective vapor sensing. We demonstrate that these sensing materials can operate with diverse transducers based on electrical, mechanical, and optical readout principles and can provide vapor-response selectivity previously unattainable by using other sensing materials. This ability for selective vapor sensing provides opportunities to significantly impact the major directions in development and application scenarios of vapor sensors.

  11. What is a picture worth? A history of remote sensing

    Science.gov (United States)

    Moore, Gerald K.

    1979-01-01

    Remote sensing is the use of electromagnetic energy to measure the physical properties of distant objects. It includes photography and geophysical surveying as well as newer techniques that use other parts of the electromagnetic spectrum. The history of remote sensing begins with photography. The origin of other types of remote sensing can be traced to World War II, with the development of radar, sonar, and thermal infrared detection systems. Since the 1960s, sensors have been designed to operate in virtually all of the electromagnetic spectrum. Today a wide variety of remote sensing instruments are available for use in hydrological studies; satellite data, such as Skylab photographs and Landsat images are particularly suitable for regional problems and studies. Planned future satellites will provide a ground resolution of 10–80 m. Remote sensing is currently used for hydrological applications in most countries of the world. The range of applications includes groundwater exploration determination of physical water quality, snowfield mapping, flood-inundation delineation, and making inventories of irrigated land. The use of remote sensing commonly results in considerable hydrological information at minimal cost. This information can be used to speed-up the development of water resources, to improve management practices, and to monitor environmental problems.

  12. Diabetes HealthSense: Resources for Living Well

    Medline Plus

    Full Text Available ... GET E-MAIL UPDATES External Link Disclaimer National Diabetes Education Program HealthSense Home Make a Plan Articles About ... Rewards. Your GAME PLAN to Prevent Type 2 Diabetes: Information for Patients These three booklets help with diabetes risk assesment, ...

  13. Making Sense of Alternative Assessment in a Qualitative Evaluation System

    Science.gov (United States)

    Rojas Serrano, Javier

    2017-01-01

    In a Colombian private English institution, a qualitative evaluation system has been incorporated. This type of evaluation poses challenges to students who have never been evaluated through a system that eliminates exams or quizzes and, as a consequence, these students have to start making sense of it. This study explores the way students face the…

  14. A phased array bread board for future remote sensing applications

    Science.gov (United States)

    Zahn, R. W.; Schmidt, E.

    The next generation of SAR antennas will be of the active phased-array type. The ongoing development of a phased-array breadboard for remote sensing is described. Starting from a detailed system design, a functional representative breadboard was developed. The design and the performance of the breadboard are discussed.

  15. Diabetes HealthSense: Resources for Living Well

    Medline Plus

    Full Text Available ... E-MAIL UPDATES External Link Disclaimer National Diabetes Education Program HealthSense Home Make a Plan Articles About ... 65+) Type of Resource Select one: Printable documents Online programs In-person programs Videos and podcasts Presentations ...

  16. Compressive sensing for high resolution profiles with enhanced Doppler performance

    NARCIS (Netherlands)

    Anitori, L.; Hoogeboom, P.; Chevalier, F. Le; Otten, M.P.G.

    2012-01-01

    In this paper we demonstrate how Compressive Sensing (CS) can be used in pulse-Doppler radars to improve the Doppler performance while preserving range resolution. We investigate here two types of stepped frequency waveforms, the coherent frequency bursts and successive frequency ramps, which can be

  17. User Classification in Crowdsourcing-Based Cooperative Spectrum Sensing

    Directory of Open Access Journals (Sweden)

    Linbo Zhai

    2017-07-01

    Full Text Available This paper studies cooperative spectrum sensing based on crowdsourcing in cognitive radio networks. Since intelligent mobile users such as smartphones and tablets can sense the wireless spectrum, channel sensing tasks can be assigned to these mobile users. This is referred to as the crowdsourcing method. However, there may be some malicious mobile users that send false sensing reports deliberately, for their own purposes. False sensing reports will influence decisions about channel state. Therefore, it is necessary to classify mobile users in order to distinguish malicious users. According to the sensing reports, mobile users should not just be divided into two classes (honest and malicious. There are two reasons for this: on the one hand, honest users in different positions may have different sensing outcomes, as shadowing, multi-path fading, and other issues may influence the sensing results; on the other hand, there may be more than one type of malicious users, acting differently in the network. Therefore, it is necessary to classify mobile users into more than two classes. Due to the lack of prior information of the number of user classes, this paper casts the problem of mobile user classification as a dynamic clustering problem that is NP-hard. The paper uses the interdistance-to-intradistance ratio of clusters as the fitness function, and aims to maximize the fitness function. To cast this optimization problem, this paper proposes a distributed algorithm for user classification in order to obtain bounded close-to-optimal solutions, and analyzes the approximation ratio of the proposed algorithm. Simulations show the distributed algorithm achieves higher performance than other algorithms.

  18. FeltRadio: Sensing and Making Sense of Wireless Traffic

    DEFF Research Database (Denmark)

    Gronvall, Erik; Fritsch, Jonas; Vallgårda, Anna

    2016-01-01

    Radio waves surround us but still they remain largely undetected by our senses. Unless we use specifically tuned hardware, such as FM radios, cell phones or WiFi modems, human beings cannot perceive wirelessly transmitted data. This paper presents FeltRadio, a portable and wireless technology...... that makes it possible to turn radio signals into visual and tactile stimuli as a form of sensorial augmentation. FeltRadio explores and makes us reflect upon what it would be like if we could sense, and feel, wireless traffic such as WiFi or Bluetooth. We present the technological design behind Felt...

  19. Joint position sense and vibration sense: anatomical organisation and assessment.

    Science.gov (United States)

    Gilman, S

    2002-11-01

    Clinical examination of joint position sense and vibration sense can provide important information concerning specific cutaneous sensory receptors, peripheral nerves, dorsal roots, and central nervous system pathways and should be included as a regular component of the neurological examination. Although these sensory modalities share a spinal cord and brainstem pathway, they arise in different receptors and terminate in separate distributions within the thalamus and cerebral cortex. Consequently, both modalities should be tested as part of the neurological examination. Clinical testing of these modalities requires simultaneous stimulation of tactile receptors; hence this review will include information about the receptors and pathways responsible for tactile sensation.

  20. Photogrammetry - Remote Sensing and Geoinformation

    Science.gov (United States)

    Lazaridou, M. A.; Patmio, E. N.

    2012-07-01

    Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS) is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc), and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers) in the Lab. of Photogrammetry - Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  1. Remote sensing in meteorology, oceanography and hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Cracknell, A P [ed.

    1981-01-01

    Various aspects of remote sensing are discussed. Topics include: the EARTHNET data acquisition, processing, and distribution facility the design and implementation of a digital interactive image processing system geometrical aspects of remote sensing and space cartography remote sensing of a complex surface legal aspects of remote sensing remote sensing of pollution, dust storms, ice masses, and ocean waves and currents use of satellite images for weather forecasting. Notes on field trips and work-sheets for laboratory exercises are included.

  2. Design, Synthesis and Biological Evaluation of Quorum Sensing Modulators

    DEFF Research Database (Denmark)

    Hansen, Mette Reimert

    to intercept the communication system by synthetic non-native ligands and thereby lower the pathogenesis and antibiotic tolerance of a bacterial biofilm. To identify new ligands with quorum sensing modulating activities, three types of AHL analogs were synthesized using different synthetic strategies....... Overall, 17 compounds were identified as quorum sensing activators with EC50 values in the low micromolar range. Two build/couple/pair strategies for the synthesis of structurally diverse small molecules are presented. In the first strategy, the Petasis 3-component reaction (Petasis 3-CR) of hydrazides...

  3. Noise estimation for remote sensing image data analysis

    Science.gov (United States)

    Du, Qian

    2004-01-01

    Noise estimation does not receive much attention in remote sensing society. It may be because normally noise is not large enough to impair image analysis result. Noise estimation is also very challenging due to the randomness nature of the noise (for random noise) and the difficulty of separating the noise component from the signal in each specific location. We review and propose seven different types of methods to estimate noise variance and noise covariance matrix in a remotely sensed image. In the experiment, it is demonstrated that a good noise estimate can improve the performance of an algorithm via noise whitening if this algorithm assumes white noise.

  4. Distributed acoustic sensing for pipeline monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hill, David; McEwen-King, Magnus [OptaSense, QinetiQ Ltd., London (United Kingdom)

    2009-07-01

    Optical fibre is deployed widely across the oil and gas industry. As well as being deployed regularly to provide high bandwidth telecommunications and infrastructure for SCADA it is increasingly being used to sense pressure, temperature and strain along buried pipelines, on subsea pipelines and downhole. In this paper we present results from the latest sensing capability using standard optical fibre to detect acoustic signals along the entire length of a pipeline. In Distributed Acoustic Sensing (DAS) an optical fibre is used for both sensing and telemetry. In this paper we present results from the OptaSense{sup TM} system which has been used to detect third party intervention (TPI) along buried pipelines. In a typical deployment the system is connected to an existing standard single-mode fibre, up to 50km in length, and was used to independently listen to the acoustic / seismic activity at every 10 meter interval. We will show that through the use of advanced array processing of the independent, simultaneously sampled channels it is possible to detect and locate activity within the vicinity of the pipeline and through sophisticated acoustic signal processing to obtain the acoustic signature to classify the type of activity. By combining spare fibre capacity in existing buried fibre optic cables; processing and display techniques commonly found in sonar; and state-of-the-art in fibre-optic distributed acoustic sensing, we will describe the new monitoring capabilities that are available to the pipeline operator. Without the expense of retrofitting sensors to the pipeline, this technology can provide a high performance, rapidly deployable and cost effective method of providing gapless and persistent monitoring of a pipeline. We will show how this approach can be used to detect, classify and locate activity such as; third party interference (including activity indicative of illegal hot tapping); real time tracking of pigs; and leak detection. We will also show how an

  5. Big Sensed Data Meets Deep Learning for Smarter Health Care in Smart Cities

    Directory of Open Access Journals (Sweden)

    Alex Adim Obinikpo

    2017-11-01

    Full Text Available With the advent of the Internet of Things (IoT concept and its integration with the smart city sensing, smart connected health systems have appeared as integral components of the smart city services. Hard sensing-based data acquisition through wearables or invasive probes, coupled with soft sensing-based acquisition such as crowd-sensing results in hidden patterns in the aggregated sensor data. Recent research aims to address this challenge through many hidden perceptron layers in the conventional artificial neural networks, namely by deep learning. In this article, we review deep learning techniques that can be applied to sensed data to improve prediction and decision making in smart health services. Furthermore, we present a comparison and taxonomy of these methodologies based on types of sensors and sensed data. We further provide thorough discussions on the open issues and research challenges in each category.

  6. Optimal census by quorum sensing

    Science.gov (United States)

    Taillefumier, Thibaud

    Bacteria regulate their gene expression in response to changes in local cell density in a process called quorum sensing. To synchronize their gene-expression programs, these bacteria need to glean as much information as possible about local density. Our study is the first to physically model the flow of information in a quorum-sensing microbial community, wherein the internal regulator of the individual's response tracks the external cell density via an endogenously generated shared signal. Combining information theory and Lagrangian optimization, we find that quorum-sensing systems can improve their information capabilities by tuning circuit feedbacks. At the population level, external feedback adjusts the dynamic range of the shared input to individuals' detection channels. At the individual level, internal feedback adjusts the regulator's response time to dynamically balance output noise reduction and signal tracking ability. Our analysis suggests that achieving information benefit via feedback requires dedicated systems to control gene expression noise, such as sRNA-based regulation.

  7. Wireless Damage Location Sensing System

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)

    2012-01-01

    A wireless damage location sensing system uses a geometric-patterned wireless sensor that resonates in the presence of a time-varying magnetic field to generate a harmonic response that will experience a change when the sensor experiences a change in its geometric pattern. The sensing system also includes a magnetic field response recorder for wirelessly transmitting the time-varying magnetic field and for wirelessly detecting the harmonic response. The sensing system compares the actual harmonic response to a plurality of predetermined harmonic responses. Each predetermined harmonic response is associated with a severing of the sensor at a corresponding known location thereof so that a match between the actual harmonic response and one of the predetermined harmonic responses defines the known location of the severing that is associated therewith.

  8. Mississippi Sound Remote Sensing Study

    Science.gov (United States)

    Atwell, B. H.

    1973-01-01

    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.

  9. Number-unconstrained quantum sensing

    Science.gov (United States)

    Mitchell, Morgan W.

    2017-12-01

    Quantum sensing is commonly described as a constrained optimization problem: maximize the information gained about an unknown quantity using a limited number of particles. Important sensors including gravitational wave interferometers and some atomic sensors do not appear to fit this description, because there is no external constraint on particle number. Here, we develop the theory of particle-number-unconstrained quantum sensing, and describe how optimal particle numbers emerge from the competition of particle-environment and particle-particle interactions. We apply the theory to optical probing of an atomic medium modeled as a resonant, saturable absorber, and observe the emergence of well-defined finite optima without external constraints. The results contradict some expectations from number-constrained quantum sensing and show that probing with squeezed beams can give a large sensitivity advantage over classical strategies when each is optimized for particle number.

  10. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus...... in the Meteorology and Test and Measurements Programs from the Wind Energy Division at Risø DTU in the PhD Summer Schools. We hope to add more topics in future editions and to update as necessary, to provide a truly state-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  11. Remote Sensing of Environmental Pollution

    Science.gov (United States)

    North, G. W.

    1971-01-01

    Environmental pollution is a problem of international scope and concern. It can be subdivided into problems relating to water, air, or land pollution. Many of the problems in these three categories lend themselves to study and possible solution by remote sensing. Through the use of remote sensing systems and techniques, it is possible to detect and monitor, and in some cases, identify, measure, and study the effects of various environmental pollutants. As a guide for making decisions regarding the use of remote sensors for pollution studies, a special five-dimensional sensor/applications matrix has been designed. The matrix defines an environmental goal, ranks the various remote sensing objectives in terms of their ability to assist in solving environmental problems, lists the environmental problems, ranks the sensors that can be used for collecting data on each problem, and finally ranks the sensor platform options that are currently available.

  12. Current perspective on remote sensing

    International Nuclear Information System (INIS)

    Goodman, R.H.

    1992-01-01

    Surveillance and tracking of oil spills has been a feature of most spill response situations for many years. The simplest and most direct method uses visual observations from an aircraft and hand-plotting of the data on a map. This technique has proven adequate for most small spills and for responses in fair weather. As the size of the spill increases or the weather deteriorates, there is a need to augment visual aerial observations with remote sensing methods. Remote sensing and its associated systems are one of the most technically complex and sophisticated elements of an oil spill response. During the past few years, a number of initiatives have been undertaken to use contemporary electronic and computing systems to develop new and improved remote sensing systems

  13. Making sense of project management

    DEFF Research Database (Denmark)

    Kjærgaard, Annemette; Kautz, Karl; Nielsen, Peter Axel

    2007-01-01

    How can a software company make sense of project management when it becomes involved in software process improvement? In software development most research has an instrumental view of knowledge management thus neglecting what is probably the most important part of knowledge management namely making...... sense of practice by developers and project managers. Through an action case, we study the knowledge management processes in a Danish software company. We analyse the case through the lens of a theoretical framework. The theoretical framework focuses in particular on sensemaking, collective construed...... substantial insight which could not have been achieved through an instrumental perspective on knowledge management....

  14. TACTILE SENSING FOR OBJECT IDENTIFICATION

    DEFF Research Database (Denmark)

    Drimus, Alin; Marian, Nicolae; Bilberg, Arne

    2009-01-01

    The artificial sense of touch is a research area that can be considered still in demand, compared with the human dexterity of grasping a wide variety of shapes and sizes, perform complex tasks, and switch between grasps in response to changing task requirements. For handling unknown objects...... in unstructured environments, tactile sensing can provide more than valuable to complementary vision information about mechanical properties such as recognition and characterization, force, pressure, torque, compliance, friction, and mass as well as object shape, texture, position and pose. In this paper, we...

  15. Sensing charges of the Ciona intestinalis voltage-sensing phosphatase.

    Science.gov (United States)

    Villalba-Galea, Carlos A; Frezza, Ludivine; Sandtner, Walter; Bezanilla, Francisco

    2013-11-01

    Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing.

  16. Incorporation of hydrogel as a sensing medium for recycle of sensing material in chemical sensors

    Science.gov (United States)

    Hwang, Yunjung; Park, Jeong Yong; Kwon, Oh Seok; Joo, Seokwon; Lee, Chang-Soo; Bae, Joonwon

    2018-01-01

    A hydrogel, produced with agarose extracted from seaweed, was introduced as a reusable medium in ultrasensitive sensors employing conducting polymer nanomaterials and aptamers. A basic dopamine (DA) sensor was constructed by placing a hydrogel, containing a sensing material composed of aptamer-linked carboxylated polypyrrole nanotubes (PPy-COOH NTs), onto a micropatterned gold electrode. The hydrogel provided a benign electrochemical environment, facilitated specific interactions between DA and the PPy-COOH NT sensing material, and simplified the retrieval of PPy-COOH NTs after detection. It was demonstrated that the agarose hydrogel was successfully employed as a sensing medium for detection of DA, providing a benign environment for the electrode type sensor. PPy-COOH NTs were recovered by simply heating the hydrogel in water. The hydrogel also afforded stable signal intensity after repeated use with a limit of detection of 1 nmol and a clear, stable signal up to 100 nmol DA. This work provides relevant information for future research on reusable or recyclable sensors.

  17. Remote sensing and vegetation mapping in South Africa

    Directory of Open Access Journals (Sweden)

    M. L. Jarman

    1983-12-01

    Full Text Available The kinds of imagery, types of data and general relationships between scale of study, scale of mapping and scale of remote sensing products that are appropriate to the South African situation for visual and digital analysis are presented. The type of remote sensing product and processing, the type of field exercise appropriate to each, and the purpose of producing maps at each scale are discussed. Lack of repetitive imagery to date has not allowed for the full investigation of monitoring potential and careful planning at national level is needed to ensure availability of imagery for monitoring purposes. Map production processes which are rapid and accurate should be utilized. An integrated approach to vegetation mapping and surveying, which incorporates the best features of both visual and digital processing, is recommended for use.

  18. A software architecture for adaptive modular sensing systems.

    Science.gov (United States)

    Lyle, Andrew C; Naish, Michael D

    2010-01-01

    By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration.

  19. A Software Architecture for Adaptive Modular Sensing Systems

    Directory of Open Access Journals (Sweden)

    Andrew C. Lyle

    2010-08-01

    Full Text Available By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration.

  20. Quantitative interpretation of great lakes remote sensing data

    International Nuclear Information System (INIS)

    Shook, D.F.; Salzman, J.; Svehla, R.A.; Gedney, R.T.

    1980-01-01

    Remote sensing has been applied in the past to the surveillance of Great Lakes water quality, but it has been only partially successful because of the completely empirical approach taken in relating the multispectral scanning data at visible and near-infrared wavelengths to water parameters. Any remote sensing approach using water color information must take into account (1) the existence of many different organic and inorganic species throughtout the Greak Lakes, (2) the occurrence of a mixture of species in most locations, and (3) spatial (inter- and interlake as well as vertical) variations in types and concentrations of species. The radiative transfer model provides a potential method for an orderly analysis of remote sensing data and a physical basis for developing quantitative algorithms. Predictions and field measurements of volume reflectances are presented which clearly show the advantage of using a radiative transfer model. Spectral absorptance and backscattering coefficients for two inorganic sediments are reported

  1. Aptamer-assembled nanomaterials for fluorescent sensing and imaging

    Science.gov (United States)

    Lu, Danqing; He, Lei; Zhang, Ge; Lv, Aiping; Wang, Ruowen; Zhang, Xiaobing; Tan, Weihong

    2017-01-01

    Aptamers, which are selected in vitro by a technology known as the systematic evolution of ligands by exponential enrichment (SELEX), represent a crucial recognition element in molecular sensing. With advantages such as good biocompatibility, facile functionalization, and special optical and physical properties, various nanomaterials can protect aptamers from enzymatic degradation and nonspecific binding in living systems and thus provide a preeminent platform for biochemical applications. Coupling aptamers with various nanomaterials offers many opportunities for developing highly sensitive and selective sensing systems. Here, we focus on the recent applications of aptamer-assembled nanomaterials in fluorescent sensing and imaging. Different types of nanomaterials are examined along with their advantages and disadvantages. Finally, we look toward the future of aptamer-assembled nanomaterials.

  2. Global versus local mechanisms of temperature sensing in ion channels.

    Science.gov (United States)

    Arrigoni, Cristina; Minor, Daniel L

    2018-05-01

    Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNa V ) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.

  3. Aptamer-Based Electrochemical Sensing of Lysozyme

    Directory of Open Access Journals (Sweden)

    Alina Vasilescu

    2016-06-01

    Full Text Available Protein analysis and quantification are required daily by thousands of laboratories worldwide for activities ranging from protein characterization to clinical diagnostics. Multiple factors have to be considered when selecting the best detection and quantification assay, including the amount of protein available, its concentration, the presence of interfering molecules, as well as costs and rapidity. This is also the case for lysozyme, a 14.3-kDa protein ubiquitously present in many organisms, that has been identified with a variety of functions: antibacterial activity, a biomarker of several serious medical conditions, a potential allergen in foods or a model of amyloid-type protein aggregation. Since the design of the first lysozyme aptamer in 2001, lysozyme became one of the most intensively-investigated biological target analytes for the design of novel biosensing concepts, particularly with regards to electrochemical aptasensors. In this review, we discuss the state of the art of aptamer-based electrochemical sensing of lysozyme, with emphasis on sensing in serum and real samples.

  4. Remote Sensing and Cropping Practices: A Review

    Directory of Open Access Journals (Sweden)

    Agnès Bégué

    2018-01-01

    Full Text Available For agronomic, environmental, and economic reasons, the need for spatialized information about agricultural practices is expected to rapidly increase. In this context, we reviewed the literature on remote sensing for mapping cropping practices. The reviewed studies were grouped into three categories of practices: crop succession (crop rotation and fallowing, cropping pattern (single tree crop planting pattern, sequential cropping, and intercropping/agroforestry, and cropping techniques (irrigation, soil tillage, harvest and post-harvest practices, crop varieties, and agro-ecological infrastructures. We observed that the majority of the studies were exploratory investigations, tested on a local scale with a high dependence on ground data, and used only one type of remote sensing sensor. Furthermore, to be correctly implemented, most of the methods relied heavily on local knowledge on the management practices, the environment, and the biological material. These limitations point to future research directions, such as the use of land stratification, multi-sensor data combination, and expert knowledge-driven methods. Finally, the new spatial technologies, and particularly the Sentinel constellation, are expected to improve the monitoring of cropping practices in the challenging context of food security and better management of agro-environmental issues.

  5. Support for global science: Remote sensing's challenge

    Science.gov (United States)

    Estes, J. E.; Star, J. L.

    1986-01-01

    Remote sensing uses a wide variety of techniques and methods. Resulting data are analyzed by man and machine, using both analog and digital technology. The newest and most important initiatives in the U. S. civilian space program currently revolve around the space station complex, which includes the core station as well as co-orbiting and polar satellite platforms. This proposed suite of platforms and support systems offers a unique potential for facilitating long term, multidisciplinary scientific investigations on a truly global scale. Unlike previous generations of satellites, designed for relatively limited constituencies, the space station offers the potential to provide an integrated source of information which recognizes the scientific interest in investigating the dynamic coupling between the oceans, land surface, and atmosphere. Earth scientist already face problems that are truly global in extent. Problems such as the global carbon balance, regional deforestation, and desertification require new approaches, which combine multidisciplinary, multinational research teams, employing advanced technologies to produce a type, quantity, and quality of data not previously available. The challenge before the international scientific community is to continue to develop both the infrastructure and expertise to, on the one hand, develop the science and technology of remote sensing, while on the other hand, develop an integrated understanding of global life support systems, and work toward a quantiative science of the biosphere.

  6. Use of Human Senses as Sensors

    Directory of Open Access Journals (Sweden)

    Yoshiaki Sugawara

    2009-04-01

    Full Text Available This paper is an overview of our recent findings obtained by the use of human senses as sensors, suggesting that human senses might be indispensable sensors, not only for practical uses but also for gaining a deeper understanding of humans. From this point of view, two kinds of studies, both based on semantic responses of participants, deserve emphasis. One study assessed the efficacy of the photocatalytic elimination of stains or bio-aerosols from an air environment using TiO2 as well as the photocatalytic deodorizing efficacy of a TiO2-type deodorizer; the other study evaluated the changes in perception of a given aroma while inhaling the fragrance of essential oils. In the latter study, we employed a sensory test for evaluating changes in perception of a given aroma. Sensory tests were conducted twice, when participants were undergoing the Kraepelin mental performance test (mental arithmetic or an auditory task (listening to environmental natural sounds, once before the task (pre-task and once after the task (post-task. The perception of fragrance was assessed by 13 contrasting pairs of adjectives as a function of the task assigned to participants. The obtained findings illustrate subtle nuances regarding how essential oils manifest their potency and how olfactory discrimination and responses occur in humans.

  7. Developing and regenerating a sense of taste.

    Science.gov (United States)

    Barlow, Linda A; Klein, Ophir D

    2015-01-01

    Taste is one of the fundamental senses, and it is essential for our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Taste buds, which are clusters of neuroepithelial receptor cells, are housed in highly organized structures called taste papillae in the oral cavity. Whereas the overall structure of the taste periphery is conserved in almost all vertebrates examined to date, the anatomical, histological, and cell biological, as well as potentially the molecular details of taste buds in the oral cavity are diverse across species and even among individuals. In mammals, several types of gustatory papillae reside on the tongue in highly ordered arrangements, and the patterning and distribution of the mature papillae depend on coordinated molecular events in embryogenesis. In this review, we highlight new findings in the field of taste development, including how taste buds are patterned and how taste cell fate is regulated. We discuss whether a specialized taste bud stem cell population exists and how extrinsic signals can define which cell lineages are generated. We also address the question of whether molecular regulation of taste cell renewal is analogous to that of taste bud development. Finally, we conclude with suggestions for future directions, including the potential influence of the maternal diet and maternal health on the sense of taste in utero. © 2015 Elsevier Inc. All rights reserved.

  8. Remote sensing inputs to water demand modeling

    Science.gov (United States)

    Estes, J. E.; Jensen, J. R.; Tinney, L. R.; Rector, M.

    1975-01-01

    In an attempt to determine the ability of remote sensing techniques to economically generate data required by water demand models, the Geography Remote Sensing Unit, in conjunction with the Kern County Water Agency of California, developed an analysis model. As a result it was determined that agricultural cropland inventories utilizing both high altitude photography and LANDSAT imagery can be conducted cost effectively. In addition, by using average irrigation application rates in conjunction with cropland data, estimates of agricultural water demand can be generated. However, more accurate estimates are possible if crop type, acreage, and crop specific application rates are employed. An analysis of the effect of saline-alkali soils on water demand in the study area is also examined. Finally, reference is made to the detection and delineation of water tables that are perched near the surface by semi-permeable clay layers. Soil salinity prediction, automated crop identification on a by-field basis, and a potential input to the determination of zones of equal benefit taxation are briefly touched upon.

  9. Remote Sensing of Water Pollution

    Science.gov (United States)

    White, P. G.

    1971-01-01

    Remote sensing, as a tool to aid in the control of water pollution, offers a means of making rapid, economical surveys of areas that are relatively inaccessible on the ground. At the same time, it offers the only practical means of mapping pollution patterns that cover large areas. Detection of oil slicks, thermal pollution, sewage, and algae are discussed.

  10. Satellite Remote Sensing: Aerosol Measurements

    Science.gov (United States)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  11. Making Sense of Extraneous Solutions

    Science.gov (United States)

    Zelkowski, Jeremy S.

    2013-01-01

    Principles and Standards for School Mathematics (NCTM 2000) states, "Technology is essential in teaching and learning mathematics; it influences the mathematics that is taught and enhances students' learning." The focus on reasoning and sense making with technology in the lesson presented in this article will enable students to do more…

  12. Capturing a Sense of Place.

    Science.gov (United States)

    Riley, Cheryl K.

    1995-01-01

    Outdoor educators can help students, program participants, and colleagues find a special place in nature that enables them to cherish nature's gifts, its healing power, and its ability to bring inner peace. Becoming emotionally connected with nature promotes development of an environmental ethic and a sense of stewardship for the land. (LP)

  13. Optical fibre sensing of plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Woolsey, G.A.; Scelsi, G.B. [School of Physical Sciences and Engineering, Univ. of New England, Armidale, NSW (Australia)

    2000-03-01

    The progress of optical fiber technology for communications has induced an interest in, among others, the sensing of a wide range of physical, and chemical quantities. Any application of optical fibers that are crucial for communication are significant for sensing, e.g. small dimension, insulating materials, immunity to high voltage field etc. In the present paper basic points of optical fiber sensing are summarized. It is noted optical fiber sensors come in two forms, intrinsic and extrinsic. In the former the fiber itself works as sensing element, in addition to data transmission lines. In an intrinsic sensor, a single fiber transmits the light from the source to the detector and the light is modulated while it is in the fiber. On the other hand, in the extrinsic sensor, the light leaves the input fiber to be modulated before being collected by the second output fiber. Characteristic of the light that can be modulated are amplitude, phase, polarization, and wavelength. The paper describes the modulation in some details. (author)

  14. Even More Sense and Sustainability

    Science.gov (United States)

    Huckle, John

    2012-01-01

    In this paper, the author reviews "Sense & Sustainability: Educating for a Circular Economy," by Ken Webster and Craig Johnson. He reviews the core text that underpins the work of the education team at the Ellen MacArthur Foundation (http://www.ellenmacarthurfoundation.org/). He shows that while it is strong on some technical aspects of…

  15. ASPIRE: Added-value Sensing

    DEFF Research Database (Denmark)

    Anggorojati, Bayu; Cetin, Kamil; Mihovska, Albena D.

    2010-01-01

    and privacy friendly RFID middleware. Advances in active RFID integration with WSNs allow for more RFID-based applications to be developed. In order to fill the gap between the active RFID system and the existing middleware, a HAL for active reader and ALE server extension to support sensing data from active...

  16. Unobtrusive Sensing of Emotions (USE).

    NARCIS (Netherlands)

    van den Broek, Egon; Schut, Marleen H.; Westerink, Joyce H.D.M.; Tuinenbreijer, Kees

    2009-01-01

    Emotions are acknowledged as a crucial element for artificial intelligence; this is, as is illustrated, no different for Ambient Intelligence (AmI). Unobtrusive Sensing of Emotions (USE) is introduced to enrich AmI with empathic abilities. USE coins the combination of speech and the

  17. Optical display for radar sensing

    Science.gov (United States)

    Szu, Harold; Hsu, Charles; Willey, Jefferson; Landa, Joseph; Hsieh, Minder; Larsen, Louis V.; Krzywicki, Alan T.; Tran, Binh Q.; Hoekstra, Philip; Dillard, John T.; Krapels, Keith A.; Wardlaw, Michael; Chu, Kai-Dee

    2015-05-01

    Boltzmann headstone S = kB Log W turns out to be the Rosette stone for Greek physics translation optical display of the microwave sensing hieroglyphics. The LHS is the molecular entropy S measuring the degree of uniformity scattering off the sensing cross sections. The RHS is the inverse relationship (equation) predicting the Planck radiation spectral distribution parameterized by the Kelvin temperature T. Use is made of the conservation energy law of the heat capacity of Reservoir (RV) change T Δ S = -ΔE equals to the internal energy change of black box (bb) subsystem. Moreover, an irreversible thermodynamics Δ S > 0 for collision mixing toward totally larger uniformity of heat death, asserted by Boltzmann, that derived the so-called Maxwell-Boltzmann canonical probability. Given the zero boundary condition black box, Planck solved a discrete standing wave eigenstates (equation). Together with the canonical partition function (equation) an average ensemble average of all possible internal energy yielded the celebrated Planck radiation spectral (equation) where the density of states (equation). In summary, given the multispectral sensing data (equation), we applied Lagrange Constraint Neural Network (LCNN) to solve the Blind Sources Separation (BSS) for a set of equivalent bb target temperatures. From the measurements of specific value, slopes and shapes we can fit a set of Kelvin temperatures T's for each bb targets. As a result, we could apply the analytical continuation for each entropy sources along the temperature-unique Planck spectral curves always toward the RGB color temperature display for any sensing probing frequency.

  18. Optical fibre sensing of plasmas

    International Nuclear Information System (INIS)

    Woolsey, G.A.; Scelsi, G.B.

    2000-01-01

    The progress of optical fiber technology for communications has induced an interest in, among others, the sensing of a wide range of physical, and chemical quantities. Any application of optical fibers that are crucial for communication are significant for sensing, e.g. small dimension, insulating materials, immunity to high voltage field etc. In the present paper basic points of optical fiber sensing are summarized. It is noted optical fiber sensors come in two forms, intrinsic and extrinsic. In the former the fiber itself works as sensing element, in addition to data transmission lines. In an intrinsic sensor, a single fiber transmits the light from the source to the detector and the light is modulated while it is in the fiber. On the other hand, in the extrinsic sensor, the light leaves the input fiber to be modulated before being collected by the second output fiber. Characteristic of the light that can be modulated are amplitude, phase, polarization, and wavelength. The paper describes the modulation in some details. (author)

  19. Coherence and Sense of Coherence

    DEFF Research Database (Denmark)

    Dau, Susanne

    2014-01-01

    Constraints in the implementation of models of blended learning can be explained by several causes, but in this paper, it is illustrated that lack of sense of coherence is a major factor of these constraints along with the referential whole of the perceived learning environments. The question exa...

  20. Reaching with the sixth sense

    DEFF Research Database (Denmark)

    Reichenbach, Alexandra; Bresciani, Jean-Pierre; Bulthoff, Heinrich H.

    2016-01-01

    The vestibular system constitutes the silent sixth sense: It automatically triggers a variety of vital reflexes to maintain postural and visual stability. Beyond their role in reflexive behavior, vestibular afferents contribute to several perceptual and cognitive functions and also support volunt...

  1. Optical Microcavity: Sensing down to Single Molecules and Atoms

    Directory of Open Access Journals (Sweden)

    Shu-Yu Su

    2011-02-01

    Full Text Available This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments, microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  2. Pervasive Sound Sensing: A Weakly Supervised Training Approach.

    Science.gov (United States)

    Kelly, Daniel; Caulfield, Brian

    2016-01-01

    Modern smartphones present an ideal device for pervasive sensing of human behavior. Microphones have the potential to reveal key information about a person's behavior. However, they have been utilized to a significantly lesser extent than other smartphone sensors in the context of human behavior sensing. We postulate that, in order for microphones to be useful in behavior sensing applications, the analysis techniques must be flexible and allow easy modification of the types of sounds to be sensed. A simplification of the training data collection process could allow a more flexible sound classification framework. We hypothesize that detailed training, a prerequisite for the majority of sound sensing techniques, is not necessary and that a significantly less detailed and time consuming data collection process can be carried out, allowing even a nonexpert to conduct the collection, labeling, and training process. To test this hypothesis, we implement a diverse density-based multiple instance learning framework, to identify a target sound, and a bag trimming algorithm, which, using the target sound, automatically segments weakly labeled sound clips to construct an accurate training set. Experiments reveal that our hypothesis is a valid one and results show that classifiers, trained using the automatically segmented training sets, were able to accurately classify unseen sound samples with accuracies comparable to supervised classifiers, achieving an average F -measure of 0.969 and 0.87 for two weakly supervised datasets.

  3. Tamper indicating and sensing optical-based smart structures

    International Nuclear Information System (INIS)

    Sliva, P.; Anheier, N.C.; Gordon, N.R.; Simmons, K.L.; Stahl, K.A.; Undem, H.A.

    1995-05-01

    This paper has presented an overview of the type of optical-based structures that can be designed and constructed. These smart structures are capable of responding to their environment. The examples given represent a modest sampling of the complexity that can be achieved in both design and practice. Tamper-indicating containers and smart, sensing windows demonstrate just a few of the applications. We have shown that optical-based smart structures can be made multifunctional with the sensing built in. The next generation smart structure will combine the sensing functionality of these optical-based smart structures with other sensors such as piezoelectrics and electro-rheological fluids to not only be able to respond to the environment, but to adapt to it as well. An example of functionality in this regime would be a piezosensor that senses pressure changes (e.g., shock waves), which then causes an electro-rheological fluid to change viscosity. A fiber sensor located in or near the electro-rheological fluid senses the stiffness change and sends a signal through a feedback loop back to the piezosensor for additional adjustments to the electro-rheological fluid

  4. Remote Sensing Image Registration Using Multiple Image Features

    Directory of Open Access Journals (Sweden)

    Kun Yang

    2017-06-01

    Full Text Available Remote sensing image registration plays an important role in military and civilian fields, such as natural disaster damage assessment, military damage assessment and ground targets identification, etc. However, due to the ground relief variations and imaging viewpoint changes, non-rigid geometric distortion occurs between remote sensing images with different viewpoint, which further increases the difficulty of remote sensing image registration. To address the problem, we propose a multi-viewpoint remote sensing image registration method which contains the following contributions. (i A multiple features based finite mixture model is constructed for dealing with different types of image features. (ii Three features are combined and substituted into the mixture model to form a feature complementation, i.e., the Euclidean distance and shape context are used to measure the similarity of geometric structure, and the SIFT (scale-invariant feature transform distance which is endowed with the intensity information is used to measure the scale space extrema. (iii To prevent the ill-posed problem, a geometric constraint term is introduced into the L2E-based energy function for better behaving the non-rigid transformation. We evaluated the performances of the proposed method by three series of remote sensing images obtained from the unmanned aerial vehicle (UAV and Google Earth, and compared with five state-of-the-art methods where our method shows the best alignments in most cases.

  5. Lightweight Biometric Sensing for Walker Classification Using Narrowband RF Links

    Directory of Open Access Journals (Sweden)

    Tong Liu

    2017-12-01

    Full Text Available This article proposes a lightweight biometric sensing system using ubiquitous narrowband radio frequency (RF links for path-dependent walker classification. The fluctuated received signal strength (RSS sequence generated by human motion is used for feature representation. To capture the most discriminative characteristics of individuals, a three-layer RF sensing network is organized for building multiple sampling links at the most common heights of upper limbs, thighs, and lower legs. The optimal parameters of sensing configuration, such as the height of link location and number of fused links, are investigated to improve sensory data distinctions among subjects, and the experimental results suggest that the synergistic sensing by using multiple links can contribute a better performance. This is the new consideration of using RF links in building a biometric sensing system. In addition, two types of classification methods involving vector quantization (VQ and hidden Markov models (HMMs are developed and compared for closed-set walker recognition and verification. Experimental studies in indoor line-of-sight (LOS and non-line-of-sight (NLOS scenarios are conducted to validate the proposed method.

  6. Lightweight Biometric Sensing for Walker Classification Using Narrowband RF Links.

    Science.gov (United States)

    Liu, Tong; Liang, Zhuo-Qian

    2017-12-05

    This article proposes a lightweight biometric sensing system using ubiquitous narrowband radio frequency (RF) links for path-dependent walker classification. The fluctuated received signal strength (RSS) sequence generated by human motion is used for feature representation. To capture the most discriminative characteristics of individuals, a three-layer RF sensing network is organized for building multiple sampling links at the most common heights of upper limbs, thighs, and lower legs. The optimal parameters of sensing configuration, such as the height of link location and number of fused links, are investigated to improve sensory data distinctions among subjects, and the experimental results suggest that the synergistic sensing by using multiple links can contribute a better performance. This is the new consideration of using RF links in building a biometric sensing system. In addition, two types of classification methods involving vector quantization (VQ) and hidden Markov models (HMMs) are developed and compared for closed-set walker recognition and verification. Experimental studies in indoor line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios are conducted to validate the proposed method.

  7. Lightweight Biometric Sensing for Walker Classification Using Narrowband RF Links

    Science.gov (United States)

    Liang, Zhuo-qian

    2017-01-01

    This article proposes a lightweight biometric sensing system using ubiquitous narrowband radio frequency (RF) links for path-dependent walker classification. The fluctuated received signal strength (RSS) sequence generated by human motion is used for feature representation. To capture the most discriminative characteristics of individuals, a three-layer RF sensing network is organized for building multiple sampling links at the most common heights of upper limbs, thighs, and lower legs. The optimal parameters of sensing configuration, such as the height of link location and number of fused links, are investigated to improve sensory data distinctions among subjects, and the experimental results suggest that the synergistic sensing by using multiple links can contribute a better performance. This is the new consideration of using RF links in building a biometric sensing system. In addition, two types of classification methods involving vector quantization (VQ) and hidden Markov models (HMMs) are developed and compared for closed-set walker recognition and verification. Experimental studies in indoor line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios are conducted to validate the proposed method. PMID:29206188

  8. Philosophy vs the common sense

    Directory of Open Access Journals (Sweden)

    V. V. Chernyshov

    2017-01-01

    Full Text Available The paper deals with the antinomy of philosophy and the common sense. Philosophy emerges as a way of specifically human knowledge, which purposes analytics of the reality of subjective experience. The study reveals that in order to alienate philosophy from the common sense it was essential to revise the understanding of wisdom. The new, philosophical interpretation of wisdom – offered by Pythagoras – has laid the foundation of any future philosophy. Thus, philosophy emerges, alienating itself from the common sense, which refers to the common or collective experience. Moreover, the study examines the role of emotions, conformity and conventionality which they play with respect to the common sense. Next the author focuses on the role of philosophical intuition, guided with principles of rationality, nonconformity and scepticism, which the author professes the foundation stones of any sound philosophy. The common sense, described as deeply routed in the world of human emotions, aims at empathy, as the purpose of philosophy is to provide the rational means of knowledge. Therefore, philosophy uses thinking, keeping the permanent efforts to check and recheck data of its own experience. Thus, the first task of philosophical thinking appears to overcome the suggestion of the common sense, which purposes the social empathy, as philosophical intuition aims at independent thinking, the analytics of subjective experience. The study describes the fundamental principles of the common sense, on the one hand, and those of philosophy, on the other. The author arrives to conclusion that the common sense is unable to exceed the limits of sensual experience. Even there, where it apparently rises to a form of any «spiritual unity», even there it cannot avoid referring to the data of commonly shared sensual experience; though, philosophy, meanwhile, goes beyond sensuality, creating a discourse that would be able to alienate from it, and to make its rational

  9. Generalized eigenvalue based spectrum sensing

    KAUST Repository

    Shakir, Muhammad

    2012-01-01

    Spectrum sensing is one of the fundamental components in cognitive radio networks. In this chapter, a generalized spectrum sensing framework which is referred to as Generalized Mean Detector (GMD) has been introduced. In this context, we generalize the detectors based on the eigenvalues of the received signal covariance matrix and transform the eigenvalue based spectrum sensing detectors namely: (i) the Eigenvalue Ratio Detector (ERD) and two newly proposed detectors which are referred to as (ii) the GEometric Mean Detector (GEMD) and (iii) the ARithmetic Mean Detector (ARMD) into an unified framework of generalize spectrum sensing. The foundation of the proposed framework is based on the calculation of exact analytical moments of the random variables of the decision threshold of the respective detectors. The decision threshold has been calculated in a closed form which is based on the approximation of Cumulative Distribution Functions (CDFs) of the respective test statistics. In this context, we exchange the analytical moments of the two random variables of the respective test statistics with the moments of the Gaussian (or Gamma) distribution function. The performance of the eigenvalue based detectors is compared with the several traditional detectors including the energy detector (ED) to validate the importance of the eigenvalue based detectors and the performance of the GEMD and the ARMD particularly in realistic wireless cognitive radio network. Analytical and simulation results show that the newly proposed detectors yields considerable performance advantage in realistic spectrum sensing scenarios. Moreover, the presented results based on proposed approximation approaches are in perfect agreement with the empirical results. © 2012 Springer Science+Business Media Dordrecht.

  10. Biothermal sensing of a torsional artificial muscle.

    Science.gov (United States)

    Lee, Sung-Ho; Kim, Tae Hyeob; Lima, Márcio D; Baughman, Ray H; Kim, Seon Jeong

    2016-02-14

    Biomolecule responsive materials have been studied intensively for use in biomedical applications as smart systems because of their unique property of responding to specific biomolecules under mild conditions. However, these materials have some challenging drawbacks that limit further practical application, including their speed of response and mechanical properties, because most are based on hydrogels. Here, we present a fast, mechanically robust biscrolled twist-spun carbon nanotube yarn as a torsional artificial muscle through entrapping an enzyme linked to a thermally sensitive hydrogel, poly(N-isopropylacrylamide), utilizing the exothermic catalytic reaction of the enzyme. The induced rotation reached an equilibrated angle in less than 2 min under mild temperature conditions (25-37 °C) while maintaining the mechanical properties originating from the carbon nanotubes. This biothermal sensing of a torsional artificial muscle offers a versatile platform for the recognition of various types of biomolecules by replacing the enzyme, because an exothermic reaction is a general property accompanying a biochemical transformation.

  11. Optimized Projection Matrix for Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Jianping Xu

    2010-01-01

    Full Text Available Compressive sensing (CS is mainly concerned with low-coherence pairs, since the number of samples needed to recover the signal is proportional to the mutual coherence between projection matrix and sparsifying matrix. Until now, papers on CS always assume the projection matrix to be a random matrix. In this paper, aiming at minimizing the mutual coherence, a method is proposed to optimize the projection matrix. This method is based on equiangular tight frame (ETF design because an ETF has minimum coherence. It is impossible to solve the problem exactly because of the complexity. Therefore, an alternating minimization type method is used to find a feasible solution. The optimally designed projection matrix can further reduce the necessary number of samples for recovery or improve the recovery accuracy. The proposed method demonstrates better performance than conventional optimization methods, which brings benefits to both basis pursuit and orthogonal matching pursuit.

  12. Micro-system inertial sensing technology overview.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, James Joe

    2009-02-01

    The purpose of this report is to provide an overview of Micro-System technology as it applies to inertial sensing. Transduction methods are reviewed with capacitance and piezoresistive being the most often used in COTS Micro-electro-mechanical system (MEMS) inertial sensors. Optical transduction is the most recent transduction method having significant impact on improving sensor resolution. A few other methods are motioned which are in a R&D status to hopefully allow MEMS inertial sensors to become viable as a navigation grade sensor. The accelerometer, gyroscope and gravity gradiometer are the type of inertial sensors which are reviewed in this report. Their method of operation and a sampling of COTS sensors and grade are reviewed as well.

  13. Remote sensing for nuclear power plant siting

    International Nuclear Information System (INIS)

    Siegal, B.S.; Welby, C.W.

    1981-01-01

    It is shown that satellite remote sensing provides timely and cost-effective information for siting and site evaluation of nuclear power plants. Side-looking airborne radar (SLAR) imagery is especially valuable in regions of prolonged cloud cover and haze, and provides additional assurance in siting and licensing. In addition, a wide range of enhancement techniques should be employed and different types of image should be color-combined to provide structural and lithologic information. Coastal water circulation can also be studied through repetitive coverage and the inherently synoptic nature of imaging satellites. Among the issues discussed are snow cover, sun angle, and cloud cover, and actual site evaluation studies in the Bataan peninsula of the Philippines and Laguna Verde, California

  14. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-07-01

    Full Text Available In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM and an interdigitated capacitor (IDC-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R2 ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  15. Blood typing

    Science.gov (United States)

    ... detect these minor antigens. It is done before transfusions, except in emergency situations. Alternative Names Cross matching; Rh typing; ABO blood typing; Blood group; Anemia - immune hemolytic blood type; ...

  16. Displaced Sense: Displacement, Religion and Sense-making

    OpenAIRE

    Naidu, Maheshvari

    2016-01-01

    Whether formally categorized as refugees or not, displaced migrants experience varying degrees of vulnerability in relation to where they find themselves displaced. The internally displaced furthermore squat invisibly and outside the boundaries of the legal framework and incentive structures accorded to those classified as 'refugee'. They are thus arguably, by and large, left to source sustaining solutions for themselves. This article works through the theoretical prism of sense-making theory...

  17. Plantar Pressure Detection with Fiber Bragg Gratings Sensing System

    Directory of Open Access Journals (Sweden)

    Tsair-Chun Liang

    2016-10-01

    Full Text Available In this paper, a novel fiber-optic sensing system based on fiber Bragg gratings (FBGs to measure foot plantar pressure is proposed. This study first explores the Pedar-X insole foot pressure types of the adult-size chart and then defines six measurement areas to effectively identify four foot types: neutral foot, cavus foot, supinated foot and flat foot. The plantar pressure signals are detected by only six FBGs, which are embedded in silicone rubber. The performance of the fiber optic sensing is examined and compared with a digital pressure plate of i-Step P1000 with 1024 barometric sensors. In the experiment, there are 11 participants with different foot types to participate in the test. The Pearson correlation coefficient, which is determined from the measured results of the homemade fiber-optic plantar pressure system and i-Step P1000 plantar pressure plate, reaches up to 0.671 (p < 0.01. According to the measured results from the plantar pressure data, the proposed fiber optic sensing system can successfully identify the four different foot types. Measurements of this study have demonstrated the feasibility of the proposed system so that it can be an alternative for plantar pressure detection systems.

  18. Discrete Wigner Function Reconstruction and Compressed Sensing

    OpenAIRE

    Zhang, Jia-Ning; Fang, Lei; Ge, Mo-Lin

    2011-01-01

    A new reconstruction method for Wigner function is reported for quantum tomography based on compressed sensing. By analogy with computed tomography, Wigner functions for some quantum states can be reconstructed with less measurements utilizing this compressed sensing based method.

  19. Operational Use of Remote Sensing within USDA

    Science.gov (United States)

    Bethel, Glenn R.

    2007-01-01

    A viewgraph presentation of remote sensing imagery within the USDA is shown. USDA Aerial Photography, Digital Sensors, Hurricane imagery, Remote Sensing Sources, Satellites used by Foreign Agricultural Service, Landsat Acquisitions, and Aerial Acquisitions are also shown.

  20. ACCURACY DIMENSIONS IN REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    Á. Barsi

    2018-04-01

    Full Text Available The technological developments in remote sensing (RS during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS, which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users’ needs. The present paper gives the theoretic overview of the issue, besides

  1. Accuracy Dimensions in Remote Sensing

    Science.gov (United States)

    Barsi, Á.; Kugler, Zs.; László, I.; Szabó, Gy.; Abdulmutalib, H. M.

    2018-04-01

    The technological developments in remote sensing (RS) during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS), which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users' needs. The present paper gives the theoretic overview of the issue, besides selected, practice

  2. A Web GIS Framework for Participatory Sensing Service: An Open Source-Based Implementation

    Directory of Open Access Journals (Sweden)

    Yu Nakayama

    2017-04-01

    Full Text Available Participatory sensing is the process in which individuals or communities collect and analyze systematic data using mobile phones and cloud services. To efficiently develop participatory sensing services, some server-side technologies have been proposed. Although they provide a good platform for participatory sensing, they are not optimized for spatial data management and processing. For the purpose of spatial data collection and management, many web GIS approaches have been studied. However, they still have not focused on the optimal framework for participatory sensing services. This paper presents a web GIS framework for participatory sensing service (FPSS. The proposed FPSS enables an integrated deployment of spatial data capture, storage, and data management functions. In various types of participatory sensing experiments, users can collect and manage spatial data in a unified manner. This feature is realized by the optimized system architecture and use case based on the general requirements for participatory sensing. We developed an open source GIS-based implementation of the proposed framework, which can overcome financial difficulties that are one of the major problems of deploying sensing experiments. We confirmed with the prototype that participatory sensing experiments can be performed efficiently with the proposed FPSS.

  3. Klebsiella Typing

    DEFF Research Database (Denmark)

    Hansen, D S; Skov, R; Benedí, J.V.

    2002-01-01

    OBJECTIVE: To compare pulsed-field gel electrophoresis (PFGE) typing and O:K-serotyping of Klebsiella in two different epidemiological settings. METHODS: One hundred and four bacteremia isolates without known epidemiological relation and 47 isolates from an outbreak in a neonatal intensive care...... unit (NICU) were K-typed by countercurrent immunoelectrophoresis (CCIE), O-typed by an inhibition enzyme-linked immunosorbent assay method, and typed by pulsed-field gel electrophoresis (PFGE) using the restriction enzyme XbaI. RESULTS: Typing data for the 104 bacteremia isolates were compared...... with regard to typability, number of types, maximum number of isolates per type, and the Discriminative Index (DI). O-typing combined with K-typing (DI 0.98) as O:K-serotyping (DI 0.99) gave a very discriminative typing system, whereas O-typing alone was not very discriminative (DI 0.76). PFGE (DI 1...

  4. Remote Sensing Best Paper Award 2013

    OpenAIRE

    Prasad Thenkabail

    2013-01-01

    Remote Sensing has started to institute a “Best Paper” award to recognize the most outstanding papers in the area of remote sensing techniques, design and applications published in Remote Sensing. We are pleased to announce the first “Remote Sensing Best Paper Award” for 2013. Nominations were selected by the Editor-in-Chief and selected editorial board members from among all the papers published in 2009. Reviews and research papers were evaluated separately.

  5. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2014-06-01

    Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in

  6. How to explore dancers’ sense experiences?

    DEFF Research Database (Denmark)

    Ravn, Susanne; Hansen, Helle Ploug

    2013-01-01

    sense of how the body feels in preference to working with specific modalities of sensing. Furthermore, the dancers’ sensing of the physicality of their moving bodies appears to be shaped by their unique intention is at the same time given form through their interactions with other dancers....

  7. Remote sensing for agriculture, ecosystems, and hydrology

    International Nuclear Information System (INIS)

    Engman, E.T.

    1998-01-01

    This volume contains the proceedings of SPIE's remote sensing symposium which was held September 22--24, 1998, in Barcelona, Spain. Topics of discussion include the following: calibration techniques for soil moisture measurements; remote sensing of grasslands and biomass estimation of meadows; evaluation of agricultural disasters; monitoring of industrial and natural radioactive elements; and remote sensing of vegetation and of forest fires

  8. Assessment Can Support Reasoning and Sense Making

    Science.gov (United States)

    Suurtam, Christine

    2012-01-01

    "Reasoning and sense making should occur in every classroom every day," states "Focus in High School Mathematics: Reasoning and Sense Making" (NCTM 2009, p. 5). As this book suggests, reasoning can take many forms, including explorations and conjectures as well as explanations and justifications of student thinking. Sense making, on the other…

  9. Sense of Place in Environmental Education

    Science.gov (United States)

    Kudryavtsev, Alex; Stedman, Richard C.; Krasny, Marianne E.

    2012-01-01

    Although environmental education research has embraced the idea of sense of place, it has rarely taken into account environmental psychology-based sense of place literature whose theory and empirical studies can enhance related studies in the education context. This article contributes to research on sense of place in environmental education from…

  10. Mesoporous Silicate Materials in Sensing

    Directory of Open Access Journals (Sweden)

    Paul T. Charles

    2008-08-01

    Full Text Available Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through cocondensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  11. Studies on Five Senses Treatment

    Science.gov (United States)

    Sato, Sadaka; Miao, Tiejun; Oyama-Higa, Mayumi

    2011-06-01

    This study proposed a therapy from complementary and alternative medicine to treat mental disorder by through interactions of five senses between therapist and patient. In this method sounding a certain six voices play an important role in healing and recovery. First, we studied effects of speaking using scalp- EEG measurement. Chaos analysis of EEG showed a largely enhanced largest Lyapunov exponent (LLE) during the speaking. In addition, EEG power spectrum showed an increase over most frequencies. Second, we performed case studies on mental disorder using the therapy. Running power spectrum of EEG of patients indicated decreasing power at end of treatment, implying five senses therapy induced relaxed and lowered energy in central neural system. The results agreed with patient's reports that there were considerable decline in anxiety and improvements in mood.

  12. Sensitivity analysis in remote sensing

    CERN Document Server

    Ustinov, Eugene A

    2015-01-01

    This book contains a detailed presentation of general principles of sensitivity analysis as well as their applications to sample cases of remote sensing experiments. An emphasis is made on applications of adjoint problems, because they are more efficient in many practical cases, although their formulation may seem counterintuitive to a beginner. Special attention is paid to forward problems based on higher-order partial differential equations, where a novel matrix operator approach to formulation of corresponding adjoint problems is presented. Sensitivity analysis (SA) serves for quantitative models of physical objects the same purpose, as differential calculus does for functions. SA provides derivatives of model output parameters (observables) with respect to input parameters. In remote sensing SA provides computer-efficient means to compute the jacobians, matrices of partial derivatives of observables with respect to the geophysical parameters of interest. The jacobians are used to solve corresponding inver...

  13. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  14. Surface holograms for sensing application

    Science.gov (United States)

    Zawadzka, M.; Naydenova, I.

    2018-01-01

    Surface gratings with periodicity of 2 μm and amplitude in the range of 175 and 240 nm were fabricated in a plasticized polyvinylchloride doped with a metalloporphyrin (ZnTPP), via a single laser pulse holographic ablation process. The effect of the laser pulse energy on the profiles of the fabricated surface structure was investigated. The sensing capabilities of the fabricated diffractive structures towards amines (triethylamine, diethylamine) and pyridine vapours were then explored; the holographic structures were exposed to the analyte vapours and changes in the intensity of the diffracted light were monitored in real time at 473 nm. It was demonstrated that surface structures, fabricated in a polymer doped with a metalloporphyrin which acts as analyte receptor, have a potential in sensing application.

  15. Oxygen and carbon dioxide sensing

    Science.gov (United States)

    Ren, Fan (Inventor); Pearton, Stephen John (Inventor)

    2012-01-01

    A high electron mobility transistor (HEMT) capable of performing as a CO.sub.2 or O.sub.2 sensor is disclosed, hi one implementation, a polymer solar cell can be connected to the HEMT for use in an infrared detection system. In a second implementation, a selective recognition layer can be provided on a gate region of the HEMT. For carbon dioxide sensing, the selective recognition layer can be, in one example, PEI/starch. For oxygen sensing, the selective recognition layer can be, in one example, indium zinc oxide (IZO). In one application, the HEMTs can be used for the detection of carbon dioxide and oxygen in exhaled breath or blood.

  16. Damage classification of pipelines under water flow operation using multi-mode actuated sensing technology

    International Nuclear Information System (INIS)

    Lee, Changgil; Park, Seunghee

    2011-01-01

    In a structure, several types of damage can occur, ranging from micro-cracking to corrosion or loose bolts. This makes identifying the damage difficult with a single mode of sensing. Therefore, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In self-sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this experimental study, a pipeline system under water flow operation was examined to verify the effectiveness and robustness of the proposed structural health monitoring approach. Different types of structural damage were inflicted artificially on the pipeline system. To classify the multiple types of structural damage, supervised learning-based statistical pattern recognition was implemented by composing a three-dimensional space using the damage indices extracted from the impedance and guided wave features as well as temperature variations. For a more systematic damage classification, several control parameters were optimized to determine an optimal decision boundary for the supervised learning-based pattern recognition. Further research issues are also discussed for real-world implementations of the proposed approach

  17. Incentive Schemes for Participatory Sensing

    OpenAIRE

    Radanovic, Goran; Faltings, Boi

    2015-01-01

    We consider a participatory sensing scenario where a group of private sensors observes the same phenomenon, such as air pollution. Since sensors need to be installed and maintained, owners of sensors are inclined to provide inaccurate or random data. We design a novel payment mechanism that incentivizes honest behavior by scoring sensors based on the quality of their reports. The basic principle follows the standard Bayesian Truth Serum (BTS) paradigm, where highest rewards are obtained for r...

  18. LIDAR and atmosphere remote sensing

    CSIR Research Space (South Africa)

    Venkataraman, S

    2008-05-01

    Full Text Available using state of the art Light Detection And Ranging (LiDAR) instrumentation and other active and passive remote sensing tools. First “Lidar Field Campaign” • 2-day measurement campaign at University of Pretoria • First 23-hour continuous measurement... head2rightCirrus cloud morphology and dynamics. Atmospheric Research in Southern Africa and Indian Ocean (ARSAIO) Slide 24 © CSIR 2008 www.csir.co.za Middle atmosphere dynamics and thermal structure: comparative studies from...

  19. Remote Sensing Information Science Research

    Science.gov (United States)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  20. Mechanoluminescent Contact Type Sensor

    Directory of Open Access Journals (Sweden)

    A. K. Yefremov

    2017-01-01

    Full Text Available Mechanoluminescent sensing elements convert mechanical stress into optical radiation. Advantages of such sensors are the ability to generate an optical signal, solid-state, simple structure, and resistance to electromagnetic interference. Mechanoluminescent sensor implementations can possess the concentrated and distributed sensitivity, thereby allowing us to detect the field of mechanical stresses distributed across the area and in volume. Most modern semiconductor photo-detectors can detect mechanoluminescent radiation, so there are no difficulties to provide its detection when designing the mechanoluminescent sensing devices. Mechanoluminescent substances have especial sensitivity to shock loads, and this effect can be used to create a fuse the structure of which includes a target contact type sensor with a photosensitive actuator. The paper briefly describes the theoretical basics of mechanoluminiscence: a light signal emerges from the interaction of crystalline phosphor luminescence centers with electrically charged dislocations, moving due to the deformation of the crystal. A mathematical model of the mechanoluminescent conversion is represented as a functional interaction between parameters of the mechanical shock excitation and the sensor light emission. Examples of computing the optical mechanoluminescent output signal depending on the duration and peak level of impulse load are given. It is shown that the luminous flux, generated by mechanoluminescent sensing element when there is an ammunition-target collision causes the current emerging in photo-detector (photodiode that is sufficient for a typical actuator of the fuse train to operate. The potential possibility to create a contact target type sensor based on the light-sensitive mechanoluminescent sensor was proved by the calculation and simulation results.

  1. A Novel Sensing Circuit with Large Sensing Margin for Embedded Spin-Transfer Torque MRAMs

    DEFF Research Database (Denmark)

    Bagheriye, Leila; Toofan, Siroos; Saeidi, Roghayeh

    -disturbance and high yield. In this paper, to deal with the read reliability challenge, a high sensing margin sensing circuit with strong positive feedback is proposed. It improves the sensing margin (SM) by 10.42X/3.3X and a with 1.24X/1.59X lower read energy at iso-sensing time (2ns) in comparison...

  2. Orientation decoding: Sense in spirals?

    Science.gov (United States)

    Clifford, Colin W G; Mannion, Damien J

    2015-04-15

    The orientation of a visual stimulus can be successfully decoded from the multivariate pattern of fMRI activity in human visual cortex. Whether this capacity requires coarse-scale orientation biases is controversial. We and others have advocated the use of spiral stimuli to eliminate a potential coarse-scale bias-the radial bias toward local orientations that are collinear with the centre of gaze-and hence narrow down the potential coarse-scale biases that could contribute to orientation decoding. The usefulness of this strategy is challenged by the computational simulations of Carlson (2014), who reported the ability to successfully decode spirals of opposite sense (opening clockwise or counter-clockwise) from the pooled output of purportedly unbiased orientation filters. Here, we elaborate the mathematical relationship between spirals of opposite sense to confirm that they cannot be discriminated on the basis of the pooled output of unbiased or radially biased orientation filters. We then demonstrate that Carlson's (2014) reported decoding ability is consistent with the presence of inadvertent biases in the set of orientation filters; biases introduced by their digital implementation and unrelated to the brain's processing of orientation. These analyses demonstrate that spirals must be processed with an orientation bias other than the radial bias for successful decoding of spiral sense. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Passive infrared motion sensing technology

    International Nuclear Information System (INIS)

    Doctor, A.P.

    1994-01-01

    In the last 10 years passive IR based (8--12 microns) motion sensing has matured to become the dominant method of volumetric space protection and surveillance. These systems currently cost less than $25 to produce and yet use traditionally expensive IR optics, filters, sensors and electronic circuitry. This IR application is quite interesting in that the volumes of systems produced and the costs and performance level required prove that there is potential for large scale commercial applications of IR technology. This paper will develop the basis and principles of operation of a staring motion sensor system using a technical approach. A model for the motion of the target is developed and compared to the background. The IR power difference between the target and the background as well as the optical requirements are determined from basic principles and used to determine the performance of the system. Low cost reflective and refractive IR optics and bandpass IR filters are discussed. The pyroelectric IR detector commonly used is fully discussed and characterized. Various schemes for ''false alarms'' have been developed and are also explained. This technology is also used in passive IR based motion sensors for other applications such as lighting control. These applications are also discussed. In addition the paper will discuss new developments in IR surveillance technology such as the use of linear motion sensing arrays. This presentation can be considered a ''primer'' on the art of Passive IR Motion Sensing as applied to Surveillance Technology

  4. Remote sensing for wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.; Bay Hasager, C.; Lange, J. [Technical Univ. of Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark) (and others

    2013-06-15

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risoe) during the first PhD Summer School: Remote Sensing in Wind Energy. Thus it is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the report is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to theory. The report will allow alumni to trace back details after the course and benefit from the collection of information. This is the third edition of the report (first externally available), after very successful and demanded first two, and we warmly acknowledge all the contributing authors for their work in the writing of the chapters, and we also acknowledge all our colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art 'guideline' available for people involved in Remote Sensing in Wind Energy. (Author)

  5. George Combe and common sense.

    Science.gov (United States)

    Dyde, Sean

    2015-06-01

    This article examines the history of two fields of enquiry in late eighteenth- and early nineteenth-century Scotland: the rise and fall of the common sense school of philosophy and phrenology as presented in the works of George Combe. Although many previous historians have construed these histories as separate, indeed sometimes incommensurate, I propose that their paths were intertwined to a greater extent than has previously been given credit. The philosophy of common sense was a response to problems raised by Enlightenment thinkers, particularly David Hume, and spurred a theory of the mind and its mode of study. In order to succeed, or even to be considered a rival of these established understandings, phrenologists adapted their arguments for the sake of engaging in philosophical dispute. I argue that this debate contributed to the relative success of these groups: phrenology as a well-known historical subject, common sense now largely forgotten. Moreover, this history seeks to question the place of phrenology within the sciences of mind in nineteenth-century Britain.

  6. Dry adhesives with sensing features

    International Nuclear Information System (INIS)

    Krahn, J; Menon, C

    2013-01-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm 2 . (paper)

  7. Dry adhesives with sensing features

    Science.gov (United States)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  8. Sense

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Pasold, Anke

    2013-01-01

    COMPETITION SPONSORS SKIN is generously sponsored by Buro Happold through engineering support and the A. Zahner Co. is the competition’s fabrication sponsor. INSTITUTIONAL SUPPORT TEX-FAB is generously supported in its mission of collecting, disseminating and generating information on digital fab...... fabrication within the Texas region by the University of Houston, University of Texas at Arlington, University of Texas at Austin and the University of Texas at San Antonio....

  9. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients.

    Science.gov (United States)

    Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans

    2009-09-01

    A number of highly promiscuous seven transmembrane (7TM) receptors have been cloned and characterized within the last few years. It is noteworthy that many of these receptors are activated broadly by amino acids, proteolytic degradation products, carbohydrates, or free fatty acids and are expressed in taste tissue, the gastrointestinal tract, endocrine glands, adipose tissue, and/or kidney. These receptors thus hold the potential to act as sensors of food intake, regulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue. The promiscuous tendency in ligand recognition of these receptors is in contrast to the typical specific interaction with one physiological agonist seen for most receptors, which challenges the classic "lock-and-key" concept. We here review the molecular mechanisms of nutrient sensing of the calcium-sensing receptor, the G protein-coupled receptor family C, group 6, subtype A (GPRC6A), and the taste1 receptor T1R1/T1R3, which are sensing L-alpha-amino acids, the carbohydrate-sensing T1R2/T1R3 receptor, the proteolytic degradation product sensor GPR93 (also termed GPR92), and the free fatty acid (FFA) sensing receptors FFA1, FFA2, FFA3, GPR84, and GPR120. The involvement of the individual receptors in sensing of food intake has been validated to different degrees because of limited availability of specific pharmacological tools and/or receptor knockout mice. However, as a group, the receptors represent potential drug targets, to treat, for example, type II diabetes by mimicking food intake by potent agonists or positive allosteric modulators. The ligand-receptor interactions of the promiscuous receptors of organic nutrients thus remain an interesting subject of emerging functional importance.

  10. Autonomous Coral Reef Survey in Support of Remote Sensing

    Directory of Open Access Journals (Sweden)

    Steven G. Ackleson

    2017-10-01

    Full Text Available An autonomous surface vehicle instrumented with optical and acoustical sensors was deployed in Kane'ohe Bay, HI, U.S.A., to provide high-resolution, in situ observations of coral reef reflectance with minimal human presence. The data represented a wide range in bottom type, water depth, and illumination and supported more thorough investigations of remote sensing methods for identifying and mapping shallow reef features. The in situ data were used to compute spectral bottom reflectance and remote sensing reflectance, Rrs,λ, as a function of water depth and benthic features. The signals were used to distinguish between live coral and uncolonized sediment within the depth range of the measurements (2.5–5 m. In situRrs, λ were found to compare well with remotely sensed measurements from an imaging spectrometer, the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS, deployed on an aircraft at high altitude. Cloud cover and in situ sensor orientation were found to have minimal impact on in situRrs, λ, suggesting that valid reflectance data may be collected using autonomous surveys even when atmospheric conditions are not favorable for remote sensing operations. The use of reflectance in the red and near infrared portions of the spectrum, expressed as the red edge height, REHλ, was investigated for detecting live aquatic vegetative biomass, including coral symbionts and turf algae. The REHλ signal from live coral was detected in Kane'ohe Bay to a depth of approximately 4 m with in situ measurements. A remote sensing algorithm based on the REHλ signal was defined and applied to AVIRIS imagery of the entire bay and was found to reveal areas of shallow, dense coral and algal cover. The peak wavelength of REHλ decreased with increasing water depth, indicating that a more complete examination of the red edge signal may potentially yield a remote sensing approach to simultaneously estimate vegetative biomass and bathymetry in shallow water.

  11. Suitability Evaluation for Products Generation from Multisource Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Jining Yan

    2016-12-01

    Full Text Available With the arrival of the big data era in Earth observation, the remote sensing communities have accumulated a large amount of invaluable and irreplaceable data for global monitoring. These massive remote sensing data have enabled large-area and long-term series Earth observation, and have, in particular, made standard, automated product generation more popular. However, there is more than one type of data selection for producing a certain remote sensing product; no single remote sensor can cover such a large area at one time. Therefore, we should automatically select the best data source from redundant multisource remote sensing data, or select substitute data if data is lacking, during the generation of remote sensing products. However, the current data selection strategy mainly adopts the empirical model, and has a lack of theoretical support and quantitative analysis. Hence, comprehensively considering the spectral characteristics of ground objects and spectra differences of each remote sensor, by means of spectrum simulation and correlation analysis, we propose a suitability evaluation model for product generation. The model will enable us to obtain the Production Suitability Index (PSI of each remote sensing data. In order to validate the proposed model, two typical value-added information products, NDVI and NDWI, and two similar or complementary remote sensors, Landsat-OLI and HJ1A-CCD1, were chosen, and the verification experiments were performed. Through qualitative and quantitative analysis, the experimental results were consistent with our model calculation results, and strongly proved the validity of the suitability evaluation model. The proposed production suitability evaluation model could assist with standard, automated, serialized product generation. It will play an important role in one-station, value-added information services during the big data era of Earth observation.

  12. Hybrid Arrays for Chemical Sensing

    Science.gov (United States)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.

    In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial

  13. HAITI EARTHQUAKE DAMAGE ASSESSMENT: REVIEW OF THE REMOTE SENSING ROLE

    Directory of Open Access Journals (Sweden)

    P. Boccardo

    2012-08-01

    In a few days several map products based on the aforementioned analysis were delivered to end users: a review of the different types and purposes of this products will be provided and discussed. An assessment of the thematic accuracy of remotely sensed based products will be carried out on the basis of a review of the several available studies focused on this issue, including the main outcomes of a validation based on a comparison with in-situ data performed by the authors.

  14. The Influence of a Sense of Time on Human Development

    OpenAIRE

    Carstensen, Laura L.

    2006-01-01

    The subjective sense of future time plays an essential role in human motivation. Gradually, time left becomes a better predictor than chronological age for a range of cognitive, emotional, and motivational variables. Socioemotional selectivity theory maintains that constraints on time horizons shift motivational priorities in such a way that the regulation of emotional states becomes more important than other types of goals. This motivational shift occurs with age but also appears in other co...

  15. Thin film shape memory alloys for optical sensing applications

    International Nuclear Information System (INIS)

    Fu, Y Q; Luo, J K; Huang, W M; Flewitt, A J; Milne, W I

    2007-01-01

    Based on shape memory effect of the sputtered thin film shape memory alloys, different types of micromirror structures were designed and fabricated for optical sensing application. Using surface micromachining, TiNi membrane mirror structure has been fabricated, which can be actuated based on intrinsic two-way shape memory effect of the free-standing TiNi film. Using bulk micromachining, TiNi/Si and TiNi/Si 3 N 4 microcantilever mirror structures were fabricated

  16. Levee Health Monitoring With Radar Remote Sensing

    Science.gov (United States)

    Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.

    2012-12-01

    the entire network of more than 1100 miles of levees in the area, has used several sets of in situ data to validate the results. This type of levee health status information acquired with radar remote sensing could provide a cost-effective method to significantly improve the spatial and temporal coverage of levee systems and identify areas of concern for targeted levee maintenance, repair, and emergency response in the future. Our results show, for example, that during an emergency, when time is of the essence, SAR remote sensing offers the potential of rapidly providing levee status information that is effectively impossible to obtain over large areas using conventional monitoring, e.g., through high precision measurements of subcentimeter-scale levee movement prior to failure. The research described here was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  17. Infrared laser spectroscopic trace gas sensing

    Science.gov (United States)

    Sigrist, Markus

    2016-04-01

    Chemical sensing and analyses of gas samples by laser spectroscopic methods are attractive owing to several advantages such as high sensitivity and specificity, large dynamic range, multi-component capability, and lack of pretreatment or preconcentration procedures. The preferred wavelength range comprises the fundamental molecular absorption range in the mid-infared between 3 and 15 μm, whereas the near-infrared range covers the (10-100 times weaker) higher harmonics and combination bands. The availability of near-infrared and, particularly, of broadly tunable mid-infrared sources like external cavity quantum cascade lasers (EC-QCLs), interband cascade lasers (ICLs), difference frequency generation (DFG), optical parametric oscillators (OPOs), recent developments of diode-pumped lead salt semiconductor lasers, of supercontinuum sources or of frequency combs have eased the implementation of laser-based sensing devices. Sensitive techniques for molecular absorption measurements include multipass absorption, various configurations of cavity-enhanced techniques such as cavity ringdown (CRD), or of photoacoustic spectroscopy (PAS) including quartz-enhanced (QEPAS) or cantilever-enhanced (CEPAS) techniques. The application requirements finally determine the optimum selection of laser source and detection scheme. In this tutorial talk I shall discuss the basic principles, present various experimental setups and illustrate the performance of selected systems for chemical sensing of selected key atmospheric species. Applications include an early example of continuous vehicle emission measurements with a mobile CO2-laser PAS system [1]. The fast analysis of C1-C4 alkanes at sub-ppm concentrations in gas mixtures is of great interest for the petrochemical industry and was recently achieved with a new type of mid-infrared diode-pumped piezoelectrically tuned lead salt vertical external cavity surface emitting laser (VECSEL) [2]. Another example concerns measurements on short

  18. Mathematics of Sensing, Exploitation, and Execution (MSEE) Hierarchical Representations for the Evaluation of Sensed Data

    Science.gov (United States)

    2016-06-01

    AFRL-RY-WP-TR-2016-0123 MATHEMATICS OF SENSING, EXPLOITATION, AND EXECUTION (MSEE) Hierarchical Representations for the Evaluation of Sensed...December 2015 4. TITLE AND SUBTITLE MATHEMATICS OF SENSING, EXPLOITATION, AND EXECUTION (MSEE) Hierarchical Representations for the Evaluation of...8-98) Prescribed by ANSI Std. Z39-18 Hierarchical Representations for the Evaluation of Sensed Data Final Report Mathematics of Sensing

  19. WORD SENSE DISAMBIGUATION FOR TAMIL LANGUAGE USING PART-OF-SPEECH AND CLUSTERING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    P. ISWARYA

    2017-09-01

    Full Text Available Word sense disambiguation is an important task in Natural Language Processing (NLP, and this paper concentrates on the problem of target word selection in machine translation. The proposed method called enhanced Word Sense Disambiguation with Part-of-Speech and Clustering based Sensecollocation (WSDPCS consists of two steps namely (i Part-of-Speech (POS tagger in disambiguating word senses and (ii Enhanced with Clustering and Sense-collocation dictionary based disambiguation. In the first step an ambiguous Tamil words are disambiguated using Tamil and English POS Tagger. If it has same type of POS category labels, then it passes the word to the next step. In the second step ambiguity is resolved using sense-collocation dictionary. The experimental analysis shows that the accuracy of proposed WSDPCS method achieves 1.86% improvement over an existing method.

  20. Bioinspired Infrared Sensing Materials and Systems.

    Science.gov (United States)

    Shen, Qingchen; Luo, Zhen; Ma, Shuai; Tao, Peng; Song, Chengyi; Wu, Jianbo; Shang, Wen; Deng, Tao

    2018-05-11

    Bioinspired engineering offers a promising alternative approach in accelerating the development of many man-made systems. Next-generation infrared (IR) sensing systems can also benefit from such nature-inspired approach. The inherent compact and uncooled operation of biological IR sensing systems provides ample inspiration for the engineering of portable and high-performance artificial IR sensing systems. This review overviews the current understanding of the biological IR sensing systems, most of which are thermal-based IR sensors that rely on either bolometer-like or photomechanic sensing mechanism. The existing efforts inspired by the biological IR sensing systems and possible future bioinspired approaches in the development of new IR sensing systems are also discussed in the review. Besides these biological IR sensing systems, other biological systems that do not have IR sensing capabilities but can help advance the development of engineered IR sensing systems are also discussed, and the related engineering efforts are overviewed as well. Further efforts in understanding the biological IR sensing systems, the learning from the integration of multifunction in biological systems, and the reduction of barriers to maximize the multidiscipline collaborations are needed to move this research field forward. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Diabetes HealthSense: Resources for Living Well

    Medline Plus

    Full Text Available ... E-MAIL UPDATES External Link Disclaimer National Diabetes Education Program HealthSense Home Make a Plan Articles About HealthSense Diabetes HealthSense Title/Keywords: Go Diabetes HealthSense ...

  2. Differential Equations Models to Study Quorum Sensing.

    Science.gov (United States)

    Pérez-Velázquez, Judith; Hense, Burkhard A

    2018-01-01

    Mathematical models to study quorum sensing (QS) have become an important tool to explore all aspects of this type of bacterial communication. A wide spectrum of mathematical tools and methods such as dynamical systems, stochastics, and spatial models can be employed. In this chapter, we focus on giving an overview of models consisting of differential equations (DE), which can be used to describe changing quantities, for example, the dynamics of one or more signaling molecule in time and space, often in conjunction with bacterial growth dynamics. The chapter is divided into two sections: ordinary differential equations (ODE) and partial differential equations (PDE) models of QS. Rates of change are represented mathematically by derivatives, i.e., in terms of DE. ODE models allow describing changes in one independent variable, for example, time. PDE models can be used to follow changes in more than one independent variable, for example, time and space. Both types of models often consist of systems (i.e., more than one equation) of equations, such as equations for bacterial growth and autoinducer concentration dynamics. Almost from the onset, mathematical modeling of QS using differential equations has been an interdisciplinary endeavor and many of the works we revised here will be placed into their biological context.

  3. The use of remote sensing for landslide studies in Europe

    Science.gov (United States)

    Tofani, Veronica; Agostini, Andrea; Segoni, Samuele; Catani, Filippo; Casagli, Nicola

    2013-04-01

    The existing remote sensing techniques and their actual application in Europe for landslide detection, mapping and monitoring have been investigated. Data and information necessary to evaluate the subjects have been collected through a questionnaire, designed using a Google form, which was disseminated among end-users and researchers involved in landslide. In total, 49 answers were collected, coming from 17 European countries and from different kinds of institutions (universities, research institutes, public institutes and private companies). The spatial distribution of the answers is consistent with the distribution of landslides in Europe, the significance of landslides impact on society and the estimated landslide susceptibility in the various countries. The outcomes showed that landslide detection and mapping is mainly performed with aerial photos, often associated with optical and radar imagery. Concerning landslide monitoring, satellite radars prevail over the other types of data followed by aerial photos and meteorological sensors. Since subsampling the answers according to the different typology of institutions it is not noticeable a clear gap between research institutes and end users, it is possible to infer that in landslide remote sensing the research is advancing at the same pace as its day-to-day application. Apart from optical and radar imagery, other techniques are less widespread and some of them are not so well established, notwithstanding their performances are increasing at a fast rate as scientific and technological improvements are accomplished. Remote sensing is mainly used for detection/mapping and monitoring of slides, flows and lateral spreads with a preferably large scale of analysis (1:5000 - 1:25000). All the compilers integrate remote sensing data with other thematic data, mainly geological maps, landslide inventory maps and DTMs and derived maps. Concerning landslide monitoring, the results of the questionnaire stressed that the best

  4. Blood Types

    Science.gov (United States)

    ... blood, safe blood transfusions depend on careful blood typing and cross-matching. There are four major blood ... cause exceptions to the above patterns. ABO blood typing is not sufficient to prove or disprove paternity ...

  5. Nutrient Sensing at the Plasma Membrane of Fungal Cells.

    Science.gov (United States)

    Van Dijck, Patrick; Brown, Neil Andrew; Goldman, Gustavo H; Rutherford, Julian; Xue, Chaoyang; Van Zeebroeck, Griet

    2017-03-01

    To respond to the changing environment, cells must be able to sense external conditions. This is important for many processes including growth, mating, the expression of virulence factors, and several other regulatory effects. Nutrient sensing at the plasma membrane is mediated by different classes of membrane proteins that activate downstream signaling pathways: nontransporting receptors, transceptors, classical and nonclassical G-protein-coupled receptors, and the newly defined extracellular mucin receptors. Nontransporting receptors have the same structure as transport proteins, but have lost the capacity to transport while gaining a receptor function. Transceptors are transporters that also function as a receptor, because they can rapidly activate downstream signaling pathways. In this review, we focus on these four types of fungal membrane proteins. We mainly discuss the sensing mechanisms relating to sugars, ammonium, and amino acids. Mechanisms for other nutrients, such as phosphate and sulfate, are discussed briefly. Because the model yeast Saccharomyces cerevisiae has been the most studied, especially regarding these nutrient-sensing systems, each subsection will commence with what is known in this species.

  6. Factors affecting the remotely sensed response of coniferous forest plantations

    International Nuclear Information System (INIS)

    Danson, F.M.; Curran, P.J.

    1993-01-01

    Remote sensing of forest biophysical properties has concentrated upon forest sites with a wide range of green vegetation amount and thereby leaf area index and canopy cover. However, coniferous forest plantations, an important forest type in Europe, are managed to maintain a large amount of green vegetation with little spatial variation. Therefore, the strength of the remotely sensed signal will, it is hypothesized, be determined more by the structure of this forest than by its cover. Airborne Thematic Mapper (ATM) and SPOT-1 HRV data were used to determine the effects of this structural variation on the remotely sensed response of a coniferous forest plantation in the United Kingdom. Red and near infrared radiance were strongly and negatively correlated with a range of structural properties and with the age of the stands but weakly correlated with canopy cover. A composite variable, related to the volume of the canopy, accounted for over 75% of the variation in near infrared radiance. A simple model that related forest structural variables to the remotely sensed response was used to understand and explain this response from a coniferous forest plantation

  7. Remote sensing: a tool for park planning and management

    Science.gov (United States)

    Draeger, William C.; Pettinger, Lawrence R.

    1981-01-01

    Remote sensing may be defined as the science of imaging or measuring objects from a distance. More commonly, however, the term is used in reference to the acquisition and use of photographs, photo-like images, and other data acquired from aircraft and satellites. Thus, remote sensing includes the use of such diverse materials as photographs taken by hand from a light aircraft, conventional aerial photographs obtained with a precision mapping camera, satellite images acquired with sophisticated scanning devices, radar images, and magnetic and gravimetric data that may not even be in image form. Remotely sensed images may be color or black and white, can vary in scale from those that cover only a few hectares of the earth's surface to those that cover tens of thousands of square kilometers, and they may be interpreted visually or with the assistance of computer systems. This article attempts to describe several of the commonly available types of remotely sensed data, to discuss approaches to data analysis, and to demonstrate (with image examples) typical applications that might interest managers of parks and natural areas.

  8. Identification of Coupled Map Lattice Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Dong Xie

    2016-01-01

    Full Text Available A novel approach for the parameter identification of coupled map lattice (CML based on compressed sensing is presented in this paper. We establish a meaningful connection between these two seemingly unrelated study topics and identify the weighted parameters using the relevant recovery algorithms in compressed sensing. Specifically, we first transform the parameter identification problem of CML into the sparse recovery problem of underdetermined linear system. In fact, compressed sensing provides a feasible method to solve underdetermined linear system if the sensing matrix satisfies some suitable conditions, such as restricted isometry property (RIP and mutual coherence. Then we give a low bound on the mutual coherence of the coefficient matrix generated by the observed values of CML and also prove that it satisfies the RIP from a theoretical point of view. If the weighted vector of each element is sparse in the CML system, our proposed approach can recover all the weighted parameters using only about M samplings, which is far less than the number of the lattice elements N. Another important and significant advantage is that if the observed data are contaminated with some types of noises, our approach is still effective. In the simulations, we mainly show the effects of coupling parameter and noise on the recovery rate.

  9. Remote sensing in agriculture. [using Earth Resources Technology Satellite photography

    Science.gov (United States)

    Downs, S. W., Jr.

    1974-01-01

    Some examples are presented of the use of remote sensing in cultivated crops, forestry, and range management. Areas of concern include: the determination of crop areas and types, prediction of yield, and detection of disease; the determination of forest areas and types, timber volume estimation, detection of insect and disease attack, and forest fires; and the determination of range conditions and inventory, and livestock inventory. Articles in the literature are summarized and specific examples of work being performed at the Marshall Space Flight Center are given. Primarily, aerial photographs and photo-like ERTS images are considered.

  10. Maximize O ampersand M effectiveness with creative engineering, common sense

    International Nuclear Information System (INIS)

    Bretz, E.A.

    1994-01-01

    Typically, powerplant operations and maintenance (O ampersand M) practices are governed by three things: policies of the owner/operator and regulatory authorities; the type of equipment in place; and the level of experience in the engineering, operations, and maintenance departments at both the plant and the electric utility's headquarters staff. Yet, regardless of the type of plant involved - nuclear, hydroelectric, gas-turbine-based, fossil-fired steam/electric - creative engineering coupled with common sense provides the backdrop of many, if not most, solutions to O ampersand M problems. Some examples of creative engineering are cited. 3 figs

  11. Sensing technologies for precision irrigation

    CERN Document Server

    Ćulibrk, Dubravko; Minic, Vladan; Alonso Fernandez, Marta; Alvarez Osuna, Javier; Crnojevic, Vladimir

    2014-01-01

    This brief provides an overview of state-of-the-art sensing technologies relevant to the problem of precision irrigation, an emerging field within the domain of precision agriculture. Applications of wireless sensor networks, satellite data and geographic information systems in the domain are covered. This brief presents the basic concepts of the technologies and emphasizes the practical aspects that enable the implementation of intelligent irrigation systems. The authors target a broad audience interested in this theme and organize the content in five chapters, each concerned with a specific technology needed to address the problem of optimal crop irrigation. Professionals and researchers will find the text a thorough survey with practical applications.

  12. Modeling Common-Sense Decisions

    Science.gov (United States)

    Zak, Michail

    This paper presents a methodology for efficient synthesis of dynamical model simulating a common-sense decision making process. The approach is based upon the extension of the physics' First Principles that includes behavior of living systems. The new architecture consists of motor dynamics simulating actual behavior of the object, and mental dynamics representing evolution of the corresponding knowledge-base and incorporating it in the form of information flows into the motor dynamics. The autonomy of the decision making process is achieved by a feedback from mental to motor dynamics. This feedback replaces unavailable external information by an internal knowledgebase stored in the mental model in the form of probability distributions.

  13. Sensing behaviour in healthcare design

    DEFF Research Database (Denmark)

    Thorpe, Julia Rosemary; Hysse Forchhammer, Birgitte; Maier, Anja

    2017-01-01

    We are entering an era of distributed healthcare that should fit and respond to individual needs, behaviour and lifestyles. Designing such systems is a challenging task that requires continuous information about human behaviour on a large scale, for which pervasive sensing (e.g. using smartphones...... specifically on activity and location data that can easily be obtained from smartphones or wearables. We further demonstrate how these are applied in healthcare design using an example from dementia care. Comparing a current and proposed scenario exemplifies how integrating sensor-derived information about...... user behaviour can support the healthcare design goals of personalisation, adaptability and scalability, while emphasising patient quality of life....

  14. Size of quorum sensing communities

    DEFF Research Database (Denmark)

    Ferkinghoff-Borg, Jesper; Sams, Thomas

    2014-01-01

    Ensembles of bacteria are able to coordinate their phenotypic behavior in accordance with the size, density, and growth state of the ensemble. This is achieved through production and exchange of diffusible signal molecules in a cell–cell regulatory system termed quorum sensing. In the generic....... For a disk-shaped biofilm the geometric factor is the horizontal dimension multiplied by the height, and the square of the height of the biofilm if there is significant flow above the biofilm. A remarkably simple factorized expression for the size is obtained, which separates the all-or-none ignition caused...

  15. Wavefront error sensing for LDR

    Science.gov (United States)

    Tubbs, Eldred F.; Glavich, T. A.

    1988-01-01

    Wavefront sensing is a significant aspect of the LDR control problem and requires attention at an early stage of the control system definition and design. A combination of a Hartmann test for wavefront slope measurement and an interference test for piston errors of the segments was examined and is presented as a point of departure for further discussion. The assumption is made that the wavefront sensor will be used for initial alignment and periodic alignment checks but that it will not be used during scientific observations. The Hartmann test and the interferometric test are briefly examined.

  16. Pipeline Structural Damage Detection Using Self-Sensing Technology and PNN-Based Pattern Recognition

    International Nuclear Information System (INIS)

    Lee, Chang Gil; Park, Woong Ki; Park, Seung Hee

    2011-01-01

    In a structure, damage can occur at several scales from micro-cracking to corrosion or loose bolts. This makes the identification of damage difficult with one mode of sensing. Hence, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In the self sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this study, an experimental study on the pipeline system is carried out to verify the effectiveness and the robustness of the proposed structural health monitoring approach. Different types of structural damage are artificially inflicted on the pipeline system. To classify the multiple types of structural damage, a supervised learning-based statistical pattern recognition is implemented by composing a two-dimensional space using the damage indices extracted from the impedance and guided wave features. For more systematic damage classification, several control parameters to determine an optimal decision boundary for the supervised learning-based pattern recognition are optimized. Finally, further research issues will be discussed for real-world implementation of the proposed approach

  17. Advances on application of remote sensing technology to uranium prospecting in northwest of China

    International Nuclear Information System (INIS)

    Ye Fawang; Liu Dechang; Zhao Yingjun; Zhang Jielin; Fang Maolong

    2012-01-01

    Some advances on application of remote sensing technology to uranium prospecting in northwest of China since 21st century are presented in this paper. They included: (1) application of ETM multi-spectral remote sensing technology to identify the sandstone-type uranium ore-controlling structure in north of Ordos Basin and investigate the uranium metallogenetic geological conditions in Qiangtang Basin, Tibet, (2) application of ASTER multi-spectral and QuickBird high spatial resolution remote sensing technology to extract and analyze the oil-gas reduced alteration in Bashibulake uranium ore district, Xinjiang, (3) discovery of Salamubulake uranium metallogenetic belt in Keping, Xinjiang, using ASTER multi-spectral, QuickBird high spatial resolution, and CASI/SASI airborne hyper-spectral remote sensing comprehensively, and (4) application of CASI/SASI airborne hyper-spectral remote sensing technology to extract volcanicrock type uranium mineralization alteration in Baiyanghe area, Xinjiang. These application advances show the good application effects of remote sensing technology to uranium exploration in northwest of China, which provides important references for making further uranium prospecting using remote sensing technology. (authors)

  18. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.

    Science.gov (United States)

    Lou, Zheng; Li, La; Wang, Lili; Shen, Guozhen

    2017-12-01

    Wearable/flexible electronic sensing systems are considered to be one of the key technologies in the next generation of smart personal electronics. To realize personal portable devices with mobile electronics application, i.e., wearable electronic sensors that can work sustainably and continuously without an external power supply are highly desired. The recent progress and advantages of wearable self-powered electronic sensing systems for mobile or personal attachable health monitoring applications are presented. An overview of various types of wearable electronic sensors, including flexible tactile sensors, wearable image sensor array, biological and chemical sensor, temperature sensors, and multifunctional integrated sensing systems is provided. Self-powered sensing systems with integrated energy units are then discussed, separated as energy harvesting self-powered sensing systems, energy storage integrated sensing systems, and all-in-on integrated sensing systems. Finally, the future perspectives of self-powered sensing systems for wearable electronics are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications.

    Science.gov (United States)

    Le, Duc V; Nguyen, Thuong; Scholten, Hans; Havinga, Paul J M

    2017-11-29

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  20. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Directory of Open Access Journals (Sweden)

    Duc V. Le

    2017-11-01

    Full Text Available Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  1. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Science.gov (United States)

    Scholten, Hans; Havinga, Paul J. M.

    2017-01-01

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring. PMID:29186037

  2. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    Science.gov (United States)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  3. Analysis on the status of the application of satellite remote sensing technology to nuclear safeguards

    International Nuclear Information System (INIS)

    Tao Zhangsheng; Zhao Yingjun

    2008-01-01

    Based on the application status of satellite remote sensing technology to nuclear safeguards, advantage of satellite remote sensing technology is analyzed, main types of satellite image used in nuclear safeguards are elaborated and the main application of satellite images is regarded to detect, verify and monitor nuclear activities; verify additional protocol declaration and design information, support performing complementary access inspections; investigate alleged undeclared activities based on open source or the third party information. Application examples of satellite image in nuclear safeguards to analyze nuclear facilities by other countries, the ability of remote sensing technology in nuclear safeguards is discussed. (authors)

  4. Institutional issues affecting the integration and use of remotely sensed data and geographic information systems

    Science.gov (United States)

    Lauer, D.T.; Estes, J.E.; Jensen, J.R.; Greenlee, D.D.

    1991-01-01

    The developers as well as the users of remotely sensed data and geographic information system (GIS) techniques are associated with nearly all types of institutions in government, industry, and academia. Individuals in these various institutions often find the barriers to accepting remote sensing and GIS are not necessarily technical in nature, but can be attributed to the institutions themselves. Several major institutional issues that affect the technologies of remote sensing and GIS are data availability, data marketing and costs, equipment availability and costs, standards and practices, education and training, and organizational infrastructures. Not only are problems associated with these issues identified, but needs and opportunities also are discussed. -from Authors

  5. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure

    OpenAIRE

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced p...

  6. A temporal and spatial scaling method for quantifying daily photosynthesis using remote sensing data

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Chen, W.; Sarich, M. [Intermap Technologies Ltd., Nepean, ON (Canada); Cihlar, J. [Canada Centre for Remote Sensing, Ottawa, ON (Canada); Goulden, M. [California Univ., Irvine, CA (United States)

    1998-06-01

    Remote sensing to monitor the behaviour of terrestrial ecosystems over large areas was discussed. For this type of application the boreal ecosystem productivity simulator (BEPS) was developed, with the subsequent incorporation of the more advanced photosynthetic model. The new model improves the methodology through analytical spatial and temporal integration of canopy photosynthesis processes, and is suitable for regional remote sensing applications at moderate resolutions of 250 to 1000 m. 10 refs., 1 tab., 3 figs.

  7. Intersection Types and Related Systems

    Directory of Open Access Journals (Sweden)

    Paweł Parys

    2017-02-01

    Full Text Available We present a new approach to the following meta-problem: given a quantitative property of trees, design a type system such that the desired property for the tree generated by an infinitary ground lambda-term corresponds to some property of a derivation of a type for this lambda-term, in this type system. Our approach is presented in the particular case of the language finiteness problem for nondeterministic higher-order recursion schemes (HORSes: given a nondeterministic HORS, decide whether the set of all finite trees generated by this HORS is finite. We give a type system such that the HORS can generate a tree of an arbitrarily large finite size if and only if in the type system we can obtain derivations that are arbitrarily large, in an appropriate sense; the latter condition can be easily decided.

  8. Data Quality in Remote Sensing

    Science.gov (United States)

    Batini, C.; Blaschke, T.; Lang, S.; Albrecht, F.; Abdulmutalib, H. M.; Barsi, Á.; Szabó, G.; Kugler, Zs.

    2017-09-01

    The issue of data quality (DQ) is of growing importance in Remote Sensing (RS), due to the widespread use of digital services (incl. apps) that exploit remote sensing data. In this position paper a body of experts from the ISPRS Intercommission working group III/IVb "DQ" identifies, categorises and reasons about issues that are considered as crucial for a RS research and application agenda. This ISPRS initiative ensures to build on earlier work by other organisations such as IEEE, CEOS or GEO, in particular on the meritorious work of the Quality Assurance Framework for Earth Observation (QA4EO) which was established and endorsed by the Committee on Earth Observation Satellites (CEOS) but aims to broaden the view by including experts from computer science and particularly database science. The main activities and outcomes include: providing a taxonomy of DQ dimensions in the RS domain, achieving a global approach to DQ for heterogeneous-format RS data sets, investigate DQ dimensions in use, conceive a methodology for managing cost effective solutions on DQ in RS initiatives, and to address future challenges on RS DQ dimensions arising in the new era of the big Earth data.

  9. Taiwan's second remote sensing satellite

    Science.gov (United States)

    Chern, Jeng-Shing; Ling, Jer; Weng, Shui-Lin

    2008-12-01

    FORMOSAT-2 is Taiwan's first remote sensing satellite (RSS). It was launched on 20 May 2004 with five-year mission life and a very unique mission orbit at 891 km altitude. This orbit gives FORMOSAT-2 the daily revisit feature and the capability of imaging the Arctic and Antarctic regions due to the high enough altitude. For more than three years, FORMOSAT-2 has performed outstanding jobs and its global effectiveness is evidenced in many fields such as public education in Taiwan, Earth science and ecological niche research, preservation of the world heritages, contribution to the International Charter: space and major disasters, observation of suspected North Korea and Iranian nuclear facilities, and scientific observation of the atmospheric transient luminous events (TLEs). In order to continue the provision of earth observation images from space, the National Space Organization (NSPO) of Taiwan started to work on the second RSS from 2005. This second RSS will also be Taiwan's first indigenous satellite. Both the bus platform and remote sensing instrument (RSI) shall be designed and manufactured by NSPO and the Instrument Technology Research Center (ITRC) under the supervision of the National Applied Research Laboratories (NARL). Its onboard computer (OBC) shall use Taiwan's indigenous LEON-3 central processing unit (CPU). In order to achieve cost effective design, the commercial off the shelf (COTS) components shall be widely used. NSPO shall impose the up-screening/qualification and validation/verification processes to ensure their normal functions for proper operations in the severe space environments.

  10. Stamping SERS for creatinine sensing

    Science.gov (United States)

    Li, Ming; Du, Yong; Zhao, Fusheng; Zeng, Jianbo; Santos, Greggy M.; Mohan, Chandra; Shih, Wei-Chuan

    2015-03-01

    Urine can be obtained easily, readily and non-invasively. The analysis of urine can provide metabolic information of the body and the condition of renal function. Creatinine is one of the major components of human urine associated with muscle metabolism. Since the content of creatinine excreted into urine is relatively constant, it is used as an internal standard to normalize water variations. Moreover, the detection of creatinine concentration in urine is important for the renal clearance test, which can monitor the filtration function of kidney and health status. In more details, kidney failure can be imminent when the creatinine concentration in urine is high. A simple device and protocol for creatinine sensing in urine samples can be valuable for point-of-care applications. We reported quantitative analysis of creatinine in urine samples by using stamping surface enhanced Raman scattering (S-SERS) technique with nanoporous gold disk (NPGD) based SERS substrate. S-SERS technique enables label-free and multiplexed molecular sensing under dry condition, while NPGD provides a robust, controllable, and high-sensitivity SERS substrate. The performance of S-SERS with NGPDs is evaluated by the detection and quantification of pure creatinine and creatinine in artificial urine within physiologically relevant concentration ranges.

  11. Remote Sensing and Reflectance Profiling in Entomology.

    Science.gov (United States)

    Nansen, Christian; Elliott, Norman

    2016-01-01

    Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.

  12. Advanced sensing techniques for cognitive radio

    CERN Document Server

    Zhao, Guodong; Li, Shaoqian

    2017-01-01

    This SpringerBrief investigates advanced sensing techniques to detect and estimate the primary receiver for cognitive radio systems. Along with a comprehensive overview of existing spectrum sensing techniques, this brief focuses on the design of new signal processing techniques, including the region-based sensing, jamming-based probing, and relay-based probing. The proposed sensing techniques aim to detect the nearby primary receiver and estimate the cross-channel gain between the cognitive transmitter and primary receiver. The performance of the proposed algorithms is evaluated by simulations in terms of several performance parameters, including detection probability, interference probability, and estimation error. The results show that the proposed sensing techniques can effectively sense the primary receiver and improve the cognitive transmission throughput. Researchers and postgraduate students in electrical engineering will find this an exceptional resource.

  13. Remote sensing of forest insect disturbances: Current state and future directions.

    Science.gov (United States)

    Senf, Cornelius; Seidl, Rupert; Hostert, Patrick

    2017-08-01

    Insect disturbance are important agents of change in forest ecosystems around the globe, yet their spatial and temporal distribution and dynamics are not well understood. Remote sensing has gained much attention in mapping and understanding insect outbreak dynamics. Consequently, we here review the current literature on the remote sensing of insect disturbances. We suggest to group studies into three insect types: bark beetles, broadleaved defoliators, and coniferous defoliators. By so doing, we systematically compare the sensors and methods used for mapping insect disturbances within and across insect types. Results suggest that there are substantial differences between methods used for mapping bark beetles and defoliators, and between methods used for mapping broadleaved and coniferous defoliators. Following from this, we highlight approaches that are particularly suited for each insect type. Finally, we conclude by highlighting future research directions for remote sensing of insect disturbances. In particular, we suggest to: 1) Separate insect disturbances from other agents; 2) Extend the spatial and temporal domain of analysis; 3) Make use of dense time series; 4) Operationalize near-real time monitoring of insect disturbances; 5) Identify insect disturbances in the context of coupled human-natural systems; and 6) Improve reference data for assessing insect disturbances. Since the remote sensing of insect disturbances has gained much interest beyond the remote sensing community recently, the future developments identified here will help integrating remote sensing products into operational forest management. Furthermore, an improved spatiotemporal quantification of insect disturbances will support an inclusion of these processes into regional to global ecosystem models.

  14. Basic Remote Sensing Investigations for Beach Reconnaissance.

    Science.gov (United States)

    Progress is reported on three tasks designed to develop remote sensing beach reconnaissance techniques applicable to the benthic, beach intertidal...and beach upland zones. Task 1 is designed to develop remote sensing indicators of important beach composition and physical parameters which will...ultimately prove useful in models to predict beach conditions. Task 2 is designed to develop remote sensing techniques for survey of bottom features in

  15. LWIR Microgrid Polarimeter for Remote Sensing Studies

    Science.gov (United States)

    2010-02-28

    Polarimeter for Remote Sensing Studies 5b. GRANT NUMBER FA9550-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1. Scott Tyo 5e. TASK...and tested at the University of Arizona, and preliminary images are shown in this final report. 15. SUBJECT TERMS Remote Sensing , polarimetry 16...7.0 LWIR Microgrid Polarimeter for Remote Sensing Studies J. Scott Tyo College of Optical Sciences University of Arizona Tucson, AZ, 85721 tyo

  16. Diagonalizing sensing matrix of broadband RSE

    International Nuclear Information System (INIS)

    Sato, Shuichi; Kokeyama, Keiko; Kawazoe, Fumiko; Somiya, Kentaro; Kawamura, Seiji

    2006-01-01

    For a broadband-operated RSE interferometer, a simple and smart length sensing and control scheme was newly proposed. The sensing matrix could be diagonal, owing to a simple allocation of two RF modulations and to a macroscopic displacement of cavity mirrors, which cause a detuning of the RF modulation sidebands. In this article, the idea of the sensing scheme and an optimization of the relevant parameters will be described

  17. Mixing height determination using remote sensing systems. General remarks

    Energy Technology Data Exchange (ETDEWEB)

    Beyrich, F. [BTU Cottbus, LS Umweltmeteorologie, Cottbus (Germany)

    1997-10-01

    Remote sensing systems can be considered today as a real alternative to classical soundings with respect to the MH (mixing height) determination. They have the basic advantage to allow continuous monitoring of the ABL (atmospheric boundary layer). Some technical issues which limit their operational use at present should be solved in the near future (frequency allocation, eye safety, costs). Taking into account specific operating conditions and the formulated-above requirements of a sounding system to be used for MH determination it becomes obvious that none of the available systems meets all of them, i.e., the `Mixing height-meter` does not exist. Therefore, reliable MH determination under a wide variety of conditions can be achieved only by integrating different instruments into a complex sounding system. The S-profiles provide a suitable data base for MH estimation from all types of remote sensing instruments. The criteria to deduce MH-values from these profiles should consider the structure type and the evolution stage of the ABL as well as the shape of the profiles. A certain kind of harmonization concerning these criteria should be achieved. MH values derived automatically from remote sensing data appear to be not yet reliable enough for direct operational use, they should be in any case critically examined by a trained analyst. Contemporary mathematical methods (wavelet transforms, fuzzy logics) are supposed to allow considerable progress in this field in the near future. (au) 19 refs.

  18. Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens.

    Science.gov (United States)

    Zhao, J; Chen, M; Quan, C S; Fan, S D

    2015-09-01

    In many countries, infectious diseases are a considerable threat to aquaculture. The pathogenicity of micro-organisms that infect aquaculture systems is closely related to the release of virulence factors and the formation of biofilms, both of which are regulated by quorum sensing (QS). Thus, QS disruption is a potential strategy for preventing disease in aquaculture systems. QS inhibitors (QSIs) not only inhibit the expression of virulence-associated genes but also attenuate the virulence of aquaculture pathogens. In this review, we discuss QS systems in important aquaculture pathogens and focus on the relationship between QS mechanisms and bacterial virulence in aquaculture. We further elucidate QS disruption strategies for targeting aquaculture pathogens. Four main types of QSIs that target aquaculture pathogens are discussed based on their mechanisms of action. © 2014 John Wiley & Sons Ltd.

  19. Energy-efficient sensing in wireless sensor networks using compressed sensing.

    Science.gov (United States)

    Razzaque, Mohammad Abdur; Dobson, Simon

    2014-02-12

    Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.

  20. Textbooks and technical references for remote sensing

    Science.gov (United States)

    Rudd, R. D.; Bowden, L. W.; Colwell, R. N.; Estes, J. E.

    1980-01-01

    A selective bibliography is presented which cites 89 textbooks, monographs, and articles covering introductory and advanced remote sensing techniques, photointerpretation, photogrammetry, and image processing.

  1. Sensing the gas metal arc welding process

    Science.gov (United States)

    Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.

    1994-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  2. Blind compressive sensing dynamic MRI

    Science.gov (United States)

    Lingala, Sajan Goud; Jacob, Mathews

    2013-01-01

    We propose a novel blind compressive sensing (BCS) frame work to recover dynamic magnetic resonance images from undersampled measurements. This scheme models the dynamic signal as a sparse linear combination of temporal basis functions, chosen from a large dictionary. In contrast to classical compressed sensing, the BCS scheme simultaneously estimates the dictionary and the sparse coefficients from the undersampled measurements. Apart from the sparsity of the coefficients, the key difference of the BCS scheme with current low rank methods is the non-orthogonal nature of the dictionary basis functions. Since the number of degrees of freedom of the BCS model is smaller than that of the low-rank methods, it provides improved reconstructions at high acceleration rates. We formulate the reconstruction as a constrained optimization problem; the objective function is the linear combination of a data consistency term and sparsity promoting ℓ1 prior of the coefficients. The Frobenius norm dictionary constraint is used to avoid scale ambiguity. We introduce a simple and efficient majorize-minimize algorithm, which decouples the original criterion into three simpler sub problems. An alternating minimization strategy is used, where we cycle through the minimization of three simpler problems. This algorithm is seen to be considerably faster than approaches that alternates between sparse coding and dictionary estimation, as well as the extension of K-SVD dictionary learning scheme. The use of the ℓ1 penalty and Frobenius norm dictionary constraint enables the attenuation of insignificant basis functions compared to the ℓ0 norm and column norm constraint assumed in most dictionary learning algorithms; this is especially important since the number of basis functions that can be reliably estimated is restricted by the available measurements. We also observe that the proposed scheme is more robust to local minima compared to K-SVD method, which relies on greedy sparse coding

  3. KSHV strategies for host dsDNA sensing machinery.

    Science.gov (United States)

    Gao, Hang; Song, Yanyan; Liu, Chengrong; Liang, Qiming

    2016-12-01

    The innate immune system utilizes pattern recognition receptors cyclic GMP-AMP synthase (cGAS) to sense cytosolic double-stranded (ds) DNA and initiate type 1 interferon signaling and autophagy pathway, which collaborate to limit pathogen infections as well as alarm the adaptive immune response. The genomes of herpesviruses are large dsDNA, which represent a major class of pathogen signatures recognized by cellular DNA sensor cGAS. However, to successfully establish the persistent infection, herpesviruses have evolved their viral genes to modulate different aspects of host immune signaling. This review summarizes the evasion strategies of host cGAS DNA sensing pathway by Kaposi's Sarcoma-associated Herpesvirus (KSHV) and their contributions to KSHV life cycles.

  4. Novel fluorescent carbonic nanomaterials for sensing and imaging

    International Nuclear Information System (INIS)

    Demchenko, Alexander P; Dekaliuk, Mariia O

    2013-01-01

    Small brightly fluorescent carbon nanoparticles have emerged as a new class of materials important for sensing and imaging applications. We analyze comparatively the properties of nanodiamonds, graphene and graphene oxide ‘dots’, of modified carbon nanotubes and of diverse carbon nanoparticles known as ‘C-dots’ obtained by different methods. The mechanisms of their light absorption and luminescence emission are still unresolved and the arguments are presented for their common origin. Regarding present and potential applications, we provide critical comparison with the other types of fluorescence reporters, such as organic dyes and semiconductor quantum dots. Their most prospective applications in sensing (based on the changes of intensity, FRET and lifetime) and in imaging technologies on the level of living cells and whole bodies are overviewed. The possibilities for design on their basis of multifunctional nanocomposites on a broader scale of theranostics are outlined. (topical review)

  5. Wearable Eating Habit Sensing System Using Internal Body Sound

    Science.gov (United States)

    Shuzo, Masaki; Komori, Shintaro; Takashima, Tomoko; Lopez, Guillaume; Tatsuta, Seiji; Yanagimoto, Shintaro; Warisawa, Shin'ichi; Delaunay, Jean-Jacques; Yamada, Ichiro

    Continuous monitoring of eating habits could be useful in preventing lifestyle diseases such as metabolic syndrome. Conventional methods consist of self-reporting and calculating mastication frequency based on the myoelectric potential of the masseter muscle. Both these methods are significant burdens for the user. We developed a non-invasive, wearable sensing system that can record eating habits over a long period of time in daily life. Our sensing system is composed of two bone conduction microphones placed in the ears that send internal body sound data to a portable IC recorder. Applying frequency spectrum analysis on the collected sound data, we could not only count the number of mastications during eating, but also accurately differentiate between eating, drinking, and speaking activities. This information can be used to evaluate the regularity of meals. Moreover, we were able to analyze sound features to classify the types of foods eaten by food texture.

  6. Sensing of volatile organic compounds by copper phthalocyanine thin films

    Science.gov (United States)

    Ridhi, R.; Saini, G. S. S.; Tripathi, S. K.

    2017-02-01

    Thin films of copper phthalocyanine have been deposited by thermal evaporation technique. We have subsequently exposed these films to the vapours of methanol, ethanol and propanol. Optical absorption, infrared spectra and electrical conductivities of these films before and after exposure to chemical vapours have been recorded in order to study their sensing mechanisms towards organic vapours. These films exhibit maximum sensing response to methanol while low sensitivities of the films towards ethanol and propanol have been observed. The changes in sensitivities have been correlated with presence of carbon groups in the chemical vapours. The effect of different types of electrodes on response-recovery times of the thin film with organic vapours has been studied and compared. The electrodes gap distance affects the sensitivity as well as response-recovery time values of the thin films.

  7. Using Remotely Sensed Data to Map Urban Vulnerability to Heat

    Science.gov (United States)

    Stefanov, William L.

    2010-01-01

    This slide presentation defines remote sensing, and presents examples of remote sensing and astronaut photography, which has been a part of many space missions. The presentation then reviews the project aimed at analyzing urban vulnerability to climate change, which is to test the hypotheses that Exposure to excessively warm weather threatens human health in all types of climate regimes; Heat kills and sickens multitudes of people around the globe every year -- directly and indirectly, and Climate change, coupled with urban development, will impact human health. Using Multiple Endmember Spectral Mixing Analysis (MESMA), and the Phoenix urban area as the example, the Normalized Difference Vegetation Index (NDVI) is calculated, a change detection analysis is shown, and surface temperature is shown.

  8. Unravelling intention: distal intentions increase the subjective sense of agency.

    Science.gov (United States)

    Vinding, Mikkel C; Pedersen, Michael N; Overgaard, Morten

    2013-09-01

    Experimental studies investigating the contribution of conscious intention to the generation of a sense of agency for one's own actions tend to rely upon a narrow definition of intention. Often it is operationalized as the conscious sensation of wanting to move right before movement. Existing results and discussion are therefore missing crucial aspects of intentions, namely intention as the conscious sensation of wanting to move in advance of the movement. In the present experiment we used an intentional binding paradigm, in which we distinguished between immediate (proximal) intention, as usually investigated, and longer standing (distal) intention. The results showed that the binding effect was significantly enhanced for distal intentions compared to proximal intentions, indicating that the former leads to stronger sense of agency. Our finding provides empirical support for a crucial distinction between at least two types of intention when addressing the efficacy of conscious intentions. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Camera-based micro interferometer for distance sensing

    Science.gov (United States)

    Will, Matthias; Schädel, Martin; Ortlepp, Thomas

    2017-12-01

    Interference of light provides a high precision, non-contact and fast method for measurement method for distances. Therefore this technology dominates in high precision systems. However, in the field of compact sensors capacitive, resistive or inductive methods dominates. The reason is, that the interferometric system has to be precise adjusted and needs a high mechanical stability. As a result, we have usual high-priced complex systems not suitable in the field of compact sensors. To overcome these we developed a new concept for a very small interferometric sensing setup. We combine a miniaturized laser unit, a low cost pixel detector and machine vision routines to realize a demonstrator for a Michelson type micro interferometer. We demonstrate a low cost sensor smaller 1cm3 including all electronics and demonstrate distance sensing up to 30 cm and resolution in nm range.

  10. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Chelsea Cervantes

    2010-09-01

    Full Text Available Over the last several decades, remote sensing has emerged as an effective tool to monitor irrigated lands over a variety of climatic conditions and locations. The objective of this review, which summarizes the methods and the results of existing remote sensing studies, is to synthesize principle findings and assess the state of the art. We take a taxonomic approach to group studies based on location, scale, inputs, and methods, in an effort to categorize different approaches within a logical framework. We seek to evaluate the ability of remote sensing to provide synoptic and timely coverage of irrigated lands in several spectral regions. We also investigate the value of archived data that enable comparison of images through time. This overview of the studies to date indicates that remote sensing-based monitoring of irrigation is at an intermediate stage of development at local scales. For instance, there is overwhelming consensus on the efficacy of vegetation indices in identifying irrigated fields. Also, single date imagery, acquired at peak growing season, may suffice to identify irrigated lands, although to multi-date image data are necessary for improved classification and to distinguish different crop types. At local scales, the mapping of irrigated lands with remote sensing is also strongly affected by the timing of image acquisition and the number of images used. At the regional and global scales, on the other hand, remote sensing has not been fully operational, as methods that work in one place and time are not necessarily transferable to other locations and periods. Thus, at larger scales, more work is required to indentify the best spectral indices, best time periods, and best classification methods under different climatological and cultural environments. Existing studies at regional scales also establish the fact that both remote sensing and national statistical approaches require further refinement with a substantial investment of

  11. Introductory remote sensing principles and concepts principles and concepts

    CERN Document Server

    Gibson, Paul

    2013-01-01

    Introduction to Remote Sensing Principles and Concepts provides a comprehensive student introduction to both the theory and application of remote sensing. This textbook* introduces the field of remote sensing and traces its historical development and evolution* presents detailed explanations of core remote sensing principles and concepts providing the theory required for a clear understanding of remotely sensed images.* describes important remote sensing platforms - including Landsat, SPOT and NOAA * examines and illustrates many of the applications of remotely sensed images in various fields.

  12. Remote sensing of the biosphere

    Science.gov (United States)

    1986-01-01

    The current state of understanding of the biosphere is reviewed, the major scientific issues to be addressed are discussed, and techniques, existing and in need of development, for the science are evaluated. It is primarily concerned with developing the scientific capabilities of remote sensing for advancing the subject. The global nature of the scientific objectives requires the use of space-based techniques. The capability to look at the Earth as a whole was developed only recently. The space program has provided the technology to study the entire Earth from artificial satellites, and thus is a primary force in approaches to planetary biology. Space technology has also permitted comparative studies of planetary atmospheres and surfaces. These studies coupled with the growing awareness of the effects that life has on the entire Earth, are opening new lines of inquiry in science.

  13. Remote sensing using MIMO systems

    Science.gov (United States)

    Bikhazi, Nicolas; Young, William F; Nguyen, Hung D

    2015-04-28

    A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.

  14. Energy and remote sensing applications

    Science.gov (United States)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1978-01-01

    The nature of the U.S. energy problem is examined. Based upon the best available estimates, it appears that demand for OPEC oil will exceed OPEC productive capacity in the early to mid-eighties. The upward pressure on world oil prices resulting from this supply/demand gap could have serious international consequences, both financial and in terms of foreign policy implementation. National Energy Plan objectives in response to this situation are discussed. Major strategies for achieving these objectives include a conversion of industry and utilities from oil and gas to coal and other abundant fuels. Remote sensing from aircraft and spacecraft could make significant contributions to the solution of energy problems in a number of ways, related to exploration of energy-related resources, the efficiency and safety of exploitation procedures, power plant siting, environmental monitoring and assessment, and the transportation infrastructure.

  15. Terahertz Sensing, Imaging and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Otani, C.; Hoshing, H.; Sasaki, Y.; Maki, K.; Hayashi, A. [RIKEN Advanced Science Institute, Sendai (Japan)

    2008-11-15

    Diagnosis using terahertz (THz) wave holds a great potential for various applications in various fields because of its transmittance to many soft materials with the good spatial resolution. In addition, the presence of specific spectral absorption features of crystalline materials is also important for many applications. Such features are different from material to material to material and is applicable for identifying materials inside packages that are opaque to visible light. One of the most impressive examples of such applications is the detection of illicit drugs inside envelopes. In this talk, we will present our recent topics of THz sensing, imaging and applications including this example. We will also present the cancer diagnosis, an application of the photonic crystal to high sensitivity detection, and gas spectroscopy if we have enough time. We also would like to briefly review the recent topics related to THz applications.

  16. Terahertz Sensing, Imaging and Applications

    International Nuclear Information System (INIS)

    Otani, C.; Hoshing, H.; Sasaki, Y.; Maki, K.; Hayashi, A.

    2008-01-01

    Diagnosis using terahertz (THz) wave holds a great potential for various applications in various fields because of its transmittance to many soft materials with the good spatial resolution. In addition, the presence of specific spectral absorption features of crystalline materials is also important for many applications. Such features are different from material to material to material and is applicable for identifying materials inside packages that are opaque to visible light. One of the most impressive examples of such applications is the detection of illicit drugs inside envelopes. In this talk, we will present our recent topics of THz sensing, imaging and applications including this example. We will also present the cancer diagnosis, an application of the photonic crystal to high sensitivity detection, and gas spectroscopy if we have enough time. We also would like to briefly review the recent topics related to THz applications

  17. Making sense of employer collectivism

    DEFF Research Database (Denmark)

    Ibsen, Christian Lyhne

    2016-01-01

    This conceptual article argues that preferences of employers for collective action cannot be reduced to rational actors making decisions based on market structures or institutional logics. Both markets and institutions are inherently ambiguous and employers therefore have to settle for plausible...... – rather than accurate – rational strategies among many alternatives through so-called sensemaking. Sensemaking refers to the process by which employers continuously make sense of their competitive environment by building causal stories of competitive advantages. The article therefore tries to provide......, unlike countries in similar situations, for example Finland and Sweden, Danish employers retained a coordinated industry-level bargaining system, which makes it an interesting paradox to study from the vantage point of sensemaking....

  18. Sensing with Superconducting Point Contacts

    Directory of Open Access Journals (Sweden)

    Argo Nurbawono

    2012-05-01

    Full Text Available Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.

  19. A computational model for how cells choose temporal or spatial sensing during chemotaxis.

    Science.gov (United States)

    Tan, Rui Zhen; Chiam, Keng-Hwee

    2018-03-01

    Cell size is thought to play an important role in choosing between temporal and spatial sensing in chemotaxis. Large cells are thought to use spatial sensing due to large chemical difference at its ends whereas small cells are incapable of spatial sensing due to rapid homogenization of proteins within the cell. However, small cells have been found to polarize and large cells like sperm cells undergo temporal sensing. Thus, it remains an open question what exactly governs spatial versus temporal sensing. Here, we identify the factors that determines sensing choices through mathematical modeling of chemotactic circuits. Comprehensive computational search of three-node signaling circuits has identified the negative integral feedback (NFB) and incoherent feedforward (IFF) circuits as capable of adaptation, an important property for chemotaxis. Cells are modeled as one-dimensional circular system consisting of diffusible activator, inactivator and output proteins, traveling across a chemical gradient. From our simulations, we find that sensing outcomes are similar for NFB or IFF circuits. Rather than cell size, the relevant parameters are the 1) ratio of cell speed to the product of cell diameter and rate of signaling, 2) diffusivity of the output protein and 3) ratio of the diffusivities of the activator to inactivator protein. Spatial sensing is favored when all three parameters are low. This corresponds to a cell moving slower than the time it takes for signaling to propagate across the cell diameter, has an output protein that is polarizable and has a local-excitation global-inhibition system to amplify the chemical gradient. Temporal sensing is favored otherwise. We also find that temporal sensing is more robust to noise. By performing extensive literature search, we find that our prediction agrees with observation in a wide range of species and cell types ranging from E. coli to human Fibroblast cells and propose that our result is universally applicable.

  20. Wageningen UR Unmanned Aerial Remote Sensing Facility - Overview of activities

    Science.gov (United States)

    Bartholomeus, Harm; Keesstra, Saskia; Kooistra, Lammert; Suomalainen, Juha; Mucher, Sander; Kramer, Henk; Franke, Jappe

    2016-04-01

    To support environmental management there is an increasing need for timely, accurate and detailed information on our land. Unmanned Aerial Systems (UAS) are increasingly used to monitor agricultural crop development, habitat quality or urban heat efficiency. An important reason is that UAS technology is maturing quickly while the flexible capabilities of UAS fill a gap between satellite based and ground based geo-sensing systems. In 2012, different groups within Wageningen University and Research Centre have established an Unmanned Airborne Remote Sensing Facility. The objective of this facility is threefold: a) To develop innovation in the field of remote sensing science by providing a platform for dedicated and high-quality experiments; b) To support high quality UAS services by providing calibration facilities and disseminating processing procedures to the UAS user community; and c) To promote and test the use of UAS in a broad range of application fields like habitat monitoring, precision agriculture and land degradation assessment. The facility is hosted by the Laboratory of Geo-Information Science and Remote Sensing (GRS) and the Department of Soil Physics and Land Management (SLM) of Wageningen University together with the team Earth Informatics (EI) of Alterra. The added value of the Unmanned Aerial Remote Sensing Facility is that compared to for example satellite based remote sensing more dedicated science experiments can be prepared. This includes for example higher frequent observations in time (e.g., diurnal observations), observations of an object under different observation angles for characterization of BRDF and flexibility in use of camera's and sensors types. In this way, laboratory type of set ups can be tested in a field situation and effects of up-scaling can be tested. In the last years we developed and implemented different camera systems (e.g. a hyperspectral pushbroom system, and multispectral frame cameras) which we operated in projects all

  1. Remote Sensing of Ocean Color

    Science.gov (United States)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  2. Heterodyne lidar for chemical sensing

    International Nuclear Information System (INIS)

    Oldenborg, Richard C.; Tiee, Joe J.; Shimada, Tsutomu; Wilson, Carl W.; Remelius, Dennis K.; Fox, Jay; Swim, Cynthia

    2004-01-01

    The overall objective is to assess the detection performance of LWIR (long wavelength infrared) coherent Lidar systems that potentially possess enhanced effluent detection capabilities. Previous work conducted by Los Alamos has demonstrated that infrared DIfferential Absorption Lidar (DIAL) is capable of detecting chemicals in plumes from long standoff ranges. Our DIAL approach relied on the reflectivity of topographical targets to provide a strong return signal. With the inherent advantage of applying heterodyne transceivers to approach single-photon detection in LWIR, it is projected that marked improvements in detection range or in spatial coverage can be attained. In some cases, the added photon detection sensitivity could be utilized for sensing 'soft targets', such as atmospheric and threat aerosols where return signal strength is drastically reduced, as opposed to topographical targets. This would allow range resolved measurements and could lead to the mitigation of the limiting source of noise due to spectral/spatial/temporal variability of the ground scene. The ability to distinguish normal variations in the background from true chemical signatures is crucial to the further development of sensitive remote chemical sensing technologies. One main difficulty in demonstrating coherent DIAL detection is the development of suitable heterodyne transceivers that can achieve rapid multi-wavelength tuning required for obtaining spectral signature information. LANL has recently devised a novel multi-wavelength heterodyne transceiver concept that addresses this issue. A 5-KHz prototype coherent CO 2 transceiver has been constructed and is being now used to help address important issues in remote CBW agent standoff detection. Laboratory measurements of signal-to-noise ratio (SNR) will be reported. Since the heterodyne detection scheme fundamentally has poor shot-to-shot signal statistics, in order to achieve sensitive detection limits, favorable averaging statistics

  3. Type Tricks

    DEFF Research Database (Denmark)

    Beier, Sofie

    2017-01-01

    Type Tricks’ is about typographical rules and the underlying structure of the work process in the design of new typefaces. In that way, it is both a reference book and a user manual. In an illustrative format, it presents the different stages of type design in an easily accessible manner. Being...

  4. Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies.

    Science.gov (United States)

    Iurescia, Sandra; Fioretti, Daniela; Rinaldi, Monica

    2018-01-01

    The innate immune system provides the first line of defense against pathogen infection though also influences pathways involved in cancer immunosurveillance. The innate immune system relies on a limited set of germ line-encoded sensors termed pattern recognition receptors (PRRs), signaling proteins and immune response factors. Cytosolic receptors mediate recognition of danger damage-associated molecular patterns (DAMPs) signals. Once activated, these sensors trigger multiple signaling cascades, converging on the production of type I interferons and proinflammatory cytokines. Recent studies revealed that PRRs respond to nucleic acids (NA) released by dying, damaged, cancer cells, as danger DAMPs signals, and presence of signaling proteins across cancer types suggests that these signaling mechanisms may be involved in cancer biology. DAMPs play important roles in shaping adaptive immune responses through the activation of innate immune cells and immunological response to danger DAMPs signals is crucial for the host response to cancer and tumor rejection. Furthermore, PRRs mediate the response to NA in several vaccination strategies, including DNA immunization. As route of double-strand DNA intracellular entry, DNA immunization leads to expression of key components of cytosolic NA-sensing pathways. The involvement of NA-sensing mechanisms in the antitumor response makes these pathways attractive drug targets. Natural and synthetic agonists of NA-sensing pathways can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8 + T cells, and NK cells, into the tumor microenvironment and are being explored as promising adjuvants in cancer immunotherapies. In this minireview, we discuss how cGAS-STING and RIG-I-MAVS pathways have been targeted for cancer treatment in preclinical translational researches. In addition, we present a targeted selection of recent clinical trials employing agonists of cytosolic NA-sensing pathways showing how these pathways

  5. Sense of social support in chonic pain patients

    Directory of Open Access Journals (Sweden)

    Ancane G.

    2012-10-01

    Full Text Available Statistical data show that one in five adults of the European citizen suffer from some type of chronic pain. One of the most common types of chronic pain is chronic low back and neck pain. Emotional factors are currently viewed as important determinants in pain perception and behaviour. The perceived social and emotional support have impact to the individual’s adaptation to chronic disease (Cohen, Wills, 1985. The material: 110 chronic low back pain (CLBP patients (48 male and 62 female; in age from 24 to 60 years, mean: 44.2±8, 0 and pilot study of 23 chronic neck pain (CNP patients (19 female and 4 male; in age from 35 to 60 years, mean: 48, 1 ±6. The assessment methods: structured interview; Hospital Anxiety and Depression Scale (HADS. SF-36 ® Health Survey: assessment of emotional and social support. Results and conclusions: CLBP patients in presence of symptoms of depression and elevated level of anxiety matched for socio-demographic features had less sense of social support and marked pain impact to daily activities, lower self rating health relating quality of life. In CLBP patients the sense of social and emotional support had relevant interaction with level of participation in daily activities both in patients with and without mental health problems. This fact has to be considered in process of rehabilitation and in managing of health care of CLBP patients. The results of CNP patients pilot study revealed interesting trend that chronic back and neck pain patients seems to be quite different according to sense of social and emotional support, therefore sense of social and emotional support in different chronic pain patients need further research to improve the process and results of rehabilitation in these patients.

  6. Type inference for correspondence types

    DEFF Research Database (Denmark)

    Hüttel, Hans; Gordon, Andy; Hansen, Rene Rydhof

    2009-01-01

    We present a correspondence type/effect system for authenticity in a π-calculus with polarized channels, dependent pair types and effect terms and show how one may, given a process P and an a priori type environment E, generate constraints that are formulae in the Alternating Least Fixed......-Point (ALFP) logic. We then show how a reasonable model of the generated constraints yields a type/effect assignment such that P becomes well-typed with respect to E if and only if this is possible. The formulae generated satisfy a finite model property; a system of constraints is satisfiable if and only...... if it has a finite model. As a consequence, we obtain the result that type/effect inference in our system is polynomial-time decidable....

  7. MEMS based impedimetric sensing of phthalates

    KAUST Repository

    Zia, Asif I.

    2013-05-01

    Phthalate esters are known ubiquitous teratogenic and carcinogenic environmental and food pollutants. Their detection and quantification is strictly laboratory based, time consuming, expensive and professionally handled procedure. Presented research work describes a real time non-invasive detection technique for phthalates detection in ethanol, water and drinks. The new type of inter-digital sensor design incorporating multiple sensing gold electrodes were fabricated on silicon substrate based on thin film micro-electromechanical system (MEMS) using semiconductor device fabrication technology. A passivation layer of Silicon Nitride (Si3N4) was used to functionalize the sensor. Various concentrations (0.1 to 20ppm) of DINP (di-isononyl phthalates) in ethanol and di (2-ethylhexyl) phthalate (DEHP) in deionized MilliQ water were subjected to the testing system by dip testing method. Electrochemical impedance spectroscopy (EIS) technique was used to obtain impedance spectra in order to determine sample conductance for evaluation of its dielectric properties. The impedance spectra so obtained showed that the sensor was able to detect the presence of phthalates in the samples distinctively. Electrochemical Spectrum Analyser was used to model the experimentally obtained impedance spectra by curve fitting technique to figure out Constant Phase Element (CPE) equivalent circuit. Locally available energy drink and juice was added with phthalates in concentrations of 2, 6 and 10ppm to observe the performance of the sensor in such products. Experimental results showed that the new sensor was able to detect different concentrations of phthalates in energy drinks. © 2013 IEEE.

  8. Biochars as Innovative Humidity Sensing Materials

    Directory of Open Access Journals (Sweden)

    Daniele Ziegler

    2017-12-01

    Full Text Available In this work, biochar-based humidity sensors were prepared by drop-coating technique. Polyvinylpyrrolidone (PVP was added as an organic binder to improve the adhesion of the sensing material onto ceramic substrates having platinum electrodes. Two biochars obtained from different precursors were used. The sensors were tested toward relative humidity (RH at room temperature and showed a response starting around 5 RH%, varying the impedance of 2 orders of magnitude after exposure to almost 100% relative humidity. In both cases, biochar materials are behaving as p-type semiconductors under low amounts of humidity. On the contrary, for higher RH values, the impedance decreased due to water molecules adsorption. When PVP is added to SWP700 biochar, n-p heterojunctions are formed between the two semiconductors, leading to a higher sensitivity at low RH values for the sensors SWP700-10% PVP and SWP700-20% PVP with respect to pure SWP700 sensor. Finally, response and recovery times were both reasonably fast (in the order of 1 min.

  9. Fine Guidance Sensing for Coronagraphic Observatories

    Science.gov (United States)

    Brugarolas, Paul; Alexander, James W.; Trauger, John T.; Moody, Dwight C.

    2011-01-01

    Three options have been developed for Fine Guidance Sensing (FGS) for coronagraphic observatories using a Fine Guidance Camera within a coronagraphic instrument. Coronagraphic observatories require very fine precision pointing in order to image faint objects at very small distances from a target star. The Fine Guidance Camera measures the direction to the target star. The first option, referred to as Spot, was to collect all of the light reflected from a coronagraph occulter onto a focal plane, producing an Airy-type point spread function (PSF). This would allow almost all of the starlight from the central star to be used for centroiding. The second approach, referred to as Punctured Disk, collects the light that bypasses a central obscuration, producing a PSF with a punctured central disk. The final approach, referred to as Lyot, collects light after passing through the occulter at the Lyot stop. The study includes generation of representative images for each option by the science team, followed by an engineering evaluation of a centroiding or a photometric algorithm for each option. After the alignment of the coronagraph to the fine guidance system, a "nulling" point on the FGS focal point is determined by calibration. This alignment is implemented by a fine alignment mechanism that is part of the fine guidance camera selection mirror. If the star images meet the modeling assumptions, and the star "centroid" can be driven to that nulling point, the contrast for the coronagraph will be maximized.

  10. Miniaturized reflectance devices for chemical sensing

    International Nuclear Information System (INIS)

    Johnson, Brandy J; Erickson, Jeffrey S; Malanoski, Anthony P; Stenger, David A; Kim, Julie; Leska, Iwona A; Monk, Stormie M; Edwards, Daniel J; Young, Trent N; Bovais, Chris; Verbarg, Jasenka; Russell, Ross D

    2014-01-01

    This effort seeks to evaluate the potential of the TAOS TCS3200 RGB sensor chip in a reflectance configuration for use in target detection based on color changes in porphyrin indicators using alcohols as model targets. The chip was evaluated as provided by Parallax, Inc as a component of the TCS3200-DB which includes white LEDs, collimator lens, and standoffs for optimization of sensing distance. Nonlinearity in the response of the daughter board to color standards was observed. Signal noise levels were determined to be less than 1% within a given measurement and measurement-to-measurement variations of ∼9% were observed. The device proved effective for detection of the color change in several porphyrins upon target exposure and for monitoring the time dependence of changes following exposure. An array of six porphyrins was used for demonstration of differential changes in response to specific targets. Proof-of-concept use of the porphyrin indicators onboard two types of unmanned aerial vehicles (UAVs) is described. (paper)

  11. Compressed Sensing, Pseudodictionary-Based, Superresolution Reconstruction

    Directory of Open Access Journals (Sweden)

    Chun-mei Li

    2016-01-01

    Full Text Available The spatial resolution of digital images is the critical factor that affects photogrammetry precision. Single-frame, superresolution, image reconstruction is a typical underdetermined, inverse problem. To solve this type of problem, a compressive, sensing, pseudodictionary-based, superresolution reconstruction method is proposed in this study. The proposed method achieves pseudodictionary learning with an available low-resolution image and uses the K-SVD algorithm, which is based on the sparse characteristics of the digital image. Then, the sparse representation coefficient of the low-resolution image is obtained by solving the norm of l0 minimization problem, and the sparse coefficient and high-resolution pseudodictionary are used to reconstruct image tiles with high resolution. Finally, single-frame-image superresolution reconstruction is achieved. The proposed method is applied to photogrammetric images, and the experimental results indicate that the proposed method effectively increase image resolution, increase image information content, and achieve superresolution reconstruction. The reconstructed results are better than those obtained from traditional interpolation methods in aspect of visual effects and quantitative indicators.

  12. Interactive Adjustment of Regularization in SENSE and k-t SENSE Using Commodity Graphics Hardware

    DEFF Research Database (Denmark)

    Hansen, Michael Schacht; Atkinson, David; Sørensen, Thomas Sangild

    2008-01-01

    This project demonstrates that modern commodity graphics cards (GPUs) can be used to perform fast Cartesian SENSE and k-t SENSE reconstruction. Specifically, the SENSE inversion is accelerated by up to two orders of magnitude and is no longer the time-limiting step. The achieved reconstruction...

  13. SYMBIOTIC SENSING: Exploring and Exploiting Cooperative Sensing in Heterogeneous Sensor Networks

    NARCIS (Netherlands)

    Le Viet Duc, L Duc

    2016-01-01

    During the last several years we have witnessed the emergence of smartphone-based sensing applications that include activity recognition, urban sensing, social sensing, and health monitoring. In fact, most smartphones have various sensors, wireless communication interfaces, a large memory capacity,

  14. The agent-relative/agent-neutral distinction: my two sense(s) | Lerm ...

    African Journals Online (AJOL)

    Careful analysis of various metaethics supports that there are these two senses – analysis, in particular, of a neo-Kantian metaethic, according to which reasons are agent-relative in the dependence sense but agent-neutral in the homogeneous sense, and – perhaps surprisingly – of Utilitarianism, according to which ...

  15. Using remote sensing to predict earthquake impacts

    Science.gov (United States)

    Fylaktos, Asimakis; Yfantidou, Anastasia

    2017-09-01

    Natural hazards like earthquakes can result to enormous property damage, and human casualties in mountainous areas. Italy has always been exposed to numerous earthquakes, mostly concentrated in central and southern regions. Last year, two seismic events near Norcia (central Italy) have occurred, which led to substantial loss of life and extensive damage to properties, infrastructure and cultural heritage. This research utilizes remote sensing products and GIS software, to provide a database of information. We used both SAR images of Sentinel 1A and optical imagery of Landsat 8 to examine the differences of topography with the aid of the multi temporal monitoring technique. This technique suits for the observation of any surface deformation. This database is a cluster of information regarding the consequences of the earthquakes in groups, such as property and infrastructure damage, regional rifts, cultivation loss, landslides and surface deformations amongst others, all mapped on GIS software. Relevant organizations can implement these data in order to calculate the financial impact of these types of earthquakes. In the future, we can enrich this database including more regions and enhance the variety of its applications. For instance, we could predict the future impacts of any type of earthquake in several areas, and design a preliminarily model of emergency for immediate evacuation and quick recovery response. It is important to know how the surface moves, in particular geographical regions like Italy, Cyprus and Greece, where earthquakes are so frequent. We are not able to predict earthquakes, but using data from this research, we may assess the damage that could be caused in the future.

  16. Synthesis, characterization and gas sensing performance

    Indian Academy of Sciences (India)

    For the first time, this study reports the gas sensing performance of aluminosilicate azide cancrinite. The effect of annealing andoperating temperature on gas sensing characteristic of azide cancrinite thick film is investigated systematically for various gases at different operating temperatures. This sensor was observed to be ...

  17. Animal cognition: an insect's sense of time?

    Science.gov (United States)

    Skorupski, Peter; Chittka, Lars

    2006-10-10

    For Immanuel Kant, time was the very form of the inner sense, the bedrock of our consciousness and also the origin of arithmetic ability. New research on bumblebees has shown that even an invertebrate with a brain the size of a pinhead can actively sense the passage of elapsed time, allowing it to predict when certain salient events will occur in the future.

  18. Supporting Craft Sense in Early Education

    Directory of Open Access Journals (Sweden)

    Kalle Virta

    2013-10-01

    Full Text Available The research task was to describe and construct theoretical background for Craft Sense in early education. Craft Sense represents a learner’s skill for obtaining Sloyd (Craft, Design & Technology related knowledge, skills and understanding. The development of Craft Sense is based on producing artefacts and evaluating the production process. In this research, the concept of Craft Sense is based on the integration of Sloyd and meta-cognitive regulation of learning activities. Based on theoretical information, an empirical research question was formulated: “What kind of Craft Sense do children have in early education Sloyd?” The method of study was assessing picture supported learning on a Sloyd course for young children. The data was analyzed by qualitative content analysis and Child Behaviour Rating Scale (CBRS. Findings indicate that the development of children’s Craft Sense can be supported with pictures. Furthermore, the CBRS can be used to evaluate and understand children’s Craft Sense. Keywords: Craft Sense, Sloyd, Sloyd Education, Meta-cognition

  19. Acoustic Wave Propagation in Pressure Sense Lines

    Science.gov (United States)

    Vitarius, Patrick; Gregory, Don A.; Wiley, John; Korman, Valentin

    2003-01-01

    Sense lines are used in pressure measurements to passively transmit information from hostile environments to areas where transducers can be used. The transfer function of a sense line can be used to obtain information about the measured environment from the protected sensor. Several properties of this transfer function are examined, including frequency dependence, Helmholtz resonance, and time of flight delay.

  20. Fiber optic sensing for telecommunication satellites

    Science.gov (United States)

    Reutlinger, Arnd; Glier, Markus; Zuknik, Karl-Heinz; Hoffmann, Lars; Müller, Mathias; Rapp, Stephan; Kurvin, Charles; Ernst, Thomas; McKenzie, Iain; Karafolas, Nikos

    2017-11-01

    Modern telecommunication satellites can benefit from the features of fiber optic sensing wrt to mass savings, improved performance and lower costs. Within the course of a technology study, launched by the European Space Agency, a fiber optic sensing system has been designed and is to be tested on representative mockups of satellite sectors and environment.

  1. Schopenhauer on Sense Perception and Aesthetic Cognition

    Science.gov (United States)

    Vandenabeele, Bart

    2011-01-01

    Schopenhauer's account of sense perception contains an acute critique of Kant's theory of cognition. His analysis of the role of the understanding in perception may be closer to Kant's than he conceded, but his physiological analysis of the role of the senses nonetheless proffers a more plausible account than Kant's transcendental conception of…

  2. Project THEMIS: A Center for Remote Sensing.

    Science.gov (United States)

    This report summarizes the technical work accomplished under Project THEMIS, A Center for Remote Sensing at the University of Kansas during the...period 16 September 1967 through 15 September 1973. The highlights of the four major areas forming the remote sensing system are presented. A detailed description of the latest radar spectrometer results is presented.

  3. Medical Mystery: Losing the sense of smell

    Science.gov (United States)

    ... key to perceiving flavor and taste. Working alone, taste buds can only detect five flavors: salty, sweet, bitter, sour, and savory. Smell adds a practically limitless variety and subtlety to ... how the senses of smell and taste work. Of all the senses, smell and taste ...

  4. Opportunistic Sensing in Wireless Sensor Networks

    NARCIS (Netherlands)

    Scholten, Johan; Bakker, Pascal

    Opportunistic sensing systems consist of changing constellations of wireless sensor nodes that, for a limited amount of time, work together to achieve a common goal. Such constellations are self-organizing and come into being spontaneously. This paper presents an opportunistic sensing system to

  5. Sense-making and Impact Assessment

    DEFF Research Database (Denmark)

    Lyhne, Ivar

    The poster integrates knowledge about how we make sense of situations into SEA methodology to strengthen the staging of impact assessments and the process of scoping impacts.......The poster integrates knowledge about how we make sense of situations into SEA methodology to strengthen the staging of impact assessments and the process of scoping impacts....

  6. Non-native acylated homoserine lactones reveal that LuxIR quorum sensing promotes symbiont stability

    Science.gov (United States)

    Ho, Jessica S.; Geske, Grant D.; Blackwell, Helen E.; Ruby, Edward G.

    2014-01-01

    SUMMARY Quorum sensing, a group behavior coordinated by a diffusible pheromone signal and a cognate receptor, is typical of bacteria that form symbioses with plants and animals. LuxIR-type acyl homoserine-lactone (AHL) quorum sensing is common in Gram-negative proteobacteria, and many members of this group have additional quorum-sensing networks. The bioluminescent symbiont Vibrio fischeri encodes two AHL signal synthases: AinS and LuxI. AinS-dependent quorum sensing converges with LuxI-dependent quorum sensing at the LuxR regulatory element. Both AinS- and LuxI-mediated signaling are required for efficient and persistent colonization of the squid host, Euprymna scolopes. The basis of the mutualism is symbiont bioluminescence, which is regulated by both LuxI- and AinS-dependent quorum sensing, and is essential for maintaining a colonization of the host. Here, we used chemical and genetic approaches to probe the dynamics of LuxI- and AinS-mediated regulation of bioluminescence during symbiosis. We demonstrate that both native AHLs and non-native AHL analogs can be used to non-invasively and specifically modulate induction of symbiotic bioluminescence via LuxI-dependent quorum sensing. Our data suggest that the first day of colonization, during which symbiont bioluminescence is induced by LuxIR, is a critical period that determines the stability of the V. fischeri population once symbiosis is established. PMID:24191970

  7. Remote sensing of wetlands applications and advances

    CERN Document Server

    Tiner, Ralph W; Klemas, Victor V

    2015-01-01

    Effectively Manage Wetland Resources Using the Best Available Remote Sensing Techniques Utilizing top scientists in the wetland classification and mapping field, Remote Sensing of Wetlands: Applications and Advances covers the rapidly changing landscape of wetlands and describes the latest advances in remote sensing that have taken place over the past 30 years for use in mapping wetlands. Factoring in the impact of climate change, as well as a growing demand on wetlands for agriculture, aquaculture, forestry, and development, this text considers the challenges that wetlands pose for remote sensing and provides a thorough introduction on the use of remotely sensed data for wetland detection. Taking advantage of the experiences of more than 50 contributing authors, the book describes a variety of techniques for mapping and classifying wetlands in a multitude of environments ranging from tropical to arctic wetlands including coral reefs and submerged aquatic vegetation. The authors discuss the advantages and di...

  8. Sensing of triacylglycerol in the gut

    DEFF Research Database (Denmark)

    Kleberg, Karen; Jacobsen, Anne Katrine; Ferreira, Jozelia G

    2015-01-01

    KEY POINTS: Digestion is required for intestinal sensing of triacylglycerol in this behavioural model. The hydrolysis products of triacylglycerol, fatty acids and 2-monoacylglycerol, regulate feeding via separate mechanisms. Sensing of long-chain fatty acids, but not of 2-monoacylglycerol......, stimulated central dopaminergic signalling. Fatty acid chain length regulates behavioural responses to fatty acids. ABSTRACT: Sensing of dietary triacylglycerol in the proximal small intestine results in physiological, hormonal and behavioural responses. However, the exact physiological pathways linking...... intestinal fat sensing to food intake and the activation of brain circuits remain to be identified. In this study we examined the role of triacylglycerol digestion for intestinal fat sensing, and compared the effects of the triacylglycerol digestion products, fatty acids and 2-monoacylglycerol...

  9. Making sense with ePortfolios

    DEFF Research Database (Denmark)

    Poulsen, Bo Klindt; Dimsits, Miriam

    2017-01-01

    of the statements from the students concerning their understanding of ePortfolio processes are fundamentally questions of how to make sense of the ePortfolio tool, both in their professional and personal lives. This calls for a didactical stance with the teachers who use ePortfolios, based on empowerment through......This article discusses the question of making sense out of working with ePortfolio in adult education. The article presents the results of a small-scale survey among adults in continuing education who have worked with ePortfolio as the central didactic principle. It is argued that many...... meaning-making, in order for ePortfolios to make sense. It is suggested that two relevant didactic perspectives for making sense of the world can be found in theories of biographicity and metaphor work. Moreover, a strong didactic stance that supports sense-making must be based on a strong teacher role...

  10. Best practices in Remote Sensing for REDD+

    DEFF Research Database (Denmark)

    Dons, Klaus; Grogan, Kenneth

    2012-01-01

    due to steep terrain, • phenological gradients across natural, agricultural and forestry ecosystems including plantations and • the need to serve the REDD-specific context of deforestation and forest degradation across spatial and temporal scales make remote sensing based approaches particularly...... be expected from remote sensing imagery and the provided information shall help to better anticipate problems that will be encountered when acquiring, analyzing and interpreting remote sensing data. Beyond remote sensing, it may be a good point of departure for a large group of scientists with a diverse...... and governance, and deforestation and forest degradation processes. The second part summarizes the available literature on remote sensing based good practices for REDD. It largely draws from the documents of the Intergovernmental Panel on Climate Change (IPCC), the United Nations Framework Convention on Climate...

  11. Optical Probes for Neurobiological Sensing and Imaging.

    Science.gov (United States)

    Kim, Eric H; Chin, Gregory; Rong, Guoxin; Poskanzer, Kira E; Clark, Heather A

    2018-04-13

    probing entire neurobiological units with high spatiotemporal resolution. Thus, we introduce selected applications for ion and neurotransmitter detection to investigate both neurons and non-neuronal brain cells. We focus on families of optical probes because of their ability to sense a wide array of molecules and convey spatial information with minimal damage to tissue. We start with a discussion of currently available molecular probes, highlight recent advances in genetically modified fluorescent probes for ions and small molecules, and end with the latest research in nanosensors for biological imaging. Customizable, nanoscale optical sensors that accurately and dynamically monitor the local environment with high spatiotemporal resolution could lead to not only new insights into the function of all cell types but also a broader understanding of how diverse neural signaling systems act in conjunction with neighboring cells in a spatially relevant manner.

  12. Blood Types

    Science.gov (United States)

    ... positive or Rh-negative blood may be given to Rh-positive patients. The rules for plasma are the reverse: ... ethnic and racial groups have different frequency of the main blood types in their populations. Approximately ...

  13. Review of research on remote sensing with digital map. Remote sensing to suchi chizu no ketsugo ni yoru kenkyu no shokai

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S; Sugimura, T [Remote Sensing Technology Center of Japan, Tokyo (Japan)

    1990-12-05

    This paper describes the relationship between remote sensing and digital map. The relation between remote sensing and digital map is roughly classified into two kinds. One of them is utilization of remote sensing and digital map in combination to analyze phenomena, and the other is normalization of remote sensing data by use of digital map. For examples of utilizing remote sensing and digital map, there are the creation of a perspective image of ground scene from Landsat MSS data by use of a mesh type digital map of the orthogonal co-ordinates, and the creation of an image of the enviromental research along roads from satilite data by use of a vector type digital map. Furthermore, this paper introduces a procedure of correcting geographical strains by use of a digital map and converting a radar image to corrected plane image, and the use of a digital map in the global scale for the analysis of floods and other purposes. 20 refs., 5 figs., 1 tab.

  14. Long-Term Monitoring of Desert Land and Natural Resources and Application of Remote Sensing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States); Rollins, Katherine E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    Monitoring environmental impacts over large, remote desert regions for long periods of time can be very costly. Remote sensing technologies present a promising monitoring tool because they entail the collection of spatially contiguous data, automated processing, and streamlined data analysis. This report provides a summary of remote sensing products and refinement of remote sensing data interpretation methodologies that were generated as part of the U.S. Department of the Interior Bureau of Land Management Solar Energy Program. In March 2015, a team of researchers from Argonne National Laboratory (Argonne) collected field data of vegetation and surface types from more than 5,000 survey points within the eastern part of the Riverside East Solar Energy Zone (SEZ). Using the field data, remote sensing products that were generated in 2014 using very high spatial resolution (VHSR; 15 cm) multispectral aerial images were validated in order to evaluate potential refinements to the previous methodologies to improve the information extraction accuracy.

  15. Performance evaluation for different sensing surface of BICELLs bio-transducers for dry eye biomarkers

    Science.gov (United States)

    Laguna, M. F.; Holgado, M.; Santamaría, B.; López, A.; Maigler, M.; Lavín, A.; de Vicente, J.; Soria, J.; Suarez, T.; Bardina, C.; Jara, M.; Sanza, F. J.; Casquel, R.; Otón, A.; Riesgo, T.

    2015-03-01

    Biophotonic Sensing Cells (BICELLs) are demonstrated to be an efficient technology for label-free biosensing and in concrete for evaluating dry eye diseases. The main advantage of BICELLs is its capability to be used by dropping directly a tear into the sensing surface without the need of complex microfluidics systems. Among this advantage, compact Point of Care read-out device is employed with the capability of evaluating different types of BICELLs packaged on Biochip-Kits that can be fabricated by using different sensing surfaces material. In this paper, we evaluate the performance of the combination of three sensing surface materials: (3-Glycidyloxypropyl) trimethoxysilane (GPTMS), SU-8 resist and Nitrocellulose (NC) for two different biomarkers relevant for dry eye diseases: PRDX-5 and ANXA-11.

  16. Discussion on the application potential of thermal infrared remote sensing technology in uranium deposits exploration

    International Nuclear Information System (INIS)

    Wang Junhu; Zhang Jielin; Liu Dechang

    2011-01-01

    With the continual development of new thermal infrared sensors and thermal radiation theory, the technology of thermal infrared remote sensing has shown great potential for applications in resources exploration, especially in the field of uranium exploration. The paper makes a systemic summary of the theoretical basis and research status of the thermal infrared remote sensing applications in resources exploration from the surface temperature, thermal inertia and thermal infrared spectrum. What's more, the research objective and the research content of thermal infrared remote sensing in the uranium deposits exploration applications are discussed in detail. Besides, based on the thermal infrared ASTER data, the paper applies this technology to the granite-type uranium deposits in South China and achieves good result. Above all, the practice proves that the thermal infrared remote sensing technology has a good application prospects and particular value in the field of uranium prospecting and will play an important role in the prospecting target of the uranium deposits. (authors)

  17. Spectral reflectance of carbonate sediments and application to remote sensing classification of benthic habitats

    Science.gov (United States)

    Louchard, Eric Michael

    Remote sensing is a valuable tool in marine research that has advanced to the point that images from shallow waters can be used to identify different seafloor types and create maps of benthic habitats. A major goal of this dissertation is to examine differences in spectral reflectance and create new methods of analyzing shallow water remote sensing data to identify different seafloor types quickly and accurately. Carbonate sediments were used as a model system as they presented a relatively uniform, smooth surface for measurement and are a major bottom type in tropical coral reef systems. Experimental results found that sediment reflectance varied in shape and magnitude depending on pigment content, but only varied in magnitude with variations in grain size and shape. Derivative analysis of the reflectance spectra identified wavelength regions that correlate to chlorophyll a and chlorophyllide a as well as accessory pigments, indicating differences in microbial community structure. Derivative peak height also correlated to pigment content in the sediments. In remote sensing data, chlorophyll a, chlorophyllide a, and some xanthophylls were identified in derivative spectra and could be quantified from second derivative peak height. Most accessory pigments were attenuated by the water column, however, and could not be used to quantify pigments in sediments from remote sensing images. Radiative transfer modeling of remote sensing reflectance showed that there was sufficient spectral variation to separate major sediment types, such as ooid shoals and sediment with microbial layers, from different densities of seagrass and pavement bottom communities. Both supervised classification with a spectral library and unsupervised classification with principal component analysis were used to create maps of seafloor type. The results of the experiments were promising; classified seafloor types correlated with ground truth observations taken from underwater video and were

  18. Wideband spectrum sensing order for cognitive radios with sensing errors and channel SNR probing uncertainty

    KAUST Repository

    Hamza, Doha R.

    2013-04-01

    A secondary user (SU) seeks to transmit by sequentially sensing statistically independent primary user (PU) channels. If a channel is sensed free, it is probed to estimate the signal-to-noise ratio between the SU transmitter-receiver pair over the channel. We jointly optimize the channel sensing time, the sensing decision threshold, the channel probing time, together with the channel sensing order under imperfect synchronization between the PU and the SU. The sensing and probing times and the decision threshold are assumed to be the same for all channels. We maximize a utility function related to the SU throughput under the constraint that the collision probability with the PU is kept below a certain value and taking sensing errors into account. We illustrate the optimal policy and the variation of SU throughput with various system parameters. © 2012 IEEE.

  19. Wideband spectrum sensing order for cognitive radios with sensing errors and channel SNR probing uncertainty

    KAUST Repository

    Hamza, Doha R.; Aï ssa, Sonia

    2013-01-01

    A secondary user (SU) seeks to transmit by sequentially sensing statistically independent primary user (PU) channels. If a channel is sensed free, it is probed to estimate the signal-to-noise ratio between the SU transmitter-receiver pair over the channel. We jointly optimize the channel sensing time, the sensing decision threshold, the channel probing time, together with the channel sensing order under imperfect synchronization between the PU and the SU. The sensing and probing times and the decision threshold are assumed to be the same for all channels. We maximize a utility function related to the SU throughput under the constraint that the collision probability with the PU is kept below a certain value and taking sensing errors into account. We illustrate the optimal policy and the variation of SU throughput with various system parameters. © 2012 IEEE.

  20. Predictor variable resolution governs modeled soil types

    Science.gov (United States)

    Soil mapping identifies different soil types by compressing a unique suite of spatial patterns and processes across multiple spatial scales. It can be quite difficult to quantify spatial patterns of soil properties with remotely sensed predictor variables. More specifically, matching the right scale...

  1. Light sensing in a photoresponsive, organic-based complementary inverter.

    Science.gov (United States)

    Kim, Sungyoung; Lim, Taehoon; Sim, Kyoseung; Kim, Hyojoong; Choi, Youngill; Park, Keechan; Pyo, Seungmoon

    2011-05-01

    A photoresponsive organic complementary inverter was fabricated and its light sensing characteristics was studied. An organic circuit was fabricated by integrating p-channel pentacene and n-channel copper hexadecafluorophthalocyanine (F16CuPc) organic thin-film transistors (OTFTs) with a polymeric gate dielectric. The F16CuPc OTFT showed typical n-type characteristics and a strong photoresponse under illumination. Whereas under illumination, the pentacene OTFT showed a relatively weak photoresponse with typical p-type characteristics. The characteristics of the organic electro-optical circuit could be controlled by the incident light intensity, a gate bias, or both. The logic threshold (V(M), when V(IN) = V(OUT)) was reduced from 28.6 V without illumination to 19.9 V at 6.94 mW/cm². By using solely optical or a combination of optical and electrical pulse signals, light sensing was demonstrated in this type of organic circuit, suggesting that the circuit can be potentially used in various optoelectronic applications, including optical sensors, photodetectors and electro-optical transceivers.

  2. Identification of Pathways Critical to Quorum Sensing and Virulence Induction

    Energy Technology Data Exchange (ETDEWEB)

    Ognibene, Ted J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Young, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Holtz-Morris, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Daley, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2009-02-27

    Quorum sensing is a mode of intercellular communication between bacteria that allows them to collectively regulate behavior such as virulence, sporulation, motility and biofilm formation. It is mediated by bacterially synthesized, diffusible, signaling molecules (autoinducers) that increase in concentration as a bacterial population expands until a critical threshold concentration is reached. However, in most bacterial species that produce autoinducer molecules, the physiologic concentration of these molecules is unknown. Moreover, many bacterial species, including Y. pestis, produce an array of quorum sensing molecules and the physiologic concentration of each individual type of autoinducer molecule is not known. There is a need to accurately and precisely quantitate these molecules, as it may be that different types of autoinducer molecules have different effects on virulence in the bacterium. We focused our efforts on the construction of a platform to identify and quantitate autoinducer molecules using FTICR, 14C isotope labeling and accelerator mass spectrometry (AMS). Specifically, we focused on autoinducer-1 type molecules, acylhomoserine lactone (HSL), derived from S-adenosylmethionine (SAM).

  3. Strain sensing systems tailored for tensile measurement of fragile wires

    Science.gov (United States)

    Nyilas, Arman

    2005-12-01

    Fundamental stress versus strain measurements were completed on superconducting Nb3Sn wires within the framework of IEC/TC90 and VAMAS/TWA16. A key task was the assessment of sensing systems regarding resolution, accuracy, and precision when measuring Young's modulus. Prior to actual Nb3Sn wire measurements metallic wires, consisting of copper and stainless steel having diameters similar to the Nb3Sn wire, were extensively investigated with respect to their elastic line properties using different types of extensometers. After these calibration tests Nb3Sn wire measurements of different companies resulted in several important facts with respect to total size and weight of the used extensometers. The size could be correlated to the initial stage of stress versus strain behaviour. In fact, the effect of wire curls resulting from the production line had a profound effect on Young's modulus measurements. Within this context, the possibility of determining Young's modulus from unloading compliance lines in the plastic regime of the stress-strain curve was considered. The data obtained using this test methodology were discussed under consideration of the composite nature of Nb3Sn wire. In addition, a non-contacting sensing system based on a double-beam laser extensometer was used to investigate the potential of this new sensing system.

  4. Strain sensing systems tailored for tensile measurement of fragile wires

    International Nuclear Information System (INIS)

    Nyilas, Arman

    2005-01-01

    Fundamental stress versus strain measurements were completed on superconducting Nb 3 Sn wires within the framework of IEC/TC90 and VAMAS/TWA16. A key task was the assessment of sensing systems regarding resolution, accuracy, and precision when measuring Young's modulus. Prior to actual Nb 3 Sn wire measurements metallic wires, consisting of copper and stainless steel having diameters similar to the Nb 3 Sn wire, were extensively investigated with respect to their elastic line properties using different types of extensometers. After these calibration tests Nb 3 Sn wire measurements of different companies resulted in several important facts with respect to total size and weight of the used extensometers. The size could be correlated to the initial stage of stress versus strain behaviour. In fact, the effect of wire curls resulting from the production line had a profound effect on Young's modulus measurements. Within this context, the possibility of determining Young's modulus from unloading compliance lines in the plastic regime of the stress-strain curve was considered. The data obtained using this test methodology were discussed under consideration of the composite nature of Nb 3 Sn wire. In addition, a non-contacting sensing system based on a double-beam laser extensometer was used to investigate the potential of this new sensing system

  5. Private Data Analytics on Biomedical Sensing Data via Distributed Computation.

    Science.gov (United States)

    Gong, Yanmin; Fang, Yuguang; Guo, Yuanxiong

    2016-01-01

    Advances in biomedical sensors and mobile communication technologies have fostered the rapid growth of mobile health (mHealth) applications in the past years. Users generate a high volume of biomedical data during health monitoring, which can be used by the mHealth server for training predictive models for disease diagnosis and treatment. However, the biomedical sensing data raise serious privacy concerns because they reveal sensitive information such as health status and lifestyles of the sensed subjects. This paper proposes and experimentally studies a scheme that keeps the training samples private while enabling accurate construction of predictive models. We specifically consider logistic regression models which are widely used for predicting dichotomous outcomes in healthcare, and decompose the logistic regression problem into small subproblems over two types of distributed sensing data, i.e., horizontally partitioned data and vertically partitioned data. The subproblems are solved using individual private data, and thus mHealth users can keep their private data locally and only upload (encrypted) intermediate results to the mHealth server for model training. Experimental results based on real datasets show that our scheme is highly efficient and scalable to a large number of mHealth users.

  6. A Support-Based Reconstruction for SENSE MRI

    Directory of Open Access Journals (Sweden)

    Bradley S. Peterson

    2013-03-01

    Full Text Available A novel, rapid algorithm to speed up and improve the reconstruction of sensitivity encoding (SENSE MRI was proposed in this paper. The essence of the algorithm was that it iteratively solved the model of simple SENSE on a pixel-by-pixel basis in the region of support (ROS. The ROS was obtained from scout images of eight channels by morphological operations such as opening and filling. All the pixels in the FOV were paired and classified into four types, according to their spatial locations with respect to the ROS, and each with corresponding procedures of solving the inverse problem for image reconstruction. The sensitivity maps, used for the image reconstruction and covering only the ROS, were obtained by a polynomial regression model without extrapolation to keep the estimation errors small. The experiments demonstrate that the proposed method improves the reconstruction of SENSE in terms of speed and accuracy. The mean square errors (MSE of our reconstruction is reduced by 16.05% for a 2D brain MR image and the mean MSE over the whole slices in a 3D brain MRI is reduced by 30.44% compared to those of the traditional methods. The computation time is only 25%, 45%, and 70% of the traditional method for images with numbers of pixels in the orders of 103, 104, and 105–107, respectively.

  7. Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot

    Directory of Open Access Journals (Sweden)

    Yajing Shen

    2015-12-01

    Full Text Available Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale.

  8. Testing the accuracy of remote sensing land use maps

    Science.gov (United States)

    Vangenderen, J. L.; Lock, B. F.; Vass, P. A.

    1977-01-01

    Some of the main aspects that need to be considered in a remote sensing sampling design are: (1) the frequency that any one land use type (on the ground) is erroneously attributed to another class by the interpreter; (2) the frequency that the wrong land use (as observed on the ground) is erroneously included in any one class by the remote sensing interpreter; (3) the proportion of all land (as determined in the field) that is mistakenly attributed by the interpreter; and (4) the determination of whether the mistakes are random (so that the overall proportions are approximately correct) or subject to a persistent bias. A sampling and statistical testing procedure is presented which allows an approximate answer to each of these aspects. The concept developed and described incorporates the probability of making incorrect interpretations at particular prescribed accuracy levels, for a certain number of errors, for a particular sample size. It is considered that this approach offers a meaningful explanation of the interpretation accuracy level of an entire remote sensing land use survey.

  9. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae.

    Science.gov (United States)

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-12-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host-pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.

  10. In Situ/Remote Sensing Integration to Assess Forest Health—A Review

    Directory of Open Access Journals (Sweden)

    Marion Pause

    2016-06-01

    Full Text Available For mapping, quantifying and monitoring regional and global forest health, satellite remote sensing provides fundamental data for the observation of spatial and temporal forest patterns and processes. While new remote-sensing technologies are able to detect forest data in high quality and large quantity, operational applications are still limited by deficits of in situ verification. In situ sampling data as input is required in order to add value to physical imaging remote sensing observations and possibilities to interlink the forest health assessment with biotic and abiotic factors. Numerous methods on how to link remote sensing and in situ data have been presented in the scientific literature using e.g. empirical and physical-based models. In situ data differs in type, quality and quantity between case studies. The irregular subsets of in situ data availability limit the exploitation of available satellite remote sensing data. To achieve a broad implementation of satellite remote sensing data in forest monitoring and management, a standardization of in situ data, workflows and products is essential and necessary for user acceptance. The key focus of the review is a discussion of concept and is designed to bridge gaps of understanding between forestry and remote sensing science community. Methodological approaches for in situ/remote-sensing implementation are organized and evaluated with respect to qualifying for forest monitoring. Research gaps and recommendations for standardization of remote-sensing based products are discussed. Concluding the importance of outstanding organizational work to provide a legally accepted framework for new information products in forestry are highlighted.

  11. Artificial senses for characterization of food quality

    Institute of Scientific and Technical Information of China (English)

    HUANG Yan-bo; LAN Yu-bin; R.E. Lacey

    2004-01-01

    Food quality is of primary concern in the food industry and to the consumer. Systems that mimic human senses have been developed and applied to the characterization of food quality. The five primary senses are: vision, hearing, smell, taste and touch.In the characterization of food quality, people assess the samples sensorially and differentiate "good" from "bad" on a continuum.However, the human sensory system is subjective, with mental and physical inconsistencies, and needs time to work. Artificial senses such as machine vision, the electronic ear, electronic nose, electronic tongue, artificial mouth and even artificial the head have been developed that mimic the human senses. These artificial senses are coordinated individually or collectively by a pattern recognition technique, typically artificial neural networks, which have been developed based on studies of the mechanism of the human brain. Such a structure has been used to formulate methods for rapid characterization of food quality. This research presents and discusses individual artificial sensing systems. With the concept of multi-sensor data fusion these sensor systems can work collectively in some way. Two such fused systems, artificial mouth and artificial head, are described and discussed. It indicates that each of the individual systems has their own artificially sensing ability to differentiate food samples. It further indicates that with a more complete mimic of human intelligence the fused systems are more powerful than the individual systems in differentiation of food samples.

  12. Husserl’s theory of noematic sense

    Directory of Open Access Journals (Sweden)

    Nikolić Olga

    2016-01-01

    Full Text Available After Husserl’s transcendental turn and the discovery of the correlation between consciousness and the world the concept of the noema becomes one of the constant leitmotifs of Husserl’s philosophy. My paper will be devoted to the clarification of this concept and its implications for Husserl’s theory of sense. The leading question will be: How can the noema play the role of both the sense and the objective correlate of the intentional act? I will start with presenting the problematic of sense in Husserl’s phenomenology from the Logical Investigations to the Ideas I. The central part of my paper will be devoted to the influential debate regarding the interpretation of the noema. Finally, I intend to point out the most important ways in which the notion of the noema becomes enriched in later Husserl’s philosophy, as well as the difference between linguisitic and non-linguistic sense, based on the Analyses Concerning Passive and Active Synthesis. I hope to show that Husserl’s phenomenological theory of sense offers a valuable alternative to the exclusively language-oriented theories of sense. [This paper is the abridged and reworked version of my Master’s Thesis "Husser’s Notion of the Noema: The Phenomenological Theory of Sense" defended at KU Leuven in January 2016.

  13. Challenges for Social Sensing using WiFi Signals

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Nurmi, Petteri

    2012-01-01

    Smartphones are an attractive option for social sensing due to their widespread market penetration rate and advanced sensing capabilities. Enabling social sensing on smartphones would require techniques that can accurately detect and characterize physical proximity, an important prerequisite...

  14. Collective gradient sensing and chemotaxis: modeling and recent developments

    Science.gov (United States)

    Camley, Brian A.

    2018-06-01

    Cells measure a vast variety of signals, from their environment’s stiffness to chemical concentrations and gradients; physical principles strongly limit how accurately they can do this. However, when many cells work together, they can cooperate to exceed the accuracy of any single cell. In this topical review, I will discuss the experimental evidence showing that cells collectively sense gradients of many signal types, and the models and physical principles involved. I also propose new routes by which experiments and theory can expand our understanding of these problems.

  15. Current development of UAV sense and avoid system

    Science.gov (United States)

    Zhahir, A.; Razali, A.; Mohd Ajir, M. R.

    2016-10-01

    As unmanned aerial vehicles (UAVs) are now gaining high interests from civil and commercialised market, the automatic sense and avoid (SAA) system is currently one of the essential features in research spotlight of UAV. Several sensor types employed in current SAA research and technology of sensor fusion that offers a great opportunity in improving detection and tracking system are presented here. The purpose of this paper is to provide an overview of SAA system development in general, as well as the current challenges facing UAV researchers and designers.

  16. Fixed-focus camera objective for small remote sensing satellites

    Science.gov (United States)

    Topaz, Jeremy M.; Braun, Ofer; Freiman, Dov

    1993-09-01

    An athermalized objective has been designed for a compact, lightweight push-broom camera which is under development at El-Op Ltd. for use in small remote-sensing satellites. The high performance objective has a fixed focus setting, but maintains focus passively over the full range of temperatures encountered in small satellites. The lens is an F/5.0, 320 mm focal length Tessar type, operating over the range 0.5 - 0.9 micrometers . It has a 16 degree(s) field of view and accommodates various state-of-the-art silicon detector arrays. The design and performance of the objective is described in this paper.

  17. A smart magnetic resonance contrast agent for selective copper sensing.

    Science.gov (United States)

    Que, Emily L; Chang, Christopher J

    2006-12-20

    We describe the synthesis and properties of Copper-Gad-1 (CG1), a new type of smart magnetic resonance (MR) sensor for selective detection of copper. CG1 is composed of a gadolinium contrast agent core tethered to copper-selective recognition motif. Cu2+-induced modulation of inner-sphere water access to the Gd3+ center provides a sensing mechanism for reporting Cu2+ levels by reading out changes in longitudinal proton relaxivity values. CG1 features good selectivity for Cu2+ over abundant biological cations and a 41% increase in relaxivity upon Cu2+ binding and is capable of detecting micromolar changes in Cu2+ concentrations in aqueous media.

  18. Optical Fiber Sensing Based on Reflection Laser Spectroscopy

    Directory of Open Access Journals (Sweden)

    Gianluca Gagliardi

    2010-03-01

    Full Text Available An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  19. Urban land use: Remote sensing of ground-basin permeability

    Science.gov (United States)

    Tinney, L. R.; Jensen, J. R.; Estes, J. E.

    1975-01-01

    A remote sensing analysis of the amount and type of permeable and impermeable surfaces overlying an urban recharge basin is discussed. An effective methodology for accurately generating this data as input to a safe yield study is detailed and compared to more conventional alternative approaches. The amount of area inventoried, approximately 10 sq. miles, should provide a reliable base against which automatic pattern recognition algorithms, currently under investigation for this task, can be evaluated. If successful, such approaches can significantly reduce the time and effort involved in obtaining permeability data, an important aspect of urban hydrology dynamics.

  20. Nano field effect transistors as basic building blocks for sensing

    OpenAIRE

    Keller, Dino

    2008-01-01

    SiNW FETs and CNT FETs have been studied as candidates for integrable biosensors. Both types show sensing capability, CNT FETs even for uncharged molecules. The “top–down” process developed for SiNW FET fabrication gives much freedom in device designing and is fully compatible with CMOS production schemes. Due to the fact that the SiNW fabrication reported here uses the same structuring techniques as in CMOS processing, it is very reliable. The fabrication of CNT FETs is bas...

  1. Knowledge-based biomedical word sense disambiguation: comparison of approaches

    Directory of Open Access Journals (Sweden)

    Aronson Alan R

    2010-11-01

    Full Text Available Abstract Background Word sense disambiguation (WSD algorithms attempt to select the proper sense of ambiguous terms in text. Resources like the UMLS provide a reference thesaurus to be used to annotate the biomedical literature. Statistical learning approaches have produced good results, but the size of the UMLS makes the production of training data infeasible to cover all the domain. Methods We present research on existing WSD approaches based on knowledge bases, which complement the studies performed on statistical learning. We compare four approaches which rely on the UMLS Metathesaurus as the source of knowledge. The first approach compares the overlap of the context of the ambiguous word to the candidate senses based on a representation built out of the definitions, synonyms and related terms. The second approach collects training data for each of the candidate senses to perform WSD based on queries built using monosemous synonyms and related terms. These queries are used to retrieve MEDLINE citations. Then, a machine learning approach is trained on this corpus. The third approach is a graph-based method which exploits the structure of the Metathesaurus network of relations to perform unsupervised WSD. This approach ranks nodes in the graph according to their relative structural importance. The last approach uses the semantic types assigned to the concepts in the Metathesaurus to perform WSD. The context of the ambiguous word and semantic types of the candidate concepts are mapped to Journal Descriptors. These mappings are compared to decide among the candidate concepts. Results are provided estimating accuracy of the different methods on the WSD test collection available from the NLM. Conclusions We have found that the last approach achieves better results compared to the other methods. The graph-based approach, using the structure of the Metathesaurus network to estimate the relevance of the Metathesaurus concepts, does not perform well

  2. Site-characterization information using LANDSAT satellite and other remote-sensing data: integration of remote-sensing data with geographic information systems. A case study in Pennsylvania

    International Nuclear Information System (INIS)

    Campbell, W.J.; Imhoff, M.L.; Robinson, J.; Gunther, F.; Boyd, R.; Anuta, M.

    1983-06-01

    The utility and cost effectiveness of incorporating digitized aircraft and satellite remote sensing data into a geographic information system for facility siting and environmental impact assessments was evaluated. This research focused on the evaluation of several types of multisource remotely sensed data representing a variety of spectral band widths and spatial resolution. High resolution aircraft photography, Landsat MSS, and 7 band Thematic Mapper Simulator (TMS) data were acquired, analyzed, and evaluated for their suitability as input to an operational geographic information system (GIS). 78 references, 59 figures, 74 tables

  3. Sensing of substratum rigidity and directional migration by fast-crawling cells

    Science.gov (United States)

    Okimura, Chika; Sakumura, Yuichi; Shimabukuro, Katsuya; Iwadate, Yoshiaki

    2018-05-01

    Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ˜10 μ m and migration velocity is ˜10 μ m /min . In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.

  4. Word Domain Disambiguation via Word Sense Disambiguation

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.

    2006-06-04

    Word subject domains have been widely used to improve the perform-ance of word sense disambiguation al-gorithms. However, comparatively little effort has been devoted so far to the disambiguation of word subject do-mains. The few existing approaches have focused on the development of al-gorithms specific to word domain dis-ambiguation. In this paper we explore an alternative approach where word domain disambiguation is achieved via word sense disambiguation. Our study shows that this approach yields very strong results, suggesting that word domain disambiguation can be ad-dressed in terms of word sense disam-biguation with no need for special purpose algorithms.

  5. Preface: Remote Sensing in Coastal Environments

    Directory of Open Access Journals (Sweden)

    Deepak R. Mishra

    2016-08-01

    Full Text Available The Special Issue (SI on “Remote Sensing in Coastal Environments” presents a wide range of articles focusing on a variety of remote sensing models and techniques to address coastal issues and processes ranging for wetlands and water quality to coral reefs and kelp habitats. The SI is comprised of twenty-one papers, covering a broad range of research topics that employ remote sensing imagery, models, and techniques to monitor water quality, vegetation, habitat suitability, and geomorphology in the coastal zone. This preface provides a brief summary of each article published in the SI.

  6. Quorum sensing in gram-negative bacteria

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.J.; Høiby, N.

    2004-01-01

    Bacteria can communicate with each other by means of signal molecules to coordinate the behavior of the entire community, and the mechanism is referred to as quorum sensing (QS). Signal systems enable bacteria to sense the size of their densities by monitoring the concentration of the signal...... molecules. Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread. These systems are used to coordinate expression of phenotypes that are fundamental to the interaction of bacteria with each other and with their environment...

  7. Current NASA Earth Remote Sensing Observations

    Science.gov (United States)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  8. Cognitive networked sensing and big data

    CERN Document Server

    Qiu, Robert

    2013-01-01

    Wireless Distributed Computing and Cognitive Sensing defines high-dimensional data processing in the context of wireless distributed computing and cognitive sensing. This book presents the challenges that are unique to this area such as synchronization caused by the high mobility of the nodes. The author will discuss the integration of software defined radio implementation and testbed development. The book will also bridge new research results and contextual reviews. Also the author provides an examination of large cognitive radio network; hardware testbed; distributed sensing; and distributed

  9. A bistable mechanism for directional sensing

    International Nuclear Information System (INIS)

    Beta, C; Amselem, G; Bodenschatz, E

    2008-01-01

    We present a generic mechanism for directional sensing in eukaryotic cells that is based on bistable dynamics. As the key feature of this modeling approach, the velocity of trigger waves in the bistable sensing system changes its sign across cells that are exposed to an external chemoattractant gradient. This is achieved by combining a two-component activator/inhibitor system with a bistable switch that induces an identical symmetry breaking for arbitrary gradient input signals. A simple kinetic example is designed to illustrate the dynamics of a bistable directional sensing mechanism in numerical simulations

  10. Compressed Sensing with Rank Deficient Dictionaries

    DEFF Research Database (Denmark)

    Hansen, Thomas Lundgaard; Johansen, Daniel Højrup; Jørgensen, Peter Bjørn

    2012-01-01

    In compressed sensing it is generally assumed that the dictionary matrix constitutes a (possibly overcomplete) basis of the signal space. In this paper we consider dictionaries that do not span the signal space, i.e. rank deficient dictionaries. We show that in this case the signal-to-noise ratio...... (SNR) in the compressed samples can be increased by selecting the rows of the measurement matrix from the column space of the dictionary. As an example application of compressed sensing with a rank deficient dictionary, we present a case study of compressed sensing applied to the Coarse Acquisition (C...

  11. Crop stress detection and classification using hyperspectral remote sensing

    Science.gov (United States)

    Irby, Jon Trenton

    Agricultural production has observed many changes in technology over the last 20 years. Producers are able to utilize technologies such as site-specific applicators and remotely sensed data to assist with decision making for best management practices which can improve crop production and provide protection to the environment. It is known that plant stress can interfere with photosynthetic reactions within the plant and/or the physical structure of the plant. Common types of stress associated with agricultural crops include herbicide induced stress, nutrient stress, and drought stress from lack of water. Herbicide induced crop stress is not a new problem. However, with increased acreage being planting in varieties/hybrids that contain herbicide resistant traits, herbicide injury to non-target crops will continue to be problematic for producers. With rapid adoption of herbicide-tolerant cropping systems, it is likely that herbicide induced stress will continue to be a major concern. To date, commercially available herbicide-tolerant varieties/hybrids contain traits which allow herbicides like glyphosate and glufosinate-ammonium to be applied as a broadcast application during the growing season. Both glyphosate and glufosinate-ammonium are broad spectrum herbicides which have activity on a large number of plant species, including major crops like non-transgenic soybean, corn, and cotton. Therefore, it is possible for crop stress from herbicide applications to occur in neighboring fields that contain susceptible crop varieties/hybrids. Nutrient and moisture stress as well as stress caused by herbicide applications can interact to influence yields in agricultural fields. If remotely sensed data can be used to accurately identify specific levels of crop stress, it is possible that producers can use this information to better assist them in crop management to maximize yields and protect their investments. This research was conducted to evaluate classification of specific

  12. Remote sensing for studying atmospheric aerosols in Malaysia

    Science.gov (United States)

    Kanniah, Kasturi D.; Kamarul Zaman, Nurul A. F.

    2015-10-01

    The aerosol system is Southeast Asia is complex and the high concentrations are due to population growth, rapid urbanization and development of SEA countries. Nevertheless, only a few studies have been carried out especially at large spatial extent and on a continuous basis to study atmospheric aerosols in Malaysia. In this review paper we report the use of remote sensing data to study atmospheric aerosols in Malaysia and document gaps and recommend further studies to bridge the gaps. Satellite data have been used to study the spatial and seasonal patterns of aerosol optical depth (AOD) in Malaysia. Satellite data combined with AERONET data were used to delineate different types and sizes of aerosols and to identify the sources of aerosols in Malaysia. Most of the aerosol studies performed in Malaysia was based on station-based PM10 data that have limited spatial coverage. Thus, satellite data have been used to extrapolate and retrieve PM10 data over large areas by correlating remotely sensed AOD with ground-based PM10. Realising the critical role of aerosols on radiative forcing numerous studies have been conducted worldwide to assess the aerosol radiative forcing (ARF). Such studies are yet to be conducted in Malaysia. Although the only source of aerosol data covering large region in Malaysia is remote sensing, satellite observations are limited by cloud cover, orbital gaps of satellite track, etc. In addition, relatively less understanding is achieved on how the atmospheric aerosol interacts with the regional climate system. These gaps can be bridged by conducting more studies using integrated approach of remote sensing, AERONET and ground based measurements.

  13. Gelatin as a new humidity sensing material: Characterization and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Shapardanis, Steven [School of Engineering and Technology, Central Michigan University, Mt. Pleasant, Michigan, 48859 (United States); Hudpeth, Mathew [Department of Physics, Central Michigan University, Mt. Pleasant, Michigan, 48859 (United States); Kaya, Tolga, E-mail: kaya2t@cmich.edu [School of Engineering and Technology, Central Michigan University, Mt. Pleasant, Michigan, 48859 (United States); Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, Michigan, 48859 (United States)

    2014-12-15

    The goal of this work is to assert the utility of collagen and its denatured counterpart gelatin as cost-effective alternatives to existing sensing layers comprised of polymers. Rather than producing a material that will need to be discarded or recycled, collagen, as a by-product of the meat and leather industry, could be repurposed. This work examines the feasibility of using collagen as a sensing layer. Planar electrodes were patterned with lift-off process to work with the natural characteristics of gelatin by utilizing metal vapor deposition, spin coating, and photolithography. Characterization methods have also been optimized through the creation of specialized humidity chambers that isolate specific characteristics such as response time, accuracy, and hysteresis. Collagen-based sensors are found to have a sensitivity to moisture in the range of 0.065 pF/%RH. Diffusion characteristics were also analyzed with the diffusion coefficient found to be 2.5 × 10{sup −5} cm{sup 2}/s. Absorption and desorption times were found to be 20 seconds and 8 seconds, respectively. Hysteresis present in the data is attributed to temperature cross-sensitivity. Ultimately, the utility of collagen as a dielectric sensing material is, in part, due to its fibrous macrostructures as well its hydrophilic sites along the peptide chains. Gelatin was patterned between and below interdigitated copper electrodes and tested as a relative humidity sensor. This work shows that gelatin, which is inexpensive, widely available, and easy to process, can be an effective dielectric sensing polymer for capacitive-type relative humidity sensors.

  14. Gelatin as a new humidity sensing material: Characterization and limitations

    Directory of Open Access Journals (Sweden)

    Steven Shapardanis

    2014-12-01

    Full Text Available The goal of this work is to assert the utility of collagen and its denatured counterpart gelatin as cost-effective alternatives to existing sensing layers comprised of polymers. Rather than producing a material that will need to be discarded or recycled, collagen, as a by-product of the meat and leather industry, could be repurposed. This work examines the feasibility of using collagen as a sensing layer. Planar electrodes were patterned with lift-off process to work with the natural characteristics of gelatin by utilizing metal vapor deposition, spin coating, and photolithography. Characterization methods have also been optimized through the creation of specialized humidity chambers that isolate specific characteristics such as response time, accuracy, and hysteresis. Collagen-based sensors are found to have a sensitivity to moisture in the range of 0.065 pF/%RH. Diffusion characteristics were also analyzed with the diffusion coefficient found to be 2.5 × 10−5 cm2/s. Absorption and desorption times were found to be 20 seconds and 8 seconds, respectively. Hysteresis present in the data is attributed to temperature cross-sensitivity. Ultimately, the utility of collagen as a dielectric sensing material is, in part, due to its fibrous macrostructures as well its hydrophilic sites along the peptide chains. Gelatin was patterned between and below interdigitated copper electrodes and tested as a relative humidity sensor. This work shows that gelatin, which is inexpensive, widely available, and easy to process, can be an effective dielectric sensing polymer for capacitive-type relative humidity sensors.

  15. Fuel type characterization based on coarse resolution MODIS satellite data

    Directory of Open Access Journals (Sweden)

    Lanorte A

    2007-01-01

    Full Text Available Fuel types is one of the most important factors that should be taken into consideration for computing spatial fire hazard and risk and simulating fire growth and intensity across a landscape. In the present study, forest fuel mapping is considered from a remote sensing perspective. The purpose is to delineate forest types by exploring the use of coarse resolution satellite remote sensing MODIS imagery. In order to ascertain how well MODIS data can provide an exhaustive classification of fuel properties a sample area characterized by mixed vegetation covers and complex topography was analysed. The study area is located in the South of Italy. Fieldwork fuel type recognitions, performed before, after and during the acquisition of remote sensing MODIS data, were used as ground-truth dataset to assess the obtained results. The method comprised the following three steps: (I adaptation of Prometheus fuel types for obtaining a standardization system useful for remotely sensed classification of fuel types and properties in the considered Mediterranean ecosystems; (II model construction for the spectral characterization and mapping of fuel types based on two different approach, maximum likelihood (ML classification algorithm and spectral Mixture Analysis (MTMF; (III accuracy assessment for the performance evaluation based on the comparison of MODIS-based results with ground-truth. Results from our analyses showed that the use of remotely sensed MODIS data provided a valuable characterization and mapping of fuel types being that the achieved classification accuracy was higher than 73% for ML classifier and higher than 83% for MTMF.

  16. The Importance of Sensing Own's Movements in the World for the Sense of Personal Identity

    Directory of Open Access Journals (Sweden)

    Mariana Broens

    2012-01-01

    Full Text Available Within philosophy and cognitive science, the focus in relation to the problem of personal identity has been almost exclusively on the brain. We submit that the resulting neglect of the body and of bodily movements in the world has been detrimental in understanding how organisms develop a sense of identity. We examine the importance of sensing one’s own movements for the development of a basic, nonconceptual sense of self. More specifically, we argue that the origin of the sense of self stems from the sensitivity to spontaneous movements. Based on this, the organism develops a sense of “I move” and, finally, a sense of “I can move”. Proprioception and kinesthesis are essential in this development. At the same time, we argue against the traditional dichotomy between so-called external and internal senses, agreeing with Gibson that perception of the self and of the environment invariably go together. We discuss a traditional distinction between two aspects of bodily self: the body sense and the body image. We suggest that they capture different aspects of the sense of self. We argue that especially the body sense is of great importance to our nonconceptual sense of self. Finally, we attempt to draw some consequences for research in cognitive science, specifically in the area of robotics, by examining a case of missing proprioception. We make a plea for robots to be equipped not just with external perceptual and motor abilities but also with a sense of proprioception. This, we submit, would constitute one further step towards understanding creatures acting in the world with a sense of themselves.

  17. Radar remote sensing in biology

    Science.gov (United States)

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  18. Dispersed Fringe Sensing Analysis - DFSA

    Science.gov (United States)

    Sigrist, Norbert; Shi, Fang; Redding, David C.; Basinger, Scott A.; Ohara, Catherine M.; Seo, Byoung-Joon; Bikkannavar, Siddarayappa A.; Spechler, Joshua A.

    2012-01-01

    Dispersed Fringe Sensing (DFS) is a technique for measuring and phasing segmented telescope mirrors using a dispersed broadband light image. DFS is capable of breaking the monochromatic light ambiguity, measuring absolute piston errors between segments of large segmented primary mirrors to tens of nanometers accuracy over a range of 100 micrometers or more. The DFSA software tool analyzes DFS images to extract DFS encoded segment piston errors, which can be used to measure piston distances between primary mirror segments of ground and space telescopes. This information is necessary to control mirror segments to establish a smooth, continuous primary figure needed to achieve high optical quality. The DFSA tool is versatile, allowing precise piston measurements from a variety of different optical configurations. DFSA technology may be used for measuring wavefront pistons from sub-apertures defined by adjacent segments (such as Keck Telescope), or from separated sub-apertures used for testing large optical systems (such as sub-aperture wavefront testing for large primary mirrors using auto-collimating flats). An experimental demonstration of the coarse-phasing technology with verification of DFSA was performed at the Keck Telescope. DFSA includes image processing, wavelength and source spectral calibration, fringe extraction line determination, dispersed fringe analysis, and wavefront piston sign determination. The code is robust against internal optical system aberrations and against spectral variations of the source. In addition to the DFSA tool, the software package contains a simple but sophisticated MATLAB model to generate dispersed fringe images of optical system configurations in order to quickly estimate the coarse phasing performance given the optical and operational design requirements. Combining MATLAB (a high-level language and interactive environment developed by MathWorks), MACOS (JPL s software package for Modeling and Analysis for Controlled Optical

  19. GRIP LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Lidar Atmospheric Sensing Experiment (LASE) dataset was collected by NASA's Lidar Atmospheric Sensing Experiment (LASE) system, which is an airborne...

  20. National Satellite Land Remote Sensing Data Archive

    Science.gov (United States)

    Faundeen, John L.; Kelly, Francis P.; Holm, Thomas M.; Nolt, Jenna E.

    2013-01-01

    The National Satellite Land Remote Sensing Data Archive (NSLRSDA) resides at the U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center. Through the Land Remote Sensing Policy Act of 1992, the U.S. Congress directed the Department of the Interior (DOI) to establish a permanent Government archive containing satellite remote sensing data of the Earth's land surface and to make this data easily accessible and readily available. This unique DOI/USGS archive provides a comprehensive, permanent, and impartial observational record of the planet's land surface obtained throughout more than five decades of satellite remote sensing. Satellite-derived data and information products are primary sources used to detect and understand changes such as deforestation, desertification, agricultural crop vigor, water quality, invasive plant species, and certain natural hazards such as flood extent and wildfire scars.