WorldWideScience

Sample records for sensate robot hand

  1. Referral of sensation to an advanced humanoid robotic hand prosthesis.

    Science.gov (United States)

    Rosén, Birgitta; Ehrsson, H Henrik; Antfolk, Christian; Cipriani, Christian; Sebelius, Fredrik; Lundborg, Göran

    2009-01-01

    Hand prostheses that are currently available on the market are used by amputees to only a limited extent, partly because of lack of sensory feedback from the artificial hand. We report a pilot study that showed how amputees can experience a robot-like advanced hand prosthesis as part of their own body. We induced a perceptual illusion by which touch applied to the stump of the arm was experienced from the artificial hand. This illusion was elicited by applying synchronous tactile stimulation to the hidden amputation stump and the robotic hand prosthesis in full view. In five people who had had upper limb amputations this stimulation caused referral touch sensation from the stump to the artificial hand, and the prosthesis was experienced more like a real hand. We also showed that this illusion can work when the amputee controls the movements of the artificial hand by recordings of the arm muscle activity with electromyograms. These observations indicate that the previously described "rubber hand illusion" is also valid for an advanced hand prosthesis, even when it has a robotic-like appearance.

  2. Development of a robotic evaluation system for the ability of proprioceptive sensation in slow hand motion.

    Science.gov (United States)

    Tanaka, Yoshiyuki; Mizoe, Genki; Kawaguchi, Tomohiro

    2015-01-01

    This paper proposes a simple diagnostic methodology for checking the ability of proprioceptive/kinesthetic sensation by using a robotic device. The perception ability of virtual frictional forces is examined in operations of the robotic device by the hand at a uniform slow velocity along the virtual straight/circular path. Experimental results by healthy subjects demonstrate that percentage of correct answers for the designed perceptual tests changes in the motion direction as well as the arm configuration and the HFM (human force manipulability) measure. It can be supposed that the proposed methodology can be applied into the early detection of neuromuscular/neurological disorders.

  3. Robotic hand project

    OpenAIRE

    Karaçizmeli, Cengiz; Çakır, Gökçe; Tükel, Dilek

    2014-01-01

    In this work, the mechatronic based robotic hand is controlled by the position data taken from the glove which has flex sensors mounted to capture finger bending of the human hand. The angular movement of human hand’s fingers are perceived and processed by a microcontroller, and the robotic hand is controlled by actuating servo motors. It has seen that robotic hand can simulate the movement of the human hand that put on the glove, during tests have done. This robotic hand can be used not only...

  4. Humanlike robot hands controlled by brain activity arouse illusion of ownership in operators

    Science.gov (United States)

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2013-08-01

    Operators of a pair of robotic hands report ownership for those hands when they hold image of a grasp motion and watch the robot perform it. We present a novel body ownership illusion that is induced by merely watching and controlling robot's motions through a brain machine interface. In past studies, body ownership illusions were induced by correlation of such sensory inputs as vision, touch and proprioception. However, in the presented illusion none of the mentioned sensations are integrated except vision. Our results show that during BMI-operation of robotic hands, the interaction between motor commands and visual feedback of the intended motions is adequate to incorporate the non-body limbs into one's own body. Our discussion focuses on the role of proprioceptive information in the mechanism of agency-driven illusions. We believe that our findings will contribute to improvement of tele-presence systems in which operators incorporate BMI-operated robots into their body representations.

  5. The association of hand preference and sensation seeking behavior.

    Science.gov (United States)

    Kuderer, Sonja; Kirchengast, Sylvia

    Although the human body shows a superficial symmetry, the disparate functions and skills of both body halves lead to an asymmetrical use. As a result, lateral preferences are detectable, which also include the favoured use of one hand ('handedness'). The collection of questionnaire data on sensation seeking and the conduction of behavioral handedness tasks by 55 research participants enabled the investigation of the interaction of handedness and sensation seeking. For this procedure the age-homogeneous study population is divided according to the Handedness-Index (HI) - a calculated value, indicating the practical hand preference. The results reveal a stronger lateralization in right-handed participants as well as a difference in the mean value of hand use in the three handedness groups. Sensation seeking behavior shows significant negative correlations with age as well as with the HI. Higher scores of left-handers in Experience Seeking (ES), Sensation Seeking (SS) as well as in Thrill and Adventure Seeking (TAS) indicate a larger risk investment in this handedness group. Hence, the results of this study suggest that handedness is a strong indicator of risk behavior.

  6. Robotic hand and fingers

    Science.gov (United States)

    Salisbury, Curt Michael; Dullea, Kevin J.

    2017-06-06

    Technologies pertaining to a robotic hand are described herein. The robotic hand includes one or more fingers releasably attached to a robotic hand frame. The fingers can abduct and adduct as well as flex and tense. The fingers are releasably attached to the frame by magnets that allow for the fingers to detach from the frame when excess force is applied to the fingers.

  7. Age-related changes in cutaneous sensation in the healthy human hand.

    Science.gov (United States)

    Bowden, Jocelyn L; McNulty, Penelope A

    2013-08-01

    Cutaneous sensation deteriorates with age. It is not known if this change is consistent over the entire hand or if sensation is affected by changes in skin mechanics. Cutaneous perceptual thresholds were tested at eight sites in the glabrous skin and two in the hairy skin of both hands in 70 subjects (20-88 years), five male and five female per decade, using calibrated von Frey filaments, two-point discrimination, and texture discrimination. Venous occlusion at the wrist (40 ± 10 mmHg) and moisturizer were used to alter skin mechanics. Cutaneous thresholds increased significantly with age (p sensation varied according to the site tested with smaller changes on the fingers compared to the palm. Two-point discrimination deteriorated with age (p = 0.046), but with no interaction between sex, handedness, or changes in skin mechanics. There were no significant differences for texture discrimination. Changes in skin mechanics improved cutaneous thresholds in the oldest males after moisturizing (p = 0.001) but not otherwise. These results emphasize the complex pattern of age-related deterioration in cutaneous sensation with differences between sexes, the hands, sites on the hand, and the mode of testing. As the index fingertip is not a sensitive indicator of sensory decline, the minimum assessment of age-related changes in cutaneous sensation should include both hands, and sites on the palm.

  8. SPONGE ROBOTIC HAND DESIGN FOR PROSTHESES

    OpenAIRE

    Mine Seçkin

    2016-01-01

    In this study robotic hands and fingers’ materials are investigated from past to present and a sponge robotic hand is designed for biomedical applications. Emergence and necessity of soft robotic technology are explained and description of soft robot is made. Because of the importance of hand in a person’s body, researchers have dealt with robotic hand prostheses for many centuries and developed many hand types. To mimic the best for the human limbs, softness of the hand is one of the importa...

  9. Hand-held medical robots.

    Science.gov (United States)

    Payne, Christopher J; Yang, Guang-Zhong

    2014-08-01

    Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.

  10. The human hand as an inspiration for robot hand development

    CERN Document Server

    Santos, Veronica

    2014-01-01

    “The Human Hand as an Inspiration for Robot Hand Development” presents an edited collection of authoritative contributions in the area of robot hands. The results described in the volume are expected to lead to more robust, dependable, and inexpensive distributed systems such as those endowed with complex and advanced sensing, actuation, computation, and communication capabilities. The twenty-four chapters discuss the field of robotic grasping and manipulation viewed in light of the human hand’s capabilities and push the state-of-the-art in robot hand design and control. Topics discussed include human hand biomechanics, neural control, sensory feedback and perception, and robotic grasp and manipulation. This book will be useful for researchers from diverse areas such as robotics, biomechanics, neuroscience, and anthropologists.

  11. Hand Rehabilitation Robotics on Poststroke Motor Recovery

    Science.gov (United States)

    2017-01-01

    The recovery of hand function is one of the most challenging topics in stroke rehabilitation. Although the robot-assisted therapy has got some good results in the latest decades, the development of hand rehabilitation robotics is left behind. Existing reviews of hand rehabilitation robotics focus either on the mechanical design on designers' view or on the training paradigms on the clinicians' view, while these two parts are interconnected and both important for designers and clinicians. In this review, we explore the current literature surrounding hand rehabilitation robots, to help designers make better choices among varied components and thus promoting the application of hand rehabilitation robots. An overview of hand rehabilitation robotics is provided in this paper firstly, to give a general view of the relationship between subjects, rehabilitation theories, hand rehabilitation robots, and its evaluation. Secondly, the state of the art hand rehabilitation robotics is introduced in detail according to the classification of the hardware system and the training paradigm. As a result, the discussion gives available arguments behind the classification and comprehensive overview of hand rehabilitation robotics. PMID:29230081

  12. Application of vibration to wrist and hand skin affects fingertip tactile sensation

    Science.gov (United States)

    Lakshminarayanan, Kishor; Lauer, Abigail W; Ramakrishnan, Viswanathan; Webster, John G; Seo, Na Jin

    2015-01-01

    A recent study showed that fingertip pads’ tactile sensation can improve by applying imperceptible white-noise vibration to the skin at the wrist or dorsum of the hand in stroke patients. This study further examined this behavior by investigating the effect of both imperceptible and perceptible white-noise vibration applied to different locations within the distal upper extremity on the fingertip pads’ tactile sensation in healthy adults. In 12 healthy adults, white-noise vibration was applied to one of four locations (dorsum hand by the second knuckle, thenar and hypothenar areas, and volar wrist) at one of four intensities (zero, 60%, 80%, and 120% of the sensory threshold for each vibration location), while the fingertip sensation, the smallest vibratory signal that could be perceived on the thumb and index fingertip pads, was assessed. Vibration intensities significantly affected the fingertip sensation (P sensation (P sensation (P sensation (P > 0.01), all compared with the zero vibration condition. This effect with vibration intensity conforms to the stochastic resonance behavior. Nonspecificity to the vibration location suggests the white-noise vibration affects higher level neuronal processing for fingertip sensing. Further studies are needed to elucidate the neural pathways for distal upper extremity vibration to impact fingertip pad tactile sensation. PMID:26177959

  13. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  14. Anthropomorphic Robot Hand And Teaching Glove

    Science.gov (United States)

    Engler, Charles D., Jr.

    1991-01-01

    Robotic forearm-and-hand assembly manipulates objects by performing wrist and hand motions with nearly human grasping ability and dexterity. Imitates hand motions of human operator who controls robot in real time by programming via exoskeletal "teaching glove". Telemanipulator systems based on this robotic-hand concept useful where humanlike dexterity required. Underwater, high-radiation, vacuum, hot, cold, toxic, or inhospitable environments potential application sites. Particularly suited to assisting astronauts on space station in safely executing unexpected tasks requiring greater dexterity than standard gripper.

  15. Relationship between touch sensation of the affected hand and performance of valued activities in individuals with chronic stroke.

    Science.gov (United States)

    Hill, Valerie A; Fisher, Thomas; Schmid, Arlene A; Crabtree, Jeffrey; Page, Stephen J

    2014-01-01

    To investigate the association between touch sensation of the affected hand and performance and satisfaction with performance of valued activities in individuals with chronic stroke. Using a cross-sectional study design, this study correlated factors related to hand sensation and activity performance in individuals with chronic stroke. The Touch Test Evaluators and Canadian Occupational Performance Measure (COPM) were used. Correlations were used to determine the relationships between touch sensation of the affected hand and individuals' performance and satisfaction with performance of valued activities. There was a good to excellent relationship between sensation and performance and satisfaction with performance of valued activities for individuals with intact touch sensation of the affected hand who scored higher on the COPM. There was little to no relationship between touch sensation of the affected hand and performance of valued activities for individuals with impaired sensation. This is the first study to relate touch sensation of the affected hand and performance and satisfaction with performance of valued activities in individuals with stroke. The findings suggest that rehabilitation therapists need to continue to address sensory function in evaluation and intervention as it relates to performance in valued activities. This study serves as a foundation for future research in sensation and performance of valued activities in individuals with chronic stroke.

  16. Robotically enhanced rubber hand illusion.

    Science.gov (United States)

    Arata, Jumpei; Hattori, Masashi; Ichikawa, Shohei; Sakaguchi, Masamichi

    2014-01-01

    The rubber hand illusion is a well-known multisensory illusion. In brief, watching a rubber hand being stroked by a paintbrush while one's own unseen hand is synchronously stroked causes the rubber hand to be attributed to one's own body and to "feel like it's my hand." The rubber hand illusion is thought to be triggered by the synchronized tactile stimulation of both the subject's hand and the fake hand. To extend the conventional rubber hand illusion, we introduce robotic technology in the form of a master-slave telemanipulator. The developed one degree-of-freedom master-slave system consists of an exoskeleton master equipped with an optical encoder that is worn on the subject's index finger and a motor-actuated index finger on the rubber hand, which allows the subject to perform unilateral telemanipulation. The moving rubber hand illusion has been studied by several researchers in the past with mechanically connected rigs between the subject's body and the fake limb. The robotic instruments let us investigate the moving rubber hand illusion with less constraints, thus behaving closer to the classic rubber hand illusion. In addition, the temporal delay between the body and the fake limb can be precisely manipulated. The experimental results revealed that the robotic instruments significantly enhance the rubber hand illusion. The time delay is significantly correlated with the effect of the multisensory illusion, and the effect significantly decreased at time delays over 100 ms. These findings can potentially contribute to the investigations of neural mechanisms in the field of neuroscience and of master-slave systems in the field of robotics.

  17. Multi-fingered robotic hand

    Science.gov (United States)

    Ruoff, Carl F. (Inventor); Salisbury, Kenneth, Jr. (Inventor)

    1990-01-01

    A robotic hand is presented having a plurality of fingers, each having a plurality of joints pivotally connected one to the other. Actuators are connected at one end to an actuating and control mechanism mounted remotely from the hand and at the other end to the joints of the fingers for manipulating the fingers and passing externally of the robot manipulating arm in between the hand and the actuating and control mechanism. The fingers include pulleys to route the actuators within the fingers. Cable tension sensing structure mounted on a portion of the hand are disclosed, as is covering of the tip of each finger with a resilient and pliable friction enhancing surface.

  18. Design of Piano -playing Robotic Hand

    Directory of Open Access Journals (Sweden)

    Lin Jen-Chang

    2013-09-01

    Full Text Available Unlike the market slowdown of industrial robots, service & entertainment robots have been highly regarded by most robotics reseach and market research agencies. In this study we developed a music playing robot (which can also work as a service robot for public performance. The research is mainly focused on the mechanical and electrical control of piano-playing robot, the exploration of correlations among music theory, rhythm and piano keys, and eventually the research on playing skill of keyboard instrument. The piano-playing robot is capable of control linear motor, servo-motor and pneumatic devices in accordance with the notes and rhythm in order to drive the mechanical structure to proper positions for pressing the keys and generating music. The devices used for this robot are mainly crucial components produced by HIWIN Technology Corp. The design of robotic hand is based on the direction of anthropomorphic hand such that five fingers will be used for playing piano. The finger actuations include actions of finger rotation, finger pressing, and finger lifting; time required for these 3 stages must meet the requirement of rhythm. The purpose of entertainment robot can be achieved by playing electric piano with robotic hand, and we hope this research can contribute to the development of domestic entertainment music playing robots.

  19. Fabrication, sensation and control of fluidic elastomer actuators and their application towards hand orthotics and prosthetics

    Science.gov (United States)

    Zhao, Huichan

    Due to their continuous and natural motion, fluidic elastomer actuators (FEAs) have shown potential in a range of robotic applications including prosthetics and orthotics. Despite their advantages and rapid developments, robots using these actuators still have several challenging issues to be addressed. First, the reliable production of low cost and complex actuators that can apply high forces is necessary, yet none of existing fabrication methods are both easy to implement and of high force output. Next, compliant or stretchable sensors that can be embedded into their bodies for sophisticated functions are required, however, many of these sensors suffer from hysteresis, fabrication complexity, chemical safety and environmental instability, and material incompatibility with soft actuators. Finally, feedback control for FEAs is necessary to achieve better performance, but most soft robots are still "open-loop". In this dissertation, I intend to help solve the above issues and drive the applications of soft robotics towards hand orthotics and prosthetics. First, I adapt rotational casting as a new manufacturing method for soft actuators. I present a cuboid soft actuator that can generate a force of >25 N at its tip, a near ten-fold increase over similar actuators previously reported. Next, I propose a soft orthotic finger with position control enabled via embedded optical fiber. I monitor both the static and dynamic states via the optical sensor and achieve the prescribed curvatures accurately and with stability by a gain-scheduled proportional-integral-derivative controller. Then I develop the soft orthotic fingers into a low-cost, closed-loop controlled, soft orthotic glove that can be worn by a typical human hand and helpful for grasping light objects, while also providing finger position control. I achieve motion control with inexpensive, binary pneumatic switches controlled by a simple finite-state-machine. Finally, I report the first use of stretchable optical

  20. Integrated multi-sensory control of space robot hand

    Science.gov (United States)

    Bejczy, A. K.; Kan, E. P.; Killion, R. R.

    1985-01-01

    Dexterous manipulation of a robot hand requires the use of multiple sensors integrated into the mechanical hand under distributed microcomputer control. Where space applications such as construction, assembly, servicing and repair tasks are desired of smart robot arms and robot hands, several critical drives influence the design, engineering and integration of such an electromechanical hand. This paper describes a smart robot hand developed at the Jet Propulsion Laboratory for experimental use and evaluation with the Protoflight Manipulator Arm (PFMA) at the Marshall Space Flight Center (MSFC).

  1. NONLINEAR FORCE PROFILE USED TO INCREASE THE PERFORMANCE OF A HAPTIC USER INTERFACE FOR TELEOPERATING A ROBOTIC HAND

    Energy Technology Data Exchange (ETDEWEB)

    Anthony L. Crawford

    2012-07-01

    MODIFIED PAPER TITLE AND ABSTRACT DUE TO SLIGHTLY MODIFIED SCOPE: TITLE: Nonlinear Force Profile Used to Increase the Performance of a Haptic User Interface for Teleoperating a Robotic Hand Natural movements and force feedback are important elements in using teleoperated equipment if complex and speedy manipulation tasks are to be accomplished in hazardous environments, such as hot cells, glove boxes, decommissioning, explosives disarmament, and space. The research associated with this paper hypothesizes that a user interface and complementary radiation compatible robotic hand that integrates the human hand’s anthropometric properties, speed capability, nonlinear strength profile, reduction of active degrees of freedom during the transition from manipulation to grasping, and just noticeable difference force sensation characteristics will enhance a user’s teleoperation performance. The main contribution of this research is in that a system that concisely integrates all these factors has yet to be developed and furthermore has yet to be applied to a hazardous environment as those referenced above. In fact, the most prominent slave manipulator teleoperation technology in use today is based on a design patented in 1945 (Patent 2632574) [1]. The robotic hand/user interface systems of similar function as the one being developed in this research limit their design input requirements in the best case to only complementing the hand’s anthropometric properties, speed capability, and linearly scaled force application relationship (e.g. robotic force is a constant, 4 times that of the user). In this paper a nonlinear relationship between the force experienced between the user interface and the robotic hand was devised based on property differences of manipulation and grasping activities as they pertain to the human hand. The results show that such a relationship when subjected to a manipulation task and grasping task produces increased performance compared to the

  2. Humans can integrate force feedback to toes in their sensorimotor control of a robotic hand.

    Science.gov (United States)

    Panarese, Alessandro; Edin, Benoni B; Vecchi, Fabrizio; Carrozza, Maria C; Johansson, Roland S

    2009-12-01

    Tactile sensory feedback is essential for dexterous object manipulation. Users of hand myoelectric prostheses without tactile feedback must depend essentially on vision to control their device. Indeed, improved tactile feedback is one of their main priorities. Previous research has provided evidence that conveying tactile feedback can improve prostheses control, although additional effort is required to solve problems related to pattern recognition learning, unpleasant sensations, sensory adaptation, and low spatiotemporal resolution. Still, these studies have mainly focused on providing stimulation to hairy skin regions close to the amputation site, i.e., usually to the upper arm. Here, we explored the possibility to provide tactile feedback to the glabrous skin of toes, which have mechanical and neurophysiological properties similar to the fingertips. We explored this paradigm in a grasp-and-lift task, in which healthy participants controlled two opposing digits of a robotic hand by changing the spacing of their index finger and thumb. The normal forces applied by the robotic fingertips to a test object were fed back to the right big and second toe. We show that within a few lifting trials, all the participants incorporated the force feedback received by the foot in their sensorimotor control of the robotic hand.

  3. Robotic Hand

    Science.gov (United States)

    1993-01-01

    The Omni-Hand was developed by Ross-Hime Designs, Inc. for Marshall Space Flight Center (MSFC) under a Small Business Innovation Research (SBIR) contract. The multiple digit hand has an opposable thumb and a flexible wrist. Electric muscles called Minnacs power wrist joints and the interchangeable digits. Two hands have been delivered to NASA for evaluation for potential use on space missions and the unit is commercially available for applications like hazardous materials handling and manufacturing automation. Previous SBIR contracts resulted in the Omni-Wrist and Omni-Wrist II robotic systems, which are commercially available for spray painting, sealing, ultrasonic testing, as well as other uses.

  4. New frontiers in the rubber hand experiment: when a robotic hand becomes one's own.

    Science.gov (United States)

    Caspar, Emilie A; De Beir, Albert; Magalhaes De Saldanha Da Gama, Pedro A; Yernaux, Florence; Cleeremans, Axel; Vanderborght, Bram

    2015-09-01

    The rubber hand illusion is an experimental paradigm in which participants consider a fake hand to be part of their body. This paradigm has been used in many domains of psychology (i.e., research on pain, body ownership, agency) and is of clinical importance. The classic rubber hand paradigm nevertheless suffers from limitations, such as the absence of active motion or the reliance on approximate measurements, which makes strict experimental conditions difficult to obtain. Here, we report on the development of a novel technology-a robotic, user- and computer-controllable hand-that addresses many of the limitations associated with the classic rubber hand paradigm. Because participants can actively control the robotic hand, the device affords higher realism and authenticity. Our robotic hand has a comparatively low cost and opens up novel and innovative methods. In order to validate the robotic hand, we have carried out three experiments. The first two studies were based on previous research using the rubber hand, while the third was specific to the robotic hand. We measured both sense of agency and ownership. Overall, results show that participants experienced a "robotic hand illusion" in the baseline conditions. Furthermore, we also replicated previous results about agency and ownership.

  5. Approaching human performance the functionality-driven Awiwi robot hand

    CERN Document Server

    Grebenstein, Markus

    2014-01-01

    Humanoid robotics have made remarkable progress since the dawn of robotics. So why don't we have humanoid robot assistants in day-to-day life yet? This book analyzes the keys to building a successful humanoid robot for field robotics, where collisions become an unavoidable part of the game. The author argues that the design goal should be real anthropomorphism, as opposed to mere human-like appearance. He deduces three major characteristics to aim for when designing a humanoid robot, particularly robot hands: _ Robustness against impacts _ Fast dynamics _ Human-like grasping and manipulation performance   Instead of blindly copying human anatomy, this book opts for a holistic design me-tho-do-lo-gy. It analyzes human hands and existing robot hands to elucidate the important functionalities that are the building blocks toward these necessary characteristics.They are the keys to designing an anthropomorphic robot hand, as illustrated in the high performance anthropomorphic Awiwi Hand presented in this book.  ...

  6. Reliability of the "Ten Test" for assessment of discriminative sensation in hand trauma.

    Science.gov (United States)

    Berger, Michael J; Regan, William R; Seal, Alex; Bristol, Sean G

    2016-10-01

    "Ten Test" (TT) is a bedside measure of discriminative sensation, whereby the magnitude of abnormal sensation to moving light touch is normalized to an area of normal sensation on an 11-point Likert scale (0-10). The purposes of this study were to determine reliability parameters of the TT in a cohort of patients presenting to a hand trauma clinic with subjectively altered sensation post-injury and to compare the reliability of TT to that of the Weinstein Enhanced Sensory Test (WEST). Study participants (n = 29, mean age = 37 ± 12) comprised patients presenting to an outpatient hand trauma clinic with recent hand trauma and self reported abnormal sensation. Participants underwent TT and WEST by two separate raters on the same day. Interrater reliability, response stability and responsiveness of each test were determined by the intraclass correlation coefficient (ICC: 2, 1), standard error of measurement (SEM) with 95% confidence intervals (CI) and minimal detectable difference score, with 95% CI (MDD95), respectively. The TT displayed excellent interrater reliability (ICC = 0.95, 95% CI 0.89-0.97) compared to good reliability for WEST (ICC = 0.78, 95% CI 0.58-0.89). The range of true scores expected with 95% confidence based on the SEM (i.e. response stability), was ±1.1 for TT and ±1.1 for WEST. MDD95 scores reflecting test responsiveness were 1.5 and 1.6 for TT and WEST, respectively. The TT displayed excellent reliability parameters in this patient population. Reliability parameters were stronger for TT compared to WEST. These results provide support for the use of TT as a component of the sensory exam in hand trauma. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Intelligent, self-contained robotic hand

    Science.gov (United States)

    Krutik, Vitaliy; Doo, Burt; Townsend, William T.; Hauptman, Traveler; Crowell, Adam; Zenowich, Brian; Lawson, John

    2007-01-30

    A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

  8. Robotic Hand with Flexible Fingers for Grasping Cylindrical Objects

    OpenAIRE

    柴田, 瑞穂

    2015-01-01

    In this manuscript, a robotic hand for grasping a cylindrical object is proposed. This robotic hand has flexible fingers that can hold a cylindrical object during moving. We introduce a grasping strategy for a cylindrical object in terms of state transition graph. In this strategy the robotic hand picks up the cylindrical object utilizing a suction device before the hand grasp the object. We also design the flexible fingers; then, we investigate the validity of this robotic hand via several e...

  9. Controller design for Robotic hand through Electroencephalogram

    OpenAIRE

    Pandelidis P.; Kiriazis N.; Orgianelis K.; Koulios N.

    2016-01-01

    - This paper deals with the designing, the construction and the control of a robotic hand via an electroencephalogram sensor. First a robotic device that is able to mimic a real human hand is constructed. A PID controller is designed in order to improve the performance of the robotic arm for grabbing objects. Furthermore, a novel design approach is presented for controlling the motion of the robotic arm using signals produced from an innovative electroencephalogram sensor that detects the con...

  10. Intelligent computational control of multi-fingered dexterous robotic hand

    OpenAIRE

    Chen, Disi; Li, Gongfa; Jiang, Guozhang; Fang, Yinfeng; Ju, Zhaojie; Liu, Honghai

    2015-01-01

    We discuss the intelligent computational control theory and introduce the hardware structure of HIT/DLR II dexterous robotic hand, which is the typical dexterous robotic hand. We show that how DSP or FPGA controller can be used in the dexterous robotic hand. A popular intelligent dexterous robotic hand control system, which named Electromyography (EMG) control is investigated. We introduced some mathematical algorithms in EMG controlling, such as Gauss mixture model (GMM), artificial neural n...

  11. The prevalence and magnitude of impaired cutaneous sensation across the hand in the chronic period post-stroke.

    Science.gov (United States)

    Bowden, Jocelyn L; Lin, Gaven G; McNulty, Penelope A

    2014-01-01

    Sensation is commonly impaired immediately post-stroke but little is known about the long-term changes in cutaneous sensation that have the capacity to adversely impact independence and motor-function. We investigated cutaneous sensory thresholds across the hand in the chronic post-stroke period. Cutaneous sensation was assessed in 42 community-dwelling stroke patients and compared to 36 healthy subjects. Sensation was tested with calibrated monofilaments at 6 sites on the hand that covered the median, ulnar and radial innervation territories and included both glabrous (hairless) and hairy skin. The motor-function of stroke patients was assessed with the Wolf Motor Function Test and the upper-limb motor Fugl-Meyer Assessment. Impaired cutaneous sensation was defined as monofilament thresholds >3 SD above the mean of healthy subjects and good sensation was ≤ 3 SD. Cutaneous sensation was impaired for 33% of patients and was 40-84% worse on the more-affected side compared to healthy subjects depending on the site (psensation fell within the healthy range, although ∼ 1/3 of patients were classified with impaired sensation. Classification by motor-function revealed low levels of impaired sensation. The magnitude of sensory loss was only apparent when the sensory-function of stroke patients was classified as good or impaired. Sensation was most impaired on the dorsum of the hand where age-related changes in monofilament thresholds are minimal in healthy subjects. Although patients with both high and low motor-function had poor cutaneous sensation, overall patients with low motor-function had poorer cutaneous sensation than those with higher motor-function, and relationships were found between motor impairments and sensation at the fingertip and palm. These results emphasize the importance of identifying the presence and magnitude of cutaneous sensory impairments in the chronic period after stroke.

  12. Controller design for Robotic hand through Electroencephalogram

    Directory of Open Access Journals (Sweden)

    Pandelidis P.

    2016-01-01

    Full Text Available - This paper deals with the designing, the construction and the control of a robotic hand via an electroencephalogram sensor. First a robotic device that is able to mimic a real human hand is constructed. A PID controller is designed in order to improve the performance of the robotic arm for grabbing objects. Furthermore, a novel design approach is presented for controlling the motion of the robotic arm using signals produced from an innovative electroencephalogram sensor that detects the concentration of the brain

  13. Modeling and control of an anthropomorphic robotic hand

    OpenAIRE

    Bensalah, Choukri

    2016-01-01

    Mención Europea en el título de doctor This thesis presents methods and tools for enabling the successful use of robotic hands. For highly dexterous and/or anthropomorphic robotic hands, these methods have to share some common goals, such as overcoming the potential complexity of the mechanical design and the ability of performing accurate tasks with low and efficient computational cost. A prerequisite for dexterity is to increase the workspace of the robotic hand. For th...

  14. Human Hand Motion Analysis and Synthesis of Optimal Power Grasps for a Robotic Hand

    Directory of Open Access Journals (Sweden)

    Francesca Cordella

    2014-03-01

    Full Text Available Biologically inspired robotic systems can find important applications in biomedical robotics, since studying and replicating human behaviour can provide new insights into motor recovery, functional substitution and human-robot interaction. The analysis of human hand motion is essential for collecting information about human hand movements useful for generalizing reaching and grasping actions on a robotic system. This paper focuses on the definition and extraction of quantitative indicators for describing optimal hand grasping postures and replicating them on an anthropomorphic robotic hand. A motion analysis has been carried out on six healthy human subjects performing a transverse volar grasp. The extracted indicators point to invariant grasping behaviours between the involved subjects, thus providing some constraints for identifying the optimal grasping configuration. Hence, an optimization algorithm based on the Nelder-Mead simplex method has been developed for determining the optimal grasp configuration of a robotic hand, grounded on the aforementioned constraints. It is characterized by a reduced computational cost. The grasp stability has been tested by introducing a quality index that satisfies the form-closure property. The grasping strategy has been validated by means of simulation tests and experimental trials on an arm-hand robotic system. The obtained results have shown the effectiveness of the extracted indicators to reduce the non-linear optimization problem complexity and lead to the synthesis of a grasping posture able to replicate the human behaviour while ensuring grasp stability. The experimental results have also highlighted the limitations of the adopted robotic platform (mainly due to the mechanical structure to achieve the optimal grasp configuration.

  15. HUMAN HAND STUDY FOR ROBOTIC EXOSKELETON DELVELOPMENT

    OpenAIRE

    BIROUAS Flaviu Ionut; NILGESZ Arnold

    2016-01-01

    This paper will be presenting research with application in the rehabilitation of hand motor functions by the aid of robotics. The focus will be on the dimensional parameters of the biological human hand from which the robotic system will be developed. The term used for such measurements is known as anthropometrics. The anthropometric parameters studied and presented in this paper are mainly related to the angular limitations of the finger joints of the human hand.

  16. Development of Pneumatic Robot Hand and Construction of Master-Slave System

    Science.gov (United States)

    Tsujiuchi, Nobutaka; Koizumi, Takayuki; Nishino, Shinya; Komatsubara, Hiroyuki; Kudawara, Tatsuwo; Hirano, Masanori

    Recently, research and development has focused on robots that work in place of people. It is necessary for robots to perform the same flexible motions as people. Additionally, such robots need to incorporate high-level safety features in order not to injure people. For creation of such robots, we need to develop a robot hand that functions like a human hand. At the same time, this type of robot hand can be used as an artificial hand. Here, we present artificial muscle-type pneumatic actuators as the driving source of a robot hand that is both safe and flexible. Some development of robot hands using pneumatic actuators has already taken place. But, until now, when a pneumatic actuator is used, a big compressor is needed. So, the driving system also needs to be big; enlargement of the driving system is a major problem. Consequently, in this research, we develop a low-pressure, low-volume pneumatic actuator for driving a robot hand that works flexibly and safely on the assumption that it will be in contact with people. We develop a five-fingered robot hand with pneumatic actuators. And, we construct a master-slave system to enable the robot hand to perform the same operations as a human hand. We make a 1-link arm that has one degree of freedom using a pneumatic actuator, and construct a control system for the 1-link arm and verify its control performance.

  17. Micro flexible robot hand using electro-conjugate fluid

    Science.gov (United States)

    Ueno, S.; Takemura, K.; Yokota, S.; Edamura, K.

    2013-12-01

    An electro-conjugate fluid (ECF) is a kind of functional fluid, which produces a flow (ECF flow) when subjected to high DC voltage. Since it only requires a tiny electrode pair in micrometer size in order to generate the ECF flow, the ECF is a promising micro fluid pressure source. This study proposes a novel micro robot hand using the ECF. The robot hand is mainly composed of five flexible fingers and an ECF flow generator. The flexible finger is made of silicone rubber having several chambers in series along its axis. When the chambers are depressurized, the chambers deflate resulting in making the actuator bend. On the other hand, the ECF flow generator has a needle-ring electrode pair inside. When putting the ECF flow generator into the ECF and applying voltage of 6.0 kV to the electrode pair, we can obtain the pressure of 33.1 kPa. Using the components mentioned above, we developed the ECF robot hand. The height, the width and the mass of the robot hand are 45 mm, 40 mm and 5.2 g, respectively. Since the actuator is flexible, the robot hand can grasp various objects with various shapes without complex controller.

  18. HUMAN HAND STUDY FOR ROBOTIC EXOSKELETON DELVELOPMENT

    Directory of Open Access Journals (Sweden)

    BIROUAS Flaviu Ionut

    2016-11-01

    Full Text Available This paper will be presenting research with application in the rehabilitation of hand motor functions by the aid of robotics. The focus will be on the dimensional parameters of the biological human hand from which the robotic system will be developed. The term used for such measurements is known as anthropometrics. The anthropometric parameters studied and presented in this paper are mainly related to the angular limitations of the finger joints of the human hand.

  19. Design and control of five fingered under-actuated robotic hand

    Science.gov (United States)

    Sahoo, Biswojit; Parida, Pramod Kumar

    2018-04-01

    Now a day's research regarding humanoid robots and its application in different fields (industry, household, rehabilitation and exploratory) is going on entire the globe. Among which a challenging topic is to design a dexterous robotic hand which not only can perform as a hand of a robot but also can be used in re habilitation. The basic key concern is a dexterous robot hand which can be able to mimic the function of biological hand to perform different operations. This thesis work is regarding design and control of a under-actuated robotic hand consisting of four under actuated fingers (index finger, middle finger, little finger and ring finger ) , a thumb and a dexterous palm which can copy the motions and grasp type of human hand which having 21degrees of freedom instead of 25Degree Of Freedom.

  20. The magnitude and rate of reduction in strength, dexterity and sensation in the human hand vary with ageing.

    Science.gov (United States)

    Bowden, Jocelyn L; McNulty, Penelope A

    2013-08-01

    Cutaneous sensation and motor performance of the hand decline with age. It is not known if motor performance declines are influenced by reductions in cutaneous sensation, or if motor performance deteriorates at a consistent rate across motor tasks. Handgrip strength, finger-tapping frequency and grooved-pegboard performance were assessed for both hands of 70 subjects (20-88 years), 10 per decade. Motor declines were compared to reductions in perceptual cutaneous sensation tested at 10 hand sites using calibrated von Frey filaments. Motor performance decreased with age for all motor tasks (psensation also decreased with age, measured as increased von Frey thresholds of 0.04 g [0.02-0.07] to 0.16 g [0.04-0.4] (psensation varied with sex, side-tested and site. Reductions in grip-based tasks were associated with sensory declines in the palm, but elsewhere there was little correlation among motor tasks and cutaneous sensation in the hand. Grooved-pegboard performance was the best predictor of age-related declines in motor performance regardless of sex or side-tested. Our results suggest age-related declines in motor function cannot be inferred from, or provide information about, changes in cutaneous sensation. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Implement of Shape Memory Alloy Actuators in a Robotic Hand

    Directory of Open Access Journals (Sweden)

    Daniel Amariei

    2006-10-01

    Full Text Available This paper was conceived to present the ideology of utilizing advanced actuators to design and develop innovative, lightweight, powerful, compact, and as much as possible dexterous robotic hands. The key to satisfying these objectives is the use of Shape Memory Alloys (SMAs to power the joints of the robotic hand. The mechanical design of a dexterous robotic hand, which utilizes non-classical types of actuation and information obtained from the study of biological systems, is presented in this paper. The type of robotic hand described in this paper will be utilized for applications requiring low weight, power, compactness, and dexterity.

  2. Effect of clinical parameters on the control of myoelectric robotic prosthetic hands.

    Science.gov (United States)

    Atzori, Manfredo; Gijsberts, Arjan; Castellini, Claudio; Caputo, Barbara; Hager, Anne-Gabrielle Mittaz; Elsig, Simone; Giatsidis, Giorgio; Bassetto, Franco; Müller, Henning

    2016-01-01

    Improving the functionality of prosthetic hands with noninvasive techniques is still a challenge. Surface electromyography (sEMG) currently gives limited control capabilities; however, the application of machine learning to the analysis of sEMG signals is promising and has recently been applied in practice, but many questions still remain. In this study, we recorded the sEMG activity of the forearm of 11 male subjects with transradial amputation who were mentally performing 40 hand and wrist movements. The classification performance and the number of independent movements (defined as the subset of movements that could be distinguished with >90% accuracy) were studied in relationship to clinical parameters related to the amputation. The analysis showed that classification accuracy and the number of independent movements increased significantly with phantom limb sensation intensity, remaining forearm percentage, and temporal distance to the amputation. The classification results suggest the possibility of naturally controlling up to 11 movements of a robotic prosthetic hand with almost no training. Knowledge of the relationship between classification accuracy and clinical parameters adds new information regarding the nature of phantom limb pain as well as other clinical parameters, and it can lay the foundations for future "functional amputation" procedures in surgery.

  3. An artificial arm/hand system with a haptic sensory function using electric stimulation of peripheral sensory nerve fibers.

    Science.gov (United States)

    Mabuchi, Kunihiko

    2013-01-01

    We are currently developing an artificial arm/hand system which is capable of sensing stimuli and then transferring these stimuli to users as somatic sensations. Presently, we are evoking the virtual somatic sensations by electrically stimulating a sensory nerve fiber which innervates a single mechanoreceptor unit at the target area; this is done using a tungsten microelectrode that was percutaneously inserted into the use's peripheral nerve (a microstimulation method). The artificial arm/hand system is composed of a robot hand equipped with a pressure sensor system on its fingers. The sensor system detects mechanical stimuli, which are transferred to the user by means of the microstimulation method so that the user experiences the stimuli as the corresponding somatic sensations. In trials, the system worked satisfactorily and there was a good correlation between the pressure applied to the pressure sensors on the robot fingers and the subjective intensities of the evoked pressure sensations.

  4. The future of robotics in hand surgery.

    Science.gov (United States)

    Liverneaux, P; Nectoux, E; Taleb, C

    2009-10-01

    Robotics has spread over many surgical fields over the last decade: orthopaedic, cardiovascular, urologic, gynaecologic surgery and various other types of surgery. There are five different types of robots: passive, semiactive and active robots, telemanipulators and simulators. Hand surgery is at a crossroad between orthopaedic surgery, plastic surgery and microsurgery; it has to deal with fixing all sorts of tissues from bone to soft tissues. To our knowledge, there is not any paper focusing on potential clinical applications in this realm, even though robotics could be helpful for hand surgery. One must point out the numerous works on bone tissue with regard to passive robots (such as fluoroscopic navigation as an ancillary for percutaneous screwing in the scaphoid bone). Telemanipulators, especially in microsurgery, can improve surgical motion by suppressing physiological tremor thanks to movement demultiplication (experimental vascular and nervous sutures previously published). To date, the robotic technology has not yet become simple-to-use, cheap and flawless but in the future, it will probably be of great technical help, and even allow remote-controlled surgery overseas.

  5. Robotic approaches for rehabilitation of hand function after stroke.

    Science.gov (United States)

    Lum, Peter S; Godfrey, Sasha B; Brokaw, Elizabeth B; Holley, Rahsaan J; Nichols, Diane

    2012-11-01

    The goal of this review was to discuss the impairments in hand function after stroke and present previous work on robot-assisted approaches to movement neurorehabilitation. Robotic devices offer a unique training environment that may enhance outcomes beyond what is possible with conventional means. Robots apply forces to the hand, allowing completion of movements while preventing inappropriate movement patterns. Evidence from the literature is emerging that certain characteristics of the human-robot interaction are preferable. In light of this evidence, the robotic hand devices that have undergone clinical testing are reviewed, highlighting the authors' work in this area. Finally, suggestions for future work are offered. The ability to deliver therapy doses far higher than what has been previously tested is a potentially key advantage of robotic devices that needs further exploration. In particular, more efforts are needed to develop highly motivating home-based devices, which can increase access to high doses of assisted movement therapy.

  6. The da vinci robot system eliminates multispecialty surgical trainees' hand dominance in open and robotic surgical settings.

    Science.gov (United States)

    Badalato, Gina M; Shapiro, Edan; Rothberg, Michael B; Bergman, Ari; RoyChoudhury, Arindam; Korets, Ruslan; Patel, Trushar; Badani, Ketan K

    2014-01-01

    Handedness, or the inherent dominance of one hand's dexterity over the other's, is a factor in open surgery but has an unknown importance in robot-assisted surgery. We sought to examine whether the robotic surgery platform could eliminate the effect of inherent hand preference. Residents from the Urology and Obstetrics/Gynecology departments were enrolled. Ambidextrous and left-handed subjects were excluded. After completing a questionnaire, subjects performed three tasks modified from the Fundamentals of Laparoscopic Surgery curriculum. Tasks were performed by hand and then with the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, California). Participants were randomized to begin with using either the left or the right hand, and then switch. Left:right ratios were calculated from scores based on time to task completion. Linear regression analysis was used to determine the significance of the impact of surgical technique on hand dominance. Ten subjects were enrolled. The mean difference in raw score performance between the right and left hands was 12.5 seconds for open tasks and 8 seconds for robotic tasks (Probot tasks, respectively (Probotic and open approaches for raw time scores (Phand, prior robotic experience, and comfort level. These findings remain to be validated in larger cohorts. The robotic technique reduces hand dominance in surgical trainees across all task domains. This finding contributes to the known advantages of robotic surgery.

  7. An intention driven hand functions task training robotic system.

    Science.gov (United States)

    Tong, K Y; Ho, S K; Pang, P K; Hu, X L; Tam, W K; Fung, K L; Wei, X J; Chen, P N; Chen, M

    2010-01-01

    A novel design of a hand functions task training robotic system was developed for the stroke rehabilitation. It detects the intention of hand opening or hand closing from the stroke person using the electromyography (EMG) signals measured from the hemiplegic side. This training system consists of an embedded controller and a robotic hand module. Each hand robot has 5 individual finger assemblies capable to drive 2 degrees of freedom (DOFs) of each finger at the same time. Powered by the linear actuator, the finger assembly achieves 55 degree range of motion (ROM) at the metacarpophalangeal (MCP) joint and 65 degree range of motion (ROM) at the proximal interphalangeal (PIP) joint. Each finger assembly can also be adjusted to fit for different finger length. With this task training system, stroke subject can open and close their impaired hand using their own intention to carry out some of the daily living tasks.

  8. Compact Dexterous Robotic Hand

    Science.gov (United States)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  9. Embodied neurofeedback with an anthropomorphic robotic hand

    Science.gov (United States)

    Braun, Niclas; Emkes, Reiner; Thorne, Jeremy D.; Debener, Stefan

    2016-01-01

    Neurofeedback-guided motor imagery training (NF-MIT) has been suggested as a promising therapy for stroke-induced motor impairment. Whereas much NF-MIT research has aimed at signal processing optimization, the type of sensory feedback given to the participant has received less attention. Often the feedback signal is highly abstract and not inherently coupled to the mental act performed. In this study, we asked whether an embodied feedback signal is more efficient for neurofeedback operation than a non-embodiable feedback signal. Inspired by the rubber hand illusion, demonstrating that an artificial hand can be incorporated into one’s own body scheme, we used an anthropomorphic robotic hand to visually guide the participants’ motor imagery act and to deliver neurofeedback. Using two experimental manipulations, we investigated how a participant’s neurofeedback performance and subjective experience were influenced by the embodiability of the robotic hand, and by the neurofeedback signal’s validity. As pertains to embodiment, we found a promoting effect of robotic-hand embodiment in subjective, behavioral, electrophysiological and electrodermal measures. Regarding neurofeedback signal validity, we found some differences between real and sham neurofeedback in terms of subjective and electrodermal measures, but not in terms of behavioral and electrophysiological measures. This study motivates the further development of embodied feedback signals for NF-MIT. PMID:27869190

  10. Embodied neurofeedback with an anthropomorphic robotic hand.

    Science.gov (United States)

    Braun, Niclas; Emkes, Reiner; Thorne, Jeremy D; Debener, Stefan

    2016-11-21

    Neurofeedback-guided motor imagery training (NF-MIT) has been suggested as a promising therapy for stroke-induced motor impairment. Whereas much NF-MIT research has aimed at signal processing optimization, the type of sensory feedback given to the participant has received less attention. Often the feedback signal is highly abstract and not inherently coupled to the mental act performed. In this study, we asked whether an embodied feedback signal is more efficient for neurofeedback operation than a non-embodiable feedback signal. Inspired by the rubber hand illusion, demonstrating that an artificial hand can be incorporated into one's own body scheme, we used an anthropomorphic robotic hand to visually guide the participants' motor imagery act and to deliver neurofeedback. Using two experimental manipulations, we investigated how a participant's neurofeedback performance and subjective experience were influenced by the embodiability of the robotic hand, and by the neurofeedback signal's validity. As pertains to embodiment, we found a promoting effect of robotic-hand embodiment in subjective, behavioral, electrophysiological and electrodermal measures. Regarding neurofeedback signal validity, we found some differences between real and sham neurofeedback in terms of subjective and electrodermal measures, but not in terms of behavioral and electrophysiological measures. This study motivates the further development of embodied feedback signals for NF-MIT.

  11. Two-Armed, Mobile, Sensate Research Robot

    Science.gov (United States)

    Engelberger, J. F.; Roberts, W. Nelson; Ryan, David J.; Silverthorne, Andrew

    2004-01-01

    contains a force-and-torque sensor that provides feedback for force (compliance) control of the arm. The end effector could be a tool or a robot hand, depending on the application.

  12. Markerless Kinect-Based Hand Tracking for Robot Teleoperation

    Directory of Open Access Journals (Sweden)

    Guanglong Du

    2012-07-01

    Full Text Available This paper presents a real-time remote robot teleoperation method using markerless Kinect-based hand tracking. Using this tracking algorithm, the positions of index finger and thumb in 3D can be estimated by processing depth images from Kinect. The hand pose is used as a model to specify the pose of a real-time remote robot's end-effector. This method provides a way to send a whole task to a remote robot instead of sending limited motion commands like gesture-based approaches and this method has been tested in pick-and-place tasks.

  13. An Infant Development-inspired Approach to Robot Hand-eye Coordination

    Directory of Open Access Journals (Sweden)

    Fei Chao

    2014-02-01

    Full Text Available This paper presents a novel developmental learning approach for hand-eye coordination in an autonomous robotic system. Robotic hand-eye coordination plays an important role in dealing with real-time environments. Under the approach, infant developmental patterns are introduced to build our robot's learning system. The method works by first constructing a brain-like computational structure to control the robot, and then by using infant behavioural patterns to build a hand-eye coordination learning algorithm. This work is supported by an experimental evaluation, which shows that the control system is implemented simply, and that the learning approach provides fast and incremental learning of behavioural competence.

  14. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands

    Science.gov (United States)

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M. L.; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio

    2016-07-01

    The term 'synergy' - from the Greek synergia - means 'working together'. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project ;The Hand Embodied; (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies.

  15. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands

    Science.gov (United States)

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M.L.; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio

    2017-01-01

    The term ‘synergy’ – from the Greek synergia – means ‘working together’. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project “The Hand Embodied” (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies. PMID:26923030

  16. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands.

    Science.gov (United States)

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M L; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio

    2016-07-01

    The term 'synergy' - from the Greek synergia - means 'working together'. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project "The Hand Embodied" (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Novel Approach to Control of Robotic Hand Using Flex Sensors

    Directory of Open Access Journals (Sweden)

    Sandesh R.S

    2014-05-01

    Full Text Available This paper discuss about novel design approach to control of a robotic hand using flex sensors which indicates a biomechatronic multi fingered robotic hand. This robotic hand consists of base unit, upper arm, lower arm, palm and five fingers. The aim is to develop an anthropomorphic five fingered robotic hand. The proposed design illustrates the use of 5 micro DC motors with 9 Degrees of Freedom (DOF.Each finger is controlled independently. Further three extra motors were used for the control of wrist elbow and base movement. The study of the DC motor is being carried out using the transfer function model for constant excitation. The micro DC motor performance was analyzed using MATLAB simulation environment. The whole system is implemented using flex sensors. The flex sensors placed on the human hand gloves appear as if they look like real human hand.  89v51 microcontroller was used for all the controlling actions along with RF transmitter/receiver .The performance of the system has been conducted experimentally and studied.

  18. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.

    Science.gov (United States)

    Leonardis, Daniele; Barsotti, Michele; Loconsole, Claudio; Solazzi, Massimiliano; Troncossi, Marco; Mazzotti, Claudio; Castelli, Vincenzo Parenti; Procopio, Caterina; Lamola, Giuseppe; Chisari, Carmelo; Bergamasco, Massimo; Frisoli, Antonio

    2015-01-01

    This paper presents a novel electromyography (EMG)-driven hand exoskeleton for bilateral rehabilitation of grasping in stroke. The developed hand exoskeleton was designed with two distinctive features: (a) kinematics with intrinsic adaptability to patient's hand size, and (b) free-palm and free-fingertip design, preserving the residual sensory perceptual capability of touch during assistance in grasping of real objects. In the envisaged bilateral training strategy, the patient's non paretic hand acted as guidance for the paretic hand in grasping tasks. Grasping force exerted by the non paretic hand was estimated in real-time from EMG signals, and then replicated as robotic assistance for the paretic hand by means of the hand-exoskeleton. Estimation of the grasping force through EMG allowed to perform rehabilitation exercises with any, non sensorized, graspable objects. This paper presents the system design, development, and experimental evaluation. Experiments were performed within a group of six healthy subjects and two chronic stroke patients, executing robotic-assisted grasping tasks. Results related to performance in estimation and modulation of the robotic assistance, and to the outcomes of the pilot rehabilitation sessions with stroke patients, positively support validity of the proposed approach for application in stroke rehabilitation.

  19. Biomimetic actuator and sensor for robot hand

    International Nuclear Information System (INIS)

    Kim, Baekchul; Chung, Jinah; Cho, Hanjoung; Shin, Seunghoon; Lee, Hyoungsuk; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, Jachoon

    2012-01-01

    To manufacture a robot hand that essentially mimics the functions of a human hand, it is necessary to develop flexible actuators and sensors. In this study, we propose the design, manufacture, and performance verification of flexible actuators and sensors based on Electro Active Polymer (EAP). EAP is fabricated as a type of film, and it moves with changes in the voltage because of contraction and expansion in the polymer film. Furthermore, if a force is applied to an EAP film, its thickness and effective area change, and therefore, the capacitance also changes. By using this mechanism, we produce capacitive actuators and sensors. In this study, we propose an EAP based capacitive sensor and evaluate its use as a robot hand sensor

  20. Biomimetic actuator and sensor for robot hand

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Baekchul; Chung, Jinah; Cho, Hanjoung; Shin, Seunghoon; Lee, Hyoungsuk; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, Jachoon [Sungkyunkwan Univ., Seoul (Korea, Republic of)

    2012-12-15

    To manufacture a robot hand that essentially mimics the functions of a human hand, it is necessary to develop flexible actuators and sensors. In this study, we propose the design, manufacture, and performance verification of flexible actuators and sensors based on Electro Active Polymer (EAP). EAP is fabricated as a type of film, and it moves with changes in the voltage because of contraction and expansion in the polymer film. Furthermore, if a force is applied to an EAP film, its thickness and effective area change, and therefore, the capacitance also changes. By using this mechanism, we produce capacitive actuators and sensors. In this study, we propose an EAP based capacitive sensor and evaluate its use as a robot hand sensor.

  1. The Making of a 3D-Printed, Cable-Driven, Single-Model, Lightweight Humanoid Robotic Hand

    Directory of Open Access Journals (Sweden)

    Li Tian

    2017-12-01

    Full Text Available Dexterity robotic hands can (Cummings, 1996 greatly enhance the functionality of humanoid robots, but the making of such hands with not only human-like appearance but also the capability of performing the natural movement of social robots is a challenging problem. The first challenge is to create the hand’s articulated structure and the second challenge is to actuate it to move like a human hand. A robotic hand for humanoid robot should look and behave human like. At the same time, it also needs to be light and cheap for widely used purposes. We start with studying the biomechanical features of a human hand and propose a simplified mechanical model of robotic hands, which can achieve the important local motions of the hand. Then, we use 3D modeling techniques to create a single interlocked hand model that integrates pin and ball joints to our hand model. Compared to other robotic hands, our design saves the time required for assembling and adjusting, which makes our robotic hand ready-to-use right after the 3D printing is completed. Finally, the actuation of the hand is realized by cables and motors. Based on this approach, we have designed a cost-effective, 3D printable, compact, and lightweight robotic hand. Our robotic hand weighs 150 g, has 15 joints, which are similar to a real human hand, and 6 Degree of Freedom (DOFs. It is actuated by only six small size actuators. The wrist connecting part is also integrated into the hand model and could be customized for different robots such as Nadine robot (Magnenat Thalmann et al., 2017. The compact servo bed can be hidden inside the Nadine robot’s sleeve and the whole robotic hand platform will not cause extra load to her arm as the total weight (150 g robotic hand and 162 g artificial skin is almost the same as her previous unarticulated robotic hand which is 348 g. The paper also shows our test results with and without silicon artificial hand skin, and on Nadine robot.

  2. Kinematics/statics analysis of a novel serial-parallel robotic arm with hand

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yi; Dai, Zhuohong; Ye, Nijia; Wang, Peng [Yanshan University, Hebei (China)

    2015-10-15

    A robotic arm with fingered hand generally has multi-functions to complete various complicated operations. A novel serial-parallel robotic arm with a hand is proposed and its kinematics and statics are studied systematically. A 3D prototype of the serial-parallel robotic arm with a hand is constructed and analyzed by simulation. The serial-parallel robotic arm with a hand is composed of an upper 3RPS parallel manipulator, a lower 3SPR parallel manipulator and a hand with three finger mechanisms. Its kinematics formulae for solving the displacement, velocity, acceleration of are derived. Its statics formula for solving the active/constrained forces is derived. Its reachable workspace and orientation workspace are constructed and analyzed. Finally, an analytic example is given for solving the kinematics and statics of the serial-parallel robotic arm with a hand and the analytic solutions are verified by a simulation mechanism.

  3. Kinematics/statics analysis of a novel serial-parallel robotic arm with hand

    International Nuclear Information System (INIS)

    Lu, Yi; Dai, Zhuohong; Ye, Nijia; Wang, Peng

    2015-01-01

    A robotic arm with fingered hand generally has multi-functions to complete various complicated operations. A novel serial-parallel robotic arm with a hand is proposed and its kinematics and statics are studied systematically. A 3D prototype of the serial-parallel robotic arm with a hand is constructed and analyzed by simulation. The serial-parallel robotic arm with a hand is composed of an upper 3RPS parallel manipulator, a lower 3SPR parallel manipulator and a hand with three finger mechanisms. Its kinematics formulae for solving the displacement, velocity, acceleration of are derived. Its statics formula for solving the active/constrained forces is derived. Its reachable workspace and orientation workspace are constructed and analyzed. Finally, an analytic example is given for solving the kinematics and statics of the serial-parallel robotic arm with a hand and the analytic solutions are verified by a simulation mechanism.

  4. Understanding Human Hand Gestures for Learning Robot Pick-and-Place Tasks

    Directory of Open Access Journals (Sweden)

    Hsien-I Lin

    2015-05-01

    Full Text Available Programming robots by human demonstration is an intuitive approach, especially by gestures. Because robot pick-and-place tasks are widely used in industrial factories, this paper proposes a framework to learn robot pick-and-place tasks by understanding human hand gestures. The proposed framework is composed of the module of gesture recognition and the module of robot behaviour control. For the module of gesture recognition, transport empty (TE, transport loaded (TL, grasp (G, and release (RL from Gilbreth's therbligs are the hand gestures to be recognized. A convolution neural network (CNN is adopted to recognize these gestures from a camera image. To achieve the robust performance, the skin model by a Gaussian mixture model (GMM is used to filter out non-skin colours of an image, and the calibration of position and orientation is applied to obtain the neutral hand pose before the training and testing of the CNN. For the module of robot behaviour control, the corresponding robot motion primitives to TE, TL, G, and RL, respectively, are implemented in the robot. To manage the primitives in the robot system, a behaviour-based programming platform based on the Extensible Agent Behavior Specification Language (XABSL is adopted. Because the XABSL provides the flexibility and re-usability of the robot primitives, the hand motion sequence from the module of gesture recognition can be easily used in the XABSL programming platform to implement the robot pick-and-place tasks. The experimental evaluation of seven subjects performing seven hand gestures showed that the average recognition rate was 95.96%. Moreover, by the XABSL programming platform, the experiment showed the cube-stacking task was easily programmed by human demonstration.

  5. EthoHand: A dexterous robotic hand with ball-joint thumb enables complex in-hand object manipulation

    OpenAIRE

    Konnaris, C; Gavriel, C; Thomik, AAC; Aldo Faisal, A

    2016-01-01

    Our dexterous hand is a fundmanetal human feature that distinguishes us from other animals by enabling us to go beyond grasping to support sophisticated in-hand object manipulation. Our aim was the design of a dexterous anthropomorphic robotic hand that matches the human hand's 24 degrees of freedom, under-actuated by seven motors. With the ability to replicate human hand movements in a naturalistic manner including in-hand object manipulation. Therefore, we focused on the development of a no...

  6. Hand Motion-Based Remote Control Interface with Vibrotactile Feedback for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2013-06-01

    Full Text Available This paper presents the design and implementation of a hand-held interface system for the locomotion control of home robots. A handheld controller is proposed to implement hand motion recognition and hand motion-based robot control. The handheld controller can provide a ‘connect-and-play’ service for the users to control the home robot with visual and vibrotactile feedback. Six natural hand gestures are defined for navigating the home robots. A three-axis accelerometer is used to detect the hand motions of the user. The recorded acceleration data are analysed and classified to corresponding control commands according to their characteristic curves. A vibration motor is used to provide vibrotactile feedback to the user when an improper operation is performed. The performances of the proposed hand motion-based interface and the traditional keyboard and mouse interface have been compared in robot navigation experiments. The experimental results of home robot navigation show that the success rate of the handheld controller is 13.33% higher than the PC based controller. The precision of the handheld controller is 15.4% more than that of the PC and the execution time is 24.7% less than the PC based controller. This means that the proposed hand motion-based interface is more efficient and flexible.

  7. Human-like Compliance for Dexterous Robot Hands

    Science.gov (United States)

    Jau, Bruno M.

    1995-01-01

    This paper describes the Active Electromechanical Compliance (AEC) system that was developed for the Jau-JPL anthropomorphic robot. The AEC system imitates the functionality of the human muscle's secondary function, which is to control the joint's stiffness: AEC is implemented through servo controlling the joint drive train's stiffness. The control strategy, controlling compliant joints in teleoperation, is described. It enables automatic hybrid position and force control through utilizing sensory feedback from joint and compliance sensors. This compliant control strategy is adaptable for autonomous robot control as well. Active compliance enables dual arm manipulations, human-like soft grasping by the robot hand, and opens the way to many new robotics applications.

  8. A three-finger multisensory hand for dexterous space robotic tasks

    Science.gov (United States)

    Murase, Yuichi; Komada, Satoru; Uchiyama, Takashi; Machida, Kazuo; Akita, Kenzo

    1994-01-01

    The National Space Development Agency of Japan will launch ETS-7 in 1997, as a test bed for next generation space technology of RV&D and space robot. MITI has been developing a three-finger multisensory hand for complex space robotic tasks. The hand can be operated under remote control or autonomously. This paper describes the design and development of the hand and the performance of a breadboard model.

  9. 3D Visual Sensing of the Human Hand for the Remote Operation of a Robotic Hand

    Directory of Open Access Journals (Sweden)

    Pablo Gil

    2014-02-01

    Full Text Available New low cost sensors and open free libraries for 3D image processing are making important advances in robot vision applications possible, such as three-dimensional object recognition, semantic mapping, navigation and localization of robots, human detection and/or gesture recognition for human-machine interaction. In this paper, a novel method for recognizing and tracking the fingers of a human hand is presented. This method is based on point clouds from range images captured by a RGBD sensor. It works in real time and it does not require visual marks, camera calibration or previous knowledge of the environment. Moreover, it works successfully even when multiple objects appear in the scene or when the ambient light is changed. Furthermore, this method was designed to develop a human interface to control domestic or industrial devices, remotely. In this paper, the method was tested by operating a robotic hand. Firstly, the human hand was recognized and the fingers were detected. Secondly, the movement of the fingers was analysed and mapped to be imitated by a robotic hand.

  10. Electromyography data for non-invasive naturally-controlled robotic hand prostheses.

    Science.gov (United States)

    Atzori, Manfredo; Gijsberts, Arjan; Castellini, Claudio; Caputo, Barbara; Hager, Anne-Gabrielle Mittaz; Elsig, Simone; Giatsidis, Giorgio; Bassetto, Franco; Müller, Henning

    2014-01-01

    Recent advances in rehabilitation robotics suggest that it may be possible for hand-amputated subjects to recover at least a significant part of the lost hand functionality. The control of robotic prosthetic hands using non-invasive techniques is still a challenge in real life: myoelectric prostheses give limited control capabilities, the control is often unnatural and must be learned through long training times. Meanwhile, scientific literature results are promising but they are still far from fulfilling real-life needs. This work aims to close this gap by allowing worldwide research groups to develop and test movement recognition and force control algorithms on a benchmark scientific database. The database is targeted at studying the relationship between surface electromyography, hand kinematics and hand forces, with the final goal of developing non-invasive, naturally controlled, robotic hand prostheses. The validation section verifies that the data are similar to data acquired in real-life conditions, and that recognition of different hand tasks by applying state-of-the-art signal features and machine-learning algorithms is possible.

  11. Measuring empathy for human and robot hand pain using electroencephalography.

    Science.gov (United States)

    Suzuki, Yutaka; Galli, Lisa; Ikeda, Ayaka; Itakura, Shoji; Kitazaki, Michiteru

    2015-11-03

    This study provides the first physiological evidence of humans' ability to empathize with robot pain and highlights the difference in empathy for humans and robots. We performed electroencephalography in 15 healthy adults who observed either human- or robot-hand pictures in painful or non-painful situations such as a finger cut by a knife. We found that the descending phase of the P3 component was larger for the painful stimuli than the non-painful stimuli, regardless of whether the hand belonged to a human or robot. In contrast, the ascending phase of the P3 component at the frontal-central electrodes was increased by painful human stimuli but not painful robot stimuli, though the interaction of ANOVA was not significant, but marginal. These results suggest that we empathize with humanoid robots in late top-down processing similarly to human others. However, the beginning of the top-down process of empathy is weaker for robots than for humans.

  12. A pilot study of robotic-assisted exercise for hand weakness after stroke.

    Science.gov (United States)

    Stein, Joel; Bishop, Joel; Gillen, Glen; Helbok, Raimund

    2011-01-01

    Upper limb paresis is a major source of disability in stroke survivors, and robotic aided exercise therapy is a promising approach to enhance motor abilities. Few devices have been available to provide robotic therapy to the fingers and hand. We report an open-label pilot study of 12 individuals with chronic moderate hemiparesis after stroke who underwent a six-week training program using a hand robotic device. Participants received a total of 18 hours of robotic therapy. Improvements were found in multiple measures of motor performance, including the Upper Extremity Fugl-Meyer, the Motor Activity Log, the Manual Ability Measure-36, and the Jebsen Hand Function Test. All subjects tolerated the treatment well and no complications were observed. We conclude that robotic therapy for hand paresis after stroke is safe and feasible, and that further studies of efficacy are justified by these preliminary results. © 2011 IEEE

  13. Hand robotics rehabilitation: feasibility and preliminary results of a robotic treatment in patients with hemiparesis.

    Science.gov (United States)

    Sale, Patrizio; Lombardi, Valentina; Franceschini, Marco

    2012-01-01

    Background. No strongly clinical evidence about the use of hand robot-assisted therapy in stroke patients was demonstrated. This preliminary observer study was aimed at evaluating the efficacy of intensive robot-assisted therapy in hand function recovery, in the early phase after a stroke onset. Methods. Seven acute ischemic stroke patients at their first-ever stroke were enrolled. Treatment was performed using Amadeo robotic system (Tyromotion GmbH Graz, Austria). Each participant received, in addition to inpatients standard rehabilitative treatment, 20 sessions of robotic treatment for 4 consecutive weeks (5 days/week). Each session lasted for 40 minutes. The exercises were carried out as follows: passive modality (5 minutes), passive/plus modality (5 minutes), assisted therapy (10 minutes), and balloon (10 minutes). The following impairment and functional evaluations, Fugl-Meyer Scale (FM), Medical Research Council Scale for Muscle Strength (hand flexor and extensor muscles) (MRC), Motricity Index (MI), and modified Ashworth Scale for wrist and hand muscles (AS), were performed at the beginning (T0), after 10 sessions (T1), and at the end of the treatment (T2). The strength hand flexion and extension performed by Robot were assessed at T0 and T2. The Barthel Index and COMP (performance and satisfaction subscale) were assessed at T0 and T2. Results. Clinical improvements were found in all patients. No dropouts were recorded during the treatment and all subjects fulfilled the protocol. Evidence of a significant improvement was demonstrated by the Friedman test for the MRC (P hand motor recovery in acute stroke patients. The simplicity of the treatment, the lack of side effects, and the first positive results in acute stroke patients support the recommendations to extend the clinical trial of this treatment, in association with physiotherapy and/or occupational therapy.

  14. Sensing human hand motions for controlling dexterous robots

    Science.gov (United States)

    Marcus, Beth A.; Churchill, Philip J.; Little, Arthur D.

    1988-01-01

    The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion.

  15. Development of a humanoid robot hand with coupling four-bar linkage

    Directory of Open Access Journals (Sweden)

    Xinhua Liu

    2017-01-01

    Full Text Available To improve the operating performance of robots’ end-effector, a humanoid robot hand based on coupling four-bar linkage was designed. An improved transmission system was proposed for the base joint of the thumb. Thus, a far greater motion range and more reasonable layout of the palm were obtained. Moreover, the mathematical model for kinematics simulation was presented based on the Assur linkage group theory to verify and optimize the proposed structure. To research the motion relationships between the fingers and the object in the process of grasping object, the grasping analysis of multi-finger manipulation was presented based on contact kinematics. Finally, a prototype of the humanoid robot hand was produced by a three-dimensional printer, and a kinematics simulation example and the workspace solving of the humanoid robot hand were carried out. The results showed that the velocities of finger joints approximately met the proportion relationship 1:1:1, which accorded with the grasping law of the human hand. In addition, the large workspace, reasonable layout, and good manipulability of the humanoid robot hand were verified.

  16. Development of anthropomorphic robotic hand driven by Pneumatic Artificial Muscles for robotic applications

    Science.gov (United States)

    Farag, Mohannad; Zainul Azlan, Norsinnira; Hayyan Alsibai, Mohammed

    2018-04-01

    This paper presents the design and fabrication of a three-fingered anthropomorphic robotic hand. The fingers are driven by tendons and actuated by human muscle-like actuators known as Pneumatic Artificial Muscle (PAM). The proposed design allows the actuators to be mounted outside the hand where each finger can be driven by one PAM actuator and six indirectly interlinked tendons. With this design, the three-fingered hand has a compact size and a lightweight with a mass of 150.25 grams imitating the human being hand in terms of size and weight. The hand also successfully grasped objects with different shapes and weights up to 500 g. Even though the number of PAM actuators equals the number of Degrees of Freedom (DOF), the design guarantees driving of three joints by only one actuator reducing the number of required actuators from 3 to 1. Therefore, this hand is suitable for researches of robotic applications in terms of design, cost and ability to be equipped with several types of sensors.

  17. Human-inspired feedback synergies for environmental interaction with a dexterous robotic hand.

    Science.gov (United States)

    Kent, Benjamin A; Engeberg, Erik D

    2014-11-07

    Effortless control of the human hand is mediated by the physical and neural couplings inherent in the structure of the hand. This concept was explored for environmental interaction tasks with the human hand, and a novel human-inspired feedback synergy (HFS) controller was developed for a robotic hand which synchronized position and force feedback signals to mimic observed human hand motions. This was achieved by first recording the finger joint motion profiles of human test subjects, where it was observed that the subjects would extend their fingers to maintain a natural hand posture when interacting with different surfaces. The resulting human joint angle data were used as inspiration to develop the HFS controller for the anthropomorphic robotic hand, which incorporated finger abduction and force feedback in the control laws for finger extension. Experimental results showed that by projecting a broader view of the tasks at hand to each specific joint, the HFS controller produced hand motion profiles that closely mimic the observed human responses and allowed the robotic manipulator to interact with the surfaces while maintaining a natural hand posture. Additionally, the HFS controller enabled the robotic hand to autonomously traverse vertical step discontinuities without prior knowledge of the environment, visual feedback, or traditional trajectory planning techniques.

  18. Human-inspired feedback synergies for environmental interaction with a dexterous robotic hand

    International Nuclear Information System (INIS)

    Kent, Benjamin A; Engeberg, Erik D

    2014-01-01

    Effortless control of the human hand is mediated by the physical and neural couplings inherent in the structure of the hand. This concept was explored for environmental interaction tasks with the human hand, and a novel human-inspired feedback synergy (HFS) controller was developed for a robotic hand which synchronized position and force feedback signals to mimic observed human hand motions. This was achieved by first recording the finger joint motion profiles of human test subjects, where it was observed that the subjects would extend their fingers to maintain a natural hand posture when interacting with different surfaces. The resulting human joint angle data were used as inspiration to develop the HFS controller for the anthropomorphic robotic hand, which incorporated finger abduction and force feedback in the control laws for finger extension. Experimental results showed that by projecting a broader view of the tasks at hand to each specific joint, the HFS controller produced hand motion profiles that closely mimic the observed human responses and allowed the robotic manipulator to interact with the surfaces while maintaining a natural hand posture. Additionally, the HFS controller enabled the robotic hand to autonomously traverse vertical step discontinuities without prior knowledge of the environment, visual feedback, or traditional trajectory planning techniques. (paper)

  19. Natural control capabilities of robotic hands by hand amputated subjects.

    Science.gov (United States)

    Atzori, Manfredo; Gijsberts, Arjan; Caputo, Barbara; Muller, Henning

    2014-01-01

    People with transradial hand amputations who own a myoelectric prosthesis currently have some control capabilities via sEMG. However, the control systems are still limited and not natural. The Ninapro project is aiming at helping the scientific community to overcome these limits through the creation of publicly available electromyography data sources to develop and test machine learning algorithms. In this paper we describe the movement classification results gained from three subjects with an homogeneous level of amputation, and we compare them with the results of 40 intact subjects. The number of considered subjects can seem small at first sight, but it is not considering the literature of the field (which has to face the difficulty of recruiting trans-radial hand amputated subjects). The classification is performed with four different classifiers and the obtained balanced classification rates are up to 58.6% on 50 movements, which is an excellent result compared to the current literature. Successively, for each subject we find a subset of up to 9 highly independent movements, (defined as movements that can be distinguished with more than 90% accuracy), which is a deeply innovative step in literature. The natural control of a robotic hand in so many movements could lead to an immediate progress in robotic hand prosthetics and it could deeply change the quality of life of amputated subjects.

  20. The robot hand illusion: inducing proprioceptive drift through visuo-motor congruency.

    Science.gov (United States)

    Romano, Daniele; Caffa, Elisa; Hernandez-Arieta, Alejandro; Brugger, Peter; Maravita, Angelo

    2015-04-01

    The representation of one's own body sets the border of the self, but also shapes the space where we interact with external objects. Under particular conditions, such as in the rubber hand illusion external objects can be incorporated in one's own body representation, following congruent visuo-tactile stroking of one's own and a fake hand. This procedure induces an illusory sense of ownership for the fake hand and a shift of proprioceptive localization of the own hand towards the fake hand. Here we investigated whether pure visuo-motor, instead of visuo-tactile, congruency between one's own hand and a detached myoelectric-controlled robotic hand can induce similar embodiment effects. We found a shift of proprioceptive hand localization toward the robot hand, only following synchronized real hand/robot hand movements. Notably, no modulation was found of the sense of ownership following either synchronous or asynchronous-movement training. Our findings suggest that visuo-motor synchrony can drive the localization of one's own body parts in space, even when somatosensory input is kept constant and the experience of body ownership is maintained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Robotic Hand Controlling Based on Flexible Sensor

    OpenAIRE

    Bilgin, Süleyman; Üser, Yavuz; Mercan, Muhammet

    2016-01-01

    Today's technology has increased the interest in robotic systems andincrease the number of studies realized in this area.  There are many studies on robotic systems inseveral fields to facilitate human life in the literature. In this study, arobot hand is designed to repeat finger movements depending upon flexiblesensors mounted on any wearable glove. In the literature, various sensors thatdetect the finger movement are used. The sensor that detects the angle of thefingers has b...

  2. Fusion of hard and soft control strategies for the robotic hand

    CERN Document Server

    Chen, Cheng-Hung

    2018-01-01

    Long considered the stuff of science fiction, a prosthetic hand capable of fully replicating all of that appendage's various functions is closer to becoming reality than ever before. This book provides a comprehensive report on exciting recent developments in hybrid control techniques—one of the most crucial hurdles to be overcome in creating smart prosthetic hands. Coauthored by two of the world's foremost pioneering experts in the field, Fusion of Hard and Soft Control Strategies for the Robotic Hand treats robotic hands for multiple applications. It begins with an overview of advances in main control techniques that have been made over the past decade before addressing the military context for affordable robotic hand technology with tactile and/or proprioceptive feedback for hand amputees. Kinematics, homogene us transformations, inverse and differential kinematics, trajectory planning, and dynamic models of two-link thumb and three-link index finger are discussed in detail. The remainder of the book is...

  3. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.

    Science.gov (United States)

    Rong, Wei; Tong, Kai Yu; Hu, Xiao Ling; Ho, Sze Kit

    2015-03-01

    An electromyography-driven robot system integrated with neuromuscular electrical stimulation (NMES) was developed to investigate its effectiveness on post-stroke rehabilitation. The performance of this system in assisting finger flexion/extension with different assistance combinations was evaluated in five stroke subjects. Then, a pilot study with 20-sessions training was conducted to evaluate the training's effectiveness. The results showed that combined assistance from the NMES-robot could improve finger movement accuracy, encourage muscle activation of the finger muscles and suppress excessive muscular activities in the elbow joint. When assistances from both NMES and the robot were 50% of their maximum assistances, finger-tracking performance had the best results, with the lowest root mean square error, greater range of motion, higher voluntary muscle activations of the finger joints and lower muscle co-contraction in the finger and elbow joints. Upper limb function improved after the 20-session training, indicated by the increased clinical scores of Fugl-Meyer Assessment, Action Research Arm Test and Wolf Motor Function Test. Muscle co-contraction was reduced in the finger and elbow joints reflected by the Modified Ashworth Scale. The findings demonstrated that an electromyography-driven NMES-robot used for chronic stroke improved hand function and tracking performance. Further research is warranted to validate the method on a larger scale. Implications for Rehabilitation The hand robotics and neuromuscular electrical stimulation (NMES) techniques are still separate systems in current post-stroke hand rehabilitation. This is the first study to investigate the combined effects of the NMES and robot on hand rehabilitation. The finger tracking performance was improved with the combined assistance from the EMG-driven NMES-robot hand system. The assistance from the robot could improve the finger movement accuracy and the assistance from the NMES could reduce the

  4. Robotic Assistance by Impedance Compensation for Hand Movements While Manual Welding.

    Science.gov (United States)

    Erden, Mustafa Suphi; Billard, Aude

    2016-11-01

    In this paper, we present a robotic assistance scheme which allows for impedance compensation with stiffness, damping, and mass parameters for hand manipulation tasks and we apply it to manual welding. The impedance compensation does not assume a preprogrammed hand trajectory. Rather, the intention of the human for the hand movement is estimated in real time using a smooth Kalman filter. The movement is restricted by compensatory virtual impedance in the directions perpendicular to the estimated direction of movement. With airbrush painting experiments, we test three sets of values for the impedance parameters as inspired from impedance measurements with manual welding. We apply the best of the tested sets for assistance in manual welding and perform welding experiments with professional and novice welders. We contrast three conditions: 1) welding with the robot's assistance; 2) with the robot when the robot is passive; and 3) welding without the robot. We demonstrate the effectiveness of the assistance through quantitative measures of both task performance and perceived user's satisfaction. The performance of both the novice and professional welders improves significantly with robotic assistance compared to welding with a passive robot. The assessment of user satisfaction shows that all novice and most professional welders appreciate the robotic assistance as it suppresses the tremors in the directions perpendicular to the movement for welding.

  5. Hand Robotics Rehabilitation: Feasibility and Preliminary Results of a Robotic Treatment in Patients with Hemiparesis

    Directory of Open Access Journals (Sweden)

    Patrizio Sale

    2012-01-01

    Full Text Available Background. No strongly clinical evidence about the use of hand robot-assisted therapy in stroke patients was demonstrated. This preliminary observer study was aimed at evaluating the efficacy of intensive robot-assisted therapy in hand function recovery, in the early phase after a stroke onset. Methods. Seven acute ischemic stroke patients at their first-ever stroke were enrolled. Treatment was performed using Amadeo robotic system (Tyromotion GmbH Graz, Austria. Each participant received, in addition to inpatients standard rehabilitative treatment, 20 sessions of robotic treatment for 4 consecutive weeks (5 days/week. Each session lasted for 40 minutes. The exercises were carried out as follows: passive modality (5 minutes, passive/plus modality (5 minutes, assisted therapy (10 minutes, and balloon (10 minutes. The following impairment and functional evaluations, Fugl-Meyer Scale (FM, Medical Research Council Scale for Muscle Strength (hand flexor and extensor muscles (MRC, Motricity Index (MI, and modified Ashworth Scale for wrist and hand muscles (AS, were performed at the beginning (T0, after 10 sessions (T1, and at the end of the treatment (T2. The strength hand flexion and extension performed by Robot were assessed at T0 and T2. The Barthel Index and COMP (performance and satisfaction subscale were assessed at T0 and T2. Results. Clinical improvements were found in all patients. No dropouts were recorded during the treatment and all subjects fulfilled the protocol. Evidence of a significant improvement was demonstrated by the Friedman test for the MRC (P<0.0123. Evidence of an improvement was demonstrated for AS, FM, and MI. Conclusions. This original rehabilitation treatment could contribute to increase the hand motor recovery in acute stroke patients. The simplicity of the treatment, the lack of side effects, and the first positive results in acute stroke patients support the recommendations to extend the clinical trial of this

  6. Hand Robotic Therapy in Children with Hemiparesis: A Pilot Study.

    Science.gov (United States)

    Bishop, Lauri; Gordon, Andrew M; Kim, Heakyung

    2017-01-01

    The aim of this study was to understand the impact of training with a hand robotic device on hand paresis and function in a population of children with hemiparesis. Twelve children with hemiparesis (mean age, 9 [SD, 3.64] years) completed participation in this prospective, experimental, pilot study. Participants underwent clinical assessments at baseline and again 6 weeks later with instructions to not initiate new therapies. After these assessments, participants received 6 weeks of training with a hand robotic device, consisting of 1-hour sessions, 3 times weekly. Assessments were repeated on completion of training. Results showed significant improvements after training on the Assisting Hand Assessment (mean difference, 2.0 Assisting Hand Assessment units; P = 0.011) and on the upper-extremity component of the Fugl-Meyer scale (raw score mean difference, 4.334; P = 0.001). No significant improvements between pretest and posttest were noted on the Jebsen-Taylor Test of Hand Function, the Quality of Upper Extremity Skills Test, or the Pediatric Evaluation of Disability Inventory after intervention. Total active mobility of digits and grip strength also failed to demonstrate significant changes after training. Participants tolerated training with the hand robotic device, and significant improvements in bimanual hand use, as well as impairment-based scales, were noted. Improvements were carried over into bimanual skills during play. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) Understand key components of neuroplasticity; (2) Discuss the benefits of robotic therapy in the recovery of hand function in pediatric patients with hemiplegia; and (3) Appropriately incorporate robotic therapy into the treatment plan of pediatric patients with hemiplegia. Advanced ACCREDITATION: The Association of Academic Physiatrists is accredited by the

  7. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke.

    Science.gov (United States)

    McConnell, Alistair C; Moioli, Renan C; Brasil, Fabricio L; Vallejo, Marta; Corne, David W; Vargas, Patricia A; Stokes, Adam A

    2017-06-28

    To review the state of the art of robotic-aided hand physiotherapy for post-stroke rehabilitation, including the use of brain-machine interfaces. Each patient has a unique clinical history and, in response to personalized treatment needs, research into individualized and at-home treatment options has expanded rapidly in recent years. This has resulted in the development of many devices and design strategies for use in stroke rehabilitation. The development progression of robotic-aided hand physiotherapy devices and brain-machine interface systems is outlined, focussing on those with mechanisms and control strategies designed to improve recovery outcomes of the hand post-stroke. A total of 110 commercial and non-commercial hand and wrist devices, spanning the 2 major core designs: end-effector and exoskeleton are reviewed. The growing body of evidence on the efficacy and relevance of incorporating brain-machine interfaces in stroke rehabilitation is summarized. The challenges involved in integrating robotic rehabilitation into the healthcare system are discussed. This review provides novel insights into the use of robotics in physiotherapy practice, and may help system designers to develop new devices.

  8. Development of Advanced Robotic Hand System for space application

    Science.gov (United States)

    Machida, Kazuo; Akita, Kenzo; Mikami, Tatsuo; Komada, Satoru

    1994-01-01

    The Advanced Robotic Hand System (ARH) is a precise telerobotics system with a semi dexterous hand for future space application. The ARH will be tested in space as one of the missions of the Engineering Tests Satellite 7 (ETS-7) which will be launched in 1997. The objectives of the ARH development are to evaluate the capability of a possible robot hand for precise and delicate tasks and to validate the related technologies implemented in the system. The ARH is designed to be controlled both from ground as a teleoperation and by locally autonomous control. This paper presents the overall system design and the functional capabilities of the ARH as well as its mission outline as the preliminary design has been completed.

  9. What if the hand piece spring disassembles during robotic radical prostatectomy?

    Science.gov (United States)

    Akbulut, Ziya; Canda, Abdullah Erdem; Atmaca, Ali Fuat; Asil, Erem; Isgoren, Egemen; Balbay, Mevlana Derya

    2011-01-01

    Robot-assisted laparoscopic radical prostatectomy (RALRP) is successfully being performed for treating prostate cancer (PCa). However, instrumentation failure associated with robotic procedures represents a unique new problem. We report the successful completion of RALRP in spite of a disassembled hand piece spring during the procedure. A PubMed/Medline search was made concerning robotic malfunction and robot-assisted laparoscopic radical prostatectomy to discuss our experience. We performed RALRP in a 60-year-old male patient with localized PCa. During the procedure, the spring of the hand piece disassembled, and we were not able to reassemble it. We completed the procedure successfully however without fixing the disassembled hand piece spring. We were able to grasp tissue and needles when we brought our fingers together. The only movement we needed to do was to move fingers apart to release tissue or needles caught by robotic instrument. Although malfunction risk related to the da Vinci Surgical System seems to be very low, it might still occur. Sometimes, simple maneuvers may compensate for the failed function as occurred in our case. However, patients should be informed before the operation about the possibility of converting their procedure to laparoscopic or open due to robotic malfunction.

  10. An Intelligent Inference System for Robot Hand Optimal Grasp Preshaping

    Directory of Open Access Journals (Sweden)

    Cabbar Veysel Baysal

    2010-11-01

    Full Text Available This paper presents a novel Intelligent Inference System (IIS for the determination of an optimum preshape for multifingered robot hand grasping, given object under a manipulation task. The IIS is formed as hybrid agent architecture, by the synthesis of object properties, manipulation task characteristics, grasp space partitioning, lowlevel kinematical analysis, evaluation of contact wrench patterns via fuzzy approximate reasoning and ANN structure for incremental learning. The IIS is implemented in software with a robot hand simulation.

  11. Durable Tactile Glove for Human or Robot Hand

    Science.gov (United States)

    Butzer, Melissa; Diftler, Myron A.; Huber, Eric

    2010-01-01

    A glove containing force sensors has been built as a prototype of tactile sensor arrays to be worn on human hands and anthropomorphic robot hands. The force sensors of this glove are mounted inside, in protective pockets; as a result of this and other design features, the present glove is more durable than earlier models.

  12. Parameterizations for reducing camera reprojection error for robot-world hand-eye calibration

    Science.gov (United States)

    Accurate robot-world, hand-eye calibration is crucial to automation tasks. In this paper, we discuss the robot-world, hand-eye calibration problem which has been modeled as the linear relationship AX equals ZB, where X and Z are the unknown calibration matrices composed of rotation and translation ...

  13. Robotic hand with locking mechanism using TCP muscles for applications in prosthetic hand and humanoids

    Science.gov (United States)

    Saharan, Lokesh; Tadesse, Yonas

    2016-04-01

    This paper presents a biomimetic, lightweight, 3D printed and customizable robotic hand with locking mechanism consisting of Twisted and Coiled Polymer (TCP) muscles based on nylon precursor fibers as artificial muscles. Previously, we have presented a small-sized biomimetic hand using nylon based artificial muscles and fishing line muscles as actuators. The current study focuses on an adult-sized prosthetic hand with improved design and a position/force locking system. Energy efficiency is always a matter of concern to make compact, lightweight, durable and cost effective devices. In natural human hand, if we keep holding objects for long time, we get tired because of continuous use of energy for keeping the fingers in certain positions. Similarly, in prosthetic hands we also need to provide energy continuously to artificial muscles to hold the object for a certain period of time, which is certainly not energy efficient. In this work we, describe the design of the robotic hand and locking mechanism along with the experimental results on the performance of the locking mechanism.

  14. Hand-assisted hybrid laparoscopic-robotic total proctocolectomy with ileal pouch--anal anastomosis.

    Science.gov (United States)

    Morelli, Luca; Guadagni, Simone; Mariniello, Maria Donatella; Furbetta, Niccolò; Pisano, Roberta; D'Isidoro, Cristiano; Caprili, Giovanni; Marciano, Emanuele; Di Candio, Giulio; Boggi, Ugo; Mosca, Franco

    2015-08-01

    Few studies have reported minimally invasive total proctocolectomy with ileal pouch-anal anastomosis (IPAA) for ulcerative colitis (UC) and familial adenomatous polyposis (FAP). We herein report a novel hand-assisted hybrid laparoscopic-robotic technique for patients with FAP and UC. Between February 2010 and March 2014, six patients underwent hand-assisted hybrid laparoscopic-robotic total proctocolectomy with IPAA. The abdominal colectomy was performed laparoscopically with hand assistance through a transverse suprapubic incision, also used to fashion the ileal pouch. The proctectomy was carried out with the da Vinci Surgical System. The IPAA was hand-sewn through a trans-anal approach. The procedure was complemented by a temporary diverting loop ileostomy. The mean hand-assisted laparoscopic surgery (HALS) time was 154.6 (±12.8) min whereas the mean robotic time was 93.6 (±8.1) min. In all cases, a nerve-sparing proctectomy was performed, and no conversion to traditional laparotomy was required. The mean postoperative hospital stay was 13.2 (±7.4) days. No anastomotic leakage was observed. To date, no autonomic neurological disorders have been observed with a mean of 5.8 (±1.3) bowel movements per day. The hand-assisted hybrid laparoscopic-robotic approach to total proctocolectomy with IPAA has not been previously described. Our report shows the feasibility of this hybrid approach, which surpasses most of the limitations of pure laparoscopic and robotic techniques. Further experience is necessary to refine the technique and fully assess its potential advantages.

  15. A hand-held robotic device for peripheral intravenous catheterization.

    Science.gov (United States)

    Cheng, Zhuoqi; Davies, Brian L; Caldwell, Darwin G; Barresi, Giacinto; Xu, Qinqi; Mattos, Leonardo S

    2017-12-01

    Intravenous catheterization is frequently required for numerous medical treatments. However, this process is characterized by a high failure rate, especially when performed on difficult patients such as newborns and infants. Very young patients have small veins, and that increases the chances of accidentally puncturing the catheterization needle directly through them. In this article, we present the design, development and experimental evaluation of a novel hand-held robotic device for improving the process of peripheral intravenous catheterization by facilitating the needle insertion procedure. To our knowledge, this design is the first hand-held robotic device for assisting in the catheterization insertion task. Compared to the other available technologies, it has several unique advantages such as being compact, low-cost and able to reliably detect venipuncture. The system is equipped with an electrical impedance sensor at the tip of the catheterization needle, which provides real-time measurements used to supervise and control the catheter insertion process. This allows the robotic system to precisely position the needle within the lumen of the target vein, leading to enhanced catheterization success rate. Experiments conducted to evaluate the device demonstrated that it is also effective to deskill the task. Naïve subjects achieved an average catheterization success rate of 88% on a 1.5 mm phantom vessel with the robotic device versus 12% with the traditional unassisted system. The results of this work prove the feasibility of a hand-held assistive robotic device for intravenous catheterization and show that such device has the potential to greatly improve the success rate of these difficult operations.

  16. Bio-inspired grasp control in a robotic hand with massive sensorial input.

    Science.gov (United States)

    Ascari, Luca; Bertocchi, Ulisse; Corradi, Paolo; Laschi, Cecilia; Dario, Paolo

    2009-02-01

    The capability of grasping and lifting an object in a suitable, stable and controlled way is an outstanding feature for a robot, and thus far, one of the major problems to be solved in robotics. No robotic tools able to perform an advanced control of the grasp as, for instance, the human hand does, have been demonstrated to date. Due to its capital importance in science and in many applications, namely from biomedics to manufacturing, the issue has been matter of deep scientific investigations in both the field of neurophysiology and robotics. While the former is contributing with a profound understanding of the dynamics of real-time control of the slippage and grasp force in the human hand, the latter tries more and more to reproduce, or take inspiration by, the nature's approach, by means of hardware and software technology. On this regard, one of the major constraints robotics has to overcome is the real-time processing of a large amounts of data generated by the tactile sensors while grasping, which poses serious problems to the available computational power. In this paper a bio-inspired approach to tactile data processing has been followed in order to design and test a hardware-software robotic architecture that works on the parallel processing of a large amount of tactile sensing signals. The working principle of the architecture bases on the cellular nonlinear/neural network (CNN) paradigm, while using both hand shape and spatial-temporal features obtained from an array of microfabricated force sensors, in order to control the sensory-motor coordination of the robotic system. Prototypical grasping tasks were selected to measure the system performances applied to a computer-interfaced robotic hand. Successful grasps of several objects, completely unknown to the robot, e.g. soft and deformable objects like plastic bottles, soft balls, and Japanese tofu, have been demonstrated.

  17. Universal Robot Hand Equipped with Tactile and Joint Torque Sensors: Development and Experiments on Stiffness Control and Object Recognition

    Directory of Open Access Journals (Sweden)

    Hiroyuki NAKAMOTO

    2007-04-01

    Full Text Available Various humanoid robots have been developed and multifunction robot hands which are able to attach those robots like human hand is needed. But a useful robot hand has not been depeveloped, because there are a lot of problems such as control method of many degrees of freedom and processing method of enormous sensor outputs. Realizing such robot hand, we have developed five-finger robot hand. In this paper, the detailed structure of developed robot hand is described. The robot hand we developed has five fingers of multi-joint that is equipped with joint torque sensors and tactile sensors. We report experimental results of a stiffness control with the developed robot hand. Those results show that it is possible to change the stiffness of joints. Moreover we propose an object recognition method with the tactile sensor. The validity of that method is assured by experimental results.

  18. Low-cost design and fabrication of an anthropomorphic robotic hand.

    Science.gov (United States)

    Junaid, Ali Bin; Tahir, Sanan; Rasheed, Tahir; Ahmed, Sharjeel; Sohail, Mehreen; Afzal, Muhammad Raheel; Ali, Muzaffar; Kim, Yoonsoo

    2014-10-01

    Human hand signifies a magnificent and challenging example for scientists and engineers trying to replicate its complex structure and functionality. This paper proposes a bio-mechatronic approach for the design of an anthropomorphic artificial hand capable of performing basic human hand motions with fundamental gripping functionality. The dexterity of the artificial hand is exhibited by imitating the natural motion of the human fingers. Imitation is produced according to the data acquired from the flex sensors attached to the human fingers. In order to have proper gripping, closed-loop control is implemented using the tactile sensors. Feedback for the closed-loop control is provided by force sensing resistors (FSRs), attached on the fingertips of the robotic hand. These sensors also enable handling of fragile objects. The mathematical model is derived using forward kinematics and also simulated on MATLAB to ascertain the position of robotic fingers in 3D space.

  19. Hand Gesture Based Wireless Robotic Arm Control for Agricultural Applications

    Science.gov (United States)

    Kannan Megalingam, Rajesh; Bandhyopadhyay, Shiva; Vamsy Vivek, Gedela; Juned Rahi, Muhammad

    2017-08-01

    One of the major challenges in agriculture is harvesting. It is very hard and sometimes even unsafe for workers to go to each plant and pluck fruits. Robotic systems are increasingly combined with new technologies to automate or semi automate labour intensive work, such as e.g. grape harvesting. In this work we propose a semi-automatic method for aid in harvesting fruits and hence increase productivity per man hour. A robotic arm fixed to a rover roams in the in orchard and the user can control it remotely using the hand glove fixed with various sensors. These sensors can position the robotic arm remotely to harvest the fruits. In this paper we discuss the design of hand glove fixed with various sensors, design of 4 DoF robotic arm and the wireless control interface. In addition the setup of the system and the testing and evaluation under lab conditions are also presented in this paper.

  20. Research on direct calibration method of eye-to-hand system of robot

    Science.gov (United States)

    Hu, Xiaoping; Xie, Ke; Peng, Tao

    2013-10-01

    In the position-based visual servoing control for robot, the hand-eye calibration is very important because it can affect the control precision of the system. According to the robot with eye-to-hand stereovision system, this paper proposes a direct method of hand-eye calibration. The method utilizes the triangle measuring principle to solve the coordinates in the camera coordinate system of scene point. It calculates the estimated coordinates by the hand-eye calibration equation set which indicates the transformational relation from the robot to the camera coordinate system, and then uses the error of actual and estimated coordinates to establish the objective function. Finally the method substitutes the parameters into the function repeatedly until it converged to optimize the result. The related experiment compared the measured coordinates with the actual coordinates, shows the efficiency and the precision of it.

  1. The cortical activation pattern by a rehabilitation robotic hand: a functional NIRS study.

    Science.gov (United States)

    Chang, Pyung-Hun; Lee, Seung-Hee; Gu, Gwang Min; Lee, Seung-Hyun; Jin, Sang-Hyun; Yeo, Sang Seok; Seo, Jeong Pyo; Jang, Sung Ho

    2014-01-01

    Clarification of the relationship between external stimuli and brain response has been an important topic in neuroscience and brain rehabilitation. In the current study, using functional near infrared spectroscopy (fNIRS), we attempted to investigate cortical activation patterns generated during execution of a rehabilitation robotic hand. Ten normal subjects were recruited for this study. Passive movements of the right fingers were performed using a rehabilitation robotic hand at a frequency of 0.5 Hz. We measured values of oxy-hemoglobin (HbO), deoxy-hemoglobin (HbR) and total-hemoglobin (HbT) in five regions of interest: the primary sensory-motor cortex (SM1), hand somatotopy of the contralateral SM1, supplementary motor area (SMA), premotor cortex (PMC), and prefrontal cortex (PFC). HbO and HbT values indicated significant activation in the left SM1, left SMA, left PMC, and left PFC during execution of the rehabilitation robotic hand (uncorrected, p < 0.01). By contrast, HbR value indicated significant activation only in the hand somatotopic area of the left SM1 (uncorrected, p < 0.01). Our results appear to indicate that execution of the rehabilitation robotic hand could induce cortical activation.

  2. The cortical activation pattern by a rehabilitation robotic hand : A functional NIRS study

    Directory of Open Access Journals (Sweden)

    Pyung Hun eChang

    2014-02-01

    Full Text Available Introduction: Clarification of the relationship between external stimuli and brain response has been an important topic in neuroscience and brain rehabilitation. In the current study, using functional near infrared spectroscopy (fNIRS, we attempted to investigate cortical activation patterns generated during execution of a rehabilitation robotic hand. Methods: Ten normal subjects were recruited for this study. Passive movements of the right fingers were performed using a rehabilitation robotic hand at a frequency of 0.5 Hz. We measured values of oxy-hemoglobin(HbO, deoxy-hemoglobin(HbR and total-hemoglobin(HbT in five regions of interest: the primary sensory-motor cortex (SM1, hand somatotopy of the contralateral SM1, supplementary motor area (SMA, premotor cortex (PMC, and prefrontal cortex (PFC. Results: HbO and HbT values indicated significant activation in the left SM1, left SMA, left PMC, and left PFC during execution of the rehabilitation robotic hand(uncorrected, pConclusions: Our results appear to indicate that execution of the rehabilitation robotic hand could induce cortical activation.

  3. Robot training for hand motor recovery in subacute stroke patients: A randomized controlled trial.

    Science.gov (United States)

    Orihuela-Espina, Felipe; Roldán, Giovana Femat; Sánchez-Villavicencio, Israel; Palafox, Lorena; Leder, Ronald; Sucar, Luis Enrique; Hernández-Franco, Jorge

    2016-01-01

    Evidence of superiority of robot training for the hand over classical therapies in stroke patients remains controversial. During the subacute stage, hand training is likely to be the most useful. To establish whether robot active assisted therapies provides any additional motor recovery for the hand when administered during the subacute stage (robot based therapies for hand recovery will show significant differences at subacute stages. A randomized clinical trial. A between subjects randomized controlled trial was carried out on subacute stroke patients (n = 17) comparing robot active assisted therapy (RT) with a classical occupational therapy (OT). Both groups received 40 sessions ensuring at least 300 repetitions per session. Treatment duration was (mean ± std) 2.18 ± 1.25 months for the control group and 2.44 ± 0.88 months for the study group. The primary outcome was motor dexterity changes assessed with the Fugl-Meyer (FMA) and the Motricity Index (MI). Both groups (OT: n = 8; RT: n = 9) exhibited significant improvements over time (Non-parametric Cliff's delta-within effect sizes: dwOT-FMA = 0.5, dwOT-MI = 0.5, dwRT-FMA = 1, dwRT-MI = 1). Regarding differences between the therapies; the Fugl-Meyer score indicated a significant advantage for the hand training with the robot (FMA hand: WRS: W = 8, p hand prehension for RT with respect to OT but failed to reach significance (MI prehension: W = 17.5, p = 0.080). No harm occurred. Robotic therapies may be useful during the subacute stages of stroke - both endpoints (FM hand and MI prehension) showed the expected trend with bigger effect size for the robotic intervention. Additional benefit of the robotic therapy over the control therapy was only significant when the difference was measured with FM, demanding further investigation with larger samples. Implications of this study are important for decision making during therapy administration and resource allocation. Copyright © 2016 Hanley

  4. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.

    Science.gov (United States)

    Ho, N S K; Tong, K Y; Hu, X L; Fung, K L; Wei, X J; Rong, W; Susanto, E A

    2011-01-01

    An exoskeleton hand robotic training device is specially designed for persons after stroke to provide training on their impaired hand by using an exoskeleton robotic hand which is actively driven by their own muscle signals. It detects the stroke person's intention using his/her surface electromyography (EMG) signals from the hemiplegic side and assists in hand opening or hand closing functional tasks. The robotic system is made up of an embedded controller and a robotic hand module which can be adjusted to fit for different finger length. Eight chronic stroke subjects had been recruited to evaluate the effects of this device. The preliminary results showed significant improvement in hand functions (ARAT) and upper limb functions (FMA) after 20 sessions of robot-assisted hand functions task training. With the use of this light and portable robotic device, stroke patients can now practice more easily for the opening and closing of their hands at their own will, and handle functional daily living tasks at ease. A video is included together with this paper to give a demonstration of the hand robotic system on chronic stroke subjects and it will be presented in the conference. © 2011 IEEE

  5. Development of five-finger robotic hand using master-slave control for hand-assisted laparoscopic surgery.

    Science.gov (United States)

    Yoshida, Koki; Yamada, Hiroshi; Kato, Ryu; Seki, Tatsuya; Yokoi, Hiroshi; Mukai, Masaya

    2016-08-01

    This study aims to develop a robotic hand as a substitute for a surgeon's hand in hand-assisted laparoscopic surgery (HALS). We determined the requirements for the proposed hand from a surgeon's motions in HALS. We identified four basic behaviors: "power grasp," "precision grasp," "open hand for exclusion," and "peace sign for extending peritoneum." The proposed hand had the minimum necessary DOFs for performing these behaviors, five fingers as in a human's hand, a palm that can be folded when a surgeon inserts the hand into the abdomen, and an arm for adjusting the hand's position. We evaluated the proposed hand based on a performance test and a physician's opinions, and we confirmed that it can grasp organs.

  6. Solving the robot-world, hand-eye(s) calibration problem with iterative methods

    Science.gov (United States)

    Robot-world, hand-eye calibration is the problem of determining the transformation between the robot end effector and a camera, as well as the transformation between the robot base and the world coordinate system. This relationship has been modeled as AX = ZB, where X and Z are unknown homogeneous ...

  7. Hand function recovery in chronic stroke with HEXORR robotic training: A case series.

    Science.gov (United States)

    Godfrey, Sasha Blue; Schabowsky, Christopher N; Holley, Rahsaan J; Lum, Peter S

    2010-01-01

    After a stroke, many survivors have impaired motor function. Robotic rehabilitation techniques have emerged to provide a repetitive, activity-based therapy at potentially lower cost than conventional methods. Many patients exhibit intrinsic resistance to hand extension in the form of spasticity and/or hypertonia. We have developed a therapy program using the Hand Exoskeleton Rehabilitation Robot (HEXORR) that is capable of compensating for tone to assist patients in opening the paretic hand. The system can move the user's hand, assist movement, allow free movement, or restrict movement to allow static force production. These options combine with an interactive virtual reality game to enhance user motivation. Four chronic stroke subjects received 18 sessions of robot therapy as well as pre and post evaluation sessions. All subjects showed at least modest gains in active finger range of motion (ROM) measured in the robot, and all but one subject had gains in active thumb ROM. Most of these gains carried over to ROM gains outside of the robot. The clinical measures (Fugl-Meyer, Box-and-Blocks) showed clear improvements in two subjects and mixed results in two subjects. Overall, the robot therapy was well received by subjects and shows promising results. We conclude HEXORR therapy is best suited for patients with mild-moderate tone and at least minimal extension.

  8. Double nerve intraneural interface implant on a human amputee for robotic hand control.

    Science.gov (United States)

    Rossini, Paolo M; Micera, Silvestro; Benvenuto, Antonella; Carpaneto, Jacopo; Cavallo, Giuseppe; Citi, Luca; Cipriani, Christian; Denaro, Luca; Denaro, Vincenzo; Di Pino, Giovanni; Ferreri, Florinda; Guglielmelli, Eugenio; Hoffmann, Klaus-Peter; Raspopovic, Stanisa; Rigosa, Jacopo; Rossini, Luca; Tombini, Mario; Dario, Paolo

    2010-05-01

    The principle underlying this project is that, despite nervous reorganization following upper limb amputation, original pathways and CNS relays partially maintain their function and can be exploited for interfacing prostheses. Aim of this study is to evaluate a novel peripheral intraneural multielectrode for multi-movement prosthesis control and for sensory feed-back, while assessing cortical reorganization following the re-acquired stream of data. Four intrafascicular longitudinal flexible multielectrodes (tf-LIFE4) were implanted in the median and ulnar nerves of an amputee; they reliably recorded output signals for 4 weeks. Artificial intelligence classifiers were used off-line to analyse LIFE signals recorded during three distinct hand movements under voluntary order. Real-time control of motor output was achieved for the three actions. When applied off-line artificial intelligence reached >85% real-time correct classification of trials. Moreover, different types of current stimulation were determined to allow reproducible and localized hand/fingers sensations. Cortical organization was observed via TMS in parallel with partial resolution of symptoms due to the phantom-limb syndrome (PLS). tf-LIFE4s recorded output signals in human nerves for 4 weeks, though the efficacy of sensory stimulation decayed after 10 days. Recording from a number of fibres permitted a high percentage of distinct actions to be classified correctly. Reversal of plastic changes and alleviation of PLS represent corollary findings of potential therapeutic benefit. This study represents a breakthrough in robotic hand use in amputees. Copyright 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Robot hand tackles jobs in hazardous areas

    International Nuclear Information System (INIS)

    Simms, Mark; Crowder, Richard.

    1989-01-01

    A robot hand and arm designed to mimic the operation of its human counterpart, developed at the University of Southampton for use in a standard industrial glovebox, is described. It was specifically designed for use in a radioactive environment moving high dosage components around. As dosage limits go down, there is a legal requirement to remove people from that environment. The nine-axis arm is for use in a glove designed for a human hand. Drive for the motors used to power the hand is from three-phase MOSFET inventor cards, the switching pattern controlled by the Hall effect communication sensors integral to each motor. The computer software for the arm allows the hand to be positioned using a joystick on a control box, with three levels of command for grip, pinch and touch. (author)

  10. Neural-Network Control Of Prosthetic And Robotic Hands

    Science.gov (United States)

    Buckley, Theresa M.

    1991-01-01

    Electronic neural networks proposed for use in controlling robotic and prosthetic hands and exoskeletal or glovelike electromechanical devices aiding intact but nonfunctional hands. Specific to patient, who activates grasping motion by voice command, by mechanical switch, or by myoelectric impulse. Patient retains higher-level control, while lower-level control provided by neural network analogous to that of miniature brain. During training, patient teaches miniature brain to perform specialized, anthropomorphic movements unique to himself or herself.

  11. Kinematic rate control of simulated robot hand at or near wrist singularity

    Science.gov (United States)

    Barker, K.; Houck, J. A.; Carzoo, S. W.

    1985-01-01

    A robot hand should obey movement commands from an operator on a computer program as closely as possible. However, when two of the three rotational axes of the robot wrist are colinear, the wrist loses a degree of freedom, and the usual resolved rate equations (used to move the hand in response to an operator's inputs) are indeterminant. Furthermore, rate limiting occurs in close vicinity to this singularity. An analysis shows that rate limiting occurs not only in the vicinity of this singularity but also substantially away from it, even when the operator commands rotational rates of the robot hand that are only a small percentage of the operational joint rate limits. Therefore, joint angle rates are scaled when they exceed operational limits in a real time simulation of a robot arm. Simulation results show that a small dead band avoids the wrist singularity in the resolved rate equations but can introduce a high frequency oscillation close to the singularity. However, when a coordinated wrist movement is used in conjunction with the resolved rate equations, the high frequency oscillation disappears.

  12. Soft robotic devices for hand rehabilitation and assistance: a narrative review.

    Science.gov (United States)

    Chu, Chia-Ye; Patterson, Rita M

    2018-02-17

    The debilitating effects on hand function from a number of a neurologic disorders has given rise to the development of rehabilitative robotic devices aimed at restoring hand function in these patients. To combat the shortcomings of previous traditional robotics, soft robotics are rapidly emerging as an alternative due to their inherent safety, less complex designs, and increased potential for portability and efficacy. While several groups have begun designing devices, there are few devices that have progressed enough to provide clinical evidence of their design's therapeutic abilities. Therefore, a global review of devices that have been previously attempted could facilitate the development of new and improved devices in the next step towards obtaining clinical proof of the rehabilitative effects of soft robotics in hand dysfunction. A literature search was performed in SportDiscus, Pubmed, Scopus, and Web of Science for articles related to the design of soft robotic devices for hand rehabilitation. A framework of the key design elements of the devices was developed to ease the comparison of the various approaches to building them. This framework includes an analysis of the trends in portability, safety features, user intent detection methods, actuation systems, total DOF, number of independent actuators, device weight, evaluation metrics, and modes of rehabilitation. In this study, a total of 62 articles representing 44 unique devices were identified and summarized according to the framework we developed to compare different design aspects. By far, the most common type of device was that which used a pneumatic actuator to guide finger flexion/extension. However, the remainder of our framework elements yielded more heterogeneous results. Consequently, those results are summarized and the advantages and disadvantages of many design choices as well as their rationales were highlighted. The past 3 years has seen a rapid increase in the development of soft robotic

  13. Feasibility study of a hand guided robotic drill for cochleostomy.

    Science.gov (United States)

    Brett, Peter; Du, Xinli; Zoka-Assadi, Masoud; Coulson, Chris; Reid, Andrew; Proops, David

    2014-01-01

    The concept of a hand guided robotic drill has been inspired by an automated, arm supported robotic drill recently applied in clinical practice to produce cochleostomies without penetrating the endosteum ready for inserting cochlear electrodes. The smart tactile sensing scheme within the drill enables precise control of the state of interaction between tissues and tools in real-time. This paper reports development studies of the hand guided robotic drill where the same consistent outcomes, augmentation of surgeon control and skill, and similar reduction of induced disturbances on the hearing organ are achieved. The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator. The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory. This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced. The results for trials on phantoms show that drill unit compliance is an important factor in the design.

  14. Ground Robotic Hand Applications for the Space Program study (GRASP)

    Science.gov (United States)

    Grissom, William A.; Rafla, Nader I. (Editor)

    1992-01-01

    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time.

  15. Design of a variable-stiffness robotic hand using pneumatic soft rubber actuators

    International Nuclear Information System (INIS)

    Nagase, Jun-ya; Saga, Norihiko; Wakimoto, Shuichi; Satoh, Toshiyuki; Suzumori, Koichi

    2011-01-01

    In recent years, Japanese society has been ageing, engendering a labor shortage of young workers. Robots are therefore expected to be useful in performing tasks such as day-to-day support for elderly people. In particular, robots that are intended for use in the field of medical care and welfare are expected to be safe when operating in a human environment because they often come into contact with people. Furthermore, robots must perform various tasks such as regrasping, grasping of soft objects, and tasks using frictional force. Given these demands and circumstances, a tendon-driven robot hand with a stiffness changing finger has been developed. The finger surface stiffness can be altered by adjusting the input pressure depending on the task. Additionally, the coefficient of static friction can be altered by changing the surface stiffness merely by adjusting the input air pressure. This report describes the basic structure, driving mechanism, and basic properties of the proposed robot hand

  16. Using Arm and Hand Gestures to Command Robots during Stealth Operations

    Science.gov (United States)

    Stoica, Adrian; Assad, Chris; Wolf, Michael; You, Ki Sung; Pavone, Marco; Huntsberger, Terry; Iwashita, Yumi

    2012-01-01

    Command of support robots by the warfighter requires intuitive interfaces to quickly communicate high degree-of-freedom (DOF) information while leaving the hands unencumbered. Stealth operations rule out voice commands and vision-based gesture interpretation techniques, as they often entail silent operations at night or in other low visibility conditions. Targeted at using bio-signal inputs to set navigation and manipulation goals for the robot (say, simply by pointing), we developed a system based on an electromyography (EMG) "BioSleeve", a high density sensor array for robust, practical signal collection from forearm muscles. The EMG sensor array data is fused with inertial measurement unit (IMU) data. This paper describes the BioSleeve system and presents initial results of decoding robot commands from the EMG and IMU data using a BioSleeve prototype with up to sixteen bipolar surface EMG sensors. The BioSleeve is demonstrated on the recognition of static hand positions (e.g. palm facing front, fingers upwards) and on dynamic gestures (e.g. hand wave). In preliminary experiments, over 90% correct recognition was achieved on five static and nine dynamic gestures. We use the BioSleeve to control a team of five LANdroid robots in individual and group/squad behaviors. We define a gesture composition mechanism that allows the specification of complex robot behaviors with only a small vocabulary of gestures/commands, and we illustrate it with a set of complex orders.

  17. End-point impedance measurements across dominant and nondominant hands and robotic assistance with directional damping.

    Science.gov (United States)

    Erden, Mustafa Suphi; Billard, Aude

    2015-06-01

    The goal of this paper is to perform end-point impedance measurements across dominant and nondominant hands while doing airbrush painting and to use the results for developing a robotic assistance scheme. We study airbrush painting because it resembles in many ways manual welding, a standard industrial task. The experiments are performed with the 7 degrees of freedom KUKA lightweight robot arm. The robot is controlled in admittance using a force sensor attached at the end-point, so as to act as a free-mass and be passively guided by the human. For impedance measurements, a set of nine subjects perform 12 repetitions of airbrush painting, drawing a straight-line on a cartoon horizontally placed on a table, while passively moving the airbrush mounted on the robot's end-point. We measure hand impedance during the painting task by generating sudden and brief external forces with the robot. The results show that on average the dominant hand displays larger impedance than the nondominant in the directions perpendicular to the painting line. We find the most significant difference in the damping values in these directions. Based on this observation, we develop a "directional damping" scheme for robotic assistance and conduct a pilot study with 12 subjects to contrast airbrush painting with and without robotic assistance. Results show significant improvement in precision with both dominant and nondominant hands when using robotic assistance.

  18. Unsteady hydrodynamic forces acting on a robotic hand and its flow field.

    Science.gov (United States)

    Takagi, Hideki; Nakashima, Motomu; Ozaki, Takashi; Matsuuchi, Kazuo

    2013-07-26

    This study aims to clarify the mechanism of generating unsteady hydrodynamic forces acting on a hand during swimming in order to directly measure the forces, pressure distribution, and flow field around the hand by using a robotic arm and particle image velocimetry (PIV). The robotic arm consisted of the trunk, shoulder, upper arm, forearm, and hand, and it was independently computer controllable in five degrees of freedom. The elbow-joint angle of the robotic arm was fixed at 90°, and the arm was moved in semicircles around the shoulder joint in a plane perpendicular to the water surface. Two-component PIV was used for flow visualization around the hand. The data of the forces and pressure acting on the hand were sampled at 200Hz and stored on a PC. When the maximum resultant force acting on the hand was observed, a pair of counter-rotating vortices appeared on the dorsal surface of the hand. A vortex attached to the hand increased the flow velocity, which led to decreased surface pressure, increasing the hydrodynamic forces. This phenomenon is known as the unsteady mechanism of force generation. We found that the drag force was 72% greater and the lift force was 4.8 times greater than the values estimated under steady flow conditions. Therefore, it is presumable that swimmers receive the benefits of this unsteady hydrodynamic force. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Myoelectric intuitive control and transcutaneous electrical stimulation of the forearm for vibrotactile sensation feedback applied to a 3D printed prosthetic hand.

    Science.gov (United States)

    Germany, Enrique I; Pino, Esteban J; Aqueveque, Pablo E

    2016-08-01

    This paper presents the development of a myoelectric prosthetic hand based on a 3D printed model. A myoelectric control strategy based on artificial neural networks is implemented on a microcontroller for online position estimation. Position estimation performance achieves a correlation index of 0.78. Also a study involving transcutaneous electrical stimulation was performed to provide tactile feedback. A series of stimulations with controlled parameters were tested on five able-body subjects. A single channel stimulator was used, positioning the electrodes 8 cm on the wrist over the ulnar and median nerve. Controlling stimulation parameters such as intensity, frequency and pulse width, the subjects were capable of distinguishing different sensations over the palm of the hand. Three main sensations where achieved: tickling, pressure and pain. Tickling and pressure were discretized into low, moderate and high according to the magnitude of the feeling. The parameters at which each sensation was obtained are further discussed in this paper.

  20. Grasp force sensor for robotic hands

    Science.gov (United States)

    Scheinman, Victor D. (Inventor); Bejczy, Antal K. (Inventor); Primus, Howard C. (Inventor)

    1989-01-01

    A grasp force sensor for robotic hands is disclosed. A flexible block is located in the base of each claw through which the grasp force is exerted. The block yields minute parallelogram deflection when the claws are subjected to grasping forces. A parallelogram deflection closely resembles pure translational deflection, whereby the claws remain in substantial alignment with each other during grasping. Strain gauge transducers supply signals which provide precise knowledge of and control over grasp forces.

  1. Feasibility Study of a Hand Guided Robotic Drill for Cochleostomy

    Directory of Open Access Journals (Sweden)

    Peter Brett

    2014-01-01

    Full Text Available The concept of a hand guided robotic drill has been inspired by an automated, arm supported robotic drill recently applied in clinical practice to produce cochleostomies without penetrating the endosteum ready for inserting cochlear electrodes. The smart tactile sensing scheme within the drill enables precise control of the state of interaction between tissues and tools in real-time. This paper reports development studies of the hand guided robotic drill where the same consistent outcomes, augmentation of surgeon control and skill, and similar reduction of induced disturbances on the hearing organ are achieved. The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator. The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory. This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced. The results for trials on phantoms show that drill unit compliance is an important factor in the design.

  2. Hand-held transendoscopic robotic manipulators: A transurethral laser prostate surgery case study.

    Science.gov (United States)

    Hendrick, Richard J; Mitchell, Christopher R; Herrell, S Duke; Webster, Robert J

    2015-11-01

    Natural orifice endoscopic surgery can enable incisionless approaches, but a major challenge is the lack of small and dexterous instrumentation. Surgical robots have the potential to meet this need yet often disrupt the clinical workflow. Hand-held robots that combine thin manipulators and endoscopes have the potential to address this by integrating seamlessly into the clinical workflow and enhancing dexterity. As a case study illustrating the potential of this approach, we describe a hand-held robotic system that passes two concentric tube manipulators through a 5 mm port in a rigid endoscope for transurethral laser prostate surgery. This system is intended to catalyze the use of a clinically superior, yet rarely attempted, procedure for benign prostatic hyperplasia. This paper describes system design and experiments to evaluate the surgeon's functional workspace and accuracy using the robot. Phantom and cadaver experiments demonstrate successful completion of the target procedure via prostate lobe resection.

  3. Compensating Hand Function in Chronic Stroke Patients Through the Robotic Sixth Finger.

    Science.gov (United States)

    Salvietti, Gionata; Hussain, Irfan; Cioncoloni, David; Taddei, Sabrina; Rossi, Simone; Prattichizzo, Domenico

    2017-02-01

    A novel solution to compensate hand grasping abilities is proposed for chronic stroke patients. The goal is to provide the patients with a wearable robotic extra-finger that can be worn on the paretic forearm by means of an elastic band. The proposed prototype, the Robotic Sixth Finger, is a modular articulated device that can adapt its structure to the grasped object shape. The extra-finger and the paretic hand act like the two parts of a gripper cooperatively holding an object. We evaluated the feasibility of the approach with four chronic stroke patients performing a qualitative test, the Frenchay Arm Test. In this proof of concept study, the use of the Robotic Sixth Finger has increased the total score of the patients by two points in a five points scale. The subjects were able to perform the two grasping tasks included in the test that were not possible without the robotic extra-finger. Adding a robotic opposing finger is a very promising approach that can significantly improve the functional compensation of the chronic stroke patient during everyday life activities.

  4. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging.

    Science.gov (United States)

    Hong Kai Yap; Kamaldin, Nazir; Jeong Hoon Lim; Nasrallah, Fatima A; Goh, James Cho Hong; Chen-Hua Yeow

    2017-06-01

    In this paper, we present the design, fabrication and evaluation of a soft wearable robotic glove, which can be used with functional Magnetic Resonance imaging (fMRI) during the hand rehabilitation and task specific training. The soft wearable robotic glove, called MR-Glove, consists of two major components: a) a set of soft pneumatic actuators and b) a glove. The soft pneumatic actuators, which are made of silicone elastomers, generate bending motion and actuate finger joints upon pressurization. The device is MR-compatible as it contains no ferromagnetic materials and operates pneumatically. Our results show that the device did not cause artifacts to fMRI images during hand rehabilitation and task-specific exercises. This study demonstrated the possibility of using fMRI and MR-compatible soft wearable robotic device to study brain activities and motor performances during hand rehabilitation, and to unravel the functional effects of rehabilitation robotics on brain stimulation.

  5. Advanced Myoelectric Control for Robotic Hand-Assisted Training: Outcome from a Stroke Patient.

    Science.gov (United States)

    Lu, Zhiyuan; Tong, Kai-Yu; Shin, Henry; Li, Sheng; Zhou, Ping

    2017-01-01

    A hand exoskeleton driven by myoelectric pattern recognition was designed for stroke rehabilitation. It detects and recognizes the user's motion intent based on electromyography (EMG) signals, and then helps the user to accomplish hand motions in real time. The hand exoskeleton can perform six kinds of motions, including the whole hand closing/opening, tripod pinch/opening, and the "gun" sign/opening. A 52-year-old woman, 8 months after stroke, made 20× 2-h visits over 10 weeks to participate in robot-assisted hand training. Though she was unable to move her fingers on her right hand before the training, EMG activities could be detected on her right forearm. In each visit, she took 4× 10-min robot-assisted training sessions, in which she repeated the aforementioned six motion patterns assisted by our intent-driven hand exoskeleton. After the training, her grip force increased from 1.5 to 2.7 kg, her pinch force increased from 1.5 to 2.5 kg, her score of Box and Block test increased from 3 to 7, her score of Fugl-Meyer (Part C) increased from 0 to 7, and her hand function increased from Stage 1 to Stage 2 in Chedoke-McMaster assessment. The results demonstrate the feasibility of robot-assisted training driven by myoelectric pattern recognition after stroke.

  6. Augmented robotic device for EVA hand manoeuvres

    Science.gov (United States)

    Matheson, Eloise; Brooker, Graham

    2012-12-01

    During extravehicular activities (EVAs), pressurised space suits can lead to difficulties in performing hand manoeuvres and fatigue. This is often the cause of EVAs being terminated early, or taking longer to complete. Assistive robotic gloves can be used to augment the natural motion of a human hand, meaning work can be carried out more efficiently with less stress to the astronaut. Lightweight and low profile solutions must be found in order for the assistive robotic glove to be easily integrated with a space suit pressure garment. Pneumatic muscle actuators combined with force sensors are one such solution. These actuators are extremely light, yet can output high forces using pressurised gases as the actuation drive. Their movement is omnidirectional, so when combined with a flexible exoskeleton that itself provides a degree of freedom of movement, individual fingers can be controlled during flexion and extension. This setup allows actuators and other hardware to be stored remotely on the user's body, resulting in the least possible mass being supported by the hand. Two prototype gloves have been developed at the University of Sydney; prototype I using a fibreglass exoskeleton to provide flexion force, and prototype II using torsion springs to achieve the same result. The gloves have been designed to increase the ease of human movements, rather than to add unnatural ability to the hand. A state space control algorithm has been developed to ensure that human initiated movements are recognised, and calibration methods have been implemented to accommodate the different characteristics of each wearer's hands. For this calibration technique, it was necessary to take into account the natural tremors of the human hand which may have otherwise initiated unexpected control signals. Prototype I was able to actuate the user's hand in 1 degree of freedom (DOF) from full flexion to partial extension, and prototype II actuated a user's finger in 2 DOF with forces achieved

  7. Finger-Shaped GelForce: Sensor for Measuring Surface Traction Fields for Robotic Hand.

    Science.gov (United States)

    Sato, K; Kamiyama, K; Kawakami, N; Tachi, S

    2010-01-01

    It is believed that the use of haptic sensors to measure the magnitude, direction, and distribution of a force will enable a robotic hand to perform dexterous operations. Therefore, we develop a new type of finger-shaped haptic sensor using GelForce technology. GelForce is a vision-based sensor that can be used to measure the distribution of force vectors, or surface traction fields. The simple structure of the GelForce enables us to develop a compact finger-shaped GelForce for the robotic hand. GelForce that is developed on the basis of an elastic theory can be used to calculate surface traction fields using a conversion equation. However, this conversion equation cannot be analytically solved when the elastic body of the sensor has a complicated shape such as the shape of a finger. Therefore, we propose an observational method and construct a prototype of the finger-shaped GelForce. By using this prototype, we evaluate the basic performance of the finger-shaped GelForce. Then, we conduct a field test by performing grasping operations using a robotic hand. The results of this test show that using the observational method, the finger-shaped GelForce can be successfully used in a robotic hand.

  8. Evolution of robotic nephrectomy for living donation: from hand-assisted to totally robotic technique.

    Science.gov (United States)

    Giacomoni, Alessandro; Di Sandro, Stefano; Lauterio, Andrea; Concone, Giacomo; Mangoni, Iacopo; Mihaylov, Plamen; Tripepi, Matteo; De Carlis, Luciano

    2014-09-01

    The application of robotic-assisted surgery offers EndoWrist instruments and 3-D visualization of the operative field, which are improvements over traditional laparoscopy. The results of the few studies published so far have shown that living donor nephrectomy using the robot-assisted technique is safe, feasible, and offers advantages to patients. Since November 2009, 16 patients have undergone robotic-assisted living donor nephrectomy at our Institute. Patients were divided into two groups according to the surgical technique adopted for the procedure: Group A, hand-assisted robotic nephrectomy (eight patients); Group B, totally robotic nephrectomy (eight patients). Intra-operative bleeding was similar in the two groups (90 vs 100 mL for Group A and B, respectively). Median warm ischemia time was significantly shorter in Group A (2.3 vs 5.1 min for Group A and B, respectively, P-value = 0.05). Switching to the open procedure was never required. Median operative time was not significantly longer in Group A than Group B (275 min vs 250 min, respectively). Robotic assisted living kidney recovery is a safe and effective procedure. Considering the overall technical, clinical, and feasibility aspects of living kidney donation, we believe that the robotic assisted technique is the method of choice for surgeon's comfort and donors' safety. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Modeling and evaluation of hand-eye coordination of surgical robotic system on task performance.

    Science.gov (United States)

    Gao, Yuanqian; Wang, Shuxin; Li, Jianmin; Li, Aimin; Liu, Hongbin; Xing, Yuan

    2017-12-01

    Robotic-assisted minimally invasive surgery changes the direct hand and eye coordination in traditional surgery to indirect instrument and camera coordination, which affects the ergonomics, operation performance, and safety. A camera, two instruments, and a target, as the descriptors, are used to construct the workspace correspondence and geometrical relationships in a surgical operation. A parametric model with a set of parameters is proposed to describe the hand-eye coordination of the surgical robot. From the results, optimal values and acceptable ranges of these parameters are identified from two tasks. A 90° viewing angle had the longest completion time; 60° instrument elevation angle and 0° deflection angle had better performance; there is no significant difference among manipulation angles and observing distances on task performance. This hand-eye coordination model provides evidence for robotic design, surgeon training, and robotic initialization to achieve dexterous and safe manipulation in surgery. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Soft object deformation monitoring and learning for model-based robotic hand manipulation.

    Science.gov (United States)

    Cretu, Ana-Maria; Payeur, Pierre; Petriu, Emil M

    2012-06-01

    This paper discusses the design and implementation of a framework that automatically extracts and monitors the shape deformations of soft objects from a video sequence and maps them with force measurements with the goal of providing the necessary information to the controller of a robotic hand to ensure safe model-based deformable object manipulation. Measurements corresponding to the interaction force at the level of the fingertips and to the position of the fingertips of a three-finger robotic hand are associated with the contours of a deformed object tracked in a series of images using neural-network approaches. The resulting model captures the behavior of the object and is able to predict its behavior for previously unseen interactions without any assumption on the object's material. The availability of such models can contribute to the improvement of a robotic hand controller, therefore allowing more accurate and stable grasp while providing more elaborate manipulation capabilities for deformable objects. Experiments performed for different objects, made of various materials, reveal that the method accurately captures and predicts the object's shape deformation while the object is submitted to external forces applied by the robot fingers. The proposed method is also fast and insensitive to severe contour deformations, as well as to smooth changes in lighting, contrast, and background.

  11. Dynamics, control and sensor issues pertinent to robotic hands for the EVA retriever system

    Science.gov (United States)

    Mclauchlan, Robert A.

    1987-01-01

    Basic dynamics, sensor, control, and related artificial intelligence issues pertinent to smart robotic hands for the Extra Vehicular Activity (EVA) Retriever system are summarized and discussed. These smart hands are to be used as end effectors on arms attached to manned maneuvering units (MMU). The Retriever robotic systems comprised of MMU, arm and smart hands, are being developed to aid crewmen in the performance of routine EVA tasks including tool and object retrieval. The ultimate goal is to enhance the effectiveness of EVA crewmen.

  12. Fully embedded myoelectric control for a wearable robotic hand orthosis.

    Science.gov (United States)

    Ryser, Franziska; Butzer, Tobias; Held, Jeremia P; Lambercy, Olivier; Gassert, Roger

    2017-07-01

    To prevent learned non-use of the affected hand in chronic stroke survivors, rehabilitative training should be continued after discharge from the hospital. Robotic hand orthoses are a promising approach for home rehabilitation. When combined with intuitive control based on electromyography, the therapy outcome can be improved. However, such systems often require extensive cabling, experience in electrode placement and connection to external computers. This paper presents the framework for a stand-alone, fully wearable and real-time myoelectric intention detection system based on the Myo armband. The hard and software for real-time gesture classification were developed and combined with a routine to train and customize the classifier, leading to a unique ease of use. The system including training of the classifier can be set up within less than one minute. Results demonstrated that: (1) the proposed algorithm can classify five gestures with an accuracy of 98%, (2) the final system can online classify three gestures with an accuracy of 94.3% and, in a preliminary test, (3) classify three gestures from data acquired from mildly to severely impaired stroke survivors with an accuracy of over 78.8%. These results highlight the potential of the presented system for electromyography-based intention detection for stroke survivors and, with the integration of the system into a robotic hand orthosis, the potential for a wearable platform for all day robot-assisted home rehabilitation.

  13. Permeation of limonene through disposable nitrile gloves using a dextrous robot hand.

    Science.gov (United States)

    Banaee, Sean; S Que Hee, Shane

    2017-03-28

    The purpose of this study was to investigate the permeation of the low-volatile solvent limonene through different disposable, unlined, unsupported, nitrile exam whole gloves (blue, purple, sterling, and lavender, from Kimberly-Clark). This study utilized a moving and static dextrous robot hand as part of a novel dynamic permeation system that allowed sampling at specific times. Quantitation of limonene in samples was based on capillary gas chromatography-mass spectrometry and the internal standard method (4-bromophenol). The average post-permeation thicknesses (before reconditioning) for all gloves for both the moving and static hand were more than 10% of the pre-permeation ones (P≤0.05), although this was not so on reconditioning. The standardized breakthrough times and steady-state permeation periods were similar for the blue, purple, and sterling gloves. Both methods had similar sensitivity. The lavender glove showed a higher permeation rate (0.490±0.031 μg/cm 2 /min) for the moving robotic hand compared to the non-moving hand (P≤0.05), this being ascribed to a thickness threshold. Permeation parameters for the static and dynamic robot hand models indicate that both methods have similar sensitivity in detecting the analyte during permeation and the blue, purple, and sterling gloves behave similarly during the permeation process whether moving or non-moving.

  14. Permeation of limonene through disposable nitrile gloves using a dextrous robot hand

    Science.gov (United States)

    Banaee, Sean; S Que Hee, Shane

    2017-01-01

    Objectives: The purpose of this study was to investigate the permeation of the low-volatile solvent limonene through different disposable, unlined, unsupported, nitrile exam whole gloves (blue, purple, sterling, and lavender, from Kimberly-Clark). Methods: This study utilized a moving and static dextrous robot hand as part of a novel dynamic permeation system that allowed sampling at specific times. Quantitation of limonene in samples was based on capillary gas chromatography-mass spectrometry and the internal standard method (4-bromophenol). Results: The average post-permeation thicknesses (before reconditioning) for all gloves for both the moving and static hand were more than 10% of the pre-permeation ones (P≤0.05), although this was not so on reconditioning. The standardized breakthrough times and steady-state permeation periods were similar for the blue, purple, and sterling gloves. Both methods had similar sensitivity. The lavender glove showed a higher permeation rate (0.490±0.031 μg/cm2/min) for the moving robotic hand compared to the non-moving hand (P≤0.05), this being ascribed to a thickness threshold. Conclusions: Permeation parameters for the static and dynamic robot hand models indicate that both methods have similar sensitivity in detecting the analyte during permeation and the blue, purple, and sterling gloves behave similarly during the permeation process whether moving or non-moving. PMID:28111415

  15. Kinect technology for hand tracking control of surgical robots: technical and surgical skill comparison to current robotic masters.

    Science.gov (United States)

    Kim, Yonjae; Leonard, Simon; Shademan, Azad; Krieger, Axel; Kim, Peter C W

    2014-06-01

    Current surgical robots are controlled by a mechanical master located away from the patient, tracking surgeon's hands by wire and pulleys or mechanical linkage. Contactless hand tracking for surgical robot control is an attractive alternative, because it can be executed with minimal footprint at the patient's bedside without impairing sterility, while eliminating current disassociation between surgeon and patient. We compared technical and technologic feasibility of contactless hand tracking to the current clinical standard master controllers. A hand-tracking system (Kinect™-based 3Gear), a wire-based mechanical master (Mantis Duo), and a clinical mechanical linkage master (da Vinci) were evaluated for technical parameters with strong clinical relevance: system latency, static noise, robot slave tremor, and controller range. Five experienced surgeons performed a skill comparison study, evaluating the three different master controllers for efficiency and accuracy in peg transfer and pointing tasks. da Vinci had the lowest latency of 89 ms, followed by Mantis with 374 ms and 3Gear with 576 ms. Mantis and da Vinci produced zero static error. 3Gear produced average static error of 0.49 mm. The tremor of the robot used by the 3Gear and Mantis system had a radius of 1.7 mm compared with 0.5 mm for da Vinci. The three master controllers all had similar range. The surgeons took 1.98 times longer to complete the peg transfer task with the 3Gear system compared with Mantis, and 2.72 times longer with Mantis compared with da Vinci (p value 2.1e-9). For the pointer task, surgeons were most accurate with da Vinci with average error of 0.72 mm compared with Mantis's 1.61 mm and 3Gear's 2.41 mm (p value 0.00078). Contactless hand-tracking technology as a surgical master can execute simple surgical tasks. Whereas traditional master controllers outperformed, given that contactless hand-tracking is a first-generation technology, clinical potential is promising and could

  16. Integration of robotics and neuroscience beyond the hand: What kind of synergies?. Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    Science.gov (United States)

    d'Avella, Andrea

    2016-07-01

    Santello et al. [1] review an impressive amount of work on the control of biological and artificial hands that demonstrates how the concept of synergies can lead to a successful integration of robotics and neuroscience. Is it possible to generalize the same approach to the control of biological and artificial limbs and bodies beyond the hand? The human hand synergies that appear most relevant for robotic hands are those defined at the kinematic level, i.e. postural synergies [2]. Postural synergies capture the geometric relations among the many joints of the hand and allow for a low dimensional characterization and synthesis of the static hand postures involved in grasping and manipulating a large set of objects. However, many other complex motor skills such as walking, reaching, throwing, and catching require controlling multi-articular time-varying trajectories rather than static postures. Dynamic control of biological and artificial limbs and bodies, especially when geometric and inertial parameters are uncertain and the joints are compliant, poses great challenges. What kind of synergies might simplify the dynamic control of motor skills involving upper and lower limbs as well as the whole body?

  17. Shape-estimation of human hand using polymer flex sensor and study of its application to control robot arm

    International Nuclear Information System (INIS)

    Lee, Jin Hyuck; Kim, Dae Hyun

    2015-01-01

    Ultrasonic inspection robot systems have been widely researched and developed for the real-time monitoring of structures such as power plants. However, an inspection robot that is operated in a simple pattern has limitations in its application to various structures in a plant facility because of the diverse and complicated shapes of the inspection objects. Therefore, accurate control of the robot is required to inspect complicated objects with high-precision results. This paper presents the idea that the shape and movement information of an ultrasonic inspector's hand could be profitably utilized for the accurate control of robot. In this study, a polymer flex sensor was applied to monitor the shape of a human hand. This application was designed to intuitively control an ultrasonic inspection robot. The movement and shape of the hand were estimated by applying multiple sensors. Moreover, it was successfully shown that a test robot could be intuitively controlled based on the shape of a human hand estimated using polymer flex sensors.

  18. Shape-estimation of human hand using polymer flex sensor and study of its application to control robot arm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Hyuck; Kim, Dae Hyun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2015-02-15

    Ultrasonic inspection robot systems have been widely researched and developed for the real-time monitoring of structures such as power plants. However, an inspection robot that is operated in a simple pattern has limitations in its application to various structures in a plant facility because of the diverse and complicated shapes of the inspection objects. Therefore, accurate control of the robot is required to inspect complicated objects with high-precision results. This paper presents the idea that the shape and movement information of an ultrasonic inspector's hand could be profitably utilized for the accurate control of robot. In this study, a polymer flex sensor was applied to monitor the shape of a human hand. This application was designed to intuitively control an ultrasonic inspection robot. The movement and shape of the hand were estimated by applying multiple sensors. Moreover, it was successfully shown that a test robot could be intuitively controlled based on the shape of a human hand estimated using polymer flex sensors.

  19. A novel remote center of motion mechanism for the force-reflective master robot of haptic tele-surgery systems.

    Science.gov (United States)

    Hadavand, Mostafa; Mirbagheri, Alireza; Behzadipour, Saeed; Farahmand, Farzam

    2014-06-01

    An effective master robot for haptic tele-surgery applications needs to provide a solution for the inversed movements of the surgical tool, in addition to sufficient workspace and manipulability, with minimal moving inertia. A novel 4 + 1-DOF mechanism was proposed, based on a triple parallelogram linkage, which provided a Remote Center of Motion (RCM) at the back of the user's hand. The kinematics of the robot was analyzed and a prototype was fabricated and evaluated by experimental tests. With a RCM at the back of the user's hand the actuators far from the end effector, the robot could produce the sensation of hand-inside surgery with minimal moving inertia. The target workspace was achieved with an acceptable manipulability. The trajectory tracking experiments revealed small errors, due to backlash at the joints. The proposed mechanism meets the basic requirements of an effective master robot for haptic tele-surgery applications. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Calculator-Controlled Robots: Hands-On Mathematics and Science Discovery

    Science.gov (United States)

    Tuchscherer, Tyson

    2010-01-01

    The Calculator Controlled Robots activities are designed to engage students in hands-on inquiry-based missions. These activities address National science and technology standards, as well as specifically focusing on mathematics content and process standards. There are ten missions and three exploration extensions that provide activities for up to…

  1. Robotic Hand-Assisted Training for Spinal Cord Injury Driven by Myoelectric Pattern Recognition: A Case Report.

    Science.gov (United States)

    Lu, Zhiyuan; Tong, Kai-Yu; Shin, Henry; Stampas, Argyrios; Zhou, Ping

    2017-10-01

    A 51-year-old man with an incomplete C6 spinal cord injury sustained 26 yrs ago attended twenty 2-hr visits over 10 wks for robot-assisted hand training driven by myoelectric pattern recognition. In each visit, his right hand was assisted to perform motions by an exoskeleton robot, while the robot was triggered by his own motion intentions. The hand robot was designed for this study, which can perform six kinds of motions, including hand closing/opening; thumb, index finger, and middle finger closing/opening; and middle, ring, and little fingers closing/opening. After the training, his grip force increased from 13.5 to 19.6 kg, his pinch force remained the same (5.0 kg), his score of Box and Block test increased from 32 to 39, and his score from the Graded Redefined Assessment of Strength, Sensibility, and Prehension test Part 4.B increased from 22 to 24. He accomplished the tasks in the Graded Redefined Assessment of Strength, Sensibility, and Prehension test Part 4.B 28.8% faster on average. The results demonstrate the feasibility and effectiveness of robot-assisted training driven by myoelectric pattern recognition after spinal cord injury.

  2. Space robotics--DLR's telerobotic concepts, lightweight arms and articulated hands.

    Science.gov (United States)

    Hirzinger, G; Brunner, B; Landzettel, K; Sporer, N; Butterfass, J; Schedl, M

    2003-01-01

    The paper briefly outlines DLR's experience with real space robot missions (ROTEX and ETS VII). It then discusses forthcoming projects, e.g., free-flying systems in low or geostationary orbit and robot systems around the space station ISS, where the telerobotic system MARCO might represent a common baseline. Finally it describes our efforts in developing a new generation of "mechatronic" ultra-light weight arms with multifingered hands. The third arm generation is operable now (approaching present-day technical limits). In a similar way DLR's four-fingered hand II was a big step towards higher reliability and yet better performance. Artificial robonauts for space are a central goal now for the Europeans as well as for NASA, and the first verification tests of DLR's joint components are supposed to fly already end of 93 on the space station.

  3. Real-Time Control of an Exoskeleton Hand Robot with Myoelectric Pattern Recognition.

    Science.gov (United States)

    Lu, Zhiyuan; Chen, Xiang; Zhang, Xu; Tong, Kay-Yu; Zhou, Ping

    2017-08-01

    Robot-assisted training provides an effective approach to neurological injury rehabilitation. To meet the challenge of hand rehabilitation after neurological injuries, this study presents an advanced myoelectric pattern recognition scheme for real-time intention-driven control of a hand exoskeleton. The developed scheme detects and recognizes user's intention of six different hand motions using four channels of surface electromyography (EMG) signals acquired from the forearm and hand muscles, and then drives the exoskeleton to assist the user accomplish the intended motion. The system was tested with eight neurologically intact subjects and two individuals with spinal cord injury (SCI). The overall control accuracy was [Formula: see text] for the neurologically intact subjects and [Formula: see text] for the SCI subjects. The total lag of the system was approximately 250[Formula: see text]ms including data acquisition, transmission and processing. One SCI subject also participated in training sessions in his second and third visits. Both the control accuracy and efficiency tended to improve. These results show great potential for applying the advanced myoelectric pattern recognition control of the wearable robotic hand system toward improving hand function after neurological injuries.

  4. Clinical effects of using HEXORR (Hand Exoskeleton Rehabilitation Robot) for movement therapy in stroke rehabilitation.

    Science.gov (United States)

    Godfrey, Sasha Blue; Holley, Rahsaan J; Lum, Peter S

    2013-11-01

    The goals of this pilot study were to quantify the clinical benefits of using the Hand Exoskeleton Rehabilitation Robot for hand rehabilitation after stroke and to determine the population best served by this intervention. Nine subjects with chronic stroke (one excluded from analysis) completed 18 sessions of training with the Hand Exoskeleton Rehabilitation Robot and a preevaluation, a postevaluation, and a 90-day clinical evaluation. Overall, the subjects improved in both range of motion and clinical measures. Compared with the preevaluation, the subjects showed significant improvements in range of motion, grip strength, and the hand component of the Fugl-Meyer (mean changes, 6.60 degrees, 8.84 percentage points, and 1.86 points, respectively). A subgroup of six subjects exhibited lower tone and received a higher dosage of training. These subjects had significant gains in grip strength, the hand component of the Fugl-Meyer, and the Action Research Arm Test (mean changes, 8.42 percentage points, 2.17 points, and 2.33 points, respectively). Future work is needed to better manage higher levels of hypertonia and provide more support to subjects with higher impairment levels; however, the current results support further study into the Hand Exoskeleton Rehabilitation Robot treatment.

  5. Virtual hand: a 3D tactile interface to virtual environments

    Science.gov (United States)

    Rogowitz, Bernice E.; Borrel, Paul

    2008-02-01

    We introduce a novel system that allows users to experience the sensation of touch in a computer graphics environment. In this system, the user places his/her hand on an array of pins, which is moved about space on a 6 degree-of-freedom robot arm. The surface of the pins defines a surface in the virtual world. This "virtual hand" can move about the virtual world. When the virtual hand encounters an object in the virtual world, the heights of the pins are adjusted so that they represent the object's shape, surface, and texture. A control system integrates pin and robot arm motions to transmit information about objects in the computer graphics world to the user. It also allows the user to edit, change and move the virtual objects, shapes and textures. This system provides a general framework for touching, manipulating, and modifying objects in a 3-D computer graphics environment, which may be useful in a wide range of applications, including computer games, computer aided design systems, and immersive virtual worlds.

  6. Surface electrical stimulation to evoke referred sensation.

    Science.gov (United States)

    Forst, Johanna C; Blok, Derek C; Slopsema, Julia P; Boss, John M; Heyboer, Lane A; Tobias, Carson M; Polasek, Katharine H

    2015-01-01

    Surface electrical stimulation (SES) is being investigated as a noninvasive method to evoke natural sensations distal to electrode location. This may improve treatment for phantom limb pain as well as provide an alternative method to deliver sensory feedback. The median and/or ulnar nerves of 35 subjects were stimulated at the elbow using surface electrodes. Strength-duration curves of hand sensation were found for each subject. All subjects experienced sensation in their hand, which was mostly described as a paresthesia-like sensation. The rheobase and chronaxie values were found to be lower for the median nerve than the ulnar nerve, with no significant difference between sexes. Repeated sessions with the same subject resulted in sufficient variability to suggest that recalculating the strength-duration curve for each electrode placement is necessary. Most of the recruitment curves in this study were generated with 28 to 36 data points. To quickly reproduce these curves with limited increase in error, we recommend 10 data points. Future studies will focus on obtaining different sensations using SES with the strength-duration curve defining the threshold of the effective parameter space.

  7. Analysis of Inverse Kinamtics of an Anthropomorphic Robotic hand

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Parida

    2013-03-01

    Full Text Available In this paper, a new method for solving the inverse kinematics of the fingers of an anthropomorphic hand is proposed. Solution of inverse kinematic equations is a complex problem, the complexity comes from the nonlinearity of joint space and Cartesian space mapping and having multiple solutions.This is a typical problem in robotics that needs to be solved to control the fingers of an anthropomorphic robotic hand to perform tasks it is designated to do. With more complex structures operating in a 3-dimensional space deducing a mathematical soluation for the inverse kinematics may prove challenging. In this paper, using the ability of ANFIS (Adaptive Neuro-Fuzzy Inference System to learn from training data, it is possible to create ANFIS network, an implementation of a representative fuzzy inference system using ANFIS structure, with limited mathematical representation of the system. The main advantages of this method with respect to the other methods are implementation is easy, very fast and shorter computation time and better response with acceptable error.

  8. Concept development of a tendon arm manipulator and anthropomorphic robotic hand

    Science.gov (United States)

    Tolman, C. T.

    1987-01-01

    AMETEK/ORED inhouse research and development efforts leading toward a next-generation robotic manipulator arm and end-effector technology is summarized. Manipulator arm development has been directed toward a multiple-degree-of-freedom, flexible, tendon-driven concept referred to here as a Tendon Arm Manipulator (TAM). End-effector development has been directed toward a three-fingered, dextrous, tendon-driven, anthropomorphic configuration which is referred to as an Anthropomorphic Robotic Hand (ARH). Key technology issues are identified for both concepts.

  9. Physiological and subjective evaluation of a human-robot object hand-over task.

    Science.gov (United States)

    Dehais, Frédéric; Sisbot, Emrah Akin; Alami, Rachid; Causse, Mickaël

    2011-11-01

    In the context of task sharing between a robot companion and its human partners, the notions of safe and compliant hardware are not enough. It is necessary to guarantee ergonomic robot motions. Therefore, we have developed Human Aware Manipulation Planner (Sisbot et al., 2010), a motion planner specifically designed for human-robot object transfer by explicitly taking into account the legibility, the safety and the physical comfort of robot motions. The main objective of this research was to define precise subjective metrics to assess our planner when a human interacts with a robot in an object hand-over task. A second objective was to obtain quantitative data to evaluate the effect of this interaction. Given the short duration, the "relative ease" of the object hand-over task and its qualitative component, classical behavioral measures based on accuracy or reaction time were unsuitable to compare our gestures. In this perspective, we selected three measurements based on the galvanic skin conductance response, the deltoid muscle activity and the ocular activity. To test our assumptions and validate our planner, an experimental set-up involving Jido, a mobile manipulator robot, and a seated human was proposed. For the purpose of the experiment, we have defined three motions that combine different levels of legibility, safety and physical comfort values. After each robot gesture the participants were asked to rate them on a three dimensional subjective scale. It has appeared that the subjective data were in favor of our reference motion. Eventually the three motions elicited different physiological and ocular responses that could be used to partially discriminate them. Copyright © 2011 Elsevier Ltd and the Ergonomics Society. All rights reserved.

  10. Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation.

    Science.gov (United States)

    Ockenfeld, Corinna; Tong, Raymond K Y; Susanto, Evan A; Ho, Sze-Kit; Hu, Xiao-ling

    2013-06-01

    Background and Purpose. Stroke survivors often show a limited recovery in the hand function to perform delicate motions, such as full hand grasping, finger pinching and individual finger movement. The purpose of this study is to describe the implementation of an exoskeleton robotic hand together with fine finger motor skill training on 2 chronic stroke patients. Case Descriptions. Two post-stroke patients participated in a 20-session training program by integrating 10 minutes physical therapy, 20 minutes robotic hand training and 15 minutes functional training tasks with delicate objects(card, pen and coin). These two patients (A and B) had cerebrovascular accident at 6 months and 11 months respectively when enrolled in this study. Outcomes. The results showed that both patients had improvements in Fugl-Meyer assessment (FM), Action Research Arm Test (ARAT). Patients had better isolation of the individual finger flexion and extension based on the reduced muscle co-contraction from the electromyographic(EMG) signals and finger extension force after 20 sessions of training. Discussion. This preliminary study showed that by focusing on the fine finger motor skills together with the exoskeleton robotic hand, it could improve the motor recovery of the upper extremity in the fingers and hand function, which were showed in the ARAT. Future randomized controlled trials are needed to evaluate the clinical effectiveness.

  11. Control of a Supernumerary Robotic Hand by Foot: An Experimental Study in Virtual Reality.

    Science.gov (United States)

    Abdi, Elahe; Burdet, Etienne; Bouri, Mohamed; Bleuler, Hannes

    2015-01-01

    In the operational theater, the surgical team could highly benefit from a robotic supplementary hand under the surgeon's full control. The surgeon may so become more autonomous; this may reduce communication errors with the assistants and take over difficult tasks such as holding tools without tremor. In this paper, we therefore examine the possibility to control a third robotic hand with one foot's movements. Three experiments in virtual reality were designed to assess the feasibility of this control strategy, the learning curve of the subjects in different tasks and the coordination of foot movements with the two natural hands. Results show that the limbs are moved simultaneously, in parallel rather than serially. Participants' performance improved within a few minutes of practice without any specific difficulty to complete the tasks. Subjective assessment by the subjects indicated that controlling a third hand by foot has been easy and required only negligible physical and mental efforts. The sense of ownership was reported to improve through the experiments. The mental burden was not directly related to the level of motion required by a task, but depended on the type of activity and practice. The most difficult task was moving two hands and foot in opposite directions. These results suggest that a combination of practice and appropriate tasks can enhance the learning process for controlling a robotic hand by foot.

  12. Control of a Supernumerary Robotic Hand by Foot: An Experimental Study in Virtual Reality.

    Directory of Open Access Journals (Sweden)

    Elahe Abdi

    Full Text Available In the operational theater, the surgical team could highly benefit from a robotic supplementary hand under the surgeon's full control. The surgeon may so become more autonomous; this may reduce communication errors with the assistants and take over difficult tasks such as holding tools without tremor. In this paper, we therefore examine the possibility to control a third robotic hand with one foot's movements. Three experiments in virtual reality were designed to assess the feasibility of this control strategy, the learning curve of the subjects in different tasks and the coordination of foot movements with the two natural hands. Results show that the limbs are moved simultaneously, in parallel rather than serially. Participants' performance improved within a few minutes of practice without any specific difficulty to complete the tasks. Subjective assessment by the subjects indicated that controlling a third hand by foot has been easy and required only negligible physical and mental efforts. The sense of ownership was reported to improve through the experiments. The mental burden was not directly related to the level of motion required by a task, but depended on the type of activity and practice. The most difficult task was moving two hands and foot in opposite directions. These results suggest that a combination of practice and appropriate tasks can enhance the learning process for controlling a robotic hand by foot.

  13. [A case of combined sensation disturbance and clumsiness of the left hand caused by an infarction localized to brodmann areas 1 and 2].

    Science.gov (United States)

    Kutoku, Yumiko; Hagiwara, Hiroki; Ichikawa, Yaeko; Takeda, Katsuhiko; Sunada, Yoshihide

    2007-04-01

    A 70-year-old woman was admitted to our hospital with a complaint of numbness and clumsiness of the left hand. On physical examination 23 days after the onset of cerebral infarction, she showed no apparent muscle weakness. Although her elementary somatosensory function was mostly intact with a minimal joint position sensation disturbance, she showed disturbances in tactile recognition, two-point discrimination, and weight perception. She also had difficulty in discrete finger movement of her left hand, especially when her eyes were closed. Brain MRI disclosed a small infarction localized to Brodmann areas 1 and 2 in the right postcentral gyrus. In the left median nerve short-latency somatosensory evoked potentials (s-SEPs), the N20 potential was normally evoked. This finding also indicated that the area 3b was preserved. The sensory symptoms observed in this patient were compatible with the hierarchical somatosensory processing model in the postcentral gyrus proposed by Iwamura et al, in which the elementary sensation recognized in area 3 is transferred to areas 1 and 2, and then processed to discriminative sensation. The disturbed discrete finger movement in this patient probably resulted from impaired tactile recognition which could be compensated for by visual information.

  14. Method of Grasping Control by Computing Internal and External Impedances for Two Robot Fingers, and Its Application to Admittance Control of a Robot Hand-Arm System

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2015-08-01

    Full Text Available Impedance control is an important technology used in the grasping control of a robot hand. Numerous studies related to grasping algorithms have been reported in recent years, with the contact force between robot fingers and the object to be grasped being primarily discussed in most cases. Generally, a coupling effect occurs between the internal loop of the grasping operation and the external loop of the interaction with the environment when a multi-fingered robot hand is used to complete a contact task. Therefore, a robot hand cannot hold an object using a large external force to complete a wide range of tasks by applying the conventional method. In this paper, the coupling of the internal/external forces occurring in grasping operations using multiple fingers is analysed. Then, improved impedance control based on the previous method is proposed as an effective tool to solve the problem of grasping failure caused by single-finger contact. Furthermore, a method for applying the improved grasping algorithm to the admittance control of a robot hand-arm system is also proposed. The proposed method divides the impedance effect into the grasping control of the hand and the cooperative control of the arm, so that expanding the task space and increasing the flexibility of impedance adjustment can be achieved. Experiments were conducted to demonstrate the effectiveness of the proposed method.

  15. Robotic hand with modular extensions

    Science.gov (United States)

    Salisbury, Curt Michael; Quigley, Morgan

    2015-01-20

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  16. Access to hands-on mathematics measurement activities using robots controlled via speech generating devices: three case studies.

    Science.gov (United States)

    Adams, Kim; Cook, Al

    2014-07-01

    To examine how using a robot controlled via a speech generating device (SGD) influences the ways students with physical and communication limitations can demonstrate their knowledge in math measurement activities. Three children with severe physical disabilities and complex communication needs used the robot and SGD system to perform four math measurement lessons in comparing, sorting and ordering objects. The performance of the participants was measured and the process of using the system was described in terms of manipulation and communication events. Stakeholder opinions were solicited regarding robot use. Robot use revealed some gaps in the procedural knowledge of the participants. Access to both the robot and SGD was shown to provide several benefits. Stakeholders thought the intervention was important and feasible for a classroom environment. The participants were able to participate actively in the hands-on and communicative measurement activities and thus meet the demands of current math instruction methods. Current mathematics pedagogy encourages doing hands-on activities while communicating about concepts. Adapted Lego robots enabled children with severe physical disabilities to perform hands-on length measurement activities. Controlling the robots from speech generating devices (SGD) enabled the children, who also had complex communication needs, to reflect and report on results during the activities. By using the robots combined with SGDs, children both exhibited their knowledge of and experienced the concepts of mathematical measurements.

  17. Design Of A Low Cost Anthropomorphic Robot Hand For Industrial Applications

    Science.gov (United States)

    Allen, P.; Raleigh, B.

    2009-11-01

    Autonomous grasping systems using anthropomorphic robotic end effectors have many applications, and the potential of such devices has inspired researchers to develop many types of grasping systems over the past 30 years. Their research has yielded significant advances in end effector dexterity and functionality. However, due to the cost and complexity associated with such devices, their role has been largely confined to that of being research tools in laboratories. Industry, by contrast, has largely opted for simple, single task, devices. This paper presents a novel low cost anthropomorphic robotic end effector, and in particular the design characteristics that make it more applicable to industrial application. The design brief was (i) to be broadly similar to the human hand in terms of size and performance (ii) be low cost (less than €5000 for the system) and (iii) to provide sufficient performance to allow use in industrial applications. Consisting of three fingers and an opposing thumb, the robotic hand developed has a total of 12 automated degrees of freedom. Another 4 degrees of freedom can be set manually. The specific design of the fingers and thumb, together with the drive arrangement utilizing synchronous belts, yields a simplified kinematics solution for the control of movement. The modular nature of the design is extended also to the palm, which can be easily modified to produce different overall work envelopes for the hand. The drive system and grasping strategies are also detailed.

  18. A soft robotic exomusculature glove with integrated sEMG sensing for hand rehabilitation.

    Science.gov (United States)

    Delph, Michael A; Fischer, Sarah A; Gauthier, Phillip W; Luna, Carlos H Martinez; Clancy, Edward A; Fischer, Gregory S

    2013-06-01

    Stroke affects 750,000 people annually, and 80% of stroke survivors are left with weakened limbs and hands. Repetitive hand movement is often used as a rehabilitation technique in order to regain hand movement and strength. In order to facilitate this rehabilitation, a robotic glove was designed to aid in the movement and coordination of gripping exercises. This glove utilizes a cable system to open and close a patients hand. The cables are actuated by servomotors, mounted in a backpack weighing 13.2 lbs including battery power sources. The glove can be controlled in terms of finger position and grip force through switch interface, software program, or surface myoelectric (sEMG) signal. The primary control modes of the system provide: active assistance, active resistance and a preprogrammed mode. This project developed a working prototype of the rehabilitative robotic glove which actuates the fingers over a full range of motion across one degree-of-freedom, and is capable of generating a maximum 15N grip force.

  19. Pressure Sensor: State of the Art, Design, and Application for Robotic Hand

    Directory of Open Access Journals (Sweden)

    Ahmed M. Almassri

    2015-01-01

    Full Text Available We survey the state of the art in a variety of force sensors for designing and application of robotic hand. Most of the force sensors are examined based on tactile sensing. For a decade, many papers have widely discussed various sensor technologies and transducer methods which are based on microelectromechanical system (MEMS and silicon used for improving the accuracy and performance measurement of tactile sensing capabilities especially for robotic hand applications. We found that transducers and materials such as piezoresistive and polymer, respectively, are used in order to improve the sensing sensitivity for grasping mechanisms in future. This predicted growth in such applications will explode into high risk tasks which requires very precise purposes. It shows considerable potential and significant levels of research attention.

  20. Hand Gesture Modeling and Recognition for Human and Robot Interactive Assembly Using Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2015-04-01

    Full Text Available Gesture recognition is essential for human and robot collaboration. Within an industrial hybrid assembly cell, the performance of such a system significantly affects the safety of human workers. This work presents an approach to recognizing hand gestures accurately during an assembly task while in collaboration with a robot co-worker. We have designed and developed a sensor system for measuring natural human-robot interactions. The position and rotation information of a human worker's hands and fingertips are tracked in 3D space while completing a task. A modified chain-code method is proposed to describe the motion trajectory of the measured hands and fingertips. The Hidden Markov Model (HMM method is adopted to recognize patterns via data streams and identify workers' gesture patterns and assembly intentions. The effectiveness of the proposed system is verified by experimental results. The outcome demonstrates that the proposed system is able to automatically segment the data streams and recognize the gesture patterns thus represented with a reasonable accuracy ratio.

  1. Robotic finger perturbation training improves finger postural steadiness and hand dexterity.

    Science.gov (United States)

    Yoshitake, Yasuhide; Ikeda, Atsutoshi; Shinohara, Minoru

    2018-02-01

    The purpose of the study was to understand the effect of robotic finger perturbation training on steadiness in finger posture and hand dexterity in healthy young adults. A mobile robotic finger training system was designed to have the functions of high-speed mechanical response, two degrees of freedom, and adjustable loading amplitude and direction. Healthy young adults were assigned to one of the three groups: random perturbation training (RPT), constant force training (CFT), and control. Subjects in RPT and CFT performed steady posture training with their index finger using the robot in different modes: random force in RPT and constant force in CFT. After the 2-week intervention period, fluctuations of the index finger posture decreased only in RPT during steady position-matching tasks with an inertial load. Purdue pegboard test score improved also in RPT only. The relative change in finger postural fluctuations was negatively correlated with the relative change in the number of completed pegs in the pegboard test in RPT. The results indicate that finger posture training with random mechanical perturbations of varying amplitudes and directions of force is effective in improving finger postural steadiness and hand dexterity in healthy young adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A proposal of decontamination robot using 3D hand-eye-dual-cameras solid recognition and accuracy validation

    International Nuclear Information System (INIS)

    Minami, Mamoru; Nishimura, Kenta; Sunami, Yusuke; Yanou, Akira; Yu, Cui; Yamashita, Manabu; Ishiyama, Shintaro

    2015-01-01

    New robotic system that uses three dimensional measurement with solid object recognition —3D-MOS (Three Dimensional Move on Sensing)— based on visual servoing technology was designed and the on-board hand-eye-dual-cameras robot system has been developed to reduce risks of radiation exposure during decontamination processes by filter press machine that solidifies and reduces the volume of irradiation contaminated soil. The feature of 3D-MoS includes; (1) the both hand-eye-dual-cameras take the images of target object near the intersection of both lenses' centerlines, (2) the observation at intersection enables both cameras can see target object almost at the center of both images, (3) then it brings benefits as reducing the effect of lens aberration and improving the detection accuracy of three dimensional position. In this study, accuracy validation test of interdigitation of the robot's hand into filter cloth rod of the filter press —the task is crucial for the robot to remove the contaminated cloth from the filter press machine automatically and for preventing workers from exposing to radiation—, was performed. Then the following results were derived; (1) the 3D-MoS controlled robot could recognize the rod at arbitrary position within designated space, and all of insertion test were carried out successfully and, (2) test results also demonstrated that the proposed control guarantees that interdigitation clearance between the rod and robot hand can be kept within 1.875[mm] with standard deviation being 0.6[mm] or less. (author)

  3. Development and pilot testing of HEXORR: Hand EXOskeleton Rehabilitation Robot

    Directory of Open Access Journals (Sweden)

    Godfrey Sasha B

    2010-07-01

    Full Text Available Abstract Background Following acute therapeutic interventions, the majority of stroke survivors are left with a poorly functioning hemiparetic hand. Rehabilitation robotics has shown promise in providing patients with intensive therapy leading to functional gains. Because of the hand's crucial role in performing activities of daily living, attention to hand therapy has recently increased. Methods This paper introduces a newly developed Hand Exoskeleton Rehabilitation Robot (HEXORR. This device has been designed to provide full range of motion (ROM for all of the hand's digits. The thumb actuator allows for variable thumb plane of motion to incorporate different degrees of extension/flexion and abduction/adduction. Compensation algorithms have been developed to improve the exoskeleton's backdrivability by counteracting gravity, stiction and kinetic friction. We have also designed a force assistance mode that provides extension assistance based on each individual's needs. A pilot study was conducted on 9 unimpaired and 5 chronic stroke subjects to investigate the device's ability to allow physiologically accurate hand movements throughout the full ROM. The study also tested the efficacy of the force assistance mode with the goal of increasing stroke subjects' active ROM while still requiring active extension torque on the part of the subject. Results For 12 of the hand digits'15 joints in neurologically normal subjects, there were no significant ROM differences (P > 0.05 between active movements performed inside and outside of HEXORR. Interjoint coordination was examined in the 1st and 3rd digits, and no differences were found between inside and outside of the device (P > 0.05. Stroke subjects were capable of performing free hand movements inside of the exoskeleton and the force assistance mode was successful in increasing active ROM by 43 ± 5% (P Conclusions Our pilot study shows that this device is capable of moving the hand's digits through

  4. Development and pilot testing of HEXORR: Hand EXOskeleton Rehabilitation Robot

    Science.gov (United States)

    2010-01-01

    Background Following acute therapeutic interventions, the majority of stroke survivors are left with a poorly functioning hemiparetic hand. Rehabilitation robotics has shown promise in providing patients with intensive therapy leading to functional gains. Because of the hand's crucial role in performing activities of daily living, attention to hand therapy has recently increased. Methods This paper introduces a newly developed Hand Exoskeleton Rehabilitation Robot (HEXORR). This device has been designed to provide full range of motion (ROM) for all of the hand's digits. The thumb actuator allows for variable thumb plane of motion to incorporate different degrees of extension/flexion and abduction/adduction. Compensation algorithms have been developed to improve the exoskeleton's backdrivability by counteracting gravity, stiction and kinetic friction. We have also designed a force assistance mode that provides extension assistance based on each individual's needs. A pilot study was conducted on 9 unimpaired and 5 chronic stroke subjects to investigate the device's ability to allow physiologically accurate hand movements throughout the full ROM. The study also tested the efficacy of the force assistance mode with the goal of increasing stroke subjects' active ROM while still requiring active extension torque on the part of the subject. Results For 12 of the hand digits'15 joints in neurologically normal subjects, there were no significant ROM differences (P > 0.05) between active movements performed inside and outside of HEXORR. Interjoint coordination was examined in the 1st and 3rd digits, and no differences were found between inside and outside of the device (P > 0.05). Stroke subjects were capable of performing free hand movements inside of the exoskeleton and the force assistance mode was successful in increasing active ROM by 43 ± 5% (P < 0.001) and 24 ± 6% (P = 0.041) for the fingers and thumb, respectively. Conclusions Our pilot study shows that this device

  5. Prosthetic hand sensor placement: Analysis of touch perception during the grasp

    Directory of Open Access Journals (Sweden)

    Mirković Bojana

    2014-01-01

    Full Text Available Humans rely on their hands to perform everyday tasks. The hand is used as a tool, but also as the interface to “sense” the world. Current prosthetic hands are based on sophisticated multi-fingered structures, and include many sensors which counterpart natural proprioceptors and exteroceptors. The sensory information is used for control, but not sent to the user of the hand (amputee. Grasping without sensing is not good enough. This research is part of the development of the sensing interface for amputees, specifically addressing the analysis of human perception while grasping. The goal is to determine the small number of preferred positions of sensors on the prosthetic hand. This task has previously been approached by trying to replicate a natural sensory system characteristic for healthy humans, resulting in a multitude of redundant sensors and basic inability to make the patient aware of the sensor readings on the subconscious level. We based our artificial perception system on the reported sensations of humans when grasping various objects without seeing the objects (obstructed visual feedback. Subjects, with no known sensory deficits, were asked to report on the touch sensation while grasping. The analysis included objects of various sizes, weights, textures and temperatures. Based on this data we formed a map of the preferred positions for the sensors that is appropriate for five finger human-like robotic hand. The final map was intentionally minimized in size (number of sensors.

  6. Design for a three-fingered hand. [robotic and prosthetic applications

    Science.gov (United States)

    Crossley, F. R. E.

    1977-01-01

    This paper describes the construction of a prototype mechanical hand or 'end effector' for use on a remotely controlled robot, but with possible application as a prosthetic device. An analysis of hand motions is reported, from which it is concluded that the two most important manipulations (apart from grasps) are to be able to pick up a tool and draw it into a nested grip against the palm, and to be able to hold a pistol-grip tool such as an electric drill and pull the trigger. One of our models was tested and found capable of both these operations.

  7. A bio-inspired design of a hand robotic exoskeleton for rehabilitation

    Science.gov (United States)

    Ong, Aira Patrice R.; Bugtai, Nilo T.

    2018-02-01

    This paper presents the methodology for the design of a five-degree of freedom wearable robotic exoskeleton for hand rehabilitation. The design is inspired by the biological structure and mechanism of the human hand. One of the distinct features of the device is the cable-driven actuation, which provides the flexion and extension motion. A prototype of the orthotic device has been developed to prove the model of the system and has been tested in a 3D printed mechanical hand. The result showed that the proposed device was consistent with the requirements of bionics and was able to demonstrate the flexion and extension of the system.

  8. Design of Piano -playing Robotic Hand

    OpenAIRE

    Lin Jen-Chang; Hsin-Cheng Li; Kuo-Cheng Huang; Shu-Wei Lin

    2013-01-01

    Unlike the market slowdown of industrial robots, service & entertainment robots have been highly regarded by most robotics reseach and market research agencies. In this study we developed a music playing robot (which can also work as a service robot) for public performance. The research is mainly focused on the mechanical and electrical control of piano-playing robot, the exploration of correlations among music theory, rhythm and piano keys, and eventually the research on playing skill of...

  9. Control of a Robotic Hand Using a Tongue Control System-A Prosthesis Application.

    Science.gov (United States)

    Johansen, Daniel; Cipriani, Christian; Popovic, Dejan B; Struijk, Lotte N S A

    2016-07-01

    The aim of this study was to investigate the feasibility of using an inductive tongue control system (ITCS) for controlling robotic/prosthetic hands and arms. This study presents a novel dual modal control scheme for multigrasp robotic hands combining standard electromyogram (EMG) with the ITCS. The performance of the ITCS control scheme was evaluated in a comparative study. Ten healthy subjects used both the ITCS control scheme and a conventional EMG control scheme to complete grasping exercises with the IH1 Azzurra robotic hand implementing five grasps. Time to activate a desired function or grasp was used as the performance metric. Statistically significant differences were found when comparing the performance of the two control schemes. On average, the ITCS control scheme was 1.15 s faster than the EMG control scheme, corresponding to a 35.4% reduction in the activation time. The largest difference was for grasp 5 with a mean AT reduction of 45.3% (2.38 s). The findings indicate that using the ITCS control scheme could allow for faster activation of specific grasps or functions compared with a conventional EMG control scheme. For transhumeral and especially bilateral amputees, the ITCS control scheme could have a significant impact on the prosthesis control. In addition, the ITCS would provide bilateral amputees with the additional advantage of environmental and computer control for which the ITCS was originally developed.

  10. A multi-DOF robotic exoskeleton interface for hand motion assistance.

    Science.gov (United States)

    Iqbal, Jamshed; Tsagarakis, Nikos G; Caldwell, Darwin G

    2011-01-01

    This paper outlines the design and development of a robotic exoskeleton based rehabilitation system. A portable direct-driven optimized hand exoskeleton system has been proposed. The optimization procedure primarily based on matching the exoskeleton and finger workspaces guided the system design. The selection of actuators for the proposed system has emerged as a result of experiments with users of different hand sizes. Using commercial sensors, various hand parameters, e.g. maximum and average force levels have been measured. The results of these experiments have been mapped directly to the mechanical design of the system. An under-actuated optimum mechanism has been analysed followed by the design and realization of the first prototype. The system provides both position and force feedback sensory information which can improve the outcomes of a professional rehabilitation exercise.

  11. Electromyographic Grasp Recognition for a Five Fingered Robotic Hand

    Directory of Open Access Journals (Sweden)

    Nayan M. Kakoty

    2012-09-01

    Full Text Available This paper presents classification of grasp types based on surface electromyographic signals. Classification is through radial basis function kernel support vector machine using sum of wavelet decomposition coefficients of the EMG signals. In a study involving six subjects, we achieved an average recognition rate of 86%. The electromyographic grasp recognition together with a 8-bit microcontroller has been employed to control a fivefingered robotic hand to emulate six grasp types used during 70% daily living activities.

  12. A Methodology for the Design of Robotic Hands with Multiple Fingers

    Directory of Open Access Journals (Sweden)

    Jorge Eduardo Parada Puig

    2008-11-01

    Full Text Available This paper presents a methodology that has been applied for a design process of anthropomorphic hands with multiple fingers. Biomechanical characteristics of human hand have been analysed so that ergonomic and anthropometric aspects have been used as fundamental references for obtaining grasping mechanisms. A kinematic analysis has been proposed to define the requirements for designing grasping functions. Selection of materials and actuators has been discussed too. This topic has been based on previous experiences with prototypes that have been developed at the Laboratory of Robotics and Mechatronics (LARM of the University of Cassino. An example of the application of the proposed method has been presented for the design of a first prototype of LARM Hand.

  13. Design and Development of a Hand Exoskeleton Robot for Active and Passive Rehabilitation

    Directory of Open Access Journals (Sweden)

    Oscar Sandoval-Gonzalez

    2016-04-01

    Full Text Available The present work, which describes the mechatronic design and development of a novel rehabilitation robotic exoskeleton hand, aims to present a solution for neuromusculoskeletal rehabilitation. It presents a full range of motion for all hand phalanges and was specifically designed to carry out position and force-position control for passive and active rehabilitation routines. System integration and preliminary clinical tests are also presented.

  14. Analysis of relative displacement between the HX wearable robotic exoskeleton and the user's hand.

    Science.gov (United States)

    Cempini, Marco; Marzegan, Alberto; Rabuffetti, Marco; Cortese, Mario; Vitiello, Nicola; Ferrarin, Maurizio

    2014-10-18

    Advances in technology are allowing for the production of several viable wearable robotic devices to assist with activities of daily living and with rehabilitation. One of the most pressing limitations to user satisfaction is the lack of consistency in motion between the user and the robotic device. The displacement between the robot and the body segment may not correspond because of differences in skin and tissue compliance, mechanical backlash, and/or incorrect fit. This report presents the results of an analysis of relative displacement between the user's hand and a wearable exoskeleton, the HX. HX has been designed to maximize comfort, wearability and user safety, exploiting chains with multiple degrees-of-freedom with a modular architecture. These appealing features may introduce several uncertainties in the kinematic performances, especially when considering the anthropometry, morphology and degree of mobility of the human hand. The small relative displacements between the hand and the exoskeleton were measured with a video-based motion capture system, while the user executed several different grips in different exoskeleton modes. The analysis furnished quantitative results about the device performance, differentiated among device modules and test conditions. In general, the global relative displacement for the distal part of the device was in the range 0.5-1.5 mm, while within 3 mm (worse but still acceptable) for displacements nearest to the hand dorsum. Conclusions over the HX design principles have been drawn, as well as guidelines for future developments.

  15. Electro-cutaneous stimulation on the palm elicits referred sensations on intact but not on amputated digits

    Science.gov (United States)

    D'Alonzo, M.; Engels, L. F.; Controzzi, M.; Cipriani, C.

    2018-02-01

    Objective. Grasping and manipulation control critically depends on tactile feedback. Without this feedback, the ability for fine control of a prosthesis is limited in upper limb amputees. Early studies have shown that non-invasive electro-cutaneous stimulation (ES) can induce referred sensations that are spread to a wider and/or more distant area, with respect to the electrodes. Building on this, we sought to exploit this effect to provide somatotopically matched sensory feedback to people with partial hand (digital) amputations. Approach. For the first time, this work investigated the possibility of inducing referred sensations in the digits by activating the palmar nerves. Specifically, we electrically stimulated 18 sites on the palm of non-amputees to evaluate the effects of sites and stimulation parameters on modality, magnitude, and location of the evoked sensations. We performed similar tests with partial hand amputees by testing those sites that had most consistently elicited referred sensations in non-amputees. Main results. We demonstrated referred sensations in non-amputees from all stimulation sites in one form or another. Specifically, the stimulation of 16 of the 18 sites gave rise to reliable referred sensations. Amputees experienced referred sensations to unimpaired digits, just like non-amputees, but we were unable to evoke referred sensations in their missing digits: none of them reported sensations that extended beyond the tip of the stump. Significance. The possibility of eliciting referred sensations on the digits may be exploited in haptic systems for providing touch sensations without obstructing the fingertips or their movements. The study also suggests that the phenomenon of referred sensations through ES may not be exploited for partial hand prostheses, and it invites researchers to explore alternative approaches. Finally, the results seem to confirm previous studies suggesting that the stumps in partial hand amputees partially acquire the

  16. Robotic microlaryngeal phonosurgery: Testing of a "steady-hand" microsurgery platform.

    Science.gov (United States)

    Akst, Lee M; Olds, Kevin C; Balicki, Marcin; Chalasani, Preetham; Taylor, Russell H

    2018-01-01

    To evaluate gains in microlaryngeal precision achieved by using a novel robotic "steady hand" microsurgery platform in performing simulated phonosurgical tasks. Crossover comparative study of surgical performance and descriptive analysis of surgeon feedback. A novel robotic ear, nose, and throat microsurgery system (REMS) was tested in simulated phonosurgery. Participants navigated a 0.4-mm-wide microlaryngeal needle through spirals of varying widths, both with and without robotic assistance. Fail time (time the needle contacted spiral edges) was measured, and statistical comparison was performed. Participants were surveyed to provide subjective feedback on the REMS. Nine participants performed the task at three spiral widths, yielding 27 paired testing conditions. In 24 of 27 conditions, robot-assisted performance was better than unassisted; five trials were errorless, all achieved with the robot. Paired analysis of all conditions revealed fail time of 0.769 ± 0.568 seconds manually, improving to 0.284 ± 0.584 seconds with the robot (P = .003). Analysis of individual spiral sizes showed statistically better performance with the REMS at spiral widths of 2 mm (0.156 ± 0.226 seconds vs. 0.549 ± 0.545 seconds, P = .019) and 1.5 mm (0.075 ± 0.099 seconds vs. 0.890 ± 0.518 seconds, P = .002). At 1.2 mm, all nine participants together showed similar performance with and without robotic assistance (0.621 ± 0.923 seconds vs. 0.868 ± 0.634 seconds, P = .52), though subgroup analysis of five surgeons most familiar with microlaryngoscopy showed statistically better performance with the robot (0.204 ± 0.164 seconds vs. 0.664 ± 0.354 seconds, P = .036). The REMS is a novel platform with potential applications in microlaryngeal phonosurgery. Further feasibility studies and preclinical testing should be pursued as a bridge to eventual clinical use. NA. Laryngoscope, 128:126-132, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  17. Acupuncture in subjects with cold hands sensation: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Seo, Jung-Chul; Lee, Hyun-jong; Kwak, Min-Ah; Park, Sung-Hoon; Shin, ImHee; Yun, Woo-Sung; Park, Kihyuk

    2014-09-04

    Cold hands sensation is a common disorder within the Korean population. Many Korean family physicians believe that it is a mild early manifestation of Raynaud's phenomenon (RP), or may be related to RP. RP is characterized by reversible digital vasospasm provoked by cold temperatures and/or emotional stress, and doctors often prescribe medications that are used in treatment of RP for subjects with cold hands. However, this has not shown a clear benefit, and these medications can cause unwanted side effects. It is also reported that traditional Korean medicine, including acupuncture, is widely used to treat cold hands, although the current level of evidence for this approach is also poor and to date, there have been no published randomized controlled clinical trials (RCTs) evaluating the efficacy and safety of acupuncture for cold hands. We have therefore designed a pilot RCT to obtain information for the design of a further full-scale trial. The proposed study is a five-week pilot RCT. A total of 14 subjects will be recruited and randomly allocated to two groups: an acupuncture plus medication group (experimental group) and a medication-only group (control group). All subjects will take nifedipine (5 mg once daily) and beraprost (20 mg three times daily) for three weeks. The experimental group will receive additional treatment with three acupuncture sessions per week for three weeks (nine sessions total). The primary outcome will be measured using a visual analogue scale. Secondary outcomes will be measured by blood perfusion in laser Doppler perfusion imaging of the hands, frequency and duration of episodes of cold hands, and heart rate variability. Assessments will be made at baseline and at one, three, and five weeks thereafter. This study will provide an indication of the feasibility and a clinical foundation for a future large-scale trial. This study was registered at Korean Clinical Research Information Service (CRIS) registry on 5 August 2013 with the

  18. A new approach of active compliance control via fuzzy logic control for multifingered robot hand

    Science.gov (United States)

    Jamil, M. F. A.; Jalani, J.; Ahmad, A.

    2016-07-01

    Safety is a vital issue in Human-Robot Interaction (HRI). In order to guarantee safety in HRI, a model reference impedance control can be a very useful approach introducing a compliant control. In particular, this paper establishes a fuzzy logic compliance control (i.e. active compliance control) to reduce impact and forces during physical interaction between humans/objects and robots. Exploiting a virtual mass-spring-damper system allows us to determine a desired compliant level by understanding the behavior of the model reference impedance control. The performance of fuzzy logic compliant control is tested in simulation for a robotic hand known as the RED Hand. The results show that the fuzzy logic is a feasible control approach, particularly to control position and to provide compliant control. In addition, the fuzzy logic control allows us to simplify the controller design process (i.e. avoid complex computation) when dealing with nonlinearities and uncertainties.

  19. Vision-Based Pose Estimation for Robot-Mediated Hand Telerehabilitation

    Directory of Open Access Journals (Sweden)

    Giuseppe Airò Farulla

    2016-02-01

    Full Text Available Vision-based Pose Estimation (VPE represents a non-invasive solution to allow a smooth and natural interaction between a human user and a robotic system, without requiring complex calibration procedures. Moreover, VPE interfaces are gaining momentum as they are highly intuitive, such that they can be used from untrained personnel (e.g., a generic caregiver even in delicate tasks as rehabilitation exercises. In this paper, we present a novel master–slave setup for hand telerehabilitation with an intuitive and simple interface for remote control of a wearable hand exoskeleton, named HX. While performing rehabilitative exercises, the master unit evaluates the 3D position of a human operator’s hand joints in real-time using only a RGB-D camera, and commands remotely the slave exoskeleton. Within the slave unit, the exoskeleton replicates hand movements and an external grip sensor records interaction forces, that are fed back to the operator-therapist, allowing a direct real-time assessment of the rehabilitative task. Experimental data collected with an operator and six volunteers are provided to show the feasibility of the proposed system and its performances. The results demonstrate that, leveraging on our system, the operator was able to directly control volunteers’ hands movements.

  20. Design of an eye-in-hand sensing and servo control framework for harvesting robotics in dense vegetation

    NARCIS (Netherlands)

    Barth, Ruud; Hemming, Jochen; Henten, van E.J.

    2016-01-01

    A modular software framework design that allows flexible implementation of eye-in-hand sensing and motion control for agricultural robotics in dense vegetation is reported. Harvesting robots in cultivars with dense vegetation require multiple viewpoints and on-line trajectory adjustments in order

  1. Visual Tracking of Deformation and Classification of Non-Rigid Objects with Robot Hand Probing

    Directory of Open Access Journals (Sweden)

    Fei Hui

    2017-03-01

    Full Text Available Performing tasks with a robot hand often requires a complete knowledge of the manipulated object, including its properties (shape, rigidity, surface texture and its location in the environment, in order to ensure safe and efficient manipulation. While well-established procedures exist for the manipulation of rigid objects, as well as several approaches for the manipulation of linear or planar deformable objects such as ropes or fabric, research addressing the characterization of deformable objects occupying a volume remains relatively limited. The paper proposes an approach for tracking the deformation of non-rigid objects under robot hand manipulation using RGB-D data. The purpose is to automatically classify deformable objects as rigid, elastic, plastic, or elasto-plastic, based on the material they are made of, and to support recognition of the category of such objects through a robotic probing process in order to enhance manipulation capabilities. The proposed approach combines advantageously classical color and depth image processing techniques and proposes a novel combination of the fast level set method with a log-polar mapping of the visual data to robustly detect and track the contour of a deformable object in a RGB-D data stream. Dynamic time warping is employed to characterize the object properties independently from the varying length of the tracked contour as the object deforms. The proposed solution achieves a classification rate over all categories of material of up to 98.3%. When integrated in the control loop of a robot hand, it can contribute to ensure stable grasp, and safe manipulation capability that will preserve the physical integrity of the object.

  2. Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy.

    Science.gov (United States)

    Hwang, Chang Ho; Seong, Jin Wan; Son, Dae-Sik

    2012-08-01

    To evaluate individual finger synchronized robot-assisted hand rehabilitation in stroke patients. Prospective parallel group randomized controlled clinical trial. The study recruited patients who were ≥18 years old, more than three months post stroke, showed limited index finger movement and had weakened and impaired hand function. Patients with severe sensory loss, spasticity, apraxia, aphasia, disabling hand disease, impaired consciousness or depression were excluded. Patients received either four weeks (20 sessions) of active robot-assisted intervention (the FTI (full-term intervention) group, 9 patients) or two weeks (10 sessions) of early passive therapy followed by two weeks (10 sessions) of active robot-assisted intervention (the HTI (half-term intervention) group, 8 patients). Patients underwent arm function assessments prior to therapy (baseline), and at 2, 4 and 8 weeks after starting therapy. Compared to baseline, both the FTI and HTI groups showed improved results for the Jebsen Taylor test, the wrist and hand subportion of the Fugl-Meyer arm motor scale, active movement of the 2nd metacarpophalangeal joint, grasping, and pinching power (P vs. 46.4 ± 37.4) and wrist and hand subportion of the Fugl-Meyer arm motor scale (4.3 ± 1.9 vs. 3.4 ± 2.5) after eight weeks. A four-week rehabilitation using a novel robot that provides individual finger synchronization resulted in a dose-dependent improvement in hand function in subacute to chronic stroke patients.

  3. Working hard to make a simple definition of synergies. Comment on: "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    Science.gov (United States)

    Alessandro, Cristiano; Oliveira Barroso, Filipe; Tresch, Matthew

    2016-07-01

    The paper ;Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands; [1] presents a comprehensive review of the work carried out as part of the EU funded project ;The Hand Embodied;. The work uses the concept of ;synergy; to study the neuromuscular control of the human hand and to design novel robotics systems. The project has been very productive and has made important contributions. We are therefore confident that it will lead to further advancements and experiments in the future.

  4. User interface for a tele-operated robotic hand system

    Science.gov (United States)

    Crawford, Anthony L

    2015-03-24

    Disclosed here is a user interface for a robotic hand. The user interface anchors a user's palm in a relatively stationary position and determines various angles of interest necessary for a user's finger to achieve a specific fingertip location. The user interface additionally conducts a calibration procedure to determine the user's applicable physiological dimensions. The user interface uses the applicable physiological dimensions and the specific fingertip location, and treats the user's finger as a two link three degree-of-freedom serial linkage in order to determine the angles of interest. The user interface communicates the angles of interest to a gripping-type end effector which closely mimics the range of motion and proportions of a human hand. The user interface requires minimal contact with the operator and provides distinct advantages in terms of available dexterity, work space flexibility, and adaptability to different users.

  5. Design and implementation of a dexterous anthropomorphic robotic typing (DART) hand

    International Nuclear Information System (INIS)

    Thayer, Nicholas; Priya, Shashank

    2011-01-01

    This paper focuses on design and implementation of a biomimetic dexterous humanoid hand. Several design rules are proposed to retain human form and functionality in a robotic hand while overcoming the difficultly of actuation within a confined geometry. Size and weight have been optimized in order to achieve human-like performance with the prime objective of typing on a computer keyboard. Each finger has four joints and three degrees of freedom (DOF) while the thumb has an additional degree of freedom necessary for manipulating small objects. The hand consists of 16 servo motors dedicated to finger motion and three motors for wrist motion. A closed-loop kinematic control scheme utilizing the Denavit–Hartenberg convention for spatial joint positioning was implemented. Servo motors housed in the forearm act as an origin for wires to travel to their insertion points in the hand. The dexterity of the DART hand was measured by quantifying functionality and typing speed on a standard keyboard. The typing speed of a single DART hand was found to be 20 words min −1 . In comparison, the average human has a typing speed of 33 words min −1 with two hands

  6. Robotic Eye-in-hand Calibration in an Uncalibrated Environment

    Directory of Open Access Journals (Sweden)

    Sebastian Van Delden

    2008-12-01

    Full Text Available The optical flow of high interest points in images of an uncalibrated scene is used to recover the camera orientation of an eye-in-hand robotic manipulator. The system is completely automated, iteratively performing a sequence of rotations and translations until the camera frame is aligned with the manipulator's world frame. The manipulator must be able to translate and rotate its end-effector with respect to its world frame. The system is implemented and being tested on a Stäubli RX60 manipulator using an off-the-shelf Logitech USB camera.

  7. Control Capabilities of Myoelectric Robotic Prostheses by Hand Amputees: A Scientific Research and Market Overview.

    Science.gov (United States)

    Atzori, Manfredo; Müller, Henning

    2015-01-01

    Hand amputation can dramatically affect the capabilities of a person. Cortical reorganization occurs in the brain, but the motor and somatosensorial cortex can interact with the remnant muscles of the missing hand even many years after the amputation, leading to the possibility to restore the capabilities of hand amputees through myoelectric prostheses. Myoelectric hand prostheses with many degrees of freedom are commercially available and recent advances in rehabilitation robotics suggest that their natural control can be performed in real life. The first commercial products exploiting pattern recognition to recognize the movements have recently been released, however the most common control systems are still usually unnatural and must be learned through long training. Dexterous and naturally controlled robotic prostheses can become reality in the everyday life of amputees but the path still requires many steps. This mini-review aims to improve the situation by giving an overview of the advancements in the commercial and scientific domains in order to outline the current and future chances in this field and to foster the integration between market and scientific research.

  8. Control Capabilities of Myoelectric Robotic Prostheses by Hand Amputees: A Scientific Research and Market Overview

    Directory of Open Access Journals (Sweden)

    Manfredo eAtzori

    2015-11-01

    Full Text Available Hand amputation can dramatically affect the capabilities of a person. Cortical reorganization occurs in the brain, but the motor and somatosensorial cortex can interact with the remnant muscles of the missing hand even many years after the amputation, leading to the possibility to restore the capabilities of hand amputees through myoelectric prostheses. Myoelectric hand prostheses with many degrees of freedom are commercially available and recent advances in rehabilitation robotics suggest that their natural control can be performed in real life. The first commercial products exploiting pattern recognition to recognize the movements have recently been released, however the most common control systems are still usually unnatural and must be learned through long training. Dexterous and naturally controlled robotic prostheses can become reality in the everyday life of amputees but the path still requires many steps. This mini-review aims to improve the situation by giving an overview of the advancements in the commercial and scientific domains in order to outline the current and future chances in this field and to foster the integration between market and scientific research.

  9. A multichannel-near-infrared-spectroscopy-triggered robotic hand rehabilitation system for stroke patients.

    Science.gov (United States)

    Lee, Jongseung; Mukae, Nobutaka; Arata, Jumpei; Iwata, Hiroyuki; Iramina, Keiji; Iihara, Koji; Hashizume, Makoto

    2017-07-01

    There is a demand for a new neurorehabilitation modality with a brain-computer interface for stroke patients with insufficient or no remaining hand motor function. We previously developed a robotic hand rehabilitation system triggered by multichannel near-infrared spectroscopy (NIRS) to address this demand. In a preliminary prototype system, a robotic hand orthosis, providing one degree-of-freedom motion for a hand's closing and opening, is triggered by a wireless command from a NIRS system, capturing a subject's motor cortex activation. To examine the feasibility of the prototype, we conducted a preliminary test involving six neurologically intact participants. The test comprised a series of evaluations for two aspects of neurorehabilitation training in a real-time manner: classification accuracy and execution time. The effects of classification-related factors, namely the algorithm, signal type, and number of NIRS channels, were investigated. In the comparison of algorithms, linear discrimination analysis performed better than the support vector machine in terms of both accuracy and training time. The oxyhemoglobin versus deoxyhemoglobin comparison revealed that the two concentrations almost equally contribute to the hand motion estimation. The relationship between the number of NIRS channels and accuracy indicated that a certain number of channels are needed and suggested a need for a method of selecting informative channels. The computation time of 5.84 ms was acceptable for our purpose. Overall, the preliminary prototype showed sufficient feasibility for further development and clinical testing with stroke patients.

  10. FY 1999 achievement report on the R and D of a human cooperation/coexistence robot system. New development for the commercialization for the electric power generation technology; 1999 nendo ningen kyocho kyozongata robot system kenkyu kaihatsu seika hokokusho. Shinhatsuden gijutsu jitsuyoka kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper described the FY 1999 results of the development of a human cooperation/coexistence robot system and the development for commercialization for power plants. The support robot platform for maintenance, etc. was fabricated, connected with the remote operation system and verified of the integrated function. The operator controls the robot from the remote operation cockpit by HMD (head mounted display) which can present image following the head movement of the operator, extended virtual reality technology, and stereo-sound system. Hand/arm movement and instruction for movement were given to the robot, and at the same time, the robot was made a device which can present inner force sense and bodily sensation to the operator. The remote hand operating software was developed. A method was developed by which the information on visual sense, touch sense and somatic sense is presented in realtime to the operator so that he can obtain a feeling of attendance. A model for sensor simulator verification was also developed so that the developer of software can also make a verification experiment in the actual environment. Interface was developed so that library of basic movements can be used in the network environment. An investigational research on the promotion of robot was made. (NEDO)

  11. Effects of prosthesis use on the capability to control myoelectric robotic prosthetic hands.

    Science.gov (United States)

    Atzori, Manfredo; Hager, Anne-Gabrielle Mittaz; Elsig, Simone; Giatsidis, Giorgio; Bassetto, Franco; Muller, Henning

    2015-08-01

    The natural control of robotic prosthetic hands with non-invasive techniques is still a challenge: myoelectric prostheses currently give some control capabilities; the application of pattern recognition techniques is promising and recently started to be applied in practice but still many questions are open in the field. In particular, the effects of clinical factors on movement classification accuracy and the capability to control myoelectric prosthetic hands are analyzed in very few studies. The effect of regularly using prostheses on movement classification accuracy has been previously studied, showing differences between users of myoelectric and cosmetic prostheses. In this paper we compare users of myoelectric and body-powered prostheses and intact subjects. 36 machine-learning methods are applied on 6 amputees and 40 intact subjects performing 40 movements. Then, statistical analyses are performed in order to highlight significant differences between the groups of subjects. The statistical analyses do not show significant differences between the two groups of amputees, while significant differences are obtained between amputees and intact subjects. These results constitute new information in the field and suggest new interpretations to previous hypotheses, thus adding precious information towards natural control of robotic prosthetic hands.

  12. User interface for a tele-operated robotic hand system

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Anthony L

    2015-03-24

    Disclosed here is a user interface for a robotic hand. The user interface anchors a user's palm in a relatively stationary position and determines various angles of interest necessary for a user's finger to achieve a specific fingertip location. The user interface additionally conducts a calibration procedure to determine the user's applicable physiological dimensions. The user interface uses the applicable physiological dimensions and the specific fingertip location, and treats the user's finger as a two link three degree-of-freedom serial linkage in order to determine the angles of interest. The user interface communicates the angles of interest to a gripping-type end effector which closely mimics the range of motion and proportions of a human hand. The user interface requires minimal contact with the operator and provides distinct advantages in terms of available dexterity, work space flexibility, and adaptability to different users.

  13. Hydraulic bilateral construction robot; Yuatsushiki bilateral kensetsu robot

    Energy Technology Data Exchange (ETDEWEB)

    Maehata, K.; Mori, N. [Kayaba Industry Co. Ltd., Tokyo (Japan)

    1999-05-15

    Concerning a hydraulic bilateral construction robot, its system constitution, structures and functions of important components, and the results of some tests are explained, and the researches conducted at Gifu University are described. The construction robot in this report is a servo controlled system of a version developed from the mini-shovel now available in the market. It is equipped, in addition to an electrohydraulic servo control system, with various sensors for detecting the robot attitude, vibration, and load state, and with a camera for visualizing the surrounding landscape. It is also provided with a bilateral joy stick which is a remote control actuator capable of working sensation feedback and with a rocking unit that creates robot movements of rolling, pitching, and heaving. The construction robot discussed here, with output increased and response faster thanks to the employment of a hydraulic driving system for the aim of building a robot system superior in performance to the conventional model designed primarily for heavy duty, proves after tests to be a highly sophisticated remotely controlled robot control system. (NEDO)

  14. Methodology for designing and manufacturing complex biologically inspired soft robotic fluidic actuators: prosthetic hand case study.

    Science.gov (United States)

    Thompson-Bean, E; Das, R; McDaid, A

    2016-10-31

    We present a novel methodology for the design and manufacture of complex biologically inspired soft robotic fluidic actuators. The methodology is applied to the design and manufacture of a prosthetic for the hand. Real human hands are scanned to produce a 3D model of a finger, and pneumatic networks are implemented within it to produce a biomimetic bending motion. The finger is then partitioned into material sections, and a genetic algorithm based optimization, using finite element analysis, is employed to discover the optimal material for each section. This is based on two biomimetic performance criteria. Two sets of optimizations using two material sets are performed. Promising optimized material arrangements are fabricated using two techniques to validate the optimization routine, and the fabricated and simulated results are compared. We find that the optimization is successful in producing biomimetic soft robotic fingers and that fabrication of the fingers is possible. Limitations and paths for development are discussed. This methodology can be applied for other fluidic soft robotic devices.

  15. Combining motor imagery with selective sensation toward a hybrid-modality BCI.

    Science.gov (United States)

    Yao, Lin; Meng, Jianjun; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2014-08-01

    A hybrid modality brain-computer interface (BCI) is proposed in this paper, which combines motor imagery with selective sensation to enhance the discrimination between left and right mental tasks, e.g., the classification between left/ right stimulation sensation and right/ left motor imagery. In this paradigm, wearable vibrotactile rings are used to stimulate both the skin on both wrists. Subjects are required to perform the mental tasks according to the randomly presented cues (i.e., left hand motor imagery, right hand motor imagery, left stimulation sensation or right stimulation sensation). Two-way ANOVA statistical analysis showed a significant group effect (F (2,20) = 7.17, p = 0.0045), and the Benferroni-corrected multiple comparison test (with α = 0.05) showed that the hybrid modality group is 11.13% higher on average than the motor imagery group, and 10.45% higher than the selective sensation group. The hybrid modality experiment exhibits potentially wider spread usage within ten subjects crossed 70% accuracy, followed by four subjects in motor imagery and five subjects in selective sensation. Six subjects showed statistically significant improvement ( Benferroni-corrected) in hybrid modality in comparison with both motor imagery and selective sensation. Furthermore, among subjects having difficulties in both motor imagery and selective sensation, the hybrid modality improves their performance to 90% accuracy. The proposed hybrid modality BCI has demonstrated clear benefits for those poorly performing BCI users. Not only does the requirement of motor and sensory anticipation in this hybrid modality provide basic function of BCI for communication and control, it also has the potential for enhancing the rehabilitation during motor recovery.

  16. Line-feature-based calibration method of structured light plane parameters for robot hand-eye system

    Science.gov (United States)

    Qi, Yuhan; Jing, Fengshui; Tan, Min

    2013-03-01

    For monocular-structured light vision measurement, it is essential to calibrate the structured light plane parameters in addition to the camera intrinsic parameters. A line-feature-based calibration method of structured light plane parameters for a robot hand-eye system is proposed. Structured light stripes are selected as calibrating primitive elements, and the robot moves from one calibrating position to another with constraint in order that two misaligned stripe lines are generated. The images of stripe lines could then be captured by the camera fixed at the robot's end link. During calibration, the equations of two stripe lines in the camera coordinate system are calculated, and then the structured light plane could be determined. As the robot's motion may affect the effectiveness of calibration, so the robot's motion constraints are analyzed. A calibration experiment and two vision measurement experiments are implemented, and the results reveal that the calibration accuracy can meet the precision requirement of robot thick plate welding. Finally, analysis and discussion are provided to illustrate that the method has a high efficiency fit for industrial in-situ calibration.

  17. Design of a Reconfigurable Robotic System for Flexoextension Fitted to Hand Fingers Size.

    Science.gov (United States)

    Aguilar-Pereyra, J Felipe; Castillo-Castaneda, Eduardo

    2016-01-01

    Due to the growing demand for assistance in rehabilitation therapies for hand movements, a robotic system is proposed to mobilize the hand fingers in flexion and extension exercises. The robotic system is composed by four, type slider-crank, mechanisms that have the ability to fit the user fingers length from the index to the little finger, through the adjustment of only one link for each mechanism. The trajectory developed by each mechanism corresponds to the natural flexoextension path of each finger. The amplitude of the rotations for metacarpophalangeal joint (MCP) and proximal interphalangeal joint (PIP) varies from 0 to 90° and the distal interphalangeal joint (DIP) varies from 0 to 60°; the joint rotations are coordinated naturally. The four R-RRT mechanisms orientation allows a 15° abduction movement for index, ring, and little fingers. The kinematic analysis of this mechanism was developed in order to assure that the displacement speed and smooth acceleration into the desired range of motion and the simulation results are presented. The reconfiguration of mechanisms covers about 95% of hand sizes of a group of Mexican adult population. Maximum trajectory tracking error is less than 3% in full range of movement and it can be compensated by the additional rotation of finger joints without injury to the user.

  18. A three-arm (laparoscopic, hand-assisted, and robotic) matched-case analysis of intraoperative and postoperative outcomes in minimally invasive colorectal surgery.

    Science.gov (United States)

    Patel, Chirag B; Ragupathi, Madhu; Ramos-Valadez, Diego I; Haas, Eric M

    2011-02-01

    Robotic-assisted laparoscopic surgery is an emerging modality in the field of minimally invasive colorectal surgery. However, there is a dearth of data comparing outcomes with other minimally invasive techniques. We present a 3-arm (conventional, hand-assisted, and robotic) matched-case analysis of intraoperative and short-term outcomes in patients undergoing minimally invasive colorectal procedures. Between August 2008 and October 2009, 70 robotic cases of the rectum and rectosigmoid were performed. Thirty of these were organized into triplets with conventional and hand-assisted cases based on the following 6 matching criteria: 1) surgeon; 2) sex; 3) body mass index; 4) operative procedure; 5) pathology; and 6) history of neoadjuvant therapy in malignant cases. Demographics, intraoperative parameters, and postoperative outcomes were assessed. Pathological outcomes were analyzed in malignant cases. Data were stratified by postoperative diagnosis and operative procedure. There was no significant difference in intraoperative complications, estimated blood loss (126.1 ± 98.5 mL overall), or postoperative morbidity and mortality among the groups. Robotic technique required longer operative time compared with conventional laparoscopic (P hand-assisted (P robotic approach results in short-term outcomes comparable to conventional and hand-assisted laparoscopic approaches for benign and malignant diseases of the rectum and rectosigmoid. With 3-dimensional visualization, additional freedom of motion, and improved ergonomics, this enabling technology may play an important role when performing colorectal procedures involving the pelvic anatomy.

  19. A General Contact Force Analysis of an Under-Actuated Finger in Robot Hand Grasping

    Directory of Open Access Journals (Sweden)

    Xuan Vinh Ha

    2016-02-01

    Full Text Available This paper develops a mathematical analysis of contact forces for the under-actuated finger in a general under-actuated robotic hand during grasping. The concept of under-actuation in robotic grasping with fewer actuators than degrees of freedom (DOF, through the use of springs and mechanical limits, allows the hand to adjust itself to an irregularly shaped object without complex control strategies and sensors. Here the main concern is the contact forces, which are important elements in grasping tasks, based on the proposed mathematical analysis of their distributions of the n-DOF under-actuated finger. The simulation results, along with the 3-DOF finger from the ADAMS model, show the effectiveness of the mathematical analysis method, while comparing them with the measured results. The system can find magnitudes of the contact forces at the contact positions between the phalanges and the object.

  20. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke

    OpenAIRE

    McConnell, Alistair C; Moioli, Renan C; Brasil, Fabricio L; Vallejo, Marta; Corne, David W; Vargas, Patricia A; Stokes, Adam A

    2017-01-01

    OBJECTIVE: To review the state of the art of robotic-aided hand physiotherapy for post-stroke rehabilitation, including the use of brain-machine interfaces. Each patient has a unique clinical history and, in response to personalized treatment needs, research into individualized and at-home treatment options has expanded rapidly in recent years. This has resulted in the development of many devices and design strategies for use in stroke rehabilitation.METHODS: The development progression of ro...

  1. From self-observation to imitation: visuomotor association on a robotic hand.

    Science.gov (United States)

    Chaminade, Thierry; Oztop, Erhan; Cheng, Gordon; Kawato, Mitsuo

    2008-04-15

    Being at the crux of human cognition and behaviour, imitation has become the target of investigations ranging from experimental psychology and neurophysiology to computational sciences and robotics. It is often assumed that the imitation is innate, but it has more recently been argued, both theoretically and experimentally, that basic forms of imitation could emerge as a result of self-observation. Here, we tested this proposal on a realistic experimental platform, comprising an associative network linking a 16 degrees of freedom robotic hand and a simple visual system. We report that this minimal visuomotor association is sufficient to bootstrap basic imitation. Our results indicate that crucial features of human imitation, such as generalization to new actions, may emerge from a connectionist associative network. Therefore, we suggest that a behaviour as complex as imitation could be, at the neuronal level, founded on basic mechanisms of associative learning, a notion supported by a recent proposal on the developmental origin of mirror neurons. Our approach can be applied to the development of realistic cognitive architectures for humanoid robots as well as to shed new light on the cognitive processes at play in early human cognitive development.

  2. Breast sensation after breast reconstruction: a systematic review.

    Science.gov (United States)

    Shridharani, Sachin M; Magarakis, Michael; Stapleton, Sahael M; Basdag, Basak; Seal, Stella M; Rosson, Gedge D

    2010-07-01

    Studies show some return of breast sensation after breast reconstruction; however, recovery is variable and unpredictable. Efforts are being made to restore innervation by reattaching nerves (neurotization). We sought to systematically review the literature addressing breast sensation after reconstruction. The following databases were searched: EMBASE, Cochrane, and PubMed. Additionally, the PLASTIC AND RECONSTRUCTIVE SURGERY journal was hand searched from 1960 to 2009. Inclusion criteria included breast reconstruction for cancer, return of sensation with objective results, and patients aged 18 to 90 years. Studies with purely cosmetic procedures, case reports, studies with less than 10 patients, and studies involving male patients were excluded. The initial search yielded 109 studies, which was refined to 20 studies with a total pool of 638 patients. Innervated flaps have a greater magnitude of recovery, which occurs at an earlier stage compared with the noninnervated flaps. Overall, sensation to deep inferior epigastric artery perforator flaps may recover better sensation than transverse rectus abdominis myocutaneous flaps, followed by latissimus dorsi flaps, and finally implants. Women's needs and expectations for sensation have led plastic surgeons to investigate ways to facilitate its return. Studies, however, depict conflicting data. Larger series are needed to define the role of neurotization as a modality for improving sensory restoration. Thieme Medical Publishers.

  3. Learning in robotic manipulation: The role of dimensionality reduction in policy search methods. Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    Science.gov (United States)

    Ficuciello, Fanny; Siciliano, Bruno

    2016-07-01

    A question that often arises, among researchers working on artificial hands and robotic manipulation, concerns the real meaning of synergies. Namely, are they a realistic representation of the central nervous system control of manipulation activities at different levels and of the sensory-motor manipulation apparatus of the human being, or do they constitute just a theoretical framework exploiting analytical methods to simplify the representation of grasping and manipulation activities? Apparently, this is not a simple question to answer and, in this regard, many minds from the field of neuroscience and robotics are addressing the issue [1]. The interest of robotics is definitely oriented towards the adoption of synergies to tackle the control problem of devices with high number of degrees of freedom (DoFs) which are required to achieve motor and learning skills comparable to those of humans. The synergy concept is useful for innovative underactuated design of anthropomorphic hands [2], while the resulting dimensionality reduction simplifies the control of biomedical devices such as myoelectric hand prostheses [3]. Synergies might also be useful in conjunction with the learning process [4]. This aspect is less explored since few works on synergy-based learning have been realized in robotics. In learning new tasks through trial-and-error, physical interaction is important. On the other hand, advanced mechanical designs such as tendon-driven actuation, underactuated compliant mechanisms and hyper-redundant/continuum robots might exhibit enhanced capabilities of adapting to changing environments and learning from exploration. In particular, high DoFs and compliance increase the complexity of modelling and control of these devices. An analytical approach to manipulation planning requires a precise model of the object, an accurate description of the task, and an evaluation of the object affordance, which all make the process rather time consuming. The integration of

  4. The Ninapro database: A resource for sEMG naturally controlled robotic hand prosthetics.

    Science.gov (United States)

    Atzori, Manfredo; Muller, Henning

    2015-01-01

    The dexterous natural control of robotic prosthetic hands with non-invasive techniques is still a challenge: surface electromyography gives some control capabilities but these are limited, often not natural and require long training times; the application of pattern recognition techniques recently started to be applied in practice. While results in the scientific literature are promising they have to be improved to reach the real needs. The Ninapro database aims to improve the field of naturally controlled robotic hand prosthetics by permitting to worldwide research groups to develop and test movement recognition and force control algorithms on a benchmark database. Currently, the Ninapro database includes data from 67 intact subjects and 11 amputated subject performing approximately 50 different movements. The data are aimed at permitting the study of the relationships between surface electromyography, kinematics and dynamics. The Ninapro acquisition protocol was created in order to be easy to be reproduced. Currently, the number of datasets included in the database is increasing thanks to the collaboration of several research groups.

  5. Remote vibrotactile noise improves light touch sensation in stroke survivors' fingertips via stochastic resonance.

    Science.gov (United States)

    Enders, Leah R; Hur, Pilwon; Johnson, Michelle J; Seo, Na Jin

    2013-10-11

    Stroke rehabilitation does not often integrate both sensory and motor recovery. While subthreshold noise was shown to enhance sensory signal detection at the site of noise application, having a noise-generating device at the fingertip to enhance fingertip sensation and potentially enhance dexterity for stroke survivors is impractical, since the device would interfere with object manipulation. This study determined if remote application of subthreshold vibrotactile noise (away from the fingertips) improves fingertip tactile sensation with potential to enhance dexterity for stroke survivors. Index finger and thumb pad sensation was measured for ten stroke survivors with fingertip sensory deficit using the Semmes-Weinstein Monofilament and Two-Point Discrimination Tests. Sensation scores were measured with noise applied at one of three intensities (40%, 60%, 80% of the sensory threshold) to one of four locations of the paretic upper extremity (dorsal hand proximal to the index finger knuckle, dorsal hand proximal to the thumb knuckle, dorsal wrist, volar wrist) in a random order, as well as without noise at beginning (Pre) and end (Post) of the testing session. Vibrotactile noise of all intensities and locations instantaneously and significantly improved Monofilament scores of the index fingertip and thumb tip (p sensation, independent of noise location and intensity. Vibrotactile noise at the wrist and dorsal hand may have enhanced the fingertips' light touch sensation via stochastic resonance and interneuronal connections. While long-term benefits of noise in stroke patients warrants further investigation, this result demonstrates potential that a wearable device applying vibrotactile noise at the wrist could enhance sensation and grip ability without interfering with object manipulation in everyday tasks.

  6. Concept for a large master/slave-controlled robotic hand

    Science.gov (United States)

    Grissom, William A.; Abdallah, Mahmoud A.; White, Carl L.

    1988-01-01

    A strategy is presented for the design and construction of a large master/slave-controlled, five-finger robotic hand. Each of the five fingers will possess four independent axes each driven by a brushless DC servomotor and, thus, four degrees-of-freedom. It is proposed that commercially available components be utilized as much as possible to fabricate a working laboratory model of the device with an anticipated overall length of two-to-four feet (0.6 to 1.2 m). The fingers are to be designed so that proximity, tactile, or force/torque sensors can be imbedded in their structure. In order to provide for the simultaneous control of the twenty independent hand joints, a multilevel master/slave control strategy is proposed in which the operator wears a specially instrumented glove which produces control signals corresponding to the finger configurations and which is capable of conveying sensor feedback signals to the operator. Two dexterous hand master devices are currently commercially available for this application with both undergoing continuing development. A third approach to be investigated for the master control mode is the use of real-time image processing of a specially patterned master glove to provide the respective control signals for positioning the multiple finger joints.

  7. Design of a Reconfigurable Robotic System for Flexoextension Fitted to Hand Fingers Size

    Directory of Open Access Journals (Sweden)

    J. Felipe Aguilar-Pereyra

    2016-01-01

    Full Text Available Due to the growing demand for assistance in rehabilitation therapies for hand movements, a robotic system is proposed to mobilize the hand fingers in flexion and extension exercises. The robotic system is composed by four, type slider-crank, mechanisms that have the ability to fit the user fingers length from the index to the little finger, through the adjustment of only one link for each mechanism. The trajectory developed by each mechanism corresponds to the natural flexoextension path of each finger. The amplitude of the rotations for metacarpophalangeal joint (MCP and proximal interphalangeal joint (PIP varies from 0 to 90° and the distal interphalangeal joint (DIP varies from 0 to 60°; the joint rotations are coordinated naturally. The four R-RRT mechanisms orientation allows a 15° abduction movement for index, ring, and little fingers. The kinematic analysis of this mechanism was developed in order to assure that the displacement speed and smooth acceleration into the desired range of motion and the simulation results are presented. The reconfiguration of mechanisms covers about 95% of hand sizes of a group of Mexican adult population. Maximum trajectory tracking error is less than 3% in full range of movement and it can be compensated by the additional rotation of finger joints without injury to the user.

  8. In the Hands of Service Robots

    DEFF Research Database (Denmark)

    Peronard, Jean-Paul

    the benefits of applying robots in professional service e.g. healthcare are extensive, the research into consumer motivation is limited. There is a need for a greater understanding of the individual differences in beliefs and perception in relation to service technology in general and in particular for service...... robots. Therefore, this article proposes a general typology of consumer attitudes and expectations towards service robots. Four types of values are identified and labelled critical, practical, affectionate, and desirable. Based on these values four consumer types are then theoretically develop and may...

  9. Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation.

    Science.gov (United States)

    Pezent, Evan; Rose, Chad G; Deshpande, Ashish D; O'Malley, Marcia K

    2017-07-01

    Robotic devices have been clinically verified for use in long duration and high intensity rehabilitation needed for motor recovery after neurological injury. Targeted and coordinated hand and wrist therapy, often overlooked in rehabilitation robotics, is required to regain the ability to perform activities of daily living. To this end, a new coupled hand-wrist exoskeleton has been designed. This paper details the design of the wrist module and several human-related considerations made to maximize its potential as a coordinated hand-wrist device. The serial wrist mechanism has been engineered to facilitate donning and doffing for impaired subjects and to insure compatibility with the hand module in virtual and assisted grasping tasks. Several other practical requirements have also been addressed, including device ergonomics, clinician-friendliness, and ambidextrous reconfigurability. The wrist module's capabilities as a rehabilitation device are quantified experimentally in terms of functional workspace and dynamic properties. Specifically, the device possesses favorable performance in terms of range of motion, torque output, friction, and closed-loop position bandwidth when compared with existing devices. The presented wrist module's performance and operational considerations support its use in a wide range of future clinical investigations.

  10. Tactile Sensing for Dexterous Robotic Hands

    Science.gov (United States)

    Martin, Toby B.

    2000-01-01

    Robotic systems will be used as precursors to human exploration to explore the solar system and expand our knowledge of planetary surfaces. Robotic systems will also be used to build habitats and infrastructure required for human presence in space and on other planetary surfaces . Such robots will require a high level of intelligence and automation. The ability to flexibly manipulate their physical environment is one characteristic that makes humans so effective at these building and exploring tasks . The development of a generic autonomous grasp ing capability will greatly enhance the efficiency and ability of robotics to build, maintain and explore. To tele-operate a robot over vast distances of space, with long communication delays, has proven to be troublesome. Having an autonomous grasping capability that can react in real-time to disturbances or adapt to generic objects, without operator intervention, will reduce the probability of mishandled tools and samples and reduce the number of re-grasp attempts due to dropping. One aspect that separates humans from machines is a rich sensor set. We have the ability to feel objects and respond to forces and textures. The development of touch or tactile sensors for use on a robot that emulates human skin and nerves is the basis for this discussion. We will discuss the use of new piezo-electric and resistive materials that have emerged on the market with the intention of developing a touch sensitive sensor. With viable tacti le sensors we will be one step closer to developing an autonomous grasping capability.

  11. Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm.

    Science.gov (United States)

    Woo, Jaehong; Choi, Jae Hyuk; Seo, Jong Tae; Kim, Tae Il; Yi, Byung Ju

    2017-01-01

    Colonoscopy is one of the most effective diagnostic and therapeutic tools for colorectal diseases. We aim to propose a master-slave robotic colonoscopy that is controllable in remote site using conventional colonoscopy. The master and slave robot were developed to use conventional flexible colonoscopy. The robotic colonoscopic procedure was performed using a colonoscope training model by one expert endoscopist and two unexperienced engineers. To provide the haptic sensation, the insertion force and the rotating torque were measured and sent to the master robot. A slave robot was developed to hold the colonoscopy and its knob, and perform insertion, rotation, and two tilting motions of colonoscope. A master robot was designed to teach motions of the slave robot. These measured force and torque were scaled down by one tenth to provide the operator with some reflection force and torque at the haptic device. The haptic sensation and feedback system was successful and helpful to feel the constrained force or torque in colon. The insertion time using robotic system decreased with repeated procedures. This work proposed a robotic approach for colonoscopy using haptic feedback algorithm, and this robotic device would effectively perform colonoscopy with reduced burden and comparable safety for patients in remote site.

  12. Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm

    Science.gov (United States)

    Woo, Jaehong; Choi, Jae Hyuk; Seo, Jong Tae

    2017-01-01

    Purpose Colonoscopy is one of the most effective diagnostic and therapeutic tools for colorectal diseases. We aim to propose a master-slave robotic colonoscopy that is controllable in remote site using conventional colonoscopy. Materials and Methods The master and slave robot were developed to use conventional flexible colonoscopy. The robotic colonoscopic procedure was performed using a colonoscope training model by one expert endoscopist and two unexperienced engineers. To provide the haptic sensation, the insertion force and the rotating torque were measured and sent to the master robot. Results A slave robot was developed to hold the colonoscopy and its knob, and perform insertion, rotation, and two tilting motions of colonoscope. A master robot was designed to teach motions of the slave robot. These measured force and torque were scaled down by one tenth to provide the operator with some reflection force and torque at the haptic device. The haptic sensation and feedback system was successful and helpful to feel the constrained force or torque in colon. The insertion time using robotic system decreased with repeated procedures. Conclusion This work proposed a robotic approach for colonoscopy using haptic feedback algorithm, and this robotic device would effectively perform colonoscopy with reduced burden and comparable safety for patients in remote site. PMID:27873506

  13. Robotic training and kinematic analysis of arm and hand after incomplete spinal cord injury: a case study.

    Science.gov (United States)

    Kadivar, Z; Sullivan, J L; Eng, D P; Pehlivan, A U; O'Malley, M K; Yozbatiran, N; Francisco, G E

    2011-01-01

    Regaining upper extremity function is the primary concern of persons with tetraplegia caused by spinal cord injury (SCI). Robotic rehabilitation has been inadequately tested and underutilized in rehabilitation of the upper extremity in the SCI population. Given the acceptance of robotic training in stroke rehabilitation and SCI gait training, coupled with recent evidence that the spinal cord, like the brain, demonstrates plasticity that can be catalyzed by repetitive movement training such as that available with robotic devices, it is probable that robotic upper-extremity training of persons with SCI could be clinically beneficial. The primary goal of this pilot study was to test the feasibility of using a novel robotic device for the upper extremity (RiceWrist) and to evaluate robotic rehabilitation using the RiceWrist in a tetraplegic person with incomplete SCI. A 24-year-old male with incomplete SCI participated in 10 sessions of robot-assisted therapy involving intensive upper limb training. The subject successfully completed all training sessions and showed improvements in movement smoothness, as well as in the hand function. Results from this study provide valuable information for further developments of robotic devices for upper limb rehabilitation in persons with SCI. © 2011 IEEE

  14. The Effects of Upper-Limb Training Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation Robotic Hand on Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Chingyi Nam

    2017-12-01

    Full Text Available BackgroundImpaired hand dexterity is a major disability of the upper limb after stroke. An electromyography (EMG-driven neuromuscular electrical stimulation (NMES robotic hand was designed previously, whereas its rehabilitation effects were not investigated.ObjectivesThis study aims to investigate the rehabilitation effectiveness of the EMG-driven NMES-robotic hand-assisted upper-limb training on persons with chronic stroke.MethodA clinical trial with single-group design was conducted on chronic stroke participants (n = 15 who received 20 sessions of EMG-driven NMES-robotic hand-assisted upper-limb training. The training effects were evaluated by pretraining, posttraining, and 3-month follow-up assessments with the clinical scores of the Fugl-Meyer Assessment (FMA, the Action Research Arm Test (ARAT, the Wolf Motor Function Test, the Motor Functional Independence Measure, and the Modified Ashworth Scale (MAS. Improvements in the muscle coordination across the sessions were investigated by EMG parameters, including EMG activation level and Co-contraction Indexes (CIs of the target muscles in the upper limb.ResultsSignificant improvements in the FMA shoulder/elbow and wrist/hand scores (P < 0.05, the ARAT (P < 0.05, and in the MAS (P < 0.05 were observed after the training and sustained 3 months later. The EMG parameters indicated a significant decrease of the muscle activation level in flexor digitorum (FD and biceps brachii (P < 0.05, as well as a significant reduction of CIs in the muscle pairs of FD and triceps brachii and biceps brachii and triceps brachii (P < 0.05.ConclusionThe upper-limb training integrated with the assistance from the EMG-driven NMES-robotic hand is effective for the improvements of the voluntary motor functions and the muscle coordination in the proximal and distal joints. Furthermore, the motor improvement after the training could be maintained till 3 months later.Trial registration

  15. The Effects of Upper-Limb Training Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation Robotic Hand on Chronic Stroke.

    Science.gov (United States)

    Nam, Chingyi; Rong, Wei; Li, Waiming; Xie, Yunong; Hu, Xiaoling; Zheng, Yongping

    2017-01-01

    Impaired hand dexterity is a major disability of the upper limb after stroke. An electromyography (EMG)-driven neuromuscular electrical stimulation (NMES) robotic hand was designed previously, whereas its rehabilitation effects were not investigated. This study aims to investigate the rehabilitation effectiveness of the EMG-driven NMES-robotic hand-assisted upper-limb training on persons with chronic stroke. A clinical trial with single-group design was conducted on chronic stroke participants ( n  = 15) who received 20 sessions of EMG-driven NMES-robotic hand-assisted upper-limb training. The training effects were evaluated by pretraining, posttraining, and 3-month follow-up assessments with the clinical scores of the Fugl-Meyer Assessment (FMA), the Action Research Arm Test (ARAT), the Wolf Motor Function Test, the Motor Functional Independence Measure, and the Modified Ashworth Scale (MAS). Improvements in the muscle coordination across the sessions were investigated by EMG parameters, including EMG activation level and Co-contraction Indexes (CIs) of the target muscles in the upper limb. Significant improvements in the FMA shoulder/elbow and wrist/hand scores ( P  < 0.05), the ARAT ( P  < 0.05), and in the MAS ( P  < 0.05) were observed after the training and sustained 3 months later. The EMG parameters indicated a significant decrease of the muscle activation level in flexor digitorum (FD) and biceps brachii ( P  < 0.05), as well as a significant reduction of CIs in the muscle pairs of FD and triceps brachii and biceps brachii and triceps brachii ( P  < 0.05). The upper-limb training integrated with the assistance from the EMG-driven NMES-robotic hand is effective for the improvements of the voluntary motor functions and the muscle coordination in the proximal and distal joints. Furthermore, the motor improvement after the training could be maintained till 3 months later. ClinicalTrials.gov. NCT02117089; date of registration: April

  16. Robots Spur Software That Lends a Hand

    Science.gov (United States)

    2014-01-01

    While building a robot to assist astronauts in space, Johnson Space Center worked with partners to develop robot reasoning and interaction technology. The partners created Robonaut 1, which led to Robonaut 2, and the work also led to patents now held by Universal Robotics in Nashville, Tennessee. The NASA-derived technology is available for use in warehousing, mining, and more.

  17. [Robot assisted Frykman-Goldberg procedure. Case report].

    Science.gov (United States)

    Zubieta-O'Farrill, Gregorio; Ramírez-Ramírez, Moisés; Villanueva-Sáenz, Eduardo

    2017-12-01

    Rectal prolapse is defined as the protrusion of the rectal wall through the anal canal; with a prevalence of less than 0.5%. The most frequent symptoms include pain, incomplete defecation sensation with blood and mucus, fecal incontinence and/or constipation. The surgical approach can be perineal or abdominal with the tendency for minimal invasion. Robot-assisted procedures are a novel option that offer technique advantages over open or laparoscopic approaches. 67 year-old female, who presented with rectal prolapse, posterior to an episode of constipation, that required manual reduction, associated with transanal hemorrhage during defecation and occasional fecal incontinence. A RMI defecography was performed that reported complete rectal and uterine prolapse, and cystocele. A robotic assisted Frykman-Goldberg procedure wass performed. There are more than 100 surgical procedures for rectal prolapse treatment. We report the first robot assisted procedure in Mexico. Robotic assisted surgery has the same safety rate as laparoscopic surgery, with the advantages of better instrument mobility, no human hand tremor, better vision, and access to complicated and narrow areas. Robotic surgery as the surgical treatment is a feasible, safe and effective option, there is no difference in recurrence and function compared with laparoscopy. It facilitates the technique, improves nerve preservation and bleeding. Further clinical, prospective and randomized studies to compare the different minimal invasive approaches, their functional and long term results for this pathology are needed. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  18. Robot hands and extravehicular activity

    Science.gov (United States)

    Marcus, Beth

    1987-01-01

    Extravehicular activity (EVA) is crucial to the success of both current and future space operations. As space operations have evolved in complexity so has the demand placed on the EVA crewman. In addition, some NASA requirements for human capabilities at remote or hazardous sites were identified. One of the keys to performing useful EVA tasks is the ability to manipulate objects accurately, quickly and without early or excessive fatigue. The current suit employs a glove which enables the crewman to perform grasping tasks, use tools, turn switches, and perform other tasks for short periods of time. However, the glove's bulk and resistance to motion ultimately causes fatigue. Due to this limitation it may not be possible to meet the productivity requirements that will be placed on the EVA crewman of the future with the current or developmental Extravehicular Mobility Unit (EMU) hardware. In addition, this hardware will not meet the requirements for remote or hazardous operations. In an effort to develop ways for improving crew productivity, a contract was awarded to develop a prototype anthromorphic robotic hand (ARH) for use with an extravehicular space suit. The first step in this program was to perform a a design study which investigated the basic technology required for the development of an ARH to enhance crew performance and productivity. The design study phase of the contract and some additional development work is summarized.

  19. Self-Produced Tickle Sensation by Manipulating Visual Feedback

    Directory of Open Access Journals (Sweden)

    Hiroyuki Iizuka

    2011-10-01

    Full Text Available The aim of the present paper was to clarify how the distinction of self- (sense of agency, SOA and other-produced behavior can be synthesized and recognized in multisensory integration as our cognitive processes. To address this issue, we used tickling paradigm that it is hard for us to tickle ourselves. Previous studies show that tickle sensation by their own motion increases if more delay is given between self-motion of tickling and tactile stimulation (Blakemore et al. 1998, 1999. We introduced visual feedbacks to the tickling experiments. In our hypothesis, integration of vision, proprioception, and motor commands forms the SOA and disintegration causes the breakdown the SOA, which causes the feeling of others, producing tickling sensation even by tickling oneself. We used video-see-through HMD to suddenly delay the real-time images of their hand tickling motions. The tickle sensation was measured by subjective response in the following conditions; 1 tickling oneself without any visual modulation, 2 tickled by others, 3 tickling oneself with visual feedback manipulation. The statistical analysis of ranked evaluation of tickle sensations showed that the delay of visual feedback causes the increase of tickle sensation. The SOA was discussed with Blakemore's and our results.

  20. A Low-Cost Open Source 3D-Printable Dexterous Anthropomorphic Robotic Hand with a Parallel Spherical Joint Wrist for Sign Languages Reproduction

    Directory of Open Access Journals (Sweden)

    Andrea Bulgarelli

    2016-06-01

    Full Text Available We present a novel open-source 3D-printable dexterous anthropomorphic robotic hand specifically designed to reproduce Sign Languages’ hand poses for deaf and deaf-blind users. We improved the InMoov hand, enhancing dexterity by adding abduction/adduction degrees of freedom of three fingers (thumb, index and middle fingers and a three-degrees-of-freedom parallel spherical joint wrist. A systematic kinematic analysis is provided. The proposed robotic hand is validated in the framework of the PARLOMA project. PARLOMA aims at developing a telecommunication system for deaf-blind people, enabling remote transmission of signs from tactile Sign Languages. Both hardware and software are provided online to promote further improvements from the community.

  1. Human versus Robot: A Propensity-Matched Analysis of the Accuracy of Free Hand versus Robotic Guidance for Placement of S2 Alar-Iliac (S2AI) Screws.

    Science.gov (United States)

    Shillingford, Jamal N; Laratta, Joseph L; Park, Paul J; Lombardi, Joseph M; Tuchman, Alexander; Saifi, Comron S; Lehman, Ronald A; Lenke, Lawrence G

    2018-04-18

    Retrospective matched cohort analysis. To compare the accuracy of S2 alar-iliac (S2AI) screw placement by robotic guidance versus free hand technique. Spinopelvic fixation utilizing S2AI screws provides optimal fixation across the lumbosacral junction allowing for solid fusion, especially in long segment fusion constructs. Traditionally, S2AI screw placement has required fluoroscopic guidance for accurate screw placement. Herein, we present the first series comparing a free hand and robotic-guided technique for S2AI screw placement. Sixty-eight consecutive patients who underwent S2AI screw placement by either a free hand or robotic technique between 2015 and 2016 were reviewed. Propensity score-matching was utilized to control for preoperative characteristic imbalances. Screw position and accuracy were evaluated using three-dimensional manipulation of CT reconstructions from intraoperative O-arm imaging. A total of 51 patients (105 screws) were matched, 28 (59 screws) in the free hand group (FHG) and 23 (46 screws) in the robot group (RG). The mean age in the FHG and RG were 57.9[REPLACEMENT CHARACTER]± 14.6 years and 61.6[REPLACEMENT CHARACTER]± 12.0 years (P = 0.342), respectively. The average caudal angle in the sagittal plane was significantly larger in the RG (31.0[REPLACEMENT CHARACTER]± 10.0° vs. 25.7[REPLACEMENT CHARACTER]± 8.8°, P =[REPLACEMENT CHARACTER]0.005). There was no difference between the FHG and RG in the horizontal angle, measured in the axial plane using the posterior superior iliac spine (PSIS) as a reference (41.1[REPLACEMENT CHARACTER]± 8.1° vs. 42.8[REPLACEMENT CHARACTER]± 6.6°, P =[REPLACEMENT CHARACTER]0.225), or the S2AI to S1 screw angle (9.4[REPLACEMENT CHARACTER]± 7.0° vs. 11.3[REPLACEMENT CHARACTER]± 9.9°, P =[REPLACEMENT CHARACTER]0.256), respectively. There was no difference in the overall accuracy between FHG and RG (94.9% vs. 97.8%, P =[REPLACEMENT CHARACTER]0.630). Additionally, there

  2. Kinematic design of a finger abduction mechanism for an anthropomorphic robotic hand

    Directory of Open Access Journals (Sweden)

    L.-A. A. Demers

    2011-02-01

    Full Text Available This paper presents the kinematic design of an abduction mechanism for the fingers of an underactuated anthropomorphic robotic hand. This mechanism will enhance the range of feasible grasps of the underactuated hand without significantly increasing its complexity. The analysis of the link between the index finger and the third finger is first assessed, where the parameters are studied in order to follow the amplitude constraint and to minimize the coordination error. Then, the study of the mechanism joining the third finger and the little finger is summarized. Finally, a prototype of the finger's abduction system is presented.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  3. Hand Passive Mobilization Performed with Robotic Assistance: Acute Effects on Upper Limb Perfusion and Spasticity in Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Massimiliano Gobbo

    2017-01-01

    Full Text Available This single arm pre-post study aimed at evaluating the acute effects induced by a single session of robot-assisted passive hand mobilization on local perfusion and upper limb (UL function in poststroke hemiparetic participants. Twenty-three patients with subacute or chronic stroke received 20 min passive mobilization of the paretic hand with robotic assistance. Near-infrared spectroscopy (NIRS was used to detect changes in forearm tissue perfusion. Muscle tone of the paretic UL was assessed by the Modified Ashworth Scale (MAS. Symptoms concerning UL heaviness, joint stiffness, and pain were evaluated as secondary outcomes by self-reporting. Significant (p=0.014 improvements were found in forearm perfusion when all fingers were mobilized simultaneously. After the intervention, MAS scores decreased globally, being the changes statistically significant for the wrist (from 1.6±1.0 to 1.1±1.0; p=0.001 and fingers (from 1.2±1.1 to 0.7±0.9; p=0.004. Subjects reported decreased UL heaviness and stiffness after treatment, especially for the hand, as well as diminished pain when present. This study supports novel evidence that hand robotic assistance promotes local UL circulation changes, may help in the management of spasticity, and acutely alleviates reported symptoms of heaviness, stiffness, and pain in subjects with poststroke hemiparesis. This opens new scenarios for the implications in everyday clinical practice. Clinical Trial Registration Number is NCT03243123.

  4. Hand Passive Mobilization Performed with Robotic Assistance: Acute Effects on Upper Limb Perfusion and Spasticity in Stroke Survivors.

    Science.gov (United States)

    Gobbo, Massimiliano; Gaffurini, Paolo; Vacchi, Laura; Lazzarini, Sara; Villafane, Jorge; Orizio, Claudio; Negrini, Stefano; Bissolotti, Luciano

    2017-01-01

    This single arm pre-post study aimed at evaluating the acute effects induced by a single session of robot-assisted passive hand mobilization on local perfusion and upper limb (UL) function in poststroke hemiparetic participants. Twenty-three patients with subacute or chronic stroke received 20 min passive mobilization of the paretic hand with robotic assistance. Near-infrared spectroscopy (NIRS) was used to detect changes in forearm tissue perfusion. Muscle tone of the paretic UL was assessed by the Modified Ashworth Scale (MAS). Symptoms concerning UL heaviness, joint stiffness, and pain were evaluated as secondary outcomes by self-reporting. Significant ( p = 0.014) improvements were found in forearm perfusion when all fingers were mobilized simultaneously. After the intervention, MAS scores decreased globally, being the changes statistically significant for the wrist (from 1.6 ± 1.0 to 1.1 ± 1.0; p = 0.001) and fingers (from 1.2 ± 1.1 to 0.7 ± 0.9; p = 0.004). Subjects reported decreased UL heaviness and stiffness after treatment, especially for the hand, as well as diminished pain when present. This study supports novel evidence that hand robotic assistance promotes local UL circulation changes, may help in the management of spasticity, and acutely alleviates reported symptoms of heaviness, stiffness, and pain in subjects with poststroke hemiparesis. This opens new scenarios for the implications in everyday clinical practice. Clinical Trial Registration Number is NCT03243123.

  5. Design of a robotic device for assessment and rehabilitation of hand sensory function.

    Science.gov (United States)

    Lambercy, Olivier; Robles, Alejandro Juárez; Kim, Yeongmi; Gassert, Roger

    2011-01-01

    This paper presents the design and implementation of the Robotic Sensory Trainer, a robotic interface for assessment and therapy of hand sensory function. The device can provide three types of well controlled stimuli: (i) angular displacement at the metacarpophalangeal (MCP) joint using a remote-center-of-motion double-parallelogram structure, (ii) vibration stimuli at the fingertip, proximal phalange and palm, and (iii) pressure at the fingertip, while recording position, interaction force and feedback from the user over a touch screen. These stimuli offer a novel platform to investigate sensory perception in healthy subjects and patients with sensory impairments, with the potential to assess deficits and actively train detection of specific sensory cues in a standardized manner. A preliminary study with eight healthy subjects demonstrates the feasibility of using the Robotic Sensory Trainer to assess the sensory perception threshold in MCP angular position. An average just noticeable difference (JND) in the MCP joint angle of 2.46° (14.47%) was found, which is in agreement with previous perception studies. © 2011 IEEE

  6. Hand/Eye Coordination For Fine Robotic Motion

    Science.gov (United States)

    Lokshin, Anatole M.

    1992-01-01

    Fine motions of robotic manipulator controlled with help of visual feedback by new method reducing position errors by order of magnitude. Robotic vision subsystem includes five cameras: three stationary ones providing wide-angle views of workspace and two mounted on wrist of auxiliary robot arm. Stereoscopic cameras on arm give close-up views of object and end effector. Cameras measure errors between commanded and actual positions and/or provide data for mapping between visual and manipulator-joint-angle coordinates.

  7. Hand-eye coordination of a robot for the automatic inspection of steam-generator tubes in nuclear power plants

    International Nuclear Information System (INIS)

    Choi, D.H.; Song, Y.C.; Kim, J.H.; Kim, J.G.

    2004-01-01

    The inspection of steam-generator tubes in nuclear power plants needs to collect test signals in a highly radiated region that is not accessible by humans. In general, a robot equipped with a camera and a test probe is used to handle such a dangerous environment. The robot moves the probe to right below a tube to be inspected and then the probe is inserted into the tube. The inspection signals are acquired while the probe is pulling back. Currently, an operator in a control room controls all the process remotely. To make a fully automatic inspection system, first of all, a control mechanism is needed to position the probe to the proper location. This is so called a hand-eye coordination problem. In this paper, a hand-eye coordination method for a robot has been presented. The proposed method consists of the two consecutive control modes: rough positioning and fine-tuning. The rough positioning controller tries to position its probe near a target place using kinematics information and the known environments, and then the fine-tuning controller tries to adjust the probe to the target using the image acquired by the camera attached to the robot. The usefulness of the proposed method has been tested and verified through experiments. (orig.)

  8. Combined analysis of cortical (EEG) and nerve stump signals improves robotic hand control.

    Science.gov (United States)

    Tombini, Mario; Rigosa, Jacopo; Zappasodi, Filippo; Porcaro, Camillo; Citi, Luca; Carpaneto, Jacopo; Rossini, Paolo Maria; Micera, Silvestro

    2012-01-01

    Interfacing an amputee's upper-extremity stump nerves to control a robotic hand requires training of the individual and algorithms to process interactions between cortical and peripheral signals. To evaluate for the first time whether EEG-driven analysis of peripheral neural signals as an amputee practices could improve the classification of motor commands. Four thin-film longitudinal intrafascicular electrodes (tf-LIFEs-4) were implanted in the median and ulnar nerves of the stump in the distal upper arm for 4 weeks. Artificial intelligence classifiers were implemented to analyze LIFE signals recorded while the participant tried to perform 3 different hand and finger movements as pictures representing these tasks were randomly presented on a screen. In the final week, the participant was trained to perform the same movements with a robotic hand prosthesis through modulation of tf-LIFE-4 signals. To improve the classification performance, an event-related desynchronization/synchronization (ERD/ERS) procedure was applied to EEG data to identify the exact timing of each motor command. Real-time control of neural (motor) output was achieved by the participant. By focusing electroneurographic (ENG) signal analysis in an EEG-driven time window, movement classification performance improved. After training, the participant regained normal modulation of background rhythms for movement preparation (α/β band desynchronization) in the sensorimotor area contralateral to the missing limb. Moreover, coherence analysis found a restored α band synchronization of Rolandic area with frontal and parietal ipsilateral regions, similar to that observed in the opposite hemisphere for movement of the intact hand. Of note, phantom limb pain (PLP) resolved for several months. Combining information from both cortical (EEG) and stump nerve (ENG) signals improved the classification performance compared with tf-LIFE signals processing alone; training led to cortical reorganization and

  9. Hand-held multi-DOF robotic forceps for neurosurgery designed for dexterous manipulation in deep and narrow space.

    Science.gov (United States)

    Okubo, Takuro; Harada, Kanako; Fujii, Masahiro; Tanaka, Shinichi; Ishimaru, Tetsuya; Iwanaka, Tadashi; Nakatomi, Hirohumi; Sora, Sigeo; Morita, Akio; Sugita, Naohiko; Mitsuishi, Mamoru

    2014-01-01

    Neurosurgical procedures require precise and dexterous manipulation of a surgical suture in narrow and deep spaces in the brain. This is necessary for surgical tasks such as the anastomosis of microscopic blood vessels and dura mater suturing. A hand-held multi-degree of freedom (DOF) robotic forceps was developed to aid the performance of such difficult tasks. The diameter of the developed robotic forceps is 3.5 mm, and its tip has three DOFs, namely, bending, rotation, and grip. Experimental results showed that the robotic forceps had an average needle insertion force of 1.7 N. Therefore, an increase in the needle insertion force is necessary for practical application of the developed device.

  10. Design and validation of low-cost assistive glove for hand assessment and therapy during activity of daily living-focused robotic stroke therapy.

    Science.gov (United States)

    Nathan, Dominic E; Johnson, Michelle J; McGuire, John R

    2009-01-01

    Hand and arm impairment is common after stroke. Robotic stroke therapy will be more effective if hand and upper-arm training is integrated to help users practice reaching and grasping tasks. This article presents the design, development, and validation of a low-cost, functional electrical stimulation grasp-assistive glove for use with task-oriented robotic stroke therapy. Our glove measures grasp aperture while a user completes simple-to-complex real-life activities, and when combined with an integrated functional electrical stimulator, it assists in hand opening and closing. A key function is a new grasp-aperture prediction model, which uses the position of the end-effectors of two planar robots to define the distance between the thumb and index finger. We validated the accuracy and repeatability of the glove and its capability to assist in grasping. Results from five nondisabled subjects indicated that the glove is accurate and repeatable for both static hand-open and -closed tasks when compared with goniometric measures and for dynamic reach-to-grasp tasks when compared with motion analysis measures. Results from five subjects with stroke showed that with the glove, they could open their hands but without it could not. We present a glove that is a low-cost solution for in vivo grasp measurement and assistance.

  11. The existence of propagated sensation along the meridian proved by neuroelectrophysiology

    Science.gov (United States)

    Xu, Jinsen; Zheng, Shuxia; Pan, Xiaohua; Zhu, Xiaoxiang; Hu, Xianglong

    2013-01-01

    Propagated sensation along the meridian can occur when acupoints are stimulated by acupuncture or electrical impulses. In this study, participants with notable propagated sensation along the dian were given electro-acupuncture at the Jianyu (LI15) acupoint of the large intestine meridian. When participants stated that the sensation reached the back of their hand, regular nervous system action discharge was examined using a physiological recording electrode placed on the superficial branch of the radial nerve. The topographical maps of brain-evoked potential in the primary cortical somatosensory area were also detected. When Guangming (GB37) acupoint in the lower limb and Hegu (LI4) acupoint in the upper limb were stimulated, subjects without propagated sensation along the meridian exhibited a high potential reaction in the corresponding area of the brain cortical so-matosensory area. For subjects with a notable propagated sensation along the meridian, the tion area was larger and extended into the face representative area. These electrophysiological measures directly prove the existence of propagated sensation along the meridian, and the pheral stimulated site is consistent with the corresponding primary cortical somatosensory area, which presents a high potential reaction. PMID:25206574

  12. Functional results of robotic total intersphincteric resection with hand-sewn coloanal anastomosis.

    Science.gov (United States)

    Luca, F; Valvo, M; Guerra-Cogorno, M; Simo, D; Blesa-Sierra, E; Biffi, R; Garberoglio, C

    2016-06-01

    In recent decades there has been an increasing trend toward sphincter-preserving procedures for the treatment of low rectal cancer. Robotic surgery is considered to be particularly beneficial when operating in the deep pelvis, where laparoscopy presents technical limitations. The aim of this study was to prospectively evaluate the functional outcomes in patients affected by rectal cancer after robotic total intersphincteric resection (ISR) with hand-sewn coloanal anastomosis. From March 2008 to October 2012, 23 consecutive patients affected by distal rectal adenocarcinoma underwent robotic ISR. Operative, clinical, pathological and functional data regarding continence or presence of a low anterior resection syndrome (LARS) were prospectively collected in a database. Twenty-three consecutive patients were included in the study: 8 men and 15 women. The mean age was 60.2 years (range 28-73). Eighteen (78.3%) had neoadjuvant radiochemotherapy. Conversion rate was nil. The mean operative time was 296.01 min and the mean postoperative hospital stay was 7.43 ± 1.73 days. According to Kirwan's incontinence score, good fecal continence was shown in 85.7% of patients (Grade 1 and 2) and none required a colostomy (Grade 4). Concerning LARS score, the results were as follows: 57.1% patients had no LARS; 19% minor LARS and 23.8% major LARS. Robotic total ISR for low rectal cancer is an acceptable alternative to traditional procedures. Extensive discussion with the patient about the risk of poor functional outcomes or LARS syndrome is mandatory when considering an ISR for treatment of low rectal cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Development of sensor system built into a robot hand toward environmental monitoring

    International Nuclear Information System (INIS)

    Kaneko, Kenji; Ueshiba, Toshio; Yoshimi, Takashi; Kawai, Yoshihiro; Morisawa, Mitsuharu; Kanehiro, Fumio; Yokoi, Kazuhito

    2015-01-01

    The development of sensor system that is built into a hand of a humanoid robot toward environmental monitoring is presented in this paper. The developed system consists of a color C-MOS camera, a laser projector with a lens distributing a laser light, and a LED projector. The sensor system can activate/disable these components according to the purpose. This paper introduces the design process, pre-experimental results for evaluating components, and the specifications of the developed sensor system together with experimental results. (author)

  14. Kinematic control of robot with degenerate wrist

    Science.gov (United States)

    Barker, L. K.; Moore, M. C.

    1984-01-01

    Kinematic resolved rate equations allow an operator with visual feedback to dynamically control a robot hand. When the robot wrist is degenerate, the computed joint angle rates exceed operational limits, and unwanted hand movements can result. The generalized matrix inverse solution can also produce unwanted responses. A method is introduced to control the robot hand in the region of the degenerate robot wrist. The method uses a coordinated movement of the first and third joints of the robot wrist to locate the second wrist joint axis for movement of the robot hand in the commanded direction. The method does not entail infinite joint angle rates.

  15. Regional differences in temperature sensation and thermal comfort in humans.

    Science.gov (United States)

    Nakamura, Mayumi; Yoda, Tamae; Crawshaw, Larry I; Yasuhara, Saki; Saito, Yasuyo; Kasuga, Momoko; Nagashima, Kei; Kanosue, Kazuyuki

    2008-12-01

    Sensations evoked by thermal stimulation (temperature-related sensations) can be divided into two categories, "temperature sensation" and "thermal comfort." Although several studies have investigated regional differences in temperature sensation, less is known about the sensitivity differences in thermal comfort for the various body regions. In the present study, we examined regional differences in temperature-related sensations with special attention to thermal comfort. Healthy male subjects sitting in an environment of mild heat or cold were locally cooled or warmed with water-perfused stimulators. Areas stimulated were the face, chest, abdomen, and thigh. Temperature sensation and thermal comfort of the stimulated areas were reported by the subjects, as was whole body thermal comfort. During mild heat exposure, facial cooling was most comfortable and facial warming was most uncomfortable. On the other hand, during mild cold exposure, neither warming nor cooling of the face had a major effect. The chest and abdomen had characteristics opposite to those of the face. Local warming of the chest and abdomen did produce a strong comfort sensation during whole body cold exposure. The thermal comfort seen in this study suggests that if given the chance, humans would preferentially cool the head in the heat, and they would maintain the warmth of the trunk areas in the cold. The qualitative differences seen in thermal comfort for the various areas cannot be explained solely by the density or properties of the peripheral thermal receptors and thus must reflect processing mechanisms in the central nervous system.

  16. Preliminary Findings of Feasibility of a Wearable Soft-robotic Glove Supporting Impaired Hand Function in Daily Life

    NARCIS (Netherlands)

    Radder, Bob; Radder, B.; Prange, Grada Berendina; Prange-Lasonder, G.B.; Kottink, A.I.R.; Gaasbeek, L.; Holmberg, J.; Meyer, T.; Buurke, Jaap; Rietman, Johan Swanik

    2016-01-01

    Elderly people frequently encounter difficulties in independently performing activities of daily living (ADL) due to a reduced hand function. Robotic assistive devices have the potential to provide the assistance that is necessary to perform ADL independently without the need of personal assistance.

  17. An Inexpensive Method for Kinematic Calibration of a Parallel Robot by Using One Hand-Held Camera as Main Sensor

    Directory of Open Access Journals (Sweden)

    Ricardo Carelli

    2013-08-01

    Full Text Available This paper presents a novel method for the calibration of a parallel robot, which allows a more accurate configuration instead of a configuration based on nominal parameters. It is used, as the main sensor with one camera installed in the robot hand that determines the relative position of the robot with respect to a spherical object fixed in the working area of the robot. The positions of the end effector are related to the incremental positions of resolvers of the robot motors. A kinematic model of the robot is used to find a new group of parameters, which minimizes errors in the kinematic equations. Additionally, properties of the spherical object and intrinsic camera parameters are utilized to model the projection of the object in the image and thereby improve spatial measurements. Finally, several working tests, static and tracking tests are executed in order to verify how the robotic system behaviour improves by using calibrated parameters against nominal parameters. In order to emphasize that, this proposed new method uses neither external nor expensive sensor. That is why new robots are useful in teaching and research activities.

  18. Hand-Assisted Robotic Surgery for Staging of Ovarian Cancer and Uterine Cancers With High Risk of Peritoneal Spread: A Retrospective Cohort Study.

    Science.gov (United States)

    Fornalik, Hubert; Brooks, Hannah; Moore, Elizabeth S; Flanders, Nicole L; Callahan, Michael J; Sutton, Gregory P

    2015-10-01

    This study aimed to determine surgical outcomes related to hand-assisted robotic surgery (HARS) for staging of ovarian cancer and uterine cancers with high risk of peritoneal spread and compare them to laparotomy and standard robotic-assisted surgery. A retrospective cohort study of women undergoing staging for uterine and ovarian cancer between January 2011 and July 2013 at a major metropolitan teaching hospital was reviewed. Patients undergoing HARS were matched with patients undergoing staging laparotomy [exploratory laparotomy (XLAP)] for the same indications and with patients undergoing traditional robotic surgery (RS) for staging of endometrioid endometrial cancer. In HARS, a longer incision is used to allow palpation of the peritoneal surfaces, to exteriorize the small bowel, to examine the mesentery, and to perform omentectomy. One hundred five patients were analyzed (15 HARS, 45 RS, 45 XLAP). Compared with XLAP, HARS was associated with decreased blood loss (200 vs 400 mL, P = 0.011) and shorter hospital stay (1 vs 4 days, P < 0.001). Patients who had undergone HARS had fewer major complications, but those results did not reach statistical significance (0% vs 27%, P = 0.063). Hand-assisted robotic surgery was associated with higher blood loss and length of stay as compared to robotic staging of endometrioid endometrial cancer (RS). Minor wound complications were also more common (27% vs 2%, P = 0.012). Hand-assisted robotic surgery allows for thorough visual and tactile assessment of peritoneal surfaces. It represents a safe alternative to laparotomy for staging of ovarian and uterine cancers with high risk of peritoneal spread. Long-term follow-up study is needed to determine oncologic adequacy of HARS.

  19. Optimal grasp planning for a dexterous robotic hand using the volume of a generalized force ellipsoid during accepted flattening

    Directory of Open Access Journals (Sweden)

    Peng Jia

    2017-01-01

    Full Text Available A grasp planning method based on the volume and flattening of a generalized force ellipsoid is proposed to improve the grasping ability of a dexterous robotic hand. First, according to the general solution of joint torques for a dexterous robotic hand, a grasping indicator for the dexterous hand—the maximum volume of a generalized external force ellipsoid and the minimum volume of a generalized contact internal force ellipsoid during accepted flattening—is proposed. Second, an optimal grasp planning method based on a task is established using the grasping indicator as an objective function. Finally, a simulation analysis and grasping experiment are performed. Results show that when the grasping experiment is conducted with the grasping configuration and positions of contact points optimized using the proposed grasping indicator, the root-mean-square values of the joint torques and contact internal forces of the dexterous hand are at a minimum. The effectiveness of the proposed grasping planning method is thus demonstrated.

  20. Development of an evaluation function for eye-hand coordination robotic therapy.

    Science.gov (United States)

    Pernalete, N; Tang, F; Chang, S M; Cheng, F Y; Vetter, P; Stegemann, M; Grantner, J

    2011-01-01

    This paper is the continuation of a work presented at ICORR 07, in which we discussed the possibility of improving eye-hand coordination in children diagnosed with this problem, using a robotic mapping from a haptic user interface to a virtual environment. Our goal is to develop, implement and refine a system that will assess and improve the eye-hand coordination and grip strength in children diagnosed with poor graphomotor skills. A detailed analysis of patters (e.g., labyrinths, letters and angles) was conducted in order to select three very distinguishable levels of difficulty that could be included in the system, and which would yield the greatest benefit in terms of assessment of coordination and strength issues as well as in training. Support algorithms (position, force, velocity, inertia and viscosity) were also developed and incorporated into the tasks in order to introduce general computer assistance to the mapping of the user's movements to the computer screen without overriding the user's commands to the robotic device. In order to evaluate performance (given by %accuracy and time) of the executed tasks, a sophisticated evaluation function was designed based on image analysis and edge detection algorithms. This paper presents the development of the haptic tasks, the various assistance algorithms, the description of the evaluation function and the results of a study implemented at the Motor Development Clinic at Cal Poly Pomona. The results (Accuracy and Time) of this function are currently being used as inputs to an Intelligent Decision Support System (described in), which in turn, suggests the next task to be executed by the subject based on his/her performance. © 2011 IEEE

  1. Re: The Effect of Pelvic Organ Prolapse Repair on Vaginal Sensation

    Directory of Open Access Journals (Sweden)

    Lowenstein L

    2016-03-01

    Full Text Available The association between the pelvic organ prolapse (POP and sensory functioning of the genital region has not been studied well. It is not also obvious whether the changes occurring at the same time are the cause or the result. In this study, the authors investigated the quantitative sensory changes one day before and 6 months after the surgical repair of POP by robotic sacrocolpopexy. They also used the Pelvic Organ Prolapse Distress Inventory-6 which quantifies the bother and distress caused by the pelvic symptoms. By this method, the initial perception of a sensation of temperature (hot or cold and vibration was measured. After six months, sensitivity to thermal stimuli was found to be significantly improved, but there was no significant change in the vaginal and clitoral vibratory sensory thresholds. The value of reduced sensation in the genitals is not a well-known issue. We know that the thermal and vibratory sensations are diminished in female sexual dysfunction and they can be important in orgasmic function also. It is a well-designed study although it has some limitations. The anatomic correction in POP surgery could improve the genital sensation. Prevention or, at least, early correction of POP can provide serious advantages not only for urinary system but also for the genital functions of women.

  2. User requirements for assistance of the supporting hand in bimanual daily activities via a robotic glove for severely affected stroke patients

    NARCIS (Netherlands)

    Prange, Grada Berendina; Smulders, Laura Cornelia; Smulders, L.C.; van Wijngaarden, J.; Lijbers, G.J.; Nijenhuis, Sharon Maria; Veltink, Petrus H.; Buurke, Jaap; Stienen, Arno; Braun, D.; Yu, H.; Campolo, D.

    2015-01-01

    For independent functioning in activities of daily life (ADL), proper hand function is paramount. Many stroke patients have a reduced ability to grasp and handle objects, while they don't fully recover functional use of the arm and hand, even after extensive (robotic) training. These patients may

  3. Changes in skeletal muscle perfusion and spasticity in patients with poststroke hemiparesis treated by robotic assistance (Gloreha) of the hand.

    Science.gov (United States)

    Bissolotti, Luciano; Villafañe, Jorge Hugo; Gaffurini, Paolo; Orizio, Claudio; Valdes, Kristin; Negrini, Stefano

    2016-03-01

    [Purpose] The purpose of this case series was to determine the effects of robot-assisted hand rehabilitation with a Gloreha device on skeletal muscle perfusion, spasticity, and motor function in subjects with poststroke hemiparesis. [Subjects and Methods] Seven patients, 2 women and 5 men (mean ± SD age: 60.5 ±6.3 years), with hemiparesis (>6 months poststroke), received passive mobilization of the hand with a Gloreha (Idrogenet, Italy), device (30 min per day; 3 sessions a week for 3 weeks). The outcome measures were the total hemoglobin profiles and tissue oxygenation index (TOI) in the muscle tissue evaluated through near-infrared spectroscopy. The Motricity Index and modified Ashworth Scale for upper limb muscles were used to assess mobility of the upper extremity. [Results] Robotic assistance reduced spasticity after the intervention by 68.6% in the upper limb. The Motricity Index was unchanged in these patients after treatment. Regarding changes in muscle perfusion, significant improvements were found in total hemoglobin. There were significant differences between the pre- and posttreatment modified Ashworth scale. [Conclusion] The present work provides novel evidence that robotic assistance of the hand induced changes in local muscle blood flow and oxygen supply, diminished spasticity, and decreased subject-reported symptoms of heaviness and stiffness in subjects with post-stroke hemiparesis.

  4. Comparison of three-dimensional, assist-as-needed robotic arm/hand movement training provided with Pneu-WREX to conventional tabletop therapy after chronic stroke.

    Science.gov (United States)

    Reinkensmeyer, David J; Wolbrecht, Eric T; Chan, Vicky; Chou, Cathy; Cramer, Steven C; Bobrow, James E

    2012-11-01

    Robot-assisted movement training can help individuals with stroke reduce arm and hand impairment, but robot therapy is typically only about as effective as conventional therapy. Refining the way that robots assist during training may make them more effective than conventional therapy. Here, the authors measured the therapeutic effect of a robot that required individuals with a stroke to achieve virtual tasks in three dimensions against gravity. The robot continuously estimated how much assistance patients needed to perform the tasks and provided slightly less assistance than needed to reduce patient slacking. Individuals with a chronic stroke (n = 26; baseline upper limb Fugl-Meyer score, 23 ± 8) were randomized into two groups and underwent 24 one-hour training sessions over 2 mos. One group received the assist-as-needed robot training and the other received conventional tabletop therapy with the supervision of a physical therapist. Training helped both groups significantly reduce their motor impairment, as measured by the primary outcome measure, the Fugl-Meyer score, but the improvement was small (3.0 ± 4.9 points for robot therapy vs. 0.9 ± 1.7 for conventional therapy). There was a trend for greater reduction for the robot-trained group (P = 0.07). The robot group largely sustained this gain at the 3-mo follow-up. The robot-trained group also experienced significant improvements in Box and Blocks score and hand grip strength, whereas the control group did not, but these improvements were not sustained at follow-up. In addition, the robot-trained group showed a trend toward greater improvement in sensory function, as measured by the Nottingham Sensory Test (P = 0.06). These results suggest that in patients with chronic stroke and moderate-severe deficits, assisting in three-dimensional virtual tasks with an assist-as-needed controller may make robotic training more effective than conventional tabletop training.

  5. Assessment of Laparoscopic Skills Performance: 2D Versus 3D Vision and Classic Instrument Versus New Hand-Held Robotic Device for Laparoscopy.

    Science.gov (United States)

    Leite, Mariana; Carvalho, Ana F; Costa, Patrício; Pereira, Ricardo; Moreira, Antonio; Rodrigues, Nuno; Laureano, Sara; Correia-Pinto, Jorge; Vilaça, João L; Leão, Pedro

    2016-02-01

    Laparoscopic surgery has undeniable advantages, such as reduced postoperative pain, smaller incisions, and faster recovery. However, to improve surgeons' performance, ergonomic adaptations of the laparoscopic instruments and introduction of robotic technology are needed. The aim of this study was to ascertain the influence of a new hand-held robotic device for laparoscopy (HHRDL) and 3D vision on laparoscopic skills performance of 2 different groups, naïve and expert. Each participant performed 3 laparoscopic tasks-Peg transfer, Wire chaser, Knot-in 4 different ways. With random sequencing we assigned the execution order of the tasks based on the first type of visualization and laparoscopic instrument. Time to complete each laparoscopic task was recorded and analyzed with one-way analysis of variance. Eleven experts and 15 naïve participants were included. Three-dimensional video helps the naïve group to get better performance in Peg transfer, Wire chaser 2 hands, and Knot; the new device improved the execution of all laparoscopic tasks (P < .05). For expert group, the 3D video system benefited them in Peg transfer and Wire chaser 1 hand, and the robotic device in Peg transfer, Wire chaser 1 hand, and Wire chaser 2 hands (P < .05). The HHRDL helps the execution of difficult laparoscopic tasks, such as Knot, in the naïve group. Three-dimensional vision makes the laparoscopic performance of the participants without laparoscopic experience easier, unlike those with experience in laparoscopic procedures. © The Author(s) 2015.

  6. Advanced mechanics in robotic systems

    CERN Document Server

    Nava Rodríguez, Nestor Eduardo

    2011-01-01

    Illustrates original and ambitious mechanical designs and techniques for the development of new robot prototypes Includes numerous figures, tables and flow charts Discusses relevant applications in robotics fields such as humanoid robots, robotic hands, mobile robots, parallel manipulators and human-centred robots

  7. Performance Comparison Between FEDERICA Hand and LARM Hand

    OpenAIRE

    Carbone, Giuseppe; Rossi, Cesare; Savino, Sergio

    2015-01-01

    This paper describes two robotic hands that have been\\ud developed at University Federico II of Naples and at the\\ud University of Cassino. FEDERICA Hand and LARM Hand\\ud are described in terms of design and operational features.\\ud In particular, careful attention is paid to the differences\\ud between the above-mentioned hands in terms of transmission\\ud systems. FEDERICA Hand uses tendons and pulleys\\ud to drive phalanxes, while LARM Hand uses cross four-bar\\ud linkages. Results of experime...

  8. Variable Thumb Moment Arm Modeling and Thumb-Tip Force Production of a Human-Like Robotic Hand.

    Science.gov (United States)

    Niehues, Taylor D; Deshpande, Ashish D

    2017-10-01

    The anatomically correct testbed (ACT) hand mechanically simulates the musculoskeletal structure of the fingers and thumb of the human hand. In this work, we analyze the muscle moment arms (MAs) and thumb-tip force vectors in the ACT thumb in order to compare the ACT thumb's mechanical structure to the human thumb. Motion data are used to determine joint angle-dependent MA models, and thumb-tip three-dimensional (3D) force vectors are experimentally analyzed when forces are applied to individual muscles. Results are presented for both a nominal ACT thumb model designed to match human MAs and an adjusted model that more closely replicates human-like thumb-tip forces. The results confirm that the ACT thumb is capable of faithfully representing human musculoskeletal structure and muscle functionality. Using the ACT hand as a physical simulation platform allows us to gain a better understanding of the underlying biomechanical and neuromuscular properties of the human hand to ultimately inform the design and control of robotic and prosthetic hands.

  9. Radical nephrectomy performed by open, laparoscopy with or without hand-assistance or robotic methods by the same surgeon produces comparable perioperative results

    Directory of Open Access Journals (Sweden)

    Tanya Nazemi

    2006-02-01

    Full Text Available PURPOSE: Radical nephrectomy can be performed using open or laparoscopic (with or without hand assistance methods, and most recently using the da Vinci Surgical Robotic System. We evaluated the perioperative outcomes using a contemporary cohort of patients undergoing radical nephrectomy by one of the above 4 methods performed by the same surgeon. MATERIALS AND METHODS: The relevant clinical information on 57 consecutive patients undergoing radical nephrectomy from September 2000 until July 2004 by a single surgeon was entered in a Microsoft Access DatabaseTM and queried. Following appropriate statistical analysis, p values < 0.05 were considered significant. RESULTS: Of 57 patients, the open, robotic, laparoscopy with or without hand assistance radical nephrectomy were performed in 18, 6, 21, and 12 patients, respectively. The age, sex, body mass index (BMI, incidence of malignancy, specimen and tumor size, tumor stage, Fuhrman grade, hospital stay, change in postoperative creatinine, drop in hemoglobin, and perioperative complications were not significantly different between the methods. While the estimated median blood loss, postoperative narcotic use for pain control, and hospital stay were significantly higher in the open surgery method (p < 0.05, the median operative time was significantly shorter compared to the robotic method (p = 0.02. Operating room costs were significantly higher in the robotic and laparoscopic groups; however, there was no significant difference in total hospital costs between the 4 groups. CONCLUSIONS: The study demonstrates that radical nephrectomy can be safely performed either by open, robotic, or laparoscopic with or without hand assistance methods without significant difference in perioperative complication rates. A larger cohort and longer follow up are needed to validate our findings and establish oncological outcomes.

  10. Constraint Study for a Hand Exoskeleton: Human Hand Kinematics and Dynamics

    Directory of Open Access Journals (Sweden)

    Fai Chen Chen

    2013-01-01

    Full Text Available In the last few years, the number of projects studying the human hand from the robotic point of view has increased rapidly, due to the growing interest in academic and industrial applications. Nevertheless, the complexity of the human hand given its large number of degrees of freedom (DoF within a significantly reduced space requires an exhaustive analysis, before proposing any applications. The aim of this paper is to provide a complete summary of the kinematic and dynamic characteristics of the human hand as a preliminary step towards the development of hand devices such as prosthetic/robotic hands and exoskeletons imitating the human hand shape and functionality. A collection of data and constraints relevant to hand movements is presented, and the direct and inverse kinematics are solved for all the fingers as well as the dynamics; anthropometric data and dynamics equations allow performing simulations to understand the behavior of the finger.

  11. Haptic-based neurorehabilitation in poststroke patients: a feasibility prospective multicentre trial for robotics hand rehabilitation.

    Science.gov (United States)

    Turolla, Andrea; Daud Albasini, Omar A; Oboe, Roberto; Agostini, Michela; Tonin, Paolo; Paolucci, Stefano; Sandrini, Giorgio; Venneri, Annalena; Piron, Lamberto

    2013-01-01

    Background. Haptic robots allow the exploitation of known motor learning mechanisms, representing a valuable option for motor treatment after stroke. The aim of this feasibility multicentre study was to test the clinical efficacy of a haptic prototype, for the recovery of hand function after stroke. Methods. A prospective pilot clinical trial was planned on 15 consecutive patients enrolled in 3 rehabilitation centre in Italy. All the framework features of the haptic robot (e.g., control loop, external communication, and graphic rendering for virtual reality) were implemented into a real-time MATLAB/Simulink environment, controlling a five-bar linkage able to provide forces up to 20 [N] at the end effector, used for finger and hand rehabilitation therapies. Clinical (i.e., Fugl-Meyer upper extremity scale; nine hold pegboard test) and kinematics (i.e., time; velocity; jerk metric; normalized jerk of standard movements) outcomes were assessed before and after treatment to detect changes in patients' motor performance. Reorganization of cortical activation was detected in one patient by fMRI. Results and Conclusions. All patients showed significant improvements in both clinical and kinematic outcomes. Additionally, fMRI results suggest that the proposed approach may promote a better cortical activation in the brain.

  12. Haptic-Based Neurorehabilitation in Poststroke Patients: A Feasibility Prospective Multicentre Trial for Robotics Hand Rehabilitation

    Directory of Open Access Journals (Sweden)

    Andrea Turolla

    2013-01-01

    Full Text Available Background. Haptic robots allow the exploitation of known motorlearning mechanisms, representing a valuable option for motor treatment after stroke. The aim of this feasibility multicentre study was to test the clinical efficacy of a haptic prototype, for the recovery of hand function after stroke. Methods. A prospective pilot clinical trial was planned on 15 consecutive patients enrolled in 3 rehabilitation centre in Italy. All the framework features of the haptic robot (e.g., control loop, external communication, and graphic rendering for virtual reality were implemented into a real-time MATLAB/Simulink environment, controlling a five-bar linkage able to provide forces up to 20 [N] at the end effector, used for finger and hand rehabilitation therapies. Clinical (i.e., Fugl-Meyer upper extremity scale; nine hold pegboard test and kinematics (i.e., time; velocity; jerk metric; normalized jerk of standard movements outcomes were assessed before and after treatment to detect changes in patients' motor performance. Reorganization of cortical activation was detected in one patient by fMRI. Results and Conclusions. All patients showed significant improvements in both clinical and kinematic outcomes. Additionally, fMRI results suggest that the proposed approach may promote a better cortical activation in the brain.

  13. Thermographic Evaluation of the Hands of Pig Slaughterhouse Workers Exposed to Cold Temperatures.

    Science.gov (United States)

    Tirloni, Adriana Seára; Reis, Diogo Cunha Dos; Ramos, Eliane; Moro, Antônio Renato Pereira

    2017-07-26

    Brazil was rated the fourth leading producer and exporter of pork meat in the world. The aim of this study was to evaluate the temperature of the hands of pig slaughterhouse workers and its relation to the thermal sensation of the hands and the use of a cutting tool. The study included 106 workers in a pig slaughterhouse. An infrared camera FlirThermaCAM E320 (Flir Systems, Wilsonville, OR, USA) was used to collect the images of the dorsal and palmar surfaces of both hands. A numerical scale was used to obtain the thermal sensation. Chi-square test, Pearson correlation and Student's t test or Wilcoxon were used ( p ≤ 0.05). The majority of workers felt cold in the hands (66%) and workers who used the knife felt the coldest. There was an association between the thermal sensation and the use of knife ( p = 0.001). Workers who used the tool showed correlation between the thermal sensation and the temperatures of the left fingers, with a difference between the temperatures of the right and left hands of those who used the knife ( p ≤ 0.05). The hands (left) that manipulated the products presented the lowest temperatures. Findings indicate that employers of pig slaughterhouses should provide gloves with adequate thermal insulation to preserve the health of workers' hands.

  14. Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors.

    Science.gov (United States)

    Spiers, Adam J; Liarokapis, Minas V; Calli, Berk; Dollar, Aaron M

    2016-01-01

    Classical robotic approaches to tactile object identification often involve rigid mechanical grippers, dense sensor arrays, and exploratory procedures (EPs). Though EPs are a natural method for humans to acquire object information, evidence also exists for meaningful tactile property inference from brief, non-exploratory motions (a 'haptic glance'). In this work, we implement tactile object identification and feature extraction techniques on data acquired during a single, unplanned grasp with a simple, underactuated robot hand equipped with inexpensive barometric pressure sensors. Our methodology utilizes two cooperating schemes based on an advanced machine learning technique (random forests) and parametric methods that estimate object properties. The available data is limited to actuator positions (one per two link finger) and force sensors values (eight per finger). The schemes are able to work both independently and collaboratively, depending on the task scenario. When collaborating, the results of each method contribute to the other, improving the overall result in a synergistic fashion. Unlike prior work, the proposed approach does not require object exploration, re-grasping, grasp-release, or force modulation and works for arbitrary object start positions and orientations. Due to these factors, the technique may be integrated into practical robotic grasping scenarios without adding time or manipulation overheads.

  15. 'Robot' Hand Illusion under Delayed Visual Feedback: Relationship between the Senses of Ownership and Agency.

    Directory of Open Access Journals (Sweden)

    Mohamad Arif Fahmi Ismail

    Full Text Available The rubber hand illusion (RHI is an illusion of the self-ownership of a rubber hand that is touched synchronously with one's own hand. While the RHI relates to visual and tactile integration, we can also consider a similar illusion with visual and motor integration on a fake hand. We call this a "robot hand illusion" (RoHI, which relates to both the senses of ownership and agency. Here we investigate the effect of delayed visual feedback on the RoHI. Participants viewed a virtual computer graphic hand controlled by their hand movement recorded using a data glove device. We inserted delays of various lengths between the participant's hand and the virtual hand movements (90-590 ms, and the RoHI effects for each delay condition were systematically tested using a questionnaire. The results showed that the participants felt significantly greater RoHI effects with temporal discrepancies of less than 190 ms compared with longer temporal discrepancies, both in the senses of ownership and agency. Additionally, participants felt significant, but weaker, RoHI effects with temporal discrepancies of 290-490 ms in the sense of agency, but not in the sense of ownership. The participants did not feel a RoHI with temporal discrepancies of 590 ms in either the senses of agency or ownership. Our results suggest that a time window of less than 200 ms is critical for multi-sensory integration processes constituting self-body image.

  16. 'Robot' Hand Illusion under Delayed Visual Feedback: Relationship between the Senses of Ownership and Agency.

    Science.gov (United States)

    Ismail, Mohamad Arif Fahmi; Shimada, Sotaro

    2016-01-01

    The rubber hand illusion (RHI) is an illusion of the self-ownership of a rubber hand that is touched synchronously with one's own hand. While the RHI relates to visual and tactile integration, we can also consider a similar illusion with visual and motor integration on a fake hand. We call this a "robot hand illusion" (RoHI), which relates to both the senses of ownership and agency. Here we investigate the effect of delayed visual feedback on the RoHI. Participants viewed a virtual computer graphic hand controlled by their hand movement recorded using a data glove device. We inserted delays of various lengths between the participant's hand and the virtual hand movements (90-590 ms), and the RoHI effects for each delay condition were systematically tested using a questionnaire. The results showed that the participants felt significantly greater RoHI effects with temporal discrepancies of less than 190 ms compared with longer temporal discrepancies, both in the senses of ownership and agency. Additionally, participants felt significant, but weaker, RoHI effects with temporal discrepancies of 290-490 ms in the sense of agency, but not in the sense of ownership. The participants did not feel a RoHI with temporal discrepancies of 590 ms in either the senses of agency or ownership. Our results suggest that a time window of less than 200 ms is critical for multi-sensory integration processes constituting self-body image.

  17. Emotion based human-robot interaction

    Directory of Open Access Journals (Sweden)

    Berns Karsten

    2018-01-01

    Full Text Available Human-machine interaction is a major challenge in the development of complex humanoid robots. In addition to verbal communication the use of non-verbal cues such as hand, arm and body gestures or mimics can improve the understanding of the intention of the robot. On the other hand, by perceiving such mechanisms of a human in a typical interaction scenario the humanoid robot can adapt its interaction skills in a better way. In this work, the perception system of two social robots, ROMAN and ROBIN of the RRLAB of the TU Kaiserslautern, is presented in the range of human-robot interaction.

  18. Relationship of the Cold-Heat Sensation of the Limbs and Abdomen with Physiological Biomarkers.

    Science.gov (United States)

    Pham, Duong Duc; Lee, JeongHoon; Kim, GaYul; Song, JiYeon; Kim, JiEun; Leem, Chae Hun

    2016-01-01

    The present study explored the relationship between the regional Cold-Heat sensation, the key indicator of the Cold-Heat patterns in traditional East Asian medicine (TEAM), and various biomarkers in Korean population. 734 apparently healthy volunteers aged 20 years and older were enrolled. Three scale self-report questions on the general thermal feel in hands, legs, and abdomen were examined. We found that 65% of women tended to perceive their body, particularly their hands and legs, to be cold, versus 25% of men. Energy expenditure and temperature load at resting state were lower in women, independently of body mass index (BMI). Those with warm hands and warm legs had a 0.74 and 0.52 kg/m 2 higher BMI than those with cold hands and cold legs, respectively, regardless of age, gender, and body weight. Norepinephrine was higher, whereas the dynamic changes in glucose and insulin during an oral glucose tolerance test were lower in those with cold extremities, particularly hands. No consistent differences in biomarkers were found for the abdominal dimension. These results suggest that gender, BMI, the sympathetic nervous system, and glucose metabolism are potential determinants of the Cold-Heat sensation in the hands and legs, but not the abdomen.

  19. Relationship of the Cold-Heat Sensation of the Limbs and Abdomen with Physiological Biomarkers

    Directory of Open Access Journals (Sweden)

    Duong Duc Pham

    2016-01-01

    Full Text Available The present study explored the relationship between the regional Cold-Heat sensation, the key indicator of the Cold-Heat patterns in traditional East Asian medicine (TEAM, and various biomarkers in Korean population. 734 apparently healthy volunteers aged 20 years and older were enrolled. Three scale self-report questions on the general thermal feel in hands, legs, and abdomen were examined. We found that 65% of women tended to perceive their body, particularly their hands and legs, to be cold, versus 25% of men. Energy expenditure and temperature load at resting state were lower in women, independently of body mass index (BMI. Those with warm hands and warm legs had a 0.74 and 0.52 kg/m2 higher BMI than those with cold hands and cold legs, respectively, regardless of age, gender, and body weight. Norepinephrine was higher, whereas the dynamic changes in glucose and insulin during an oral glucose tolerance test were lower in those with cold extremities, particularly hands. No consistent differences in biomarkers were found for the abdominal dimension. These results suggest that gender, BMI, the sympathetic nervous system, and glucose metabolism are potential determinants of the Cold-Heat sensation in the hands and legs, but not the abdomen.

  20. Robots take a hand in inspection, maintenance and repair

    International Nuclear Information System (INIS)

    Cruickshank, A.

    1985-01-01

    In the search for better economic performance through higher availability, utilities are beginning to look with interest at the uses of robotics. However, while some routine surveillance jobs may be amenable to existing commercial robot technology, most maintenance and repair tasks are not. A lot of work still needs to be done to develop robotic devices that can be employed effectively in the sometimes congested and inaccessible environments inside containments. (author)

  1. Robots take a hand in inspection, maintenance and repair

    Energy Technology Data Exchange (ETDEWEB)

    Cruickshank, A

    1985-04-01

    In the search for better economic performance through higher availability, utilities are beginning to look with interest at the uses of robotics. However, while some routine surveillance jobs may be amenable to existing commercial robot technology, most maintenance and repair tasks are not. A lot of work still needs to be done to develop robotic devices that can be employed effectively in the sometimes congested and inaccessible environments inside containments.

  2. Hands Off: Mentoring a Student-Led Robotics Team

    Science.gov (United States)

    Dolenc, Nathan R.; Mitchell, Claire E.; Tai, Robert H.

    2016-01-01

    Mentors play important roles in determining the working environment of out-of-school-time clubs. On robotics teams, they provide guidance in hopes that their protégés progress through an engineering process. This study examined how mentors on one robotics team who defined their mentoring style as "let the students do the work" navigated…

  3. Sensation Seeking in Street Violence

    DEFF Research Database (Denmark)

    Heinskou, Marie Bruvik; Liebst, Lasse Suonperä

    Sensation seeking leads to violence—runs an influential hypothesis in the social scientific study of violent behavior. Although studies confirm that violence is sometimes structured by sensation-seeking motives, the literature seldom comments on the limits to this explanation of violence....... The present study examines the scale of violence motivated by sensation seeking and the degree to which there are several distinct forms of sensation seeking motives operative in violence, rather than a sensation-seeking motive in the singular. The study draws on a sample of situations from Copenhagen...... involving street violence, which are coded quantitatively and qualitatively. Our analysis shows that sensation seeking only seldom seems to play a role in the structuring of street violence. Moreover, the data indicate that sensation seeking finds expression in street violence situations in two different...

  4. Applying a soft-robotic glove as assistive device and training tool with games to support hand function after stroke : Preliminary results on feasibility and potential clinical impact

    NARCIS (Netherlands)

    Prange, G.B.; Radder, Bob; Kottink, Anke I.R.; Melendez-Calderon, Alejandro; Buurke, Jaap H.; Rietman, Johan S.

    2017-01-01

    Recent technological developments regarding wearable soft-robotic devices extend beyond the current application of rehabilitation robotics and enable unobtrusive support of the arms and hands during daily activities. In this light, the HandinMind (HiM) system was developed, comprising a

  5. Sensation seeking and error processing.

    Science.gov (United States)

    Zheng, Ya; Sheng, Wenbin; Xu, Jing; Zhang, Yuanyuan

    2014-09-01

    Sensation seeking is defined by a strong need for varied, novel, complex, and intense stimulation, and a willingness to take risks for such experience. Several theories propose that the insensitivity to negative consequences incurred by risks is one of the hallmarks of sensation-seeking behaviors. In this study, we investigated the time course of error processing in sensation seeking by recording event-related potentials (ERPs) while high and low sensation seekers performed an Eriksen flanker task. Whereas there were no group differences in ERPs to correct trials, sensation seeking was associated with a blunted error-related negativity (ERN), which was female-specific. Further, different subdimensions of sensation seeking were related to ERN amplitude differently. These findings indicate that the relationship between sensation seeking and error processing is sex-specific. Copyright © 2014 Society for Psychophysiological Research.

  6. Applying a soft-robotic glove as assistive device and training tool with games to support hand function after stroke: Preliminary results on feasibility and potential clinical impact.

    Science.gov (United States)

    Prange-Lasonder, Gerdienke B; Radder, Bob; Kottink, Anke I R; Melendez-Calderon, Alejandro; Buurke, Jaap H; Rietman, Johan S

    2017-07-01

    Recent technological developments regarding wearable soft-robotic devices extend beyond the current application of rehabilitation robotics and enable unobtrusive support of the arms and hands during daily activities. In this light, the HandinMind (HiM) system was developed, comprising a soft-robotic, grip supporting glove with an added computer gaming environment. The present study aims to gain first insight into the feasibility of clinical application of the HiM system and its potential impact. In order to do so, both the direct influence of the HiM system on hand function as assistive device and its therapeutic potential, of either assistive or therapeutic use, were explored. A pilot randomized clinical trial was combined with a cross-sectional measurement (comparing performance with and without glove) at baseline in 5 chronic stroke patients, to investigate both the direct assistive and potential therapeutic effects of the HiM system. Extended use of the soft-robotic glove as assistive device at home or with dedicated gaming exercises in a clinical setting was applicable and feasible. A positive assistive effect of the soft-robotic glove was proposed for pinch strength and functional task performance 'lifting full cans' in most of the five participants. A potential therapeutic impact was suggested with predominantly improved hand strength in both participants with assistive use, and faster functional task performance in both participants with therapeutic application.

  7. Intelligent control of robotic arm/hand systems for the NASA EVA retriever using neural networks

    Science.gov (United States)

    Mclauchlan, Robert A.

    1989-01-01

    Adaptive/general learning algorithms using varying neural network models are considered for the intelligent control of robotic arm plus dextrous hand/manipulator systems. Results are summarized and discussed for the use of the Barto/Sutton/Anderson neuronlike, unsupervised learning controller as applied to the stabilization of an inverted pendulum on a cart system. Recommendations are made for the application of the controller and a kinematic analysis for trajectory planning to simple object retrieval (chase/approach and capture/grasp) scenarios in two dimensions.

  8. Neural manual vs. robotic assisted mobilization to improve motion and reduce pain hypersensitivity in hand osteoarthritis: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Villafañe, Jorge Hugo; Valdes, Kristin; Imperio, Grace; Borboni, Alberto; Cantero-Téllez, Raquel; Galeri, Silvia; Negrini, Stefano

    2017-05-01

    [Purpose] The aim of the present study is to detail the protocol for a randomised controlled trial (RCT) of neural manual vs. robotic assisted on pain in sensitivity as well as analyse the quantitative and qualitative movement of hand in subjects with hand osteoarthritis. [Subjects and Methods] Seventy-two patients, aged 50 to 90 years old of both genders, with a diagnosis of hand Osteoarthritis (OA), will be recruited. Two groups of 36 participants will receive an experimental intervention (neurodynamic mobilization intervention plus exercise) or a control intervention (robotic assisted passive mobilization plus exercise) for 12 sessions over 4 weeks. Assessment points will be at baseline, end of therapy, and 1 and 3 months after end of therapy. The outcomes of this intervention will be pain and determine the central pain processing mechanisms. [Result] Not applicable. [Conclusion] If there is a reduction in pain hypersensitivity in hand OA patients it can suggest that supraspinal pain-inhibitory areas, including the periaqueductal gray matter, can be stimulated by joint mobilization.

  9. Sensation of Movement

    DEFF Research Database (Denmark)

    Sensation of Movement will discuss the role of sensation in the control of action, bodily self-recognition, and sense of agency. Sensing movement is dependent on a range of information received by the brain, from signalling in the peripheral sensory organs to the establishment of higher order goals....... This volume will question whether one type of information is more relevant for the ability to sense and control movements, and demonstrate the importance of integrating neuroscientific knowledge with philosophical perspectives, in order to arrive at new insights into how sensation of movement can be studied...

  10. Laparoscopic hand-assisted versus robotic-assisted laparoscopic sleeve gastrectomy: experience of 103 consecutive cases.

    Science.gov (United States)

    Kannan, Umashankkar; Ecker, Brett L; Choudhury, Rashikh; Dempsey, Daniel T; Williams, Noel N; Dumon, Kristoffel R

    2016-01-01

    Laparoscopic sleeve gastrectomy has become a stand-alone procedure in the treatment of morbid obesity. There are very few reports on the use of robotic approach in sleeve gastrectomy. The purpose of this retrospective study is to report our early experience of robotic-assisted laparoscopic sleeve gastrectomy (RALSG) using a proctored training model with comparison to an institutional cohort of patients who underwent laparoscopic hand-assisted sleeve gastrectomy (LASG). University hospital. The study included 108 patients who underwent sleeve gastrectomy either via the laparoscopic-assisted or robot-assisted approach during the study period. Of these 108 patients, 62 underwent LASG and 46 underwent RALSG. The console surgeon in the RALSG is a clinical year 4 (CY4) surgery resident. All CY4 surgery residents received targeted simulation training before their rotation. The console surgeon is proctored by the primary surgeon with assistance as needed by the second surgeon. The patients in the robotic and laparoscopic cohorts did not have a statistical difference in their demographic characteristics, preoperative co-morbidities, or complications. The mean operating time did not differ significantly between the 2 cohorts (121 min versus 110 min, P = .07). Patient follow-up in the LSG and RALSG were 91% and 90% at 3 months, 62% and 64% at 6 months, and 60% and 55% at 1 year, respectively. The mean percentage estimated weight loss (EWL%) at 3 months, 6 months, and 1 year was greater in the robotic group but not statistically significant (27 versus 22 at 3 mo [P = .05] and 39 versus 34 at 6 mo [P = .025], 57 versus 48 at 1 yr [P = .09]). There was no mortality in either group. Early results of our experience with RALSG indicate low perioperative complication rates and comparable weight loss with LASG. The concept of a stepwise education model needs further validation with larger studies. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc

  11. Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors.

    Science.gov (United States)

    Yap, Hong Kai; Lim, Jeong Hoon; Nasrallah, Fatima; Yeow, Chen-Hua

    2017-01-01

    Various robotic exoskeletons have been proposed for hand function assistance during activities of daily living (ADL) of stroke survivors. However, traditional exoskeletons involve the use of complex rigid systems that impede the natural movement of joints, and thus reduce the wearability and cause discomfort to the user. The objective of this paper is to design and evaluate a soft robotic glove that is able to provide hand function assistance using fabric-reinforced soft pneumatic actuators. These actuators are made of silicone rubber which has an elastic modulus similar to human tissues. Thus, they are intrinsically soft and compliant. Upon air pressurization, they are able to support finger range of motion (ROM) and generate the desired actuation of the finger joints. In this work, the soft actuators were characterized in terms of their blocked tip force, normal and frictional grip force outputs. Combining the soft actuators and flexible textile materials, a soft robotic glove was developed for grasping assistance during ADL for stroke survivors. The glove was evaluated on five healthy participants for its assisted ROM and grip strength. Pilot test was performed in two stroke survivors to evaluate the efficacy of the glove in assisting functional grasping activities. Our results demonstrated that the actuators designed in this study could generate desired force output at a low air pressure. The glove had a high kinematic transparency and did not affect the active ROM of the finger joints when it was being worn by the participants. With the assistance of the glove, the participants were able to perform grasping actions with sufficient assisted ROM and grip strength, without any voluntary effort. Additionally, pilot test on stroke survivors demonstrated that the patient's grasping performance improved with the presence and assistance of the glove. Patient feedback questionnaires also showed high level of patient satisfaction and comfort. In conclusion, this paper

  12. Underactuated hands : Fundamentals, performance analysis and design

    NARCIS (Netherlands)

    Kragten, G.A.

    2011-01-01

    There is an emerging need to apply adaptive robotic hands to substitute humans in dangerous, laborious, or monotonous work. The state-of-the-art robotic hands cannot fulfill this need, because they are expensive, hard to control and they consist of many vulnerable motors and sensors. It is aimed to

  13. Differences in risk experience between sensation avoiders and sensation seekers

    NARCIS (Netherlands)

    Heino, A.; van der Molen, H.H.; Wilde, G.J S

    The prime purpose of our study was to find out whether the need for stimulation has a systematic influence on perceived risk. While driving on a motorway, 21 male sensation avoiders and 21 male sensation seekers had to follow another car, once at a free following distance chosen by the subject

  14. Pain and thermal sensation in the cold: the effect of interval versus continuous exercise.

    Science.gov (United States)

    Muller, Matthew D; Muller, Sarah M; Ryan, Edward J; Bellar, David M; Kim, Chul-Ho; Glickman, Ellen L

    2011-06-01

    Military and factory work often involves exposure to cold temperatures. With prolonged exposure, individuals report feeling cold and develop pain in their hands, both of which might be alleviated by endogenous heat production via exercise. The purpose of this study was to evaluate how interval (INT) and continuous (CONT) cycle ergometry alter thermal sensation, hand pain, mean finger temperature, and skin surface temperature gradient (forearm-finger) following immobility in moderate cold. Fourteen young men underwent two trials (each was three total hours in 5°C) consisting of a 90-min period of acute cold exposure (ACE), 30 min of exercise (INT or CONT), and a 60-min recovery period (REC). INT and CONT were isoenergetic, reflecting 50 ± 1% of each individual's VO(2) peak. All perceptual scales were significantly correlated during ACE (i.e., test-retest reliability). As expected, individuals felt colder and reported more hand pain during ACE, as compared to thermoneutral conditions. Relative to ACE, both INT and CONT increased mean finger temperature, which was associated with warmer thermal sensation and less hand pain. During REC in 5°C, individuals felt colder and reported more hand pain than during exercise. Although there were no perceptual differences between INT and CONT, moderate exercise in general can cause subjective feelings of warmth and less hand pain in people acutely exposed to moderate cold.

  15. Removal of proprioception by BCI raises a stronger body ownership illusion in control of a humanlike robot

    OpenAIRE

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2016-01-01

    Body ownership illusions provide evidence that our sense of self is not coherent and can be extended to non-body objects. Studying about these illusions gives us practical tools to understand the brain mechanisms that underlie body recognition and the experience of self. We previously introduced an illusion of body ownership transfer (BOT) for operators of a very humanlike robot. This sensation of owning the robot?s body was confirmed when operators controlled the robot either by performing t...

  16. Slip detection with accelerometer and tactile sensors in a robotic hand model

    Science.gov (United States)

    Al-Shanoon, Abdulrahman Abdulkareem S.; Anom Ahmad, Siti; Hassan, Mohd. Khair b.

    2015-11-01

    Grasp planning is an interesting issue in studies that dedicated efforts to investigate tactile sensors. This study investigated the physical force interaction between a tactile pressure sensor and a particular object. It also characterized object slipping during gripping operations and presented secure regripping of an object. Acceleration force was analyzed using an accelerometer sensor to establish a completely autonomous robotic hand model. An automatic feedback control system was applied to regrip the particular object when it commences to slip. Empirical findings were presented in consideration of the detection and subsequent control of the slippage situation. These findings revealed the correlation between the distance of the object slipping and the required force to regrip the object safely. This approach is similar to Hooke's law formula.

  17. Neuro-prosthetic interplay. Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by M. Santello et al.

    Science.gov (United States)

    Schieber, Marc H.

    2016-07-01

    Control of the human hand has been both difficult to understand scientifically and difficult to emulate technologically. The article by Santello and colleagues in the current issue of Physics of Life Reviews[1] highlights the accelerating pace of interaction between the neuroscience of controlling body movement and the engineering of robotic hands that can be used either autonomously or as part of a motor neuroprosthesis, an artificial body part that moves under control from a human subject's own nervous system. Motor neuroprostheses typically involve a brain-computer interface (BCI) that takes signals from the subject's nervous system or muscles, interprets those signals through a decoding algorithm, and then applies the resulting output to control the artificial device.

  18. Lending a helping hand: toward novel assistive robotic arms

    NARCIS (Netherlands)

    Groothuis, Stefan; Stramigioli, Stefano; Carloni, Raffaella

    Assistive robotics is an increasingly popular research field, which has led to a large number of commercial and noncommercial systems aimed at assisting physically impaired or elderly users in the activities of daily living. In this article, we propose five criteria based on robotic arm usage

  19. Restoring natural sensory feedback in real-time bidirectional hand prostheses

    DEFF Research Database (Denmark)

    Raspopovic, Stanisa; Capogrosso, Marco; Petrini, Francesco Maria

    2014-01-01

    Hand loss is a highly disabling event that markedly affects the quality of life. To achieve a close to natural replacement for the lost hand, the user should be provided with the rich sensations that we naturally perceive when grasping or manipulating an object. Ideal bidirectional hand prosthese...

  20. An Efficient Solution for Hand Gesture Recognition from Video Sequence

    Directory of Open Access Journals (Sweden)

    PRODAN, R.-C.

    2012-08-01

    Full Text Available The paper describes a system of hand gesture recognition by image processing for human robot interaction. The recognition and interpretation of the hand postures acquired through a video camera allow the control of the robotic arm activity: motion - translation and rotation in 3D - and tightening/releasing the clamp. A gesture dictionary was defined and heuristic algorithms for recognition were developed and tested. The system can be used for academic and industrial purposes, especially for those activities where the movements of the robotic arm were not previously scheduled, for training the robot easier than using a remote control. Besides the gesture dictionary, the novelty of the paper consists in a new technique for detecting the relative positions of the fingers in order to recognize the various hand postures, and in the achievement of a robust system for controlling robots by postures of the hands.

  1. Social Sensations of Symptoms

    DEFF Research Database (Denmark)

    Meinert, Lotte; Whyte, Susan Reynolds

    2017-01-01

    The interpretation of sensations and the recognition of symptoms of a sickness, as well as the movement to seek treatment, have long been recognized in medical anthropology as inherently social processes. Based on cases of HIV and trauma (PTSD) in Uganda, we show that even the first signs....../symptoms; differential recognition of symptoms; and the embodied sociality of treatment....... and sensations of sickness can be radically social. The sensing body can be a ‘social body’ – a family, a couple, a network – a unit that transcends the individual body. In this article we focus on four aspects of the sociality of sensations and symptoms: mode of transmission; the shared experience of sensations...

  2. Hand-Eye LRF-Based Iterative Plane Detection Method for Autonomous Robotic Welding

    Directory of Open Access Journals (Sweden)

    Sungmin Lee

    2015-12-01

    Full Text Available This paper proposes a hand-eye LRF-based (laser range finder welding plane-detection method for autonomous robotic welding in the field of shipbuilding. The hand-eye LRF system consists of a 6 DOF manipulator and an LRF attached to the wrist of the manipulator. The welding plane is detected by the LRF with only the wrist's rotation to minimize a mechanical error caused by the manipulator's motion. A position on the plane is determined as an average position of the detected points on the plane, and a normal vector to the plane is determined by applying PCA (principal component analysis to the detected points. In this case, the accuracy of the detected plane is analysed by simulations with respect to the wrist's angle interval and the plane angle. As a result of the analysis, an iterative plane-detection method with the manipulator's alignment motion is proposed to improve the performance of plane detection. For verifying the feasibility and effectiveness of the proposed plane-detection method, experiments are carried out with a prototype of the hand-eye LRF-based system, which consists of a 1 DOF wrist's joint, an LRF system and a rotatable plane. In addition, the experimental results of the PCA-based plane detection method are compared with those of the two representative plane-detection methods, based on RANSAC (RANdom SAmple Consensus and the 3D Hough transform in both accuracy and computation time's points of view.

  3. Degloving injuries of the hand

    Directory of Open Access Journals (Sweden)

    R Krishnamoorthy

    2011-01-01

    Full Text Available Avulsion of skin from the hand or fingers is an injury that has a dramatic presentation. The entire musculo-skeletal unit of the finger is intact, and the patient can often move the parts of his naked hand quite normally. The challenge for the reconstructive surgeon lies in resurfacing the hand or finger with a good quality pliable sensate skin cover while preserving the movements and function of the hand. Traditionally, skin grafting has been the standard method of reconstruction in such injuries. However, skin grafting does have many disadvantages, too. This article deals with the features of such injuries, management protocols and other reconstructive options available in the armamentarium of the hand surgeon.

  4. From robot to human grasping simulation

    CERN Document Server

    León, Beatriz; Sancho-Bru, Joaquin

    2013-01-01

    The human hand and its dexterity in grasping and manipulating objects are some of the hallmarks of the human species. For years, anatomic and biomechanical studies have deepened the understanding of the human hand’s functioning and, in parallel, the robotics community has been working on the design of robotic hands capable of manipulating objects with a performance similar to that of the human hand. However, although many researchers have partially studied various aspects, to date there has been no comprehensive characterization of the human hand’s function for grasping and manipulation of

  5. Whole glove permeation of cyclohexanol through disposable nitrile gloves on a dextrous robot hand: Fist clenching vs. non-clenching.

    Science.gov (United States)

    Mathews, Airek R; Que Hee, Shane S

    2017-04-01

    The differences in permeation parameters when a gloved dextrous robot hand clenched and did not were investigated with the dynamic permeation system described in the companion paper. Increased permeation through the gloves of the present study for cyclohexanol when the gloved hand clenched depended on glove thickness and porosity for cyclohexanol permeation. The Sterling glove, the thinnest and most porous, was the least protective. Hand clenching promoted more permeation for the Sterling glove in terms of breakthrough times, steady state permeation rate, and diffusion coefficient. The Safeskin glove showed increased permeation only for the steady state permeation rate but not breakthrough times or diffusion coefficient. The Blue and Purple gloves showed no differences when the hand was clenching or not. The correlational analysis supported differences between the clenching and non-clenching situations, and the risk assessment considered the worst and best scenarios relative to one and two hydrated hands that were and were not protected by specific gloves.

  6. Space suit glove design with advanced metacarpal phalangeal joints and robotic hand evaluation.

    Science.gov (United States)

    Southern, Theodore; Roberts, Dustyn P; Moiseev, Nikolay; Ross, Amy; Kim, Joo H

    2013-06-01

    One area of space suits that is ripe for innovation is the glove. Existing models allow for some fine motor control, but the power grip--the act of grasping a bar--is cumbersome due to high torque requirements at the knuckle or metacarpal phalangeal joint (MCP). This area in particular is also a major source of complaints of pain and injury as reported by astronauts. This paper explores a novel fabrication and patterning technique that allows for more freedom of movement and less pain at this crucial joint in the manned space suit glove. The improvements are evaluated through unmanned testing, manned testing while depressurized in a vacuum glove box, and pressurized testing with a robotic hand. MCP joint flex score improved from 6 to 6.75 (out of 10) in the final glove relative to the baseline glove, and torque required for flexion decreased an average of 17% across all fingers. Qualitative assessments during unpressurized and depressurized manned testing also indicated the final glove was more comfortable than the baseline glove. The quantitative results from both human subject questionnaires and robotic torque evaluation suggest that the final iteration of the glove design enables flexion at the MCP joint with less torque and more comfort than the baseline glove.

  7. Robotics and general surgery.

    Science.gov (United States)

    Jacob, Brian P; Gagner, Michel

    2003-12-01

    Robotics are now being used in all surgical fields, including general surgery. By increasing intra-abdominal articulations while operating through small incisions, robotics are increasingly being used for a large number of visceral and solid organ operations, including those for the gallbladder, esophagus, stomach, intestines, colon, and rectum, as well as for the endocrine organs. Robotics and general surgery are blending for the first time in history and as a specialty field should continue to grow for many years to come. We continuously demand solutions to questions and limitations that are experienced in our daily work. Laparoscopy is laden with limitations such as fixed axis points at the trocar insertion sites, two-dimensional video monitors, limited dexterity at the instrument tips, lack of haptic sensation, and in some cases poor ergonomics. The creation of a surgical robot system with 3D visual capacity seems to deal with most of these limitations. Although some in the surgical community continue to test the feasibility of these surgical robots and to question the necessity of such an expensive venture, others are already postulating how to improve the next generation of telemanipulators, and in so doing are looking beyond today's horizon to find simpler solutions. As the robotic era enters the world of the general surgeon, more and more complex procedures will be able to be approached through small incisions. As technology catches up with our imaginations, robotic instruments (as opposed to robots) and 3D monitoring will become routine and continue to improve patient care by providing surgeons with the most precise, least traumatic ways of treating surgical disease.

  8. Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Hong Kai Yap

    2017-10-01

    Full Text Available Various robotic exoskeletons have been proposed for hand function assistance during activities of daily living (ADL of stroke survivors. However, traditional exoskeletons involve the use of complex rigid systems that impede the natural movement of joints, and thus reduce the wearability and cause discomfort to the user. The objective of this paper is to design and evaluate a soft robotic glove that is able to provide hand function assistance using fabric-reinforced soft pneumatic actuators. These actuators are made of silicone rubber which has an elastic modulus similar to human tissues. Thus, they are intrinsically soft and compliant. Upon air pressurization, they are able to support finger range of motion (ROM and generate the desired actuation of the finger joints. In this work, the soft actuators were characterized in terms of their blocked tip force, normal and frictional grip force outputs. Combining the soft actuators and flexible textile materials, a soft robotic glove was developed for grasping assistance during ADL for stroke survivors. The glove was evaluated on five healthy participants for its assisted ROM and grip strength. Pilot test was performed in two stroke survivors to evaluate the efficacy of the glove in assisting functional grasping activities. Our results demonstrated that the actuators designed in this study could generate desired force output at a low air pressure. The glove had a high kinematic transparency and did not affect the active ROM of the finger joints when it was being worn by the participants. With the assistance of the glove, the participants were able to perform grasping actions with sufficient assisted ROM and grip strength, without any voluntary effort. Additionally, pilot test on stroke survivors demonstrated that the patient's grasping performance improved with the presence and assistance of the glove. Patient feedback questionnaires also showed high level of patient satisfaction and comfort. In

  9. Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial.

    Science.gov (United States)

    Kutner, Nancy G; Zhang, Rebecca; Butler, Andrew J; Wolf, Steven L; Alberts, Jay L

    2010-04-01

    At 6 months poststroke, most patients cannot incorporate their affected hand into daily activities, which in turn is likely to reduce their perceived quality of life. This preliminary study explored change in patient-reported, health-related quality of life associated with robotic-assisted therapy combined with reduced therapist-supervised training. A single-blind, multi-site, randomized clinical trial was conducted. Seventeen individuals who were 3 to 9 months poststroke participated. Sixty hours of therapist-supervised repetitive task practice (RTP) was compared with 30 hours of RTP combined with 30 hours of robotic-assisted therapy. Participants completed the Stroke Impact Scale (SIS) at baseline, immediately postintervention, and 2 months postintervention. Change in SIS score domains was assessed in a mixed model analysis. The combined therapy group had a greater increase in rating of mood from preintervention to postintervention, and the RTP-only group had a greater increase in rating of social participation from preintervention to follow-up. Both groups had statistically significant improvement in activities of daily living and instrumental activities of daily living scores from preintervention to postintervention. Both groups reported significant improvement in hand function postintervention and at follow-up, and the magnitude of these changes suggested clinical significance. The combined therapy group had significant improvements in stroke recovery rating postintervention and at follow-up, which appeared clinically significant; this also was true for stroke recovery rating from preintervention to follow-up in the RTP-only group. LIMITATIONS OUTCOMES: of 30 hours of RTP in the absence of robotic-assisted therapy remain unknown. Robotic-assisted therapy may be an effective alternative or adjunct to the delivery of intensive task practice interventions to enhance hand function recovery in patients with stroke.

  10. Learning robotic eye-arm-hand coordination from human demonstration: a coupled dynamical systems approach.

    Science.gov (United States)

    Lukic, Luka; Santos-Victor, José; Billard, Aude

    2014-04-01

    We investigate the role of obstacle avoidance in visually guided reaching and grasping movements. We report on a human study in which subjects performed prehensile motion with obstacle avoidance where the position of the obstacle was systematically varied across trials. These experiments suggest that reaching with obstacle avoidance is organized in a sequential manner, where the obstacle acts as an intermediary target. Furthermore, we demonstrate that the notion of workspace travelled by the hand is embedded explicitly in a forward planning scheme, which is actively involved in detecting obstacles on the way when performing reaching. We find that the gaze proactively coordinates the pattern of eye-arm motion during obstacle avoidance. This study provides also a quantitative assessment of the coupling between the eye-arm-hand motion. We show that the coupling follows regular phase dependencies and is unaltered during obstacle avoidance. These observations provide a basis for the design of a computational model. Our controller extends the coupled dynamical systems framework and provides fast and synchronous control of the eyes, the arm and the hand within a single and compact framework, mimicking similar control system found in humans. We validate our model for visuomotor control of a humanoid robot.

  11. Review of surgical robotics user interface: what is the best way to control robotic surgery?

    Science.gov (United States)

    Simorov, Anton; Otte, R Stephen; Kopietz, Courtni M; Oleynikov, Dmitry

    2012-08-01

    As surgical robots begin to occupy a larger place in operating rooms around the world, continued innovation is necessary to improve our outcomes. A comprehensive review of current surgical robotic user interfaces was performed to describe the modern surgical platforms, identify the benefits, and address the issues of feedback and limitations of visualization. Most robots currently used in surgery employ a master/slave relationship, with the surgeon seated at a work-console, manipulating the master system and visualizing the operation on a video screen. Although enormous strides have been made to advance current technology to the point of clinical use, limitations still exist. A lack of haptic feedback to the surgeon and the inability of the surgeon to be stationed at the operating table are the most notable examples. The future of robotic surgery sees a marked increase in the visualization technologies used in the operating room, as well as in the robots' abilities to convey haptic feedback to the surgeon. This will allow unparalleled sensation for the surgeon and almost eliminate inadvertent tissue contact and injury. A novel design for a user interface will allow the surgeon to have access to the patient bedside, remaining sterile throughout the procedure, employ a head-mounted three-dimensional visualization system, and allow the most intuitive master manipulation of the slave robot to date.

  12. Automated cross-modal mapping in robotic eye/hand systems using plastic radial basis function networks

    Science.gov (United States)

    Meng, Qinggang; Lee, M. H.

    2007-03-01

    Advanced autonomous artificial systems will need incremental learning and adaptive abilities similar to those seen in humans. Knowledge from biology, psychology and neuroscience is now inspiring new approaches for systems that have sensory-motor capabilities and operate in complex environments. Eye/hand coordination is an important cross-modal cognitive function, and is also typical of many of the other coordinations that must be involved in the control and operation of embodied intelligent systems. This paper examines a biologically inspired approach for incrementally constructing compact mapping networks for eye/hand coordination. We present a simplified node-decoupled extended Kalman filter for radial basis function networks, and compare this with other learning algorithms. An experimental system consisting of a robot arm and a pan-and-tilt head with a colour camera is used to produce results and test the algorithms in this paper. We also present three approaches for adapting to structural changes during eye/hand coordination tasks, and the robustness of the algorithms under noise are investigated. The learning and adaptation approaches in this paper have similarities with current ideas about neural growth in the brains of humans and animals during tool-use, and infants during early cognitive development.

  13. Robotized transcranial magnetic stimulation

    CERN Document Server

    Richter, Lars

    2014-01-01

    Presents new, cutting-edge algorithms for robot/camera calibration, sensor fusion and sensor calibration Explores the main challenges for accurate coil positioning, such as head motion, and outlines how active robotic motion compensation can outperform hand-held solutions Analyzes how a robotized system in medicine can alleviate concerns with a patient's safety, and presents a novel fault-tolerant algorithm (FTA) sensor for system safety

  14. An Interactive Astronaut-Robot System with Gesture Control

    Directory of Open Access Journals (Sweden)

    Jinguo Liu

    2016-01-01

    Full Text Available Human-robot interaction (HRI plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM is employed to recognize hand gestures and particle swarm optimization (PSO algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL have been selected and used to test and validate the performance of the proposed system.

  15. Sensation, mechanoreceptor, and nerve fiber function after nerve regeneration

    DEFF Research Database (Denmark)

    Krarup, Christian; Rosén, Birgitta; Boeckstyns, Michel

    2017-01-01

    Objective: Sensation is essential for recovery after peripheral nerve injury. However, the relationship between sensory modalities and function of regenerated fibers is uncertain. We have investigated the relationships between touch threshold, tactile gnosis, and mechanoreceptor and sensory fiber...... function after nerve regeneration. Methods: Twenty-one median or ulnar nerve lesions were repaired by a collagen nerve conduit or direct suture. Quantitative sensory hand function and sensory conduction studies by near-nerve technique, including tactile stimulation of mechanoreceptors, were followed for 2...... years, and results were compared to noninjured hands. Results: At both repair methods, touch thresholds at the finger tips recovered to 81 ± 3% and tactile gnosis only to 20 ± 4% (p nerve action potentials (SNAPs) remained dispersed and areas recovered to 23 ± 2...

  16. Task Refinement for Autonomous Robots using Complementary Corrective Human Feedback

    Directory of Open Access Journals (Sweden)

    Cetin Mericli

    2011-06-01

    Full Text Available A robot can perform a given task through a policy that maps its sensed state to appropriate actions. We assume that a hand-coded controller can achieve such a mapping only for the basic cases of the task. Refining the controller becomes harder and gets more tedious and error prone as the complexity of the task increases. In this paper, we present a new learning from demonstration approach to improve the robot's performance through the use of corrective human feedback as a complement to an existing hand-coded algorithm. The human teacher observes the robot as it performs the task using the hand-coded algorithm and takes over the control to correct the behavior when the robot selects a wrong action to be executed. Corrections are captured as new state-action pairs and the default controller output is replaced by the demonstrated corrections during autonomous execution when the current state of the robot is decided to be similar to a previously corrected state in the correction database. The proposed approach is applied to a complex ball dribbling task performed against stationary defender robots in a robot soccer scenario, where physical Aldebaran Nao humanoid robots are used. The results of our experiments show an improvement in the robot's performance when the default hand-coded controller is augmented with corrective human demonstration.

  17. Robot modelling; Control and applications with software

    Energy Technology Data Exchange (ETDEWEB)

    Ranky, P G; Ho, C Y

    1985-01-01

    This book provides a ''picture'' of robotics covering both the theoretical aspect of modeling as well as the practical and design aspects of: robot programming; robot tooling and automated hand changing; implementation planning; testing; and software design for robot systems. The authors present an introduction to robotics with a systems approach. They describe not only the tasks relating to a single robot (or arm) but also systems of robots working together on a product or several products.

  18. Robotic Exoskeleton Hand with Pneumatic Actuators

    OpenAIRE

    Pinto, Hugo Miguel Mantas Costa

    2017-01-01

    With modern developments of smart portable devices and miniaturization of technologies, society has been provided with computerized assistance for almost every daily activity but the physical aspects have been frequently ne-glected. It is currently possible to make robots that process information thru neural networks, that identify and mimic facial expressions and that replace manual labour in assembly plants, getting ever closer to skills associated to human beings. In spite of these technol...

  19. Acupuncture sensation during ultrasound guided acupuncture needling

    Science.gov (United States)

    Park, Jongbae J.; Akazawa, Margeaux; Ahn, Jaeki; Beckman-Harned, Selena; Lin, Feng-Chang; Lee, Kwangjae; Fine, Jason; Davis, Robert T; Langevin, Helene

    2014-01-01

    Background Although acupuncture sensation (also known as de qi) is a cornerstone of traditional acupuncture therapy, most research has accepted the traditional method of defining acupuncture sensation only through subjective patient reports rather than on any quantifiable physiological basis. Purpose To preliminarily investigate the frequency of key sensations experienced while needling to specific, quantifiable tissue levels (TLs) guided by ultrasound (US) imaging. Methods Five participants received needling at two acupuncture points and two control points at four TLs. US scans were used to determine when each TL was reached. Each volunteer completed 32 sets of modified Southampton Needle Sensation Questionnaires. Part one of the study tested sensations experienced at each TL and part two compared the effect of oscillation alone versus oscillation + rotation. Results In all volunteers, the frequency of pricking, sharp sensations was significantly greater in shallower TLs than deeper (p=0.007); the frequency of sensations described as deep, dull and heavy, as spreading, and as electric shocks was significantly greater in deeper TLs than shallower (p=0.002). Sensations experienced did not significantly differ between real and control points within each of three TLs (p>0.05) except TL 4 (p=0.006). The introduction of needle rotation significantly increased deep, dull, heavy sensations, but not pricking and sharp sensations; within each level, the spectrum of sensation experienced during both oscillation + rotation and oscillation alone did not significantly differ between acupuncture and control points. Conclusion The preliminary study indicates a strong connection between acupuncture sensation and both tissue depth and needle rotation. Furthermore, the new methodology has been proven feasible. A further study with an objective measurement is warranted. PMID:21642648

  20. Multi-Robot Assembly Strategies and Metrics

    Science.gov (United States)

    MARVEL, JEREMY A.; BOSTELMAN, ROGER; FALCO, JOE

    2018-01-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies. PMID:29497234

  1. Multi-Robot Assembly Strategies and Metrics.

    Science.gov (United States)

    Marvel, Jeremy A; Bostelman, Roger; Falco, Joe

    2018-02-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies.

  2. Gesture-Based Robot Control with Variable Autonomy from the JPL Biosleeve

    Science.gov (United States)

    Wolf, Michael T.; Assad, Christopher; Vernacchia, Matthew T.; Fromm, Joshua; Jethani, Henna L.

    2013-01-01

    This paper presents a new gesture-based human interface for natural robot control. Detailed activity of the user's hand and arm is acquired via a novel device, called the BioSleeve, which packages dry-contact surface electromyography (EMG) and an inertial measurement unit (IMU) into a sleeve worn on the forearm. The BioSleeve's accompanying algorithms can reliably decode as many as sixteen discrete hand gestures and estimate the continuous orientation of the forearm. These gestures and positions are mapped to robot commands that, to varying degrees, integrate with the robot's perception of its environment and its ability to complete tasks autonomously. This flexible approach enables, for example, supervisory point-to-goal commands, virtual joystick for guarded teleoperation, and high degree of freedom mimicked manipulation, all from a single device. The BioSleeve is meant for portable field use; unlike other gesture recognition systems, use of the BioSleeve for robot control is invariant to lighting conditions, occlusions, and the human-robot spatial relationship and does not encumber the user's hands. The BioSleeve control approach has been implemented on three robot types, and we present proof-of-principle demonstrations with mobile ground robots, manipulation robots, and prosthetic hands.

  3. Position calibration of a 3-DOF hand-controller with hybrid structure

    Science.gov (United States)

    Zhu, Chengcheng; Song, Aiguo

    2017-09-01

    A hand-controller is a human-robot interactive device, which measures the 3-DOF (Degree of Freedom) position of the human hand and sends it as a command to control robot movement. The device also receives 3-DOF force feedback from the robot and applies it to the human hand. Thus, the precision of 3-DOF position measurements is a key performance factor for hand-controllers. However, when using a hybrid type 3-DOF hand controller, various errors occur and are considered originating from machining and assembly variations within the device. This paper presents a calibration method to improve the position tracking accuracy of hybrid type hand-controllers by determining the actual size of the hand-controller parts. By re-measuring and re-calibrating this kind of hand-controller, the actual size of the key parts that cause errors is determined. Modifying the formula parameters with the actual sizes, which are obtained in the calibrating process, improves the end position tracking accuracy of the device.

  4. Thermal sensation and comfort models for non-uniform and transient environments, part III: Whole-body sensation and comfort

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hui; Arens, Edward; Huizenga, Charlie [Center for the Built Environment, UC Berkeley (United States); Han, Taeyoung [General Motors Company (United States)

    2010-02-15

    A three-part series presents the development of models for predicting the local thermal sensation (Part I) and local thermal comfort (Part II) of different parts of the human body, and also the whole-body sensation and comfort (Part III) that result from combinations of local sensation and comfort. The models apply to sedentary activities in a range of environments: uniform and non-uniform, stable and transient. They are based on diverse findings from the literature and from body-part-specific human subject tests in a climate chamber. They were validated against a test of automobile passengers. The series is intended to present the models' rationale, structure, and coefficients, so that others can test them and develop them further as additional empirical data becomes available. A) The whole-body (overall) sensation model has two forms, depending on whether all of the body's segments have sensations effectively in the same direction (e.g warm or cool), or whether some segments have sensations opposite to those of the rest of the body. For each, individual body parts have different weights for warm versus cool sensations, and strong local sensations dominate the overall sensation. If all sensations are near neutral, the overall sensation is close to the average of all body sensations. B) The overall comfort model also has two forms. Under stable conditions, people evaluate their overall comfort by a complaint-driven process, meaning that when two body parts are strongly uncomfortable, no matter how comfortable the other body parts might be, the overall comfort will be near the discomfort level of the two most uncomfortable parts. When the environmental conditions are transient, or people have control over their environments, overall comfort is better than that of the two most uncomfortable body parts. This can be accounted for by adding the most comfortable vote to the two most uncomfortable ones. (author)

  5. Research of the master-slave robot surgical system with the function of force feedback.

    Science.gov (United States)

    Shi, Yunyong; Zhou, Chaozheng; Xie, Le; Chen, Yongjun; Jiang, Jun; Zhang, Zhenfeng; Deng, Ze

    2017-12-01

    Surgical robots lack force feedback, which may lead to operation errors. In order to improve surgical outcomes, this research developed a new master-slave surgical robot, which was designed with an integrated force sensor. The new structure designed for the master-slave robot employs a force feedback mechanism. A six-dimensional force sensor was mounted on the tip of the slave robot's actuator. Sliding model control was adopted to control the slave robot. According to the movement of the master system manipulated by the surgeon, the slave's movement and the force feedback function were validated. The motion was completed, the standard deviation was calculated, and the force data were detected. Hence, force feedback was realized in the experiment. The surgical robot can help surgeons to complete trajectory motions with haptic sensation. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Tracking mechanical and morphological dynamics of regenerating Hydra tissue fragments using a two fingered micro-robotic hand

    Science.gov (United States)

    Veschgini, M.; Gebert, F.; Khangai, N.; Ito, H.; Suzuki, R.; Holstein, T. W.; Mae, Y.; Arai, T.; Tanaka, M.

    2016-03-01

    Regeneration of a tissue fragment of freshwater polyp Hydra is accompanied by significant morphological fluctuations, suggesting the generation of active forces. In this study, we utilized a two fingered micro-robotic hand to gain insights into the mechanics of regenerating tissues. Taking advantage of a high force sensitivity (˜1 nN) of our micro-hand, we non-invasively acquired the bulk elastic modulus of tissues by keeping the strain levels low (ɛ < 0.15). Moreover, by keeping the strain at a constant level, we monitored the stress relaxation of the Hydra tissue and determined both viscous modulus and elastic modulus simultaneously, following a simple Maxwell model. We further investigated the correlation between the frequency of force fluctuation and that of morphological fluctuation by monitoring one "tweezed" tissue and the other "intact" tissue at the same time. The obtained results clearly indicated that the magnitude and periodicity of the changes in force and shape are directly correlated, confirming that our two fingered micro-hand can precisely quantify the mechanics of soft, dynamic tissue during the regeneration and development in a non-invasive manner.

  7. New trends in medical and service robots human centered analysis, control and design

    CERN Document Server

    Chevallereau, Christine; Pisla, Doina; Bleuler, Hannes; Rodić, Aleksandar

    2016-01-01

    Medical and service robotics integrates several disciplines and technologies such as mechanisms, mechatronics, biomechanics, humanoid robotics, exoskeletons, and anthropomorphic hands. This book presents the most recent advances in medical and service robotics, with a stress on human aspects. It collects the selected peer-reviewed papers of the Fourth International Workshop on Medical and Service Robots, held in Nantes, France in 2015, covering topics on: exoskeletons, anthropomorphic hands, therapeutic robots and rehabilitation, cognitive robots, humanoid and service robots, assistive robots and elderly assistance, surgical robots, human-robot interfaces, BMI and BCI, haptic devices and design for medical and assistive robotics. This book offers a valuable addition to existing literature.

  8. Oral sensations and secretions.

    Science.gov (United States)

    Running, Cordelia A

    2018-04-10

    Sensations experienced in the mouth influence food choices, both immediately and in the long term. Such sensations are themselves influenced by experience with flavors, the chemical environment of the mouth, genetics of receptors for flavors, and individual behavior in the chewing of food. Gustation, the sense of taste, yields information about nutrients, influences palatability, and feeds into the human body's preparation to receive those nutrients. Olfaction, the sense of smell, contributes enormously to defining and identifying food flavors (and is experienced even after placing food inside the mouth). Another vital component of food flavor is texture, which contributes to palatability, especially if a food's texture violates a person's expectations. Next, chemesthesis is the sense of chemically induced irritancy and temperature, for example spiciness and stinging. All of these sensations are potentially modified by saliva, the chemical and physical media of the mouth. As a person experiences the culmination of these oral sensations, modified through an individual's own unique saliva, the flavors in turn influence both what and how a person eats. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Clinical effectiveness of combined virtual reality and robot assisted fine hand motion rehabilitation in subacute stroke patients.

    Science.gov (United States)

    Huang, Xianwei; Naghdy, Fazel; Naghdy, Golshah; Du, Haiping

    2017-07-01

    Robot-assisted therapy is regarded as an effective and reliable method for the delivery of highly repetitive rehabilitation training in restoring motor skills after a stroke. This study focuses on the rehabilitation of fine hand motion skills due to their vital role in performing delicate activities of daily living (ADL) tasks. The proposed rehabilitation system combines an adaptive assist-as-needed (AAN) control algorithm and a Virtual Reality (VR) based rehabilitation gaming system (RGS). The developed system is described and its effectiveness is validated through clinical trials on a group of eight subacute stroke patients for a period of six weeks. The impact of the training is verified through standard clinical evaluation methods and measuring key kinematic parameters. A comparison of the pre- and post-training results indicates that the method proposed in this study can improve fine hand motion rehabilitation training effectiveness.

  10. Three-dimensional modeling of physiological tremor for hand-held surgical robotic instruments.

    Science.gov (United States)

    Tatinati, Sivanagaraja; Yan Naing Aye; Pual, Anand; Wei Tech Ang; Veluvolu, Kalyana C

    2016-08-01

    Hand-held robotic instruments are developed to compensate physiological tremor in real-time while augmenting the required precision and dexterity into normal microsurgical work-flow. The hardware (sensors and actuators) and software (causal linear filters) employed for tremor identification and filtering introduces time-varying unknown phase-delay that adversely affects the device performance. The current techniques that focus on three-dimensions (3D) tip position control involves modeling and canceling the tremor in 3-axes (x, y, and z axes) separately. Our analysis with the tremor data recorded from surgeons and novice subjects show that there exists significant correlation in tremor motion across the dimensions. Motivated by this, a new multi-dimensional modeling approach based on extreme learning machines (ELM) is proposed in this paper to correct the phase delay and to accurately model tremulous motion in three dimensions simultaneously. A study is conducted with tremor data recorded from the microsurgeons to analyze the suitability of proposed approach.

  11. Process for anodizing a robotic device

    Science.gov (United States)

    Townsend, William T [Weston, MA

    2011-11-08

    A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

  12. Pantomimic gestures for human-robot interaction

    CSIR Research Space (South Africa)

    Burke, Michael G

    2015-10-01

    Full Text Available -1 IEEE TRANSACTIONS ON ROBOTICS 1 Pantomimic Gestures for Human-Robot Interaction Michael Burke, Student Member, IEEE, and Joan Lasenby Abstract This work introduces a pantomimic gesture interface, which classifies human hand gestures using...

  13. Surface EMG in advanced hand prosthetics.

    Science.gov (United States)

    Castellini, Claudio; van der Smagt, Patrick

    2009-01-01

    One of the major problems when dealing with highly dexterous, active hand prostheses is their control by the patient wearing them. With the advances in mechatronics, building prosthetic hands with multiple active degrees of freedom is realisable, but actively controlling the position and especially the exerted force of each finger cannot yet be done naturally. This paper deals with advanced robotic hand control via surface electromyography. Building upon recent results, we show that machine learning, together with a simple downsampling algorithm, can be effectively used to control on-line, in real time, finger position as well as finger force of a highly dexterous robotic hand. The system determines the type of grasp a human subject is willing to use, and the required amount of force involved, with a high degree of accuracy. This represents a remarkable improvement with respect to the state-of-the-art of feed-forward control of dexterous mechanical hands, and opens up a scenario in which amputees will be able to control hand prostheses in a much finer way than it has so far been possible.

  14. Learning Semantics of Gestural Instructions for Human-Robot Collaboration

    Science.gov (United States)

    Shukla, Dadhichi; Erkent, Özgür; Piater, Justus

    2018-01-01

    Designed to work safely alongside humans, collaborative robots need to be capable partners in human-robot teams. Besides having key capabilities like detecting gestures, recognizing objects, grasping them, and handing them over, these robots need to seamlessly adapt their behavior for efficient human-robot collaboration. In this context we present the fast, supervised Proactive Incremental Learning (PIL) framework for learning associations between human hand gestures and the intended robotic manipulation actions. With the proactive aspect, the robot is competent to predict the human's intent and perform an action without waiting for an instruction. The incremental aspect enables the robot to learn associations on the fly while performing a task. It is a probabilistic, statistically-driven approach. As a proof of concept, we focus on a table assembly task where the robot assists its human partner. We investigate how the accuracy of gesture detection affects the number of interactions required to complete the task. We also conducted a human-robot interaction study with non-roboticist users comparing a proactive with a reactive robot that waits for instructions. PMID:29615888

  15. Learning Semantics of Gestural Instructions for Human-Robot Collaboration.

    Science.gov (United States)

    Shukla, Dadhichi; Erkent, Özgür; Piater, Justus

    2018-01-01

    Designed to work safely alongside humans, collaborative robots need to be capable partners in human-robot teams. Besides having key capabilities like detecting gestures, recognizing objects, grasping them, and handing them over, these robots need to seamlessly adapt their behavior for efficient human-robot collaboration. In this context we present the fast, supervised Proactive Incremental Learning (PIL) framework for learning associations between human hand gestures and the intended robotic manipulation actions. With the proactive aspect, the robot is competent to predict the human's intent and perform an action without waiting for an instruction. The incremental aspect enables the robot to learn associations on the fly while performing a task. It is a probabilistic, statistically-driven approach. As a proof of concept, we focus on a table assembly task where the robot assists its human partner. We investigate how the accuracy of gesture detection affects the number of interactions required to complete the task. We also conducted a human-robot interaction study with non-roboticist users comparing a proactive with a reactive robot that waits for instructions.

  16. Elastic Inflatable Actuators for Soft Robotic Applications.

    Science.gov (United States)

    Gorissen, Benjamin; Reynaerts, Dominiek; Konishi, Satoshi; Yoshida, Kazuhiro; Kim, Joon-Wan; De Volder, Michael

    2017-11-01

    The 20th century's robotic systems have been made from stiff materials, and much of the developments have pursued ever more accurate and dynamic robots, which thrive in industrial automation, and will probably continue to do so for decades to come. However, the 21st century's robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfill the role of robotic link and actuator, where prime focus is on design and fabrication of robotic hardware instead of software control. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics, and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators. This article reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies, and on the other hand by a market pull from applications. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication, and applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. No pain relief with the rubber hand illusion.

    Directory of Open Access Journals (Sweden)

    Rahul Mohan

    Full Text Available The sense of body ownership can be easily disrupted during illusions and the most common illusion is the rubber hand illusion. An idea that is rapidly gaining popularity in clinical pain medicine is that body ownership illusions can be used to modify pathological pain sensations and induce analgesia. However, this idea has not been empirically evaluated. Two separate research laboratories undertook independent randomized repeated measures experiments, both designed to detect an effect of the rubber hand illusion on experimentally induced hand pain. In Experiment 1, 16 healthy volunteers rated the pain evoked by noxious heat stimuli (5 s duration; interstimulus interval 25 s of set temperatures (47°, 48° and 49°C during the rubber hand illusion or during a control condition. There was a main effect of stimulus temperature on pain ratings, but no main effect of condition (p = 0.32, nor a condition x temperature interaction (p = 0.31. In Experiment 2, 20 healthy volunteers underwent quantitative sensory testing to determine heat and cold pain thresholds during the rubber hand illusion or during a control condition. Secondary analyses involved heat and cold detection thresholds and paradoxical heat sensations. Again, there was no main effect of condition on heat pain threshold (p = 0.17, nor on cold pain threshold (p = 0.65, nor on any of the secondary measures (p<0.56 for all. We conclude that the rubber hand illusion does not induce analgesia.

  18. Home-based hand rehabilitation with a robotic glove in hemiplegic patients after stroke: a pilot feasibility study.

    Science.gov (United States)

    Bernocchi, Palmira; Mulè, Chiara; Vanoglio, Fabio; Taveggia, Giovanni; Luisa, Alberto; Scalvini, Simonetta

    2018-03-01

    To evaluate the feasibility and safety of home rehabilitation of the hand using a robotic glove, and, in addition, its effectiveness, in hemiplegic patients after stroke. In this non-randomized pilot study, 21 hemiplegic stroke patients (Ashworth spasticity index ≤ 3) were prescribed, after in-hospital rehabilitation, a 2-month home-program of intensive hand training using the Gloreha Lite glove that provides computer-controlled passive mobilization of the fingers. Feasibility was measured by: number of patients who completed the home-program, minutes of exercise and number of sessions/patient performed. Safety was assessed by: hand pain with a visual analog scale (VAS), Ashworth spasticity index for finger flexors, opponents of the thumb and wrist flexors, and hand edema (circumference of forearm, wrist and fingers), measured at start (T0) and end (T1) of rehabilitation. Hand motor function (Motricity Index, MI), fine manual dexterity (Nine Hole Peg Test, NHPT) and strength (Grip test) were also measured at T0 and T1. Patients performed, over a mean period 56 (49-63) days, a total of 1699 (1353-2045) min/patient of exercise with Gloreha Lite, 5.1 (4.3-5.8) days/week. Seventeen patients (81%) completed the full program. The mean VAS score of hand pain, Ashworth spasticity index and hand edema did not change significantly at T1 compared to T0. The MI, NHPT and Grip test improved significantly (p = 0.0020, 0.0156 and 0.0024, respectively) compared to baseline. Gloreha Lite is feasible and safe for use in home rehabilitation. The efficacy data show a therapeutic effect which need to be confirmed by a randomized controlled study.

  19. Laryngeal Sensation Before and After Clearing Behaviors

    Science.gov (United States)

    Bonilha, Heather Shaw; Gerlach, Terri Treman; Sutton, Lori Ellen; Dawson, Amy Elizabeth; Nietert, Paul J

    2013-01-01

    Purpose People frequently present to voice clinics with complaints of irritating laryngeal sensations. Clinicians attempt to reduce the irritating sensations and their common sequela, coughing and throat clearing, by advocating for techniques that remove the irritation with less harm to the vocal fold tissue. Despite the prevalence of patients with these complaints, it is not known if the less harmful techniques recommended by clinicians are effective at clearing irritating laryngeal sensations or that irritating laryngeal sensations are, in fact, more frequent in people with voice disorders than people without voice disorders. Method Assessments of participant reported laryngeal sensation, pre- and post- clearing task, were obtained from 22 people with and 24 people without a voice disorder. Six clearing tasks were used to preliminarily evaluate the differing effects of tasks believed to be deleterious and ameliorative. Results People with and without voice disorders reported pre-clear laryngeal sensation at a similar rate. Post-clear sensation was less likely to be completely or partially removed in people with voice disorders than in the non-voice disordered group. Hard throat clear and swallow with water were the most effective techniques at removing laryngeal sensation. Conclusions The findings provide initial evidence for some of the clinical practices common to treating patients with voice disorders and chronic clearing such as advocating for swallowing a sip of water as a replacement behavior instead of coughing or throat clearing. However, the findings raise questions about other practices such as associating irritating laryngeal sensation with a voice disorder. PMID:22717491

  20. Robotic aortic surgery.

    Science.gov (United States)

    Duran, Cassidy; Kashef, Elika; El-Sayed, Hosam F; Bismuth, Jean

    2011-01-01

    Surgical robotics was first utilized to facilitate neurosurgical biopsies in 1985, and it has since found application in orthopedics, urology, gynecology, and cardiothoracic, general, and vascular surgery. Surgical assistance systems provide intelligent, versatile tools that augment the physician's ability to treat patients by eliminating hand tremor and enabling dexterous operation inside the patient's body. Surgical robotics systems have enabled surgeons to treat otherwise untreatable conditions while also reducing morbidity and error rates, shortening operative times, reducing radiation exposure, and improving overall workflow. These capabilities have begun to be realized in two important realms of aortic vascular surgery, namely, flexible robotics for exclusion of complex aortic aneurysms using branched endografts, and robot-assisted laparoscopic aortic surgery for occlusive and aneurysmal disease.

  1. Bladder sensation measures and overactive bladder.

    Science.gov (United States)

    Rapp, David E; Neil, Nancy J; Govier, Fred E; Kobashi, Kathleen C

    2009-09-01

    We performed a prospective multicomponent study to determine whether subjective and objective bladder sensation instruments may provide data on sensory dysfunction in patients with overactive bladder. We evaluated 70 prospectively enrolled patients with urodynamics and questionnaires on validated urgency (Urgency Perception Score), general overactive bladder (Urogenital Distress Inventory) and quality of life (Incontinence Impact Questionnaire). We first sought a correlation between sensory specific (Urgency Perception Score) and quality of life questionnaire scores. We then assessed a correlation between sensory questionnaire scores and urodynamic variables, exploring the hypothesis that certain urodynamic parameters may be bladder sensation measures. We evaluated 2 urodynamic derivatives (first sensation ratio and bladder urgency velocity) to increase sensory finding discrimination. We noted a moderate correlation between the Urgency Perception Score (0.56) and the Urogenital Distress Inventory (0.74) vs the Incontinence Impact Questionnaire (each p Perception Score and bladder capacity (-0.25, p sensation ratio and bladder urgency velocity statistically significantly correlated with the Urgency Perception Score despite the lesser or absent correlation associated with the individual components of these derivatives. Bladder sensation questionnaires may be valuable to identify patients with sensory dysfunction and provide additional data not obtained in generalized symptom questionnaires. Urodynamic variables correlated with bladder sensation questionnaire scores and may be an objective method to assess sensory dysfunction.

  2. Referees check robots after qualifying match at regional robotic competition at KSC

    Science.gov (United States)

    1999-01-01

    Referees check the robots on the floor of the playing field after a qualifying match of the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex . Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow- like disks from the floor, as well as climb onto the platform (with flags) and raise the cache of pillows to a height of eight feet. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.

  3. [Voice and vibration sensations in the speech forming organs: clinical and theoretical aspects of rare symptoms specific for schizophrenia].

    Science.gov (United States)

    Vilela, W; Lolas, F; Wolpert, E

    1978-01-01

    When studying 750 psychiatric in-patients with psychoses of various diagnostic groups, the symptoms of voice sensations and vibration feelings could only be found among patients with paranoid schizophrenia. In addition, these symptoms were located exclusively in body areas that are involved in the peripheral motor production of voice and speech (areas of head, throat, thorax). In 11 of 15 such cases that could be identified, the sensations of voices and vibrations occurred simultaneously and in identical body parts; in the remaining 4 cases only voices without vibration sensations were reported. Therefore these symptoms can be considered as highly specific for schizophrenia. According to the terminology of Bleuler these two symptoms are because of their rareness to be taken as accessoric symptoms; according to the terminology of Kurt Schneider they have the value of first rank symptoms because of their highly diagnostic specifity for schizophrenia. The pathogenesis of these symptoms is on the one hand discussed under the perspective of language development and the changing function of language for behaviour control; on the other hand, the pathogenesis of these symptoms is discussed from the viewpoint of cybernetic, or neurophysiological-neuroanatomical foundation of speech production and speech control. Both models of explanation have in common that the ideational component of speech is noticed as acustic halluzinations and the motor proprioceptive part of speech is noticed as sensation of vibrations, both in a typically schiphrenic manner, i.e. dissociated and ego-alienated.

  4. Mentoring console improves collaboration and teaching in surgical robotics.

    Science.gov (United States)

    Hanly, Eric J; Miller, Brian E; Kumar, Rajesh; Hasser, Christopher J; Coste-Maniere, Eve; Talamini, Mark A; Aurora, Alexander A; Schenkman, Noah S; Marohn, Michael R

    2006-10-01

    One of the most significant limitations of surgical robots has been their inability to allow multiple surgeons and surgeons-in-training to engage in collaborative control of robotic surgical instruments. We report the initial experience with a novel two-headed da Vinci surgical robot that has two collaborative modes: the "swap" mode allows two surgeons to simultaneously operate and actively swap control of the robot's four arms, and the "nudge" mode allows them to share control of two of the robot's arms. The utility of the mentoring console operating in its two collaborative modes was evaluated through a combination of dry laboratory exercises and animal laboratory surgery. The results from surgeon-resident collaborative performance of complex three-handed surgical tasks were compared to results from single-surgeon and single-resident performance. Statistical significance was determined using Student's t-test. Collaborative surgeon-resident swap control reduced the time to completion of complex three-handed surgical tasks by 25% compared to single-surgeon operation of a four-armed da Vinci (P nudge mode was particularly useful for guiding a resident's hands during crucially precise steps of an operation (such as proper placement of stitches). The da Vinci mentoring console greatly facilitates surgeon collaboration during robotic surgery and improves the performance of complex surgical tasks. The mentoring console has the potential to improve resident participation in surgical robotics cases, enhance resident education in surgical training programs engaged in surgical robotics, and improve patient safety during robotic surgery.

  5. A robot hand testbed designed for enhancing embodiment and functional neurorehabilitation of body schema in subjects with upper limb impairment or loss.

    Science.gov (United States)

    Hellman, Randall B; Chang, Eric; Tanner, Justin; Helms Tillery, Stephen I; Santos, Veronica J

    2015-01-01

    Many upper limb amputees experience an incessant, post-amputation "phantom limb pain" and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF), rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech "rubber hand" illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the "BairClaw" presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger-object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced cognitive burden.

  6. A robot hand testbed designed for enhancing embodiment and functional neurorehabilitation of body schema in subjects with upper limb impairment or loss

    Directory of Open Access Journals (Sweden)

    Randall B. Hellman

    2015-02-01

    Full Text Available Many upper limb amputees experience an incessant, post-amputation phantom limb pain and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF, rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech rubber hand illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the BairClaw presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger-object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced

  7. Challenging the assumptions for thermal sensation scales

    DEFF Research Database (Denmark)

    Schweiker, Marcel; Fuchs, Xaver; Becker, Susanne

    2016-01-01

    Scales are widely used to assess the personal experience of thermal conditions in built environments. Most commonly, thermal sensation is assessed, mainly to determine whether a particular thermal condition is comfortable for individuals. A seven-point thermal sensation scale has been used...... extensively, which is suitable for describing a one-dimensional relationship between physical parameters of indoor environments and subjective thermal sensation. However, human thermal comfort is not merely a physiological but also a psychological phenomenon. Thus, it should be investigated how scales for its...... assessment could benefit from a multidimensional conceptualization. The common assumptions related to the usage of thermal sensation scales are challenged, empirically supported by two analyses. These analyses show that the relationship between temperature and subjective thermal sensation is non...

  8. Seamless Control of Multi-Fingered Robot Hands Based on Grasp Polyhedrons

    Science.gov (United States)

    Nagase, Kenji; Shirai, Satoshi; Hayashi, Tsuyoshi

    This paper is concerned with a new feedback control design methodology for multi-fingered robot hands applicable to multiple contact situations. As a first step, we especially consider the situations where all the fingers are in contact or not in contact with an object, considering the tasks of catching and releasing the object preceding to or followed by grasping/manipulating the object. Main features of the proposed method are: (1) the direction of the fingertip motion in the non-contact situation is selected to be directly linked to the direction of the object motion and the internal force in the contact situation; (2) by introducing a unified system description for multiple contact situations, a linearizing compensator applicable to multiple contact situations is designed. The controller can handle the tasks with the multiple contact situations by choosing appropriate desired trajectories for the linearizing compensator without switching control architecture. In addition, owing to the selection of the motion in the non-contact situation, all the fingers can approach to the object synchronously along the directions of the object motion and the internal force in the contact situation. A numerical example is shown to prove effectiveness of the proposed method.

  9. The Combined Effects of Adaptive Control and Virtual Reality on Robot-Assisted Fine Hand Motion Rehabilitation in Chronic Stroke Patients: A Case Study.

    Science.gov (United States)

    Huang, Xianwei; Naghdy, Fazel; Naghdy, Golshah; Du, Haiping; Todd, Catherine

    2018-01-01

    Robot-assisted therapy is regarded as an effective and reliable method for the delivery of highly repetitive training that is needed to trigger neuroplasticity following a stroke. However, the lack of fully adaptive assist-as-needed control of the robotic devices and an inadequate immersive virtual environment that can promote active participation during training are obstacles hindering the achievement of better training results with fewer training sessions required. This study thus focuses on these research gaps by combining these 2 key components into a rehabilitation system, with special attention on the rehabilitation of fine hand motion skills. The effectiveness of the proposed system is tested by conducting clinical trials on a chronic stroke patient and verified through clinical evaluation methods by measuring the key kinematic features such as active range of motion (ROM), finger strength, and velocity. By comparing the pretraining and post-training results, the study demonstrates that the proposed method can further enhance the effectiveness of fine hand motion rehabilitation training by improving finger ROM, strength, and coordination. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  10. Study on fundamental mechanism of nuclear advanced robot. An analysis of fundamental motion with pliability for end-effector of advanced robot

    International Nuclear Information System (INIS)

    Ohki, Arahiko; Hirano, Sigeo; Yoshida, Tomoya.

    1997-01-01

    Most of present robots only perform works simulating human action, but hereafter, it is required to do advanced works smoothly with robots in place of men. Among the mechanisms of high performance robots, as one of the important components that do advanced action and adapt to diversified purposes, there is manipulator. The manipulator comprises arm and end effector. In the process of heightening robot performance hereafter, the reproduction of detailed action is the indispensable subject of research. The object of carrying out this research is to elucidate the possibility of giving the functions close to those of delicate human hands to end effector. First, the joints of human hands were measured, and based on these data, the equation for determining the change of angle in relation to the time of motion of respective joints was established. Further, the simulation of simple actions was carried out, and the concept of the mechanism model was built by analyzing the motion similar to human body. The structural difference in the joints of human and manipulator, the measurement of hands and the analysis of the motion of hand joints are reported. (K.I.)

  11. A transcription factor for cold sensation!

    OpenAIRE

    Kim, Susan J; Qu, Zhican; Milbrandt, Jeffrey; Zhuo, Min

    2005-01-01

    Abstract The ability to feel hot and cold is critical for animals and human beings to survive in the natural environment. Unlike other sensations, the physiology of cold sensation is mostly unknown. In the present study, we use genetically modified mice that do not express nerve growth factor-inducible B (NGFIB) to investigate the possible role of NGFIB in cold sensation. We found that genetic deletion of NGFIB selectively affected behavioral responses to cold stimuli while behavioral respons...

  12. Remotely controlling of mobile robots using gesture captured by the Kinect and recognized by machine learning method

    Science.gov (United States)

    Hsu, Roy CHaoming; Jian, Jhih-Wei; Lin, Chih-Chuan; Lai, Chien-Hung; Liu, Cheng-Ting

    2013-01-01

    The main purpose of this paper is to use machine learning method and Kinect and its body sensation technology to design a simple, convenient, yet effective robot remote control system. In this study, a Kinect sensor is used to capture the human body skeleton with depth information, and a gesture training and identification method is designed using the back propagation neural network to remotely command a mobile robot for certain actions via the Bluetooth. The experimental results show that the designed mobile robots remote control system can achieve, on an average, more than 96% of accurate identification of 7 types of gestures and can effectively control a real e-puck robot for the designed commands.

  13. [Robot-assisted pancreatic resection].

    Science.gov (United States)

    Müssle, B; Distler, M; Weitz, J; Welsch, T

    2017-06-01

    Although robot-assisted pancreatic surgery has been considered critically in the past, it is nowadays an established standard technique in some centers, for distal pancreatectomy and pancreatic head resection. Compared with the laparoscopic approach, the use of robot-assisted surgery seems to be advantageous for acquiring the skills for pancreatic, bile duct and vascular anastomoses during pancreatic head resection and total pancreatectomy. On the other hand, the use of the robot is associated with increased costs and only highly effective and professional robotic programs in centers for pancreatic surgery will achieve top surgical and oncological quality, acceptable operation times and a reduction in duration of hospital stay. Moreover, new technologies, such as intraoperative fluorescence guidance and augmented reality will define additional indications for robot-assisted pancreatic surgery.

  14. Advanced dexterous manipulation for IED defeat : report on the feasibility of using the ShadowHand for remote operations.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J.

    2011-01-01

    Improvised Explosive Device (IED) defeat (IEDD) operations can involve intricate operations that exceed the current capabilities of the grippers on board current bombsquad robots. The Shadow Dexterous Hand from the Shadow Robot Company or 'ShadowHand' for short (www.shadowrobot.com) is the first commercially available robot hand that realistically replicates the motion, degrees-of-freedom and dimensions of a human hand (Figure 1). In this study we evaluate the potential for the ShadowHand to perform potential IED defeat tasks on a mobile platform.

  15. Student teams maneuver robots in qualifying match at regional robotic competition at KSC

    Science.gov (United States)

    1999-01-01

    All four robots, maneuvered by student teams behind protective walls, converge on a corner of the playing field during qualifying matches of the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex . Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow- like disks from the floor, as well as climb onto the platform (with flags) and raise the cache of pillows to a height of eight feet. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.

  16. No Pain Relief with the Rubber Hand Illusion

    Science.gov (United States)

    Petkova, Valeria I.; Dey, Abishikta; Barnsley, Nadia; Ingvar, Martin; McAuley, James H.; Moseley, G. Lorimer; Ehrsson, Henrik H.

    2012-01-01

    The sense of body ownership can be easily disrupted during illusions and the most common illusion is the rubber hand illusion. An idea that is rapidly gaining popularity in clinical pain medicine is that body ownership illusions can be used to modify pathological pain sensations and induce analgesia. However, this idea has not been empirically evaluated. Two separate research laboratories undertook independent randomized repeated measures experiments, both designed to detect an effect of the rubber hand illusion on experimentally induced hand pain. In Experiment 1, 16 healthy volunteers rated the pain evoked by noxious heat stimuli (5 s duration; interstimulus interval 25 s) of set temperatures (47°, 48° and 49°C) during the rubber hand illusion or during a control condition. There was a main effect of stimulus temperature on pain ratings, but no main effect of condition (p = 0.32), nor a condition x temperature interaction (p = 0.31). In Experiment 2, 20 healthy volunteers underwent quantitative sensory testing to determine heat and cold pain thresholds during the rubber hand illusion or during a control condition. Secondary analyses involved heat and cold detection thresholds and paradoxical heat sensations. Again, there was no main effect of condition on heat pain threshold (p = 0.17), nor on cold pain threshold (p = 0.65), nor on any of the secondary measures (pillusion does not induce analgesia. PMID:23285026

  17. Coordinate transformations, orthographic projections, and robot kinematics

    International Nuclear Information System (INIS)

    Crochetiere, W.J.

    1984-01-01

    Humans do not consciously think of moving each of their joints while they move their hands from one place to another. Likewise, robot arms can be commanded to move about in cartesian space without the need to address the individual joints. To do this, the direct and inverse kinematic equations of any robot arm must be derived. The direct kinematic equations uniquely transform the joint positions into the position (and orientation) of the hand, whereas the inverse kinematic equations transform the position (and orientation) of the hand into joint positions. The derivation of the inverse kinematic equations for any particular robot is a difficult problem which may have more than one solution. In this paper, these equations are derived for a six degree of freedom robot arm. A combination of matrix operations to perform coordinate rotations, and trigonometry within the appropriate orthographic projects to perform coordinate translations is employed. This complementary approach yields a solution which is more easily obtained, and also more easily visualized. The resulting solution was programmed into a real-time computer as a part of a higher level software system to control the motion of the arm

  18. Laterality in the rubber hand illusion.

    Science.gov (United States)

    Ocklenburg, Sebastian; Rüther, Naima; Peterburs, Jutta; Pinnow, Marlies; Güntürkün, Onur

    2011-03-01

    In patient studies, impairments of sense of body ownership have repeatedly been linked to right-hemispheric brain damage. To test whether a right-hemispheric dominance for sense of body ownership could also be observed in healthy adults, the rubber hand illusion was elicited on both hands of 21 left-handers and 22 right-handers. In this illusion, a participant's real hand is stroked while hidden from view behind an occluder, and a nearby visible hand prosthesis is repeatedly stroked in synchrony. Most participants experience the illusionary perception of touch sensations arising from the prosthesis. The vividness of the illusion was measured by subjective self-reports as well as by skin conductance responses to watching the rubber hand being harmed. Handedness did not affect the vividness of the illusion, but a stronger skin conductance response was observed, when the illusion was elicited on the left hand. These findings suggest a right-hemispheric dominance for sense of body ownership in healthy adults.

  19. Control and robotics remote laboratory for engineering education

    Directory of Open Access Journals (Sweden)

    Gregor Pačnik

    2005-06-01

    Full Text Available The new tools for education of engineering emerged and one of the most promising is a remote rapid control prototyping (RRCP, which is very useful also for control and robotics development in industry and in education. Examples of introductory remote control and simple robotics courses with integrated hands on experiments are presented in the paper. The aim of integration of remote hands on experiments into control and/or robotics course is to minimize the gap between the theory and practice to teach students the use of RRCP and to decrease the education costs. Developed RRCP experiments are based on MATLAB/Simulink, xPC target, custom developed embedded target

  20. Restoring tactile awareness through the rubber hand illusion in cervical spinal cord injury.

    Science.gov (United States)

    Lenggenhager, Bigna; Scivoletto, Giorgio; Molinari, Marco; Pazzaglia, Mariella

    2013-10-01

    Bodily sensations are an important component of corporeal awareness. Spinal cord injury can leave affected body parts insentient and unmoving, leading to specific disturbances in the mental representation of one's own body and the sense of self. Here, we explored how illusions induced by multisensory stimulation influence immediate sensory signals and tactile awareness in patients with spinal cord injuries. The rubber hand illusion paradigm was applied to 2 patients with chronic and complete spinal cord injury of the sixth cervical spine, with severe somatosensory impairments in 2 of 5 fingers. Both patients experienced a strong illusion of ownership of the rubber hand during synchronous, but not asynchronous, stroking. They also, spontaneously reported basic tactile sensations in their previously numb fingers. Tactile awareness from seeing the rubber hand was enhanced by progressively increasing the stimulation duration. Multisensory illusions directly and specifically modulate the reemergence of sensory memories and enhance tactile sensation, despite (or as a result of) prior deafferentation. When sensory inputs are lost, and are later illusorily regained, the brain updates a coherent body image even several years after the body has become permanently unable to feel. This particular example of neural plasticity represents a significant opportunity to strengthen the sense of the self and the feelings of embodiment in patients with spinal cord injury.

  1. Non-invasive characterization of real-time bladder sensation using accelerated hydration and a novel sensation meter: An initial experience.

    Science.gov (United States)

    Nagle, Anna S; Speich, John E; De Wachter, Stefan G; Ghamarian, Peter P; Le, David M; Colhoun, Andrew F; Ratz, Paul H; Barbee, Robert W; Klausner, Adam P

    2017-06-01

    The purpose of this investigation was to develop a non-invasive, objective, and unprompted method to characterize real-time bladder sensation. Volunteers with and without overactive bladder (OAB) were prospectively enrolled in a preliminary accelerated hydration study. Participants drank 2L Gatorade-G2® and recorded real-time sensation (0-100% scale) and standardized verbal sensory thresholds using a novel, touch-screen "sensation meter." 3D bladder ultrasound images were recorded throughout fillings for a subset of participants. Sensation data were recorded for two consecutive complete fill-void cycles. Data from 14 normal and 12 OAB participants were obtained (ICIq-OAB-5a = 0 vs. ≥3). Filling duration decreased in fill2 compared to fill1, but volume did not significantly change. In normals, adjacent verbal sensory thresholds (within fill) showed no overlap, and identical thresholds (between fill) were similar, demonstrating effective differentiation between degrees of %bladder capacity. In OAB, within-fill overlaps and between-fill differences were identified. Real-time %capacity-sensation curves left shifted from fill1 to fill2 in normals, consistent with expected viscoelastic behavior, but unexpectedly right shifted in OAB. 3D ultrasound volume data showed that fill rates started slowly and ramped up with variable end points. This study establishes a non-invasive means to evaluate real-time bladder sensation using a two-fill accelerated hydration protocol and a sensation meter. Verbal thresholds were inconsistent in OAB, and the right shift in OAB %capacity-sensation curve suggests potential biomechanical and/or sensitization changes. This methodology could be used to gain valuable information on different forms of OAB in a completely non-invasive way. © 2016 Wiley Periodicals, Inc.

  2. Trajectories of Sensation Seeking Among Puerto-Rican Children and Youth

    Science.gov (United States)

    Martins, Silvia S.; Wall, Melanie M.; Eisenberg, Ruth; Blanco, Carlos; Santaella, Julian; Ramos-Olazagasti, Maria; Canino, Glorisa; Bird, Hector R.; Brown, Qiana; Duarte, Cristiane S.

    2015-01-01

    Objective To document the natural course of sensation seeking from childhood to adolescence, characterize distinct sensation-seeking trajectories, and examine how these trajectories vary according to selected predictors. Method Data were obtained from the Boricua Youth Study, a longitudinal study of 2,491 children and adolescents of Puerto Rican background (three assessments from 2000 to 2004). First, age-specific sensation-seeking levels were characterized. Then, age-adjusted residuals were analyzed using growth mixture models (GMM). Results On average, sensation seeking was stable in childhood (ages 5–10) and increased during adolescence (ages 11–17). Mean scores of sensation seeking were higher in the South Bronx vs. Puerto Rico and among males vs. females. Four classes of sensation-seeking trajectories were observed: most study participants had age-expected sensation-seeking trajectories following the average for their age (“normative,” 43.8%); others (37.2%) remained consistently lower than the expected average for their age (“low” sensation seeking); some (12.0%) had an “accelerated” sensation-seeking trajectory, increasing at a faster rate than expected, while a minority (7.0%) had a decreasing sensation-seeking trajectory that started high but decreased, reaching scores slightly higher than the age-average sensation-seeking scores (“stabilizers”). Site (South Bronx vs. Puerto Rico) and gender were predictors of membership in a specific class of sensation-seeking trajectory. Conclusion It is important to take a developmental approach when examining sensation seeking and to consider gender and the social environment when trying to understand how sensation seeking evolves during childhood and adolescence. PMID:26598479

  3. Development of a robot system for converter relining; Tenro chikuro robot system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Y; Kurahashi, M [Nissan Motor Co. Ltd., Tokyo (Japan)

    1995-09-12

    In steelmaking plants, the relining work of converters requires plenty of manpower and time. Recently, the number of expert brick workers has decreased, and it has been difficult to get together the necessary number of workers for the converter relining. To solve these problems, a robot system has been developed and realized for the converter relining. The system consists of two intelligent robots and an automatic brick conveying machine. With visual function and flexibly controlled hands, the robot enables to heap up bricks in the same manner as expert workers do. The automatic brick conveying machine consists of roller conveyers and a cage lifter that convey bricks on palettes to the suitable position for the robot to easily handle. This robot system has enabled to save much labor for the converter relining. 8 figs.

  4. Development of an MR-compatible hand exoskeleton that is capable of providing interactive robotic rehabilitation during fMRI imaging.

    Science.gov (United States)

    Kim, Sangjoon J; Kim, Yeongjin; Lee, Hyosang; Ghasemlou, Pouya; Kim, Jung

    2018-02-01

    Following advances in robotic rehabilitation, there have been many efforts to investigate the recovery process and effectiveness of robotic rehabilitation procedures through monitoring the activation status of the brain. This work presents the development of a two degree-of-freedom (DoF) magnetic resonance (MR)-compatible hand device that can perform robotic rehabilitation procedures inside an fMRI scanner. The device is capable of providing real-time monitoring of the joint angle, angular velocity, and joint force produced by the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints of four fingers. For force measurement, a custom reflective optical force sensor was developed and characterized in terms of accuracy error, hysteresis, and repeatability in the MR environment. The proposed device consists of two non-magnetic ultrasonic motors to provide assistive and resistive forces to the MCP and PIP joints. With actuation and sensing capabilities, both non-voluntary-passive movements and active-voluntary movements can be implemented. The MR compatibility of the device was verified via the analysis of the signal-to-noise ratio (SNR) of MR images of phantoms. SNR drops of 0.25, 2.94, and 11.82% were observed when the device was present but not activated, when only the custom force sensor was activated, and when both the custom force sensor and actuators were activated, respectively.

  5. Psychophysical properties of female genital sensation.

    Science.gov (United States)

    Farmer, Melissa A; Maykut, Caroline A; Huberman, Jackie S; Huang, Lejian; Khalifé, Samir; Binik, Yitzchak M; Apkarian, A Vania; Schweinhardt, Petra

    2013-11-01

    Provoked vestibulodynia (PVD) is characterized by the presence of vulvar touch and pain hypersensitivity. Pain with vaginal distension, which motivates treatment seeking and perpetuates distress, is frequently reported with PVD. However, the concordance between the perception of vulvar and vaginal sensation (ie, somatic and visceral genital sensations, respectively) remains unstudied in healthy women, as well as in clinical populations such as PVD. To evaluate the static and dynamic (time-varying) properties of somatic and visceral genital sensation, women with PVD (n=14) and age- and contraceptive-matched healthy controls (n=10) rated varying degrees of nonpainful and painful genital stimulation. Somatic (vulvar) mechanical sensitivity to nonpainul and painful degrees of force were compared to visceral (vaginal) sensitivity to nonpainful and painful distension volumes. Results indicated that healthy women showed substantial individual variation in and high discrimination of vulvar and vaginal sensation. In contrast, PVD was associated with vulvar allodynia and hyperalgesia, as well as vaginal allodynia. Modeling of dynamic perception revealed novel properties of abnormal PVD genital sensation, including temporal delays in vulvar touch perception and reduced perceptual thresholds for vaginal distension. The temporal properties and magnitude of PVD distension pain were indistinguishable from vaginal fullness in healthy controls. These results constitute the first empirical comparison of somatic and visceral genital sensation in healthy women. Findings provide novel insights into the sensory abnormalities that characterize PVD, including an experimental demonstration of visceral allodynia. This investigation challenges the prevailing diagnostic assessment of PVD and reconceptualizes PVD as a chronic somatic and visceral pain condition. Copyright © 2013. Published by Elsevier B.V.

  6. Sex differences in sensation-seeking: a meta-analysis.

    Science.gov (United States)

    Cross, Catharine P; Cyrenne, De-Laine M; Brown, Gillian R

    2013-01-01

    Men score higher than women on measures of sensation-seeking, defined as a willingness to engage in novel or intense activities. This sex difference has been explained in terms of evolved psychological mechanisms or culturally transmitted social norms. We investigated whether sex differences in sensation-seeking have changed over recent years by conducting a meta-analysis of studies using Zuckerman's Sensation Seeking Scale, version V (SSS-V). We found that sex differences in total SSS-V scores have remained stable across years, as have sex differences in Disinhibition and Boredom Susceptibility. In contrast, the sex difference in Thrill and Adventure Seeking has declined, possibly due to changes in social norms or out-dated questions on this sub-scale. Our results support the view that men and women differ in their propensity to report sensation-seeking characteristics, while behavioural manifestations of sensation-seeking vary over time. Sex differences in sensation-seeking could reflect genetically influenced predispositions interacting with socially transmitted information.

  7. Transferring human impedance regulation skills to robots

    CERN Document Server

    Ajoudani, Arash

    2016-01-01

    This book introduces novel thinking and techniques to the control of robotic manipulation. In particular, the concept of teleimpedance control as an alternative method to bilateral force-reflecting teleoperation control for robotic manipulation is introduced. In teleimpedance control, a compound reference command is sent to the slave robot including both the desired motion trajectory and impedance profile, which are then realized by the remote controller. This concept forms a basis for the development of the controllers for a robotic arm, a dual-arm setup, a synergy-driven robotic hand, and a compliant exoskeleton for improved interaction performance.

  8. Motor Imagery-Based Brain-Computer Interface Coupled to a Robotic Hand Orthosis Aimed for Neurorehabilitation of Stroke Patients

    Directory of Open Access Journals (Sweden)

    Jessica Cantillo-Negrete

    2018-01-01

    Full Text Available Motor imagery-based brain-computer interfaces (BCI have shown potential for the rehabilitation of stroke patients; however, low performance has restricted their application in clinical environments. Therefore, this work presents the implementation of a BCI system, coupled to a robotic hand orthosis and driven by hand motor imagery of healthy subjects and the paralysed hand of stroke patients. A novel processing stage was designed using a bank of temporal filters, the common spatial pattern algorithm for feature extraction and particle swarm optimisation for feature selection. Offline tests were performed for testing the proposed processing stage, and results were compared with those computed with common spatial patterns. Afterwards, online tests with healthy subjects were performed in which the orthosis was activated by the system. Stroke patients’ average performance was 74.1 ± 11%. For 4 out of 6 patients, the proposed method showed a statistically significant higher performance than the common spatial pattern method. Healthy subjects’ average offline and online performances were of 76.2 ± 7.6% and 70 ± 6.7, respectively. For 3 out of 8 healthy subjects, the proposed method showed a statistically significant higher performance than the common spatial pattern method. System’s performance showed that it has a potential to be used for hand rehabilitation of stroke patients.

  9. Analyzing Robotic Kinematics Via Computed Simulations

    Science.gov (United States)

    Carnahan, Timothy M.

    1992-01-01

    Computing system assists in evaluation of kinematics of conceptual robot. Displays positions and motions of robotic manipulator within work cell. Also displays interactions between robotic manipulator and other objects. Results of simulation displayed on graphical computer workstation. System includes both off-the-shelf software originally developed for automotive industry and specially developed software. Simulation system also used to design human-equivalent hand, to model optical train in infrared system, and to develop graphical interface for teleoperator simulation system.

  10. Trajectories of Sensation Seeking Among Puerto Rican Children and Youth.

    Science.gov (United States)

    Martins, Silvia S; Wall, Melanie M; Eisenberg, Ruth; Blanco, Carlos; Santaella, Julian; Ramos-Olazagasti, Maria; Canino, Glorisa; Bird, Hector R; Brown, Qiana; Duarte, Cristiane S

    2015-12-01

    To document the natural course of sensation seeking from childhood to adolescence, characterize distinct sensation seeking trajectories, and examine how these trajectories vary according to selected predictors. Data were obtained from the Boricua Youth Study, a longitudinal study of 2,491 children and adolescents of Puerto Rican background (3 assessments from 2000 to 2004). First, age-specific sensation seeking levels were characterized, and then age-adjusted residuals were analyzed using growth mixture models. On average, sensation seeking was stable in childhood (ages 5-10 years) and increased during adolescence (ages 11-17 years). Mean scores of sensation seeking were higher in the South Bronx versus Puerto Rico and among males versus females. Four classes of sensation seeking trajectories were observed: most study participants had age-expected sensation seeking trajectories following the average for their age ("normative," 43.8%); others (37.2%) remained consistently lower than the expected average for their age ("low" sensation seeking); some (12.0%) had an "accelerated" sensation seeking trajectory, increasing at a faster rate than expected; and a minority (7.0%) had a decreasing sensation seeking trajectory that started high but decreased, reaching scores slightly higher than the age-average sensation seeking scores ("stabilizers"). Site (South Bronx versus Puerto Rico) and gender were predictors of membership in a specific class of sensation seeking trajectory. It is important to take a developmental approach when examining sensation seeking and to consider gender and the social environment when trying to understand how sensation seeking evolves during childhood and adolescence. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Thermal sensation and comfort models for non-uniform and transient environments: Part III: whole-body sensation and comfort

    OpenAIRE

    Zhang, Hui; Arens, Edward; Huizenga, Charlie; Han, Taeyoung

    2009-01-01

    A three-part series presents the development of models for predicting the local thermal sensation (Part I) and local thermal comfort (Part II) of different parts of the human body, and also the whole-body sensation and comfort (Part III) that result from combinations of local sensation and comfort. The models apply to sedentary activities in a range of environments: uniform and non-uniform, stable and transient. They are based on diverse findings from the literature and from body-part-specifi...

  12. Impact of robotic general surgery course on participants' surgical practice.

    Science.gov (United States)

    Buchs, Nicolas C; Pugin, François; Volonté, Francesco; Hagen, Monika E; Morel, Philippe

    2013-06-01

    Courses, including lectures, live surgery, and hands-on session, are part of the recommended curriculum for robotic surgery. However, for general surgery, this approach is poorly reported. The study purpose was to evaluate the impact of robotic general surgery course on the practice of participants. Between 2007 and 2011, 101 participants attended the Geneva International Robotic Surgery Course, held at the University Hospital of Geneva, Switzerland. This 2-day course included theory lectures, dry lab, live surgery, and hands-on session on cadavers. After a mean of 30.1 months (range, 2-48), a retrospective review of the participants' surgical practice was performed using online research and surveys. Among the 101 participants, there was a majority of general (58.4 %) and colorectal surgeons (10.9 %). Other specialties included urologists (7.9 %), gynecologists (6.9 %), pediatric surgeons (2 %), surgical oncologists (1 %), engineers (6.9 %), and others (5.9 %). Data were fully recorded in 99 % of cases; 46 % of participants started to perform robotic procedures after the course, whereas only 6.9 % were already familiar with the system before the course. In addition, 53 % of the attendees worked at an institution where a robotic system was already available. All (100 %) of participants who started a robotic program after the course had an available robotic system at their institution. A course that includes lectures, live surgery, and hands-on session with cadavers is an effective educational method for spreading robotic skills. However, this is especially true for participants whose institution already has a robotic system available.

  13. Sensation Following Immediate Breast Reconstruction with Implants.

    Science.gov (United States)

    Lagergren, Jakob; Wickman, Marie; Hansson, Per

    2010-01-01

    Sensation is a neglected aspect of the outcome of breast reconstructions with implants. The aim of this prospective study was to evaluate the cutaneous somatosensory status in breasts following mastectomy and immediate reconstruction with permanent adjustable prostheses and to analyze the patients' subjective experience of the sensation. Twenty-four consecutive patients diagnosed with invasive or in situ breast carcinoma were examined preoperatively and 2 years after mastectomy and reconstruction, for assessment of perception thresholds for touch, cold, warmth, and heat pain above and below the areola. Von Frey filaments and a Peltier element-based thermode were used. The patients completed a questionnaire concerning their experienced sensation in the reconstructed breast. Using quantitative somato-sensory testing, the sensation to all the examined modalities was significantly impaired compared to preoperatively. Most affected was the area above the areola. Patients given postoperative radiotherapy (n = 9) did not differ from those without radiotherapy (n = 15) regarding any of the modalities. All patients reported reduced sensation in the reconstructed breast compared to that preoperatively. Twenty-three patients stated that the reconstructed breast felt different from the other breast; nevertheless 16 reported that the reconstructed breast felt like a real breast. The study revealed sensation impairment following mastectomy and immediate reconstruction with implants. Patients should be informed about this effect preoperatively to allow adequate expectations regarding the sensation outcome. However, two-thirds of the study patients considered that the reconstructed breast felt like a real breast, which must be one of the main purposes of a breast reconstruction.

  14. Effects of morphine on respiratory load detection, load magnitude perception and tactile sensation in obstructive sleep apnea.

    Science.gov (United States)

    Tomazini Martins, Rodrigo; Carberry, Jayne C; Gandevia, Simon C; Butler, Jane E; Eckert, Danny J

    2018-04-26

    Pharyngeal and respiratory sensation is impaired in obstructive sleep apnea (OSA). Opioids may further diminish respiratory sensation. Thus, protective pharyngeal neuromuscular and arousal responses to airway occlusion that rely on respiratory sensation could be impaired with opioids to worsen OSA severity. However, little is known about the effects of opioids on upper airway and respiratory sensation in people with OSA. This study was designed to determine the effects of 40mg of MS-Contin on tactile sensation, respiratory load detection and respiratory magnitude perception in people with OSA during wakefulness. A double-blind, randomized, cross-over design (1 week wash-out) was used. 21 men with untreated OSA (apnea/hypopnea index=26{plus minus}17events/h) recruited from a larger clinical study completed the protocol. Tactile sensation using von Frey filaments on the back of the hand, internal mucosa of the cheek, uvula and posterior pharyngeal wall were not different between placebo and morphine (e.g. posterior wall=0.16[0.16,0.4]vs. 0.4[0.14,1.8]g, p=0.261). Similarly, compared to placebo, morphine did not alter respiratory load detection thresholds (nadir mask pressure detected=-2.05[-3.37,-1.55] vs. -2.19[-3.36,-1.41]cmH 2 O, p=0.767), or respiratory load magnitude perception (mean Borg scores during a 5 resistive load [range: 5-126cmH 2 O/L/s] protocol=4.5{plus minus}1.6 vs. 4.2{plus minus}1.2, p=0.347) but did reduce minute ventilation during quiet breathing (11.4{plus minus}3.3 vs. 10.7{plus minus}2.6L/min, prespiratory sensation in men with mild to moderate, untreated, OSA. This suggests that altered respiratory sensation to acute mechanical stimuli is not likely to be a mechanism that contributes to worsening of OSA with a moderate dose of morphine.

  15. Starting a Robotics Program in Your County

    Science.gov (United States)

    Habib, Maria A.

    2012-01-01

    The current mission mandates of the National 4-H Headquarters are Citizenship, Healthy Living, and Science. Robotics programs are excellent in fulfilling the Science mandate. Robotics engages students in STEM (Science, Engineering, Technology, and Mathematics) fields by providing interactive, hands-on, minds-on, cross-disciplinary learning…

  16. Impacts of Sensation, Perception, and Motor Abilities of the Ipsilesional Upper Limb on Hand Functions in Unilateral Stroke: Quantifications From Biomechanical and Functional Perspectives.

    Science.gov (United States)

    Hsu, Hsiu-Yun; Ke, Chia-Wen; Kuan, Ta-Shen; Yang, Hsiu-Ching; Tsai, Ching-Liang; Kuo, Li-Chieh

    2018-02-01

    The presence of subtle losses in hand dexterity after stroke affects the regaining of independence with regard to activities of daily living. Therefore, awareness of ipsilesional upper extremity (UE) function may be of importance when developing a comprehensive rehabilitation program. However, current hand function tests seem to be unable to identify asymptomatic UE impairments. To assess the motor coordination as well as the sensory perception of an ipsilesional UE using biomechanical analysis of performance-oriented tasks and conducting a Manual Tactile Test (MTT). Case-controlled study. A university hospital. A total of 21 patients with unilateral stroke, along with 21 matched healthy control subjects, were recruited. Each participant was requested to perform a pinch-holding-up activity (PHUA) test, object-transport task, and reach-to-grasp task via motion capture, as well as the MTT. The kinetic data of the PHUA test, kinematics analysis of functional movements, and time requirement of MTT were analyzed. Patients with ipsilesional UE had an inferior ability to scale and produce pinch force precisely when conducting the PHUA test compared to the healthy controls (P perception (P sensation-perception-motor system in the ipsilesional UE. Integration of sensorimotor training programs for ipsilesional UE in future neuro-rehabilitation strategies may provide more beneficial effects to regain patients' motor recovery and to promote daily living activity independence than focusing on paretic arm motor training alone. III. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  17. Robot-assisted general surgery.

    Science.gov (United States)

    Hazey, Jeffrey W; Melvin, W Scott

    2004-06-01

    With the initiation of laparoscopic techniques in general surgery, we have seen a significant expansion of minimally invasive techniques in the last 16 years. More recently, robotic-assisted laparoscopy has moved into the general surgeon's armamentarium to address some of the shortcomings of laparoscopic surgery. AESOP (Computer Motion, Goleta, CA) addressed the issue of visualization as a robotic camera holder. With the introduction of the ZEUS robotic surgical system (Computer Motion), the ability to remotely operate laparoscopic instruments became a reality. US Food and Drug Administration approval in July 2000 of the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, CA) further defined the ability of a robotic-assist device to address limitations in laparoscopy. This includes a significant improvement in instrument dexterity, dampening of natural hand tremors, three-dimensional visualization, ergonomics, and camera stability. As experience with robotic technology increased and its applications to advanced laparoscopic procedures have become more understood, more procedures have been performed with robotic assistance. Numerous studies have shown equivalent or improved patient outcomes when robotic-assist devices are used. Initially, robotic-assisted laparoscopic cholecystectomy was deemed safe, and now robotics has been shown to be safe in foregut procedures, including Nissen fundoplication, Heller myotomy, gastric banding procedures, and Roux-en-Y gastric bypass. These techniques have been extrapolated to solid-organ procedures (splenectomy, adrenalectomy, and pancreatic surgery) as well as robotic-assisted laparoscopic colectomy. In this chapter, we review the evolution of robotic technology and its applications in general surgical procedures.

  18. Are we ready to move beyond the reductionist approach of classical synergy control?. Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    Science.gov (United States)

    Lacquaniti, Francesco; Ivanenko, Yuri P.; Zago, Myrka

    2016-07-01

    Starting from the classical concepts introduced by Sherrington [1] and considerably elaborated by Bernstein [2], much has been learned about motor synergies in the last several years. The contributions of the group funded by the European project ;The Hand Embodied; are remarkable in the field of biological and robotic control of the hand based on synergies, and they are reflected in this enjoyable review [3]. There, Santello et al. adopt Bernstein's definition of motor synergies as multiple elements working together towards a common goal, with the result that multiple degrees of freedom are controlled within a lower-dimensional space than the available number of dimensions.

  19. A new robotic-assisted flexible endoscope with single-hand control: endoscopic submucosal dissection in the ex vivo porcine stomach.

    Science.gov (United States)

    Iwasa, Tsutomu; Nakadate, Ryu; Onogi, Shinya; Okamoto, Yasuharu; Arata, Jumpei; Oguri, Susumu; Ogino, Haruei; Ihara, Eikichi; Ohuchida, Kenoki; Akahoshi, Tomohiko; Ikeda, Tetsuo; Ogawa, Yoshihiro; Hashizume, Makoto

    2018-04-17

    Difficulties in endoscopic operations and therapeutic procedures seem to occur due to the complexity of operating the endoscope dial as well as difficulty in performing synchronized movements with both hands. We developed a prototype robotic-assisted flexible endoscope that can be controlled with a single hand in order to simplify the operation of the endoscope. The aim of this study was to confirm the operability of the robotic-assisted flexible endoscope (RAFE) by performing endoscopic submucosal dissection (ESD). Study 1: ESD was performed manually or with RAFE by an expert endoscopist in ex vivo porcine stomachs; six operations manually and six were performed with RAFE. The procedure time per unit circumferential length/area was calculated, and the results were statistically analyzed. Study 2: We evaluated how smoothly a non-endoscopist can move a RAFE compared to a manual endoscope by assessing the designated movement of the endoscope. Study 1: En bloc resection was achieved by ESD using the RAFE. The procedure time was gradually shortened with increasing experience, and the procedure time of ESD performed with the RAFE was not significantly different from that of ESD performed with a manual endoscope. Study 2: The time for the designated movement of the endoscope was significantly shorter with a RAFE than that with a manual endoscope as for a non-endoscopist. The RAFE that we developed enabled an expert endoscopist to perform the ESD procedure without any problems and allowed a non-endoscopist to control the endoscope more easily and quickly than a manual endoscope. The RAFE is expected to undergo further development.

  20. Compact Tactile Sensors for Robot Fingers

    Science.gov (United States)

    Martin, Toby B.; Lussy, David; Gaudiano, Frank; Hulse, Aaron; Diftler, Myron A.; Rodriguez, Dagoberto; Bielski, Paul; Butzer, Melisa

    2004-01-01

    Compact transducer arrays that measure spatial distributions of force or pressure have been demonstrated as prototypes of tactile sensors to be mounted on fingers and palms of dexterous robot hands. The pressure- or force-distribution feedback provided by these sensors is essential for the further development and implementation of robot-control capabilities for humanlike grasping and manipulation.

  1. Dimensions of sensation assessed in urinary urgency: a systematic review.

    Science.gov (United States)

    Das, Rebekah; Buckley, Jonathan; Williams, Marie

    2013-10-01

    Urinary urgency is an adverse sensory experience. Confirmation of the multidimensional nature of other adverse sensory experiences such as pain and dyspnea has improved the understanding of neurophysiological and perceptual mechanisms leading to innovations in assessment and treatment. It has been suggested that the sensation of urgency may include multiple dimensions such as intensity, suddenness and unpleasantness. In this systematic review we determine which dimensions of sensation have been assessed by instruments used to measure urinary urgency. A systematic search was undertaken of MEDLINE, Embase, AMED, CINAHL, Ageline, Web of Science, InformIT Health and Scopus databases to identify studies that included assessments of urinary urge or urgency. Articles were included in the analysis if they were primary studies that described the method used to measure urge/urgency in adults and published in English in peer reviewed publications since January 1, 2000. Articles were excluded from study if urgency was measured only in conjunction with other symptoms (eg frequency or incontinence) or if there was no English version of the instrument. Secondary analyses and systematic reviews were retained to hand search references for additional primary studies. Data were extracted for the instruments used to measure urge/urgency. For each instrument the items specific to urinary urgency were reviewed using a prospectively developed categorization process for the sensory dimension and the measurement metric. Items used to assess urinary urgency were collated in a matrix (sensory dimensions vs assessment metric). The most frequently used dimensions, metrics and combinations were descriptively analyzed. After removal of duplicate articles 1,048 full text articles were screened and 411 were excluded, leaving 637 eligible articles from which data were extracted. A total of 216 instruments were identified which were 1 of 6 types, namely 1) wider symptom questionnaires, 2) urgency

  2. Stimulus intensity for hand held and robotic transcranial magnetic stimulation.

    Science.gov (United States)

    Richter, Lars; Trillenberg, Peter; Schweikard, Achim; Schlaefer, Alexander

    2013-05-01

    Transcranial Magnetic Stimulation (TMS) is based on a changing magnetic field inducing an electric field in the brain. Conventionally, the TMS coil is mounted to a static holder and the subject is asked to avoid head motion. Additionally, head resting frames have been used. In contrast, our robotized TMS system employs active motion compensation (MC) to maintain the correct coil position. We study the effect of patient motion on TMS. In particular, we compare different coil positioning techniques with respect to the induced electric field. We recorded head motion for six subjects in three scenarios: (a) avoiding head motion, (b) using a head rest, and (c) moving the head freely. Subsequently, the motion traces were replayed using a second robot to move a sensor to measure the electric field in the target region. These head movements were combined with 2 types of coil positioning: (1) using a coil holder and (2) using robotized TMS with MC. After 30 min the induced electric field was reduced by 32.0% and 19.7% for scenarios (1a) and (1b), respectively. For scenarios (2a)-(2c) it was reduced by only 4.9%, 1.4% and 2.0%, respectively, which is a significant improvement (P < 0.05). Furthermore, the orientation of the induced field changed by 5.5°, 7.6°, 0.4°, 0.2°, 0.2° for scenarios (1a)-(2c). While none of the scenarios required rigid head fixation, using a simple holder to position a coil during TMS can lead to substantial deviations in the induced electric field. In contrast, robotic motion compensation results in clinically acceptable positioning throughout treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Robotic Mission to Mars: Hands-on, minds-on, web-based learning

    Science.gov (United States)

    Mathers, Naomi; Goktogen, Ali; Rankin, John; Anderson, Marion

    2012-11-01

    Problem-based learning has been demonstrated as an effective methodology for developing analytical skills and critical thinking. The use of scenario-based learning incorporates problem-based learning whilst encouraging students to collaborate with their colleagues and dynamically adapt to their environment. This increased interaction stimulates a deeper understanding and the generation of new knowledge. The Victorian Space Science Education Centre (VSSEC) uses scenario-based learning in its Mission to Mars, Mission to the Orbiting Space Laboratory and Primary Expedition to the M.A.R.S. Base programs. These programs utilize methodologies such as hands-on applications, immersive-learning, integrated technologies, critical thinking and mentoring to engage students in Science, Technology, Engineering and Mathematics (STEM) and highlight potential career paths in science and engineering. The immersive nature of the programs demands specialist environments such as a simulated Mars environment, Mission Control and Space Laboratory, thus restricting these programs to a physical location and limiting student access to the programs. To move beyond these limitations, VSSEC worked with its university partners to develop a web-based mission that delivered the benefits of scenario-based learning within a school environment. The Robotic Mission to Mars allows students to remotely control a real rover, developed by the Australian Centre for Field Robotics (ACFR), on the VSSEC Mars surface. After completing a pre-mission training program and site selection activity, students take on the roles of scientists and engineers in Mission Control to complete a mission and collect data for further analysis. Mission Control is established using software developed by the ACRI Games Technology Lab at La Trobe University using the principles of serious gaming. The software allows students to control the rover, monitor its systems and collect scientific data for analysis. This program encourages

  4. Quantifying and simulating human sensation

    DEFF Research Database (Denmark)

    Quantifying and simulating human sensation – relating science and technology of indoor climate research Abstract In his doctoral thesis from 1970 civil engineer Povl Ole Fanger proposed that the understanding of indoor climate should focus on the comfort of the individual rather than averaged...... this understanding of human sensation was adjusted to technology. I will look into the construction of the equipment, what it measures and the relationship between theory, equipment and tradition....

  5. Towards a synergy framework across neuroscience and robotics: Lessons learned and open questions. Reply to comments on: "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands"

    Science.gov (United States)

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jorntell, Henrik; Kappers, Astrid M. L.; Kyriakopoulos, Kostas; Schaeffer, Alin Abu; Castellini, Claudio; Bicchi, Antonio

    2016-07-01

    We would like to thank all commentators for their insightful commentaries. Thanks to their diverse and complementary expertise in neuroscience and robotics, the commentators have provided us with the opportunity to further discuss state-of-the-art and gaps in the integration of neuroscience and robotics reviewed in our article. We organized our reply in two sections that capture the main points of all commentaries [1-9]: (1) Advantages and limitations of the synergy approach in neuroscience and robotics, and (2) Learning and role of sensory feedback in biological and robotics synergies.

  6. Robotic assisted andrological surgery

    Science.gov (United States)

    Parekattil, Sijo J; Gudeloglu, Ahmet

    2013-01-01

    The introduction of the operative microscope for andrological surgery in the 1970s provided enhanced magnification and accuracy, unparalleled to any previous visual loop or magnification techniques. This technology revolutionized techniques for microsurgery in andrology. Today, we may be on the verge of a second such revolution by the incorporation of robotic assisted platforms for microsurgery in andrology. Robotic assisted microsurgery is being utilized to a greater degree in andrology and a number of other microsurgical fields, such as ophthalmology, hand surgery, plastics and reconstructive surgery. The potential advantages of robotic assisted platforms include elimination of tremor, improved stability, surgeon ergonomics, scalability of motion, multi-input visual interphases with up to three simultaneous visual views, enhanced magnification, and the ability to manipulate three surgical instruments and cameras simultaneously. This review paper begins with the historical development of robotic microsurgery. It then provides an in-depth presentation of the technique and outcomes of common robotic microsurgical andrological procedures, such as vasectomy reversal, subinguinal varicocelectomy, targeted spermatic cord denervation (for chronic orchialgia) and robotic assisted microsurgical testicular sperm extraction (microTESE). PMID:23241637

  7. Robotic fabrication in architecture, art, and design

    CERN Document Server

    Braumann, Johannes

    2013-01-01

    Architects, artists, and designers have been fascinated by robots for many decades, from Villemard’s utopian vision of an architect building a house with robotic labor in 1910, to the design of buildings that are robots themselves, such as Archigram’s Walking City. Today, they are again approaching the topic of robotic fabrication but this time employing a different strategy: instead of utopian proposals like Archigram’s or the highly specialized robots that were used by Japan’s construction industry in the 1990s, the current focus of architectural robotics is on industrial robots. These robotic arms have six degrees of freedom and are widely used in industry, especially for automotive production lines. What makes robotic arms so interesting for the creative industry is their multi-functionality: instead of having to develop specialized machines, a multifunctional robot arm can be equipped with a wide range of end-effectors, similar to a human hand using various tools. Therefore, architectural researc...

  8. Relationship between sensitivity to visuotactile temporal discrepancy and the rubber hand illusion.

    Science.gov (United States)

    Shimada, Sotaro; Suzuki, Tatsuya; Yoda, Naohiko; Hayashi, Tomoya

    2014-08-01

    The rubber-hand illusion (RHI) is that the subject feels the visually presented tactile stimulation of an artificial (rubber) hand as their own tactile sensation and is caused by stimulating the rubber and real hands synchronously. Our previous study showed that the RHI was greatly reduced as the visual feedback delay of the tactile stimulation of the hand became longer. In the present study, we investigate the relationship between the attenuation of the RHI and the detection of the delay in two experiments: (1) an RHI experiment and (2) a visuotactile asynchrony detection experiment, in which the subjects underwent tactile stimulation of their hand and judged whether visual feedback was consistent with the touch sensation. In line with our previous study, the RHI was significantly reduced as the delay lengthened. Interestingly, proprioceptive drift declined linearly as the delay increased, while the delay detection rate was better fitted by a non-linear (logistic) function. The illusion score showed the intermittent pattern. We suggest that proprioceptive drift is relevant to the processing of the body schema, whereas the delay detection and the subjective feeling of the RHI are more related to the body image processing. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  9. Investigating the Effects of Three Needling Parameters (Manipulation, Retention Time, and Insertion Site) on Needling Sensation and Pain Profiles: A Study of Eight Deep Needling Interventions

    Science.gov (United States)

    Loyeung, Bertrand Y. K.; Cobbin, Deirdre M.

    2013-01-01

    Introduction. In traditional Chinese acupuncture, needle sensation (deqi) is purported to contribute to a therapeutic outcome. While researchers have attempted to define deqi qualitatively, few have examined the effects of needling parameters on its intensity. Methods. 24 healthy subjects completed eight interventions scheduled at least one week apart, which involved manual acupuncture to LI4 or a designated nonacupoint (NAP) on the hand, with real or simulated manipulation each three minutes and needle retentions of one or 21 minutes. Intensities of needling sensation and pain were reported every three minutes and sensation qualities were reported post-intervention. Results. Immediately after needle insertion, similar levels of mean needle sensation and of pain were reported independent of intervention. At subsequent measurement times, only two interventions (one at LI4 and one at NAP) maintained statistically significantly elevated needle sensation and pain scores and reported higher numbers of needle sensation descriptors. For both, the needle was retained for 21 minutes and manipulated every three minutes. Neither intervention differed significantly in terms of levels of pain, and needle sensation or numbers and qualities of needle sensation described. Conclusion. In this group of healthy subjects, the initial needling for all eight interventions elicited similar levels of needle sensation and pain. These levels were only maintained if there was ongoing of needle manipulation and retention of the needle. By contrast, the strength of needle sensation or pain experienced was independent of insertion site. PMID:24159337

  10. Testing haptic sensations for spinal anesthesia.

    LENUS (Irish Health Repository)

    2011-01-01

    Having identified key determinants of teaching and learning spinal anesthesia, it was necessary to characterize and render the haptic sensations (feeling of touch) associated with needle insertion in the lower back. The approach used is to match recreated sensations (eg, "pop" through skin or dura mater) with experts\\' perceptions of the equivalent clinical events.

  11. Gesture Commanding of a Robot with EVA Gloves

    Data.gov (United States)

    National Aeronautics and Space Administration — Gestures commands allow a human operator to directly interact with a robot without the use of intermediary hand controllers. There are two main types of hand gesture...

  12. Thermal sensation models: a systematic comparison.

    Science.gov (United States)

    Koelblen, B; Psikuta, A; Bogdan, A; Annaheim, S; Rossi, R M

    2017-05-01

    Thermal sensation models, capable of predicting human's perception of thermal surroundings, are commonly used to assess given indoor conditions. These models differ in many aspects, such as the number and type of input conditions, the range of conditions in which the models can be applied, and the complexity of equations. Moreover, the models are associated with various thermal sensation scales. In this study, a systematic comparison of seven existing thermal sensation models has been performed with regard to exposures including various air temperatures, clothing thermal insulation, and metabolic rate values after a careful investigation of the models' range of applicability. Thermo-physiological data needed as input for some of the models were obtained from a mathematical model for human physiological responses. The comparison showed differences between models' predictions for the analyzed conditions, mostly higher than typical intersubject differences in votes. Therefore, it can be concluded that the choice of model strongly influences the assessment of indoor spaces. The issue of comparing different thermal sensation scales has also been discussed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Detection of optogenetic stimulation in somatosensory cortex by non-human primates--towards artificial tactile sensation.

    Science.gov (United States)

    May, Travis; Ozden, Ilker; Brush, Benjamin; Borton, David; Wagner, Fabien; Agha, Naubahar; Sheinberg, David L; Nurmikko, Arto V

    2014-01-01

    Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest.

  14. Detection of optogenetic stimulation in somatosensory cortex by non-human primates--towards artificial tactile sensation.

    Directory of Open Access Journals (Sweden)

    Travis May

    Full Text Available Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest.

  15. Laboratory robotics systems at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Dyches, G.M.; Burkett, S.D.

    1983-01-01

    Many analytical chemistry methods normally used at the Savannah River site require repetitive procedures and handling of radioactive and other hazardous solutions. Robotics is being investigated as a method of reducing personnel fatigue and radiation exposure and also increasing product quality. Several applications of various commercially available robot systems are discussed involving cold (nonradioactive) and hot (radioactive) sample preparations and glovebox waste removal. Problems encountered in robot programming, parts fixturing, design of special robot hands and other support equipment, glovebox operation, and operator-system interaction are discussed. A typical robot system cost analysis for one application is given

  16. A cargo-sorting DNA robot.

    Science.gov (United States)

    Thubagere, Anupama J; Li, Wei; Johnson, Robert F; Chen, Zibo; Doroudi, Shayan; Lee, Yae Lim; Izatt, Gregory; Wittman, Sarah; Srinivas, Niranjan; Woods, Damien; Winfree, Erik; Qian, Lulu

    2017-09-15

    Two critical challenges in the design and synthesis of molecular robots are modularity and algorithm simplicity. We demonstrate three modular building blocks for a DNA robot that performs cargo sorting at the molecular level. A simple algorithm encoding recognition between cargos and their destinations allows for a simple robot design: a single-stranded DNA with one leg and two foot domains for walking, and one arm and one hand domain for picking up and dropping off cargos. The robot explores a two-dimensional testing ground on the surface of DNA origami, picks up multiple cargos of two types that are initially at unordered locations, and delivers them to specified destinations until all molecules are sorted into two distinct piles. The robot is designed to perform a random walk without any energy supply. Exploiting this feature, a single robot can repeatedly sort multiple cargos. Localization on DNA origami allows for distinct cargo-sorting tasks to take place simultaneously in one test tube or for multiple robots to collectively perform the same task. Copyright © 2017, American Association for the Advancement of Science.

  17. Hand Rehabilitation Learning System With an Exoskeleton Robotic Glove.

    Science.gov (United States)

    Ma, Zhou; Ben-Tzvi, Pinhas; Danoff, Jerome

    2016-12-01

    This paper presents a hand rehabilitation learning system, the SAFE Glove, a device that can be utilized to enhance the rehabilitation of subjects with disabilities. This system is able to learn fingertip motion and force for grasping different objects and then record and analyze the common movements of hand function including grip and release patterns. The glove is then able to reproduce these movement patterns in playback fashion to assist a weakened hand to accomplish these movements, or to modulate the assistive level based on the user's or therapist's intent for the purpose of hand rehabilitation therapy. Preliminary data have been collected from healthy hands. To demonstrate the glove's ability to manipulate the hand, the glove has been fitted on a wooden hand and the grasping of various objects was performed. To further prove that hands can be safely driven by this haptic mechanism, force sensor readings placed between each finger and the mechanism are plotted. These experimental results demonstrate the potential of the proposed system in rehabilitation therapy.

  18. Testing for and the role of anal and rectal sensation.

    Science.gov (United States)

    Rogers, J

    1992-03-01

    The rectum is insensitive to stimuli capable of causing pain and other sensations when applied to a somatic cutaneous surface. It is, however, sensitive to distension by an experimental balloon introduced through the anus, though it is not known whether it is the stretching or reflex contraction of the gut wall, or the distortion of the mesentery and adjacent structures which induces the sensation. No specific sensory receptors are seen on careful histological examination of the rectum in humans. However, myelinated and non-myelinated nerve fibres are seen adjacent to the rectal mucosa, but no intraepithelial fibres arise from these. The sensation of rectal distension travels with the parasympathetic system to S2, S3 and S4. The two main methods for quantifying rectal sensation are rectal balloon distension and mucosal electrosensitivity. The balloon is progressively distended until particular sensations are perceived by the patient. The volumes at which these sensations are perceived are recorded. Three sensory thresholds are usually defined: constant sensation of fullness, urge to defecate, and maximum tolerated volume. The modalities of anal sensation can be precisely defined. Touch, pain and temperature sensation exist in normal subjects. There is profuse innervation of the anal canal with a variety of specialized sensory nerve endings: Meissner's corpuscles which record touch sensation, Krause end-bulbs which respond to thermal stimuli, Golgi-Mazzoni bodies and pacinian corpuscles which respond to changes in tension and pressure, and genital corpuscles which respond to friction. In addition, there are large diameter free nerve endings within the epithelium. The nerve pathway for anal canal sensation is via the inferior haemorrhoidal branches of the pudendal nerve to the sacral roots of S2, S3 and S4. Anal sensation may be quantitatively measured in response to electrical stimulation. The technique involves the use of a specialized constant current generator

  19. Epiglottic cyst as an etiological factor of globus sensation.

    Science.gov (United States)

    Polat, Bahtiyar; Karahatay, Serdar; Gerek, Mustafa

    2015-09-01

    Globus is a subjective complaint that describes a sensation of a lump or a foreign body in the throat. Despite being a well-known and common clinical condition, the etiological factors have not been definitely elucidated yet. The study was set up to ascertain the relationship between epiglottic cysts and globus sensation. All patients undergoing investigation and treatments for globus sensation were included in the study. Patients with epiglottic cysts but no other possible causes of globus sensation were constituted the series of patients. Patients were asked to assess the levels of complaint before and after the carbon dioxide (CO2) laser excisions of the cysts. Epiglottic cysts were found in 10 (5.4%) of the 182 patients. Three of these 10 patients who had concomitant diseases or conditions that may cause globus sensation and one patient who refused the surgery were excluded from the study. All the remaining six patients reported relief of the globus sensation after the CO2 laser excisions of the cysts. Our results, obtained from this limited series, indicated that epiglottic cysts may be considered as one of the etiological factors of globus sensation.

  20. Rehabilitation Robots: Concepts and Applications in Stroke Rehabilitation

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi-Pajouh

    2017-02-01

    Full Text Available Robotics is a tool to assist human in different applications from industry to medicine. There are many reasons that human tends to use these machines. They are very reliable in repetitive, high precision, preprogrammed and high risk jobs in which human is not too good enough. In medicine, robotic applications are evolving so fast that in near future nobody can imagine a surgery without a robot involved. In Rehabilitation we have the same scenario; there are commercialized robots to assist disable people to eat and perform daily activities. There are also clinical rehabilitation robots which can train handicaps. They can help subjects as a passive tool that improves low level impairments such as rigidity. On the other hand robots can train brain as an active tool to have a better movement again. We will see how robots can help therapist to apply repetitive passive movements in quadriplegic subject (i.e. in Brunnstrom stages 1 to 3. On the other hand they can teach subjects how to complete a task in an active manner (i.e. in stages 5 and 6 which can facilitate neuroplasticity. There are different robots designed for different organs; for example rehabilitation of upper extremities (e.g. Gloreha or lower extremities (e.g. Lokomat. There are also exoskeleton robots to help subjects to grip objects and perform ADLs easily (e.g. Bioservo or help paraplegic patient to walk again (e.g. Rewalk. In this talk, we will also discuss about how robots are helping rehab specialist to improve standard protocols. For example we will show how action observation therapy, bimanual therapy, assistive active therapy, proprioceptive facilitation and passive mobilization therapy are realized using an upper extremity rehabilitation robot. Robotics is the future of technology and rehabilitation needs this technology. Be part of this technology!

  1. Morphology Independent Learning in Modular Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Bordignon, Mirko; Schultz, Ulrik Pagh

    2009-01-01

    Hand-coding locomotion controllers for modular robots is difficult due to their polymorphic nature. Instead, we propose to use a simple and distributed reinforcement learning strategy. ATRON modules with identical controllers can be assembled in any configuration. To optimize the robot’s locomotion...... speed its modules independently and in parallel adjust their behavior based on a single global reward signal. In simulation, we study the learning strategy’s performance on different robot configurations. On the physical platform, we perform learning experiments with ATRON robots learning to move as fast...

  2. A Course Programme in Mobile Robotics with Integrated Hands-on Exercises and Competitions

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    2010-01-01

    The paper describes the design of and the considerations for a course programme in mobile robotics at the Technical University of Denmark. An integrated approach was taken designing mobile robot hardware, software and course curricula in an interconnected way. The courses in the programme all...

  3. Loss of urinary voiding sensation due to herpes zoster.

    Science.gov (United States)

    Hiraga, Akiyuki; Nagumo, Kiyomi; Sakakibara, Ryuji; Kojima, Shigeyuki; Fujinawa, Naoto; Hashimoto, Tasuku

    2003-01-01

    A case of sacral herpes zoster infection in a 56-year-old man with the complication of loss of urinary voiding sensation is presented. He had typical herpes zoster eruption on the left S2 dermatome, hypalgesia of the S1-S4 dermatomes, and absence of urinary voiding sensation. There was no other urinary symptom at the first medical examination. Urinary complications associated with herpes zoster are uncommon, but two types, acute cystitis and acute retention, have been recognized. No cases of loss of urinary voiding sensation due to herpes zoster have been reported. In this case, hypalgesia of the sacral dermatomes was mild compared to the marked loss of urethral sensation. This inconsistency is explained by the hypothesis that the number of urethral fibers is very small as compared to that of cutaneous fibers, therefore, urethral sensation would be more severely disturbed than cutaneous sensation. Copyright 2003 Wiley-Liss, Inc.

  4. Sensation of agency and perception of temporal order.

    Science.gov (United States)

    Timm, Jana; Schönwiesner, Marc; SanMiguel, Iria; Schröger, Erich

    2014-01-01

    After adaptation to a fixed temporal delay between actions and their sensory consequences, stimuli delivered during the delay are perceived to occur prior to actions. Temporal judgments are also influenced by the sensation of agency (experience of causing our own actions and their sensory consequences). Sensory consequences of voluntary actions are perceived to occur earlier in time than those of involuntary actions. However, it is unclear whether temporal order illusions influence the sensation of agency. Thus, we tested how the illusionary reversal of motor actions and sound events affect the sensation of agency. We observed an absence of the sensation of agency in the auditory modality in a condition in which sounds were falsely perceived as preceding motor acts relative to the perceived temporal order in the control condition. This finding suggests a strong association between the sensation of agency and the temporal order perception of actions and their consequences. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. A Case-Study for Life-Long Learning and Adaptation in Cooperative Robot Teams

    International Nuclear Information System (INIS)

    Parker, L.E.

    1999-01-01

    While considerable progress has been made in recent years toward the development of multi-robot teams, much work remains to be done before these teams are used widely in real-world applications. Two particular needs toward this end are the development of mechanisms that enable robot teams to generate cooperative behaviors on their own, and the development of techniques that allow these teams to autonomously adapt their behavior over time as the environment or the robot team changes. This paper proposes the use of the Cooperative Multi-Robot Observation of Multiple Moving Targets (CMOMMT) application as a rich domain for studying the issues of multi-robot learning and adaptation. After discussing the need for learning and adaptation in multi-robot teams, this paper describes the CMOMMT application and its relevance to multi-robot learning. We discuss the results of the previously- developed, hand-generated algorithm for CMOMMT and the potential for learning that was discovered from the hand-generated approach. We then describe the early work that has been done (by us and others) to generate multi- robot learning techniques for the CMOMMT application, as well as our ongoing research to develop approaches that give performance as good, or better, than the hand-generated approach. The ultimate goal of this research is to develop techniques for multi-robot learning and adaptation in the CMOMMT application domain that will generalize to cooperative robot applications in other domains, thus making the practical use of multi-robot teams in a wide variety of real-world applications much closer to reality

  6. Are online poker problem gamblers sensation seekers?

    Science.gov (United States)

    Bonnaire, Céline

    2018-03-31

    The purpose of this research was to examine the relationship between sensation seeking and online poker gambling in a community sample of adult online poker players, when controlling for age, gender, anxiety and depression. In total, 288 online poker gamblers were recruited. Sociodemographic data, gambling behavior (CPGI), sensation seeking (SSS), depression and anxiety (HADS) were evaluated. Problem online poker gamblers have higher sensation seeking scores (total, thrill and adventure, disinhibition and boredom susceptibility subscores) and depression scores than non-problem online poker gamblers. Being male, with total sensation seeking, disinhibition and depression scores are factors associated with online poker problem gambling. These findings are interesting in terms of harm reduction. For example, because disinhibition could lead to increased time and money spent, protective behavioral strategies like setting time and monetary limits should be encouraged in poker online gamblers. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Ambient Space and Ambient Sensation

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    The ambient is the aesthetic production of the sensation of being surrounded. As a concept, 'ambient' is mostly used in relation to the music genre 'ambient music' and Brian Eno's idea of environmental background music. However, the production of ambient sensations must be regarded as a central...... aspect of the aesthetization of modern culture in general, from architecture, transport and urbanized lifeforms to film, sound art, installation art and digital environments. This presentation will discuss the key aspects of ambient aesthetization, including issues such as objectlessness...

  8. Comparative Evaluation of Tactile Sensation by Electrical and Mechanical Stimulation.

    Science.gov (United States)

    Yem, Vibol; Kajimoto, Hiroyuki

    2017-01-01

    An electrotactile display is a tactile interface that provides tactile perception by passing electrical current through the surface of the skin. It is actively used instead of mechanical tactile displays for tactile feedback because of several advantages such as its small and thin size, light weight, and high responsiveness. However, the similarities and differences between these sensations is still not clear. This study directly compares the intensity sensation of electrotactile stimulation to that of mechanical stimulation, and investigates the characteristic sensation of anodic and cathodic stimulation. In the experiment, participants underwent a 30 pps electrotactile stimulus every one second to their middle finger, and were asked to match this intensity by adjusting the intensity of a mechanical tactile stimulus to an index finger. The results showed that anodic stimulation mainly produced vibration sensation, whereas cathodic sensation produced both vibration and pressure sensations. Relatively low pressure sensation was also observed for anodic stimulation but it remains low, regardless of the increasing of electrical intensity.

  9. Feasibility and efficacy of a robotic device for hand rehabilitation in hemiplegic stroke patients: a randomized pilot controlled study.

    Science.gov (United States)

    Vanoglio, Fabio; Bernocchi, Palmira; Mulè, Chiara; Garofali, Francesca; Mora, Chiara; Taveggia, Giovanni; Scalvini, Simonetta; Luisa, Alberto

    2017-03-01

    The purpose of the study was to evaluate the feasibility and efficacy of robot-assisted hand rehabilitation in improving arm function abilities in sub-acute hemiplegic patients. Randomized controlled pilot study. Inpatient rehabilitation centers. Thirty hemiplegic stroke patients (Ashworth spasticity index hand training with Gloreha, a hand rehabilitation glove that provides computer-controlled, repetitive, passive mobilization of the fingers, with multisensory feedback. Patients in the CG received the same amount of time in terms of conventional hand rehabilitation. Hand motor function (Motricity Index, MI), fine manual dexterity (Nine Hole Peg Test, NHPT) and strength (Grip and Pinch test) were measured at baseline and after rehabilitation, and the differences, (Δ) mean(standard deviation), compared between groups. Results Twenty-seven patients concluded the program: 14 in the TG and 13 in the CG. None of the patients refused the device and only one adverse event of rheumatoid arthritis reactivation was reported. Baseline data did not differ significantly between the two groups. In TG, ΔMI 23(16.4), ΔNHPT 0.16(0.16), ΔGRIP 0.27(0.23) and ΔPINCH 0.07(0.07) were significantly greater than in CG, ΔMI 5.2(9.2), ΔNHPT 0.02(0.07), ΔGRIP 0.03(0.06) and ΔPINCH 0.02(0.03)] ( p=0.002, p=0.009, p=0.003 and p=0.038, respectively). Gloreha Professional is feasible and effective in recovering fine manual dexterity and strength and reducing arm disability in sub-acute hemiplegic patients.

  10. Message sensation and cognition values: factors of competition or integration?

    Science.gov (United States)

    Xu, Jie

    2015-01-01

    Using the Activation Model of Information Exposure and Elaboration Likelihood Model as theoretical frameworks, this study explored the effects of message sensation value (MSV) and message cognition value (MCV) of antismoking public service announcements (PSAs) on ad processing and evaluation among young adults, and the difference between high sensation seekers and low sensation seekers in their perceptions and responses toward ads with different levels of sensation and cognition value. A 2 (MSV: high vs. low) × 2 (MCV: high vs. low) × 2 (need for sensation: high vs. low) mixed experimental design was conducted. Two physiological measures including skin conductance and heart rate were examined. Findings of this study show that MSV was not a distraction but a facilitator of message persuasiveness. These findings contribute to the activation model. In addition, need for sensation moderated the interaction effect of MSV and MCV on ad processing. Low sensation seekers were more likely to experience the interaction between MSV and MCV than high sensation seekers. Several observations related to the findings and implications for antismoking message designs are elaborated. Limitations and directions for future research are also outlined.

  11. Lego Robotics: STEM Sport of the Mind

    Science.gov (United States)

    Gura, Mark

    2012-01-01

    Lego robotics is engaging, hands-on, and encompasses every one of the NETS for Students. It also inspires a love of science, technology, engineering, and mathematics (STEM) and provides the experience students need to use digital age skills in the real world. In this article, the author discusses how schools get involved with Lego Robotics and…

  12. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.

    Science.gov (United States)

    Zhang, Fuhai; Fu, Yili; Zhang, Qinchao; Wang, Shuguo

    2015-01-01

    Aiming at the hand rehabilitation of stroke patients, a wearable hand exoskeleton with circuitous joint is proposed. The circuitous joint adopts the symmetric pinion and rack mechanism (SPRM) with the parallel mechanism. The exoskeleton finger is a serial mechanism composed of three closed-chain SPRM joints in series. The kinematic equations of the open chain of the finger and the closed chains of the SPRM joints were built to analyze the kinematics of the hand rehabilitation exoskeleton. The experimental setup of the hand rehabilitation exoskeleton was built and the continuous passive motion (CPM) rehabilitation experiment and the test of human-robot interaction force measurement were conducted. Experiment results show that the mechanical design of the hand rehabilitation robot is reasonable and that the kinematic analysis is correct, thus the exoskeleton can be used for the hand rehabilitation of stroke patients.

  13. Attenuation of Self-Generated Tactile Sensations is Predictive, not Postdictive.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available When one finger touches the other, the resulting tactile sensation is perceived as weaker than the same stimulus externally imposed. This attenuation of sensation could result from a predictive process that subtracts the expected sensory consequences of the action, or from a postdictive process that alters the perception of sensations that are judged after the event to be self-generated. In this study we observe attenuation even when the fingers unexpectedly fail to make contact, supporting a predictive process. This predictive attenuation of self-generated sensation may have evolved to enhance the perception of sensations with an external cause.

  14. Attenuation of self-generated tactile sensations is predictive, not postdictive.

    Directory of Open Access Journals (Sweden)

    Paul M Bays

    2006-02-01

    Full Text Available When one finger touches the other, the resulting tactile sensation is perceived as weaker than the same stimulus externally imposed. This attenuation of sensation could result from a predictive process that subtracts the expected sensory consequences of the action, or from a postdictive process that alters the perception of sensations that are judged after the event to be self-generated. In this study we observe attenuation even when the fingers unexpectedly fail to make contact, supporting a predictive process. This predictive attenuation of self-generated sensation may have evolved to enhance the perception of sensations with an external cause.

  15. Exploratory study on the effects of a robotic hand rehabilitation device on changes in grip strength and brain activity after stroke.

    Science.gov (United States)

    Pinter, Daniela; Pegritz, Sandra; Pargfrieder, Christa; Reiter, Gudrun; Wurm, Walter; Gattringer, Thomas; Linderl-Madrutter, Regina; Neuper, Claudia; Fazekas, Franz; Grieshofer, Peter; Enzinger, Christian

    2013-01-01

    The brain mechanisms underlying successful recovery of hand fuenction after stroke are still not fully understood, although functional MRI (fMRI) studies underline the importance of neuronal plasticity. We explored potential changes in brain activity in 7 patients with subacute to chronic stroke (69 ± 8 years) with moderate- to high-grade distal paresis of the upper limb (Motricity Index: 59.4) after standardized robotic finger-hand rehabilitation training, in addition to conventional rehabilitation therapy for 3 weeks. Behavioral and fMRI assessments were carried out before and after training to characterize changes in brain activity and behavior. The Motricity Index (pre: 59.4, post: 67.2, P hand increased significantly after rehabilitation. On fMRI, active movement of the affected (left) hand resulted in contralesional (ie, ipsilateral) activation of the primary sensorimotor cortex prior to rehabilitation. After rehabilitation, activation appeared "normalized," including the ipsilesional primary sensorimotor cortex and supplementary motor area (SMA). No changes and no abnormalities of activation maps were seen during movement of the unaffected hand. Subsequent region-of-interest analyses showed no significant ipsilesional activation increases after rehabilitation. Despite behavioral improvements, we failed to identify consistent patterns of functional reorganization in our sample. This warrants caution in the use of fMRI as a tool to explore neural plasticity in heterogeneous samples lacking sufficient statistical power.

  16. A transcription factor for cold sensation!

    Directory of Open Access Journals (Sweden)

    Milbrandt Jeffrey

    2005-03-01

    Full Text Available Abstract The ability to feel hot and cold is critical for animals and human beings to survive in the natural environment. Unlike other sensations, the physiology of cold sensation is mostly unknown. In the present study, we use genetically modified mice that do not express nerve growth factor-inducible B (NGFIB to investigate the possible role of NGFIB in cold sensation. We found that genetic deletion of NGFIB selectively affected behavioral responses to cold stimuli while behavioral responses to noxious heat or mechanical stimuli were normal. Furthermore, behavioral responses remained reduced or blocked in NGFIB knockout mice even after repetitive application of cold stimuli. Our results provide strong evidence that the first transcription factor NGFIB determines the ability of animals to respond to cold stimulation.

  17. 2D Hand Tracking Based on Flocking with Obstacle Avoidance

    Directory of Open Access Journals (Sweden)

    Zihong Chen

    2014-02-01

    Full Text Available Hand gesture-based interaction provides a natural and powerful means for human-computer interaction. It is also a good interface for human-robot interaction. However, most of the existing proposals are likely to fail when they meet some skin-coloured objects, especially the face region. In this paper, we present a novel hand tracking method which can track the features of the hand based on the obstacle avoidance flocking behaviour model to overcome skin-coloured distractions. It allows features to be split into two groups under severe distractions and merge later. The experiment results show that our method can track the hand in a cluttered background or when passing the face, while the Flocking of Features (FoF and the Mean Shift Embedded Particle Filter (MSEPF methods may fail. These results suggest that our method has better performance in comparison with the previous methods. It may therefore be helpful to promote the use of the hand gesture-based human-robot interaction method.

  18. Visual and tactile interfaces for bi-directional human robot communication

    Science.gov (United States)

    Barber, Daniel; Lackey, Stephanie; Reinerman-Jones, Lauren; Hudson, Irwin

    2013-05-01

    Seamless integration of unmanned and systems and Soldiers in the operational environment requires robust communication capabilities. Multi-Modal Communication (MMC) facilitates achieving this goal due to redundancy and levels of communication superior to single mode interaction using auditory, visual, and tactile modalities. Visual signaling using arm and hand gestures is a natural method of communication between people. Visual signals standardized within the U.S. Army Field Manual and in use by Soldiers provide a foundation for developing gestures for human to robot communication. Emerging technologies using Inertial Measurement Units (IMU) enable classification of arm and hand gestures for communication with a robot without the requirement of line-of-sight needed by computer vision techniques. These devices improve the robustness of interpreting gestures in noisy environments and are capable of classifying signals relevant to operational tasks. Closing the communication loop between Soldiers and robots necessitates them having the ability to return equivalent messages. Existing visual signals from robots to humans typically require highly anthropomorphic features not present on military vehicles. Tactile displays tap into an unused modality for robot to human communication. Typically used for hands-free navigation and cueing, existing tactile display technologies are used to deliver equivalent visual signals from the U.S. Army Field Manual. This paper describes ongoing research to collaboratively develop tactile communication methods with Soldiers, measure classification accuracy of visual signal interfaces, and provides an integration example including two robotic platforms.

  19. Telemanipulation of cooperative robots: a case of study

    Science.gov (United States)

    Pliego-Jiménez, Javier; Arteaga-Pérez, Marco

    2018-06-01

    This article addresses the problem of dexterous robotic grasping by means of a telemanipulation system composed of a single master and two slave robot manipulators. The slave robots are analysed as a cooperative system where it is assumed that the robots can push but not pull the object. In order to achieve a stable rigid grasp, a centralised adaptive position-force control algorithm for the slave robots is proposed. On the other hand, a linear velocity observer for the master robot is developed to avoid numerical differentiation. A set of experiments with different human operators were carried out to show the good performance and capabilities of the proposed control-observer algorithm. In addition, the dynamic model and closed-loop dynamics of the telemanipulation is presented.

  20. Sensation seeking in opium abusers compared to normal people

    Directory of Open Access Journals (Sweden)

    2004-05-01

    Full Text Available Recent research shows that it is possible to identify people at risk of substance abuse using some personality variables. Identification of these people might help social planners to deal with these people specifically in their prevention attempts. The aim of this study was to compare the sensation seeking of opium addicted and non-addicted people using the sensation seeking scale. Such a comparison might help to identify personality variables that are effective in turning toward substance abuse. In order to measure the sensation seeking of subjects “Sensation Seeking Scale” (SSS were used. 31 opium abusers were matched to 31 normal controls according to the following variables: age, education, father and mother education. Results showed that opium abusers obtain higher scores on the total sensation seeking score ,“variety seeking” and “experience seeking” subscales.

  1. Design and fabrication of robotic gripper for grasping in minimizing contact force

    Science.gov (United States)

    Heidari, Hamidreza; Pouria, Milad Jafary; Sharifi, Shahriar; Karami, Mahmoudreza

    2018-03-01

    This paper presents a new method to improve the kinematics of robot gripper for grasping in unstructured environments, such as space operations. The robot gripper is inspired from the human hand and kept the hand design close to the structure of human fingers to provide successful grasping capabilities. The main goal is to improve kinematic structure of gripper to increase the grasping capability of large objects, decrease the contact forces and makes a successful grasp of various objects in unstructured environments. This research will describe the development of a self-adaptive and reconfigurable robotic hand for space operations through mechanical compliance which is versatile, robust and easy to control. Our model contains two fingers, two-link and three-link, with combining a kinematic model of thumb index. Moreover, some experimental tests are performed to examine the effectiveness of the hand-made in real, unstructured tasks. The results represent that the successful grasp range is improved about 30% and the contact forces is reduced approximately 10% for a wide range of target object size. According to the obtained results, the proposed approach provides an accommodative kinematic model which makes the better grasping capability by fingers geometries for a robot gripper.

  2. Design of a 3-DOF Parallel Hand-Controller

    Directory of Open Access Journals (Sweden)

    Chengcheng Zhu

    2017-01-01

    Full Text Available Hand-controllers, as human-machine-interface (HMI devices, can transfer the position information of the operator’s hands into the virtual environment to control the target objects or a real robot directly. At the same time, the haptic information from the virtual environment or the sensors on the real robot can be displayed to the operator. It helps human perceive haptic information more truly with feedback force. A parallel hand-controller is designed in this paper. It is simplified from the traditional delta haptic device. The swing arms in conventional delta devices are replaced with the slider rail modules. The base consists of two hexagons and several links. For the use of the linear sliding modules instead of swing arms, the arc movement is replaced by linear movement. So that, the calculating amount of the position positive solution and the force inverse solution is reduced for the simplification of the motion. The kinematics, static mechanics, and dynamic mechanics are analyzed in this paper. What is more, two demonstration applications are developed to verify the performance of the designed hand-controller.

  3. Foot-controlled robotic-enabled endoscope holder for endoscopic sinus surgery: A cadaveric feasibility study.

    Science.gov (United States)

    Chan, Jason Y K; Leung, Iris; Navarro-Alarcon, David; Lin, Weiyang; Li, Peng; Lee, Dennis L Y; Liu, Yun-hui; Tong, Michael C F

    2016-03-01

    To evaluate the feasibility of a unique prototype foot-controlled robotic-enabled endoscope holder (FREE) in functional endoscopic sinus surgery. Cadaveric study. Using human cadavers, we investigated the feasibility, advantages, and disadvantages of the robotic endoscope holder in performing endoscopic sinus surgery with two hands in five cadaver heads, mimicking a single nostril three-handed technique. The FREE robot is relatively easy to use. Setup was quick, taking less than 3 minutes from docking the robot at the head of the bed to visualizing the middle meatus. The unit is also relatively small, takes up little space, and currently has four degrees of freedom. The learning curve for using the foot control was short. The use of both hands was not hindered by the presence of the endoscope in the nasal cavity. The tremor filtration also aided in the smooth movement of the endoscope, with minimal collisions. The FREE endoscope holder in an ex-vivo cadaver test corroborated the feasibility of the robotic prototype, which allows for a two-handed approach to surgery equal to a single nostril three-handed technique without the holder that may reduce operating time. Further studies will be needed to evaluate its safety profile and use in other areas of endoscopic surgery. NA. Laryngoscope, 126:566-569, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  4. Introduction to Autonomous Mobile Robotics Using "Lego Mindstorms" NXT

    Science.gov (United States)

    Akin, H. Levent; Meriçli, Çetin; Meriçli, Tekin

    2013-01-01

    Teaching the fundamentals of robotics to computer science undergraduates requires designing a well-balanced curriculum that is complemented with hands-on applications on a platform that allows rapid construction of complex robots, and implementation of sophisticated algorithms. This paper describes such an elective introductory course where the…

  5. Supporting Robotics Education in STEM with Learning Analytics

    DEFF Research Database (Denmark)

    Spikol, Daniel; Friesel, Anna; Ehrenberg, H.

    of instructional practices that center on collaborative, hands-on, engineering design problems. The use of hands-on engineering design problems for robotics in classroom teaching are facilitated by physical computing kits, such as programmable microcontrollers like Arduino, and other platforms. These kits provide...

  6. EXOS research on master controllers for robotic devices

    Science.gov (United States)

    Marcus, Beth A.; An, Ben; Eberman, Brian

    1992-01-01

    Two projects are currently being conducted by EXOS under the Small Business Innovation Research (SBIR) program with NASA. One project will develop a force feedback device for controlling robot hands, the other will develop an elbow and shoulder exoskeleton which can be integrated with other EXOS devices to provide whole robot arm and hand control. Aspects covered are the project objectives, important research issues which have arisen during the developments, and interim results of the projects. The Phase 1 projects currently underway will result in hardware prototypes and identification of research issues required for complete system development and/or integration.

  7. A cognitive operating system (COGNOSYS) for JPL's robot, phase 1 report

    Science.gov (United States)

    Mathur, F. P.

    1972-01-01

    The most important software requirement for any robot development is the COGNitive Operating SYStem (COGNOSYS). This report describes the Stanford University Artificial Intelligence Laboratory's hand eye software system from the point of view of developing a cognitive operating system for JPL's robot. In this, the Phase 1 of the JPL robot COGNOSYS task the installation of a SAIL compiler and a FAIL assembler on Caltech's PDP-10 have been accomplished and guidelines have been prepared for the implementation of a Stanford University type hand eye software system on JPL-Caltech's computing facility. The alternatives offered by using RAND-USC's PDP-10 Tenex operating sytem are also considered.

  8. Effect of wind speed on human thermal sensation and thermal comfort

    Science.gov (United States)

    Hou, Yuhan

    2018-06-01

    In this experiment, a method of questionnaire survey was adopted. By changing the air flow rate under the indoor and outdoor natural conditions, the subjective Thermal Sensation Vote (TSV) and the Thermal Comfort Vote (TCV) were recorded. The draft sensation can reduce the thermal sensation, but the draft sensation can cause discomfort, and the thermal comfort in a windy environment is lower than in a windless environment. When the temperature rises or the level of human metabolism increases, the person feels heat, the demand for draft sensation increases, and the uncomfortable feeling caused by the draft sensation may be reduced. Increasing the air flow within a certain range can be used to compensate for the increase in temperature.

  9. Cryotherapy, Sensation, and Isometric-Force Variability

    Science.gov (United States)

    Denegar, Craig R.; Buckley, William E.; Newell, Karl M.

    2003-01-01

    Objective: To determine the changes in sensation of pressure, 2-point discrimination, and submaximal isometric-force production variability due to cryotherapy. Design and Setting: Sensation was assessed using a 2 × 2 × 2 × 3 repeated-measures factorial design, with treatment (ice immersion or control), limb (right or left), digit (finger or thumb), and sensation test time (baseline, posttreatment, or postisometric-force trials) as independent variables. Dependent variables were changes in sensation of pressure and 2-point discrimination. Isometric-force variability was tested with a 2 × 2 × 3 repeated-measures factorial design. Treatment condition (ice immersion or control), limb (right or left), and percentage (10, 25, or 40) of maximal voluntary isometric contraction (MVIC) were the independent variables. The dependent variables were the precision or variability (the standard deviation of mean isometric force) and the accuracy or targeting error (the root mean square error) of the isometric force for each percentage of MVIC. Subjects: Fifteen volunteer college students (8 men, 7 women; age = 22 ± 3 years; mass = 72 ± 21.9 kg; height = 183.4 ± 11.6 cm). Measurements: We measured sensation in the distal palmar aspect of the index finger and thumb. Sensation of pressure and 2-point discrimination were measured before treatment (baseline), after treatment (15 minutes of ice immersion or control), and at the completion of isometric testing (final). Variability (standard deviation of mean isometric force) of the submaximal isometric finger forces was measured by having the subjects exert a pinching force with the thumb and index finger for 30 seconds. Subjects performed the pinching task at the 3 submaximal levels of MVIC (10%, 25%, and 40%), with the order of trials assigned randomly. The subjects were given a target representing the submaximal percentage of MVIC and visual feedback of the force produced as they pinched the testing device. The force exerted

  10. Deep learning with convolutional neural networks: a resource for the control of robotic prosthetic hands via electromyography

    Directory of Open Access Journals (Sweden)

    Manfredo Atzori

    2016-09-01

    Full Text Available Motivation: Natural control methods based on surface electromyography and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications and commercial prostheses are in the best case capable to offer natural control for only a few movements. Objective: In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its capabilities for the natural control of robotic hands via surface electromyography by providing a baseline on a large number of intact and amputated subjects. Methods: We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 hand amputated subjects. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets.Results: The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods but lower than the results obtained with the best reference methods in our tests. Significance: The results show that convolutional neural networks with a very simple architecture can produce accuracy comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters can be fundamental for the analysis of surface electromyography data. Finally, the results suggest that deeper and more complex networks may increase dexterous control robustness, thus contributing to bridge the gap between the market and scientific research

  11. Introduction to autonomous mobile robotics using Lego Mindstorms NXT

    Science.gov (United States)

    Akın, H. Levent; Meriçli, Çetin; Meriçli, Tekin

    2013-12-01

    Teaching the fundamentals of robotics to computer science undergraduates requires designing a well-balanced curriculum that is complemented with hands-on applications on a platform that allows rapid construction of complex robots, and implementation of sophisticated algorithms. This paper describes such an elective introductory course where the Lego Mindstorms NXT kits are used as the robot platform. The aims, scope and contents of the course are presented, and the design of the laboratory sessions as well as the term projects, which address several core problems of robotics and artificial intelligence simultaneously, are explained in detail.

  12. The Subjective Sensation of Synchrony: An Experimental Study

    KAUST Repository

    Llobera, Joan; Charbonnier, Caecilia; Chagué , Sylvain; Preissmann, Delphine; Antonietti, Jean-Philippe; Ansermet, Franç ois; Magistretti, Pierre J.

    2016-01-01

    People performing actions together have a natural tendency to synchronize their behavior. Consistently, people doing a task together build internal representations not only of their actions and goals, but also of the other people performing the task. However, little is known about which are the behavioral mechanisms and the psychological factors affecting the subjective sensation of synchrony, or “connecting” with someone else. In this work, we sought to find which factors induce the subjective sensation of synchrony, combining motion capture data and psychological measures. Our results show that the subjective sensation of synchrony is affected by performance quality together with task category, and time. Psychological factors such as empathy and negative subjective affects also correlate with the subjective sensation of synchrony. However, when people estimate synchrony as seen from a third person perspective, their psychological factors do not affect the accuracy of the estimation. We suggest that to feel this sensation it is necessary to, first, have a good joint performance and, second, to assume the existence of an attention monitoring mechanism that reports that the attention of both participants (self and other) is focused on the task.

  13. The Subjective Sensation of Synchrony: An Experimental Study

    KAUST Repository

    Llobera, Joan

    2016-02-12

    People performing actions together have a natural tendency to synchronize their behavior. Consistently, people doing a task together build internal representations not only of their actions and goals, but also of the other people performing the task. However, little is known about which are the behavioral mechanisms and the psychological factors affecting the subjective sensation of synchrony, or “connecting” with someone else. In this work, we sought to find which factors induce the subjective sensation of synchrony, combining motion capture data and psychological measures. Our results show that the subjective sensation of synchrony is affected by performance quality together with task category, and time. Psychological factors such as empathy and negative subjective affects also correlate with the subjective sensation of synchrony. However, when people estimate synchrony as seen from a third person perspective, their psychological factors do not affect the accuracy of the estimation. We suggest that to feel this sensation it is necessary to, first, have a good joint performance and, second, to assume the existence of an attention monitoring mechanism that reports that the attention of both participants (self and other) is focused on the task.

  14. How do different tests evaluate sensation in the lower urinary tract?

    Science.gov (United States)

    De Laet, Kevin; De Wachter, Stefan; Van Meel, Tom; Wyndaele, Jean-Jacques

    2010-04-01

    Different tests can be used to evaluate lower urinary tract (LUT) sensation. The purpose of this study is to compare sensory tests in patients with voiding disorders. Seventy patients with various functional disorders of the LUT were admitted for a cystometry and an electrical perception threshold test of the bladder (bEPT) and distal urethra (uEPT). A pudendal EPT (pEPT) and pudendal somatosensory evoked potentials (pSSEP) were also determined. Correlations were calculated for somatosensory (uEPT, pEPT and pSSEP latency) and viscerosensory tests (volumes at filling sensations and bEPT). Fifty of the 70 patients (71%) had normal bladder filling sensations, with abnormal bEPT in 21/50 (41%), including 11 (22%) with no sensation at maximal electrical stimulation. Twenty out of 70 (29%) had an abnormal pattern of filling sensation, with increased bEPT in 13/20 (65%) and no sensation at electrical stimulation in 8/13 (40%). No significant correlation exists between filling sensation and bladder electrical perception thresholds (r 0.243). pEPT correlated with uEPT and SSEP (r > 0.035, p sensation. No significant correlation exists between volumes of filling sensations and bEPT (r 0.243). Therefore, both tests provide complementary information. Somatosensory tests of the pudendal nerve are correlated, so performing SSEP, pEPT and uEPT provides poor additional information to one of these tests alone. Somatosensory pudendal tests cannot be used to quantify filling sensation.

  15. Rubber hand illusion under delayed visual feedback.

    Directory of Open Access Journals (Sweden)

    Sotaro Shimada

    Full Text Available BACKGROUND: Rubber hand illusion (RHI is a subject's illusion of the self-ownership of a rubber hand that was touched synchronously with their own hand. Although previous studies have confirmed that this illusion disappears when the rubber hand was touched asynchronously with the subject's hand, the minimum temporal discrepancy of these two events for attenuation of RHI has not been examined. METHODOLOGY/PRINCIPAL FINDINGS: In this study, various temporal discrepancies between visual and tactile stimulations were introduced by using a visual feedback delay experimental setup, and RHI effects in each temporal discrepancy condition were systematically tested. The results showed that subjects felt significantly greater RHI effects with temporal discrepancies of less than 300 ms compared with longer temporal discrepancies. The RHI effects on reaching performance (proprioceptive drift showed similar conditional differences. CONCLUSIONS/SIGNIFICANCE: Our results first demonstrated that a temporal discrepancy of less than 300 ms between visual stimulation of the rubber hand and tactile stimulation to the subject's own hand is preferable to induce strong sensation of RHI. We suggest that the time window of less than 300 ms is critical for multi-sensory integration processes constituting the self-body image.

  16. Visual sensations induced by relativistic pions

    International Nuclear Information System (INIS)

    McNulty, P.J.; Pease, V.P.; Bond, V.P.

    1976-01-01

    Visual sensations were experienced when bursts of high-energy pions passed through the dark-adapted right eyes of three human subjects. The threshold for a visual sensation was typically 1 to 3 μrad at the retina. Data are presented to show that the mechanism is Cerenkov radiation generated within the vitreous humor. Threshold measurements agree with published optical data. A comparison is made between our observations and the light flashes observed in deep space by Apollo astronauts

  17. Assessment of Myoelectric Controller Performance and Kinematic Behavior of a Novel Soft Synergy-Inspired Robotic Hand for Prosthetic Applications.

    Science.gov (United States)

    Fani, Simone; Bianchi, Matteo; Jain, Sonal; Pimenta Neto, José Simões; Boege, Scott; Grioli, Giorgio; Bicchi, Antonio; Santello, Marco

    2016-01-01

    Myoelectric artificial limbs can significantly advance the state of the art in prosthetics, since they can be used to control mechatronic devices through muscular activity in a way that mimics how the subjects used to activate their muscles before limb loss. However, surveys indicate that dissatisfaction with the functionality of terminal devices underlies the widespread abandonment of prostheses. We believe that one key factor to improve acceptability of prosthetic devices is to attain human likeness of prosthesis movements, a goal which is being pursued by research on social and human-robot interactions. Therefore, to reduce early abandonment of terminal devices, we propose that controllers should be designed so as to ensure effective task accomplishment in a natural fashion. In this work, we have analyzed and compared the performance of three types of myoelectric controller algorithms based on surface electromyography to control an underactuated and multi-degrees of freedom prosthetic hand, the SoftHand Pro. The goal of the present study was to identify the myoelectric algorithm that best mimics the native hand movements. As a preliminary step, we first quantified the repeatability of the SoftHand Pro finger movements and identified the electromyographic recording sites for able-bodied individuals with the highest signal-to-noise ratio from two pairs of muscles, i.e., flexor digitorum superficialis/extensor digitorum communis, and flexor carpi radialis/extensor carpi ulnaris. Able-bodied volunteers were then asked to execute reach-to-grasp movements, while electromyography signals were recorded from flexor digitorum superficialis/extensor digitorum communis as this was identified as the muscle pair characterized by high signal-to-noise ratio and intuitive control. Subsequently, we tested three myoelectric controllers that mapped electromyography signals to position of the SoftHand Pro. We found that a differential electromyography-to-position mapping ensured the

  18. Assessment of Myoelectric Controller Performance and Kinematic Behavior of a Novel Soft Synergy-inspired Robotic Hand for Prosthetic Applications

    Directory of Open Access Journals (Sweden)

    Simone Fani

    2016-10-01

    Full Text Available Myoelectric-artificial limbs can significantly advance the state of the art in prosthetics, since they can be used to control mechatronic devices through muscular activity in a way that mimics how the subjects used to activate their muscles before limb loss. However, surveys indicate that dissatisfaction with the functionality of terminal devices underlies the widespread abandonment of prostheses. We believe that one key factor to improve acceptability of prosthetic devices is to attain human-likeness of prosthesis movements, a goal which is being pursued by research on social and human-robot interactions. Therefore, to reduce early abandonment of terminal devices, we propose that controllers should be designed such as to ensure effective task accomplishment in a natural fashion. In this work, we have analyzed and compared the performance of three types of myoelectric controller algorithms based on surface electromyography to control an under-actuated and multi-degrees of freedom prosthetic hand, the SoftHand Pro. The goal of the present study was to identify the myoelectric algorithm that best mimics the native hand movements. As a preliminary step, we first quantified the repeatability of the SoftHand Pro finger movements and identified the electromyographic recording sites for able-bodied individuals with the highest signal-to-noise ratio from two pairs of muscles, i.e. flexor digitorum superficialis/extensor digitorum communis, and flexor carpi radialis/extensor carpi ulnaris. Able-bodied volunteers were then asked to execute reach-to-grasp movements, while electromyography signals were recorded from flexor digitorum superficialis/extensor digitorum communis as this was identified as the muscle pair characterized by high signal-to-noise ratio and intuitive control. Subsequently, we tested three myoelectric controllers that mapped electromyography signals to position of the SoftHand Pro. We found that a differential electromyography

  19. An integrated movement capture and control platform applied towards autonomous movements of surgical robots.

    Science.gov (United States)

    Daluja, Sachin; Golenberg, Lavie; Cao, Alex; Pandya, Abhilash K; Auner, Gregory W; Klein, Michael D

    2009-01-01

    Robotic surgery has gradually gained acceptance due to its numerous advantages such as tremor filtration, increased dexterity and motion scaling. There remains, however, a significant scope for improvement, especially in the areas of surgeon-robot interface and autonomous procedures. Previous studies have attempted to identify factors affecting a surgeon's performance in a master-slave robotic system by tracking hand movements. These studies relied on conventional optical or magnetic tracking systems, making their use impracticable in the operating room. This study concentrated on building an intrinsic movement capture platform using microcontroller based hardware wired to a surgical robot. Software was developed to enable tracking and analysis of hand movements while surgical tasks were performed. Movement capture was applied towards automated movements of the robotic instruments. By emulating control signals, recorded surgical movements were replayed by the robot's end-effectors. Though this work uses a surgical robot as the platform, the ideas and concepts put forward are applicable to telerobotic systems in general.

  20. Admittance Control for Robot Assisted Retinal Vein Micro-Cannulation under Human-Robot Collaborative Mode.

    Science.gov (United States)

    Zhang, He; Gonenc, Berk; Iordachita, Iulian

    2017-10-01

    Retinal vein occlusion is one of the most common retinovascular diseases. Retinal vein cannulation is a potentially effective treatment method for this condition that currently lies, however, at the limits of human capabilities. In this work, the aim is to use robotic systems and advanced instrumentation to alleviate these challenges, and assist the procedure via a human-robot collaborative mode based on our earlier work on the Steady-Hand Eye Robot and force-sensing instruments. An admittance control method is employed to stabilize the cannula relative to the vein and maintain it inside the lumen during the injection process. A pre-stress strategy is used to prevent the tip of microneedle from getting out of vein in in prolonged infusions, and the performance is verified through simulations.

  1. Solifenacin objectively decreases urinary sensation in women with overactive bladder syndrome.

    Science.gov (United States)

    Lowenstein, Lior; Kenton, Kimberly; Mueller, Elizabeth R; Brubaker, Linda; Sabo, Edmond; Durazo-Arivzu, Ramón A; Fitzgerald, Mary P

    2012-04-01

    To evaluate the test-retest reliability of a device that measures urinary sensation during cystometry, and to use that device to determine whether treatment of overactive bladder syndrome (OAB) with solifenacin is associated with a change in urinary sensation. Overall 15 women were recruited for this study, ten women with OAB and urodynamically demonstrated detrusor overactivity and five controls without OAB underwent filling cystometry twice with contemporaneous, continuous recording of urinary sensation. Women with OAB received solifenacin 10 mg daily during the weeks between testing. We compared the areas under the initial and repeat sensation-volume curves. While taking solifenacin, the maximum cystometric capacity increased from 329 ± 168 ml to 464 ± 123 ml (P sensation curve decreased (P sensation during the treatment of OAB with solifenacin. If clinical correlations are confirmed by future study, such urinary sensation measures may prove useful as assessment, treatment predictor, or outcome measures in OAB research and/or clinical care.

  2. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  3. Sensation seeking in males involved in recreational high risk sports

    Directory of Open Access Journals (Sweden)

    M Guszkowska

    2010-09-01

    Full Text Available The study examined sensation seeking intensity level in males involved in recreational high risk sports and investigated whether its level depends on type of sport practised. Additionally, in case of parachutists, sport experience of study participants were scrutinised with regard to its possible impact on the level of sensation seeking.The research involved 217 males aged 17 to 45, practising recreational high risk sports, namely: parachuting (n=98; wakeboarding (n=30; snowboarding (n=30; scuba diving (n=22; alpinism (n=20; paragliding (n=17. The control group included 54 men not involved in sports. Polish version of Sensation Seeking Scale (SSS-IV of Zuckerman was applied.Results show, that high risk sports males are featured by stronger need of sensations in comparison to control group and this concerned all but one aspect of sensation seeking variable. The only exception was the need of intellectual stimulation. Except from the thrill and adventure seeking dimension, type of sport may also be an important determinant of sensation seeking. Men practising snowboard and wakeboard presented stronger need for sensations, especially in the dimension of experience seeking, disinhibition and boredom susceptibility. Sport experience (number of jumps in parachuting did not differentiate the level of sensation seeking among investigated parachutists. Population of sport high risk male takers was not homogeneous, and therefore in future research one should analyse specific sports (or events in a certain sport separately.

  4. Setup of a novel biofeedback prototype for sensorimotor control of the hand and preliminary application in patients with peripheral nerve injuries.

    Science.gov (United States)

    Chiu, Haw-Yen; Hsu, Hsiu-Yun; Su, Fong-Chin; Jou, I-Ming; Lin, Cheng-Feng; Kuo, Li-Chieh

    2013-02-01

    Biofeedback training is widely used for rehabilitative intervention in patients with central or peripheral nervous impairment to train correct movement patterns; however, no biofeedback apparatus is currently available to correct pinch force ratios for patients with sensory deficiencies. A cross-sectional and longitudinal design was used in an observational measurement study for establishing a prototype and to determine the effects of biofeedback intervention, respectively. This study aimed to develop a computerized evaluation and re-education biofeedback (CERB) prototype for application in clinical settings. A CERB prototype was developed integrating pinch apparatus hardware, a biofeedback user-controlled interface, and a data processing/analysis interface to detect momentary pinch performances in 79 people with normal hand sensation. Nine patients with hand sensory impairments were recruited to investigate the effects of training hand function with the CERB prototype. Hand dominance, pinch pattern, and age significantly affected the peak pinch force and force ratio for lifting a 480-g object with a steel surface. In the case of the 79 volunteers with normal hand sensation, hand dominance affected the time lag between peak pinch force and maximum load; however, it was unaffected by pinch pattern or age. Training with the CERB prototype produced significant improvements in force ratio and better performance in the pin insertion subtests, although the results for both 2-point discriminative and Semmes-Weinstein monofilament tests did not change significantly. The intervention findings are preliminary. This study developed a conjunct system suited for evaluating and restoring sensorimotor function for patients with impaired hand sensibility. The results from the participants with normal hand sensation could serve as a reference database for comparison with patients with nerve injuries.

  5. Estimation of Thermal Sensation Based on Wrist Skin Temperatures

    Science.gov (United States)

    Sim, Soo Young; Koh, Myung Jun; Joo, Kwang Min; Noh, Seungwoo; Park, Sangyun; Kim, Youn Ho; Park, Kwang Suk

    2016-01-01

    Thermal comfort is an essential environmental factor related to quality of life and work effectiveness. We assessed the feasibility of wrist skin temperature monitoring for estimating subjective thermal sensation. We invented a wrist band that simultaneously monitors skin temperatures from the wrist (i.e., the radial artery and ulnar artery regions, and upper wrist) and the fingertip. Skin temperatures from eight healthy subjects were acquired while thermal sensation varied. To develop a thermal sensation estimation model, the mean skin temperature, temperature gradient, time differential of the temperatures, and average power of frequency band were calculated. A thermal sensation estimation model using temperatures of the fingertip and wrist showed the highest accuracy (mean root mean square error [RMSE]: 1.26 ± 0.31). An estimation model based on the three wrist skin temperatures showed a slightly better result to the model that used a single fingertip skin temperature (mean RMSE: 1.39 ± 0.18). When a personalized thermal sensation estimation model based on three wrist skin temperatures was used, the mean RMSE was 1.06 ± 0.29, and the correlation coefficient was 0.89. Thermal sensation estimation technology based on wrist skin temperatures, and combined with wearable devices may facilitate intelligent control of one’s thermal environment. PMID:27023538

  6. Thirst sensation and oral dryness following alcohol intake

    Directory of Open Access Journals (Sweden)

    Kiyotoshi Inenaga

    2017-08-01

    Full Text Available Substantial acute and chronic intakes of alcohol or ethanol (EtOH severely influence oral sensations, such as thirst and oral dryness (dry mouth, xerostomia. Thirst sensation and oral dryness are primarily caused by the activation of neurons in brain regions, including the circumventricular organs and hypothalamus, which are referred to as the dipsogenic center, and by a decrease in salivary secretion, respectively. The sensation of thirst experienced after heavy-alcohol drinking is widely regarded as a consequence of EtOH-induced diuresis; however, EtOH in high doses induces anti-diuresis. Recently, it has been proposed that the ethanol metabolite acetaldehyde induces thirst via two distinct processes in the central nervous system from EtOH-induced diuresis, based on the results of animal experiments. The present review describes new insights regarding the induction mechanism of thirst sensation and oral dryness after drinking alcohol.

  7. Finger tips detection for two handed gesture recognition

    Science.gov (United States)

    Bhuyan, M. K.; Kar, Mithun Kumar; Neog, Debanga Raj

    2011-10-01

    In this paper, a novel algorithm is proposed for fingertips detection in view of two-handed static hand pose recognition. In our method, finger tips of both hands are detected after detecting hand regions by skin color-based segmentation. At first, the face is removed in the image by using Haar classifier and subsequently, the regions corresponding to the gesturing hands are isolated by a region labeling technique. Next, the key geometric features characterizing gesturing hands are extracted for two hands. Finally, for all possible/allowable finger movements, a probabilistic model is developed for pose recognition. Proposed method can be employed in a variety of applications like sign language recognition and human-robot-interactions etc.

  8. Study on real-time force feedback for a master-slave interventional surgical robotic system.

    Science.gov (United States)

    Guo, Shuxiang; Wang, Yuan; Xiao, Nan; Li, Youxiang; Jiang, Yuhua

    2018-04-13

    In robot-assisted catheterization, haptic feedback is important, but is currently lacking. In addition, conventional interventional surgical robotic systems typically employ a master-slave architecture with an open-loop force feedback, which results in inaccurate control. We develop herein a novel real-time master-slave (RTMS) interventional surgical robotic system with a closed-loop force feedback that allows a surgeon to sense the true force during remote operation, provide adequate haptic feedback, and improve control accuracy in robot-assisted catheterization. As part of this system, we also design a unique master control handle that measures the true force felt by a surgeon, providing the basis for the closed-loop control of the entire system. We use theoretical and empirical methods to demonstrate that the proposed RTMS system provides a surgeon (using the master control handle) with a more accurate and realistic force sensation, which subsequently improves the precision of the master-slave manipulation. The experimental results show a substantial increase in the control accuracy of the force feedback and an increase in operational efficiency during surgery.

  9. Robotic-assisted surgery in ophthalmology.

    Science.gov (United States)

    de Smet, Marc D; Naus, Gerrit J L; Faridpooya, Koorosh; Mura, Marco

    2018-05-01

    Provide an overview of the current landscape of robotics in ophthalmology, including the pros and cons of system designs, the clinical development path, and the likely future direction of the field. Robots designed for eye surgery should meet certain basic requirements. Three designs are currently being developed: smart surgical tools such as the steady hand, comanipulation devices and telemanipulators using either a fixed or virtual remote center of motion. Successful human intraocular surgery is being performed using the Preceyes surgical system. Another telemanipulation robot, the da Vinci Surgical System, has been used to perform a pterygium repair in humans and was successful in ex-vivo corneal surgery despite its nonophthalmic design. Apart from Preceyes' BV research platform, none of the currently eye-specific systems has reached a commercial stage. Systems are likely to evolve from robotic assistance during specific procedural steps to semiautonomous surgery, as smart sensors are introduced to enhance the basic functionalities of robotic systems. Robotics is still in its infancy in ophthalmology but is rapidly reaching a stage wherein it will be introduced into everyday ophthalmic practice. It will most likely be introduced first for demanding vitreo-retinal procedures, followed by anterior segment applications.

  10. Authoritative Parenting and Sensation Seeking as Predictors of Adolescent Cigarette and Marijuana Use

    Science.gov (United States)

    Stephenson, Michael T.; Helme, Donald W.

    2006-01-01

    Adolescents with high sensation-seeking tendencies often seek out thrill seeking experiences to satisfy their need for stimulation and sensation. In many cases, sensation-seeking adolescents fulfill their need for stimulation and sensation by using illicit substances. However, not all high sensation seekers use drugs, although the factors that…

  11. The Neural Mechanisms of Re-Experiencing Mental Fatigue Sensation: A Magnetoencephalography Study

    OpenAIRE

    Ishii, Akira; Karasuyama, Takuma; Kikuchi, Taiki; Tanaka, Masaaki; Yamano, Emi; Watanabe, Yasuyoshi

    2015-01-01

    There have been several studies which have tried to clarify the neural mechanisms of fatigue sensation; however fatigue sensation has multiple aspects. We hypothesized that past experience related to fatigue sensation is an important factor which contributes to future formation of fatigue sensation through the transfer to memories that are located within specific brain structures. Therefore, we aimed to investigate the neural mechanisms of fatigue sensation related to memory. In the present s...

  12. Robotic set-up to quantify hand-eye behavior in motor execution and learning of children with autism spectrum disorder.

    Science.gov (United States)

    Casellato, Claudia; Gandolla, Marta; Crippa, Alessandro; Pedrocchi, Alessandra

    2017-07-01

    Autism spectrum disorder (ASD) is a multifaceted neurodevelopmental disorder characterized by a persistence of social and communication impairment, and restricted and repetitive behaviors. However, motor disorders have also been described, but not objectively assessed. Most studies showed inefficient eye-hand coordination and motor learning in children with ASD; in other experiments, mechanisms of acquisition of internal models in self-generated movements appeared to be normal in autism. In this framework, we have developed a robotic protocol, recording gaze and hand data during upper limb tasks, in which a haptic pen-like handle is moved along specific trajectories displayed on the screen. The protocol includes trials of reaching under a perturbing force field and catching moving targets, with or without visual availability of the whole path. We acquired 16 typically-developing scholar-age children and one child with ASD as a case study. Speed-accuracy tradeoff, motor performance, and gaze-hand spatial coordination have been evaluated. Compared to typically developing peers, in the force field sequence, the child with ASD showed an intact but delayed learning, and more variable gazehand patterns. In the catching trials, he showed less efficient movements, but an intact capability of exploiting the available a-priori plan. The proposed protocol represents a powerful tool, easily tunable, for quantitative (longitudinal) assessment, and for subject-tailored training in ASD.

  13. Node Primitives: an open end-user programming platform for social robots

    OpenAIRE

    Coronado, Enrique; Mastrogiovanni, Fulvio; Venture, Gentiane

    2017-01-01

    With the expected adoption of robots able to seamlessly and intuitively interact with people in real-world scenarios, the need arises to provide non-technically-skilled users with easy-to-understand paradigms for customising robot behaviors. In this paper, we present an interaction design robot programming platform for enabling multidisciplinary social robot research and applications. This platform is referred to Node Primitives (NEP) and consists of two main parts. On the one hand, a ZeroMQ ...

  14. Air Muscle Actuated Low Cost Humanoid Hand

    Directory of Open Access Journals (Sweden)

    Peter Scarfe

    2008-11-01

    Full Text Available The control of humanoid robot hands has historically been expensive due to the cost of precision actuators. This paper presents the design and implementation of a low-cost air muscle actuated humanoid hand developed at Curtin University of Technology. This hand offers 10 individually controllable degrees of freedom ranging from the elbow to the fingers, with overall control handled through a computer GUI. The hand is actuated through 20 McKibben-style air muscles, each supplied by a pneumatic pressure-balancing valve that allows for proportional control to be achieved with simple and inexpensive components. The hand was successfully able to perform a number of human-equivalent tasks, such as grasping and relocating objects.

  15. Air Muscle Actuated Low Cost Humanoid Hand

    Directory of Open Access Journals (Sweden)

    Peter Scarfe

    2006-06-01

    Full Text Available The control of humanoid robot hands has historically been expensive due to the cost of precision actuators. This paper presents the design and implementation of a low-cost air muscle actuated humanoid hand developed at Curtin University of Technology. This hand offers 10 individually controllable degrees of freedom ranging from the elbow to the fingers, with overall control handled through a computer GUI. The hand is actuated through 20 McKibben-style air muscles, each supplied by a pneumatic pressure-balancing valve that allows for proportional control to be achieved with simple and inexpensive components. The hand was successfully able to perform a number of human-equivalent tasks, such as grasping and relocating objects.

  16. Multimodal mechanisms of food creaminess sensation.

    Science.gov (United States)

    Chen, Jianshe; Eaton, Louise

    2012-12-01

    In this work, the sensory creaminess of a set of four viscosity-matched fluid foods (single cream, evaporated milk, corn starch solution, and corn starch solution containing long chain free fatty acids) was tested by a panel of 16 assessors via controlled sensation mechanisms of smell only, taste only, taste and tactile, and integrated multimodal. It was found that all sensation channels were able to discriminate between creamy and non-creamy foods, but only the multimodal method gave creaminess ratings in agreement with the samples' fat content. Results from this study show that the presence of long chain free fatty acids has no influence on creaminess perception. It is certain that food creaminess is not a primary sensory property but an integrated sensory perception (or sensory experience) derived from combined sensations of visual, olfactory, gustatory, and tactile cues. Creamy colour, milky flavour, and smooth texture are probably the most important sensory features of food creaminess.

  17. Motion sickness history, food neophobia, and sensation seeking.

    Science.gov (United States)

    Alley, Thomas R; Willet, Kathleen A; Muth, Eric R

    2006-06-01

    Motion sickness is believed to be caused by conflicting sensory signals, a situation that mimics the effects of ingesting certain toxins. Thus, one might suspect that individuals who have experienced a relatively high frequency of motion sickness may be particularly vigilant about avoiding anything that produces nausea, induding potentially nauseating toxins. Consequently, they may be more resistant to trying new foods, i.e., be more food neophobic, since unfamiliar foods can have unexpected adverse effects due to toxins or allergens. Likewise, many highly stimulating experiences can trigger motion sickness, so individuals who are more susceptible may be more prone to avoid such experiences, i.e., be less sensation seeking. Finally, it was expected that food neophobia would be more frequent in individuals low on sensation seeking tendencies. Self-reported motion sickness history in 308 adults (M= 18.8 yr.; SD = 1.6) was correlated with scores on the Arnett Inventory of Sensation Seeking and the Food Neophobia Scale. As predicted, greater history of motion sickness was associated with lower Sensation Seeking scores. Food Neophobia was not correlated with motion sickness history but, as expected, was negatively correlated (r = -.42) with scores on Sensation Seeking. Further research is recommended that measures actual sensitivity to motion sickness.

  18. Translational control of a graphically simulated robot arm by kinematic rate equations that overcome elbow joint singularity

    Science.gov (United States)

    Barker, L. K.; Houck, J. A.; Carzoo, S. W.

    1984-01-01

    An operator commands a robot hand to move in a certain direction relative to its own axis system by specifying a velocity in that direction. This velocity command is then resolved into individual joint rotational velocities in the robot arm to effect the motion. However, the usual resolved-rate equations become singular when the robot arm is straightened. To overcome this elbow joint singularity, equations were developed which allow continued translational control of the robot hand even though the robot arm is (or is nearly) fully extended. A feature of the equations near full arm extension is that an operator simply extends and retracts the robot arm to reverse the direction of the elbow bend (difficult maneuver for the usual resolved-rate equations). Results show successful movement of a graphically simulated robot arm.

  19. Thermal sensations and comfort investigations in transient conditions in tropical office.

    Science.gov (United States)

    Dahlan, Nur Dalilah; Gital, Yakubu Yau

    2016-05-01

    The study was done to identify affective and sensory responses observed as a result of hysteresis effects in transient thermal conditions consisting of warm-neutral and neutral - warm performed in a quasi-experiment setting. Air-conditioned building interiors in hot-humid areas have resulted in thermal discomfort and health risks for people moving into and out of buildings. Reports have shown that the instantaneous change in air temperature can cause abrupt thermoregulation responses. Thermal sensation vote (TSV) and thermal comfort vote (TCV) assessments as a consequence of moving through spaces with distinct thermal conditions were conducted in an existing single-story office in a hot-humid microclimate, maintained at an air temperature 24 °C (± 0.5), relative humidity 51% (± 7), air velocity 0.5 m/s (± 0.5), and mean radiant temperature (MRT) 26.6 °C (± 1.2). The measured office is connected to a veranda that showed the following semi-outdoor temperatures: air temperature 35 °C (± 2.1), relative humidity 43% (± 7), air velocity 0.4 m/s (± 0.4), and MRT 36.4 °C (± 2.9). Subjective assessments from 36 college-aged participants consisting of thermal sensations, preferences and comfort votes were correlated against a steady state predicted mean vote (PMV) model. Local skin temperatures on the forehead and dorsal left hand were included to observe physiological responses due to thermal transition. TSV for veranda-office transition showed that no significant means difference with TSV office-veranda transition were found. However, TCV collected from warm-neutral (-0.24, ± 1.2) and neutral-warm (-0.72, ± 1.3) conditions revealed statistically significant mean differences (p thermal transition after travel from warm-neutral-warm conditions did not replicate the hysteresis effects of brief, slightly cool, thermal sensations found in previous laboratory experiments. These findings also indicate that PMV is an acceptable alternative to predict thermal

  20. Anthropomimetic Robots: Concept, Construction and Modelling

    Directory of Open Access Journals (Sweden)

    Alan Diamond

    2012-11-01

    Full Text Available An anthropomimetic robot is one that closely copies the mechanics of the human body by having a human-like jointed skeleton moved by compliant muscle-like actuators. This paper describes the progress achieved in building anthropomimetic torsos in two projects, CRONOS and ECCEROBOT. In each, the bones were hand-moulded in a thermoplastic and the muscles were implemented by DC motors shortening and extending elastic tendons. Anthropomimetic robots differ from conventionally engineered robots by having complex joints and compliant tendon driven actuation that can cross more than one joint. Taken together, these characteristics make the robots unsuitable for control by standard methods, and so the ability to model them is important for developing heuristic methods of control and also for providing forward models. The robots were modelled using physics-based techniques which enable the study of the generation of movements and also of interactions with arbitrary objects. The lightweight and compliant structure of the robots was found to be safe for human proximity and contact.

  1. National project : advanced robot for nuclear power plant

    International Nuclear Information System (INIS)

    Tsunemi, T.; Takehara, K.; Hayashi, T.; Okano, H.; Sugiyama, S.

    1993-01-01

    The national project 'Advanced Robot' has been promoted by the Agency of Industrial science and Technology, MITI for eight years since 1983. The robot for a nuclear plant is one of the projects, and is a prototype intelligent one that also has a three dimensional vision system to generate an environmental model, a quadrupedal walking mechanism to work on stairs and four fingered manipulators to disassemble a valve with a hand tool. Many basic technologies such as an actuator, a tactile sensor, autonomous control and so on progress to high level. The prototype robot succeeded functionally in official demonstration in 1990. More refining such as downsizing and higher intelligence is necessary to realize a commercial robot, while basic technologies are useful to improve conventional robots and systems. This paper presents application studies on the advanced robot technologies. (author)

  2. A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback.

    Science.gov (United States)

    D'Anna, Edoardo; Petrini, Francesco M; Artoni, Fiorenzo; Popovic, Igor; Simanić, Igor; Raspopovic, Stanisa; Micera, Silvestro

    2017-09-07

    According to amputees, sensory feedback is amongst the most important features lacking from commercial prostheses. Although restoration of touch by means of implantable neural interfaces has been achieved, these approaches require surgical interventions, and their long-term usability still needs to be fully investigated. Here, we developed a non-invasive alternative which maintains some of the advantages of invasive approaches, such as a somatotopic sensory restitution scheme. We used transcutaneous electrical nerve stimulation (TENS) to induce referred sensations to the phantom hand of amputees. These sensations were characterized in four amputees over two weeks. Although the induced sensation was often paresthesia, the location corresponded to parts of the innervation regions of the median and ulnar nerves, and electroencephalographic (EEG) recordings confirmed the presence of appropriate responses in relevant cortical areas. Using these sensations as feedback during bidirectional prosthesis control, the patients were able to perform several functional tasks that would not be possible otherwise, such as applying one of three levels of force on an external sensor. Performance during these tasks was high, suggesting that this approach could be a viable alternative to the more invasive solutions, offering a trade-off between the quality of the sensation, and the invasiveness of the intervention.

  3. Traces: making sense of urodynamics testing--Part 8: Evaluating sensations of bladder filling.

    Science.gov (United States)

    Gray, Mikel

    2011-01-01

    The "Traces" series discusses how the urodynamic clinician generates usable data from a filling cystometrogram (CMG). Part 8 focuses on the question, "What are the sensations of bladder filling?" Recent research suggests that sensations of bladder filling wax and wane from consciousness in healthy persons free of bothersome lower urinary tract symptoms. Because of its invasive and atypical nature when compared to daily life, multichannel urodynamics testing cannot reproduce the numerous and complex variables that influence bladder sensation in the healthy individual, making the evaluation of sensations of bladder filling a particularly challenging component of the filling CMG. Routine assessment of bladder sensations focuses on identification of three landmarks--first sensation of bladder filling, first desire to void, and a strong desire to void. A fourth sensation, bladder fullness or a compelling desire to void, is recommended. In addition to assessing these sensations, the urodynamic clinician must assess sensations indicating associated disease or disorders affecting lower urinary tract function, including urgency, pain, and atypical sensations. This assessment should be completed in the context of the results of one or more validated instruments used to measure bladder sensations.

  4. Working hand syndrome: A new definition of non-classified polyneuropathy condition.

    Science.gov (United States)

    Özdemir, Gökhan

    2017-06-01

    The aim of this paper was to define an unexplained non-classified polyneuropathy condition as a new neurological disease. This new diagnosis of occupation related polyneuropathy has been named as "WORKING HAND SYNDROME (WHS)."This study collected and compared clinic and electrophysiological analyze data from healthy controls, WHS patients, carpal tunnel syndrome (CTS) patients and polyneuropathy patients. The WHS patients presented to the clinic with pain, numbness, tingling, and burning sensations in their hands that increased significantly during rest and nighttime. However, there was no weakness in the muscles, and the deep tendon reflexes were normal in this disease. The patients had all been working in physically demanding jobs requiring the use of their hands/arms for at least 1 year, but no vibrating tools were used by the patients. All of the cases were men. I supposed that overload caused by an action repeated chronically by the hand/arm may impair the sensory nerves in mentioned hand/arm. In patients with these complaints, for a definitive diagnosis, similar diseases must be excluded. Nonetheless, the specific electrophysiological finding that the sural nerves are normal on the lower sides, as well as the occurrence of sensory axonal polyneuropathy in the sensory nerves without a significant effect on velocity and latency in the work-ups of the upper extremity are enough to make a diagnosis.In conclusion, WHS has been defined as a polyneuropathy and occupational disease. Patients with WHS present with pain, numbness, tingling, and burning sensations in their hands that increases significantly during rest and nighttime. They also use their arms/hands for jobs that require heavy labor. The neurological examinations of patients with WHS are normal. Only the sensory nerves in the upper extremities are affected. This article is suggested to serve as a resource for patients, health care professionals, and members of the neurology community at large.

  5. Potential Applications of Light Robotics in Nanomedicine

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    We have recently pioneered a new generation of 3D micro-printed light robotic structures with multi-functional biophotonics capabilities. The uniqueness of this light robotic approach is that even if a micro-biologist aims at exploring e.g. cell biology at nanoscopic scales, the main support...... of each micro-robotic structure can be 3D printed to have a size and shape that allows convenient laser manipulation in full 3D – even using relatively modest numerical aperture optics. An optical robot is typically equipped with a number of 3D printed "track-balls" that allow for real-time 3D light...... manipulation with six-degrees-of-freedom. This creates a drone-like functionality where each light-driven robot can be e.g. joystick-controlled and provide the user a feeling of stretching his/her hands directly into and interacting with the biologic micro-environment. The light-guided robots can thus act...

  6. Medial Orbitofrontal Cortex Is Associated with Fatigue Sensation

    Directory of Open Access Journals (Sweden)

    Seiki Tajima

    2010-01-01

    Full Text Available Fatigue is an indispensable bioalarm to avoid exhaustive state caused by overwork or stresses. It is necessary to elucidate the neural mechanism of fatigue sensation for managing fatigue properly. We performed H2O  15 positron emission tomography scans to indicate neural activations while subjects were performing 35-min fatigue-inducing task trials twice. During the positron emission tomography experiment, subjects performed advanced trail-making tests, touching the target circles in sequence located on the display of a touch-panel screen. In order to identify the brain regions associated with fatigue sensation, correlation analysis was performed using statistical parametric mapping method. The brain region exhibiting a positive correlation in activity with subjective sensation of fatigue, measured immediately after each positron emission tomography scan, was located in medial orbitofrontal cortex (Brodmann's area 10/11. Hence, the medial orbitofrontal cortex is a brain region associated with mental fatigue sensation. Our findings provide a new perspective on the neural basis of fatigue.

  7. Sensation Seeking Predicting Growth in Adolescent Problem Behaviors

    Science.gov (United States)

    Byck, Gayle R.; Swann, Greg; Schalet, Benjamin; Bolland, John; Mustanski, Brian

    2014-01-01

    There is limited literature on the relationship between sensation seeking and adolescent risk behaviors, particularly among African Americans. We tested the association between psychometrically-derived subscales of the Zuckerman Sensation Seeking Scale and the intercepts and slopes of individual growth curves of conduct problems, sexual risk taking, and substance use from ages 13-18 years by sex. Boys and girls had different associations between sensation seeking and baseline levels and growth of risk behaviors. The Pleasure Seeking scale was associated with baseline levels of conduct problems in boys and girls, baseline substance use in boys, and growth in sexual risk taking and substance use by girls. Girls had the same pattern of associations with the Danger/Novelty scale as the Pleasure Seeking scale. Knowledge about the relationships between adolescent risk taking and sensation seeking can help in the targeted design of prevention and intervention programs for the understudied population of very low-income, African American adolescents. PMID:25112599

  8. Robotics Offer Newfound Surgical Capabilities

    Science.gov (United States)

    2008-01-01

    Barrett Technology Inc., of Cambridge, Massachusetts, completed three Phase II Small Business Innovation Research (SBIR) contracts with Johnson Space Center, during which the company developed and commercialized three core technologies: a robotic arm, a hand that functions atop the arm, and a motor driver to operate the robotics. Among many industry uses, recently, an adaptation of the arm has been cleared by the U.S. Food and Drug Administration (FDA) for use in a minimally invasive knee surgery procedure, where its precision control makes it ideal for inserting a very small implant.

  9. Movement coordination in applied human-human and human-robot interaction

    DEFF Research Database (Denmark)

    Schubö, Anna; Vesper, Cordula; Wiesbeck, Mathey

    2007-01-01

    and describing human-human interaction in terms of goal-oriented movement coordination is considered an important and necessary step for designing and describing human-robot interaction. In the present scenario, trajectories of hand and finger movements were recorded while two human participants performed......The present paper describes a scenario for examining mechanisms of movement coordination in humans and robots. It is assumed that coordination can best be achieved when behavioral rules that shape movement execution in humans are also considered for human-robot interaction. Investigating...... coordination were affected. Implications for human-robot interaction are discussed....

  10. Sensation seekers as a healthcare marketing metasegment.

    Science.gov (United States)

    Self, Donald R; Findley, Carolyn Sara

    2010-01-01

    This article discusses "sensation seekers" as a market segment for communication and prevention programs for various lifestyle and/or risk-related health problem areas such as alcohol abuse, drug abuse, suicide attempts, and sexually transmitted diseases. Although sensation seekers tend to be creative, artistic individuals, they are also prone to various negative health behaviors and many population-based prevention programs have over-looked these individuals as an important target. Various inputs to sensation-seeking causation are explored, including biological/chemical, psychological, and the impact of external characteristics. Using a combination for regulatory focus and risk homeostasis, propositions are provided for improving the effectiveness of the communications. Recommendations for prevention efforts focusing on reaching this subculture using television, along with other electronic media are proposed, including recommendations for message construction and presentation venues.

  11. Task-space sensory feedback control of robot manipulators

    CERN Document Server

    Cheah, Chien Chern

    2015-01-01

    This book presents recent advances in robot control theory on task space sensory feedback control of robot manipulators. By using sensory feedback information, the robot control systems are robust to various uncertainties in modelling and calibration errors of the sensors. Several sensory task space control methods that do not require exact knowledge of either kinematics or dynamics of robots, are presented. Some useful methods such as approximate Jacobian control, adaptive Jacobian control, region control and multiple task space regional feedback are included. These formulations and methods give robots a high degree of flexibility in dealing with unforeseen changes and uncertainties in its kinematics and dynamics, which is similar to human reaching movements and tool manipulation. It also leads to the solution of several long-standing problems and open issues in robot control, such as force control with constraint uncertainty, control of multi-fingered robot hand with uncertain contact points, singularity i...

  12. Robotics & artificial intelligence : The future of surgeons & surgery

    Directory of Open Access Journals (Sweden)

    K I Mathai

    2016-01-01

    Robots have evolved as dextrous, fatigue and tremor free surgical tools. The data crunching capability of computers is improving in speed and in capability for machine learning. Human surgical maturity on the other hand is attained and matures through phases of information assimilation, knowledge consolidation and attainment of surgical wisdom. Human surgeons at the helm will, in this decade harness robotic capabilities and information template paradigms to fine tune many procedures and to augment surgical reach. Quantum leaps and paradigm shifts towards robotic surgical autonomy may be neither desirable nor practical.

  13. Admittance Control for Robot Assisted Retinal Vein Micro-Cannulation under Human-Robot Collaborative Mode

    Science.gov (United States)

    Gonenc, Berk; Iordachita, Iulian

    2017-01-01

    Retinal vein occlusion is one of the most common retinovascular diseases. Retinal vein cannulation is a potentially effective treatment method for this condition that currently lies, however, at the limits of human capabilities. In this work, the aim is to use robotic systems and advanced instrumentation to alleviate these challenges, and assist the procedure via a human-robot collaborative mode based on our earlier work on the Steady-Hand Eye Robot and force-sensing instruments. An admittance control method is employed to stabilize the cannula relative to the vein and maintain it inside the lumen during the injection process. A pre-stress strategy is used to prevent the tip of microneedle from getting out of vein in in prolonged infusions, and the performance is verified through simulations. PMID:29607442

  14. Educational resources and tools for robotic learning

    Directory of Open Access Journals (Sweden)

    Pablo Gil Vazquez

    2012-07-01

    Full Text Available Normal.dotm 0 0 1 139 795 Universidad de Salamanca 6 1 976 12.0 0 false 18 pt 18 pt 0 0 false false false /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} This paper discusses different teaching experiences which aims are the learning robotics in the university. These experiences are reflected in the development of several robotics courses and subjects at the University of Alicante.  The authors have created various educational platforms or they have used tools of free distribution and open source for the implementation of these courses. The main objetive of these courses is to teach the design and implementation of robotic solutions to solve various problems not only such as the control, programming and handling of robot but also the assembly, building and programming of educational mini-robots. On the one hand, new teaching tools are used such as simulators and virtual labs which make flexible the learning of robot arms. On the other hand, competitions are used to motivate students because this way, the students put into action the skills learned through building and programming low-cost mini-robots.

  15. Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand.

    Science.gov (United States)

    Cipriani, Christian; Segil, Jacob L; Clemente, Francesco; ff Weir, Richard F; Edin, Benoni

    2014-11-01

    Providing functionally effective sensory feedback to users of prosthetics is a largely unsolved challenge. Traditional solutions require high band-widths for providing feedback for the control of manipulation and yet have been largely unsuccessful. In this study, we have explored a strategy that relies on temporally discrete sensory feedback that is technically simple to provide. According to the Discrete Event-driven Sensory feedback Control (DESC) policy, motor tasks in humans are organized in phases delimited by means of sensory encoded discrete mechanical events. To explore the applicability of DESC for control, we designed a paradigm in which healthy humans operated an artificial robot hand to lift and replace an instrumented object, a task that can readily be learned and mastered under visual control. Assuming that the central nervous system of humans naturally organizes motor tasks based on a strategy akin to DESC, we delivered short-lasting vibrotactile feedback related to events that are known to forcefully affect progression of the grasp-lift-and-hold task. After training, we determined whether the artificial feedback had been integrated with the sensorimotor control by introducing short delays and we indeed observed that the participants significantly delayed subsequent phases of the task. This study thus gives support to the DESC policy hypothesis. Moreover, it demonstrates that humans can integrate temporally discrete sensory feedback while controlling an artificial hand and invites further studies in which inexpensive, noninvasive technology could be used in clever ways to provide physiologically appropriate sensory feedback in upper limb prosthetics with much lower band-width requirements than with traditional solutions.

  16. Review of emerging surgical robotic technology.

    Science.gov (United States)

    Peters, Brian S; Armijo, Priscila R; Krause, Crystal; Choudhury, Songita A; Oleynikov, Dmitry

    2018-04-01

    The use of laparoscopic and robotic procedures has increased in general surgery. Minimally invasive robotic surgery has made tremendous progress in a relatively short period of time, realizing improvements for both the patient and surgeon. This has led to an increase in the use and development of robotic devices and platforms for general surgery. The purpose of this review is to explore current and emerging surgical robotic technologies in a growing and dynamic environment of research and development. This review explores medical and surgical robotic endoscopic surgery and peripheral technologies currently available or in development. The devices discussed here are specific to general surgery, including laparoscopy, colonoscopy, esophagogastroduodenoscopy, and thoracoscopy. Benefits and limitations of each technology were identified and applicable future directions were described. A number of FDA-approved devices and platforms for robotic surgery were reviewed, including the da Vinci Surgical System, Sensei X Robotic Catheter System, FreeHand 1.2, invendoscopy E200 system, Flex® Robotic System, Senhance, ARES, the Single-Port Instrument Delivery Extended Research (SPIDER), and the NeoGuide Colonoscope. Additionally, platforms were reviewed which have not yet obtained FDA approval including MiroSurge, ViaCath System, SPORT™ Surgical System, SurgiBot, Versius Robotic System, Master and Slave Transluminal Endoscopic Robot, Verb Surgical, Miniature In Vivo Robot, and the Einstein Surgical Robot. The use and demand for robotic medical and surgical platforms is increasing and new technologies are continually being developed. New technologies are increasingly implemented to improve on the capabilities of previously established systems. Future studies are needed to further evaluate the strengths and weaknesses of each robotic surgical device and platform in the operating suite.

  17. Sensation seeking and visual selective attention in adults with HIV/AIDS.

    Science.gov (United States)

    Hardy, David J; Castellon, Steven A; Hinkin, Charles H; Levine, Andrew J; Lam, Mona N

    2008-11-01

    The association between sensation seeking and visual selective attention was examined in 31 adults with the Human Immunodeficiency Virus (HIV). Sensation seeking was measured with Zuckerman's Sensation Seeking Scale Form V (SSS-V). Selective attention was assessed with a perceptual span task, where a target letter-character must be identified in a quickly presented array of nontarget letter-characters. As predicted, sensation seeking was strongly associated (R(2) = .229) with perceptual span performance in the array size 12 condition, where selective attention demands were greatest, but not in the easier conditions. The Disinhibition, Boredom Susceptibility, and Experience Seeking subscales of the SSS-V were associated with span performance. It is argued that personality factors such as sensation seeking may play a significant role in selective attention and related cognitive abilities in HIV positive adults. Furthermore, sensation seeking differences might explain certain inconsistencies in the HIV neuropsychology literature.

  18. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.

    Science.gov (United States)

    Kitagawa, Masaya; Dokko, Daniell; Okamura, Allison M; Yuh, David D

    2005-01-01

    Direct haptic (force or tactile) feedback is not yet available in commercial robotic surgical systems. Previous work by our group and others suggests that haptic feedback might significantly enhance the execution of surgical tasks requiring fine suture manipulation, specifically those encountered in cardiothoracic surgery. We studied the effects of substituting direct haptic feedback with visual and auditory cues to provide the operating surgeon with a representation of the forces he or she is applying with robotic telemanipulators. Using the robotic da Vinci surgical system (Intuitive Surgical, Inc, Sunnyvale, Calif), we compared applied forces during a standardized surgical knot-tying task under 4 different sensory-substitution scenarios: no feedback, auditory feedback, visual feedback, and combined auditory-visual feedback. The forces applied with these sensory-substitution modes more closely approximate suture tensions achieved under ideal haptic conditions (ie, hand ties) than forces applied without such sensory feedback. The consistency of applied forces during robot-assisted suture tying aided by visual feedback or combined auditory-visual feedback sensory substitution is superior to that achieved with hand ties. Robot-assisted ties aided with auditory feedback revealed levels of consistency that were generally equivalent or superior to those attained with hand ties. Visual feedback and auditory feedback improve the consistency of robotically applied forces. Sensory substitution, in the form of visual feedback, auditory feedback, or both, confers quantifiable advantages in applied force accuracy and consistency during the performance of a simple surgical task.

  19. Serendipitous Offline Learning in a Neuromorphic Robot

    Directory of Open Access Journals (Sweden)

    Terrence C Stewart

    2016-02-01

    Full Text Available We demonstrate a hybrid neuromorphic learning paradigm that learns complex sensorimotor mappings based on a small set of hard-coded reflex behaviours. A mobile robot is first controlled by a basic set of reflexive hand-designed behaviours. All sensor data is provided via a spike-based silicon retina camera (eDVS, and all control is implemented via spiking neurons simulated on neuromorphic hardware (SpiNNaker. Given this control system, the robot is capable of simple obstacle avoidance and random exploration. To train the robot to perform more complex tasks, we observe the robot and find instances where he robot accidentally performs the desired action. Data recorded from the robot during these times is then used to update the neural control system, increasing the likelihood of the robot performing that task in the future, given a similar sensor state. As an example application of this general-purpose method of training, we demonstrate the robot learning to respond to novel sensory stimuli (a mirror by turning right if it is present at an intersection, and otherwise turning left. In general, this system can learn arbitrary relations between sensory input and motor behaviour.

  20. Flavoured cigarettes, sensation seeking and adolescents' perceptions of cigarette brands.

    Science.gov (United States)

    Manning, K C; Kelly, K J; Comello, M L

    2009-12-01

    This study examined the interactive effects of cigarette package flavour descriptors and sensation seeking on adolescents' brand perceptions. High school students (n = 253) were randomly assigned to one of two experimental conditions and sequentially exposed to cigarette package illustrations for three different brands. In the flavour descriptor condition, the packages included a description of the cigarettes as "cherry", while in the traditional descriptor condition the cigarette brands were described with common phrases found on tobacco packages such as "domestic blend." Following exposure to each package participants' hedonic beliefs, brand attitudes and trial intentions were assessed. Sensation seeking was also measured, and participants were categorised as lower or higher sensation seekers. Across hedonic belief, brand attitude and trial intention measures, there were interactions between package descriptor condition and sensation seeking. These interactions revealed that among high (but not low) sensation seekers, exposure to cigarette packages including sweet flavour descriptors led to more favourable brand impressions than did exposure to packages with traditional descriptors. Among high sensation seeking youths, the appeal of cigarette brands is enhanced through the use of flavours and associated descriptions on product packaging.

  1. Neighborhood Moderation of Sensation Seeking Effects on Adolescent Substance Use Initiation.

    Science.gov (United States)

    Jensen, Michaeline; Chassin, Laurie; Gonzales, Nancy A

    2017-09-01

    Adolescent substance use carries a considerable public health burden, and early initiation into use is especially problematic. Research has shown that trait sensation seeking increases risk for substance use initiation, but less is known about contextual factors that can potentially unmask this risk. This study utilized a diverse longitudinal subsample of youth (N = 454) from a larger study of familial alcoholism (53.1% female, 61% non-Hispanic Caucasian, 27.8% Hispanic, 11.2% other ethnicity). Study questions examined sensation seeking in early adolescence (mean age = 12.16) and its relations with later substance use initiation (mean age = 15.69), and tested whether neighborhood disadvantage moderated sensation seeking's effects on initiation of alcohol, tobacco, and marijuana use. Neighborhood disadvantage significantly moderated the relation between sensation seeking and all three forms of substance use. For the most part, sensation seeking effects were weakened as neighborhood disadvantage increased, with the most advantaged neighborhoods exhibiting the strongest link between sensation seeking and substance use initiation. These results highlight the importance of focusing on relatively advantaged areas as potentially risky environments for the sensation seeking pathway to substance use.

  2. MOVEMENT SIMULATION OF THREE ARMED ROBOT BY BEING USED AutoLISP

    Directory of Open Access Journals (Sweden)

    Mustafa BOZDEMİR

    2000-01-01

    Full Text Available Development of a suitable robot for desired aim and duty is very important for design enginers. On the other hand, designed robots may be unsuccesful in functioning inspite of many efforts. For this reason, before the production of considered robot systems, having prepared a simulation program, investigation of work field, getting done path plan and mistakes could be eliminated before robot production. In this study, movement simulation of a three armed robot has been realized by using AutoLIPS programing language which is supplied with AutoCAD. Analytical and matrix solution methods have been used in simulation equations.

  3. Bimanual proprioception: are two hands better than one?

    OpenAIRE

    Wong, J.D.; Wilson, E.T.; Kistemaker, D.A.; Gribble, P.L.

    2014-01-01

    Information about the position of an object that is held in both hands, such as a golf club or a tennis racquet, is transmitted to the human central nervous system from peripheral sensors in both left and right arms. How does the brain combine these two sources of information? Using a robot to move participant's passive limbs, we performed psychophysical estimates of proprioceptive function for each limb independently and again when subjects grasped the robot handle with both arms. We compare...

  4. Soft Robotic Haptic Interface with Variable Stiffness for Rehabilitation of Neurologically Impaired Hand Function

    Directory of Open Access Journals (Sweden)

    Frederick Sebastian

    2017-12-01

    Full Text Available The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation therapies focus on strengthening motor skills, such as grasping, employ multiple objects of varying stiffness so that affected persons can experience a wide range of strength training. These devices have limited range of stiffness due to the rigid mechanisms employed in their variable stiffness actuators. This paper presents a novel soft robotic haptic device for neuromuscular rehabilitation of the hand, which is designed to offer adjustable stiffness and can be utilized in both clinical and home settings. The device eliminates the need for multiple objects by employing a pneumatic soft structure made with highly compliant materials that act as the actuator of the haptic interface. It is made with interchangeable sleeves that can be customized to include materials of varying stiffness to increase the upper limit of the stiffness range. The device is fabricated using existing 3D printing technologies, and polymer molding and casting techniques, thus keeping the cost low and throughput high. The haptic interface is linked to either an open-loop system that allows for an increased pressure during usage or closed-loop system that provides pressure regulation in accordance to the stiffness the user specifies. Preliminary evaluation is performed to characterize the effective controllable region of variance in stiffness. It was found that the region of controllable stiffness was between points 3 and 7, where the stiffness appeared to plateau with each increase in pressure. The two control systems are tested to derive relationships between internal pressure, grasping force exertion on the surface, and displacement using

  5. Design of an exercise glove for hand rehabilitation using spring mechanism

    NARCIS (Netherlands)

    Serbest, K.; Ates, Sedar; Stienen, Arno; Isler, Y.

    2017-01-01

    Hand muscles do not perform their functions because of different reasons such as disease, injury and trauma. It is implemented some treatments for the hand therapy at hospitals and rehabilitation centers. One of these is using orthotic or robotic devices for rehabilitation. One of the important

  6. Authoritative parenting and sensation seeking as predictors of adolescent cigarette and marijuana use.

    Science.gov (United States)

    Stephenson, Michael T; Helme, Donald W

    2006-01-01

    Adolescents with high sensation-seeking tendencies often seek out thrill seeking experiences to satisfy their need for stimulation and sensation. In many cases, sensation-seeking adolescents fulfill their need for stimulation and sensation by using illicit substances. However, not all high sensation seekers use drugs, although the factors that prevent or buffer sensation seeking remain unexplored. This study fills this gap in extant research by examining the role of authoritative parenting as a protective factor that prevents or buffers cigarette and marijuana use by adolescents with high sensation-seeking tendencies. Data from 1461 adolescents attending 6th through 8th grades in central Colorado were gathered during a semester-long classroom-based intervention to prevent the onset or further use of cigarettes. Results indicate that authoritative parenting moderated the effect of sensation seeking on adolescent marijuana attitudes, intentions, and peer influence but not behaviors. Further, authoritative parenting was a stronger influence than sensation seeking on cigarette-related outcomes with just the opposite effect observed for marijuana-related outcomes.

  7. Dopamine Regulates Approach-Avoidance in Human Sensation-Seeking.

    Science.gov (United States)

    Norbury, Agnes; Kurth-Nelson, Zeb; Winston, Joel S; Roiser, Jonathan P; Husain, Masud

    2015-04-09

    Sensation-seeking is a trait that constitutes an important vulnerability factor for a variety of psychopathologies with high social cost. However, little is understood either about the mechanisms underlying motivation for intense sensory experiences or their neuropharmacological modulation in humans. Here, we first evaluate a novel paradigm to investigate sensation-seeking in humans. This test probes the extent to which participants choose either to avoid or self-administer an intense tactile stimulus (mild electric stimulation) orthogonal to performance on a simple economic decision-making task. Next we investigate in a different set of participants whether this behavior is sensitive to manipulation of dopamine D2 receptors using a within-subjects, placebo-controlled, double-blind design. In both samples, individuals with higher self-reported sensation-seeking chose a greater proportion of mild electric stimulation-associated stimuli, even when this involved sacrifice of monetary gain. Computational modelling analysis determined that people who assigned an additional positive economic value to mild electric stimulation-associated stimuli exhibited speeding of responses when choosing these stimuli. In contrast, those who assigned a negative value exhibited slowed responses. These findings are consistent with involvement of low-level, approach-avoidance processes. Furthermore, the D2 antagonist haloperidol selectively decreased the additional economic value assigned to mild electric stimulation-associated stimuli in individuals who showed approach reactions to these stimuli under normal conditions (behavioral high-sensation seekers). These findings provide the first direct evidence of sensation-seeking behavior being driven by an approach-avoidance-like mechanism, modulated by dopamine, in humans. They provide a framework for investigation of psychopathologies for which extreme sensation-seeking constitutes a vulnerability factor. © The Author 2015. Published by

  8. Thermal sensation and thermophysiological responses with metabolic step-changes

    DEFF Research Database (Denmark)

    Goto, Tomonobu; Toftum, Jørn; deDear, Richard

    2006-01-01

    at sedentary activity. In a second experimental series, subjects alternated between rest and exercise as well as between exercise at different intensities at two temperature levels. Measurements comprised skin and oesophageal temperatures, heart rate and subjective responses. Thermal sensation started to rise....... The sensitivity of thermal sensation to changes in core temperature was higher for activity down-steps than for up-steps. A model was proposed that estimates transient thermal sensation after metabolic step-changes. Based on predictions by the model, weighting factors were suggested to estimate a representative...... average metabolic rate with varying activity levels, e.g. for the prediction of thermal sensation by steady-state comfort models. The activity during the most recent 5 min should be weighted 65%, during the prior 10-5 min 25% and during the prior 20-10 min 10%....

  9. Does the effect of acupuncture depend on needling sensation and manipulation?

    Science.gov (United States)

    Choi, Yu-Jin; Lee, Jae-Eun; Moon, Won-Kyung; Cho, Seung-Hun

    2013-06-01

    Acupuncture sensation and manipulation have been considered to be an important component of acupuncture in traditional Asian medicine. However, there has been limited research as to whether acupuncture sensation is associated with therapeutic benefit. This study investigated the relationship between acupuncture sensation and analgesic effect according to acupuncture manipulation. Fifty-three healthy volunteers received three different forms of acupuncture in a single-blinded crossover design: superficial needling (0.3 cm), deep needling (2 cm) and needling with bi-directional rotation. The effects of acupuncture were evaluated by using the pressure pain threshold. Acupuncture sensation measurement was done in two ways. Both total acupuncture sensation and increase of the pressure pain threshold were maximum in needling with rotation, followed by deep needling and superficial needling. Repeated-measure analysis of variance (ANOVA) analysis was carried out to assess whether there was a significant difference; both showed significant difference (p = 0.000, 0.003). A paired sample t-test was carried out, which revealed that needling with rotation showed significant difference from both superficial needling and deep needling. Further, the correlation between the total acupuncture sensation and changes in pressure pain threshold were calculated using Pearson correlation; there was a significant correlation (p = 0.002, p = 0.013). Acupuncture sensation and pressure pain threshold increase according to the depth and rotation of acupuncture. Especially, both display significant increase with needle rotation. Further, there is a significant correlation between acupuncture needling sensation and increase in pressure pain threshold. It seems that needle rotation and acupuncture sensation play an important role in verifying the effect of acupuncture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. [Robotic general surgery: where do we stand in 2013?].

    Science.gov (United States)

    Buchs, Nicolas C; Pugin, François; Ris, Frédéric; Jung, Minoa; Hagen, Monika E; Volonté, Francesco; Azagury, Dan; Morel, Philippe

    2013-06-19

    While the number of publications concerning robotic surgery is increasing, the level of evidence remains to be improved. The safety of robotic approach has been largely demonstrated, even for complex procedures. Yet, the objective advantages of this technology are still lacking in several fields, notably in comparison to laparoscopy. On the other hand, the development of robotic surgery is on its way, as the enthusiasm of the public and the surgical community can testify. Still, clear clinical indications remain to be determined in the field of general surgery. The study aim is to review the current literature on robotic general surgery and to give the reader an overview in 2013.

  11. Results of clinicians using a therapeutic robotic system in an inpatient stroke rehabilitation unit.

    Science.gov (United States)

    Abdullah, Hussein A; Tarry, Cole; Lambert, Cynthia; Barreca, Susan; Allen, Brian O

    2011-08-26

    Physical rehabilitation is an area where robotics could contribute significantly to improved motor return for individuals following a stroke. This paper presents the results of a preliminary randomized controlled trial (RCT) of a robot system used in the rehabilitation of the paretic arm following a stroke. The study's objectives were to explore the efficacy of this new type of robotic therapy as compared to standard physiotherapy treatment in treating the post-stroke arm; to evaluate client satisfaction with the proposed robotic system; and to provide data for sample size calculations for a proposed larger multicenter RCT. Twenty clients admitted to an inpatient stroke rehabilitation unit were randomly allocated to one of two groups, an experimental (robotic arm therapy) group or a control group (conventional therapy). An occupational therapist blinded to patient allocation administered two reliable measures, the Chedoke Arm and Hand Activity Inventory (CAHAI-7) and the Chedoke McMaster Stroke Assessment of the Arm and Hand (CMSA) at admission and discharge. For both groups, at admission, the CMSA motor impairment stage of the affected arm was between 1 and 3. Data were compared to determine the effectiveness of robot-assisted versus conventional therapy treatments. At the functional level, both groups performed well, with improvement in scores on the CAHAI-7 showing clinical and statistical significance. The CAHAI-7 (range7-49) is a measure of motor performance using functional items. Individuals in the robotic therapy group, on average, improved by 62% (95% CI: 26% to 107%) while those in the conventional therapy group changed by 30% (95% CI: 4% to 61%). Although performance on this measure is influenced by hand recovery, our results showed that both groups had similar stages of motor impairment in the hand. Furthermore, the degree of shoulder pain, as measured by the CMSA pain inventory scale, did not worsen for either group over the course of treatment. Our

  12. Service Robots for Hospitals

    DEFF Research Database (Denmark)

    Özkil, Ali Gürcan

    services to maintain the quality of healthcare provided. This thesis and the Industrial PhD project aim to address logistics, which is the most resource demanding service in a hospital. The scale of the transportation tasks is huge and the material flow in a hospital is comparable to that of a factory. We......Hospitals are complex and dynamic organisms that are vital to the well-being of societies. Providing good quality healthcare is the ultimate goal of a hospital, and it is what most of us are only concerned with. A hospital, on the other hand, has to orchestrate a great deal of supplementary...... believe that these transportation tasks, to a great extent, can be and will be automated using mobile robots. This thesis consequently addresses the key technical issues of implementing service robots in hospitals. In simple terms, a robotic system for automating hospital logistics has to be reliable...

  13. The neural mechanisms of re-experiencing mental fatigue sensation: a magnetoencephalography study.

    Directory of Open Access Journals (Sweden)

    Akira Ishii

    Full Text Available There have been several studies which have tried to clarify the neural mechanisms of fatigue sensation; however fatigue sensation has multiple aspects. We hypothesized that past experience related to fatigue sensation is an important factor which contributes to future formation of fatigue sensation through the transfer to memories that are located within specific brain structures. Therefore, we aimed to investigate the neural mechanisms of fatigue sensation related to memory. In the present study, we investigated the neural activity caused by re-experiencing the fatigue sensation that had been experienced during a fatigue-inducing session. Thirteen healthy volunteers participated in fatigue and non-fatigue experiments in a crossover fashion. In the fatigue experiment, they performed a 2-back test session for 40 min to induce fatigue sensation, a rest session for 15 min to recover from fatigue, and a magnetoencephalography (MEG session in which they were asked to re-experience the state of their body with fatigue that they had experienced in the 2-back test session. In the non-fatigue experiment, the participants performed a free session for 15 min, a rest session for 15 min, and an MEG session in which they were asked to re-experience the state of their body without fatigue that they had experienced in the free session. Spatial filtering analyses of oscillatory brain activity showed that the delta band power in the left Brodmann's area (BA 39, alpha band power in the right pulvinar nucleus and the left BA 40, and beta band power in the left BA 40 were lower when they re-experienced the fatigue sensation than when they re-experienced the fatigue-free sensation, indicating that these brain regions are related to re-experiencing the fatigue sensation. Our findings may help clarify the neural mechanisms underlying fatigue sensation.

  14. The neural mechanisms of re-experiencing mental fatigue sensation: a magnetoencephalography study.

    Science.gov (United States)

    Ishii, Akira; Karasuyama, Takuma; Kikuchi, Taiki; Tanaka, Masaaki; Yamano, Emi; Watanabe, Yasuyoshi

    2015-01-01

    There have been several studies which have tried to clarify the neural mechanisms of fatigue sensation; however fatigue sensation has multiple aspects. We hypothesized that past experience related to fatigue sensation is an important factor which contributes to future formation of fatigue sensation through the transfer to memories that are located within specific brain structures. Therefore, we aimed to investigate the neural mechanisms of fatigue sensation related to memory. In the present study, we investigated the neural activity caused by re-experiencing the fatigue sensation that had been experienced during a fatigue-inducing session. Thirteen healthy volunteers participated in fatigue and non-fatigue experiments in a crossover fashion. In the fatigue experiment, they performed a 2-back test session for 40 min to induce fatigue sensation, a rest session for 15 min to recover from fatigue, and a magnetoencephalography (MEG) session in which they were asked to re-experience the state of their body with fatigue that they had experienced in the 2-back test session. In the non-fatigue experiment, the participants performed a free session for 15 min, a rest session for 15 min, and an MEG session in which they were asked to re-experience the state of their body without fatigue that they had experienced in the free session. Spatial filtering analyses of oscillatory brain activity showed that the delta band power in the left Brodmann's area (BA) 39, alpha band power in the right pulvinar nucleus and the left BA 40, and beta band power in the left BA 40 were lower when they re-experienced the fatigue sensation than when they re-experienced the fatigue-free sensation, indicating that these brain regions are related to re-experiencing the fatigue sensation. Our findings may help clarify the neural mechanisms underlying fatigue sensation.

  15. Opponency of astringent and fat sensations.

    Science.gov (United States)

    des Gachons, Catherine Peyrot; Mura, Emi; Speziale, Camille; Favreau, Charlotte J; Dubreuil, Guillaume F; Breslin, Paul A S

    2012-10-09

    In most cultures, people ingest a variety of astringent foods and beverages during meals, but the reasons for this practice are unclear. Many popular beliefs and heuristics, such as high tannin wines should be balanced with fatty foods, for example 'red wine with red meat', suggest that astringents such as pickles, sorbets, wines, and teas 'cleanse' the palate while eating. Oral astringents elicit 'dry, rough' sensations [1], in part, by breaking down mucinous lubricating proteins in saliva [2,3]. The introduction of oral lubricants, including fats, partially diminishes strong astringent sensations [4,5]. Thus, it appears that astringency and fattiness can oppose each other perceptually on an oral rheological spectrum. Most teas, wines, and 'palate cleansers', however, are only mildly astringent and an explanation of how they could oppose the fattiness of meals is lacking. Here, we demonstrate that weakly astringent stimuli can elicit strong sensations after repeated sampling. Astringency builds with exposures [6] to an asymptotic level determined by the structure and concentration of the compound. We also establish that multiple sips of a mild astringent solution, similar to a wine or tea, decrease oral fat sensations elicited by fatty food consumption when astringent and fatty stimuli alternate, mimicking the patterning that occurs during a real meal. Consequently, we reveal a principle underlying the international practice of 'palate cleansing'. Repeatedly alternating samples of astringent beverages with fatty foods yielded ratings of fattiness and astringency that were lower than if rinsing with water or if presented alone without alternation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Nipple-Sparing Mastectomy Improves Long-Term Nipple But Not Skin Sensation After Breast Reconstruction: Quantification of Long-Term Sensation in Nipple Sparing Versus Non-nipple Sparing Mastectomy.

    Science.gov (United States)

    Rodriguez-Unda, Nelson A; Bello, Ricardo J; Clarke-Pearson, Emily M; Sanyal, Abanti; Cooney, Carisa M; Manahan, Michele A; Rosson, Gedge D

    2017-06-01

    Changes in breast sensation after reconstruction are expected. Return of breast sensation after reconstruction and whether nipple-sparing mastectomy offers a substantial benefit in terms of sensation has been inconsistently documented in the literature. We conducted the current study using the pressure-specified sensory device to quantify postoperative breast sensation in patients undergoing nipple-sparing versus non-nipple-sparing mastectomy. Consecutive adult women who underwent nipple-sparing (NSM) and non-NSM (NNSM) and were at least 18 months postreconstruction were included. Breast measurements were taken in 4 quadrants (upper/lower lateral, upper/lower medial) and nipple. Averaged skin cutaneous thresholds [(UL+LL+UM+LM)/4] and nipple sensation between NSM and NNSM were compared as the primary outcome measure. A generalized estimating equations model was used; univariate and multivariate variable analyses were done when appropriate. Forty-four patients (74 breasts) were examined (53 NNSM vs 21 NSM). The groups were further subdivided into autologous versus implant-based reconstruction. Averaged cutaneous skin thresholds for quadrants were better for the NSM, 51.8(±24.5) g/mm versus NNSM, 56.5(±25.7) g/mm, although this difference was not statistically significant. However, NSM breasts measured higher nipple or nipple area sensitivity, 44.5(±30.8) g/mm versus NNSM, 83.8(±27.4) g/mm (P sensation was the number of revision surgeries, especially after third revision. Breast sensation is decreased after reconstruction in both NSM and NNSM, but nipple sensation or nipple area is better preserved in NSM breasts. Number of revision surgeries (>3) was a predictor of decreased sensation.

  17. Methods in the analysis of mobile robots behavior in unstructured environment

    Science.gov (United States)

    Mondoc, Alina; Dolga, Valer; Gorie, Nina

    2012-11-01

    A mobile robot can be described as a mechatronic system that must execute an application in a working environment. From mechatronic concept, the authors highlight mechatronic system structure based on its secondary function. Mobile robot will move, either in a known environment - structured environment may be described in time by an appropriate mathematical model or in an unfamiliar environment - unstructured - the random aspects prevail. Starting from a point robot must reach a START STOP point in the context of functional constraints imposed on the one hand, the application that, on the other hand, the working environment. The authors focus their presentation on unstructured environment. In this case the evolution of mobile robot is based on obtaining information in the work environment, their processing and integration results in action strategy. Number of sensory elements used is subject to optimization parameter. Starting from a known structure of mobile robot, the authors analyze the possibility of developing a mathematical model variants mathematical contact wheel - ground. It analyzes the various types of soil and the possibility of obtaining a "signature" on it based on sensory information. Theoretical aspects of the problem are compared to experimental results obtained in robot evolution. The mathematical model of the robot system allowed the simulation environment and its evolution in comparison with the experimental results estimated.

  18. Phantom sensations in people with complete spinal cord lesions: a grounded theory perspective.

    Science.gov (United States)

    Drysdale, Daren G; Shem, Kazuko; Walbom, Agnes; Miner, Maureen D; Maclachlan, Malcolm

    2009-01-01

    Phantom sensations are somatic phenomena arising from denervated parts of the body. There is very little research, and much diagnostic confusion, regarding such experiences in people with spinal cord injuries. In the case of 'complete' spinal cord lesions, phantom experiences may challenge, and indeed, contradict, the understanding that both clinicians and patients have of such injuries. This paper seeks to provide a better understanding of such 'phantom' sensations in spinal cord injury. We used grounded theory methods to explore 'phantom' sensations as experienced by individuals with complete (ASIA A) spinal lesions. Eight people with complete lesions, who were selected through theoretical sampling, participated in a semi-structured interview. Emergent themes included injury context, sensations experienced, the meaning of sensations, body connectivity, attitude and communication about sensations. Our results provide an enhanced understanding of the embodied experience of phantom sensations, and important insights regarding self-construction and rehabilitative processes in people with spinal cord injury who experience such anomalous sensations.

  19. Folding System for the Clothes by a Robot and Tools

    OpenAIRE

    大澤, 文明; 関, 啓明; 神谷, 好承

    2004-01-01

    The works of a home robot has the laundering. The purpose of this study is to find a means of folding of the clothes and store the clothes in a drawer by a home robot. Because the shape of cloth tends to change in various ways depending on the situation, it is difficult for robot hands to fold the clothes. In this paper, we propose a realistic folding system for the clothes by a robot and tools. The function of a tool is folding the clothes in half by inserting the clothes using two plates. T...

  20. Design-validation of a hand exoskeleton using musculoskeletal modeling.

    Science.gov (United States)

    Hansen, Clint; Gosselin, Florian; Ben Mansour, Khalil; Devos, Pierre; Marin, Frederic

    2018-04-01

    Exoskeletons are progressively reaching homes and workplaces, allowing interaction with virtual environments, remote control of robots, or assisting human operators in carrying heavy loads. Their design is however still a challenge as these robots, being mechanically linked to the operators who wear them, have to meet ergonomic constraints besides usual robotic requirements in terms of workspace, speed, or efforts. They have in particular to fit the anthropometry and mobility of their users. This traditionally results in numerous prototypes which are progressively fitted to each individual person. In this paper, we propose instead to validate the design of a hand exoskeleton in a fully digital environment, without the need for a physical prototype. The purpose of this study is thus to examine whether finger kinematics are altered when using a given hand exoskeleton. Therefore, user specific musculoskeletal models were created and driven by a motion capture system to evaluate the fingers' joint kinematics when performing two industrial related tasks. The kinematic chain of the exoskeleton was added to the musculoskeletal models and its compliance with the hand movements was evaluated. Our results show that the proposed exoskeleton design does not influence fingers' joints angles, the coefficient of determination between the model with and without exoskeleton being consistently high (R 2 ¯=0.93) and the nRMSE consistently low (nRMSE¯ = 5.42°). These results are promising and this approach combining musculoskeletal and robotic modeling driven by motion capture data could be a key factor in the ergonomics validation of the design of orthotic devices and exoskeletons prior to manufacturing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Controlling Tensegrity Robots Through Evolution

    Science.gov (United States)

    Iscen, Atil; Agogino, Adrian; SunSpiral, Vytas; Tumer, Kagan

    2013-01-01

    Tensegrity structures (built from interconnected rods and cables) have the potential to offer a revolutionary new robotic design that is light-weight, energy-efficient, robust to failures, capable of unique modes of locomotion, impact tolerant, and compliant (reducing damage between the robot and its environment). Unfortunately robots built from tensegrity structures are difficult to control with traditional methods due to their oscillatory nature, nonlinear coupling between components and overall complexity. Fortunately this formidable control challenge can be overcome through the use of evolutionary algorithms. In this paper we show that evolutionary algorithms can be used to efficiently control a ball-shaped tensegrity robot. Experimental results performed with a variety of evolutionary algorithms in a detailed soft-body physics simulator show that a centralized evolutionary algorithm performs 400 percent better than a hand-coded solution, while the multi-agent evolution performs 800 percent better. In addition, evolution is able to discover diverse control solutions (both crawling and rolling) that are robust against structural failures and can be adapted to a wide range of energy and actuation constraints. These successful controls will form the basis for building high-performance tensegrity robots in the near future.

  2. Design of a Lightweight Soft Robotic Arm Using Pneumatic Artificial Muscles and Inflatable Sleeves.

    Science.gov (United States)

    Ohta, Preston; Valle, Luis; King, Jonathan; Low, Kevin; Yi, Jaehyun; Atkeson, Christopher G; Park, Yong-Lae

    2018-04-01

    As robots begin to interact with humans and operate in human environments, safety becomes a major concern. Conventional robots, although reliable and consistent, can cause injury to anyone within its range of motion. Soft robotics, wherein systems are made to be soft and mechanically compliant, are thus a promising alternative due to their lightweight nature and ability to cushion impacts, but current designs often sacrifice accuracy and usefulness for safety. We, therefore, have developed a bioinspired robotic arm combining elements of rigid and soft robotics such that it exhibits the positive qualities of both, namely compliance and accuracy, while maintaining a low weight. This article describes the design of a robotic arm-wrist-hand system with seven degrees of freedom (DOFs). The shoulder and elbow each has two DOFs for two perpendicular rotational motions on each joint, and the hand has two DOFs for wrist rotations and one DOF for a grasp motion. The arm is pneumatically powered using custom-built McKibben type pneumatic artificial muscles, which are inflated and deflated using binary and proportional valves. The wrist and hand motions are actuated through servomotors. In addition to the actuators, the arm is equipped with a potentiometer in each joint for detecting joint angle changes. Simulation and experimental results for closed-loop position control are also presented in the article.

  3. Diffusion tensor and volumetric magnetic resonance imaging using an MR-compatible hand-induced robotic device suggests training-induced neuroplasticity in patients with chronic stroke.

    Science.gov (United States)

    Lazaridou, Asimina; Astrakas, Loukas; Mintzopoulos, Dionyssios; Khanicheh, Azadeh; Singhal, Aneesh B; Moskowitz, Michael A; Rosen, Bruce; Tzika, Aria A

    2013-11-01

    Stroke is the third leading cause of mortality and a frequent cause of long-term adult impairment. Improved strategies to enhance motor function in individuals with chronic disability from stroke are thus required. Post‑stroke therapy may improve rehabilitation and reduce long-term disability; however, objective methods for evaluating the specific impact of rehabilitation are rare. Brain imaging studies on patients with chronic stroke have shown evidence for reorganization of areas showing functional plasticity after a stroke. In this study, we hypothesized that brain mapping using a novel magnetic resonance (MR)-compatible hand device in conjunction with state‑of‑the‑art magnetic resonance imaging (MRI) can serve as a novel biomarker for brain plasticity induced by rehabilitative motor training in patients with chronic stroke. This hypothesis is based on the premises that robotic devices, by stimulating brain plasticity, can assist in restoring movement compromised by stroke-induced pathological changes in the brain and that these changes can then be monitored by advanced MRI. We serially examined 15 healthy controls and 4 patients with chronic stroke. We employed a combination of diffusion tensor imaging (DTI) and volumetric MRI using a 3-tesla (3T) MRI system using a 12-channel Siemens Tim coil and a novel MR-compatible hand‑induced robotic device. DTI data revealed that the number of fibers and the average tract length significantly increased after 8 weeks of hand training by 110% and 64%, respectively (probotics in the molecular medicine era.

  4. Monitor, the prelude to robotics

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.

    1985-01-01

    Robots and teleoperator systems will play an important role in future energy systems regardless of the particular energy source. Present remote handling systems were developed for radioactive environments; however, future sources, such as fusion reactors, solar concentrators, and wind generators will also produce environments too hostile for practical ''hands on'' maintenance. Teleoperator systems developed at the Clinton P. Anderson Meson Physics Facility (LAMPF) are a logical prelude to performing remote operations with robots. The ''Monitor'' remote handling systems represented state-of-the-art mechanical hardware and operating techniques - the only elements missing are suitable computer and software interfaces

  5. Role of interoceptive accuracy in topographical changes in emotion-induced bodily sensations

    Science.gov (United States)

    Jung, Won-Mo; Ryu, Yeonhee; Lee, Ye-Seul; Wallraven, Christian; Chae, Younbyoung

    2017-01-01

    The emotion-associated bodily sensation map is composed of a specific topographical distribution of bodily sensations to categorical emotions. The present study investigated whether or not interoceptive accuracy was associated with topographical changes in this map following emotion-induced bodily sensations. This study included 31 participants who observed short video clips containing emotional stimuli and then reported their sensations on the body map. Interoceptive accuracy was evaluated with a heartbeat detection task and the spatial patterns of bodily sensations to specific emotions, including anger, fear, disgust, happiness, sadness, and neutral, were visualized using Statistical Parametric Mapping (SPM) analyses. Distinct patterns of bodily sensations were identified for different emotional states. In addition, positive correlations were found between the magnitude of sensation in emotion-specific regions and interoceptive accuracy across individuals. A greater degree of interoceptive accuracy was associated with more specific topographical changes after emotional stimuli. These results suggest that the awareness of one’s internal bodily states might play a crucial role as a required messenger of sensory information during the affective process. PMID:28877218

  6. The Arrival of Robotics in Spine Surgery: A Review of the Literature.

    Science.gov (United States)

    Ghasem, Alexander; Sharma, Akhil; Greif, Dylan N; Alam, Milad; Maaieh, Motasem Al

    2018-04-18

    Systematic Review. The authors aim to review comparative outcome measures between robotic and free-hand spine surgical procedures including: accuracy of spinal instrumentation, radiation exposure, operative time, hospital stay, and complication rates. Misplacement of pedicle screws in conventional open as well as minimally invasive surgical procedures has prompted the need for innovation and allowed the emergence of robotics in spine surgery. Prior to incorporation of robotic surgery in routine practice, demonstration of improved instrumentation accuracy, operative efficiency, and patient safety is required. A systematic search of the PubMed, OVID-MEDLINE, and Cochrane databases was performed for papers relevant to robotic assistance of pedicle screw placement. Inclusion criteria were constituted by English written randomized control trials, prospective and retrospective cohort studies involving robotic instrumentation in the spine. Following abstract, title, and full-text review, 32 articles were selected for study inclusion. Intrapedicular accuracy in screw placement and subsequent complications were at least comparable if not superior in the robotic surgery cohort. There is evidence supporting that total operative time is prolonged in robot assisted surgery compared to conventional free-hand. Radiation exposure appeared to be variable between studies; radiation time did decrease in the robot arm as the total number of robotic cases ascended, suggesting a learning curve effect. Multi-level procedures appeared to tend toward earlier discharge in patients undergoing robotic spine surgery. The implementation of robotic technology for pedicle screw placement yields an acceptable level of accuracy on a highly consistent basis. Surgeons should remain vigilant about confirmation of robotic assisted screw trajectory, as drilling pathways have been shown to be altered by soft tissue pressures, forceful surgical application, and bony surface skiving. However, the effective

  7. Prognostic value of thumb pain sensation in birth brachial plexopathy

    Directory of Open Access Journals (Sweden)

    Carlos O. Heise

    2012-08-01

    Full Text Available OBJECTIVE: To evaluate the prognostic value of absent thumb pain sensation in newborns and young infants with birth brachial plexopathy. METHODS: We evaluated 131 patients with birth brachial plexopathy with less than two months of age. Pain sensation was evoked by thumb nail bed compression to evaluate sensory fibers of the upper trunk (C6. The patients were followed-up monthly. Patients with less than antigravity elbow flexion at six months of age were considered to have a poor outcome. RESULTS: Thirty patients had absent thumb pain sensation, from which 26 showed a poor outcome. Sensitivity of the test was 65% and specificity was 96%. CONCLUSION: Evaluation of thumb pain sensation should be included in the clinical assessment of infants with birth brachial plexopathy.

  8. Deqi sensations without cutaneous sensory input: results of an RCT

    Directory of Open Access Journals (Sweden)

    Simang Michael

    2010-12-01

    Full Text Available Abstract Background Deqi is defined in relation to acupuncture needling as a sensory perception of varying character. In a recently published sham laser validation study, we found that subjects in the verum and the sham laser group experienced deqi sensations. Therefore, we aim to further analyze whether the perceptions reported in the two study arms were distinguishable and whether expectancy effects exhibited considerable impact on our results. Methods A detailed re-analysis focusing on deqi sensations was performed from data collected in a previously published placebo-controlled, double-blind, clinical cross-over trial for a sham laser evaluation. Thirty-four healthy volunteers (28 ± 10.7 years; 16 women, 18 men received two laser acupuncture treatments at three acupuncture points LI4 (hégu, LU7 (liéque, and LR3 (táichong; once by verum laser and once using a sham device containing an inactive laser in randomized order. Outcome measures were frequency, intensity (evaluated by visual analogue scale; VAS, and quality of the subjects' sensations perceived during treatments (assessed with the "acupuncture sensation scale". Results Both, verum and the sham laser acupuncture result in similar deqi sensations with regard to frequency (p-value = 0.67, intensity (p-value = 0.71 and quality (p-values between 0.15 - 0.98. In both groups the most frequently used adjectives to describe these perceptions were "spreading", "radiating", "tingling", "tugging", "pulsing", "warm", "dull", and "electric". Sensations reported were consistent with the perception of deqi as previously defined in literature. Subjects' conviction regarding the effectiveness of laser acupuncture or the history of having received acupuncture treatments before did not correlate with the frequency or intensity of sensations reported. Conclusions Since deqi sensations, described as sensory perceptions, were elicited without any cutaneous sensory input, we assume that they are a

  9. Sensation seeking as risk factor for suicidal ideation and suicide attempts in adolescence.

    Science.gov (United States)

    Ortin, Ana; Lake, Alison M; Kleinman, Marjorie; Gould, Madelyn S

    2012-12-20

    High sensation seeking in adolescence is associated with engagement in risk-taking behaviors, especially substance use. Although depressed adolescents are prone to increased risk-taking, and suicidal behavior can be considered within the spectrum of risk-taking behaviors, the relationships between sensation seeking, depression, and suicidal behavior have not been explored. A self-report questionnaire assessing sensation seeking, depression, substance use problems, and suicidal ideation and suicide attempts was completed by 9th- through 12th-grade students (n=2189) in six New York State high-schools from 2002 through 2004. Logistic regression analyses were conducted to examine main and interaction effects between sensation seeking and the four clinical variables. High sensation seeking was positively associated with depressive symptoms and substance use problems. The main effects of sensation seeking on suicidal ideation and suicide attempts remained significant after controlling for depression and substance use. The association between sensation seeking and suicide attempts was moderated by substance use problems. The schools were suburban and predominantly white, limiting the generalizability of the results. Other mental disorders with potential implications for sensation seeking and for suicidal behavior, such as bipolar disorders, were not assessed. The finding that sensation seeking makes an independent contribution to the risk of suicidal ideation and attempts is consistent with findings in literature on novelty seeking and impulsivity. The associations between sensation seeking, depressive symptoms and suicidal behavior may be compatible with the presence of an underlying temperamental dysregulation. Screening for sensation seeking may contribute to the reduction of adolescent suicide risk. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Human-Robot Interaction Directed Research Project

    Science.gov (United States)

    Sandor, Aniko; Cross, Ernest V., II; Chang, Mai Lee

    2014-01-01

    navigational guidance (CG and SG) on operator task performance and attention allocation during teleoperation of a robot arm through uplinked commands. Although this study complements the first study on navigational guidance with hand controllers, it is a separate investigation due to the distinction in intended operators (i.e., crewmembers versus ground-operators). A third study looked at superimposed and integrated overlays for teleoperation of a mobile robot using a hand controller. When AR is superimposed on the external world, it appears to be fixed onto the display and internal to the operators' workstation. Unlike superimposed overlays, integrated overlays often appear as three-dimensional objects and move as if part of the external world. Studies conducted in the aviation domain show that integrated overlays can improve situation awareness and reduce the amount of deviation from the optimal path. The purpose of the study was to investigate whether these results apply to HRI tasks, such as navigation with a mobile robot.

  11. Fabrication and characterization of bending and pressure sensors for a soft prosthetic hand

    Science.gov (United States)

    Rocha, Rui Pedro; Alhais Lopes, Pedro; de Almeida, Anibal T.; Tavakoli, Mahmoud; Majidi, Carmel

    2018-03-01

    We demonstrate fabrication, characterization, and implementation of ‘soft-matter’ pressure and bending sensors for a soft robotic hand. The elastomer-based sensors are embedded in a robot finger composed of a 3D printed endoskeleton and covered by an elastomeric skin. Two types of sensors are evaluated, resistive pressure sensors and capacitive pressure sensors. The sensor is fabricated entirely out of insulating and conductive rubber, the latter composed of polydimethylsiloxane (PDMS) elastomer embedded with a percolating network of structured carbon black (CB). The sensor-integrated fingers have a simple materials architecture, can be fabricated with standard rapid prototyping methods, and are inexpensive to produce. When incorporated into a robotic hand, the CB-PDMS sensors and PDMS carrier medium function as an ‘artificial skin’ for touch and bend detection. Results show improved response with a capacitive sensor architecture, which, unlike a resistive sensor, is robust to electromechanical hysteresis, creep, and drift in the CB-PDMS composite. The sensorized fingers are integrated in an anthropomorphic hand and results for a variety of grasping tasks are presented.

  12. Designing messages with high sensation value: when activation meets reactance.

    Science.gov (United States)

    Xu, Jie

    2015-01-01

    Based on two theoretical models--activation model of information exposure and psychological reactance theory--this study examined the individual and combined effects of message sensation value (MSV) and controlling language on young adults' information processing. Two experimental studies on anti-drunken driving and anti-smoking public service announcements were conducted that were conceptual replications of one another. The measures included perceived threat to freedom, sensation seeking, perceived ad effectiveness and state reactance (anger). Across the two studies, MSV was found to advance the perceived ad effectiveness, and controlling language contributed to anger. A consistent interaction was revealed, such that participants responded positively to the high sensation value messages when presented with low controlling language. The effect of high sensation value anti-smoking ads to advance persuasiveness particularly under the condition of low controlling language was more influential to low sensation seekers. This study suggests that increasing MSV coupled with high controlling language can backfire, especially when targeting young adults. The implications for persuasion in general are considered, as well as the specific findings for drunken driving and smoking.

  13. Student teams practice for regional robotic competition at KSC

    Science.gov (United States)

    1999-01-01

    Student teams (right and left) behind protective walls maneuver their robots on the playing field during practice rounds of the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex . Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow-like disks from the floor, as well as climb onto the platform (foreground) and raise the cache of pillows to a height of eight feet. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.

  14. Estimation of thermal sensation during varied air temperature conditions.

    Science.gov (United States)

    Katsuura, T; Tabuchi, R; Iwanaga, K; Harada, H; Kikuchi, Y

    1998-03-01

    Seven male students were exposed to four varied air temperature environments: hot (37 degrees C) to neutral (27 degrees C) (HN), neutral to hot (NH), cool (17 degrees C) to neutral (CN), and neutral to cool (NC). The air temperature was maintained at the first condition for 20 min, then was changed to the second condition after 15 min and was held there for 20 min. Each subject wore a T-shirt, briefs, trunks, and socks. Each sat on a chair and was continuously evaluated for thermal sensation, thermal comfort, and air velocity sensation. Some physiological and thermal parameters were also measured every 5 s during the experiment. The correlation between thermal sensation and skin temperature at 15 sites was found to be poor. The subjects felt much warmer during the rising phase of the air temperature (CN, NH) than during the descending phase (HN, NC) at a given mean skin temperature. However, thermal sensation at the same heat flux or at the same value of the difference between skin and air temperature (delta(Tsk - Ta)) was not so different among the four experimental conditions, and the correlation between thermal sensation and heat flux or delta(Tsk - Ta) was fairly good. The multiple regression equation of the thermal sensation (TS) on 15 sites of skin temperature (Tsk; degrees C) was calculated and the coefficient of determination (R*2) was found to be 0.656. Higher coefficients of determination were found in the equations of thermal sensation for the heat flux (H; kcal.m-2.h-1) at the right and left thighs of the subjects and on delta(Tsk - Ta) (degrees C) at 4 sites. They were as follows: TS = 2.04 - 0.016 Hright - 0.036 Hleft; R*2 = 0.717, TS = 1.649 + 0.013 delta(Tsk - Ta)UpperArm - 0.036 delta(Tsk - Ta)Chest - 0.223 delta(Tsk - Ta)Thigh-0.083 delta(Tsk - Ta)LowerLeg; R*2 = 0.752, respectively.

  15. Are there common mechanisms in sensation seeking and reality distortion in schizophrenia? A study using memory event-related potentials.

    Science.gov (United States)

    Guillem, François; Pampoulova, Tania; Stip, Emmanuel; Todorov, Christo; Lalonde, Pierre

    2005-05-15

    A growing literature suggests that the characteristics of sensation seeking and reality distortion expressed in schizophrenia share several mechanisms. In a previous study, the comparison of patients with high vs. low reality distortion using event-related potentials (ERPs) recorded in a recognition memory task for unfamiliar faces identified neural and cognitive anomalies specifically related to the expression of these symptoms. As a follow-up, this study investigated the ERP correlates of sensation seeking in schizophrenia using the same recognition memory protocol. ERPs have been recorded in controls (N=21) and schizophrenia patients separated into high (HSS; N=13) and low (LSS; N=17) scorers according to Zuckerman's Sensation Seeking Scale. The results show a reduced P2a that was found unrelated to reality distortion in the previous study of reality distortion. It identifies interference inhibition impairment as being specifically related to sensation seeking. On the other hand, HSS scorers display enhanced fronto-central and normal P600 effects also found in high reality distortion patients. These results indicate inappropriate context processing and mnemonic binding common to sensation seeking and reality distortion. LSS scorers also display a reduced temporal N300 similar to that found in low reality distortion patients. This anomaly could reflect the lower reactivity to emotionally significant stimuli that underlies anhedonia symptoms. Finally, the N400 effect and a late frontal effect are found in both HSS and LSS. Since they were unrelated to reality distortion, these indices have been related to basic aspects of schizophrenia, e.g., deficient knowledge integration, or other mechanisms, e.g. anxiety or impulsivity. In summary, the present study examines the strategy of investigating variables, such as temperamental characteristics, in addition to symptoms, to show how discrete impairments may contribute to the expression of the illness.

  16. Vision-Based Interfaces Applied to Assistive Robots

    Directory of Open Access Journals (Sweden)

    Elisa Perez

    2013-02-01

    Full Text Available This paper presents two vision-based interfaces for disabled people to command a mobile robot for personal assistance. The developed interfaces can be subdivided according to the algorithm of image processing implemented for the detection and tracking of two different body regions. The first interface detects and tracks movements of the user's head, and these movements are transformed into linear and angular velocities in order to command a mobile robot. The second interface detects and tracks movements of the user's hand, and these movements are similarly transformed. In addition, this paper also presents the control laws for the robot. The experimental results demonstrate good performance and balance between complexity and feasibility for real-time applications.

  17. Whole-body impedance control of wheeled humanoid robots

    CERN Document Server

    Dietrich, Alexander

    2016-01-01

    Introducing mobile humanoid robots into human environments requires the systems to physically interact and execute multiple concurrent tasks. The monograph at hand presents a whole-body torque controller for dexterous and safe robotic manipulation. This control approach enables a mobile humanoid robot to simultaneously meet several control objectives with different pre-defined levels of priority, while providing the skills for compliant physical contacts with humans and the environment. After a general introduction into the topic of whole-body control, several essential reactive tasks are developed to extend the repertoire of robotic control objectives. Additionally, the classical Cartesian impedance is extended to the case of mobile robots. All of these tasks are then combined and integrated into an overall, priority-based control law. Besides the experimental validation of the approach, the formal proof of asymptotic stability for this hierarchical controller is presented. By interconnecting the whole-body ...

  18. A virtual work space for both hands manipulation with coherency between kinesthetic and visual sensation

    Science.gov (United States)

    Ishii, Masahiro; Sukanya, P.; Sato, Makoto

    1994-01-01

    This paper describes the construction of a virtual work space for tasks performed by two handed manipulation. We intend to provide a virtual environment that encourages users to accomplish tasks as they usually act in a real environment. Our approach uses a three dimensional spatial interface device that allows the user to handle virtual objects by hand and be able to feel some physical properties such as contact, weight, etc. We investigated suitable conditions for constructing our virtual work space by simulating some basic assembly work, a face and fit task. We then selected the conditions under which the subjects felt most comfortable in performing this task and set up our virtual work space. Finally, we verified the possibility of performing more complex tasks in this virtual work space by providing simple virtual models and then let the subjects create new models by assembling these components. The subjects can naturally perform assembly operations and accomplish the task. Our evaluation shows that this virtual work space has the potential to be used for performing tasks that require two-handed manipulation or cooperation between both hands in a natural manner.

  19. Cognitive–Behavioral Therapy for Hand and Arm Pain

    Science.gov (United States)

    Vranceanu, Ana-Maria; Safren, Steve

    2016-01-01

    Cognitive–behavioral therapy (CBT) is a psychological treatment that emphasizes the interrelation among thoughts, behaviors, feelings, and sensations. CBT has been proved effective not only for treatment of psychological illness but also for teaching adaptive coping strategies in the context of chronic illnesses, including chronic pain. The present article provides general information on CBT, specific information on CBT for pain, as well as guidelines and strategies for using CBT for hand and arm pain patients, as part of multidisciplinary care models. PMID:21051204

  20. Experiments in robotic sensorimotor control during grasp

    International Nuclear Information System (INIS)

    Stansfield, S.A.

    1993-01-01

    A series of experiments is presented, using a robot manipulator, which attempt to reproduce human sensorimotor control during grasping. The work utilizes a multifingered, dexterous robot hand equipped with a fingertip force sensor to explore dynamic grasp force adjustment during manipulation. The work is primarily concerned with the relationship between the weight of an object and the grasp force required to lift it. Too weak a grasp is unstable and the object will slip from the hand. Too strong a grasp may damage the object and/or the manipulator. An algorithm is presented which reproduces observed human behavior during grasp-and-lift tasks. The algorithm uses tactile information from the sensor to dynamically adjust the grasp force during lift. It is assumed that there is no a priori knowledge about the object to be manipulated. The effects of different arm/hand postures and object surfaces is explored. Finally, the use of sensory data to detect unexpected object motion and to signal transitions between manipulation phases--with the coincident triggering of new motor programs--is investigated