WorldWideScience

Sample records for senescent keratinocytes die

  1. SORBS2 and TLR3 induce premature senescence in primary human fibroblasts and keratinocytes

    International Nuclear Information System (INIS)

    Liesenfeld, Melanie; Mosig, Sandy; Funke, Harald; Jansen, Lars; Runnebaum, Ingo B; Dürst, Matthias; Backsch, Claudia

    2013-01-01

    Genetic aberrations are required for the progression of HPV-induced cervical precancers. A prerequisite for clonal expansion of cancer cells is unlimited proliferative capacity. In a cell culture model for cervical carcinogenesis loss of genes located on chromosome 4q35→qter and chromosome 10p14-p15 were found to be associated with escape from senescence. Moreover, by LOH and I-FISH analyses a higher frequency of allele loss of these regions was also observed in cervical carcinomas as compared to CIN3. The aim of this study was to identify candidate senescence-related genes located on chromosome 4q35→qter and chromosome 10p14-p15 which may contribute to clonal expansion at the transition of CIN3 to cancer. Microarray expression analyses were used to identify candidate genes down-regulated in cervical carcinomas as compared to CIN3. In order to relate these genes with the process of senescence their respective cDNAs were overexpressed in HPV16-immortalized keratinocytes as well as in primary human fibroblasts and keratinocytes using lentivirus mediated gene transduction. Overall fifteen genes located on chromosome 4q35→qter and chromosome 10p14-p15 were identified. Ten of these genes could be validated in biopsies by RT-PCR. Of interest is the novel finding that SORBS2 and TLR3 can induce senescence in primary human fibroblasts and keratinocytes but not in HPV-immortalized cell lines. Intriguingly, the endogenous expression of both genes increases during finite passaging of primary keratinocytes in vitro. The relevance of the genes SORBS2 and TLR3 in the process of cellular senescence warrants further investigation. In ongoing experiments we are investigating whether this increase in gene expression is also characteristic of replicative senescence

  2. Resveratrol prevents oxidative stress-induced senescence and proliferative dysfunction by activating the AMPK-FOXO3 cascade in cultured primary human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Yasuo Ido

    Full Text Available The aging process is perceived as resulting from a combination of intrinsic factors such as changes in intracellular signaling and extrinsic factors, most notably environmental stressors. In skin, the relationship between intrinsic changes and keratinocyte function is not clearly understood. Previously, we found that increasing the activity of AMP-activated protein kinase (AMPK suppressed senescence in hydrogen peroxide (H2O2-treated human primary keratinocytes, a model of oxidative stress-induced cellular aging. Using this model in the present study, we observed that resveratrol, an agent that increases the activities of both AMPK and sirtuins, ameliorated two age-associated phenotypes: cellular senescence and proliferative dysfunction. In addition, we found that treatment of keratinocytes with Ex527, a specific inhibitor of sirtuin 1 (SIRT1, attenuated the ability of resveratrol to suppress senescence. In keeping with the latter observation, we noted that compared to non-senescent keratinocytes, senescent cells lacked SIRT1. In addition to these effects on H2O2-induced senescence, resveratrol also prevented the H2O2-induced decrease in proliferation (as indicated by 3H-thymidine incorporation in the presence of insulin. This effect was abrogated by inhibition of AMPK but not SIRT1. Compared to endothelium, we found that human keratinocytes expressed relatively high levels of Forkhead box O3 (FOXO3, a downstream target of both AMPK and SIRT1. Treatment of keratinocytes with resveratrol transactivated FOXO3 and increased the expression of its target genes including catalase. Resveratrol's effects on both senescence and proliferation disappeared when FOXO3 was knocked down. Finally, we performed an exploratory study which showed that skin from humans over 50 years old had lower AMPK activity than skin from individuals under age 20. Collectively, these findings suggest that the effects of resveratrol on keratinocyte senescence and proliferation

  3. Alteration of keratinocyte differentiation and senescence by the tumor promoter dioxin

    International Nuclear Information System (INIS)

    Ray, Soma S.; Swanson, Hollie I.

    2003-01-01

    Exposure to the environmental contaminant dioxin, elicits a variety of responses, which includes tumor promotion, embryotoxicity/teratogenesis, and carcinogenesis in both animals and humans. Many of the effects of dioxin are mediated by the aryl hydrocarbon receptor (AHR), a ligand-activated bHLH (basic helix-loop-helix)/PAS transcription factor. We initiated this study to determine whether dioxin's tumor-promoting activities may lie in its ability to alter proliferation, differentiation, and/or senescence using normal human epidermal keratinocytes (HEKs). Here, we report that dioxin appears to accelerate differentiation as measured by flow cytometry and by increased expression of the differentiation markers involucrin and filaggrin. In addition, dioxin appears to increase proliferation as indicated by an increase in NADH/NADPH production and changes in cell cycle. Finally, dioxin decreases SA (senescence associated) β-galactosidase staining, an indicator of senescence, in the differentiating keratinocytes. These changes were accompanied by decreases in the expression levels of key cell cycle regulatory proteins p53, p16 INK4a , and p14 ARF . Our findings support the idea that dioxin may exert its tumor-promoting actions, in part, by downregulating the expression levels of key tumor suppressor proteins, which may impair the cell's ability to maintain its appropriate cellular status

  4. Dysregulated ΔNp63α inhibits expression of Ink4a/arf, blocks senescence, and promotes malignant conversion of keratinocytes.

    Directory of Open Access Journals (Sweden)

    Linan Ha

    Full Text Available p63 is critical for squamous epithelial development, and elevated levels of the ΔNp63α isoform are seen in squamous cell cancers of various organ sites. However, significant controversy exists regarding the role of p63 isoforms as oncoproteins or tumor suppressors. Here, lentiviruses were developed to drive long-term overexpression of ΔNp63α in primary keratinocytes. Elevated levels of ΔNp63α in vitro promote long-term survival and block both replicative and oncogene-induced senescence in primary keratinocytes, as evidenced by the expression of SA-β-gal and the presence of nuclear foci of heterochromatin protein 1γ. The contribution of ΔNp63α to cancer development was assessed using an in vivo grafting model of experimental skin tumorigenesis that allows distinction between benign and malignant tumors. Grafted lenti-ΔNp63α keratinocytes do not form tumors, whereas lenti-GFP/v-ras(Ha keratinocytes develop well-differentiated papillomas. Lenti-ΔNp63α/v-ras(Ha keratinocytes form undifferentiated carcinomas. The average volume of lenti-ΔNp63α/v-ras(Ha tumors was significantly higher than those in the lenti-GFP/v-ras(Ha group, consistent with increased BrdU incorporation detected by immunohistochemistry. The block in oncogene-induced senescence corresponds to sustained levels of E2F1 and phosphorylated AKT, and is associated with loss of induction of p16(ink4a/p19(arf. The relevance of p16(ink4a/p19(arf loss was demonstrated in grafting studies of p19(arf-null keratinocytes, which develop malignant carcinomas in the presence of v-ras(Ha similar to those arising in wildtype keratinocytes that express lenti-ΔNp63α and v-ras(Ha. Our findings establish that ΔNp63α has oncogenic activity and its overexpression in human squamous cell carcinomas contributes to the malignant phenotype, and implicate its ability to regulate p16(ink4a/p19(arf in the process.

  5. The effect of 648 nm diode laser irradiation on second messengers in senescent human keratinocytes

    Science.gov (United States)

    Hawkins Evans, D.; Abrahamse, H.

    2009-02-01

    Background/purpose: Stress induced premature senescence (SIPS) is defined as the long-term effect of subcytotoxic stress on proliferative cell types. Cells in SIPS display differences at the level of protein expression which affect energy metabolism, defense systems, redox potential, cell morphology and transduction pathways. This study aimed to determine the effect of laser irradiation on second messengers in senescent cells and to establish if that effect can be directly linked to changes in cellular function such as cell viability or proliferation. Materials and Methods: Human keratinocyte cell cultures were modified to induce premature senescence using repeated sub-lethal stresses of 200 uM H2O2 or 5% OH every day for four days with two days recovery. SIPS was confirmed by senescence-associated β-galactosidase staining. Control conditions included normal, repeated stress of 500 uM H2O2 to induce apoptosis and 200 uM PBN as an anti-oxidant or free radical scavenger. Cells were irradiated with 1.5 J/cm2 on day 1 and 4 using a 648 nm diode laser (3.3 mW/cm2) and cellular responses were measured 1 h post irradiation. The affect on second messengers was assessed by measuring cAMP, cGMP, nitric oxide and intracellular calcium (Ca2+) while functional changes were assessed using cell morphology, ATP cell viability, LDH membrane integrity and WST-1 cell proliferation. Results: Results indicate an increase in NO and a decrease in cGMP and Ca2+ in 200 uM H2O2 irradiated cells while PBN irradiated cells showed a decrease in cAMP and an increase in ATP viability and cell proliferation. Conclusion: Laser irradiation influences cell signaling which ultimately changes the biological function of senescent cells. If laser therapy can stimulate the biological function of senescent cells it may be beneficial to conditions such as immune senescence, skin ageing, muscle atrophy, premature ageing of arteries in patients with advanced heart disease, neurodegenerative disorders and

  6. Interferon-β induces cellular senescence in cutaneous human papilloma virus-transformed human keratinocytes by affecting p53 transactivating activity.

    Directory of Open Access Journals (Sweden)

    Maria V Chiantore

    Full Text Available Interferon (IFN-β inhibits cell proliferation and affects cell cycle in keratinocytes transformed by both mucosal high risk Human Papilloma Virus (HPV and cutaneous HPV E6 and E7 proteins. In particular, upon longer IFN-β treatments, cutaneous HPV38 expressing cells undergo senescence. IFN-β appears to induce senescence by upregulating the expression of the tumor suppressor PML, a well known IFN-induced gene. Indeed, experiments in gene silencing via specific siRNAs have shown that PML is essential in the execution of the senescence programme and that both p53 and p21 pathways are involved. IFN-β treatment leads to a modulation of p53 phosphorylation and acetylation status and a reduction in the expression of the p53 dominant negative ΔNp73. These effects allow the recovery of p53 transactivating activity of target genes involved in the control of cell proliferation. Taken together, these studies suggest that signaling through the IFN pathway might play an important role in cellular senescence. This additional understanding of IFN antitumor action and mechanisms influencing tumor responsiveness or resistance appears useful in aiding further promising development of biomolecular strategies in the IFN therapy of cancer.

  7. Senescence-Derived Extracellular Molecules as Modulators of Oral Cancer Development: A Mini-Review.

    Science.gov (United States)

    Parkinson, Eric Kenneth; James, Emma L; Prime, Stephen S

    2016-01-01

    Oral cancers are predominantly oral squamous cell carcinomas (OSCCs) derived from keratinocytes, and there is now very detailed knowledge of the genetics and molecular biology of the epithelial tumourigenic component of these cancers, including the identification of cancer stem or tumour-initiating cells. Several key genetic alterations have been identified including the near ubiquitous loss of the CDKN2A/p16INK4A and p53 pathways and telomerase activation, together with frequent inactivation of the NOTCH1 canonical pathway either by somatic genetic alterations or by the presence of human papilloma virus. There is also evidence that OSCCs arise from a 'field' of altered cells and that malignant conversion takes place pre-dominantly at the microscopic level. However, in the last decade, it has been realised that tumour development and progression are influenced by the cells of the microenvironment with cross-talk between the epithelial (tumour) and mesenchymal components. OSCCs, especially those that have bypassed cellular senescence, produce an array of proteins and metabolites that induce cellular senescence in the normal surrounding cells; indeed, senescence is a common property of cancer-associated fibroblasts (CAFs). Cellular senescence is defined as an irreversible cell cycle arrest and is associated with the release of molecules known as the senescence-associated secretory phenotype that can selectively promote the growth of pre-neoplastic keratinocytes (osteopontin) and cancer invasion (transforming growth factor β, matrix metalloproteinases, interleukin 6 and lactate). In addition, both old and new work has shown that keratinocytes harbouring NOTCH loss-of-function mutations that lead to defective keratinocyte differentiation and loss of squamous epithelial barrier function may act as a tumour-promoting stimulus for initiated cells harbouring RAS pathway mutations by activating a wound response in the tumour mesenchyme. Thus, not all keratinocytes in the

  8. Proteomic profiling of human keratinocytes undergoing UVB-induced alternative differentiation reveals TRIpartite Motif Protein 29 as a survival factor.

    Directory of Open Access Journals (Sweden)

    Véronique Bertrand-Vallery

    Full Text Available BACKGROUND: Repeated exposures to UVB of human keratinocytes lacking functional p16(INK-4a and able to differentiate induce an alternative state of differentiation rather than stress-induced premature senescence. METHODOLOGY/PRINCIPAL FINDINGS: A 2D-DIGE proteomic profiling of this alternative state of differentiation was performed herein at various times after the exposures to UVB. Sixty-nine differentially abundant protein species were identified by mass spectrometry, many of which are involved in keratinocyte differentiation and survival. Among these protein species was TRIpartite Motif Protein 29 (TRIM29. Increased abundance of TRIM29 following UVB exposures was validated by Western blot using specific antibody and was also further analysed by immunochemistry and by RT-PCR. TRIM29 was found very abundant in keratinocytes and reconstructed epidermis. Knocking down the expression of TRIM29 by short-hairpin RNA interference decreased the viability of keratinocytes after UVB exposure. The abundance of involucrin mRNA, a marker of late differentiation, increased concomitantly. In TRIM29-knocked down reconstructed epidermis, the presence of picnotic cells revealed cell injury. Increased abundance of TRIM29 was also observed upon exposure to DNA damaging agents and PKC activation. The UVB-induced increase of TRIM29 abundance was dependent on a PKC signaling pathway, likely PKCdelta. CONCLUSIONS/SIGNIFICANCE: These findings suggest that TRIM29 allows keratinocytes to enter a protective alternative differentiation process rather than die massively after stress.

  9. Possible role of ginsenoside Rb1 in skin wound healing via regulating senescent skin dermal fibroblast.

    Science.gov (United States)

    Hou, Jingang; Kim, Sunchang

    2018-05-05

    Cellular senescence suppresses cancer by inducing irreversible cell growth arrest. Nevertheless, senescent cells is proposed as causal link with aging and aging-related pathologies. The physiological beneficial functions of senescent cells are still of paucity. Here we show that senescent human dermal fibroblast accelerates keratinocytes scratch wound healing and stimulates differentiation of fibroblast. Using oxidative stress (100 μM H 2 O 2 exposure for 1 h) induction, we successfully triggered fibroblast senescence and developed senescence associated secretory phenotype (SASP). The induction of SASP was regulated by p38MAPK/MSK2/NF-κB pathway. Interestingly, inhibition of p38MAPK activation only partially suppressed SASP. However, SASP was significantly inhibited by SB747651A, a specific MSK inhibitor. Additionally, we demonstrate that SASP stimulates migration of keratinocytes and myofibroblast transition of fibroblast, through fold-increased secretion of growth factors, platelet-derived growth factor AA (PDGF-AA) and AB (PDGF-AB), transforming growth factor beta 1 (TGF-β1) and beta 2 (TGF-β2), vascular endothelial growth factor A (VEGF-A) and D (VEGF-D), vascular endothelial growth factor receptor 2 (VEGFR2) and 3 (VEGFR3). Importantly, we also confirmed ginsenoside Rb1 promoted SASP-mediated healing process via p38MAPK/MSK2/NF-κB pathway. The results pointed to senescent fibroblast as a potential mechanism of wound healing control in human skin. Further, it provided a candidate targeted for wound therapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Octopus senescence: the beginning of the end.

    Science.gov (United States)

    Anderson, Roland C; Wood, James B; Byrne, Ruth A

    2002-01-01

    Senescence is a normal stage of an octopus's life cycle that often occurs before death. Some of the following symptoms typify it: lack of feeding, retraction of skin around the eyes, uncoordinated movement, increased undirected activity, and white unhealing lesions on the body. There is inter- and intraspecific variability. Senescence is not a disease or a result of disease, although diseases can also be a symptom of it. Both males and females go through a senescent stage before dying-the males after mating, the females while brooding eggs and after the eggs hatch. There are many aspects of octopus senescence that have not yet been studied. This study discusses the ecological implications of senescence.

  11. Aging and senescence of skin cells in culture

    DEFF Research Database (Denmark)

    Rattan, Suresh

    2015-01-01

    Studying age-related changes in the physiology, biochemistry, and molecular biology of isolated skin cell populations in culture has greatly expanded the understanding of the fundamental aspects of skin aging. The three main cell types that have been studied extensively with respect to cellular...... aging in vitro are dermal fibroblasts, epidermal keratinocytes, and melanocytes. Serial subcultivation of normal diploid skin cells can be performed only a limited number of times, and the emerging senescent phenotype can be categorized into structural, physiological, biochemical, and molecular...... phenotypes, which can be used as biomarkers of cellular aging in vitro. The rate and phenotype of aging are different in different cell types. There are both common features and specific features of aging of skin fibroblasts, keratinocytes, melanocytes, and other cell types. A progressive accumulation...

  12. [Immunological theory of senescence].

    Science.gov (United States)

    Drela, Nadzieja

    2014-01-01

    Senescence can result from decreased potential of the immune system to respond to foreign and self antigens. The most common effect is the inhibition to destroy dying and cancer cells and the decrease of the immune response to pathogens. Aging is closely related to inflammatory phenotype, which facilitate the development of age-related diseases. The mammal immune system is highly organized and adapted to react to a wide range of antigens. According to the immunological theory, the causative agents of senescence are multilevel changes of development and functions of immune cells. Some of changes can be beneficial for the maintenance of homeostasis and lifespan in continuously changing endogenous environment and immune history of the organism.

  13. Differential effects of the extracellular microenvironment on human embryonic stem cell differentiation into keratinocytes and their subsequent replicative life span.

    Science.gov (United States)

    Movahednia, Mohammad Mehdi; Kidwai, Fahad Karim; Zou, Yu; Tong, Huei Jinn; Liu, Xiaochen; Islam, Intekhab; Toh, Wei Seong; Raghunath, Michael; Cao, Tong

    2015-04-01

    Culture microenvironment plays a critical role in the propagation and differentiation of human embryonic stem cells (hESCs) and their differentiated progenies. Although high efficiency of hESC differentiation to keratinocytes (hESC-Kert) has been achieved, little is known regarding the effects of early culture microenvironment and pertinent extracellular matrix (ECM) interactions during epidermal commitment on subsequent proliferative capacity of hESC-Kert. The aim of this study is to evaluate the effects of the different ECM microenvironments during hESC differentiation on subsequent replicative life span of hESC-Kert. In doing so, H1-hESCs were differentiated to keratinocytes (H1-Kert) in two differentiation systems. The first system employed autologous fibroblast feeder support, in which keratinocytes (H1-Kert(ACC)) were derived by coculture of hESCs with hESC-derived fibroblasts (H1-ebFs). The second system employed a novel decellularized matrix from H1-ebFs to create a dermoepidermal junction-like (DEJ) matrix. H1-Kert(AFF) were derived by differentiation of hESCs on the feeder-free system employing the DEJ matrix. Our study indicated that the feeder-free system with the use of DEJ matrix was more efficient in differentiation of hESCs toward epidermal progenitors. However, the feeder-free system was not sufficient to support the subsequent replicative capacity of differentiated keratinocytes. Of note, H1-Kert(AFF) showed limited replicative capacity with reduced telomere length and early cellular senescence. We further showed that the lack of cell-cell interactions during epidermal commitment led to heightened production of TGF-β1 by hESC-Kert during extended culture, which in turn was responsible for resulting in the limited replicative life span with cellular senescence of hESC-Kert derived under the feeder-free culture system. This study highlights for the first time the importance of the culture microenvironment and cell-ECM interactions during

  14. Fibroblast Senescence and Squamous Cell Carcinoma: How wounding therapies could be protective

    Science.gov (United States)

    Travers, Jeffrey B.; Spandau, Dan F; Lewis, Davina A.; Machado, Christiane; Kingsley, Melanie; Mousdicas, Nico; Somani, Ally-Khan

    2014-01-01

    Background Squamous cell carcinoma (SCC), which has one of the highest incidences of all cancers in the United States, is an age-dependent disease as the majority of these cancers are diagnosed in people over 70 years of age. Recent findings have led to a new hypothesis on the pathogenesis of SCC. Objectives To evaluate the potential of preventive therapies to reduce the incidence of SCC in at-risk geriatric patients. Materials and Methods Survey of current literature on wounding therapies to prevent SCCs. Results This new hypothesis of SCC photocarcinogenesis states that senescent fibroblasts accumulate in geriatric dermis resulting in a reduction in dermal insulin-like growth factor-1 (IGF-1) expression. This lack of IGF-1 expression sensitizes epidermal keratinocytes to fail to suppress UVB-induced mutations leading to increased proclivity to photocarcinogenesis. Recent evidence suggests that dermal wounding therapies, specifically dermabrasion and fractionated laser resurfacing, can decrease the proportion of senescent dermal fibroblasts, increase dermal IGF-1 expression, and correct the inappropriate UVB response found in geriatric skin, thus protecting geriatric keratinocytes from UVB-induced SCC initiation. Conclusions In this review, we will discuss the translation of pioneering basic science results implicating commonly used dermal fibroblast rejuvenation procedures as preventative treatments for SCC. PMID:23437969

  15. Keratinocytes from APP/APLP2-deficient mice are impaired in proliferation, adhesion and migration in vitro

    International Nuclear Information System (INIS)

    Siemes, Christina; Quast, Thomas; Kummer, Christiane; Wehner, Sven; Kirfel, Gregor; Mueller, Ulrike; Herzog, Volker

    2006-01-01

    Growing evidence shows that the soluble N-terminal form (sAPPα) of the amyloid precursor protein (APP) represents an epidermal growth factor fostering keratinocyte proliferation, migration and adhesion. APP is a member of a protein family including the two mammalian amyloid precursor-like proteins APLP1 and APLP2. In the mammalian epidermis, only APP and APLP2 are expressed. APP and APLP2-deficient mice die shortly after birth but do not display a specific epidermal phenotype. In this report, we investigated the epidermis of APP and/or APLP2 knockout mice. Basal keratinocytes showed reduced proliferation in vivo by about 40%. Likewise, isolated keratinocytes exhibited reduced proliferation rates in vitro, which could be completely rescued by either exogenously added recombinant sAPPα, or by co-culture with dermal fibroblasts derived from APP knockout mice. Moreover, APP-knockout keratinocytes revealed reduced migration velocity resulting from severely compromised cell substrate adhesion. Keratinocytes from double knockout mice died within the first week of culture, indicating essential functions of APP-family members for survival in vitro. Our data indicate that sAPPα has to be considered as an essential epidermal growth factor which, however, in vivo can be functionally compensated to a certain extent by other growth factors, e.g., factors released from dermal fibroblasts

  16. Interaction Mortality: Senescence May Have Evolved because It Increases Lifespan

    DEFF Research Database (Denmark)

    Wensink, M. J.; Wrycza, T. F.; Baudisch, A.

    2014-01-01

    Given an extrinsic challenge, an organism may die or not depending on how the threat interacts with the organism's physiological state. To date, such interaction mortality has been only a minor factor in theoretical modeling of senescence. We describe a model of interaction mortality that does...... not involve specific functions, making only modest assumptions. Our model distinguishes explicitly between the physiological state of an organism and potential extrinsic, age-independent threats. The resulting mortality may change with age, depending on whether the organism's state changes with age. We find...... that depending on the physiological constraints, any outcome, be it 'no senescence' or 'high rate of senescence', can be found in any environment; that the highest optimal rate of senescence emerges for an intermediate physiological constraint, i.e. intermediate strength of trade-off; and that the optimal rate...

  17. Grow-ING, Age-ING and Die-ING: ING proteins link cancer, senescence and apoptosis

    International Nuclear Information System (INIS)

    Russell, Michael; Berardi, Philip; Gong Wei; Riabowol, Karl

    2006-01-01

    The INhibitor of Growth (ING) family of plant homeodomain (PHD) proteins induce apoptosis and regulate gene expression through stress-inducible binding of phospholipids with subsequent nuclear and nucleolar localization. Relocalization occurs concomitantly with interaction with a subset of nuclear proteins, including PCNA, p53 and several regulators of acetylation such as the p300/CBP and PCAF histone acetyltransferases (HATs), as well as the histone deacetylases HDAC1 and hSir2. These interactions alter the localized state of chromatin compaction, subsequently affecting the expression of subsets of genes, including those associated with the stress response (Hsp70), apoptosis (Bax, MDM2) and cell cycle regulation (p21 WAF1 , cyclin B) in a cell- and tissue-specific manner. The expression levels and subcellular localization of ING proteins are altered in a significant number of human cancer types, while the expression of ING isoforms changes during cellular aging, suggesting that ING proteins may play a role in linking cellular transformation and replicative senescence. The variety of functions attributed to ING proteins suggest that this tumor suppressor serves to link the disparate processes of cell cycle regulation, cell suicide and cellular aging through epigenetic regulation of gene expression. This review examines recent findings in the ING field with a focus on the functions of protein-protein interactions involving ING family members and the mechanisms by which these interactions facilitate the various roles that ING proteins play in tumorigenesis, apoptosis and senescence

  18. Depletion of HPV16 early genes induces autophagy and senescence in a cervical carcinogenesis model, regardless of viral physical state.

    Science.gov (United States)

    Hanning, Jennifer E; Saini, Harpreet K; Murray, Matthew J; Caffarel, Maria M; van Dongen, Stijn; Ward, Dawn; Barker, Emily M; Scarpini, Cinzia G; Groves, Ian J; Stanley, Margaret A; Enright, Anton J; Pett, Mark R; Coleman, Nicholas

    2013-11-01

    In cervical carcinomas, high-risk human papillomavirus (HR-HPV) may be integrated into host chromosomes or remain extra-chromosomal (episomal). We used the W12 cervical keratinocyte model to investigate the effects of HPV16 early gene depletion on in vitro cervical carcinogenesis pathways, particularly effects shared by cells with episomal versus integrated HPV16 DNA. Importantly, we were able to study the specific cellular consequences of viral gene depletion by using short interfering RNAs known not to cause phenotypic or transcriptional off-target effects in keratinocytes. We found that while cervical neoplastic progression in vitro was characterized by dynamic changes in HPV16 transcript levels, viral early gene expression was required for cell survival at all stages of carcinogenesis, regardless of viral physical state, levels of early gene expression or histology in organotypic tissue culture. Moreover, HPV16 early gene depletion induced changes in host gene expression that were common to both episome-containing and integrant-containing cells. In particular, we observed up-regulation of autophagy genes, associated with enrichment of senescence and innate immune-response pathways, including the senescence-associated secretory phenotype (SASP). In keeping with these observations, HPV16 early gene depletion induced autophagy in both episome-containing and integrant-containing W12 cells, as evidenced by the appearance of autophagosomes, punctate expression of the autophagy marker LC3, conversion of LC3B-I to LC3B-II, and reduced levels of the autophagy substrate p62. Consistent with the reported association between autophagy and senescence pathways, HPV16 early gene depletion induced expression of the senescence marker beta-galactosidase and increased secretion of the SASP-related protein IGFBP3. Together, these data indicate that depleting HR-HPV early genes would be of potential therapeutic benefit in all cervical carcinogenesis pathways, regardless of viral

  19. Immortalization of human foreskin keratinocytes by various human papillomavirus DNAs corresponds to their association with cervical carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Woodworth, C.D.; Doniger, J.; DiPaolo, J.A.

    1989-01-01

    Normal human foreskin keratinocytes cotransfected with the neomycin resistance gene and recombinant human papillomavirus (HPV) DNAs (types 16, 18, 31, and 33) that have a high or moderate association with cervical malignancy acquired immortality and contained integrated and transcriptionally active viral genomes. Only transcripts from the intact E6 and E7 genes were detected in at least one cell line, suggesting that one or both of these genes are responsible for immortalization. Recombinant HPV DNAs with low or no oncogenic potential for cervical cancer (HPV1a, -5, -6b, and -11) induced small G418-resistant colonies that senesced as did the nontransfected cells. These colonies contained only episomal virus DNA; therefore, integration of HPV sequences is important for immortalization of keratinocytes. This study suggests that the virus-encoded immortalization function contributes to the pathogenesis of cervical carcinoma.

  20. Helicobacter pylori-induced premature senescence of extragastric cells may contribute to chronic skin diseases.

    Science.gov (United States)

    Lewinska, Anna; Wnuk, Maciej

    2017-04-01

    Helicobacter pylori, one of the most frequently observed bacterium in the human intestinal flora, has been widely studied since Marshall and Warren documented a link between the presence of H. pylori in the gastrointestinal tract and gastritis and gastric ulcers. Interestingly, H. pylori has also been found in several other epithelial tissues, including the eyes, ears, nose and skin that may have direct or indirect effects on host physiology and may contribute to extragastric diseases, e.g. chronic skin diseases. More recently, it has been shown that H. pylori cytotoxin CagA expression induces cellular senescence of human gastric nonpolarized epithelial cells that may lead to gastrointestinal disorders and systemic inflammation. Here, we hypothesize that also chronic skin diseases may be promoted by stress-induced premature senescence (SIPS) of skin cells, namely fibroblasts and keratinocytes, stimulated with H. pylori cytotoxins. Future studies involving cell culture models and clinical specimens are needed to verify the involvement of H. pylori in SIPS-based chronic skin diseases.

  1. Senescence Meets Dedifferentiation

    Science.gov (United States)

    Givaty Rapp, Yemima; Ransbotyn, Vanessa; Grafi, Gideon

    2015-01-01

    Senescence represents the final stage of leaf development but is often induced prematurely following exposure to biotic and abiotic stresses. Leaf senescence is manifested by color change from green to yellow (due to chlorophyll degradation) or to red (due to de novo synthesis of anthocyanins coupled with chlorophyll degradation) and frequently culminates in programmed death of leaves. However, the breakdown of chlorophyll and macromolecules such as proteins and RNAs that occurs during leaf senescence does not necessarily represent a one-way road to death but rather a reversible process whereby senescing leaves can, under certain conditions, re-green and regain their photosynthetic capacity. This phenomenon essentially distinguishes senescence from programmed cell death, leading researchers to hypothesize that changes occurring during senescence might represent a process of trans-differentiation, that is the conversion of one cell type to another. In this review, we highlight attributes common to senescence and dedifferentiation including chromatin structure and activation of transposable elements and provide further support to the notion that senescence is not merely a deterioration process leading to death but rather a unique developmental state resembling dedifferentiation. PMID:27135333

  2. Atypical Diabetic Foot Ulcer Keratinocyte Protein Signaling Correlates with Impaired Wound Healing

    Science.gov (United States)

    Hoke, Glenn D.; Ramos, Corrine; Hoke, Nicholas N.; Crossland, Mary C.; Shawler, Lisa G.

    2016-01-01

    Diabetes mellitus is associated with chronic diabetic foot ulcers (DFUs) and wound infections often resulting in lower extremity amputations. The protein signaling architecture of the mechanisms responsible for impaired DFU healing has not been characterized. In this preliminary clinical study, the intracellular levels of proteins involved in signal transduction networks relevant to wound healing were non-biasedly measured using reverse-phase protein arrays (RPPA) in keratinocytes isolated from DFU wound biopsies. RPPA allows for the simultaneous documentation and assessment of the signaling pathways active in each DFU. Thus, RPPA provides for the accurate mapping of wound healing pathways associated with apoptosis, proliferation, senescence, survival, and angiogenesis. From the study data, we have identified potential diagnostic, or predictive, biomarkers for DFU wound healing derived from the ratios of quantified signaling protein expressions within interconnected pathways. These biomarkers may allow physicians to personalize therapeutic strategies for DFU management on an individual basis based upon the signaling architecture present in each wound. Additionally, we have identified altered, interconnected signaling pathways within DFU keratinocytes that may help guide the development of therapeutics to modulate these dysregulated pathways, many of which parallel the therapeutic targets which are the hallmarks of molecular therapies for treating cancer. PMID:27840833

  3. Atypical Diabetic Foot Ulcer Keratinocyte Protein Signaling Correlates with Impaired Wound Healing.

    Science.gov (United States)

    Hoke, Glenn D; Ramos, Corrine; Hoke, Nicholas N; Crossland, Mary C; Shawler, Lisa G; Boykin, Joseph V

    2016-01-01

    Diabetes mellitus is associated with chronic diabetic foot ulcers (DFUs) and wound infections often resulting in lower extremity amputations. The protein signaling architecture of the mechanisms responsible for impaired DFU healing has not been characterized. In this preliminary clinical study, the intracellular levels of proteins involved in signal transduction networks relevant to wound healing were non-biasedly measured using reverse-phase protein arrays (RPPA) in keratinocytes isolated from DFU wound biopsies. RPPA allows for the simultaneous documentation and assessment of the signaling pathways active in each DFU. Thus, RPPA provides for the accurate mapping of wound healing pathways associated with apoptosis, proliferation, senescence, survival, and angiogenesis. From the study data, we have identified potential diagnostic, or predictive, biomarkers for DFU wound healing derived from the ratios of quantified signaling protein expressions within interconnected pathways. These biomarkers may allow physicians to personalize therapeutic strategies for DFU management on an individual basis based upon the signaling architecture present in each wound. Additionally, we have identified altered, interconnected signaling pathways within DFU keratinocytes that may help guide the development of therapeutics to modulate these dysregulated pathways, many of which parallel the therapeutic targets which are the hallmarks of molecular therapies for treating cancer.

  4. Evolution of plant senescence

    Directory of Open Access Journals (Sweden)

    Young Mike

    2009-07-01

    Full Text Available Abstract Background Senescence is integral to the flowering plant life-cycle. Senescence-like processes occur also in non-angiosperm land plants, algae and photosynthetic prokaryotes. Increasing numbers of genes have been assigned functions in the regulation and execution of angiosperm senescence. At the same time there has been a large expansion in the number and taxonomic spread of plant sequences in the genome databases. The present paper uses these resources to make a study of the evolutionary origins of angiosperm senescence based on a survey of the distribution, across plant and microbial taxa, and expression of senescence-related genes. Results Phylogeny analyses were carried out on protein sequences corresponding to genes with demonstrated functions in angiosperm senescence. They include proteins involved in chlorophyll catabolism and its control, homeoprotein transcription factors, metabolite transporters, enzymes and regulators of carotenoid metabolism and of anthocyanin biosynthesis. Evolutionary timelines for the origins and functions of particular genes were inferred from the taxonomic distribution of sequences homologous to those of angiosperm senescence-related proteins. Turnover of the light energy transduction apparatus is the most ancient element in the senescence syndrome. By contrast, the association of phenylpropanoid metabolism with senescence, and integration of senescence with development and adaptation mediated by transcription factors, are relatively recent innovations of land plants. An extended range of senescence-related genes of Arabidopsis was profiled for coexpression patterns and developmental relationships and revealed a clear carotenoid metabolism grouping, coordinated expression of genes for anthocyanin and flavonoid enzymes and regulators and a cluster pattern of genes for chlorophyll catabolism consistent with functional and evolutionary features of the pathway. Conclusion The expression and phylogenetic

  5. Identification of novel senescence-associated genes in ionizing radiation-induced senescent carcinoma cells

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Bong Cho; Han, Na Kyung; Hong, Mi Na; Park, Su Min; Yoo, Hee Jung; Chu, In Sun; Lee, Sun Hee

    2009-01-01

    Cellular senescence is considered as a defense mechanism to prevent tumorigenesis. Ionizing radiation (IR) induces stress-induced premature senescence as well as apoptosis in various cancer cells. Senescent cells undergo functional and morphological changes including large and flattened cell shape, senescence-associated β-galactosidase (SA-βGal) activity, and altered gene expressions. Even with the recent findings of several gene expression profiles and supporting functional data, it is obscure that mechanism of IR-induced premature senescence in cancer cells. We performed microarray analysis to identify the common regulated genes in ionizing radiation-induced prematurely senescent human carcinoma cell lines

  6. Cellular Senescence: A Translational Perspective

    Directory of Open Access Journals (Sweden)

    James L. Kirkland

    2017-07-01

    Full Text Available Cellular senescence entails essentially irreversible replicative arrest, apoptosis resistance, and frequently acquisition of a pro-inflammatory, tissue-destructive senescence-associated secretory phenotype (SASP. Senescent cells accumulate in various tissues with aging and at sites of pathogenesis in many chronic diseases and conditions. The SASP can contribute to senescence-related inflammation, metabolic dysregulation, stem cell dysfunction, aging phenotypes, chronic diseases, geriatric syndromes, and loss of resilience. Delaying senescent cell accumulation or reducing senescent cell burden is associated with delay, prevention, or alleviation of multiple senescence-associated conditions. We used a hypothesis-driven approach to discover pro-survival Senescent Cell Anti-apoptotic Pathways (SCAPs and, based on these SCAPs, the first senolytic agents, drugs that cause senescent cells to become susceptible to their own pro-apoptotic microenvironment. Several senolytic agents, which appear to alleviate multiple senescence-related phenotypes in pre-clinical models, are beginning the process of being translated into clinical interventions that could be transformative.

  7. Identification of 30 protein species involved in replicative senescence and stress-induced premature senescence

    DEFF Research Database (Denmark)

    Dierick, Jean François; Kalume, Dário E; Wenders, Frédéric

    2002-01-01

    Exposure of human proliferative cells to subcytotoxic stress triggers stress-induced premature senescence (SIPS) which is characterized by many biomarkers of replicative senescence. Proteomic comparison of replicative senescence and stress-induced premature senescence indicates that, at the level...

  8. Piper betle L. Modulates Senescence-Associated Genes Expression in Replicative Senescent Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Lina Wati Durani

    2017-01-01

    Full Text Available Piper betle (PB is a traditional medicine that is widely used to treat different diseases around Asian region. The leaf extracts contain various bioactive compounds, which were reported to have antidiabetic, antibacterial, anti-inflammatory, antioxidant, and anticancer effects. In this study, the effect of PB aqueous extracts on replicative senescent human diploid fibroblasts (HDFs was investigated by determining the expressions of senescence-associated genes using quantitative PCR. Our results showed that PB extracts at 0.4 mg/ml can improve cell proliferation of young (143%, presenescent (127.3%, and senescent (157.3% HDFs. Increased expressions of PRDX6, TP53, CDKN2A, PAK2, and MAPK14 were observed in senescent HDFs compared to young and/or presenescent HDFs. Treatment with PB extracts modulates the transcriptional profile changes in senescent HDFs. By contrast, expressions of SOD1 increased, whereas GPX1, PRDX6, TP53, CDKN2A, PAK2, and MAPK14 were decreased in PB-treated senescent HDFs compared to untreated senescent HDFs. In conclusion, this study indicates the modulation of PB extracts on senescence-associated genes expression of replicative senescent HDFs. Further studies warrant determining the mechanism of PB in modulating replicative senescence of HDFs through these signaling pathways.

  9. Piper betle L. Modulates Senescence-Associated Genes Expression in Replicative Senescent Human Diploid Fibroblasts.

    Science.gov (United States)

    Durani, Lina Wati; Khor, Shy Cian; Tan, Jen Kit; Chua, Kien Hui; Mohd Yusof, Yasmin Anum; Makpol, Suzana

    2017-01-01

    Piper betle (PB) is a traditional medicine that is widely used to treat different diseases around Asian region. The leaf extracts contain various bioactive compounds, which were reported to have antidiabetic, antibacterial, anti-inflammatory, antioxidant, and anticancer effects. In this study, the effect of PB aqueous extracts on replicative senescent human diploid fibroblasts (HDFs) was investigated by determining the expressions of senescence-associated genes using quantitative PCR. Our results showed that PB extracts at 0.4 mg/ml can improve cell proliferation of young (143%), presenescent (127.3%), and senescent (157.3%) HDFs. Increased expressions of PRDX6 , TP53 , CDKN2A , PAK2 , and MAPK14 were observed in senescent HDFs compared to young and/or presenescent HDFs. Treatment with PB extracts modulates the transcriptional profile changes in senescent HDFs. By contrast, expressions of SOD1 increased, whereas GPX1 , PRDX6 , TP53 , CDKN2A , PAK2 , and MAPK14 were decreased in PB-treated senescent HDFs compared to untreated senescent HDFs. In conclusion, this study indicates the modulation of PB extracts on senescence-associated genes expression of replicative senescent HDFs. Further studies warrant determining the mechanism of PB in modulating replicative senescence of HDFs through these signaling pathways.

  10. Ethylene regulates phosphorus remobilization and expression of a phosphate transporter (PhPT1) during petunia corolla senescence

    Science.gov (United States)

    Chapin, Laura J.; Jones, Michelle L.

    2009-01-01

    The programmed degradation of macromolecules during petal senescence allows the plant to remobilize nutrients from dying to developing tissues. Ethylene is involved in regulating the timing of nucleic acid degradation in petunia, but it is not clear if ethylene has a role in the remobilization of phosphorus during petal senescence. To investigate ethylene's role in nutrient remobilization, the P content of petals (collectively called the corolla) during early development and senescence was compared in ethylene-sensitive wild type Petunia×hybrida ‘Mitchell Diploid’ (MD) and transgenic petunias with reduced sensitivity to ethylene (35S::etr1-1). When compared to the total P content of corollas on the day of flower opening (the early non-senescing stage), P in MD corollas had decreased 74% by the late stage of senescence (advanced wilting). By contrast, P levels were only reduced by an average of 32% during etr1-1 corolla (lines 44568 and Z00-35-10) senescence. A high-affinity phosphate transporter, PhPT1 (PhPht1;1), was cloned from senescing petunia corollas by RT-PCR. PhPT1 expression was up-regulated during MD corolla senescence and a much smaller increase was detected during the senescence of etr1-1 petunia corollas. PhPT1 mRNA levels showed a rapid increase in detached corollas (treated at 1 d after flower opening) following treatment with low levels of ethylene (0.1 μl l-1). Transcripts accumulated in the presence of the protein synthesis inhibitor, cycloheximide, indicating that PhPT1 is a primary ethylene response gene. PhPT1 is a putative phosphate transporter that may function in Pi translocation during senescence. PMID:19380421

  11. The Immortal Senescence.

    Science.gov (United States)

    Bianchi-Smiraglia, Anna; Lipchick, Brittany C; Nikiforov, Mikhail A

    2017-01-01

    Activation of oncogenic signaling paradoxically results in the permanent withdrawal from cell cycle and induction of senescence (oncogene-induced senescence (OIS)). OIS is a fail-safe mechanism used by the cells to prevent uncontrolled tumor growth, and, as such, it is considered as the first barrier against cancer. In order to progress, tumor cells thus need to first overcome the senescent phenotype. Despite the increasing attention gained by OIS in the past 20 years, this field is still rather young due to continuous emergence of novel pathways and processes involved in OIS. Among the many factors contributing to incomplete understanding of OIS are the lack of unequivocal markers for senescence and the complexity of the phenotypes revealed by senescent cells in vivo and in vitro. OIS has been shown to play major roles at both the cellular and organismal levels in biological processes ranging from embryonic development to barrier to cancer progression. Here we will briefly outline major advances in methodologies that are being utilized for induction, identification, and characterization of molecular processes in cells undergoing oncogene-induced senescence. The full description of such methodologies is provided in the corresponding chapters of the book.

  12. Effects of UVB irradiation on keratinocyte growth factor (KGF) and receptor (KGFR) expression in cultured human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.; Lee, H.S.T.; Kooshesh, F.; Fujisawa, H.; Sauder, D.N.; Kondo, S. [Univ. of Toronto, Sunnybrook Health Science Centre, Div. of Dermatology, Toronto (Canada)

    1996-06-01

    Keratinocyte growth factor (KGF) and its receptor (KGFR) are thought to play important roles in normal keratinocyte growth and differentiation. Since UVB radiation is known to influence keratinocyte growth, we sought to determine whether UVB would alter the expression of KGF and KGFR. Using a reverse-transcription coupled polymerase chain reaction (RT-PCR), the present study examined the expression of KGF and KGFR mRNA in cultured normal human keratinocytes exposed to UVB irradiation. Total cellular RNA was extracted from cultured keratinocytes at various time points after irradiation, reverse transcribed and used for PCR amplification using primers specific for KGF and KGFR. Constitutive expression of KGFR mRNA, but not KGF mRNA, was detected in normal cultured human keratinocytes. After UVB irradiation at 300 J/m{sup 2}, the KGF mRNA remained undetectable while the KGFR mRNA level was significantly decreased. The down-regulation of KGFR mRNA expression was also confirmed by Northern blot analysis. Immunohistochemical studies demonstrated a decreased positive signal of KGFR in human keratinocytes after UVB irradiation. Our results suggest a possible role for the KGF-KGFR signalling pathway in the skin after exposure to UVB, and that UVB-induced growth inhibition of keratinocytes in hyperproliferative skin disorders may be related to downregulation of KGFR. (au) 39 refs.

  13. Senescence is not inevitable

    DEFF Research Database (Denmark)

    Jones, Owen; Vaupel, James W.

    2017-01-01

    trajectories exists. These empirical observations support theoretical work indicating that a wide range of mortality and fertility trajectories is indeed possible, including senescence, negligible senescence and even negative senescence (improvement). Although many mysteries remain in the field...

  14. A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging.

    Science.gov (United States)

    Nelson, David M; McBryan, Tony; Jeyapalan, Jessie C; Sedivy, John M; Adams, Peter D

    2014-06-01

    Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway, the senescence-associated secretory phenotype. However, cellular senescence is initiated by diverse molecular triggers, such as activated oncogenes and shortened telomeres, and is associated with varied and complex physiological endpoints, such as tumor suppression and tissue aging. The extent to which distinct triggers activate divergent modes of senescence that might be associated with different physiological endpoints is largely unknown. To begin to address this, we performed gene expression profiling to compare the senescence programs associated with two different modes of senescence, oncogene-induced senescence (OIS) and replicative senescence (RS [in part caused by shortened telomeres]). While both OIS and RS are associated with many common changes in gene expression compared to control proliferating cells, they also exhibit substantial differences. These results are discussed in light of potential physiological consequences, tumor suppression and aging.

  15. Thalidomide increases human keratinocyte migration and proliferation.

    Science.gov (United States)

    Nasca, M R; O'Toole, E A; Palicharla, P; West, D P; Woodley, D T

    1999-11-01

    Thalidomide is reported to have therapeutic utility in the treatment of pyoderma gangrenosum, Behçet's disease, aphthous ulcers, and skin wounds. We investigated the effect of thalidomide on human keratinocyte proliferation and migration, two early and critical events in the re-epithelialization of skin wounds. Thalidomide at concentrations less than 1 microM did not affect keratinocyte viability. Using a thymidine incorporation assay, we found that thalidomide, at therapeutic concentrations, induced more than a 2. 5-fold increase in the proliferative potential of the cells. Keratinocyte migration was assessed by two independent motility assays: a colloidal gold assay and an in vitro scratch assay. At optimal concentrations, thalidomide increased keratinocyte migration on a collagen matrix more than 2-fold in the colloidal gold assay and more than 3-fold in the scratch assay over control. Although pro-migratory, thalidomide did not alter the level of metalloproteinase-9 secreted into culture medium. Thalidomide did, however, induce a 2-4-fold increase in keratinocyte-derived interleukin-8, a pro-migratory cellular autocrine factor. Human keratinocyte migration and proliferation are essential for re-epithelialization of skin wounds. Interleukin-8 increases human keratinocyte migration and proliferation and is chemotactic for keratinocytes. Therefore, thalidomide may modulate keratinocyte proliferation and motility by a chemokine-dependent pathway.

  16. Cellular senescence and organismal aging.

    Science.gov (United States)

    Jeyapalan, Jessie C; Sedivy, John M

    2008-01-01

    Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant proliferation. It has also been postulated that cellular senescence can occur independently of cancer and contribute to the physiological processes of normal organismal aging. Recent data have demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics of senescent cells, such as the ability to modify their extracellular environment, could play a role in aging and age-related pathology. In this review, we examine current evidence that links cellular senescence and organismal aging.

  17. Selective insulin resistance in hepatocyte senescence

    International Nuclear Information System (INIS)

    Aravinthan, Aloysious; Challis, Benjamin; Shannon, Nicholas; Hoare, Matthew; Heaney, Judith; Alexander, Graeme J.M.

    2015-01-01

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance

  18. Selective insulin resistance in hepatocyte senescence

    Energy Technology Data Exchange (ETDEWEB)

    Aravinthan, Aloysious [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Challis, Benjamin [Institute of Metabolic Sciences, University of Cambridge, Cambridge (United Kingdom); Shannon, Nicholas [Cancer Research UK Cambridge Institute, Cambridge (United Kingdom); Hoare, Matthew [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Cancer Research UK Cambridge Institute, Cambridge (United Kingdom); Heaney, Judith [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Foundation for Liver Research, Institute of Hepatology, London (United Kingdom); Alexander, Graeme J.M., E-mail: gja1000@doctors.org.uk [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom)

    2015-02-01

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.

  19. Impaired hair follicle morphogenesis and polarized keratinocyte movement upon conditional inactivation of integrin-linked kinase in the epidermis.

    Science.gov (United States)

    Nakrieko, Kerry-Ann; Welch, Ian; Dupuis, Holly; Bryce, Dawn; Pajak, Agnieszka; St Arnaud, René; Dedhar, Shoukat; D'Souza, Sudhir J A; Dagnino, Lina

    2008-04-01

    Integrin-linked kinase (ILK) is key for cell survival, migration, and adhesion, but little is known about its role in epidermal development and homeostasis in vivo. We generated mice with conditional inactivation of the Ilk gene in squamous epithelia. These mice die perinatally and exhibit skin blistering and severe defects in hair follicle morphogenesis, including greatly reduced follicle numbers, failure to progress beyond very early developmental stages, and pronounced defects in follicular keratinocyte proliferation. ILK-deficient epidermis shows abnormalities in adhesion to the basement membrane and in differentiation. ILK-deficient cultured keratinocytes fail to attach and spread efficiently and exhibit multiple abnormalities in actin cytoskeletal organization. Ilk gene inactivation in cultured keratinocytes causes impaired ability to form stable lamellipodia, to directionally migrate, and to polarize. These defects are accompanied by abnormal distribution of active Cdc42 to cell protrusions, as well as reduced activation of Rac1 upon induction of cell migration in scraped keratinocyte monolayers. Significantly, alterations in cell spreading and forward movement in single cells can be rescued by expression of constitutively active Rac1 or RhoG. Our studies underscore a central and distinct role for ILK in hair follicle development and in polarized cell movements, two key aspects of epithelial morphogenesis and function.

  20. Senescence induction; a possible cancer therapy

    Directory of Open Access Journals (Sweden)

    Kondoh Hiroshi

    2009-01-01

    Full Text Available Abstract Cellular immortalization is a crucial step during the development of human cancer. Primary mammalian cells reach replicative exhaustion after several passages in vitro, a process called replicative senescence. During such a state of permanent growth arrest, senescent cells are refractory to physiological proliferation stimuli: they have altered cell morphology and gene expression patterns, although they remain viable with preserved metabolic activity. Interestingly, senescent cells have also been detected in vivo in human tumors, particularly in benign lesions. Senescence is a mechanism that limits cellular lifespan and constitutes a barrier against cellular immortalization. During immortalization, cells acquire genetic alterations that override senescence. Tumor suppressor genes and oncogenes are closely involved in senescence, as their knockdown and ectopic expression confer immortality and senescence induction, respectively. By using high throughput genetic screening to search for genes involved in senescence, several candidate oncogenes and putative tumor suppressor genes have been recently isolated, including subtypes of micro-RNAs. These findings offer new perspectives in the modulation of senescence and open new approaches for cancer therapy.

  1. Androgen receptor drives cellular senescence.

    Directory of Open Access Journals (Sweden)

    Yelena Mirochnik

    Full Text Available The accepted androgen receptor (AR role is to promote proliferation and survival of prostate epithelium and thus prostate cancer progression. While growth-inhibitory, tumor-suppressive AR effects have also been documented, the underlying mechanisms are poorly understood. Here, we for the first time link AR anti-cancer action with cell senescence in vitro and in vivo. First, AR-driven senescence was p53-independent. Instead, AR induced p21, which subsequently reduced ΔN isoform of p63. Second, AR activation increased reactive oxygen species (ROS and thereby suppressed Rb phosphorylation. Both pathways were critical for senescence as was proven by p21 and Rb knock-down and by quenching ROS with N-Acetyl cysteine and p63 silencing also mimicked AR-induced senescence. The two pathways engaged in a cross-talk, likely via PML tumor suppressor, whose localization to senescence-associated chromatin foci was increased by AR activation. All these pathways contributed to growth arrest, which resolved in senescence due to concomitant lack of p53 and high mTOR activity. This is the first demonstration of senescence response caused by a nuclear hormone receptor.

  2. IFN-β antiproliferative effect and miRNA regulation in Human Papilloma Virus E6- and E7-transformed keratinocytes.

    Science.gov (United States)

    Chiantore, Maria Vincenza; Mangino, Giorgio; Iuliano, Marco; Zangrillo, Maria Simona; De Lillis, Ilaria; Vaccari, Gabriele; Accardi, Rosita; Tommasino, Massimo; Fiorucci, Gianna; Romeo, Giovanna

    2017-01-01

    Human Papilloma Viruses (HPVs) are the causative agents of cervical cancer although other types of cancers are associated with HPV infection. Type I Interferons can interfere with HPV E6- and/or E7-dependent transformation and can affect microRNA (miRNA) expression. Cancer cells show a specific pattern of miRNA expression and HPVs are able to modulate miRNAs expressed in infected cells. Keratinocytes transduced with E6 and E7 from mucosal HPV-16 or cutaneous HPV-38 (K16 and K38) were studied to analyze the involvement of HPV oncoproteins in the anti-proliferative activity of IFN-β. In view of our previous data showing senescence induction by the cytokine in K38 cells, we observe that IFN-β treatment leads to p53-indipendent apoptosis in K16 cells whereas induces senescence in K16 cells if E6 is silenced and p53 expression is restored. The levels of selected miRNAs, deregulated in K16 and K38 cells, can be modulated by IFN-β when E6 and E7 proteins of HPV-16, but not HPV-38, are expressed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Plant senescence and crop productivity

    DEFF Research Database (Denmark)

    Gregersen, Per L.; Culetic, Andrea; Boschian, Luca

    2013-01-01

    Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants....... With the aim to enhance productivity, a number of functional stay-green cultivars have been selected by conventional breeding, in particular of sorghum and maize. In many cases, a positive correlation between leaf area duration and yield has been observed, although in a number of other cases, stay...... plants, the expression of the IPT gene under control of senescence-associated promoters has been the most successful. The promoters employed for senescence-regulated expression contain cis-elements for binding of WRKY transcription factors and factors controlled by abscisic acid. In most crops...

  4. Biomarkers of replicative senescence revisited

    DEFF Research Database (Denmark)

    Nehlin, Jan

    2016-01-01

    Biomarkers of replicative senescence can be defined as those ultrastructural and physiological variations as well as molecules whose changes in expression, activity or function correlate with aging, as a result of the gradual exhaustion of replicative potential and a state of permanent cell cycle...... arrest. The biomarkers that characterize the path to an irreversible state of cell cycle arrest due to proliferative exhaustion may also be shared by other forms of senescence-inducing mechanisms. Validation of senescence markers is crucial in circumstances where quiescence or temporary growth arrest may...... be triggered or is thought to be induced. Pre-senescence biomarkers are also important to consider as their presence indicate that induction of aging processes is taking place. The bona fide pathway leading to replicative senescence that has been extensively characterized is a consequence of gradual reduction...

  5. Transcriptional analyses of natural leaf senescence in maize.

    Directory of Open Access Journals (Sweden)

    Wei Yang Zhang

    Full Text Available Leaf senescence is an important biological process that contributes to grain yield in crops. To study the molecular mechanisms underlying natural leaf senescence, we harvested three different developmental ear leaves of maize, mature leaves (ML, early senescent leaves (ESL, and later senescent leaves (LSL, and analyzed transcriptional changes using RNA-sequencing. Three sets of data, ESL vs. ML, LSL vs. ML, and LSL vs. ESL, were compared, respectively. In total, 4,552 genes were identified as differentially expressed. Functional classification placed these genes into 18 categories including protein metabolism, transporters, and signal transduction. At the early stage of leaf senescence, genes involved in aromatic amino acids (AAAs biosynthetic process and transport, cellular polysaccharide biosynthetic process, and the cell wall macromolecule catabolic process, were up-regulated. Whereas, genes involved in amino acid metabolism, transport, apoptosis, and response to stimulus were up-regulated at the late stage of leaf senescence. Further analyses reveals that the transport-related genes at the early stage of leaf senescence potentially take part in enzyme and amino acid transport and the genes upregulated at the late stage are involved in sugar transport, indicating nutrient recycling mainly takes place at the late stage of leaf senescence. Comparison between the data of natural leaf senescence in this study and previously reported data for Arabidopsis implies that the mechanisms of leaf senescence in maize are basically similar to those in Arabidopsis. A comparison of natural and induced leaf senescence in maize was performed. Athough many basic biological processes involved in senescence occur in both types of leaf senescence, 78.07% of differentially expressed genes in natural leaf senescence were not identifiable in induced leaf senescence, suggesting that differences in gene regulatory network may exist between these two leaf senescence

  6. Treatment of burn injuries with keratinocyte cultures

    International Nuclear Information System (INIS)

    Syring, C.; Maenig, H.J.; Von Versen, R.; Bruck, J.

    1999-01-01

    The German Institute for Cell and Tissue Replacement (DIZG) provides burned patients with skin and amnion for a temporary wound closure. Severely burned patients (>60% BSA for adults, >40% BSA for children) were supplied with autologous and allogenic grafts from cultured keratinocytes. The keratinocyte culture is done under GMP-conditions using the method of Rheinwald and Green. The 3T3 fibroblasts were irradiated with 60 Gy and used as feeder cells to produce keratinocyte sheets within 3 weeks. In this time up to 6.000 cm are available. The sheets were harvested by detachment with dispase (1,2 U/ml), fixed to gauze and transported to the hospital. The DIZG has a 3 years experience in the treatment of burns with keratinocyte sheets. The sheets were transplanted to patients in different hospitals, the total transplanted area is about 30.000 cm. This paper describes the experiences with ten severely burned patients treated with keratinocyte sheet

  7. Upregulation of cathepsin S in psoriatic keratinocytes.

    Science.gov (United States)

    Schönefuss, Alexander; Wendt, Wiebke; Schattling, Benjamin; Schulten, Roxane; Hoffmann, Klaus; Stuecker, Markus; Tigges, Christian; Lübbert, Hermann; Stichel, Christine

    2010-08-01

    Cathepsin S (CATS) is a cysteine protease, well known for its role in MHC class II-mediated antigen presentation and extracellular matrix degradation. Disturbance of the expression or metabolism of this protease is a concomitant feature of several diseases. Given this importance we studied the localization and regulation of CATS expression in normal and pathological human/mouse skin. In normal human skin CATS-immunostaining is mainly present in the dermis and is localized in macrophages, Langerhans, T- and endothelial cells, but absent in keratinocytes. In all analyzed pathological skin biopsies, i.e. atopic dermatitis, actinic keratosis and psoriasis, CATS staining is strongly increased in the dermis. But only in psoriasis, CATS-immunostaining is also detectable in keratinocytes. We show that cocultivation with T-cells as well as treatment with cytokines can trigger expression and secretion of CATS, which is involved in MHC II processing in keratinocytes. Our data provide first evidence that CATS expression (i) is selectively induced in psoriatic keratinocytes, (ii) is triggered by T-cells and (iii) might be involved in keratinocytic MHC class II expression, the processing of the MHC class II-associated invariant chain and remodeling of the extracellular matrix. This paper expands our knowledge on the important role of keratinocytes in dermatological disease.

  8. Transgenic plants with altered senescence characteristics

    Science.gov (United States)

    Amasino, Richard M.; Gan, Susheng; Noh, Yoo-Sun

    2002-03-19

    The identification of senescence-specific promoters from plants is described. Using information from the first senescence-specific promoter, SAG12 from Arabidopsis, other homologous promoters from another plant have been identified. Such promoters may be used to delay senescence in commercially important plants.

  9. Quantitative identification of senescent cells in aging and disease.

    Science.gov (United States)

    Biran, Anat; Zada, Lior; Abou Karam, Paula; Vadai, Ezra; Roitman, Lior; Ovadya, Yossi; Porat, Ziv; Krizhanovsky, Valery

    2017-08-01

    Senescent cells are present in premalignant lesions and sites of tissue damage and accumulate in tissues with age. In vivo identification, quantification and characterization of senescent cells are challenging tasks that limit our understanding of the role of senescent cells in diseases and aging. Here, we present a new way to precisely quantify and identify senescent cells in tissues on a single-cell basis. The method combines a senescence-associated beta-galactosidase assay with staining of molecular markers for cellular senescence and of cellular identity. By utilizing technology that combines flow cytometry with high-content image analysis, we were able to quantify senescent cells in tumors, fibrotic tissues, and tissues of aged mice. Our approach also yielded the finding that senescent cells in tissues of aged mice are larger than nonsenescent cells. Thus, this method provides a basis for quantitative assessment of senescent cells and it offers proof of principle for combination of different markers of senescence. It paves the way for screening of senescent cells for identification of new senescence biomarkers, genes that bypass senescence or senolytic compounds that eliminate senescent cells, thus enabling a deeper understanding of the senescent state in vivo. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  10. Ultraviolet Radiation Increases the Toxicity of Pyrene, 1-Aminopyrene and 1-Hydroxypyrene to Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Huey-Min Hwang

    2005-04-01

    Full Text Available Over the past several years, a great deal of interest has been focused on the harmful effects of ultraviolet (UV radiation to human skin. UV light has been implicated in aging, sunburn and skin cancer. Few studies, however, have been done to determine the effects that UV light, in conjunction with other environmental contaminants, may have on human skin. Polycyclic Aromatic Hydrocarbons (PAHs are a class of compounds that have been reported to be toxic, mutagenic and carcinogenic to many eukaryotic organisms. UV light is also known to increase the toxicity of PAHs through photo-activation and photo-modification. The purpose of this study was to assess the effects of UV-A irradiated pyrene (Pyr, 1-aminopyrene (1-AP and 1-hydroxypyrene (1-HP on human keratinocytes, the skin primary site of UV irradiated PAH exposure. Our findings indicate that simultaneous treatment of human keratinocyte cell line, HaCaT, with 1.0μg/ml pyrene, 1-AP or 1-HP and 3.9 J/cm2/min UV-A light resulted in significant inhibition of cell proliferation. Approximately 100% of the cells died in the case of UV-A irradiated 1-AP and 1-HP. In the case of UV-A irradiated pyrene, more than 70% of the cells died, indicating that UV-A is able to transform these PAHs into more harmful intermediates.

  11. Irradiation With Carbon Ion Beams Induces Apoptosis, Autophagy, and Cellular Senescence in a Human Glioma-Derived Cell Line

    International Nuclear Information System (INIS)

    Jinno-Oue, Atsushi; Shimizu, Nobuaki; Hamada, Nobuyuki; Wada, Seiichi; Tanaka, Atsushi; Shinagawa, Masahiko; Ohtsuki, Takahiro; Mori, Takahisa; Saha, Manujendra N.; Hoque, Ariful S.; Islam, Salequl; Kogure, Kimitaka; Funayama, Tomoo; Kobayashi, Yasuhiko

    2010-01-01

    Purpose: We examined biological responses of human glioma cells to irradiation with carbon ion beams (C-ions). Methods and Materials: A human glioma-derived cell line, NP-2, was irradiated with C-ions. Apoptotic cell nuclei were stained with Hoechst 33342. Induction of autophagy was examined either by staining cells with monodansylcadaverine (MDC) or by Western blotting to detect conversion of microtuble-associated protein light chain 3 (MAP-LC3) (LC3-I) to the membrane-bound form (LC3-II). Cellular senescence markers including induction of senescence-associated β-galactosidase (SA-β-gal) were examined. The mean telomere length of irradiated cells was determined by Southern blot hybridization. Expression of tumor suppressor p53 and cyclin/cyclin-dependent kinase inhibitor p21 WAF1/CIP1 in the irradiated cells was analyzed by Western blotting. Results: When NP-2 cells were irradiated with C-ions at 6 Gy, the major population of the cells died of apoptosis and autophagy. The residual fraction of attached cells ( WAF1/CIP1 was induced in NP-2 cells after irradiation. Furthermore, we found that irradiation with C-ions induced cellular senescence in a human glioma cell line lacking functional p53. Conclusions: Irradiation with C-ions induced apoptosis, autophagy, and cellular senescence in human glioma cells.

  12. Different transcriptional profiling between senescent and non-senescent human coronary artery endothelial cells (HCAECs) by Omeprazole and Lansoprazole treatment.

    Science.gov (United States)

    Costarelli, Laura; Giacconi, Robertina; Malavolta, Marco; Basso, Andrea; Piacenza, Francesco; Provinciali, Mauro; Maggio, Marcello G; Corsonello, Andrea; Lattanzio, Fabrizia

    2017-04-01

    Recent evidence suggests that high dose and/or long term use of proton pump inhibitors (PPIs) may increase the risk of adverse cardiovascular events in older patients, but mechanisms underlying these detrimental effects are not known. Taking into account that the senescent endothelial cells have been implicated in the genesis or promotion of age-related cardiovascular disease, we hypothesized an active role of PPIs in senescent cells. The aim of this study is to investigate the changes in gene expression occurring in senescent and non-senescent human coronary artery endothelial cells (HCAECs) following Omeprazole (OPZ) or Lansoprazole (LPZ) treatment. Here, we show that atherogenic response is among the most regulated processes in PPI-treated HCAECs. PPIs induced down-regulation of anti-atherogenic chemokines (CXCL11, CXCL12 and CX3CL1) in senescent but not in non-senescent cells, while the same chemokines were up-regulated in untreated senescent cells. These findings support the hypothesis that up-regulated anti-atherogenic chemokines may represent a defensive mechanism against atherosclerosis during cellular senescence, and suggest that PPIs could activate pro-atherogenic pathways by changing the secretory phenotype of senescent HCAECs. Moreover, the genes coding for fatty acid binding protein 4 (FABP4) and piezo-type mechanosensitive ion channel component 2 (PIEZO2) were modulated by PPIs treatment with respect to untreated cells. In conclusions, our results show that long-term and high dose use of PPI could change the secretory phenotype of senescent cells, suggesting one of the potential mechanisms by which use of PPI can increase adverse outcomes in older subjects.

  13. Autocrine IL-6 mediates pituitary tumor senescence

    Science.gov (United States)

    Fuertes, Mariana; Ajler, Pablo; Carrizo, Guillermo; Cervio, Andrés; Sevlever, Gustavo; Stalla, Günter K.; Arzt, Eduardo

    2017-01-01

    Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells. In a cell autonomous fashion, IL-6 participates in oncogene-induced senescence in transduced human melanocytes. Here we prove that autocrine IL-6 participates in pituitary tumor senescence. Endogenous IL-6 inhibition in somatotroph MtT/S shRNA stable clones results in decreased SA-β-gal activity and p16INK4a but increased pRb, proliferation and invasion. Nude mice injected with IL-6 silenced clones develop tumors contrary to MtT/S wild type that do not, demonstrating that clones that escape senescence are capable of becoming tumorigenic. When endogenous IL-6 is silenced, cell cultures derived from positive SA-β-gal human tumor samples decrease the expression of the senescence marker. Our results establish that IL-6 contributes to maintain senescence by its autocrine action, providing a natural model of IL-6 mediated benign adenoma senescence. PMID:27902467

  14. Serial cultivation of human scalp hair follicle keratinocytes.

    Science.gov (United States)

    Weterings, P J; Roelofs, H M; Vermorken, A J; Bloemendal, H

    1983-01-01

    A method is described for the serial cultivation of adult human hair follicle keratinocytes. Plucked scalp hair follicles, placed on bovine eye lens capsules as a growth substrate, give rise to quickly expanding colonies within a few days. After trypsinization, the cells are replated with irradiated 3T3 cells as 'feeders'. Using this combination of techniques the keratinocytes can be subcultured up to four times. In this way about 10(7) keratinocytes can be generated from one single hair follicle. Moreover, the technique enables cryogenic storage of the cells, allowing for instance, convenient transportation. Subcultured hair follicle keratinocytes can be plated on glass coverslips. This allows immunofluorescence studies. The keratin cytoskeletons visualized using an antiserum against human keratin.

  15. Senescent vs. non-senescent cells in the human annulus in vivo: Cell harvest with laser capture microdissection and gene expression studies with microarray analysis

    Directory of Open Access Journals (Sweden)

    Ingram Jane A

    2010-01-01

    Full Text Available Abstract Background Senescent cells are well-recognized in the aging/degenerating human disc. Senescent cells are viable, cannot divide, remain metabolically active and accumulate within the disc over time. Molecular analysis of senescent cells in tissue offers a special challenge since there are no cell surface markers for senescence which would let one use fluorescence-activated cell sorting as a method for separating out senescent cells. Methods We employed a novel laser capture microdissection (LCM design to selectively harvest senescent and non-senescent annulus cells in paraffin-embedded tissue, and compared their gene expression with microarray analysis. LCM was used to separately harvest senescent and non-senescent cells from 11 human annulus specimens. Results Microarray analysis revealed significant differences in expression levels in senescent cells vs non-senescent cells: 292 genes were upregulated, and 321 downregulated. Genes with established relationships to senescence were found to be significantly upregulated in senescent cells vs. non-senescent cells: p38 (MPAK14, RB-Associated KRAB zinc finger, Discoidin, CUB and LCCL domain, growth arrest and DNA-damage inducible beta, p28ING5, sphingosine-1-phosphate receptor 2 and somatostatin receptor 3; cyclin-dependent kinase 8 showed significant downregulation in senescent cells. Nitric oxidase synthase 1, and heat shock 70 kDa protein 6, both of which were significantly down-regulated in senescent cells, also showed significant changes. Additional genes related to cytokines, cell proliferation, and other processes were also identified. Conclusions Our LCM-microarray analyses identified a set of genes associated with senescence which were significantly upregulated in senescent vs non-senescent cells in the human annulus. These genes include p38 MAP kinase, discoidin, inhibitor of growth family member 5, and growth arrest and DNA-damage-inducible beta. Other genes, including genes

  16. Possible Roles of Strigolactones during Leaf Senescence

    Directory of Open Access Journals (Sweden)

    Yusuke Yamada

    2015-09-01

    Full Text Available Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence.

  17. Senescence from glioma stem cell differentiation promotes tumor growth

    International Nuclear Information System (INIS)

    Ouchi, Rie; Okabe, Sachiko; Migita, Toshiro; Nakano, Ichiro; Seimiya, Hiroyuki

    2016-01-01

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  18. Senescence from glioma stem cell differentiation promotes tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Rie [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Okabe, Sachiko; Migita, Toshiro [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nakano, Ichiro [Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35233 (United States); Seimiya, Hiroyuki, E-mail: hseimiya@jfcr.or.jp [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan)

    2016-02-05

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  19. Emerging roles of lncRNAs in senescence

    DEFF Research Database (Denmark)

    Montes Resano, Marta; Lund, Anders H

    2016-01-01

    Cellular senescence is a complex stress response that leads to an irreversible state of cell growth arrest. Senescence may be induced by different stimuli such as telomere shortening, DNA damage or oncogenic insult among others. Senescent cells are metabolically highly active producing a wealth...

  20. PML, SUMOylation and senescence

    Directory of Open Access Journals (Sweden)

    Hugues eDe Thé

    2013-07-01

    Full Text Available Since its discovery, 25 years ago, PML has been an enigma. Implicated in the oncogenic PML/RARA fusion, forming elusive intranuclear domains, triggering cell death or senescence, controlled by and perhaps controlling SUMOylation... there are multiple PML-related issues. Here we review the reciprocal interactions between PML, senescence and SUMOylation, notably in the context of cellular transformation.

  1. Effects of UVB-induced oxidative stress on protein expression and specific protein oxidation in normal human epithelial keratinocytes: a proteomic approach

    Directory of Open Access Journals (Sweden)

    De Marco Federico

    2010-03-01

    Full Text Available Abstract Background The UVB component of solar ultraviolet irradiation is one of the major risk factors for the development of skin cancer in humans. UVB exposure elicits an increased generation of reactive oxygen species (ROS, which are responsible for oxidative damage to proteins, DNA, RNA and lipids. In order to examine the biological impact of UVB irradiation on skin cells, we used a parallel proteomics approach to analyze the protein expression profile and to identify oxidatively modified proteins in normal human epithelial keratinocytes. Results The expression levels of fifteen proteins - involved in maintaining the cytoskeleton integrity, removal of damaged proteins and heat shock response - were differentially regulated in UVB-exposed cells, indicating that an appropriate response is developed in order to counteract/neutralize the toxic effects of UVB-raised ROS. On the other side, the redox proteomics approach revealed that seven proteins - involved in cellular adhesion, cell-cell interaction and protein folding - were selectively oxidized. Conclusions Despite a wide and well orchestrated cellular response, a relevant oxidation of specific proteins concomitantly occurs in UVB-irradiated human epithelial Keratinocytes. These modified (i.e. likely dysfunctional proteins might result in cell homeostasis impairment and therefore eventually promote cellular degeneration, senescence or carcinogenesis.

  2. Human keratinocyte sensitivity towards inflammatory cytokines varies with culture time

    Directory of Open Access Journals (Sweden)

    G. Elliott

    1992-01-01

    Full Text Available Proliferating keratinocyte cultures have been reported to synthesize higher concentrations of prostaglandin (PG E than confluent ones. As interleukin-1 (IL-1 stimulates keratinocyte PGE synthesis we investigated whether the degree of confluency of the keratinocyte culture modified the response of the cells to IL-1. It was found that IL-1α (100 U/ml stimulated PGE2 synthesis by proliferating (7 days in culture but not differentiating (14 days in culture keratinocytes. Similar effects were observed using tumour necrosis factor-α. Both arachidonic acid (AA and the calcium ionophore A23187 stimulated PGE2 synthesis by 7 and 14 day cultures although the increase was greatest when 7 day cultures were used. Our data indicate that there is a specific down-regulation of the mechanism(s by which some inflammatory cytokines stimulate keratinocyte eicosanoid synthesis as cultured keratinocytes begin to differentiate.

  3. Cellular and molecular aspects of quinoa leaf senescence.

    Science.gov (United States)

    López-Fernández, María Paula; Burrieza, Hernán Pablo; Rizzo, Axel Joel; Martínez-Tosar, Leandro Julián; Maldonado, Sara

    2015-09-01

    During leaf senescence, degradation of chloroplasts precede to changes in nuclei and other cytoplasmic organelles, RuBisCO stability is progressively lost, grana lose their structure, plastidial DNA becomes distorted and degraded, the number of plastoglobuli increases and abundant senescence-associated vesicles containing electronically dense particles emerge from chloroplasts pouring their content into the central vacuole. This study examines quinoa leaf tissues during development and senescence using a range of well-established markers of programmed cell death (PCD), including: morphological changes in nuclei and chloroplasts, degradation of RuBisCO, changes in chlorophyll content, DNA degradation, variations in ploidy levels, and changes in nuclease profiles. TUNEL reaction and DNA electrophoresis demonstrated that DNA fragmentation in nuclei occurs at early senescence, which correlates with induction of specific nucleases. During senescence, metabolic activity is high and nuclei endoreduplicate, peaking at 4C. At this time, TEM images showed some healthy nuclei with condensed chromatin and nucleoli. We have found that DNA fragmentation, induction of senescence-associated nucleases and endoreduplication take place during leaf senescence. This provides a starting point for further research aiming to identify key genes involved in the senescence of quinoa leaves. Published by Elsevier Ireland Ltd.

  4. Cortactin involvement in the keratinocyte growth factor and fibroblast growth factor 10 promotion of migration and cortical actin assembly in human keratinocytes

    International Nuclear Information System (INIS)

    Ceccarelli, Simona; Cardinali, Giorgia; Aspite, Nicaela; Picardo, Mauro; Marchese, Cinzia; Torrisi, Maria Rosaria; Mancini, Patrizia

    2007-01-01

    Keratinocyte growth factor (KGF/FGF7) and fibroblast growth factor 10 (FGF10/KGF2) regulate keratinocyte proliferation and differentiation by binding to the tyrosine kinase KGF receptor (KGFR). KGF induces keratinocyte motility and cytoskeletal rearrangement, whereas a direct role of FGF10 on keratinocyte migration is not clearly established. Here we analyzed the motogenic activity of FGF10 and KGF on human keratinocytes. Migration assays and immunofluorescence of actin cytoskeleton revealed that FGF10 is less efficient than KGF in promoting migration and exerts a delayed effect in inducing lamellipodia and ruffles formation. Both growth factors promoted phosphorylation and subsequent membrane translocation of cortactin, an F-actin binding protein involved in cell migration; however, FGF10-induced cortactin phosphorylation was reduced, more transient and delayed with respect to that promoted by KGF. Cortactin phosphorylation induced by both growth factors was Src-dependent, while its membrane translocation and cell migration were blocked by either Src and PI3K inhibitors, suggesting that both pathways are involved in KGF- and FGF10-dependent motility. Furthermore, siRNA-mediated downregulation of cortactin inhibited KGF- and FGF10-induced migration. These results indicate that cortactin is involved in keratinocyte migration promoted by both KGF and FGF10

  5. CIRCADIAN CLOCK-ASSOCIATED 1 Inhibits Leaf Senescence in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yi Song

    2018-03-01

    Full Text Available Leaf senescence is an integral part of plant development, and the timing and progressing rate of senescence could substantially affect the yield and quality of crops. It has been known that a circadian rhythm synchronized with external environmental cues is critical for the optimal coordination of various physiological and metabolic processes. However, the reciprocal interactions between the circadian clock and leaf senescence in plants remain unknown. Here, through measuring the physiological and molecular senescence related markers of several circadian components mutants, we found that CIRCADIAN CLOCK-ASSOCIATED 1 inhibits leaf senescence. Further molecular and genetic studies revealed that CCA1 directly activates GLK2 and suppresses ORE1 expression to counteract leaf senescence. As plants age, the expression and periodic amplitude of CCA1 declines and thus weakens the inhibition of senescence. Our findings reveal an age-dependent circadian clock component of the process of leaf senescence.

  6. AMPK regulation of the growth of cultured human keratinocytes

    International Nuclear Information System (INIS)

    Saha, Asish K.; Persons, Kelly; Safer, Joshua D.; Luo Zhijun; Holick, Michael F.; Ruderman, Neil B.

    2006-01-01

    AMP kinase (AMPK) is a fuel sensing enzyme that responds to cellular energy depletion by increasing processes that generate ATP and inhibiting others that require ATP but are not acutely necessary for survival. In the present study, we examined the relationship between AMPK activation and the growth (proliferation) of cultured human keratinocytes and assessed whether the inhibition of keratinocyte growth by vitamin D involves AMPK activation. In addition, we explored whether the inhibition of keratinocyte proliferation as they approach confluence could be AMPK-related. Keratinocytes were incubated for 12 h with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). At concentrations of 10 -4 and 10 -3 M, AICAR inhibited keratinocyte growth by 50% and 95%, respectively, based on measurements of thymidine incorporation into DNA. It also increased AMPK and acetyl CoA carboxylase phosphorylation (P-AMPK and P-ACC) and decreased the concentration of malonyl CoA confirming that AMPK activation had occurred. Incubation with the thiazolidinedione, troglitazone (10 -6 M) caused similar alterations in P-AMPK, P-ACC, and cell growth. In contrast, the well known inhibition of keratinocyte growth by 1,25-dihydroxyvitamin D 3 (10 -7 and 10 -6 M) was not associated with changes in P-AMPK or P-ACC. Like most cells, the growth of keratinocytes diminished as they approached confluence. Thus, it was of note that we found a progressive increase in P-AMPK (1.5- to 2-fold, p 3 is AMPK-independent

  7. Senescent mouse cells fail to overtly regulate the HIRA histone chaperone and do not form robust Senescence Associated Heterochromatin Foci

    Directory of Open Access Journals (Sweden)

    Enders Greg H

    2010-06-01

    Full Text Available Abstract Background Cellular senescence is a permanent growth arrest that occurs in response to cellular stressors, such as telomere shortening or activation of oncogenes. Although the process of senescence growth arrest is somewhat conserved between mouse and human cells, there are some critical differences in the molecular pathways of senescence between these two species. Recent studies in human fibroblasts have defined a cell signaling pathway that is initiated by repression of a specific Wnt ligand, Wnt2. This, in turn, activates a histone chaperone HIRA, and culminates in formation of specialized punctate domains of facultative heterochromatin, called Senescence-Associated Heterochromatin Foci (SAHF, that are enriched in the histone variant, macroH2A. SAHF are thought to repress expression of proliferation-promoting genes, thereby contributing to senescence-associated proliferation arrest. We asked whether this Wnt2-HIRA-SAHF pathway is conserved in mouse fibroblasts. Results We show that mouse embryo fibroblasts (MEFs and mouse skin fibroblasts, do not form robust punctate SAHF in response to an activated Ras oncogene or shortened telomeres. However, senescent MEFs do exhibit elevated levels of macroH2A staining throughout the nucleus as a whole. Consistent with their failure to fully activate the SAHF assembly pathway, the Wnt2-HIRA signaling axis is not overtly regulated between proliferating and senescent mouse cells. Conclusions In addition to the previously defined differences between mouse and human cells in the mechanisms and phenotypes associated with senescence, we conclude that senescent mouse and human fibroblasts also differ at the level of chromatin and the signaling pathways used to regulate chromatin. These differences between human and mouse senescence may contribute to the increased propensity of mouse fibroblasts (and perhaps other mouse cell types to become immortalized and transformed, compared to human cells.

  8. Decorin gene expression and its regulation in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Castro-Munozledo, Federico [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico); Kuri-Harcuch, Walid, E-mail: walidkuri@gmail.com [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico)

    2011-07-22

    Highlights: {yields} We showed that cultured human diploid epidermal keratinocytes express and synthesize decorin. {yields} Decorin is found intracytoplasmic in suprabasal cells of cultures and in human epidermis. {yields} Decorin mRNA expression in cHEK is regulated by pro-inflammatory and proliferative cytokines. {yields} Decorin immunostaining of psoriatic lesions showed a lower intensity and altered intracytoplasmic arrangements. -- Abstract: In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.

  9. Differentiation of human scalp hair follicle keratinocytes in culture.

    Science.gov (United States)

    Weterings, P J; Verhagen, H; Wirtz, P; Vermorken, A J

    1984-01-01

    The morphology of human scalp hair follicle keratinocytes, cultured on the bovine eye lens capsule, is studied by light and electron microscopy. The hair follicle keratinocytes in the stratified cultures are characterized by the presence of numerous tonofilaments, desmosomes and lysosomes and by the presence of glycogen accumulations. The cells in the upper layers develop a cornified envelope. Moreover, an incomplete basal lamina is found between the capsule and the basal cells. However, some features of epidermal keratinocytes in vivo, such as keratohyalin granules and stratum corneum formation, are absent. Analysis of the polypeptides by sodium dodecylsulfate polyacrylamide gel electrophoresis also reveals differences between the cultured hair follicle cells and epidermis, whilst the patterns of cultured cells and hair follicle sheaths are similar. The morphological and protein biosynthetic aspects of terminal differentiation of the keratinocytes in vitro are correlated. These results are discussed in the light of the findings with cultured epidermal keratinocytes, reported in the literature.

  10. Forging a signature of in vivo senescence.

    Science.gov (United States)

    Sharpless, Norman E; Sherr, Charles J

    2015-07-01

    'Cellular senescence', a term originally defining the characteristics of cultured cells that exceed their replicative limit, has been broadened to describe durable states of proliferative arrest induced by disparate stress factors. Proposed relationships between cellular senescence, tumour suppression, loss of tissue regenerative capacity and ageing suffer from lack of uniform definition and consistently applied criteria. Here, we highlight caveats in interpreting the importance of suboptimal senescence-associated biomarkers, expressed either alone or in combination. We advocate that more-specific descriptors be substituted for the now broadly applied umbrella term 'senescence' in defining the suite of diverse physiological responses to cellular stress.

  11. Drying without senescence in resurrection plants

    Science.gov (United States)

    Griffiths, Cara A.; Gaff, Donald F.; Neale, Alan D.

    2014-01-01

    Research into extreme drought tolerance in resurrection plants using species such as Craterostigma plantagineum, C. wilmsii, Xerophyta humilis, Tortula ruralis, and Sporobolus stapfianus has provided some insight into the desiccation tolerance mechanisms utilized by these plants to allow them to persist under extremely adverse environmental conditions. Some of the mechanisms used to ensure cellular preservation during severe dehydration appear to be peculiar to resurrection plants. Apart from the ability to preserve vital cellular components during drying and rehydration, such mechanisms include the ability to down-regulate growth-related metabolism rapidly in response to changes in water availability, and the ability to inhibit dehydration-induced senescence programs enabling reconstitution of photosynthetic capacity quickly following a rainfall event. Extensive research on the molecular mechanism of leaf senescence in non-resurrection plants has revealed a multi-layered regulatory network operates to control programed cell death pathways. However, very little is known about the molecular mechanisms that resurrection plants employ to avoid undergoing drought-related senescence during the desiccation process. To survive desiccation, dehydration in the perennial resurrection grass S. stapfianus must proceed slowly over a period of 7 days or more. Leaves detached from the plant before 60% relative water content (RWC) is attained are desiccation-sensitive indicating that desiccation tolerance is conferred in vegetative tissue of S. stapfianus when the leaf RWC has declined to 60%. Whilst some older leaves remaining attached to the plant during dehydration will senesce, suggesting dehydration-induced senescence may be influenced by leaf age or the rate of dehydration in individual leaves, the majority of leaves do not senesce. Rather these leaves dehydrate to air-dryness and revive fully following rehydration. Hence it seems likely that there are genes expressed in

  12. MicroRNA Regulation of Ionizing Radiation-Induced Premature Senescence

    International Nuclear Information System (INIS)

    Wang Yong; Scheiber, Melissa N.; Neumann, Carola; Calin, George A.; Zhou Daohong

    2011-01-01

    Purpose: MicroRNAs (miRNAs) have emerged as critical regulators of many cellular pathways. Ionizing radiation (IR) exposure causes DNA damage and induces premature senescence. However, the role of miRNAs in IR-induced senescence has not been well defined. Thus, the purpose of this study was to identify and characterize senescence-associated miRNAs (SA-miRNAs) and to investigate the role of SA-miRNAs in IR-induced senescence. Methods and Materials: In human lung (WI-38) fibroblasts, premature senescence was induced either by IR or busulfan (BU) treatment, and replicative senescence was accomplished by serial passaging. MiRNA microarray were used to identify SA-miRNAs, and real-time reverse transcription (RT)-PCR validated the expression profiles of SA-miRNAs in various senescent cells. The role of SA-miRNAs in IR-induced senescence was characterized by knockdown of miRNA expression, using anti-miRNA oligonucleotides or by miRNA overexpression through the transfection of pre-miRNA mimics. Results: We identified eight SA-miRNAs, four of which were up-regulated (miR-152, -410, -431, and -493) and four which were down-regulated (miR-155, -20a, -25, and -15a), that are differentially expressed in both prematurely senescent (induced by IR or BU) and replicatively senescent WI-38 cells. Validation of the expression of these SA-miRNAs indicated that down-regulation of miR-155, -20a, -25, and -15a is a characteristic miRNA expression signature of cellular senescence. Functional analyses revealed that knockdown of miR-155 or miR-20a, but not miR-25 or miR-15a, markedly enhanced IR-induced senescence, whereas ectopic overexpression of miR-155 or miR-20a significantly inhibited senescence induction. Furthermore, our studies indicate that miR-155 modulates IR-induced senescence by acting downstream of the p53 and p38 mitogen-activated protein kinase (MAPK) pathways and in part via regulating tumor protein 53-induced nuclear protein 1 (TP53INP1) expression. Conclusion: Our

  13. Planarians as a model of aging to study the interaction between stem cells and senescent cells in vivo

    Directory of Open Access Journals (Sweden)

    Patrick M. Perrigue

    2015-12-01

    Full Text Available The depletion of stem cell pools and the accumulation of senescent cells in animal tissues are linked to aging. Planarians are invertebrate flatworms and are unusual in that their stem cells, called neoblasts, are constantly replacing old and dying cells. By eliminating neoblasts in worms via irradiation, the biological principles of aging are exposed in the absence of wound healing and regeneration, making planaria a powerful tool for aging research.

  14. Transcriptional profile of genes involved in ascorbate glutathione cycle in senescing leaves for an early senescence leaf (esl) rice mutant.

    Science.gov (United States)

    Li, Zhaowei; Su, Da; Lei, Bingting; Wang, Fubiao; Geng, Wei; Pan, Gang; Cheng, Fangmin

    2015-03-15

    To clarify the complex relationship between ascorbate-glutathione (AsA-GSH) cycle and H2O2-induced leaf senescence, the genotype-dependent difference in some senescence-related physiological parameters and the transcript levels and the temporal patterns of genes involved in the AsA-GSH cycle during leaf senescence were investigated using two rice genotypes, namely, the early senescence leaf (esl) mutant and its wild type. Meanwhile, the triggering effect of exogenous H2O2 on the expression of OsAPX genes was examined using detached leaves. The results showed that the esl mutant had higher H2O2 level than its wild type at the initial stage of leaf senescence. At transcriptional level, the association of expression of various genes involved in the AsA-GSH cycle with leaf senescence was isoform dependent. For OsAPXs, the transcripts of two cytosolic OsAPX genes (OsAPX1 and OsAPX2), thylakoid-bound OsAPX8, chloroplastic OsAPX7 and peroxisomal OsAPX4 exhibited remarkable genotype-dependent variation in their expression levels and temporal patterns during leaf senescence, there were significantly increasing transcripts of OsAXP1 and OsAPX7, severely repressed transcripts of OsAPX4 and OsAPX8 for the esl rice at the initial leaf senescence. In contrast, the repressing transcript of OsAPX8 was highly sensitive to the increasing H2O2 level in the senescing rice leaves, while higher H2O2 concentration resulted in the enhancing transcripts of two cytosolic OsAPX genes, OsAPX7 transcript was greatly variable with different H2O2 concentrations and incubating duration, suggesting that the different OsAPXs isoforms played a complementary role in perceiving and scavenging H2O2 accumulation at various H2O2 concentrations during leaf senescence. Higher H2O2 level, increased AsA level, higher activities of APX and glutathione reductase (GR), and relatively stable GSH content during the entire sampling period in the leaves of esl mutant implied that a close interrelationship existed

  15. The WRKY transcription factor family and senescence in switchgrass.

    Science.gov (United States)

    Rinerson, Charles I; Scully, Erin D; Palmer, Nathan A; Donze-Reiner, Teresa; Rabara, Roel C; Tripathi, Prateek; Shen, Qingxi J; Sattler, Scott E; Rohila, Jai S; Sarath, Gautam; Rushton, Paul J

    2015-11-09

    Early aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields. All potential WRKY genes present in the version 1.0 of the switchgrass genome were identified and curated using manual and bioinformatic methods. Expression profiles of WRKY genes in switchgrass flag leaf RNA-Seq datasets were analyzed using clustering and network analyses tools to identify both WRKY and WRKY-associated gene co-expression networks during leaf development and senescence onset. We identified 240 switchgrass WRKY genes including members of the RW5 and RW6 families of resistance proteins. Weighted gene co-expression network analysis of the flag leaf transcriptomes across development readily separated clusters of co-expressed genes into thirteen modules. A visualization highlighted separation of modules associated with the early and senescence-onset phases of flag leaf growth. The senescence-associated module contained 3000 genes including 23 WRKYs. Putative promoter regions of senescence-associated WRKY genes contained several cis-element-like sequences suggestive of responsiveness to both senescence and stress signaling pathways. A phylogenetic comparison of senescence-associated WRKY genes from switchgrass flag leaf with senescence-associated WRKY genes from other plants revealed notable hotspots in Group I, IIb, and IIe of the phylogenetic tree. We have identified and named 240 WRKY genes in the switchgrass genome. Twenty three of these genes show elevated mRNA levels during the onset of flag leaf senescence. Eleven of the WRKY genes were found in hotspots of related senescence-associated genes from multiple species and thus represent promising targets for future switchgrass genetic improvement. Overall, individual WRKY gene expression profiles could be readily linked to developmental stages of flag leaves.

  16. Hepatocyte and keratinocyte growth factors and their receptors in human lung emphysema

    Directory of Open Access Journals (Sweden)

    Marchal Joëlle

    2005-10-01

    Full Text Available Abstract Background Hepatocyte and keratinocyte growth factors are key growth factors in the process of alveolar repair. We hypothesized that excessive alveolar destruction observed in lung emphysema involves impaired expression of hepatocyte and keratinocyte growth factors or their respective receptors, c-met and keratinocyte growth factor receptor. The aim of our study was to compare the expression of hepatocyte and keratinocyte growth factors and their receptors in lung samples from 3 groups of patients: emphysema; smokers without emphysema and non-smokers without emphysema. Methods Hepatocyte and keratinocyte growth factor proteins were analysed by immunoassay and western blot; mRNA expression was measured by real time quantitative polymerase chain reaction. Results Hepatocyte and keratinocyte growth factors, c-met and keratinocyte growth factor receptor mRNA levels were similar in emphysema and non-emphysema patients. Hepatocyte growth factor mRNA correlated negatively with FEV1 and the FEV1/FVC ratio both in emphysema patients and in smokers with or without emphysema. Hepatocyte and keratinocyte growth factor protein concentrations were similar in all patients' groups. Conclusion The expression of hepatocyte and keratinocyte growth factors and their receptors is preserved in patients with lung emphysema as compared to patients without emphysema. Hepatocyte growth factor mRNA correlates with the severity of airflow obstruction in smokers.

  17. Establishment of primary keratinocyte culture from horse tissue biopsates

    Directory of Open Access Journals (Sweden)

    Jernej OGOREVC

    2015-12-01

    Full Text Available Primary cell lines established from skin tissue can be used in immunological, proteomic and genomic studies as in vitro skin models. The goal of our study was to establish a primary keratinocyte cell culture from tissue biopsates of two horses. The primary keratinocyte cell culture was obtained by mechanical and enzymatic dissociation and with explant culture method. The result was a heterogeneous primary culture comprised of keratinocytes and fibroblasts. To distinguish epithelial and mesenchymal cells immunofluorescent characterisation was performed, using antibodies against cytokeratin 14 and vimentin. We successfully at attained a primary cell line of keratinocytes, which could potentially be used to study equine skin diseases, as an animal model for human diseases, and for cosmetic and therapeutic product testing.

  18. Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype.

    Science.gov (United States)

    Ngo, Kevin; Patil, Prashanti; McGowan, Sara J; Niedernhofer, Laura J; Robbins, Paul D; Kang, James; Sowa, Gwendolyn; Vo, Nam

    2017-09-01

    Aging greatly increases the risk for intervertebral disc degeneration (IDD) as a result of proteoglycan loss due to reduced synthesis and enhanced degradation of the disc matrix proteoglycan (PG). How disc matrix PG homeostasis becomes perturbed with age is not known. The goal of this study is to determine whether cellular senescence is a source of this perturbation. We demonstrated that disc cellular senescence is dramatically increased in the DNA repair-deficient Ercc1 -/Δ mouse model of human progeria. In these accelerated aging mice, increased disc cellular senescence is closely associated with the rapid loss of disc PG. We also directly examine PG homeostasis in oxidative damage-induced senescent human cells using an in vitro cell culture model system. Senescence of human disc cells treated with hydrogen peroxide was confirmed by growth arrest, senescence-associated β-galactosidase activity, γH2AX foci, and acquisition of senescence-associated secretory phenotype. Senescent human disc cells also exhibited perturbed matrix PG homeostasis as evidenced by their decreased capacity to synthesize new matrix PG and enhanced degradation of aggrecan, a major matrix PG. of the disc. Our in vivo and in vitro findings altogether suggest that disc cellular senescence is an important driver of PG matrix homeostatic perturbation and PG loss. Published by Elsevier B.V.

  19. Molecular genetic approaches to the study of cellular senescence.

    Science.gov (United States)

    Goletz, T J; Smith, J R; Pereira-Smith, O M

    1994-01-01

    Cellular senescence is an inability of cells to synthesize DNA and divide, which results in a terminal loss of proliferation despite the maintenance of basic metabolic processes. Senescence has been proposed as a model for the study of aging at the cellular level, and the basis for this model system and its features have been summarized. Although strong experimental evidence exists to support the hypothesis that cellular senescence is a dominant active process, the mechanisms responsible for this phenomenon remain a mystery. Investigators have taken several approaches to gain a better understanding of senescence. Several groups have documented the differences between young and senescent cells, and others have identified changes that occur during the course of a cell's in vitro life span. Using molecular and biochemical approaches, important changes in gene expression and function of cell-cycle-associated products have been identified. The active production of an inhibitor of DNA synthesis has been demonstrated. This may represent the final step in a cascade of events governing senescence. The study of immortal cells which have escaped senescence has also provided useful information, particularly with regard to the genes governing the senescence program. These studies have identified four complementation groups for indefinite division, which suggests that there are at least four genes or gene pathways in the senescence program. Through the use of microcell-mediated chromosome transfer, chromosomes encoding senescence genes have been identified; efforts to clone these genes are ongoing.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Oncogenic senescence: a multi-functional perspective

    NARCIS (Netherlands)

    Baker, D.J.; Alimirah, F.; Deursen, J.M.A. van; Campisi, J.; Hildesheim, J.

    2017-01-01

    Cellular senescence is defined as an irreversible growth arrest with the acquisition of a distinctive secretome. The growth arrest is a potent anticancer mechanism whereas the secretome facilitates wound healing, tissue repair, and development. The senescence response has also become increasingly

  1. Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest.

    Science.gov (United States)

    Sapieha, Przemyslaw; Mallette, Frédérick A

    2018-04-25

    In mitotic cells, cellular senescence is a permanent state of G1 arrest, that may have evolved in parallel to apoptosis, to limit proliferation of damaged cells and oncogenesis. Recent studies have suggested that postmitotic cells are also capable of entering a state of senescence, although the repercussions of postmitotic cellular senescence (PoMiCS) on tissue health and function are currently ill-defined. In tissues made largely of post-mitotic cells, it is evolutionary advantageous to preserve cellular integrity and cellular senescence of post-mitotic cells may prevent stressor-induced tissue degeneration and promote tissue repair. Paradoxically, PoMiCS may also contribute to disease progression through the generation of inflammatory mediators, termed the senescence-associated secretory phenotype. Here, we discuss the potential roles of PoMiCS and propose to enlarge the current definition of cellular senescence to postmitotic terminally differentiated cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Smad4 disruption accelerates keratinocyte reepithelialization in murine cutaneous wound repair.

    Science.gov (United States)

    Yang, Leilei; Li, Wenlong; Wang, Shaoxia; Wang, Lijuan; Li, Yang; Yang, Xiao; Peng, Ruiyun

    2012-10-01

    Keratinocyte reepithelialization is a rate-limiting event in cutaneous wound repair, which involves the migration and proliferation of keratinocytes to cover the denuded dermal surface. Transforming growth factor-β1 (TGF-β1) has the ability to induce epithelial cell migration while inhibiting proliferation, and controversial results have been generated regarding the effect of TGF-β signaling on reepithelialization. In this study, full-thickness skin wounds were made in keratinocyte-specific Smad4 knockout and the control mice. The wound closure, reepithelialization, keratinocyte proliferation, myofibroblast numbers and collagen deposition of were assessed. The results showed that the proliferation of keratinocytes increased, which accelerated the reepithelialization, and led to faster wound repair in the epidermis of Smad4 mutant mice. Upregulation of keratin 17, 14-3-3 sigma and phosphorylated AKT in the hyperproliferative epidermis may be correlated with the accelerated reepithelialization. We conclude that Smad4 plays an inhibitory role in the keratinocyte-mediated reepithelialization of wound healing.

  3. CLCA2 as a p53-Inducible Senescence Mediator

    Directory of Open Access Journals (Sweden)

    Chizu Tanikawa

    2012-02-01

    Full Text Available p53 is a tumor suppressor gene that is frequently mutated in multiple cancer tissues. Activated p53 protein regulates its downstream genes and subsequently inhibits malignant transformation by inducing cell cycle arrest, apoptosis, DNA repair, and senescence. However, genes involved in the p53-mediated senescence pathway are not yet fully elucidated. Through the screening of two genome-wide expression profile data sets, one for cells in which exogenous p53 was introduced and the other for senescent fibroblasts, we have identified chloride channel accessory 2 (CLCA2 as a p53-inducible senescence-associated gene. CLCA2 was remarkably induced by replicative senescence as well as oxidative stress in a p53-dependent manner. We also found that ectopically expressed CLCA2 induced cellular senescence, and the down-regulation of CLCA2 by small interfering RNA caused inhibition of oxidative stress-induced senescence. Interestingly, the reduced expression of CLCA2 was frequently observed in various kinds of cancers including prostate cancer, whereas its expression was not affected in precancerous prostatic intraepithelial neoplasia. Thus, our findings suggest a crucial role of p53/CLCA2-mediated senescence induction as a barrier for malignant transformation.

  4. In vitro senescence of immune cells.

    Science.gov (United States)

    Effros, Rita B; Dagarag, Mirabelle; Valenzuela, Hector F

    2003-01-01

    Immune cells are eminently suitable model systems in which to address the possible role of replicative senescence during in vivo aging. Since there are more than 10(8) unique antigen specificities present within the total T lymphocyte population of each individual, the immune response to any single antigen requires massive clonal expansion of the small proportion of T cells whose receptors recognize that antigen. The Hayflick Limit may, therefore, constitute a barrier to effective immune function, at least for those T cells that encounter their specific antigen more than once over the life course. Application of the fibroblast replicative senescence model to the so-called cytotoxic or CD8 T cell, the class of T cells that controls viral infection and cancer, has revealed certain features in common with other cell types as well as several characteristics that are unique to T cells. One senescence-associated change that is T cell-specific is the complete loss of expression of the activation signaling surface molecule, CD28, an alteration that enabled the documentation of high proportions of senescent T cells in vivo. The T cell model has also provided the unique opportunity to analyze telomere dynamics in a cell type that has the ability to upregulate telomerase yet nevertheless undergoes senescence. The intimate involvement of the immune system in the control of pathogens and cancer as well as in modulation of bone homeostasis suggests that more extensive analysis of the full range of characteristics of senescent T cells may help elucidate a broad spectrum of age-associated physiological changes.

  5. PTTG1 attenuates drug-induced cellular senescence.

    Directory of Open Access Journals (Sweden)

    Yunguang Tong

    Full Text Available As PTTG1 (pituitary tumor transforming gene abundance correlates with adverse outcomes in cancer treatment, we determined mechanisms underlying this observation by assessing the role of PTTG1 in regulating cell response to anti-neoplastic drugs. HCT116 cells devoid of PTTG1 (PTTG1(-/- exhibited enhanced drug sensitivity as assessed by measuring BrdU incorporation in vitro. Apoptosis, mitosis catastrophe or DNA damage were not detected, but features of senescence were observed using low doses of doxorubicin and TSA. The number of drug-induced PTTG1(-/- senescent cells increased ∼4 fold as compared to WT PTTG1-replete cells (p<0.001. p21, an important regulator of cell senescence, was induced ∼3 fold in HCT116 PTTG1(-/- cells upon doxorubicin or Trichostatin A treatment. Binding of Sp1, p53 and p300 to the p21 promoter was enhanced in PTTG1(-/- cells after treatment, suggesting transcriptional regulation of p21. p21 knock down abrogated the observed senescent effects of these drugs, indicating that PTTG1 likely suppresses p21 to regulate drug-induced senescence. PTTG1 also regulated SW620 colon cancer cells response to doxorubicin and TSA mediated by p21. Subcutaneously xenografted PTTG1(-/- HCT116 cells developed smaller tumors and exhibited enhanced responses to doxorubicin. PTTG1(-/- tumor tissue derived from excised tumors exhibited increased doxorubicin-induced senescence. As senescence is a determinant of cell responses to anti-neoplastic treatments, these findings suggest PTTG1 as a tumor cell marker to predict anti-neoplastic treatment outcomes.

  6. Leaf senescence and nutrient remobilisation in barley and wheat

    DEFF Research Database (Denmark)

    Gregersen, P L; Holm, P B; Krupinska, K

    2008-01-01

    Extensive studies have been undertaken on senescence processes in barley and wheat and their importance for the nitrogen use efficiency of these crop plants. During the senescence processes, proteins are degraded and nutrients are re-mobilised from senescing leaves to other organs, especially...... of chloroplasts is summarised. Rubisco is thought to be released from chloroplasts into vesicles containing stroma material (RCB = Rubisco-containing bodies). These vesicles may then take different routes for their degradation. Transcriptome analyses on barley and wheat senescence have identified genes involved...... in degradative, metabolic and regulatory processes that could be used in future strategies aimed at modifying the senescence process. The breeding of crops for characters related to senescence processes, e.g. higher yields and better nutrient use efficiency, is complex. Such breeding has to cope with the dilemma...

  7. Evasion of Cell Senescence Leads to Medulloblastoma Progression

    Directory of Open Access Journals (Sweden)

    Lukas Tamayo-Orrego

    2016-03-01

    Full Text Available How brain tumors progress from precancerous lesions to advanced cancers is not well understood. Using Ptch1+/− mice to study medulloblastoma progression, we found that Ptch1 loss of heterozygosity (LOH is an early event that is associated with high levels of cell senescence in preneoplasia. In contrast, advanced tumors have evaded senescence. Remarkably, we discovered that the majority of advanced medulloblastomas display either spontaneous, somatic p53 mutations or Cdkn2a locus inactivation. Consistent with senescence evasion, these p53 mutations are always subsequent to Ptch1 LOH. Introduction of a p53 mutation prevents senescence, accelerates tumor formation, and increases medulloblastoma incidence. Altogether, our results show that evasion of senescence associated with Ptch1 LOH allows progression to advanced tumors.

  8. Chemosensory Information Processing between Keratinocytes and Trigeminal Neurons

    Science.gov (United States)

    Sondersorg, Anna Christina; Busse, Daniela; Kyereme, Jessica; Rothermel, Markus; Neufang, Gitta; Gisselmann, Günter; Hatt, Hanns; Conrad, Heike

    2014-01-01

    Trigeminal fibers terminate within the facial mucosa and skin and transmit tactile, proprioceptive, chemical, and nociceptive sensations. Trigeminal sensations can arise from the direct stimulation of intraepithelial free nerve endings or indirectly through information transmission from adjacent cells at the peripheral innervation area. For mechanical and thermal cues, communication processes between skin cells and somatosensory neurons have already been suggested. High concentrations of most odors typically provoke trigeminal sensations in vivo but surprisingly fail to activate trigeminal neuron monocultures. This fact favors the hypothesis that epithelial cells may participate in chemodetection and subsequently transmit signals to neighboring trigeminal fibers. Keratinocytes, the major cell type of the epidermis, express various receptors that enable reactions to multiple environmental stimuli. Here, using a co-culture approach, we show for the first time that exposure to the odorant chemicals induces a chemical communication between human HaCaT keratinocytes and mouse trigeminal neurons. Moreover, a supernatant analysis of stimulated keratinocytes and subsequent blocking experiments with pyrodoxalphosphate-6-azophenyl-2′,4′-disulfonate revealed that ATP serves as the mediating transmitter molecule released from skin cells after odor stimulation. We show that the ATP release resulting from Javanol® stimulation of keratinocytes was mediated by pannexins. Consequently, keratinocytes act as chemosensors linking the environment and the trigeminal system via ATP signaling. PMID:24790106

  9. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue.

    Science.gov (United States)

    Schafer, Marissa J; White, Thomas A; Evans, Glenda; Tonne, Jason M; Verzosa, Grace C; Stout, Michael B; Mazula, Daniel L; Palmer, Allyson K; Baker, Darren J; Jensen, Michael D; Torbenson, Michael S; Miller, Jordan D; Ikeda, Yasuhiro; Tchkonia, Tamara; van Deursen, Jan M; Kirkland, James L; LeBrasseur, Nathan K

    2016-06-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16(INK4a) promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated β-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    International Nuclear Information System (INIS)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi; Kotani, Eiji; Hirano, Tomoko; Nakajima, Yumiko; Matsumoto, Goichi; Mori, Hajime

    2014-01-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals

  11. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Kotani, Eiji [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan); Hirano, Tomoko [Venture Laboratory, Kyoto Institute of Technology, Kyoto (Japan); Nakajima, Yumiko [Functional Genomics Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa (Japan); Matsumoto, Goichi [Division of Oral Surgery, Yokohama Clinical Education Center of Kanagawa Dental University, Yokohama (Japan); Mori, Hajime, E-mail: hmori@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan)

    2014-09-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals.

  12. Intermittent pressure decreases human keratinocyte proliferation in vitro.

    Science.gov (United States)

    Nasca, Maria R; Shih, Alan T; West, Dennis P; Martinez, Wanda M; Micali, Giuseppe; Landsman, Adam S

    2007-01-01

    The aim of this study was to investigate the correlation between pressure changes and keratinocyte proliferation by determining whether keratinocytes exposed to altered mechanical pressures would proliferate at different rates compared to control cells not subjected to pressure changes. Tissue culture flasks of human keratinocytes plated at an approximate density of 15,000 cells/cm(2) undergoing an intermittent cyclic pressure of 362 mm Hg at a frequency of 2.28 or 5.16 cycles/min (0.038 or 0.086 Hz) for 8 h were compared to control flasks grown at ambient room pressure. An in-line pressure transducer was used to monitor and adjust pressure within the cell chambers, using a solenoid valve. A thymidine incorporation assay assessed the amount of cell proliferation in each set of experiments. Differences in proliferation between keratinocytes subjected to cyclic pressure changes and control cells were found to be statistically significant (p < 0.05) in 4 out of 5 proliferation assays. Also, a higher frequency of pressure changes consistently generated a reduced proliferation rate compared to that seen in cells exposed to a lower frequency of pressure changes. These data indicate that keratinocytes undergoing intermittent pressure changes exhibit decreased proliferation rates compared to controls. Furthermore, an increased frequency rate seems to have a greater effect on proliferation than low-frequency rate pressure changes, suggesting that the stress caused by frequently changed pressure may play a greater role in reducing keratinocyte proliferation than the actual magnitude of load applied to the cells. Our results support the current treatment protocol of reducing speed and duration of walking on the site of the wound to promote healing of foot ulcers. (c) 2007 S. Karger AG, Basel.

  13. The emerging role of senescent cells in tissue homeostasis and pathophysiology

    Directory of Open Access Journals (Sweden)

    Kaoru Tominaga

    2015-05-01

    Full Text Available Cellular senescence is a state of permanent growth arrest and is thought to play a pivotal role in tumor suppression. Cellular senescence may play an important role in tumor suppression, wound healing, and protection against tissue fibrosis in physiological conditions in vivo. However, accumulating evidence that senescent cells may have harmful effects in vivo and may contribute to tissue remodeling, organismal aging, and many age-related diseases also exists. Cellular senescence can be induced by various intrinsic and extrinsic factors. Both p53/p21 and p16/RB pathways are important for irreversible growth arrest in senescent cells. Senescent cells secret numerous biologically active factors. This specific secretion phenotype by senescent cells may largely contribute to physiological and pathological consequences in organisms. Here I review the molecular basis of cell cycle arrest and the specific secretion phenotype in cellular senescence. I also summarize the current knowledge of the role of cellular senescence in vivo in physiological and pathological settings.

  14. The Role of the S40 Gene Family in Leaf Senescence

    Directory of Open Access Journals (Sweden)

    Muhammad Jehanzeb

    2017-10-01

    Full Text Available Senescence affect different traits of plants, such as the ripening of fruit, number, quality and timing of seed maturation. While senescence is induced by age, growth hormones and different environmental stresses, a highly organized genetic mechanism related to substantial changes in gene expression regulates the process. Only a few genes associated to senescence have been identified in crop plants despite the vital significance of senescence for crop yield. The S40 gene family has been shown to play a role in leaf senescence. The barley HvS40 gene is one of the senescence marker genes which shows expression during age-dependent as well as dark-induced senescence. Like barley HvS40, the Arabidopsis AtS40-3 gene is also induced during natural senescence as well as in response to treatment with abscisic acid, salicylic acid, darkness and pathogen attack. It is speculated that rice OsS40 has a similar function in the leaf senescence of rice.

  15. Effect of Nanodiamond and Nanoplatinum Liquid, DPV576, on Human Primary Keratinocytes.

    Science.gov (United States)

    Ghoneum, Mamdooh H; Katano, Hideki; Agrawal, Sudhanshu; Ganguly, Sreerupa; Agrawal, Anshu

    2017-01-01

    Nanofabrics are now being used in a wide range of products that come into direct contact with skin, including carpet, clothing, and medical fabrics. In the current study, we examined the effect of a dispersed aqueous mixture of nanodiamond (ND) and nanoplatinum (NP) (DPV576) on human primary keratinocytes with respect to transient receptor potential vanilloid (TRPV) channel expression, secretion of cytokines and production of nerve growth factor (NGF). Keratinocytes were treated with DPV576 at concentrations of 1:10 and 1:100 dilutions for 24 hours in vitro, and their activation of was determined by production of cytokines TNF-α, IL-1β, and prostaglandin (PGE2), and by production of NGF. Inhibitor experiments were carried out by incubating keratinocytes with the TRPV4-selective antagonist HC-067047. TRPV receptor expression (TRPV1, TRPV3 and TRPV4) on keratinocytes as well as changes in Ca2+ potential were examined by flow cytometry. DPV576 treatment of keratinocytes resulted in the following effects: (1) stimulation of keratinocytes as indicated by the significant secretion of cytokines IL-1β, TNF-α, and PGE2, an effect noted only at higher concentration (1:10); (2) significant decrease in the expression of TRPV4 on keratinocytes with a spike in the calcium flux, but no change in the expression of TRPV1 and TRPV3; (3) induction of cytokine secretion independent of TRPV4, as the addition of TRPV4 inhibitor had no significant effect on the cytokine production from keratinocytes; (4) induction of NGF secretion by keratinocytes. These results demonstrate that DPV576 activates keratinocytes via multiple signaling pathways which may reduce stress associated with inflammation, pain, and circadian rhythms. ND/NP-coated fabrics that target the modulation of local inflammation, pain, and circadian rhythms could potentially be of benefit to humans.

  16. Possible role of epidermal keratinocytes in the construction of acupuncture meridians.

    Science.gov (United States)

    Denda, Mitsuhiro; Tsutsumi, Moe

    2014-04-01

    Acupuncture meridians consist of a network of acupuncture points on the skin, stimulation of which is well established to have a variety of physiological effects. We have previously demonstrated that epidermal keratinocytes contain multiple sensory systems for temperature, mechanical stimuli, electric potentials and other stimuli. These sensory systems generate changes in the calcium-ion concentration in the epidermis, so epidermal keratinocytes can generate spatially-localized electro-physiological patterns in the skin. We have previously demonstrated signaling between epidermal keratinocytes and peripheral nerve systems. Therefore, stimuli sensed by epidermal keratinocytes might be transferred to the unmyelinated nerve fibers that are known to exist in the epidermis and, thence, to the spinal cord and brain. We propose that epidermal keratinocytes form an information-gathering network in the skin and that this network plays a key role in whole-body homeostasis in response to the changing environment. We also hypothesize that this network corresponds to the acupuncture meridians. As supporting examples, we present some striking calcium propagation patterns observed in cultured human keratinocytes after adenosine-triphosphate (ATP) stimulation. These results support the ideas that keratinocytes can generate spatially-restricted signaling patterns after environmental stimulation and that the cultures might be in-vitro models of meridians as an information-gathering network in skin. Copyright © 2014. Published by Elsevier B.V.

  17. Predatory senescence in ageing wolves.

    Science.gov (United States)

    MacNulty, Daniel R; Smith, Douglas W; Vucetich, John A; Mech, L David; Stahler, Daniel R; Packer, Craig

    2009-12-01

    It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics.

  18. Predatory senescence in aging wolves

    Science.gov (United States)

    MacNulty, Daniel R.; Smith, Douglas W.; Vucetich, John A.; Mech, L. David; Stahler, Daniel R.; Packer, Craig

    2009-01-01

    It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics.

  19. Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.

    Science.gov (United States)

    Ueda, Hiroaki; Kusaba, Makoto

    2015-09-01

    Leaf senescence is not a passive degenerative process; it represents a process of nutrient relocation, in which materials are salvaged for growth at a later stage or to produce the next generation. Leaf senescence is regulated by various factors, such as darkness, stress, aging, and phytohormones. Strigolactone is a recently identified phytohormone, and it has multiple functions in plant development, including repression of branching. Although strigolactone is implicated in the regulation of leaf senescence, little is known about its molecular mechanism of action. In this study, strigolactone biosynthesis mutant strains of Arabidopsis (Arabidopsis thaliana) showed a delayed senescence phenotype during dark incubation. The strigolactone biosynthesis genes MORE AXIALLY GROWTH3 (MAX3) and MAX4 were drastically induced during dark incubation and treatment with the senescence-promoting phytohormone ethylene, suggesting that strigolactone is synthesized in the leaf during leaf senescence. This hypothesis was confirmed by a grafting experiment using max4 as the stock and Columbia-0 as the scion, in which the leaves from the Columbia-0 scion senesced earlier than max4 stock leaves. Dark incubation induced the synthesis of ethylene independent of strigolactone. Strigolactone biosynthesis mutants showed a delayed senescence phenotype during ethylene treatment in the light. Furthermore, leaf senescence was strongly accelerated by the application of strigolactone in the presence of ethylene and not by strigolactone alone. These observations suggest that strigolactone promotes leaf senescence by enhancing the action of ethylene. Thus, dark-induced senescence is regulated by a two-step mechanism: induction of ethylene synthesis and consequent induction of strigolactone synthesis in the leaf. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    Science.gov (United States)

    Tohidnezhad, Mersedeh; Lammel, Justus; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen

    2017-01-01

    Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF®) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10) and late (transglutaminase-1 and involucrin) differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR-) dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo. PMID:28808357

  1. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    Directory of Open Access Journals (Sweden)

    Andreas Bayer

    2017-01-01

    Full Text Available Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs or their clinically related formulations (e.g., Vivostat PRF® came recently into the physicians’ focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10 and late (transglutaminase-1 and involucrin differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR- dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo.

  2. Integrin β4 Regulates Migratory Behavior of Keratinocytes by Determining Laminin-332 Organization*s

    Science.gov (United States)

    Sehgal, Bernd U.; DeBiase, Phillip J.; Matzno, Sumio; Chew, Teng-Leong; Claiborne, Jessica N.; Hopkinson, Susan B.; Russell, Alan; Marinkovich, M. Peter; Jones, Jonathan C. R.

    2010-01-01

    Whether α6β4 integrin regulates migration remains controversial. β4 integrin-deficient (JEB) keratinocytes display aberrant migration in that they move in circles, a behavior that mirrors the circular arrays of laminin (LM)-332 in their matrix. In contrast, wild-type keratinocytes and JEB keratinocytes, induced to express β4 integrin, assemble laminin-332 in linear tracks over which they migrate. Moreover, laminin-332-dependent migration of JEB keratinocytes along linear tracks is restored when cells are plated on wild-type keratinocyte matrix, whereas wild-type keratinocytes show rotation over circular arrays of laminn-332 in JEB keratinocyte matrix. The activities of Rac1 and the actin cytoskeleton-severing protein cofilin are low in JEB keratinocytes compared with wild-type cells but are rescued following expression of wild-type β4 integrin in JEB cells. Additionally, in wild-type keratinocytes Rac1 is complexed with α6β4 integrin. Moreover, Rac1 or cofilin inactivation induces wild-type keratinocytes to move in circles over rings of laminin-332 in their matrix. Together these data indicate that laminin-332 matrix organization is determined by the α6β4 integrin/actin cytoskeleton via Rac1/cofilin signaling. Furthermore, our results imply that the organizational state of laminin-332 is a key determinant of the motility behavior of keratinocytes, an essential element of skin wound healing and the successful invasion of epidermal-derived tumor cells. PMID:16973601

  3. Senescence and the pro-tumorigenic stroma.

    Science.gov (United States)

    Alspach, Elise; Fu, Yujie; Stewart, Sheila A

    2013-01-01

    Hayflick and Moorhead first described senescence in the late 1960's as a permanent growth arrest that primary cells underwent after a defined number of cellular divisions in culture. This observation gave rise to the hypothesis that cells contained an internal counting mechanism that limited cellular division and that this limit was an important barrier to cellular transformation. What began as an in vitro observation has led to an immense body of work that reaches into all fields of biology and is of particular interest in the areas of aging, tissue regeneration, and tumorigenesis. The initially simplistic view that senescence limits cellular division and contributes to aging while stymying tumorigenesis has now evolved into an important and complex biological process that has numerous caveats and often opposing effects on tumorigenesis. In this review, we limit our discussion to the complex role senescence plays in tumorigenesis. Throughout the review we attempt to draw many parallels to other systems including the role senescent cells play in the tumor microenvironment and their significant molecular and phenotypic similarities to cancer associated fibroblasts (CAFs).

  4. Platelet-released growth factors inhibit proliferation of primary keratinocytes in vitro.

    Science.gov (United States)

    Bayer, Andreas; Tohidnezhad, Mersedeh; Berndt, Rouven; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Simanski, Maren; Gläser, Regine; Harder, Jürgen

    2018-01-01

    Autologous thrombocyte concentrate lysates as platelet-released growth factors (PRGF) or Vivostat Platelet Rich Fibrin (PRF ® ) represent important tools in modern wound therapy, especially in the treatment of chronic, hard-to-heal or infected wounds. Nevertheless, underlying cellular and molecular mechanisms of the beneficial clinical effects of a local wound therapy with autologous thrombocyte concentrate lysates are poorly understood. Recently, we have demonstrated that PRGF induces antimicrobial peptides in primary keratinocytes and accelerates keratinocytes' differentiation. In the present study we analyzed the influence of PRGF on primary human keratinocytes' proliferation. Using the molecular proliferation marker Ki-67 we observed a concentration- and time dependent inhibition of Ki-67 gene expression in PRGF treated primary keratinocytes. These effects were independent from the EGFR- and the IL-6-R pathway. Inhibition of primary keratinocytes' proliferation by PRGF treatment was confirmed in colorimetric cell proliferation assays. Together, these data indicate that the clinically observed positive effects of autologous thrombocytes concentrates in the treatment of chronic, hard-to-heal wounds are not based on an increased keratinocytes proliferation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Senescence rates in patients with end-stage renal disease

    DEFF Research Database (Denmark)

    Koopman, J J E; Rozing, M P; Kramer, Ada

    2011-01-01

    function of the Gompertz equation as a superior descriptor of senescence rate. Here, we tested both measures of the rate of senescence in a population of patients with end-stage renal disease. It is clinical dogma that patients on dialysis experience accelerated senescence, whereas those with a functional...

  6. Molecular bases of cellular senescence: Hayflick phenomenon 50 years later

    Directory of Open Access Journals (Sweden)

    Patrycja Sosińska

    2016-03-01

    Full Text Available Normal human somatic cells have strictly limited proliferative capacity and reach a state of senescence when it becomes exhausted. It is believed that senescence is a response to extensive and irreparable DNA injury, localized in telomeric and/or non-telomeric regions of the genome. Main cause of this damage is oxidative stress, increasing due to deteriorated function of mitochondria. Senescent cells accumulate in tissues during aging, which is causatively linked with the development of various pathologies in elderly individuals, including cancer. This paper, prepared exactly 50 years after Leonard Hayflick’s discovery of the relationship between cellular senescence and organismal aging is aimed at presenting the current knowledge about molecular determinants of senescence, with particular emphasis paid to the role of oxidative stress, effectors of senescence at the level of cell cycle, markers of this phenomenon, and the effect of senescent cells on the development of certain age-related diseases.

  7. Use of NAP gene to manipulate leaf senescence in plants

    Science.gov (United States)

    Gan, Susheng; Guo, Yongfeng

    2013-04-16

    The present invention discloses transgenic plants having an altered level of NAP protein compared to that of a non-transgenic plant, where the transgenic plants display an altered leaf senescence phenotype relative to a non-transgenic plant, as well as mutant plants comprising an inactivated NAP gene, where mutant plants display a delayed leaf senescence phenotype compared to that of a non-mutant plant. The present invention also discloses methods for delaying leaf senescence in a plant, as well as methods of making a mutant plant having a decreased level of NAP protein compared to that of a non-mutant plant, where the mutant plant displays a delayed leaf senescence phenotype relative to a non-mutant plant. Methods for causing precocious leaf senescence or promoting leaf senescence in a plant are also disclosed. Also disclosed are methods of identifying a candidate plant suitable for breeding that displays a delayed leaf senescence and/or enhanced yield phenotype.

  8. FOXO1 expression in keratinocytes promotes connective tissue healing

    Science.gov (United States)

    Zhang, Chenying; Lim, Jason; Liu, Jian; Ponugoti, Bhaskar; Alsadun, Sarah; Tian, Chen; Vafa, Rameen; Graves, Dana T.

    2017-01-01

    Wound healing is complex and highly orchestrated. It is well appreciated that leukocytes, particularly macrophages, are essential for inducing the formation of new connective tissue, which requires the generation of signals that stimulate mesenchymal stem cells (MSC), myofibroblasts and fibroblasts. A key role for keratinocytes in this complex process has yet to be established. To this end, we investigated possible involvement of keratinocytes in connective tissue healing. By lineage-specific deletion of the forkhead box-O 1 (FOXO1) transcription factor, we demonstrate for the first time that keratinocytes regulate proliferation of fibroblasts and MSCs, formation of myofibroblasts and production of collagen matrix in wound healing. This stimulation is mediated by a FOXO1 induced TGFβ1/CTGF axis. The results provide direct evidence that epithelial cells play a key role in stimulating connective tissue healing through a FOXO1-dependent mechanism. Thus, FOXO1 and keratinocytes may be an important therapeutic target where healing is deficient or compromised by a fibrotic outcome. PMID:28220813

  9. Predatory senescence in ageing wolves

    Science.gov (United States)

    MacNulty, D.R.; Smith, D.W.; Vucetich, J.A.; Mech, L.D.; Stahler, D.R.; Packer, C.

    2009-01-01

    It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics. ?? 2009 Blackwell Publishing Ltd/CNRS.

  10. Oxygen concentration modulates cellular senescence and autophagy in human trophoblast cells.

    Science.gov (United States)

    Seno, Kotomi; Tanikawa, Nao; Takahashi, Hironori; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Iwata, Hisataka; Kuwayama, Takehito; Shirasuna, Koumei

    2018-02-15

    We investigated the effect of oxygen concentrations on cellular senescence and autophagy and examined the role of autophagy in human trophoblast cells. Human first-trimester trophoblast cells (Sw.71) were incubated under 21%, 5%, or 1% O 2 concentrations for 24 hours. We examined the extent of senescence caused using senescence-associated β-galactosidase (SA-β-Gal) and senescence-associated secretory phenotype (SASP) as markers. Moreover, we examined the role of autophagy in causing cellular senescence using an autophagy inhibitor (3-methyladenine, 3MA). Physiological normoxia (5% O 2 ) decreased SA-β-Gal-positive cells and SASP including interleukin-6 (IL-6) and IL-8 compared with cultured cells in 21% O 2 . Pathophysiological hypoxia (1% O 2 ) caused cytotoxicity, including extracellular release of ATP and lactate dehydrogenase, and decreased senescence phenotypes. 3MA-treated trophoblast cells significantly suppressed senescence markers (SA-β-Gal-positive cells and SASP secretion) in O 2 -independent manner. We conclude that O 2 concentration modulates cellular senescence phenotypes regulating autophagy in the human trophoblast cells. Moreover, inhibiting autophagy suppresses cellular senescence, suggesting that autophagy contributes to oxygen stress-induced cellular senescence. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. The evolution of senescence in the tree of life

    DEFF Research Database (Denmark)

    Salguero-Gómez, Roberto

    The existing theories on the evolution of senescence assume that senescence is inevitable in all organisms. However, recent studies have shown that this is not necessarily true. A better understanding of senescence and its underlying mechanisms could have far-reaching consequences for conservation...... and eco-evolutionary research. This book is the first to offer interdisciplinary perspectives on the evolution of senescence in many species, setting the stage for further developments. It brings together new insights from a wide range of scientific fields and cutting-edge research done on a multitude...

  12. Gene pathways that delay Caenorhabditis elegans reproductive senescence.

    Directory of Open Access Journals (Sweden)

    Meng C Wang

    2014-12-01

    Full Text Available Reproductive senescence is a hallmark of aging. The molecular mechanisms regulating reproductive senescence and its association with the aging of somatic cells remain poorly understood. From a full genome RNA interference (RNAi screen, we identified 32 Caenorhabditis elegans gene inactivations that delay reproductive senescence and extend reproductive lifespan. We found that many of these gene inactivations interact with insulin/IGF-1 and/or TGF-β endocrine signaling pathways to regulate reproductive senescence, except nhx-2 and sgk-1 that modulate sodium reabsorption. Of these 32 gene inactivations, we also found that 19 increase reproductive lifespan through their effects on oocyte activities, 8 of them coordinate oocyte and sperm functions to extend reproductive lifespan, and 5 of them can induce sperm humoral response to promote reproductive longevity. Furthermore, we examined the effects of these reproductive aging regulators on somatic aging. We found that 5 of these gene inactivations prolong organismal lifespan, and 20 of them increase healthy life expectancy of an organism without altering total life span. These studies provide a systemic view on the genetic regulation of reproductive senescence and its intersection with organism longevity. The majority of these newly identified genes are conserved, and may provide new insights into age-associated reproductive senescence during human aging.

  13. Density dependence triggers runaway selection of reduced senescence.

    Directory of Open Access Journals (Sweden)

    Robert M Seymour

    2007-12-01

    Full Text Available In the presence of exogenous mortality risks, future reproduction by an individual is worth less than present reproduction to its fitness. Senescent aging thus results inevitably from transferring net fertility into younger ages. Some long-lived organisms appear to defy theory, however, presenting negligible senescence (e.g., hydra and extended lifespans (e.g., Bristlecone Pine. Here, we investigate the possibility that the onset of vitality loss can be delayed indefinitely, even accepting the abundant evidence that reproduction is intrinsically costly to survival. For an environment with constant hazard, we establish that natural selection itself contributes to increasing density-dependent recruitment losses. We then develop a generalized model of accelerating vitality loss for analyzing fitness optima as a tradeoff between compression and spread in the age profile of net fertility. Across a realistic spectrum of senescent age profiles, density regulation of recruitment can trigger runaway selection for ever-reducing senescence. This novel prediction applies without requirement for special life-history characteristics such as indeterminate somatic growth or increasing fecundity with age. The evolution of nonsenescence from senescence is robust to the presence of exogenous adult mortality, which tends instead to increase the age-independent component of vitality loss. We simulate examples of runaway selection leading to negligible senescence and even intrinsic immortality.

  14. Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse

    NARCIS (Netherlands)

    Demaria, Marco; O'Leary, Monique N.; Chang, Jianhui; Shao, Lijian; Liu, Su; Alimirah, Fatouma; Koenig, Kristin; Le, Catherine; Mitin, Natalia; Deal, Allison M.; Alston, Shani; Academia, Emmeline C.; Kilmarx, Sumner; Valdovinos, Alexis; Wang, Boshi; de Bruin, Alain; Kennedy, Brian K.; Melov, Simon; Zhou, Daohong; Sharpless, Norman E.; Muss, Hyman; Campisi, Judith

    Cellular senescence suppresses cancer by irreversibly arresting cell proliferation. Senescent cells acquire a proinfl ammatory senescence-associated secretory phenotype. Many genotoxic chemotherapies target proliferating cells nonspecifi cally, often with adverse reactions. In accord with prior

  15. Die funksie van die belydenis in die struktuur van die kerk en die ...

    African Journals Online (AJOL)

    Ter wille van die argument wat in hierdie voordrag na vore gebring word, word vier sodanige konstituerende elemente van die kerklike struktuur onderskei, te wete die belydenis, die teologie, die verkondi- ging (meer bepaald die prediking) en die kerkorde (kerkwet volgens ons terminologie). Ons gaan nou elkeen hiervan ...

  16. Effect of Wnt3a on Keratinocytes Utilizing in Vitro and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Ju-Suk Nam

    2014-03-01

    Full Text Available Wingless-type (Wnt signaling proteins participate in various cell developmental processes. A suppressive role of Wnt5a on keratinocyte growth has already been observed. However, the role of other Wnt proteins in proliferation and differentiation of keratinocytes remains unknown. Here, we investigated the effects of the Wnt ligand, Wnt3a, on proliferation and differentiation of keratinocytes. Keratinocytes from normal human skin were cultured and treated with recombinant Wnt3a alone or in combination with the inflammatory cytokine, tumor necrosis factor α (TNFα. Furthermore, using bioinformatics, we analyzed the biochemical parameters, molecular evolution, and protein–protein interaction network for the Wnt family. Application of recombinant Wnt3a showed an anti-proliferative effect on keratinocytes in a dose-dependent manner. After treatment with TNFα, Wnt3a still demonstrated an anti-proliferative effect on human keratinocytes. Exogenous treatment of Wnt3a was unable to alter mRNA expression of differentiation markers of keratinocytes, whereas an altered expression was observed in TNFα-stimulated keratinocytes. In silico phylogenetic, biochemical, and protein–protein interaction analysis showed several close relationships among the family members of the Wnt family. Moreover, a close phylogenetic and biochemical similarity was observed between Wnt3a and Wnt5a. Finally, we proposed a hypothetical mechanism to illustrate how the Wnt3a protein may inhibit the process of proliferation in keratinocytes, which would be useful for future researchers.

  17. Re-appraisal of keratinocytes' role in vitiligo pathogenesis

    Directory of Open Access Journals (Sweden)

    Ola Ahmed Bakry

    2018-01-01

    Full Text Available Background: Vitiligo is a common pigmentary disorder. Studies on its pathogenesis extensively investigated melanocytes' abnormalities and few studies searched for keratinocytes' role in disease development. Liver X receptor-α (LXR-α is a member of nuclear hormone receptors that acts as a transcription factor. Its target genes are the main regulators of melanocyte functions. Aim: The aim of this study is to investigate keratinocytes' role in vitiligo pathogenesis through immunohistochemical expression of LXR-α in lesional, perilesional, and distant nonlesional vitiligo skin. Materials and Methods: This case–control study was carried out on 44 participants. These included 24 patients with vitiligo and 20 age- and sex-matched normal individuals as a control group. Biopsies, from cases, were taken from lesional, perilesional, and distant nonlesional areas. Evaluation was done using immunohistochemical technique. Results: Keratinocyte LXR-α expression was upregulated in the lesional and perilesional skin (follicular and interfollicular epidermis compared with control skin (P<0.001 for all. There was significant association between higher histoscore (H-score in lesional epidermis (P<0.001 and in hair follicle (P=0.001 and the presence of angiogenesis. There was significant association between higher H-score in lesional epidermis and suprabasal vacuolization (P=0.02. No significant association was found between H-score or expression percentage and clinical data of selected cases. Conclusion: LXR-α upregulation is associated with keratinocyte damage in vitiligo lesional skin that leads to decreased keratinocyte-derived mediators and growth factors supporting the growth and/or melanization of surrounding melanocytes. Therefore, melanocyte function and survival are affected.

  18. Differential Activation of Human Keratinocytes by Leishmania Species Causing Localized or Disseminated Disease.

    Science.gov (United States)

    Scorza, Breanna M; Wacker, Mark A; Messingham, Kelly; Kim, Peter; Klingelhutz, Aloysius; Fairley, Janet; Wilson, Mary E

    2017-10-01

    All Leishmania species parasites are introduced into mammalian skin through a sand fly bite, but different species cause distinct clinical outcomes. Mouse studies suggest that early responses are critical determinants of subsequent adaptive immunity in leishmaniasis, yet few studies address the role of keratinocytes, the most abundant cell in the epidermis. We hypothesized that Leishmania infection causes keratinocytes to produce immunomodulatory factors that influence the outcome of infection. Incubation of primary or immortalized human keratinocytes with Leishmania infantum or Leishmania major, which cause visceral or cutaneous leishmaniasis, respectively, elicited dramatically different responses. Keratinocytes incubated with L. infantum significantly increased expression of proinflammatory genes for IL-6, IL-8, tumor necrosis factor, and IL-1B, whereas keratinocytes exposed to several L. major isolates did not. Furthermore, keratinocyte-monocyte co-incubation studies across a 4 µM semipermeable membrane suggested that L. infantum-exposed keratinocytes release soluble factors that enhance monocyte control of intracellular L. infantum replication (P Leishmania species that may affect the course of disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. die rol van die unieverdedigingsmag in die onderdrukking van die

    African Journals Online (AJOL)

    agv regeringsoptrede nie.39. Siotsom. In die geskiedenis van die Unieverdedigings- mag word die gebeure random die 1914-staking oorskadu deur die Rebellie en Suid-Afrika se deelname aan die Eerste Wereldoorlog. Tog was dit 'n belangrike mylpaal in die geskiedenis van die organisasie, omdat dit sy eerste optrede ...

  20. Podoplanin expression in peritumoral keratinocytes predicts aggressive behavior in extramammary Paget's disease.

    Science.gov (United States)

    Cho, Zaigen; Konishi, Eiichi; Kanemaru, Mai; Isohisa, Taro; Arita, Takahiro; Kawai, Minako; Tsutsumi, Miho; Mizutani, Hiromi; Takenaka, Hideya; Ozawa, Toshiyuki; Tsuruta, Daisuke; Katoh, Norito; Asai, Jun

    2017-07-01

    Recent studies have demonstrated podoplanin expression in several tumors, which has been associated with lymph node metastasis and poor prognosis. Podoplanin expression in peritumoral cells such as cancer-associated fibroblasts also correlates with tumor progression in several cancers. However, podoplanin expression and its association with extramammary Paget's disease (EMPD) remain unclear. In this study, we examined whether the presence of podoplanin expression in tumor cells or peritumoral basal keratinocytes correlated with aggressive behavior in patients with EMPD and investigated the mechanisms of podoplanin-mediated tumor invasion in this disorder. Skin samples of 37 patients with EMPD were investigated by immunohistochemical analysis. The functions of podoplanin in keratinocytes were examined in vitro by RT-PCR and with invadopodia gelatin-degradation assays using HaCaT cells. Podoplanin was not identified in tumor cells in all cases. Podoplanin expression in peritumoral basal keratinocytes was observed in 25 patients (67.6%). In in situ EMPD, 50% of cases (9 in 18) exhibited podoplanin-positive keratinocytes, whereas 84.2% (16 in 19) demonstrated positive staining in invasive EMPD (P<0.05). Podoplanin expression in peritumoral keratinocytes was also associated with tumor thickness (P<0.005). By immunohistochemical analysis, podoplanin-positive peritumoral keratinocytes were found to be negative for E-cadherin, one of the major adhesion molecules of keratinocytes, which might contribute to tumor invasion into the dermis through a crack in the basal cell layer induced by down-regulation of cell adhesion therein. We further found that podoplanin-positive keratinocytes exhibited invadopodia, which are thought to function in the migration of cancer cells through tissue barriers, indicating that podoplanin-positive peritumoral basal keratinocytes might assist tumor invasion by degrading the extracellular matrix. The presence of podoplanin expression in

  1. Scleroderma keratinocytes promote fibroblast activation independent of transforming growth factor beta.

    Science.gov (United States)

    McCoy, Sara S; Reed, Tamra J; Berthier, Celine C; Tsou, Pei-Suen; Liu, Jianhua; Gudjonsson, Johann E; Khanna, Dinesh; Kahlenberg, J Michelle

    2017-11-01

    SSc is a devastating disease that results in fibrosis of the skin and other organs. Fibroblasts are a key driver of the fibrotic process through deposition of extracellular matrix. The mechanisms by which fibroblasts are induced to become pro-fibrotic remain unclear. Thus, we examined the ability of SSc keratinocytes to promote fibroblast activation and the source of this effect. Keratinocytes were isolated from skin biopsies of 9 lcSSc, 10 dcSSc and 13 control patients. Conditioned media was saved from the cultures. Normal fresh primary fibroblasts were exposed to healthy control and SSc keratinocyte conditioned media in the presence or absence of neutralizing antibodies for TGF-β. Gene expression was assessed by microarrays and real-time PCR. Immunocytochemistry was performed for α-smooth muscle actin (α-SMA), collagen type 1 (COL1A1) and CCL5 expression. SSc keratinocyte conditioned media promoted fibroblast activation, characterized by increased α-SMA and COL1A1 mRNA and protein expression. This effect was independent of TGF-β. Microarray analysis identified upregulation of nuclear factor κB (NF-κB) and downregulation of peroxisome proliferator-activated receptor γ (PPAR-γ) pathways in both SSc subtypes. Scleroderma keratinocytes exhibited increased expression of NF-κB-regulated cytokines and chemokines and lesional skin staining confirmed upregulation of CCL5 in basal keratinocytes. Scleroderma keratinocytes promote the activation of fibroblasts in a TGF-β-independent manner and demonstrate an imbalance in NF-κB1 and PPAR-γ expression leading to increased cytokine and CCL5 production. Further study of keratinocyte mediators of fibrosis, including CCL5, may provide novel targets for skin fibrosis therapy. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. Translational researches on leaf senescence for enhancing plant productivity and quality.

    Science.gov (United States)

    Guo, Yongfeng; Gan, Su-Sheng

    2014-07-01

    Leaf senescence is a very important trait that limits yield and biomass accumulation of agronomic crops and reduces post-harvest performance and the nutritional value of horticultural crops. Significant advance in physiological and molecular understanding of leaf senescence has made it possible to devise ways of manipulating leaf senescence for agricultural improvement. There are three major strategies in this regard: (i) plant hormone biology-based leaf senescence manipulation technology, the senescence-specific gene promoter-directed IPT system in particular; (ii) leaf senescence-specific transcription factor biology-based technology; and (iii) translation initiation factor biology-based technology. Among the first strategy, the P SAG12 -IPT autoregulatory senescence inhibition system has been widely explored and successfully used in a variety of plant species for manipulating senescence. The vast majority of the related research articles (more than 2000) showed that crops harbouring the autoregulatory system displayed a significant delay in leaf senescence without any abnormalities in growth and development, a marked increase in grain yield and biomass, dramatic improvement in horticultural performance, and/or enhanced tolerance to drought stress. This technology is approaching commercialization. The transcription factor biology-based and translation initiation factor biology-based technologies have also been shown to be very promising and have great potentials for manipulating leaf senescence in crops. Finally, it is speculated that technologies based on the molecular understanding of nutrient recycling during leaf senescence are highly desirable and are expected to be developed in future translational leaf senescence research. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Enhanced expression of IL-8 in normal human keratinocytes and human keratinocyte cell line HaCaT in vitro after stimulation with contact sensitizers, tolerogens and irritants.

    Science.gov (United States)

    Mohamadzadeh, M; Müller, M; Hultsch, T; Enk, A; Saloga, J; Knop, J

    1994-12-01

    To investigate the interleukin-8 production of keratinocytes after stimulation in vitro we have used various agents: (i) contact sensitizer (2,4-dinitrofluorobenzene, 3-n-pentadecylcatechol); (ii) tolerogen (5-methyl-3-n-pentadecylcatechol); (iii) irritant (sodium lauryl sulfate). Interleukin-8 gene expression was assessed by northern blot hybridization of the total cytoplasmic RNA extracted from subconfluent normal human keratinocyte cultures and the keratinocyte cell line HaCaT using a radiolabeled DNA probe specific for human interleukin-8. Interleukin-8 gene expression was markedly increased upon in vitro stimulation after 1-6 h with contact sensitizers, tolerogen and the irritant. In contrast, interleukin-8 production was not detectable in unstimulated normal human keratinocytes or the HaCaT keratinocyte cell line. These results suggest that the induction and production of interleukin-8 is a response to nonspecific stimuli and may play a critical role in the early response to immunogenic or inflammatory signals in man.

  4. Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves

    DEFF Research Database (Denmark)

    Christiansen, Michael W; Gregersen, Per L.

    2014-01-01

    -expressed with members of the NAC gene family. In conclusion, a list of up to 15 NAC genes from barley that are strong candidates for being regulatory factors of importance for senescence and biotic stress-related traits affecting the productivity of cereal crop plants has been generated. Furthermore, a list of 71...... in the NAC transcription factor family during senescence of barley flag leaves was studied. Several members of the NAC transcription factor gene family were up-regulated during senescence in a microarray experiment, together with a large range of senescence-associated genes, reflecting the coordinated...... activation of degradation processes in senescing barley leaf tissues. This picture was confirmed in a detailed quantitative reverse transcription–PCR (qRT–PCR) experiment, which also showed distinct gene expression patterns for different members of the NAC gene family, suggesting a group of ~15 out of the 47...

  5. Senescence in the aging process [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Richard GA Faragher

    2017-07-01

    Full Text Available The accumulation of ‘senescent’ cells has long been proposed to act as an ageing mechanism. These cells display a radically altered transcriptome and degenerative phenotype compared with their growing counterparts. Tremendous progress has been made in recent years both in understanding the molecular mechanisms controlling entry into the senescent state and in the direct demonstration that senescent cells act as causal agents of mammalian ageing. The challenges now are to gain a better understanding of how the senescent cell phenotype varies between different individuals and tissues, discover how senescence predisposes to organismal frailty, and develop mechanisms by which the deleterious effects of senescent cells can be ameliorated.

  6. Physiology and molecular biology of petal senescence

    NARCIS (Netherlands)

    Doorn, van W.G.; Woltering, E.J.

    2008-01-01

    Petal senescence is reviewed, with the main emphasis on gene expression in relation to physiological functions. Autophagy seems to be the major mechanism for large-scale degradation of macromolecules, but it is still unclear if it contributes to cell death. Depending on the species, petal senescence

  7. Senescence gives insights into the morphogenetic evolution of anamniotes

    Directory of Open Access Journals (Sweden)

    Éric Villiard

    2017-06-01

    Full Text Available Senescence represents a mechanism to avoid undesired cell proliferation that plays a role in tumor suppression, wound healing and embryonic development. In order to gain insight on the evolution of senescence, we looked at its presence in developing axolotls (urodele amphibians and in zebrafish (teleost fish, which are both anamniotes. Our data indicate that cellular senescence is present in various developing structures in axolotls (pronephros, olfactory epithelium of nerve fascicles, lateral organs, gums and in zebrafish (epithelium of the yolk sac and in the lower part of the gut. Senescence was particularly associated with transient structures (pronephros in axolotls and yolk sac in zebrafish suggesting that it may play a role in the elimination of these tissues. Our data supports the notion that cellular senescence evolved early in vertebrate evolution to influence embryonic development.

  8. Filaggrin-dependent secretion of sphingomyelinase protects against staphylococcal α-toxin-induced keratinocyte death.

    Science.gov (United States)

    Brauweiler, Anne M; Bin, Lianghua; Kim, Byung Eui; Oyoshi, Michiko K; Geha, Raif S; Goleva, Elena; Leung, Donald Y M

    2013-02-01

    The skin of patients with atopic dermatitis (AD) has defects in keratinocyte differentiation, particularly in expression of the epidermal barrier protein filaggrin. AD skin lesions are often exacerbated by Staphylococcus aureus-mediated secretion of the virulence factor α-toxin. It is unknown whether lack of keratinocyte differentiation predisposes to enhanced lethality from staphylococcal toxins. We investigated whether keratinocyte differentiation and filaggrin expression protect against cell death induced by staphylococcal α-toxin. Filaggrin-deficient primary keratinocytes were generated through small interfering RNA gene knockdown. RNA expression was determined by using real-time PCR. Cell death was determined by using the lactate dehydrogenase assay. Keratinocyte cell survival in filaggrin-deficient (ft/ft) mouse skin biopsies was determined based on Keratin 5 staining. α-Toxin heptamer formation and acid sphingomyelinase expression were determined by means of immunoblotting. We found that filaggrin expression, occurring as the result of keratinocyte differentiation, significantly inhibits staphylococcal α-toxin-mediated pathogenicity. Furthermore, filaggrin plays a crucial role in protecting cells by mediating the secretion of sphingomyelinase, an enzyme that reduces the number of α-toxin binding sites on the keratinocyte surface. Finally, we determined that sphingomyelinase enzymatic activity directly prevents α-toxin binding and protects keratinocytes against α-toxin-induced cytotoxicity. The current study introduces the novel concept that S aureus α-toxin preferentially targets and destroys filaggrin-deficient keratinocytes. It also provides a mechanism to explain the increased propensity for S aureus-mediated exacerbation of AD skin disease. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  9. Premature aging/senescence in cancer cells facing therapy: good or bad?

    Science.gov (United States)

    Gonzalez, Llilians Calvo; Ghadaouia, Sabrina; Martinez, Aurélie; Rodier, Francis

    2016-02-01

    Normal and cancer cells facing their demise following exposure to radio-chemotherapy can actively participate in choosing their subsequent fate. These programmed cell fate decisions include true cell death (apoptosis-necroptosis) and therapy-induced cellular senescence (TIS), a permanent "proliferative arrest" commonly portrayed as premature cellular aging. Despite a permanent loss of proliferative potential, senescent cells remain viable and are highly bioactive at the microenvironment level, resulting in a prolonged impact on tissue architecture and functions. Cellular senescence is primarily documented as a tumor suppression mechanism that prevents cellular transformation. In the context of normal tissues, cellular senescence also plays important roles in tissue repair, but contributes to age-associated tissue dysfunction when senescent cells accumulate. Theoretically, in multi-step cancer progression models, cancer cells have already bypassed cellular senescence during their immortalization step (see hallmarks of cancer). It is then perhaps surprising to find that cancer cells often retain the ability to undergo TIS, or premature aging. This occurs because cellular senescence results from multiple signalling pathways, some retained in cancer cells, aiming to prevent cell cycle progression in damaged cells. Since senescent cancer cells persist after therapy and secrete an array of cytokines and growth factors that can modulate the tumor microenvironment, these cells may have beneficial and detrimental effects regarding immune modulation and survival of remaining proliferation-competent cancer cells. Similarly, while normal cells undergoing senescence are believed to remain indefinitely growth arrested, whether this is true for senescent cancer cells remains unclear, raising the possibility that these cells may represent a reservoir for cancer recurrence after treatment. This review discusses our current knowledge on cancer cell senescence and highlight questions

  10. Targeting senescence cells in pancreatic cancer | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Targeting senescence cells in pancreatic cancer. Cellular senescence is a programmed response to oncogenic (tumour-causing) stress that aims to halt the expansion of cells with malignant potential. It does this by stopping the proliferation of pre-cancerous lesions and recruitment of the immune system for their elimination.

  11. T-plastin expression downstream to the calcineurin/NFAT pathway is involved in keratinocyte migration.

    Directory of Open Access Journals (Sweden)

    Cécilia Brun

    Full Text Available Cutaneous wound healing requires keratinocyte proliferation, migration and differentiation to restore the barrier function of the skin. The calcineurin/nuclear factor of activated-T-cell (NFAT signaling pathway has been recently shown to be involved in keratinocyte growth, differentiation and migration. It is induced by an increased intracellular calcium rate and its inhibition results in decreased capacities of keratinocytes to migrate. Nevertheless, the link between calcineurin activation and keratinocyte migration remains unknown. Recently, Orai1, a pore subunit of a store-operated calcium channel that favors calcium influx, was shown to play a critical role to control proliferation and migration of basal keratinocytes. Of interest, the actin-bundling T-plastin is crucial in cell motility through cross-linking to actin filament and its synthesis was shown to be induced by calcium influx and regulated by the calcineurin/NFAT pathway in tumor Sezary cells. We investigated herein the role of the calcineurin/NFAT pathway-dependent T-plastin in keratinocyte migration, by quantifying T-plastin expression in keratinocytes and by analyzing their migration under calcineurin inhibition or knockdown of NFAT2 or T-plastin. We did confirm the role of the calcineurin/NFAT pathway in keratinocyte migration as shown by their decreased capacities to migrate after FK506 treatment or siNFAT2 transfection in both scratching and Boyden assays. The expression of NFAT2 and T-plastin in keratinocytes was decreased under FK506 treatment, suggesting that T-plastin plays a role in keratinocyte migration downstream to the calcineurin/NFAT pathway. Accordingly, siRNA knockdown of T-plastin expression also decreased their migration capacities. Actin lamellipodia formation as well as FAK and β6-integrin expression were also significantly decreased after treatment with FK506 or siRNA, reinforcing that NFAT2-dependent T-plastin expression plays a role in keratinocyte

  12. Arabidopsis CPR5 is a senescence-regulatory gene with pleiotropic functions as predicted by the evolutionary theory of senescence

    NARCIS (Netherlands)

    Jing, Hai-Chun; Anderson, Lisa; Sturre, Marcel J. G.; Hille, Jacques; Dijkwel, Paul P.

    2007-01-01

    Arabidopsis CPR5 is a senescence-regulatory gene with pleiotropic functions as predicted by the evolutionary theory of senescence Hai-Chun Jing1,2, Lisa Anderson3, Marcel J.G. Sturre1, Jacques Hille1 and Paul P. Dijkwel1,* 1Molecular Biology of Plants, Groningen Biomolecular Sciences and

  13. Life History Trade-Offs Modulate the Speed of Senescence

    DEFF Research Database (Denmark)

    Salguero-Gómez, Roberto; Jones, Owen

    2017-01-01

    that the speed of senescence varies dramatically across the Tree of Life and that it has a moderate phylogenetic signal when considering both plants and animals but that this signal is stronger in animals than in plants, indicating that the strength of selection on the trait may differ between kingdoms. We next...... examined the speed of senescence at two taxonomic levels: comparing kingdoms, with plants more likely to postpone senescence than animals, and, when the data allowed for it, comparing taxonomic classes, where we found that pine trees are particularly slow to senesce, followed by reptiles and sponges. Most...... puzzling and worthy of investigation in itself. We used two open-data repositories of high-quality demographic information for animals and plants to present a novel overview of the degree of variation in life-history strategies and their component life-history traits, including the speed of senescence...

  14. Kinetics of growth and differentiation of cultured human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Albers, K.M.

    1985-01-01

    A study was made of the interrelationship between replication and differentiation in cultures of human epidermal keratinocytes. Measures of both parameters were made using newly developed methods to quantify the rate at which keratinocytes replicate and the rate at which they withdraw from the cell cycle. Keratinocyte replication was measured by determining the cell doubling time, labeling index, and cell cycle duration. Cell cycle length was measured using a double label assay that determines the length of time between two successive phases of DNA synthesis. The first DNA synthesis phase was marked by labeling keratinocytes with 14 C-thymidine. At the next round of DNA synthesis, cells were labeled with bromodeoxyuridine, a heavy analog of thymidine. The cell cycle length is given by the time required for the 14 C-labeled DNA to become double labeled. To measure keratinocyte differentiation, the rate at which cells withdraw from the cell cycle was determined. To measure withdrawal, the percentage of cells labeled by a pulse of 14 C-thymidine that failed to undergo a second cycle of DNA synthesis, as measured by bromodeoxyuridine incorporation, was determined. Cells which failed to undergo a second cycle of synthesis were considered to have differentiated and withdrawn from the cell cycle

  15. Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.

    Science.gov (United States)

    Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De

    2016-10-01

    In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Girassol ornamental: caracterização, pós-colheita e escala de senescência Ornamental sunflower: characterization, postharvest and senescence scale

    Directory of Open Access Journals (Sweden)

    Gilberto Luiz Curti

    2012-06-01

    Full Text Available O girassol ornamental amplia o mercado de comercialização de plantas ornamentais no Brasil. Desta forma, este trabalho teve como objetivo apresentar uma caracterização do manejo pós-colheita e propor uma escala de senescência da cultura do girassol ornamental quanto à senescência, durabilidade das flores e referências de valores de comercialização. A produção de flores é uma atividade de alto risco pela fragilidade do produto, qualidades estéticas e as condições de produção, bem como a menor durabilidade pós-colheita do produto. Esse estudo propõe uma escala de senescência para cultivares de girassol ornamental quanto à senescência dos capítulos para atribuir diferentes remunerações e possibilidades de comercialização da cultura.The ornamental sunflower widen the market of ornamental plants in Brazil. Thus, this study aimed to present a characterization of post-harvest management and to propose a range of senescence stage of sunflower as an ornamental in relation to senescence, flower longevity and benchmark values of trade. The production of flowers is a high risk activity for the fragility of the product, aesthetic qualities and conditions of production as well as lower post-harvest durability of the product. This study proposes a range of senescence stages for ornamental sunflower cultivars as the aging of different chapters to assign salaries and marketability of the crop.

  17. PPARgamma Deficiency Counteracts Thymic Senescence

    Directory of Open Access Journals (Sweden)

    David Ernszt

    2017-11-01

    Full Text Available Thymic senescence contributes to increased incidence of infection, cancer and autoimmunity at senior ages. This process manifests as adipose involution. As with other adipose tissues, thymic adipose involution is also controlled by PPARgamma. This is supported by observations reporting that systemic PPARgamma activation accelerates thymic adipose involution. Therefore, we hypothesized that decreased PPARgamma activity could prevent thymic adipose involution, although it may trigger metabolic adverse effects. We have confirmed that both human and murine thymic sections show marked staining for PPARgamma at senior ages. We have also tested the thymic lobes of PPARgamma haplo-insufficient and null mice. Supporting our working hypothesis both adult PPARgamma haplo-insufficient and null mice show delayed thymic senescence by thymus histology, thymocyte mouse T-cell recombination excision circle qPCR and peripheral blood naive T-cell ratio by flow-cytometry. Delayed senescence showed dose–response with respect to PPARgamma deficiency. Functional immune parameters were also evaluated at senior ages in PPARgamma haplo-insufficient mice (null mice do not reach senior ages due to metabolic adverse affects. As expected, sustained and elevated T-cell production conferred oral tolerance and enhanced vaccination efficiency in senior PPARgamma haplo-insufficient, but not in senior wild-type littermates according to ELISA IgG measurements. Of note, humans also show increased oral intolerance issues and decreased protection by vaccines at senior ages. Moreover, PPARgamma haplo-insufficiency also exists in human known as a rare disease (FPLD3 causing metabolic adverse effects, similar to the mouse. When compared to age- and metabolic disorder-matched other patient samples (FPLD2 not affecting PPARgamma activity, FPLD3 patients showed increased human Trec (hTrec values by qPCR (within healthy human range suggesting delayed thymic senescence, in accordance with

  18. Die rol van die blanke werker in die motivering van die swart werker

    Directory of Open Access Journals (Sweden)

    G. J. Oosthuizen

    1980-11-01

    Opsomming Die motivering van die Swart werker kan nie in die huidige situasie in isolasie bestudeer word nie, omdat die Blanke werker steeds in die bestuursposisie is en daarom die motivering van die Swart werker kan beïnvloed. Hierdie ondersoek was daarop gerig om die rol van die Blanke werker in die motivering van die Swart werker nader te ondersoek. Die houding en die leierskapsbenadering van die Blanke werker teenoor die Swart werker is gemeet, asook die behoeftes wat volgens die Blanke werker by die Swart werker bestaan, bevredig is, of nie bestaan nie. Die behoeftes van Swart werkers, soos deur hulleself gesien, is ook ondersoek. Ten opsigte van sekere aspekte is beduidende verskille gevind.

  19. Vanillin protects human keratinocyte stem cells against ultraviolet B irradiation.

    Science.gov (United States)

    Lee, Jienny; Cho, Jae Youl; Lee, Sang Yeol; Lee, Kyung-Woo; Lee, Jongsung; Song, Jae-Young

    2014-01-01

    Ultraviolet-B (UVB) irradiation is one of major factors which induce cellular damages in the epidermis. We investigated protective effects and mechanisms of vanillin, a main constituent of vanilla beans, against UVB-induced cellular damages in keratinocyte stem cells (KSC). Here, vanillin significantly attenuated UVB irradiation-induced cytotoxicity. The vanillin effects were also demonstrated by the results of the senescence-associated β-galactosidase and alkaline comet assays. In addition, vanillin induced production of pro-inflammatory cytokines. Attempts to elucidate a possible mechanism underlying the vanillin-mediated effects revealed that vanillin significantly reduced UVB-induced phosphorylation of ataxia telangiectasia mutated (ATM), serine threonine kinase checkpoint kinase 2 (Chk2), tumor suppressor protein 53 (p53), p38/mitogen-activated protein kinase (p38), c-Jun N-terminal kinase/stress-activated protein kinase (JNK), S6 ribosomal protein (S6RP), and histone 2A family member X (H2A.X). UVB-induced activation of p53 luciferase reporter was also significantly inhibited by vanillin. In addition, while ATM inhibitor had no effect on the vanillin effects, mouse double minute 2 homolog (MDM2) inhibitor significantly attenuated suppressive effects of vanillin on UVB-induced activation of p53 reporter in KSC. Taken together, these findings suggest that vanillin protects KSC from UVB irradiation and its effects may occur through the suppression of downstream step of MDM2 in UVB irradiation-induced p53 activation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Stress-induced premature senescence (SIPS)--influence of SIPS on radiotherapy.

    Science.gov (United States)

    Suzuki, Masatoshi; Boothman, David A

    2008-03-01

    Replicative senescence is a fundamental feature in normal human diploid cells and results from dysfunctional telomeres at the Hayflick cell division limit. Ionizing radiation (IR) prematurely induces the same phenotypes as replicative senescence prior to the Hayflick limit. This process is known as stress-induced premature senescence (SIPS). Since the cell cycle is irreversibly arrested in SIPS-induced cells, even if they are stimulated by various growth factors, it is thought that SIPS is a form of cell death, irreversibly eliminating replicating cells. IR-induced-focus formation of DNA repair proteins, a marker of DNA damage, is detected in SIPS as well as replicative senescent cells. Furthermore, both processes persistently induce cell cycle checkpoint mechanisms, indicating DNA damage created by ionizing radiation induces SIPS in normal cells, possibly by the same mechanisms as those occurring in replicative senescence. Interestingly, IR induces SIPS not only in normal cells, but also in tumor cells. Due to the expression of telomerase in tumor cells, telomere-dependent replicative senescence does not occur. However, SIPS is induced under certain conditions after IR exposure. Thus, cell death triggered by IR can be attributed to apoptosis or SIPS in tumor cells. However, metabolic function remains intact in SIPS-induced cancer cells, and recent studies show that senescence eliminate cells undergoing SIPS secrete various kinds of factors outside the cell, changing the microenvironment. Evidence using co-culture systems containing normal senescent stromal cells and epithelial tumor cells show that factors secreted from senescent stroma cells promote the growth of tumor epithelial cells both in vitro and in vivo. Thus, regulation of factors secreted from SIPS-induced stromal cells, as well as tumor cells, may affect radiotherapy.

  1. Stress-induced premature senescence (SIPS). Influence of SIPS on radiotherapy

    International Nuclear Information System (INIS)

    Suzuki, Masatoshi; Boothman, D.A.

    2008-01-01

    Replicative senescence is a fundamental feature in normal human diploid cells and results from dysfunctional telomeres at the Hayflick cell division limit. Ionizing radiation (IR) prematurely induces the same phenotypes as replicative senescence prior to the Hayflick limit. This process is known as stress-induced premature senescence (SIPS). Since the cell cycle is irreversibly arrested in SIPS-induced cells, even if they are stimulated by various growth factors, it is thought that SIPS is a form of cell death, irreversibly eliminating replicating cells. IR-induced-focus formation of DNA repair proteins, a marker of DNA damage, is detected in SIPS as well as replicative senescent cells. Furthermore, both processes persistently induce cell cycle checkpoint mechanisms, indicating DNA damage created by ionizing radiation induces SIPS in normal cells, possibly by the same mechanisms as those occurring in replicative senescence. Interestingly, IR induces SIPS not only in normal cells, but also in tumor cells. Due to the expression of telomerase in tumor cells, telomere-dependent replicative senescence does not occur. However, SIPS is induced under certain conditions after IR exposure. Thus, cell death triggered by IR can be attributed to apoptosis or SIPS in tumor cells. However, metabolic function remains intact in SIPS-induced cancer cells, and recent studies show that senescence eliminate cells undergoing SIPS secrete various kinds of factors outside the cell, changing the microenvironment. Evidence using co-culture systems containing normal senescent stromal cells and epithelial tumor cells show that factors secreted from senescent stroma cells promote the growth of tumor epithelial cells both in vitro and in vivo. Thus, regulation of factors secreted from SIPS-induced stromal cells, as well as tumor cells, may affect radiotherapy. (author)

  2. Sirtuins, Cell Senescence, and Vascular Aging.

    Science.gov (United States)

    Kida, Yujiro; Goligorsky, Michael S

    2016-05-01

    The sirtuins (SIRTs) constitute a class of proteins with nicotinamide adenine dinucleotide-dependent deacetylase or adenosine diphosphate-ribosyltransferase activity. Seven SIRT family members have been identified in mammals, from SIRT1, the best studied for its role in vascular aging, to SIRT7. SIRT1 and SIRT2 are localized in the nucleus and cytoplasm. SIRT3, SIRT4, and SIRT5 are mitochondrial, and SIRT6 and SIRT7 are nuclear. Extensive studies have clearly revealed that SIRT proteins regulate diverse cell functions and responses to stressors. Vascular aging involves the aging process (senescence) of endothelial and vascular smooth muscle cells. Two types of cell senescence have been identified: (1) replicative senescence with telomere attrition; and (2) stress-induced premature senescence without telomere involvement. Both types of senescence induce vascular cell growth arrest and loss of vascular homeostasis, and contribute to the initiation and progression of cardiovascular diseases. Previous mechanistic studies have revealed in detail that SIRT1, SIRT3, and SIRT6 show protective functions against vascular aging, and definite vascular function of other SIRTs is under investigation. Thus, direct SIRT modulation and nicotinamide adenine dinucleotide stimulation of SIRT are promising candidates for cardiovascular disease therapy. A small number of pilot studies have been conducted to assess SIRT modulation in humans. These clinical studies have not yet provided convincing evidence that SIRT proteins alleviate morbidity and mortality in patients with cardiovascular diseases. The outcomes of multiple ongoing clinical trials are awaited to define the efficacy of SIRT modulators and SIRT activators in cardiovascular diseases, along with the potential adverse effects of chronic SIRT modulation. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  3. Stress-Induced Premature Senescence or Stress-Induced Senescence-Like Phenotype: One In Vivo Reality, Two Possible Definitions?

    OpenAIRE

    Toussaint, Olivier; Dumont, Patrick; Remacle, Jose; Dierick, Jean-Francois; Pascal, Thierry; Frippiat, Christophe; Magalhaes, Joao Pedro; Zdanov, Stephanie; Chainiaux, Florence

    2002-01-01

    No consensus exists so far on the definition of cellular senescence. The narrowest definition of senescence is irreversible growth arrest triggered by telomere shortening counting cell generations (definition 1). Other authors gave an enlarged functional definition encompassing any kind of irreversible arrest of proliferative cell types induced by damaging agents or cell cycle deregulations after overexpression of proto-oncogenes (definition 2). As stress increases, the proportion of cells in...

  4. Photodynamic toxicity of hematoporphyrin derivatives to human keratinocytes in culture.

    Science.gov (United States)

    Kappus, H; Reinhold, C; Artuc, M

    Human keratinocytes in culture were able to take up hematoporphyrin derivatives (HPDs) used during photodynamic chemotherapy of tumors. In the absence of light, HPDs showed no cytotoxic effects to keratinocytes. However, after irradiation with visible light, HPDs induced immediate cytotoxicity as measured by the neutral red uptake assay. On the other hand, cell attachment as measured by protein estimation was not affected. When the cells treated with HPDs and irradiated with light were cultured for a further 72 h, they partially lost their ability to attach to the collagen surface. Most of the cells remaining attached after 72 h were no longer viable following treatment with HPDs and light. All parameters measured depended on the intracellular concentration of HPDs used (7-50 ng/10(5) cells) and the time of irradiation (0-30 min). These results suggest that human keratinocytes are a good model to study cytotoxic effects of photodynamically active drugs. Further, keratinocytes were unable to recover after damage caused by HPDs and light.

  5. Inactivation of AKT Induces Cellular Senescence in Uterine Leiomyoma

    Science.gov (United States)

    Xu, Xiaofei; Lu, Zhenxiao; Qiang, Wenan; Vidimar, Vania; Kong, Beihua

    2014-01-01

    Uterine leiomyomas (fibroids) are a major public health problem. Current medical treatments with GnRH analogs do not provide long-term benefit. Thus, permanent shrinkage or inhibition of fibroid growth via medical means remains a challenge. The AKT pathway is a major growth and survival pathway for fibroids. We propose that AKT inhibition results in a transient regulation of specific mechanisms that ultimately drive cells into cellular senescence or cell death. In this study, we investigated specific mechanisms of AKT inhibition that resulted in senescence. We observed that administration of MK-2206, an allosteric AKT inhibitor, increased levels of reactive oxygen species, up-regulated the microRNA miR-182 and several senescence-associated genes (including p16, p53, p21, and β-galactosidase), and drove leiomyoma cells into stress-induced premature senescence (SIPS). Moreover, induction of SIPS was mediated by HMGA2, which colocalized to senescence-associated heterochromatin foci. This study provides a conceivable molecular mechanism of SIPS by AKT inhibition in fibroids. PMID:24476133

  6. Rab11b mediates melanin transfer between donor melanocytes and acceptor keratinocytes via coupled exo/endocytosis.

    Science.gov (United States)

    Tarafder, Abul K; Bolasco, Giulia; Correia, Maria S; Pereira, Francisco J C; Iannone, Lucio; Hume, Alistair N; Kirkpatrick, Niall; Picardo, Mauro; Torrisi, Maria R; Rodrigues, Inês P; Ramalho, José S; Futter, Clare E; Barral, Duarte C; Seabra, Miguel C

    2014-04-01

    The transfer of melanin from melanocytes to keratinocytes is a crucial process underlying maintenance of skin pigmentation and photoprotection against UV damage. Here, we present evidence supporting coupled exocytosis of the melanin core, or melanocore, by melanocytes and subsequent endocytosis by keratinocytes as a predominant mechanism of melanin transfer. Electron microscopy analysis of human skin samples revealed three lines of evidence supporting this: (1) the presence of melanocores in the extracellular space; (2) within keratinocytes, melanin was surrounded by a single membrane; and (3) this membrane lacked the melanosomal membrane protein tyrosinase-related protein 1 (TYRP1). Moreover, co-culture of melanocytes and keratinocytes suggests that melanin exocytosis is specifically induced by keratinocytes. Furthermore, depletion of Rab11b, but not Rab27a, caused a marked decrease in both keratinocyte-stimulated melanin exocytosis and transfer to keratinocytes. Thus, we propose that the predominant mechanism of melanin transfer is keratinocyte-induced exocytosis, mediated by Rab11b through remodeling of the melanosome membrane, followed by subsequent endocytosis by keratinocytes.

  7. Stereotyped distribution of proliferating keratinocytes in disorders affecting the epidermis

    International Nuclear Information System (INIS)

    Pierard-Franchimont, C.; Pierard, G.E.

    1989-01-01

    We used the technique of autoradiography after incorporation of tritiated thymidine ( 3 H-TdR) to evaluate keratinocyte proliferation in basal, epibasal, and other epidermal layers in 30 diseases affecting the epidermis. The number and proportion of 3 H-TdR-labeled keratinocytes were counted in the different layers of the epidermis. Significant correlations were found between the proliferative indices of the different epidermal layers. Such links indicate that the epidermis responds in a rather stereotyped way to various pathological conditions. There exists some regulation in the distribution, number, and proportion of 3 H-TdR-labeled keratinocytes in the various layers of the epidermis

  8. The Splicing Factor SRSF1 as a Marker for Endothelial Senescence

    Science.gov (United States)

    Blanco, Francisco Javier; Bernabéu, Carmelo

    2012-01-01

    Aging is the major risk factor per se for the development of cardiovascular diseases. The senescence of the endothelial cells (ECs) that line the lumen of blood vessels is the cellular basis for these age-dependent vascular pathologies, including atherosclerosis and hypertension. During their lifespan, ECs may reach a stage of senescence by two different pathways; a replicative one derived from their preprogrammed finite number of cell divisions; and one induced by stress stimuli. Also, certain physiological stimuli, such as transforming growth factor-β, are able to modulate cellular senescence. Currently, the cellular aging process is being widely studied to identify novel molecular markers whose changes correlate with senescence. This review focuses on the regulation of alternative splicing mediated by the serine–arginine splicing factor 1 (SRSF1, or ASF/SF2) during endothelial senescence, a process that is associated with a differential subcellular localization of SRSF1, which typically exhibits a scattered distribution throughout the cytoplasm. Based on its senescence-dependent involvement in alternative splicing, we postulate that SRSF1 is a key marker of EC senescence, regulating the expression of alternative isoforms of target genes such as endoglin (ENG), vascular endothelial growth factor A (VEGFA), tissue factor (T3), or lamin A (LMNA) that integrate in a common molecular senescence program. PMID:22470345

  9. Fos and jun proteins are specifically expressed during differentiation of human keratinocytes.

    Science.gov (United States)

    Mehic, Denis; Bakiri, Latifa; Ghannadan, Minoo; Wagner, Erwin F; Tschachler, Erwin

    2005-01-01

    Activator protein 1 (AP-1) proteins play key roles in the regulation of cell proliferation and differentiation. In this study we investigated the expression of Fos and Jun proteins in different models of terminal differentiation of human keratinocytes and in skin from psoriasis patients. All Jun and Fos proteins, with the exception of FosB, were efficiently expressed in keratinocytes in monolayer cultures. In contrast, in normal epidermis as well as in organotypic epidermal cultures, the expression pattern of AP-1 proteins was dependent on the differentiation stage. Fos proteins were readily detected in nuclei of keratinocytes of basal and suprabasal layers. JunB and JunD were expressed in all layers of normal epidermis. Interestingly, expression of c-Jun started suprabasally, then disappeared and became detectable again in distinct cells of the outermost granular layer directly at the transition zone to the stratum corneum. In psoriatic epidermis, c-Jun expression was prominent in both hyperproliferating basal and suprabasal keratinocytes, whereas c-Fos expression was unchanged. These data indicate that AP-1 proteins are expressed in a highly specific manner during terminal differentiation of keratinocytes and that the enhanced expression of c-Jun in basal and suprabasal keratinocytes might contribute to the pathogenesis of psoriasis.

  10. Accumulation of senescent cells in mitotic tissue of aging primates.

    Science.gov (United States)

    Jeyapalan, Jessie C; Ferreira, Mark; Sedivy, John M; Herbig, Utz

    2007-01-01

    Cellular senescence, a stress induced growth arrest of somatic cells, was first documented in cell cultures over 40 years ago, however its physiological significance has only recently been demonstrated. Using novel biomarkers of cellular senescence we examined whether senescent cells accumulate in tissues from baboons of ages encompassing the entire lifespan of this species. We show that dermal fibroblasts, displaying markers of senescence such as telomere damage, active checkpoint kinase ATM, high levels of heterochromatin proteins and elevated levels of p16, accumulate in skin biopsies from baboons with advancing age. The number of dermal fibroblasts containing damaged telomeres reaches a value of over 15% of total fibroblasts, whereas 80% of cells contain high levels of the heterochromatin protein HIRA. In skeletal muscle, a postmitotic tissue, only a small percentage of myonuclei containing damaged telomeres were detected regardless of animal age. The presence of senescent cells in mitotic tissues might therefore be a contributing factor to aging and age related pathology and provides further evidence that cellular senescence is a physiological event.

  11. Ring-like distribution of constitutive heterochromatin in bovine senescent cells.

    Science.gov (United States)

    Pichugin, Andrey; Beaujean, Nathalie; Vignon, Xavier; Vassetzky, Yegor

    2011-01-01

    Cells that reach "Hayflick limit" of proliferation, known as senescent cells, possess a particular type of nuclear architecture. Human senescent cells are characterized by the presence of highly condensed senescent associated heterochromatin foci (SAHF) that can be detected both by immunostaining for histone H3 three-methylated at lysine 9 (H3K9me3) and by DAPI counterstaining. We have studied nuclear architecture in bovine senescent cells using a combination of immunofluorescence and 3D fluorescent in-situ hybridization (FISH). Analysis of heterochromatin distribution in bovine senescent cells using fluorescent in situ hybridization for pericentric chromosomal regions, immunostaining of H3K9me3, centromeric proteins CENP A/B and DNA methylation showed a lower level of heterochromatin condensation as compared to young cells. No SAHF foci were observed. Instead, we observed fibrous ring-like or ribbon-like heterochromatin patterns that were undetectable with DAPI counterstaining. These heterochromatin fibers were associated with nucleoli. Constitutive heterochromatin in bovine senescent cells is organized in ring-like structures.

  12. Ring-like distribution of constitutive heterochromatin in bovine senescent cells.

    Directory of Open Access Journals (Sweden)

    Andrey Pichugin

    Full Text Available BACKGROUND: Cells that reach "Hayflick limit" of proliferation, known as senescent cells, possess a particular type of nuclear architecture. Human senescent cells are characterized by the presence of highly condensed senescent associated heterochromatin foci (SAHF that can be detected both by immunostaining for histone H3 three-methylated at lysine 9 (H3K9me3 and by DAPI counterstaining. METHODS: We have studied nuclear architecture in bovine senescent cells using a combination of immunofluorescence and 3D fluorescent in-situ hybridization (FISH. RESULTS: Analysis of heterochromatin distribution in bovine senescent cells using fluorescent in situ hybridization for pericentric chromosomal regions, immunostaining of H3K9me3, centromeric proteins CENP A/B and DNA methylation showed a lower level of heterochromatin condensation as compared to young cells. No SAHF foci were observed. Instead, we observed fibrous ring-like or ribbon-like heterochromatin patterns that were undetectable with DAPI counterstaining. These heterochromatin fibers were associated with nucleoli. CONCLUSIONS: Constitutive heterochromatin in bovine senescent cells is organized in ring-like structures.

  13. Spatial and temporal transcriptome changes occurring during flower opening and senescence of the ephemeral hibiscus flower, Hibiscus rosa-sinensis.

    Science.gov (United States)

    Trivellini, Alice; Cocetta, Giacomo; Hunter, Donald A; Vernieri, Paolo; Ferrante, Antonio

    2016-10-01

    Flowers are complex systems whose vegetative and sexual structures initiate and die in a synchronous manner. The rapidity of this process varies widely in flowers, with some lasting for months while others such as Hibiscus rosa-sinensis survive for only a day. The genetic regulation underlying these differences is unclear. To identify key genes and pathways that coordinate floral organ senescence of ephemeral flowers, we identified transcripts in H. rosa-sinensis floral organs by 454 sequencing. During development, 2053 transcripts increased and 2135 decreased significantly in abundance. The senescence of the flower was associated with increased abundance of many hydrolytic genes, including aspartic and cysteine proteases, vacuolar processing enzymes, and nucleases. Pathway analysis suggested that transcripts altering significantly in abundance were enriched in functions related to cell wall-, aquaporin-, light/circadian clock-, autophagy-, and calcium-related genes. Finding enrichment in light/circadian clock-related genes fits well with the observation that hibiscus floral development is highly synchronized with light and the hypothesis that ageing/senescence of the flower is orchestrated by a molecular clock. Further study of these genes will provide novel insight into how the molecular clock is able to regulate the timing of programmed cell death in tissues. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Effects of Human Mesenchymal Stem Cells Coculture on Calcium-Induced Differentiation of Normal Human Keratinocytes.

    Science.gov (United States)

    Sah, Shyam Kishor; Kim, Hae Young; Lee, Ji Hae; Lee, Seong-Wook; Kim, Hyung-Sik; Kim, Yeon-Soo; Kang, Kyung-Sun; Kim, Tae-Yoon

    2017-06-01

    The influence of mesenchymal stem cells (MSCs) on keratinocytes in altered microenvironments is poorly understood. Here, we cocultured umbilical cord blood-derived MSCs with normal human epidermal keratinocytes to evaluate their paracrine effect in the presence of high extracellular calcium (Ca 2+ ) concentration. High Ca 2+ environment to keratinocytes can disrupt normal skin barrier function due to abnormal/premature differentiation of keratinocytes. Surprisingly, we found that MSCs suppress both proliferation and differentiation of keratinocytes under a high Ca 2+ environment in transforming growth factors β1 (TGFβ1)-dependent manner. Furthermore, we determined that MSCs can regulate the mitogen-activated protein kinases, phosphatidylinositol 3-kinase/protein kinase B, and protein kinase C pathways in Ca 2+ -induced differentiated keratinocytes. Knockdown of TGFβ1 from MSCs results in decreased suppression of differentiation with significantly increased proliferation of keratinocytes compared with control MSCs. MSCs-derived TGFβ1 further induced growth inhibition of keratinocyte in high extracellular Ca 2+ environment as analyzed by a decrease in DNA synthesis, accumulation of phosphorylated retinoblastoma protein, cdc2, and increased mRNA level of p21, and independent of TGFβ1/SMAD pathway. Taken together, we found that MSCs-derived TGFβ1 is a critical regulator of keratinocyte function, and involves multiple proximal signaling cascades. Stem Cells 2017;35:1592-1602. © 2017 AlphaMed Press.

  15. Oxidative Stress Induces Senescence in Cultured RPE Cells.

    Science.gov (United States)

    Aryan, Nona; Betts-Obregon, Brandi S; Perry, George; Tsin, Andrew T

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence.

  16. Identification and characterization of secretory proteins during ionizing radiation-induced premature senescence

    International Nuclear Information System (INIS)

    Han, Na Kyung; Hong, Mi Na; Jung, Seung Hee; Kang, Kyoung Ah; Lee, Jae Seon; Chi, Seong Gil

    2011-01-01

    Cellular senescence was first described by Hayflick and Moorhead in 1961 who observed that cultures of normal human fibroblasts had a limited replicative potential and eventually became irreversibly arrest. The majority of senescent cells assume a characteristic flattened and enlarged morphological change, senescence associated β alactosidase positivity. Recently a large number of molecular phenotypes such as changes in gene expression, protein processing and chromatin organization have been also described. In contrast to apoptosis, senescence does not destroy the cells but leaves them metabolically and synthetically active and therefore able to affect their microenvironment. In particular, senescent fibroblasts and some cancer cells were found to secrete proteins with known or putative tumor-promoting functions such as growth factors or proteolytic enzymes. However, the knowledge about secreted proteins from senescent tumor cells and their functions to surrounding cells is still lacking. In this study, changes of senescence associated secretory protein expression profile were observed in MCF7 human breast cancer cells exposed to gamma-ray radiation using two dimensional electrophoresis. Also, we identified up-regulated secretory proteins during ionizing radiation-induced cellular senescence. Here, we show that senescent human breast cancer MCF7 cells promote the proliferation, invasion and migration of neighboring cells

  17. Identification and characterization of secretory proteins during ionizing radiation-induced premature senescence

    Energy Technology Data Exchange (ETDEWEB)

    Han, Na Kyung; Hong, Mi Na; Jung, Seung Hee; Kang, Kyoung Ah; Lee, Jae Seon [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Chi, Seong Gil [Korea University, Seoul (Korea, Republic of)

    2011-05-15

    Cellular senescence was first described by Hayflick and Moorhead in 1961 who observed that cultures of normal human fibroblasts had a limited replicative potential and eventually became irreversibly arrest. The majority of senescent cells assume a characteristic flattened and enlarged morphological change, senescence associated {beta} alactosidase positivity. Recently a large number of molecular phenotypes such as changes in gene expression, protein processing and chromatin organization have been also described. In contrast to apoptosis, senescence does not destroy the cells but leaves them metabolically and synthetically active and therefore able to affect their microenvironment. In particular, senescent fibroblasts and some cancer cells were found to secrete proteins with known or putative tumor-promoting functions such as growth factors or proteolytic enzymes. However, the knowledge about secreted proteins from senescent tumor cells and their functions to surrounding cells is still lacking. In this study, changes of senescence associated secretory protein expression profile were observed in MCF7 human breast cancer cells exposed to gamma-ray radiation using two dimensional electrophoresis. Also, we identified up-regulated secretory proteins during ionizing radiation-induced cellular senescence. Here, we show that senescent human breast cancer MCF7 cells promote the proliferation, invasion and migration of neighboring cells

  18. Die Region braucht die Kultur - die Kultur braucht die Region

    OpenAIRE

    Klemm, Ulrich

    1995-01-01

    Die Region braucht die Kultur - die Kultur braucht die Region. - In: Region in Aktion - oder: Region im Abseits? - Boxberg-Wölchingen : Eigenständige Regionalentwicklung Baden-Württemberg, 1995. - S. 25 f.

  19. Keratinocytes at the uppermost layer of epidermis might act as sensors of atmospheric pressure change.

    Science.gov (United States)

    Denda, Mitsuhiro

    2016-01-01

    It has long been suggested that climate, especially atmospheric pressure change, can cause health problems ranging from migraine to myocardial infarction. Here, I hypothesize that the sensory system of epidermal keratinocytes mediates the influence of atmospheric pressure change on the human physiological condition. We previously demonstrated that even subtle changes of atmospheric pressure (5-20 hPa) induce elevation of intracellular calcium level in cultured human keratinocytes (excitation of keratinocytes). It is also established that communication occurs between epidermal keratinocytes and peripheral nerve systems. Moreover, various neurotransmitters and hormones that influence multiple systems (nervous, cardiovascular, endocrine, and immune systems) are generated and released from epidermal keratinocytes in response to various external stimuli. Thus, I suggest that pathophysiological phenomena induced by atmospheric pressure changes might be triggered by epidermal keratinocytes.

  20. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells

    Science.gov (United States)

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan

    2016-01-01

    Background We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. Objective We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. Methods To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Results Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. Conclusion These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation. PMID:27489424

  1. Senescent phenotypes of skin fibroblasts from patients with Tangier disease

    International Nuclear Information System (INIS)

    Matsuura, Fumihiko; Hirano, Ken-ichi; Ikegami, Chiaki; Sandoval, Jose C.; Oku, Hiroyuki; Yuasa-Kawase, Miyako; Tsubakio-Yamamoto, Kazumi; Koseki, Masahiro; Masuda, Daisaku; Tsujii, Ken-ichi; Ishigami, Masato; Nishida, Makoto; Shimomura, Iichiro; Hori, Masatsugu; Yamashita, Shizuya

    2007-01-01

    Tangier disease (TD) is characterized by a deficiency of high density lipoprotein (HDL) in plasma and patients with TD have an increased risk for coronary artery disease (CAD). Recently, we reported that fibroblasts from TD exhibited large and flattened morphology, which is often observed in senescent cells. On the other hand, data have accumulated to show the relationship between cellular senescence and development of atherosclerotic CAD. The aim of the present study was to investigate whether TD fibroblasts exhibited cellular senescence. The proliferation of TD fibroblasts was gradually decreased at population doubling level (PDL) ∼10 compared with control cells. TD cells practically ceased proliferation at PDL ∼30. DNA synthesis was markedly decreased in TD fibroblasts. TD cells exhibited a higher positive rate for senescence-associated β-galactosidase (SA-β-gal), which is one of the biomarkers of cellular senescence in vitro. These data showed that TD cells reached cellular senescence at an earlier PDL compared with controls. Although, there was no difference in the telomere length of fibroblasts between TD and controls at the earlier passage (PDL 6), the telomere length of TD cells was shorter than that of controls at the late passage (PDL 25). Taken together, the current study demonstrates that the late-passaged TD fibroblasts showed senescent phenotype in vitro, which might be related to the increased cardiovascular manifestations in TD patients

  2. DIE GESKIEDENIS VAN DIE PERSONEELFUNKSIE IN DIE SA ...

    African Journals Online (AJOL)

    stel (kortdiensstelsel). Met die uitbreek van die oorlog in 1939 het die. Unieverdedigingsmag uit 40% Staandemag en. 60% aktiewe Burgermag bestaan. Op 22 Sept. 1939 is magtiging aan die Aktiewe Burgermag- eenhede verleen om vrywilligers vir die duur van die oorlog te aanvaar. Agv beswaar dat die Verdedigingswet.

  3. The incidence and multiplicity rates of keratinocyte cancers in Australia.

    Science.gov (United States)

    Pandeya, Nirmala; Olsen, Catherine M; Whiteman, David C

    2017-10-16

    To assess the incidence and multiplicity of keratinocyte cancers (basal cell carcinoma [BCC] and squamous cell carcinoma [SCC]) excised in Australia, and to examine variations by age, sex, state, and prior skin cancer history. Analysis of individual-level Medicare data for keratinocyte cancer treatments (identified by eight specific MBS item codes) during 2011-2014. Histological data from the QSkin prospective cohort study were analysed to estimate BCC and SCC incidence. A 10% systematic random sample of all people registered with Medicare during 1997-2014. People aged at least 20 years in 2011 who made at least one claim for any MBS medical service during 2011-2014 (1 704 193 individuals). Age-standardised incidence rates (ASRs) and standardised incidence ratios (SIRs). The person-based incidence of keratinocyte cancer excisions in Australia was 1531 per 100 000 person-years; incidence increased with age, and was higher for men than women (SIR, 1.43; 95% CI, 1.42-1.45). Lesion-based incidence was 3154 per 100 000 person-years. The estimated ASRs for BCC and SCC were 770 per 100 000 and 270 per 100 000 person-years respectively. During 2011-2014, 3.9% of Australians had one keratinocyte cancer excised, 2.7% had more than one excised; 74% of skin cancers were excised from patients who had two or more lesions removed. Multiplicity was strongly correlated with age; most male patients over 70 were treated for multiple lesions. Keratinocyte cancer incidence was eight times as high among people with a prior history of excisions as among those without. The incidence and multiplicity of keratinocyte cancer in Australia are very high, causing a large disease burden that has not previously been quantified.

  4. Delay of Iris flower senescence by protease inhibitors

    NARCIS (Netherlands)

    Pak, C.; Doorn, van W.G.

    2005-01-01

    asterisk inside a circle sign Visible senescence of the flag tepals in Iris x hollandica (cv. Blue Magic) was preceded by a large increase in endoprotease activity. Just before visible senescence about half of total endoprotease activity was apparently due to cysteine proteases, somewhat less than

  5. Shining a Light on Black Holes in Keratinocytes.

    Science.gov (United States)

    Bowman, Shanna L; Marks, Michael S

    2018-03-01

    The mechanisms by which melanins are transferred from melanocytes and stored within keratinocytes to generate skin pigmentation are hotly debated. Correia et al. and Hurbain et al. provide evidence that melanin cores of melanosomes are secreted from melanocytes and taken up and stored within non-degradative membranous organelles in keratinocytes in the basal epidermis of human skin. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Assessing senescence patterns in populations of large mammals

    Directory of Open Access Journals (Sweden)

    Gaillard, J.-M.

    2004-06-01

    Full Text Available Theoretical models such as those of Gompertz and Weibull are commonly used to study senescence in survival for humans and laboratory or captive animals. For wild populations of vertebrates, senescence in survival has more commonly been assessed by fitting simple linear or quadratic relationships between survival and age. By using appropriate constraints on survival parameters in Capture-Mark-Recapture (CMR models, we propose a first analysis of the suitability of the Gompertz and the two-parameter Weibull models for describing aging-related mortality in free-ranging populations of ungulates. We first show how to handle the Gompertz and the two-parameter Weibull models in the context of CMR analyses. Then we perform a comparative analysis of senescence patterns in both sexes of two ungulate species highly contrasted according to the intensity of sexual selection. Our analyses provide support to the Gompertz model for describing senescence patterns in ungulates. Evolutionary implications of our results are discussed

  7. In vivo inhibition of cysteine proteases provides evidence for the involvement of 'senescence-associated vacuoles' in chloroplast protein degradation during dark-induced senescence of tobacco leaves.

    Science.gov (United States)

    Carrión, Cristian A; Costa, María Lorenza; Martínez, Dana E; Mohr, Christina; Humbeck, Klaus; Guiamet, Juan J

    2013-11-01

    Breakdown of leaf proteins, particularly chloroplast proteins, is a massive process in senescing leaves. In spite of its importance in internal N recycling, the mechanism(s) and the enzymes involved are largely unknown. Senescence-associated vacuoles (SAVs) are small, acidic vacuoles with high cysteine peptidase activity. Chloroplast-targeted proteins re-localize to SAVs during senescence, suggesting that SAVs might be involved in chloroplast protein degradation. SAVs were undetectable in mature, non-senescent tobacco leaves. Their abundance, visualized either with the acidotropic marker Lysotracker Red or by green fluorescent protein (GFP) fluorescence in a line expressing the senescence-associated cysteine protease SAG12 fused to GFP, increased during senescence induction in darkness, and peaked after 2-4 d, when chloroplast dismantling was most intense. Increased abundance of SAVs correlated with higher levels of SAG12 mRNA. Activity labelling with a biotinylated derivative of the cysteine protease inhibitor E-64 was used to detect active cysteine proteases. The two apparently most abundant cysteine proteases of senescing leaves, of 40kDa and 33kDa were detected in isolated SAVs. Rubisco degradation in isolated SAVs was completely blocked by E-64. Treatment of leaf disks with E-64 in vivo substantially reduced degradation of Rubisco and leaf proteins. Overall, these results indicate that SAVs contain most of the cysteine protease activity of senescing cells, and that SAV cysteine proteases are at least partly responsible for the degradation of stromal proteins of the chloroplast.

  8. Micronucleus formation in cultured human keratinocytes: Involvement of intercellular bioactivation.

    Science.gov (United States)

    van Pelt, F N; Haring, R M; Weterings, P J

    1991-01-01

    Micronucleus formation in cultured human keratinocytes was studied after exposure to benzo[a]pyrene, cyclophosphamide and 12-O-tetradecanoylphorbol-13-acetate without the addition of an exogenous metabolizing system. The first two agents need bioactivation by specific isoenzymes of cytochrome P-450 to form genotoxic intermediates. Benzo[a]pyrene induced the micronucleus formation in both uninduced and Aroclor 1254-pretreated cultures. Clastogenic effects of cyclophosphamide were observed only in Aroclor 1254-pretreated cells. The tumour promotor 12-O-tetradecanoylphorbol-13-acetate did not affect the frequency of micronuclei in human keratinocytes. The data indicate that cultured human keratinocytes can be used to study the tissue-specific response to genotoxic agents as well as interindividual variation in biotransformation capacity.

  9. Attachment and growth of human keratinocytes in a serum-free environment.

    Science.gov (United States)

    Gilchrest, B A; Calhoun, J K; Maciag, T

    1982-08-01

    Using a serum-free system, we have investigated the influence of human fibronectin (HFN) and selected growth factors (GF) on the attachment and growth of normal human keratinocytes in vitro. Single-cell suspensions of keratinocytes from near-confluent primary plates, plated on 5-10 microgram/cm2 HFN, showed approximately 30-40% attachment after 2-24 hours of incubation at 37 degrees C, compared with 4-6% attachment on uncoated platic plates. Percentage of attached cells was independent of seed density, tissue donor age, in vitro culture age, or medium composition, while subsequent cellular proliferation was strongly dependent on these factors. Keratinocytes grown on an adequate HFN matrix in a previously described hormone-supplemented medium (Maciag et al., 1981a) achieved four to eight population doubling over 7-12 days at densities greater than or equal to 104 cell/cm2. Removal of most GF individually from the medium had little or no effect on growth, while removal of epidermal growth factor (EGF) alone reduced growth by 30-35% and removal of bovine brain extract (BE) alone reduced growth by approximately 90%. Conversely, EGF alone in basal medium supported approximately 10% control growth, BE alone supported 30-40% control growth, and the combination of EGF and BE approximately 70%. In addition to its major effect on proliferation in this system, BE was necessary to preserve normal keratinocyte morphology and protein production. These findings expand earlier observations that HFN facilitates keratinocyte attachment in vitro and that a brain-derived extract can exert a major positive influence on cultured keratinocytes.

  10. Essential role of integrin-linked kinase in regulation of phagocytosis in keratinocytes.

    Science.gov (United States)

    Sayedyahossein, Samar; Nini, Lylia; Irvine, Timothy S; Dagnino, Lina

    2012-10-01

    Phagocytic melanosome uptake by epidermal keratinocytes is a central protective mechanism against damage induced by ultraviolet radiation. Phagocytosis requires formation of pseudopodia via actin cytoskeleton rearrangements. Integrin-linked kinase (ILK) is an important modulator of actin cytoskeletal dynamics. We have examined the role of ILK in regulation of phagocytosis, using epidermal keratinocytes isolated from mice with epidermis-restricted Ilk gene inactivation. ILK-deficient cells exhibited severely impaired capacity to engulf fluorescent microspheres in response to stimulation of the keratinocyte growth factor (KGF) receptor or the protease-activated receptor-2. KGF induced ERK phosphorylation in ILK-expressing and ILK-deficient cells, suggesting that ILK is not essential for KGF receptor signaling. In contrast, KGF promoted activation of Rac1 and formation of pseudopodia in ILK-expressing, but not in ILK-deficient cells. Rac1-deficient keratinocytes also showed substantially impaired phagocytic ability, underlining the importance of ILK-dependent Rac1 function for particle engulfment. Finally, cross-modulation of KGF receptors by integrins may be another important element, as integrin β1-deficient keratinocytes also fail to show significant phagocytosis in response to KGF. Thus, we have identified a novel signaling pathway essential for phagocytosis in keratinocytes, which involves ILK-dependent activation of Rac1 in response to KGF, resulting in the formation of pseudopodia and particle uptake.

  11. Modulation of keratinocyte expression of antioxidants by 4-hydroxynonenal, a lipid peroxidation end product

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruijin [Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Environmental Health Science, New York Medical College, Valhalla, NY (United States); Mishin, Vladimir; Black, Adrienne T. [Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Shakarjian, Michael P. [Environmental Health Science, New York Medical College, Valhalla, NY (United States); Kong, Ah-Ng Tony; Laskin, Debra L. [Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2014-03-01

    4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86–98 fold within 6 h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependent increases in mRNA and protein expression which were maximum after 6 h with 30 μM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2 −/− mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-β-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a reactive aldehyde. • 4-HNE induces antioxidant proteins in mouse keratinocytes. • Induction of

  12. Human keratinocytes restrict chikungunya virus replication at a post-fusion step

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Eric [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Hamel, Rodolphe [Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle, UMR 5290 CNRS/IRD/UM1, Montpellier (France); Neyret, Aymeric [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Ekchariyawat, Peeraya [Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle, UMR 5290 CNRS/IRD/UM1, Montpellier (France); Molès, Jean-Pierre [INSERM U1058, UM1, CHU Montpellier (France); Simmons, Graham [Blood Systems Research Institute, San Francisco, CA 94118 (United States); Chazal, Nathalie [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Desprès, Philippe [Unité Interactions Moléculaires Flavivirus-Hôtes, Institut Pasteur, Paris (France); and others

    2015-02-15

    Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses. - Highlights: • Human keratinocytes support endocytosis of CHIKV and fusion of viral membranes. • CHIKV replication is blocked at a post entry step in these cells. • Infection upregulates type-I, –II and –III IFN genes expression. • Keratinocytes behave as immune sentinels against CHIKV.

  13. Human keratinocytes restrict chikungunya virus replication at a post-fusion step

    International Nuclear Information System (INIS)

    Bernard, Eric; Hamel, Rodolphe; Neyret, Aymeric; Ekchariyawat, Peeraya; Molès, Jean-Pierre; Simmons, Graham; Chazal, Nathalie; Desprès, Philippe

    2015-01-01

    Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses. - Highlights: • Human keratinocytes support endocytosis of CHIKV and fusion of viral membranes. • CHIKV replication is blocked at a post entry step in these cells. • Infection upregulates type-I, –II and –III IFN genes expression. • Keratinocytes behave as immune sentinels against CHIKV

  14. Air-Stimulated ATP Release from Keratinocytes Occurs through Connexin Hemichannels

    Science.gov (United States)

    Barr, Travis P.; Albrecht, Phillip J.; Hou, Quanzhi; Mongin, Alexander A.; Strichartz, Gary R.; Rice, Frank L.

    2013-01-01

    Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease. PMID:23457608

  15. Lactobacillus rhamnosus GG Lysate Increases Re-Epithelialization of Keratinocyte Scratch Assays by Promoting Migration.

    Science.gov (United States)

    Mohammedsaeed, Walaa; Cruickshank, Sheena; McBain, Andrew J; O'Neill, Catherine A

    2015-11-05

    A limited number of studies have investigated the potential of probiotics to promote wound healing in the digestive tract. The aim of the current investigation was to determine whether probiotic bacteria or their extracts could be beneficial in cutaneous wound healing. A keratinocyte monolayer scratch assay was used to assess re-epithelialization; which comprises keratinocyte proliferation and migration. Primary human keratinocyte monolayers were scratched then exposed to lysates of Lactobacillus (L) rhamnosus GG, L. reuteri, L. plantarum or L. fermentum. Re-epithelialization of treated monolayers was compared to that of untreated controls. Lysates of L. rhamnosus GG and L. reuteri significantly increased the rate of re-epithelialization, with L. rhamnosus GG being the most efficacious. L. reuteri increased keratinocyte proliferation while L. rhamnosus GG lysate significantly increased proliferation and migration. Microarray analysis of L. rhamnosus GG treated scratches showed increased expression of multiple genes including the chemokine CXCL2 and its receptor CXCR2. These are involved in normal wound healing where they stimulate keratinocyte proliferation and/or migration. Increased protein expression of both CXCL2 and CXCR2 were confirmed by ELISA and immunoblotting. These data demonstrate that L. rhamnosus GG lysate accelerates re-epithelialization of keratinocyte scratch assays, potentially via chemokine receptor pairs that induce keratinocyte migration.

  16. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  17. Polyamines, peroxidase and proteins involved in the senescence ...

    African Journals Online (AJOL)

    Senescence is the natural aging process at the cellular level or range of phenomena associated with this process. The objective of this review was to show the involvement of substances that may be related to senescence in plants, such as polyamines, peroxidase and proteins. These substances were related with the ...

  18. Rapid adhesion and proliferation of keratinocytes on the gold colloid/chitosan film scaffold

    International Nuclear Information System (INIS)

    Zhang Yi; He Hong; Gao Wenjuan; Lu Shuangyun; Liu Yang; Gu Haiying

    2009-01-01

    The gold colloid/chitosan film scaffold, which could enhance the attached ratio and accelerate proliferation of newborn mice keratinocytes, was fabricated by nanotechnology and self-assembly technology. This nanometer scaffold was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The keratinocytes were cultured and observed on three different extracellular matrices (ECM): gold colloid/chitosan film scaffold, chitosan film and cell culture plastic (control groups). 6 h, 12 h, 24 h after inoculation, the cell attached ratios were calculated respectively. In comparison to control groups, this scaffold could significantly (P < 0.01) increase the attached ratio of keratinocytes and promote their growth. Meanwhile, there were not any fusiform fibroblasts growing on this scaffold. The rapidly proliferating keratinocytes were indentified and characterized by immunohistochemistry and transmissive electron microscope (TEM), which showed the cells maintain their biological activity well. The results indicated that gold colloid/chitosan film scaffold was nontoxic to keratinocytes, and was a good candidate for wound dressing in skin tissue engineering.

  19. Keratinocyte-derived laminin-332 protein promotes melanin synthesis via regulation of tyrosine uptake.

    Science.gov (United States)

    Chung, Heesung; Jung, Hyejung; Lee, Jung-Hyun; Oh, Hye Yun; Kim, Ok Bin; Han, Inn-Oc; Oh, Eok-Soo

    2014-08-01

    Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Senescence in the wild: Insights from a long-term study on Seychelles warblers.

    Science.gov (United States)

    Hammers, Martijn; Kingma, Sjouke A; Bebbington, Kat; van de Crommenacker, Janske; Spurgin, Lewis G; Richardson, David S; Burke, Terry; Dugdale, Hannah L; Komdeur, Jan

    2015-11-01

    Senescence--the progressive age-dependent decline in performance--occurs in most organisms. There is considerable variation in the onset and rate of senescence between and within species. Yet the causes of this variation are still poorly understood, despite being central to understanding the evolution of senescence. Long-term longitudinal studies on wild animals are extremely well-suited to studying the impact of environmental and individual characteristics (and the interaction between the two) on senescence, and can help us to understand the mechanisms that shape the evolution of senescence. In this review, we summarize and discuss the insights gained from our comprehensive long-term individual-based study of the Seychelles warbler (Acrocephalus sechellensis). This species provides an excellent model system in which to investigate the evolution of senescence in the wild. We found that Seychelles warblers show senescent declines in survival and reproduction, and discuss how individual characteristics (body condition, body size) and environmental effects (low- versus high-quality environments) may affect the onset and rate of senescence. Further, we highlight the evidence for trade-offs between early-life investment and senescence. We describe how key cellular and physiological processes (oxidative stress and telomere shortening) underpinning senescence are affected by individual and environmental characteristics in the Seychelles warbler (e.g. food availability, reproductive investment, disease) and we discuss how such physiological variation may mediate the relationship between environmental characteristics and senescence. Based on our work using Seychelles warblers as a model system, we show how insights from long-term studies of wild animals may help unravel the causes of the remarkable variation in senescence observed in natural systems, and highlight areas for promising future research.

  1. Mechanisms of Diabetes-Induced Endothelial Cell Senescence: Role of Arginase 1

    Directory of Open Access Journals (Sweden)

    Esraa Shosha

    2018-04-01

    Full Text Available We have recently found that diabetes-induced premature senescence of retinal endothelial cells is accompanied by NOX2-NADPH oxidase-induced increases in the ureohydrolase enzyme arginase 1 (A1. Here, we used genetic strategies to determine the specific involvement of A1 in diabetes-induced endothelial cell senescence. We used A1 knockout mice and wild type mice that were rendered diabetic with streptozotocin and retinal endothelial cells (ECs exposed to high glucose or transduced with adenovirus to overexpress A1 for these experiments. ABH [2(S-Amino-6-boronohexanoic acid] was used to inhibit arginase activity. We used Western blotting, immunolabeling, quantitative PCR, and senescence associated β-galactosidase (SA β-Gal activity to evaluate senescence. Analyses of retinal tissue extracts from diabetic mice showed significant increases in mRNA expression of the senescence-related proteins p16INK4a, p21, and p53 when compared with non-diabetic mice. SA β-Gal activity and p16INK4a immunoreactivity were also increased in retinal vessels from diabetic mice. A1 gene deletion or pharmacological inhibition protected against the induction of premature senescence. A1 overexpression or high glucose treatment increased SA β-Gal activity in cultured ECs. These results demonstrate that A1 is critically involved in diabetes-induced senescence of retinal ECs. Inhibition of arginase activity may therefore be an effective therapeutic strategy to alleviate diabetic retinopathy by preventing premature senescence.

  2. Adherence of human oral keratinocytes and gingival fibroblasts to nano-structured titanium surfaces.

    Science.gov (United States)

    Dorkhan, Marjan; Yücel-Lindberg, Tülay; Hall, Jan; Svensäter, Gunnel; Davies, Julia R

    2014-06-21

    A key element for long-term success of dental implants is integration of the implant surface with the surrounding host tissues. Modification of titanium implant surfaces can enhance osteoblast activity but their effects on soft-tissue cells are unclear. Adherence of human keratinocytes and gingival fibroblasts to control commercially pure titanium (CpTi) and two surfaces prepared by anodic oxidation was therefore investigated. Since implant abutments are exposed to a bacteria-rich environment in vivo, the effect of oral bacteria on keratinocyte adhesion was also evaluated. The surfaces were characterized using scanning electron microscopy (SEM). The number of adhered cells and binding strength, as well as vitality of fibroblasts and keratinocytes were evaluated using confocal scanning laser microscopy after staining with Live/Dead Baclight. To evaluate the effect of bacteria on adherence and vitality, keratinocytes were co-cultured with a four-species streptococcal consortium. SEM analysis showed the two anodically oxidized surfaces to be nano-structured with differing degrees of pore-density. Over 24 hours, both fibroblasts and keratinocytes adhered well to the nano-structured surfaces, although to a somewhat lesser degree than to CpTi (range 42-89% of the levels on CpTi). The strength of keratinocyte adhesion was greater than that of the fibroblasts but no differences in adhesion strength could be observed between the two nano-structured surfaces and the CpTi. The consortium of commensal streptococci markedly reduced keratinocyte adherence on all the surfaces as well as compromising membrane integrity of the adhered cells. Both the vitality and level of adherence of soft-tissue cells to the nano-structured surfaces was similar to that on CpTi. Co-culture with streptococci reduced the number of keratinocytes on all the surfaces to approximately the same level and caused cell damage, suggesting that commensal bacteria could affect adherence of soft-tissue cells to

  3. The disparity between human cell senescence in vitro and lifelong replication in vivo.

    Science.gov (United States)

    Rubin, Harry

    2002-07-01

    Cultured human fibroblasts undergo senescence (a loss of replicative capacity) after a uniform, fixed number of approximately 50 population doublings, commonly termed the Hayflick limit. It has been long known from clonal and other quantitative studies, however, that cells decline in replicative capacity from the time of explantation and do so in a stochastic manner, with a half-life of only approximately 8 doublings. The apparent 50-cell doubling limit reflects the expansive propagation of the last surviving clone. The relevance of either figure to survival of cells in the body is questionable, given that stem cells in some renewing tissues undergo >1,000 divisions in a lifetime with no morphological sign of senescence. Oddly enough, these observations have had little if any effect on general acceptance of the Hayflick limit in its original form. The absence of telomerase in cultured human cells and the shortening of telomeres at each population doubling have suggested that telomere length acts as a mitotic clock that accounts for their limited lifespan. This concept assumed an iconic character with the report that ectopic expression of telomerase by a vector greatly extended the lifespan of human cells. That something similar might occur in vivo seemed consistent with initial reports that most human somatic tissues lack telomerase activity. More careful study, however, has revealed telomerase activity in stem cells and some dividing transit cells of many renewing tissues and even in dividing myocytes of repairing cardiac muscle. It now seems likely that telomerase is active in vivo where and when it is needed to maintain tissue integrity. Caution is recommended in applying telomerase inhibition to kill telomerase-expressing cancer cells, because it would probably damage stem cells in essential organs and even increase the likelihood of secondary cancers. The risk may be especially high in sun-exposed skin, where there are usually thousands of p53-mutant clones of

  4. Plant senescence and proteolysis: two processes with one destiny.

    Science.gov (United States)

    Diaz-Mendoza, Mercedes; Velasco-Arroyo, Blanca; Santamaria, M Estrella; González-Melendi, Pablo; Martinez, Manuel; Diaz, Isabel

    2016-01-01

    Senescence-associated proteolysis in plants is a complex and controlled process, essential for mobilization of nutrients from old or stressed tissues, mainly leaves, to growing or sink organs. Protein breakdown in senescing leaves involves many plastidial and nuclear proteases, regulators, different subcellular locations and dynamic protein traffic to ensure the complete transformation of proteins of high molecular weight into transportable and useful hydrolysed products. Protease activities are strictly regulated by specific inhibitors and through the activation of zymogens to develop their proteolytic activity at the right place and at the proper time. All these events associated with senescence have deep effects on the relocation of nutrients and as a consequence, on grain quality and crop yield. Thus, it can be considered that nutrient recycling is the common destiny of two processes, plant senescence and, proteolysis. This review article covers the most recent findings about leaf senescence features mediated by abiotic and biotic stresses as well as the participants and steps required in this physiological process, paying special attention to C1A cysteine proteases, their specific inhibitors, known as cystatins, and their potential targets, particularly the chloroplastic proteins as source for nitrogen recycling.

  5. Die posisie van die Helper in die sending

    Directory of Open Access Journals (Sweden)

    I. J. van der Walt

    1972-05-01

    Full Text Available Gedurende die aanvangsjare van die sending het die helper ’n onmisbare funksie vervul. Hulle het die onherbergsame binnelande geken, waardevolle kontakpunte vir die sendelinge geopen en hulle mense geestelik help voorlig en voorberei.

  6. Marked stimulation of growth and motility of human keratinocytes by hepatocyte growth factor

    International Nuclear Information System (INIS)

    Matsumoto, K.; Hashimoto, K.; Yoshikawa, K.; Nakamura, T.

    1991-01-01

    Effect of hepatocyte growth factor (HGF) on normal human epidermal keratinocytes cultured under conditions of low Ca2+ (0.1 mM, growth-promoting condition) and physiological Ca2+ (1.8 mM, differentiation-promoting condition) was investigated. In low Ca2+, HGF markedly enhanced the migration of keratinocytes while it suppressed cell growth and DNA synthesis in a dose-dependent manner. In contrast, HGF enhanced the migration, cell growth, and DNA synthesis of keratinocytes cultured under conditions of physiological Ca2+. The maximal stimulation of DNA synthesis (2.4-fold stimulation) in physiological Ca2+ was seen at 2.5-5 ng/ml HGF and the stimulatory effect of HGF was suppressed by transforming growth factor-beta 1. Analysis of the HGF receptor using 125I-HGF as a ligand showed that human keratinocytes expressed a single class of specific, saturable receptor for HGF in both low and physiological Ca2+ conditions, exhibiting a Kd = 17.3 pM and approximately 690 binding sites/cell under physiological Ca2+. Thus, HGF is a potent factor which enhances growth and migration of normal human keratinocytes under conditions of physiological Ca2+. HGF may play an important role in epidermal tissue repair as it enhances both the migration and growth of keratinocytes

  7. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2

    DEFF Research Database (Denmark)

    Hubackova, Sona; Davidova, Eliska; Rohlenova, Katerina

    2018-01-01

    and development of age-related diseases. We found that the anticancer agent mitochondria-targeted tamoxifen (MitoTam), unlike conventional anticancer agents, kills cancer cells without inducing senescence in vitro and in vivo. Surprisingly, it also selectively eliminates both malignant and non-cancerous senescent...... cells. In naturally aged mice treated with MitoTam for 4 weeks, we observed a significant decrease of senescence markers in all tested organs compared to non-treated animals. Mechanistically, we found that the susceptibility of senescent cells to MitoTam is linked to a very low expression level...... of adenine nucleotide translocase-2 (ANT2), inherent to the senescent phenotype. Restoration of ANT2 in senescent cells resulted in resistance to MitoTam, while its downregulation in non-senescent cells promoted their MitoTam-triggered elimination. Our study documents a novel, translationally intriguing role...

  8. NAC Transcription Factors in Senescence: From Molecular Structure to Function in Crops

    Directory of Open Access Journals (Sweden)

    Dagmara Podzimska-Sroka

    2015-07-01

    Full Text Available Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes as important regulators of the senescence process. The consensus DNA binding site of the NAC domain is used to predict NAC target genes, and protein interaction sites can be predicted for the intrinsically disordered transcription regulatory domains of NAC proteins. The molecular characteristics of these domains determine the interactions in gene regulatory networks. Emerging local NAC-centered gene regulatory networks reveal complex molecular mechanisms of stress- and hormone-regulated senescence and basic physiological steps of the senescence process. For example, through molecular interactions involving the hormone abscisic acid, Arabidopsis NAP promotes chlorophyll degradation, a hallmark of senescence. Furthermore, studies of the functional rice ortholog, OsNAP, suggest that NAC genes can be targeted to obtain specific changes in lifespan control and nutrient remobilization in crop plants. This is also exemplified by the wheat NAM1 genes which promote senescence and increase grain zinc, iron, and protein content. Thus, NAC genes are promising targets for fine-tuning senescence for increased yield and quality.

  9. Integrin Beta 3 Regulates Cellular Senescence by Activating the TGF-β Pathway

    Directory of Open Access Journals (Sweden)

    Valentina Rapisarda

    2017-03-01

    Full Text Available Cellular senescence is an important in vivo mechanism that prevents the propagation of damaged cells. However, the precise mechanisms regulating senescence are not well characterized. Here, we find that ITGB3 (integrin beta 3 or β3 is regulated by the Polycomb protein CBX7. β3 expression accelerates the onset of senescence in human primary fibroblasts by activating the transforming growth factor β (TGF-β pathway in a cell-autonomous and non-cell-autonomous manner. β3 levels are dynamically increased during oncogene-induced senescence (OIS through CBX7 Polycomb regulation, and downregulation of β3 levels overrides OIS and therapy-induced senescence (TIS, independently of its ligand-binding activity. Moreover, cilengitide, an αvβ3 antagonist, has the ability to block the senescence-associated secretory phenotype (SASP without affecting proliferation. Finally, we show an increase in β3 levels in a subset of tissues during aging. Altogether, our data show that integrin β3 subunit is a marker and regulator of senescence.

  10. Culture technique of rabbit primary epidermal keratinocytes

    Directory of Open Access Journals (Sweden)

    Marini M

    2012-10-01

    Full Text Available The epidermis is the protective covering outer layer of the mammalian skin. The epidermal cells are stratified squamous epithelia which undergo continuous differentiation of loss and replacement of cells. Ninety per cent of epidermal cells consist of keratinocytes that are found in the basal layer of the stratified epithelium called epidermis. Keratinocytes are responsible for forming tight junctions with the nerves of the skin as well as in the process of wound healing. This article highlights the method of isolation and culture of rabbit primary epidermal keratinocytes in vitro. Approximately 2cm x 2cm oval shaped line was drawn on the dorsum of the rabbit to mark the surgical area. Then, the skin was carefully excised using a surgical blade and the target skin specimens harvested from the rabbits were placed in transport medium comprising of Dulbecco’s Modified Eagle Medium (DMEM and 1% of antibiotic-antimycotic solution. The specimens were transferred into a petri dish containing 70% ethanol and washed for 5 min followed by a wash in 1 x Dulbecco’s Phosphate Buffered Saline (DBPS. Then, the skin specimens were placed in DMEM and minced into small pieces using a scalpel. The minced pieces were placed in a centrifuge tube containing 0.6% Dispase and 1% antibiotic-antimycotic solution overnight at 4°C in a horizontal orientation. The epidermis layer (whitish, semi-transparent was separated from the dermis (pink, opaque, gooey with the aid of curved forceps by fixing the dermis with one pair of forceps while detaching the epidermis with the second pair. The cells were cultured at a density of 4 x 104 cells/cm2 in culture flask at 37°C and 5% CO2. The cell morphology of the keratinocytes was analyzed using inverted microscope.

  11. The protective effects of piceatannol from passion fruit (Passiflora edulis) seeds in UVB-irradiated keratinocytes.

    Science.gov (United States)

    Maruki-Uchida, Hiroko; Kurita, Ikuko; Sugiyama, Kenkichi; Sai, Masahiko; Maeda, Kazuhisa; Ito, Tatsuhiko

    2013-01-01

    The use of naturally occurring botanicals with substantial antioxidant activity to prevent photoageing is receiving increasing attention. We have previously identified piceatannol and scirpusin B, which is a dimer of piceatannol, as strong antioxidants that are present in passion fruit (Passiflora edulis) seeds. In the present study, the effects of passion fruit seed extract, piceatannol, and scirpusin B on human keratinocytes were investigated. The passion fruit seed extract and piceatannol upregulated the glutathione (GSH) levels in keratinocytes in a dose-dependent manner, indicating that piceatannol is an active component of the passion fruit seed extract in keratinocytes. The pretreatment with piceatannol also suppressed the UVB-induced generation of reactive oxygen species (ROS) in the keratinocytes. In addition, the transfer of the medium from the UVB-irradiated keratinocytes to non-irradiated fibroblasts enhanced matrix-metalloproteinase (MMP)-1 activity, and this MMP-1 induction was reduced when the keratinocytes were pretreated with piceatannol. These results suggest that piceatannol attenuates the UVB-induced activity of MMP-1 along with a reduction of ROS generation in keratinocytes. Thus, piceatannol and passion fruit seed extract containing high amounts of piceatannol are potential anti-photoageing cosmetic ingredients.

  12. Neurohumoral mechanisms of keratinocytes regulation in diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Ekaterina Viktorovna Artemova

    2016-12-01

    Full Text Available The extent of damage to the nervous, vascular and microcirculatory systems in diabetic patients determine the regulation of physiological events that lead to the formation of chronic wounds, reduction of patient quality of life and increase of the financial value of medical care. Successful physiological repair is impossible without the successive phases of inflammation, proliferation and wound healing. Keratinocytes are the major cellular barrier components of the epidermis. These cells play an important role in physiological repair, as suggested by recent research, with many cells able to secrete steroid hormones de novo. Damage to the integrity of the skin leads to keratinocyte activation, triggering a cascade of reactions that contribute to changes in epidermal cell phenotype and lead to their proliferation and migration, analogous to changes in cellular adhesion and configuration of the cytoskeleton. An open question remains as to how the keratinocyte cell cycle, which is altered under conditions of hyperglycemia, and neurotransmitter metabolism during different stages of physiological repair are regulated. Understanding these processes will provide a scientific basis for the development of new targets for pharmacotherapies.

  13. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence.

    Science.gov (United States)

    Wiley, Christopher D; Flynn, James M; Morrissey, Christapher; Lebofsky, Ronald; Shuga, Joe; Dong, Xiao; Unger, Marc A; Vijg, Jan; Melov, Simon; Campisi, Judith

    2017-10-01

    Senescent cells play important roles in both physiological and pathological processes, including cancer and aging. In all cases, however, senescent cells comprise only a small fraction of tissues. Senescent phenotypes have been studied largely in relatively homogeneous populations of cultured cells. In vivo, senescent cells are generally identified by a small number of markers, but whether and how these markers vary among individual cells is unknown. We therefore utilized a combination of single-cell isolation and a nanofluidic PCR platform to determine the contributions of individual cells to the overall gene expression profile of senescent human fibroblast populations. Individual senescent cells were surprisingly heterogeneous in their gene expression signatures. This cell-to-cell variability resulted in a loss of correlation among the expression of several senescence-associated genes. Many genes encoding senescence-associated secretory phenotype (SASP) factors, a major contributor to the effects of senescent cells in vivo, showed marked variability with a subset of highly induced genes accounting for the increases observed at the population level. Inflammatory genes in clustered genomic loci showed a greater correlation with senescence compared to nonclustered loci, suggesting that these genes are coregulated by genomic location. Together, these data offer new insights into how genes are regulated in senescent cells and suggest that single markers are inadequate to identify senescent cells in vivo. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. [Cultivated keratinocytes on micro-carriers: in vitro studies of a new carrier system].

    Science.gov (United States)

    Hecht, J; Hoefter, E A; Hecht, J; Haraida, S; Nerlich, A; Hartinger, A; Mühlbauer, W; Dimoudis, N

    1997-03-01

    Epidermal grafts from confluently cultivated keratinocytes have been used since the early eighties for the treatment of severe burns, where the shortage of donor sites for split-thickness skin grafts did not allow for adequate wound coverage. The difficult handling of these grafts as well as the advanced differentiation of their epithelial cells into a multilayer sheet poses a problem for their clinical application. The aim of the study was to characterize cultivated keratinocytes, as well as to observe their migration and proliferation from the MC onto a surface. Keratinocytes were isolated from human foreskin and cultivated in serum-free and serum-containing medium according to a modified method by Rheinwald and Green. Collagen-coated Dextran beads were used as MC. The MC were colonized with keratinocytes using the Spinner culture technique. After seeding the colonized MC into culture flasks, their migration and proliferation was monitored regularly through immunohistochemical studies and measurement of the metabolic cell activity. Immunohistological staining proved that the cells isolated from human foreskin represent keratinocytes of the basal type. Keratinocytes, cultivated with serum-containing and serum free medium, both adhered to the surface of the MC, then migrated onto the surface of the flasks and proliferated to form a multilayer of epithelial cells. In the long-term, a flexible epithelial graft consisting of poorly differentiated keratinocytes should be available, which is simple to produce and easy to handle. This would be an alternative method for treating wounds, where the conventional multilayer epithelial graft (ET) is insufficient.

  15. Targeting Senescent Cells : Possible Implications for Delaying Skin Aging: A Mini-Review

    NARCIS (Netherlands)

    Velarde, Michael C.; Demaria, Marco

    2016-01-01

    Senescent cells are induced by a wide variety of stimuli. They accumulate in several tissues during aging, including the skin. Senescent cells secrete proinflammatory cytokines, chemokines, growth factors, and proteases, a phenomenon called senescence-associated secretory phenotype (SASP), which are

  16. Contrasting patterns of cytokinins between years in senescing aspen leaves

    Czech Academy of Sciences Publication Activity Database

    Edlund, E.; Novák, Ondřej; Karady, M.; Ljung, K.; Jansson, S.

    2017-01-01

    Roč. 40, č. 5 (2017), s. 622-634 ISSN 0140-7791 R&D Projects: GA ČR GA14-34792S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : leaf senescence * arabidopsis-thaliana * autumn senescence * gene-expression * populus-trichocarpa * mass-spectrometry * tobacco plants * translocation * biosynthesis * identification * autumn senescence * gene expression * metabolism * Populus tremula * profiling Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Plant sciences, botany Impact factor: 6.173, year: 2016

  17. Cytokine loops driving senescence

    Czech Academy of Sciences Publication Activity Database

    Bartek, Jiří; Hodný, Zdeněk; Lukáš, Jan

    2008-01-01

    Roč. 10, č. 8 (2008), s. 887-889 ISSN 1465-7392 Institutional research plan: CEZ:AV0Z50520514 Keywords : cellular senescence * cytokines * autocrine feedback loop Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 17.774, year: 2008

  18. die ontstaan en die ontwikkeling van die skoolkadette-stelsel in die rsa

    African Journals Online (AJOL)

    toe algemene diensplig ingestel is. Die diens- plig het intussen sy volle beslag gekry en in. Weermagkringe het die gedagte posgevat dat skoolkadette. 'n deeglike ondersoek vereis ten einde die skoolgaande seun vir sy komende nasionale diensplig te orienteer. Tydens kadetopleldlng leer die seuns al die fynere kunsles ...

  19. Actuarial senescence in a long-lived orchid challenges our current understanding of ageing.

    Science.gov (United States)

    Dahlgren, Johan Petter; Colchero, Fernando; Jones, Owen R; Øien, Dag-Inge; Moen, Asbjørn; Sletvold, Nina

    2016-11-16

    The dominant evolutionary theory of actuarial senescence-an increase in death rate with advancing age-is based on the concept of a germ cell line that is separated from the somatic cells early in life. However, such a separation is not clear in all organisms. This has been suggested to explain the paucity of evidence for actuarial senescence in plants. We used a 32 year study of Dactylorhiza lapponica that replaces its organs each growing season, to test whether individuals of this tuberous orchid senesce. We performed a Bayesian survival trajectory analysis accounting for reproductive investment, for individuals under two types of land use, in two climatic regions. The mortality trajectory was best approximated by a Weibull model, showing clear actuarial senescence. Rates of senescence in this model declined with advancing age, but were slightly higher in mown plots and in the more benign climatic region. At older ages, senescence was evident only when accounting for a positive effect of reproductive investment on mortality. Our results demonstrate actuarial senescence as well as a survival-reproduction trade-off in plants, and indicate that environmental context may influence senescence rates. This knowledge is crucial for understanding the evolution of demographic senescence and for models of plant population dynamics. © 2016 The Author(s).

  20. The peanut lectin-binding glycoproteins of human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Morrison, A.I.; Keeble, S.; Watt, F.M.

    1988-01-01

    The peanut lectin (PNA) is known to bind more strongly to keratinocytes that are undergoing terminal differentiation than to proliferating keratinocytes. In order to investigate the significance of this change in cell-surface carbohydrate authors have identified the PNA-binding glycoproteins of cultured human keratinocytes and antibodies against them. Two heavily glycosylated bands of 110 and 250 kDa were resolved by PAGE of [ 14 C]galactose- or [ 14 C]mannose- and [ 14 C]glucosamine-labeled cell extracts eluted with galactose from PNA affinity columns. The higher molecular weight band was also detected on PNA blots of unlabeled cell extracts transferred to nitrocellulose. Both bands were sensitive to pronase digestion, but only the 250-kDa band was digested with trypsin. A rabbit antiserum that we prepared (anti-PNA-gp) immunoprecipitated both bands from cell extracts. In contrast to PNA, anti-PNA-gp bound equally to proliferating and terminally differentiating cells, indicating that some epitope(s) of the PNA-binding glycoproteins is present on the cell surface prior to terminal differentiation. When keratinocytes grown as a monolayer in low-calcium medium were switched to medium containing 2 mM calcium ions in order to induce desmosome formation and stratification, there was a dramatic redistribution of the PNA-binding glycoproteins, which became concentrated at the boundaries between cells. This may suggest a role for the glycoproteins in cell-cell interactions during stratification

  1. Chimeric Human Skin Substitute Tissue: A Novel Treatment Option for the Delivery of Autologous Keratinocytes.

    Science.gov (United States)

    Rasmussen, Cathy A; Allen-Hoffmann, B Lynn

    2012-04-01

    For patients suffering from catastrophic burns, few treatment options are available. Chimeric coculture of patient-derived autologous cells with a "carrier" cell source of allogeneic keratinocytes has been proposed as a means to address the complex clinical problem of severe skin loss. Currently, autologous keratinocytes are harvested, cultured, and expanded to form graftable epidermal sheets. However, epidermal sheets are thin, are extremely fragile, and do not possess barrier function, which only develops as skin stratifies and matures. Grafting is typically delayed for up to 4 weeks to propagate a sufficient quantity of the patient's cells for application to wound sites. Fully stratified chimeric bioengineered skin substitutes could not only provide immediate wound coverage and restore barrier function, but would simultaneously deliver autologous keratinocytes to wounds. The ideal allogeneic cell source for this application would be an abundant supply of clinically evaluated, nontumorigenic, pathogen-free, human keratinocytes. To evaluate this potential cell-based therapy, mixed populations of a green fluorescent protein-labeled neonatal human keratinocyte cell line (NIKS) and unlabeled primary keratinocytes were used to model the allogeneic and autologous components of chimeric monolayer and organotypic cultures. Relatively few autologous keratinocytes may be required to produce fully stratified chimeric skin substitute tissue substantially composed of autologous keratinocyte-derived regions. The need for few autologous cells interspersed within an allogeneic "carrier" cell population may decrease cell expansion time, reducing the time to patient application. This study provides proof of concept for utilizing NIKS keratinocytes as the allogeneic carrier for the generation of bioengineered chimeric skin substitute tissues capable of providing immediate wound coverage while simultaneously supplying autologous human cells for tissue regeneration.

  2. Deacetylation of H4-K16Ac and heterochromatin assembly in senescence

    Directory of Open Access Journals (Sweden)

    Contrepois Kévin

    2012-08-01

    Full Text Available Abstract Background Cellular senescence is a stress response of mammalian cells leading to a durable arrest of cell proliferation that has been implicated in tumor suppression, wound healing, and aging. The proliferative arrest is mediated by transcriptional repression of genes essential for cell division by the retinoblastoma protein family. This repression is accompanied by varying degrees of heterochromatin assembly, but little is known regarding the molecular mechanisms involved. Results We found that both deacetylation of H4-K16Ac and expression of HMGA1/2 can contribute to DNA compaction during senescence. SIRT2, an NAD-dependent class III histone deacetylase, contributes to H4-K16Ac deacetylation and DNA compaction in human fibroblast cell lines that assemble striking senescence-associated heterochromatin foci (SAHFs. Decreased H4-K16Ac was observed in both replicative and oncogene-induced senescence of these cells. In contrast, this mechanism was inoperative in a fibroblast cell line that did not assemble extensive heterochromatin during senescence. Treatment of senescent cells with trichostatin A, a class I/II histone deacetylase inhibitor, also induced rapid and reversible decondensation of SAHFs. Inhibition of DNA compaction did not significantly affect the stability of the senescent state. Conclusions Variable DNA compaction observed during senescence is explained in part by cell-type specific regulation of H4 deacetylation and HMGA1/2 expression. Deacetylation of H4-K16Ac during senescence may explain reported decreases in this mark during mammalian aging and in cancer cells.

  3. Senescent T-Cells Promote Bone Loss in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Johannes Fessler

    2018-02-01

    Full Text Available ObjectiveT-cells are critical players in the pathogenesis of osteoporosis in patients with rheumatoid arthritis (RA. Premature senescence of lymphocytes including the accumulation of senescent CD4+ T-cells is a hallmark feature of RA. Whether T-cell senescence is associated with bone loss in RA patients is elusive so far.MethodsThis includes a prospective study of consecutive patients with RA (n = 107, patients with primary osteopenia/-porosis (n = 75, and healthy individuals (n = 38. Bone mineral density (BMD was determined by dual-energy X-ray absorptiometry scan. Flow cytometry, magnetic-associated cell sorting, and cell culture experiments were performed to analyze the pro-osteoclastic phenotype and the function of senescent CD4+CD28− T-cells.ResultsPatients with osteopenia/-porosis yielded a higher prevalence of senescent CD4+CD28− T-cells than individuals with normal BMD, in the RA, as well as in the non-RA cohort. Receptor activator of nuclear factor kappa-B ligand (RANKL was expressed at higher levels on CD4+CD28− T-cells as compared to CD28+ T-cells. Stimulation with interleukin-15 led to an up-regulation of RANKL expression, particularly on CD28− T-cells. CD4+CD28− T-cells induced osteoclastogenesis more efficiently than CD28+ T-cells.ConclusionOur data indicate that senescent T-cells promote osteoclastogenesis more efficiently than conventional CD28+ T-cells, which might contribute to the pathogenesis of systemic bone loss in RA and primary osteoporosis.

  4. Aldefluor protocol to sort keratinocytes stem cells from skin

    OpenAIRE

    Noronha, Samuel Marcos Ribeiro; Gragnani, Alfredo; Pereira, Thiago Antônio Calado; Correa, Silvana Aparecida Alves; Bonucci, Jessica; Ferreira, Lydia Masako

    2017-01-01

    Abstract Purpose: To investigate the use Aldefluor® and N, N - Dimethylaminobenzaldehyde (DEAB) to design a protocol to sort keratinocyte stem cells from cultured keratinocytes from burned patients. Methods: Activated Aldefluor® aliquots were prepared and maintained at temperature between 2 to 8°C, or stored at -20°C. Next, the cells were collected following the standard protocol of sample preparation. Results: Best results were obtained with Aldefluor® 1.5µl and DEAB 15 µl for 1 x 106 c...

  5. Asymmetric migration of human keratinocytes under mechanical stretch and cocultured fibroblasts in a wound repair model.

    Directory of Open Access Journals (Sweden)

    Dongyuan Lü

    Full Text Available Keratinocyte migration during re-epithelization is crucial in wound healing under biochemical and biomechanical microenvironment. However, little is known about the underlying mechanisms whereby mechanical tension and cocultured fibroblasts or keratinocytes modulate the migration of keratinocytes or fibroblasts. Here we applied a tensile device together with a modified transwell assay to determine the lateral and transmembrane migration dynamics of human HaCaT keratinocytes or HF fibroblasts. A novel pattern of asymmetric migration was observed for keratinocytes when they were cocultured with non-contact fibroblasts, i.e., the accumulative distance of HaCaT cells was significantly higher when moving away from HF cells or migrating from down to up cross the membrane than that when moving close to HF cells or when migrating from up to down, whereas HF migration was symmetric. This asymmetric migration was mainly regulated by EGF derived from fibroblasts, but not transforming growth factor α or β1 production. Mechanical stretch subjected to fibroblasts fostered keratinocyte asymmetric migration by increasing EGF secretion, while no role of mechanical stretch was found for EGF secretion by keratinocytes. These results provided a new insight into understanding the regulating mechanisms of two- or three-dimensional migration of keratinocytes or fibroblasts along or across dermis and epidermis under biomechanical microenvironment.

  6. Gelatin for purification and proliferation of primary keratinocyte culture for use in chronic wounds and burns.

    Science.gov (United States)

    Rahsaz, Marjan; Geramizadeh, Bita; Kaviani, Maryam; Marzban, Saeed

    2015-04-01

    Human epidermal keratinocytes are currently established as a treatment for burns and wounds and have laboratory applications. Keratinocyte culture contamination by unwanted cells and inhibition of cell proliferation are barriers in primary keratinocyte culture. According to the recent literature, these cells are hard to culture. The present study was conducted to evaluate the efficacy of gelatin-coated surfaces in keratinocyte cultures. After enzymatic isolation of keratinocytes from normal epidermis by trypsin, the cells were cultured on gelatin-coated flasks in serum-free medium. Another group of cells were cultured as a control group without gelatin coating. We showed positive effects of surface coating with gelatin on the primary culture of keratinocytes. Culture of these cells on a gelatincoated surface showed better proliferation with suitable morphology. By using gelatin, adhesion of these cells to the surface was more efficient and without contamination by small round cells. Successful primary culture of keratinocytes on a gelatin-coated surface may provide better yield and optimal number of cells for research and clinical applications.

  7. Oxidative Stress Induces Endothelial Cell Senescence via Downregulation of Sirt6

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2014-01-01

    Full Text Available Accumulating evidence has shown that diabetes accelerates aging and endothelial cell senescence is involved in the pathogenesis of diabetic vascular complications, including diabetic retinopathy. Oxidative stress is recognized as a key factor in the induction of endothelial senescence and diabetic retinopathy. However, specific mechanisms involved in oxidative stress-induced endothelial senescence have not been elucidated. We hypothesized that Sirt6, which is a nuclear, chromatin-bound protein critically involved in many pathophysiologic processes such as aging and inflammation, may have a role in oxidative stress-induced vascular cell senescence. Measurement of Sirt6 expression in human endothelial cells revealed that H2O2 treatment significantly reduced Sirt6 protein. The loss of Sirt6 was associated with an induction of a senescence phenotype in endothelial cells, including decreased cell growth, proliferation and angiogenic ability, and increased expression of senescence-associated β-galactosidase activity. Additionally, H2O2 treatment reduced eNOS expression, enhanced p21 expression, and dephosphorylated (activated retinoblastoma (Rb protein. All of these alternations were attenuated by overexpression of Sirt6, while partial knockdown of Sirt6 expression by siRNA mimicked the effect of H2O2. In conclusion, these results suggest that Sirt6 is a critical regulator of endothelial senescence and oxidative stress-induced downregulation of Sirt6 is likely involved in the pathogenesis of diabetic retinopathy.

  8. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue

    NARCIS (Netherlands)

    Schafer, M.J.; White, T.A.; Evans, G.; Tonne, J.M.; Verzosa, G.C.; Stout, M.B.; Mazula, D.L.; Palmer, A.K.; Baker, D.J.; Jensen, M.D.; Torbenson, M.S.; Miller, J.D.; Ikeda, Y.; Tchkonia, T.; Deursen, J.M.A. van; Kirkland, J.L.; LeBrasseur, N.K.

    2016-01-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the

  9. The Effects of Antifungal Azoles on Inflammatory Cytokine Production in Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    K Zomorodian

    2008-04-01

    Full Text Available ABSTRACT: Introduction & Objective: Azoles drugs are being used successfully in treatment of fungal infections. Recently, immunosuppressive effects of some of these agents have been reported. Keratinocytes, as the major cells of the skin, have an important role in innate immunity against pathogenic agents. Considering the scanty of information about the effects of azoles on immune responces, this study was conducted to assess the expression and secretion of inflammatory cytokines in keratinocytes following treatment with azole drugs. Materials & Methods: This is an exprimental study conducted in in molecular biology division in Tehran University of Medical Sciences and Immunodermatology Department in Vienna Medical University. Primery keratinocytes were cultured and treated with different concentrations of fluconazole, itraconazole, ketoconazole and griseofulvin. Secreted IL1, IL6 and TNF-α by keratinocytes in culture supernatant were measured by quantitative enzyme immunoassay technique. Moreover, expression of the genes encoding IL1 and IL8 was evaluated by Real Time-PCR. Results: Treatment of keratinocytes with different concentrations of fluconazole and low concentration of ketoconazole resulted in decrease in IL1 secretion, but Itraconazole and griseofulvin did not show such an effect at the same concentrations. In addition, none of the examined drugs had an effect on secretion level of IL6 and TNF-α. Quantitative analysis of IL1 and IL8 encoding genes revealed that transcription on these genes might be suppressed following treatment with fluconazole or ketoconazole. Conclusion: Fluconazole and ketoconazole might modulate the expression and secretion of IL1 and IL8 and affect the direction of immune responses induced by keratinocytes

  10. Lactobacillus rhamnosus GG Inhibits the Toxic Effects of Staphylococcus aureus on Epidermal Keratinocytes

    Science.gov (United States)

    Mohammedsaeed, Walaa; McBain, Andrew J.; Cruickshank, Sheena M.

    2014-01-01

    Few studies have evaluated the potential benefits of the topical application of probiotic bacteria or material derived from them. We have investigated whether a probiotic bacterium, Lactobacillus rhamnosus GG, can inhibit Staphylococcus aureus infection of human primary keratinocytes in culture. When primary human keratinocytes were exposed to S. aureus, only 25% of the keratinocytes remained viable following 24 h of incubation. However, in the presence of 108 CFU/ml of live L. rhamnosus GG, the viability of the infected keratinocytes increased to 57% (P = 0.01). L. rhamnosus GG lysates and spent culture fluid also provided significant protection to keratinocytes, with 65% (P = 0.006) and 57% (P = 0.01) of cells, respectively, being viable following 24 h of incubation. Keratinocyte survival was significantly enhanced regardless of whether the probiotic was applied in the viable form or as cell lysates 2 h before or simultaneously with (P = 0.005) or 12 h after (P = 0.01) S. aureus infection. However, spent culture fluid was protective only if added before or simultaneously with S. aureus. With respect to mechanism, both L. rhamnosus GG lysate and spent culture fluid apparently inhibited adherence of S. aureus to keratinocytes by competitive exclusion, but only viable bacteria or the lysate could displace S. aureus (P = 0.04 and 0.01, respectively). Furthermore, growth of S. aureus was inhibited by either live bacteria or lysate but not spent culture fluid. Together, these data suggest at least two separate activities involved in the protective effects of L. rhamnosus GG against S. aureus, growth inhibition and reduction of bacterial adhesion. PMID:25015889

  11. Die funksie van die skeppingstradisie in die boek Jeremia

    African Journals Online (AJOL)

    gedeeites voor wat sterk ooreenkomste toon met die beskrywings van die skep pingsgebeure in die boek Jeremia. • Volgpns Von Rad (1957:144-146) het daar wel 'n groep bestaan wat belange ge- had liet by die oorlewering van die skeppingstradisies. Dit was waarskynlik die. Sadokitiese priesters wat om twee redes aan ...

  12. Physiological and biochemical aspects of flower development and senescence in Nicotiana plumbaginifolia Viv.

    Directory of Open Access Journals (Sweden)

    Nisar Shaziya

    2017-06-01

    Full Text Available Healthy buds of Nicotiana plumbaginifolia growing in the Kashmir University Botanic Garden were selected for the present study. Flower development and senescence was divided into seven stages, viz., tight bud stage (I, mature bud stage (II, pencil stage (III, partially open stage (IV, open stage (V, partially senescent stage (VI and senescent stage (VII. Various physiological and biochemical changes were recorded at each stage of flower development and senescence. Floral diameter, fresh mass, dry mass and water content showed an increase up to flower opening (stage V and thereafter a significant decrease was recorded as the flower development progressed towards senescence through stages VI and VII. An increase in α-amino acids, total phenols and sugars was registered towards anthesis (stage V and a decrease in these parameters was recorded with senescence. Protease activity showed a significant increase towards senescence with a concomitant decrease in soluble proteins. Based on the quantitative analysis of various biochemical parameters, the flower opening in N. plumbaginifolia seems to be accompanied by an increase in the water content, soluble proteins, α‑amino acids and phenols. A decrease in these parameters, besides an increase in protease activity induces senescence in the beautiful flowers of N. plumbaginifolia. Understanding flower senescence may help in improving the postharvest performance of this beautiful ornamental flower to make it a potential material for the floriculture industry.

  13. Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit.

    Science.gov (United States)

    Puvvula, Pavan Kumar; Desetty, Rohini Devi; Pineau, Pascal; Marchio, Agnés; Moon, Anne; Dejean, Anne; Bischof, Oliver

    2014-11-19

    Cellular senescence is a stable cell cycle arrest that limits the proliferation of pre-cancerous cells. Here we demonstrate that scaffold-attachment-factor A (SAFA) and the long noncoding RNA PANDA differentially interact with polycomb repressive complexes (PRC1 and PRC2) and the transcription factor NF-YA to either promote or suppress senescence. In proliferating cells, SAFA and PANDA recruit PRC complexes to repress the transcription of senescence-promoting genes. Conversely, the loss of SAFA-PANDA-PRC interactions allows expression of the senescence programme. Accordingly, we find that depleting either SAFA or PANDA in proliferating cells induces senescence. However, in senescent cells where PANDA sequesters transcription factor NF-YA and limits the expression of NF-YA-E2F-coregulated proliferation-promoting genes, PANDA depletion leads to an exit from senescence. Together, our results demonstrate that PANDA confines cells to their existing proliferative state and that modulating its level of expression can cause entry or exit from senescence.

  14. Die binding van die konfessie

    Directory of Open Access Journals (Sweden)

    P. J. Coetzee

    1970-05-01

    Full Text Available Ons moet waak teen twee uiterstes. Aan die een kant het die dogma as onversoenlike vyand die dogmatisme en aan die ander kant die antidogmatisme — dit hou enersyds die gevaar in van verabsolutering (oorskatting, en ander- syds die gevaar van relativisme (onderskatting.

  15. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes

    International Nuclear Information System (INIS)

    Xie, Xin; Dai, Hui; Zhuang, Binyu; Chai, Li; Xie, Yanguang; Li, Yuzhen

    2016-01-01

    The effects and the underlying mechanisms of hydrogen sulfide (H 2 S) on keratinocyte proliferation and differentiation are still less known. In the current study, we investigated the effects and the underlying mechanisms of exogenous H 2 S on keratinocyte proliferation and differentiation. Human keratinocytes (HaCaT cells) were treated with various concentrations (0.05, 0.25, 0.5 and 1 mM) of sodium hydrosulfide (NaHS, a donor of H 2 S) for 24 h. A CCK-8 assay was used to assess cell viability. Western blot analysis was performed to determine the expression levels of proteins associated with differentiation and autophagy. Transmission electron microscopy was performed to observe autophagic vacuoles, and flow cytometry was applied to evaluate apoptosis. NaHS promoted the viability, induced the differentiation, and enhanced autophagic activity in a dose-dependent manner in HaCaT cells but had no effect on cell apoptosis. Blockage of autophagy by ATG5 siRNA inhibited NaHS-induced cell proliferation and differentiation. The current study demonstrated that autophagy in response to exogenous H 2 S treatment promoted keratinocyte proliferation and differentiation. Our results provide additional insights into the potential role of autophagy in keratinocyte proliferation and differentiation. - Highlights: • Exogenous H 2 S promotes keratinocyte proliferation and differentiation. • The effects of H 2 S on proliferation and differentiation is modulated by autophagy. • Exogenous H 2 S has no effect on keratinocyte apoptosis.

  16. Die nabyheid van die Koninkryk

    Directory of Open Access Journals (Sweden)

    W.J. Snyman

    1963-03-01

    Full Text Available Vanweë die belangrikheid daarvan volg hier ’n breër bespreking van die proefskrif van dr. Tjaart van der Walt oor die nabyheid van die Koninkryk as wat in ’n gewone resensie kan geskied. Die vraagstuk wat onder oë gesien word is so oud as die kerk en die teologie, soms minder en soms meer op die voorgrond. Tans kan gesê word, staan dit in die middelpunt. Daarby is dit nie maar ’n akademiese vraagstuk nie, maar ’n vraagstuk waarvoor elke nadenkende leser van die Skrif te staan kom.

  17. The Dual Role of Cellular Senescence in Developing Tumors and Their Response to Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Markus Schosserer

    2017-11-01

    Full Text Available Cellular senescence describes an irreversible growth arrest characterized by distinct morphology, gene expression pattern, and secretory phenotype. The final or intermediate stages of senescence can be reached by different genetic mechanisms and in answer to different external and internal stresses. It has been maintained in the literature but never proven by clearcut experiments that the induction of senescence serves the evolutionary purpose of protecting the individual from development and growth of cancers. This hypothesis was recently scrutinized by new experiments and found to be partly true, but part of the gene activities now known to happen in senescence are also needed for cancer growth, leading to the view that senescence is a double-edged sword in cancer development. In current cancer therapy, cellular senescence is, on the one hand, intended to occur in tumor cells, as thereby the therapeutic outcome is improved, but might, on the other hand, also be induced unintentionally in non-tumor cells, causing inflammation, secondary tumors, and cancer relapse. Importantly, organismic aging leads to accumulation of senescent cells in tissues and organs of aged individuals. Senescent cells can occur transiently, e.g., during embryogenesis or during wound healing, with beneficial effects on tissue homeostasis and regeneration or accumulate chronically in tissues, which detrimentally affects the microenvironment by de- or transdifferentiation of senescent cells and their neighboring stromal cells, loss of tissue specific functionality, and induction of the senescence-associated secretory phenotype, an increased secretory profile consisting of pro-inflammatory and tissue remodeling factors. These factors shape their surroundings toward a pro-carcinogenic microenvironment, which fuels the development of aging-associated cancers together with the accumulation of mutations over time. We are presenting an overview of well-documented stress

  18. Integrin-linked kinase and ELMO2 modulate recycling endosomes in keratinocytes.

    Science.gov (United States)

    Ho, Ernest; Ivanova, Iordanka A; Dagnino, Lina

    2016-12-01

    The formation of tight cell-cell junctions is essential in the epidermis for its barrier properties. In this tissue, keratinocytes follow a differentiation program tightly associated with their movement from the innermost basal to the outer suprabasal layers, and with changes in their cell-cell adhesion profile. Intercellular adhesion in keratinocytes is mediated through cell-cell contacts, including E-cadherin-based adherens junctions. Although the mechanisms that mediate E-cadherin delivery to the plasma membrane have been widely studied in simple epithelia, this process is less well understood in the stratified epidermis. In this study, we have investigated the role of Engulfment and Cell Motility 2 (ELMO2) and integrin-linked kinase (ILK) in the positioning of E-cadherin-containing recycling endosomes during establishment of cell-cell contacts in differentiating keratinocytes. We now show that induction of keratinocyte differentiation by Ca 2+ is accompanied by localization of ELMO2 and ILK to Rab4- and Rab11a-containing recycling endosomes. The positioning of long-loop Rab11a-positive endosomes at areas adjacent to cell-cell contacts is disrupted in ELMO2- or ILK-deficient keratinocytes, and is associated with impaired localization of E-cadherin to cell borders. Our studies show a previously unrecognized role for ELMO2 and ILK in modulation of endosomal positioning, which may play key roles in epidermal sheet maintenance and permeability barrier function. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2

    International Nuclear Information System (INIS)

    Zhu, Haigang; Hou, Liyue; Liu, Jingjing; Li, Zhiming

    2016-01-01

    MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.

  20. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Haigang; Hou, Liyue; Liu, Jingjing; Li, Zhiming, E-mail: lizm_1001@sina.com

    2016-02-26

    MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.

  1. Pimecrolimus enhances TLR2/6-induced expression of antimicrobial peptides in keratinocytes.

    Science.gov (United States)

    Büchau, Amanda S; Schauber, Jürgen; Hultsch, Thomas; Stuetz, Anton; Gallo, Richard L

    2008-11-01

    Calcineurin inhibitors are potent inhibitors of T-cell-receptor mediated activation of the adaptive immune system. The effects of this class of drug on the innate immune response system are not known. Keratinocytes are essential to innate immunity in skin and rely on toll-like receptors (TLRs) and antimicrobial peptides to appropriately recognize and respond to injury or microbes. In this study we examined the response of cultured human keratinocytes to pimecrolimus. We observed that pimecrolimus enhances distinct expression of cathelicidin, CD14, and human beta-defensin-2 and beta-defensin-3 in response to TLR2/6 ligands. Some of these responses were further enhanced by 1,25 vitamin D3. Pimecrolimus also increased the functional capacity of keratinocytes to inhibit growth of Staphylococcus aureus and decreased TLR2/6-induced expression of IL-10 and IL-1beta. Furthermore, pimecrolimus inhibited nuclear translocation of NFAT and NF-kappaB in keratinocytes. These observations uncover a previously unreported function for pimecrolimus in cutaneous innate host defense.

  2. AKT delays the early-activated apoptotic pathway in UVB-irradiated keratinocytes via BAD translocation.

    Science.gov (United States)

    Claerhout, Sofie; Decraene, David; Van Laethem, An; Van Kelst, Sofie; Agostinis, Patrizia; Garmyn, Marjan

    2007-02-01

    Upon irradiation with a high dose of UVB, keratinocytes undergo apoptosis as a protective mechanism. In previous work, we demonstrated the existence of an early-activated UVB-induced apoptotic pathway in growth factor-depleted human keratinocytes, which can be substantially delayed by the exclusive supplementation of IGF-1. We now show that in human keratinocytes, IGF-1 inhibits the onset of UVB-triggered apoptosis through a transcriptional independent, AKT-mediated mechanism, involving BAD serine 136 phosphorylation. Our results show that the early UVB-induced apoptosis in growth factor-depleted human keratinocytes is exclusively triggered through the mitochondrial pathway. It is accompanied by BAX translocation, cytochrome c release, and procaspase-9 cleavage, but not by procaspase-8 or BID cleavage. In human keratinocytes, IGF-1 supplementation inhibits these events in a transcription-independent manner. Both IGF-1 supplementation and the transduction of a membrane-targeted form of AKT result in a shift of the BH3-only protein BAD from the mitochondria to the cytoplasm, paralleled by an increase of AKT-specific Ser136 phospho-BAD bound to 14-3-3zeta protein. These data indicate that AKT-induced BAD phosphorylation and its subsequent cytoplasmic sequestration by 14-3-3zeta is a major mechanism responsible for the postponement of UVB-induced apoptosis in human keratinocytes.

  3. Enhanced secretion of TIMP-1 by human hypertrophic scar keratinocytes could contribute to fibrosis.

    Science.gov (United States)

    Simon, Franck; Bergeron, Daniele; Larochelle, Sébastien; Lopez-Vallé, Carlos A; Genest, Hervé; Armour, Alexis; Moulin, Véronique J

    2012-05-01

    Hypertrophic scars are a pathological process characterized by an excessive deposition of extracellular matrix components. Using a tissue-engineered reconstructed human skin (RHS) method, we previously reported that pathological keratinocytes induce formation of a fibrotic dermal matrix. We further investigated keratinocyte action using conditioned media. Results showed that conditioned media induce a similar action on dermal thickness similar to when an epidermis is present. Using a two-dimensional electrophoresis technique, we then compared conditioned media from normal or hypertrophic scar keratinocytes and determined that TIMP-1 was increased in conditioned media from hypertrophic scar keratinocytes. This differential profile was confirmed using ELISA, assaying TIMP-1 presence on media from monolayer cultured keratinocytes and from RHS. The dermal matrix of these RHS was recreated using mesenchymal cells from three different origins (skin, wound and hypertrophic scar). The effect of increased TIMP-1 levels on dermal fibrosis was also validated independently from the mesenchymal cell origin. Immunodetection of TIMP-1 showed that this protein was increased in the epidermis of hypertrophic scar biopsies. The findings of this study represent an important advance in understanding the role of keratinocytes as a direct potent modulator for matrix degradation and scar tissue remodeling, possibly through inactivation of MMPs. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  4. Ca2+-dependent localization of integrin-linked kinase to cell junctions in differentiating keratinocytes.

    Science.gov (United States)

    Vespa, Alisa; Darmon, Alison J; Turner, Christopher E; D'Souza, Sudhir J A; Dagnino, Lina

    2003-03-28

    Integrin complexes are necessary for proper proliferation and differentiation of epidermal keratinocytes. Differentiation of these cells is accompanied by down-regulation of integrins and focal adhesions as well as formation of intercellular adherens junctions through E-cadherin homodimerization. A central component of integrin adhesion complexes is integrin-linked kinase (ILK), which can induce loss of E-cadherin expression and epithelial-mesenchymal transformation when ectopically expressed in intestinal and mammary epithelia. In cultured primary mouse keratinocytes, we find that ILK protein levels are independent of integrin expression and signaling, since they remain constant during Ca(2+)-induced differentiation. In contrast, keratinocyte differentiation is accompanied by marked reduction in kinase activity in ILK immunoprecipitates and altered ILK subcellular distribution. Specifically, ILK distributes in close apposition to actin fibers along intercellular junctions in differentiated but not in undifferentiated keratinocytes. ILK localization to cell-cell borders occurs independently of integrin signaling and requires Ca(2+) as well as an intact actin cytoskeleton. Further, and in contrast to what is observed in other epithelial cells, ILK overexpression in differentiated keratinocytes does not promote E-cadherin down-regulation and epithelial-mesenchymal transition. Thus, novel tissue-specific mechanisms control the formation of ILK complexes associated with cell-cell junctions in differentiating murine epidermal keratinocytes.

  5. Senescence as biologic endpoint following pharmacological targeting of receptor tyrosine kinases in cancer.

    Science.gov (United States)

    Francica, Paola; Aebersold, Daniel M; Medová, Michaela

    2017-02-15

    Cellular senescence was first described in 1961 in a seminal study by Hayflick and Moorhead as a limit to the replicative lifespan of somatic cells after serial cultivation. Since then, major advances in our understanding of senescence have been achieved suggesting that this mechanism is activated also by oncogenic stimuli, oxidative stress and DNA damage, giving rise to the concept of premature senescence. Regardless of the initial trigger, numerous experimental observations have been provided to support the notion that both replicative and premature senescence play pivotal roles in early stages of tumorigenesis and in response of tumor cells to anticancer treatments. Moreover, various studies have suggested that the induction of senescence by both chemo- and radiotherapy in a variety of cancer types correlates with treatment outcome. As it is widely accepted that cellular senescence may function as a fundamental barrier of tumor progression, the significance of senescence for clinical interventions that make use of novel molecular targeting-based modalities needs to be well defined. Interestingly, despite numerous studies evaluating efficacies of receptor tyrosine kinases (RTKs) targeting strategies in both preclinical and clinical settings, the relevance of RTKs inhibition-associated senescence in tumors remains less characterized. Here we review the available literature that describes premature senescence as a major mechanism following targeting of RTKs in preclinical as well as in clinical settings. Additionally, we discuss the possible role of diverse RTKs in regulating the induction of senescence following cellular stress and possible implications of this crosstalk in identification of biomarkers of inhibitor-mediated chemo- and radiosensitization approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Genome-wide evaluation of histone methylation changes associated with leaf senescence in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Judy A Brusslan

    Full Text Available Leaf senescence is the orderly dismantling of older tissue that allows recycling of nutrients to developing portions of the plant and is accompanied by major changes in gene expression. Histone modifications correlate to levels of gene expression, and this study utilizes ChIP-seq to classify activating H3K4me3 and silencing H3K27me3 marks on a genome-wide scale for soil-grown mature and naturally senescent Arabidopsis leaves. ChIPnorm was used to normalize data sets and identify genomic regions with significant differences in the two histone methylation patterns, and the differences were correlated to changes in gene expression. Genes that showed an increase in the H3K4me3 mark in older leaves were senescence up-regulated, while genes that showed a decrease in the H3K4me3 mark in the older leaves were senescence down-regulated. For the H3K27me3 modification, genes that lost the H3K27me3 mark in older tissue were senescence up-regulated. Only a small number of genes gained the H3K27me3 mark, and these were senescence down-regulated. Approximately 50% of senescence up-regulated genes lacked the H3K4me3 mark in both mature and senescent leaf tissue. Two of these genes, SAG12 and At1g73220, display strong senescence up-regulation without the activating H3K4me3 histone modification. This study provides an initial epigenetic framework for the developmental transition into senescence.

  7. Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Thomas Secher

    Full Text Available Cellular senescence is an irreversible state of proliferation arrest evoked by a myriad of stresses including oncogene activation, telomere shortening/dysfunction and genotoxic insults. It has been associated with tumor activation, immune suppression and aging, owing to the secretion of proinflammatory mediators. The bacterial genotoxin colibactin, encoded by the pks genomic island is frequently harboured by Escherichia coli strains of the B2 phylogenetic group. Mammalian cells exposed to live pks+ bacteria exhibit DNA-double strand breaks (DSB and undergo cell-cycle arrest and death. Here we show that cells that survive the acute bacterial infection with pks+ E. coli display hallmarks of cellular senescence: chronic DSB, prolonged cell-cycle arrest, enhanced senescence-associated β-galactosidase (SA-β-Gal activity, expansion of promyelocytic leukemia nuclear foci and senescence-associated heterochromatin foci. This was accompanied by reactive oxygen species production and pro-inflammatory cytokines, chemokines and proteases secretion. These mediators were able to trigger DSB and enhanced SA-β-Gal activity in bystander recipient cells treated with conditioned medium from senescent cells. Furthermore, these senescent cells promoted the growth of human tumor cells. In conclusion, the present data demonstrated that the E. coli genotoxin colibactin induces cellular senescence and subsequently propel bystander genotoxic and oncogenic effects.

  8. MicroRNA-33 promotes the replicative senescence of mouse embryonic fibroblasts by suppressing CDK6

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shun; Huang, Haijiao; Li, Nanhong; Zhang, Bing; Jia, Yubin; Yang, Yukun; Yuan, Yuan; Xiong, Xing-dong; Wang, Dengchuan; Zheng, Hui-ling [Institute of Aging Research, Guangdong Medical University, Dongguan (China); Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan (China); Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang (China); Liu, Xinguang, E-mail: xgliu64@126.com [Institute of Aging Research, Guangdong Medical University, Dongguan (China); Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan (China); Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang (China)

    2016-05-13

    MicroRNAs are a large class of tiny noncoding RNAs, which have emerged as critical regulators of gene expression, and thus are involved in multiple cellular processes, including cellular senescence. MicroRNA-33 has previously been established to exert crucial effect on cell proliferation, lipid metabolism and cholesterol metabolism. Nonetheless, the association between microRNA-33 and cellular senescence and its underlying molecular mechanism are far to be elucidated. The present study has attempted to probe into the effect of microRNA-33 on MEFs senescence. Our data unveiled that microRNA-33 was dramatically down-regulated in senescent MEFs compared to the young MEFs, and ectopic expression of microRNA-33 promoted MEFs senescence, while knock-down of microRNA-33 exhibited a protective effect against senescence phenotype. Moreover, we verified CDK6 as a direct target of microRNA-33 in mouse. Silencing of CDK6 induced the premature senescence phenotype of MEFs similarly as microRNA-33, while enforced expression of CDK6 significantly reverse the senescence-induction effect of microRNA-33. Taken together, our results suggested that microRNA-33 enhanced the replicative senescence of MEFs potentially by suppressing CDK6 expression. -- Highlights: •MicroRNA-33 was dramatically down-regulated in senescent MEF cells. •Altered expression of microRNA-33 exerted a critical role in MEFs senescence. •MicroRNA-33 promoted the replicative senescence of MEFs via targeting of CDK6.

  9. MicroRNA-33 promotes the replicative senescence of mouse embryonic fibroblasts by suppressing CDK6

    International Nuclear Information System (INIS)

    Xu, Shun; Huang, Haijiao; Li, Nanhong; Zhang, Bing; Jia, Yubin; Yang, Yukun; Yuan, Yuan; Xiong, Xing-dong; Wang, Dengchuan; Zheng, Hui-ling; Liu, Xinguang

    2016-01-01

    MicroRNAs are a large class of tiny noncoding RNAs, which have emerged as critical regulators of gene expression, and thus are involved in multiple cellular processes, including cellular senescence. MicroRNA-33 has previously been established to exert crucial effect on cell proliferation, lipid metabolism and cholesterol metabolism. Nonetheless, the association between microRNA-33 and cellular senescence and its underlying molecular mechanism are far to be elucidated. The present study has attempted to probe into the effect of microRNA-33 on MEFs senescence. Our data unveiled that microRNA-33 was dramatically down-regulated in senescent MEFs compared to the young MEFs, and ectopic expression of microRNA-33 promoted MEFs senescence, while knock-down of microRNA-33 exhibited a protective effect against senescence phenotype. Moreover, we verified CDK6 as a direct target of microRNA-33 in mouse. Silencing of CDK6 induced the premature senescence phenotype of MEFs similarly as microRNA-33, while enforced expression of CDK6 significantly reverse the senescence-induction effect of microRNA-33. Taken together, our results suggested that microRNA-33 enhanced the replicative senescence of MEFs potentially by suppressing CDK6 expression. -- Highlights: •MicroRNA-33 was dramatically down-regulated in senescent MEF cells. •Altered expression of microRNA-33 exerted a critical role in MEFs senescence. •MicroRNA-33 promoted the replicative senescence of MEFs via targeting of CDK6.

  10. Actuarial senescence in a long-lived orchid challenges our current understanding of ageing

    Science.gov (United States)

    Colchero, Fernando; Jones, Owen R.; Øien, Dag-Inge; Moen, Asbjørn; Sletvold, Nina

    2016-01-01

    The dominant evolutionary theory of actuarial senescence—an increase in death rate with advancing age—is based on the concept of a germ cell line that is separated from the somatic cells early in life. However, such a separation is not clear in all organisms. This has been suggested to explain the paucity of evidence for actuarial senescence in plants. We used a 32 year study of Dactylorhiza lapponica that replaces its organs each growing season, to test whether individuals of this tuberous orchid senesce. We performed a Bayesian survival trajectory analysis accounting for reproductive investment, for individuals under two types of land use, in two climatic regions. The mortality trajectory was best approximated by a Weibull model, showing clear actuarial senescence. Rates of senescence in this model declined with advancing age, but were slightly higher in mown plots and in the more benign climatic region. At older ages, senescence was evident only when accounting for a positive effect of reproductive investment on mortality. Our results demonstrate actuarial senescence as well as a survival–reproduction trade-off in plants, and indicate that environmental context may influence senescence rates. This knowledge is crucial for understanding the evolution of demographic senescence and for models of plant population dynamics. PMID:27852801

  11. The impact of cellular senescence in skin ageing: A notion of mosaic and therapeutic strategies.

    Science.gov (United States)

    Toutfaire, Marie; Bauwens, Emilie; Debacq-Chainiaux, Florence

    2017-10-15

    Cellular senescence is now recognized as one of the nine hallmarks of ageing. Recent data show the involvement of senescent cells in tissue ageing and some age-related diseases. Skin represents an ideal model for the study of ageing. Indeed, skin ageing varies between individuals depending on their chronological age but also on their exposure to various exogenous factors (mainly ultraviolet rays). If senescence traits can be detected with ageing in the skin, the senescent phenotype varies among the various skin cell types. Moreover, the origin of cellular senescence in the skin is still unknown, and multiple origins are possible. This reflects the mosaic of skin ageing. Senescent cells can interfere with their microenvironment, either via the direct secretion of factors (the senescence-associated secretory phenotype) or via other methods of communication, such as extracellular vesicles. Knowledge regarding the impact of cellular senescence on skin ageing could be integrated into dermatology research, especially to limit the appearance of senescent cells after photo(chemo)therapy or in age-related skin diseases. Therapeutic approaches include the clearance of senescent cells via the use of senolytics or via the cooperation with the immune system. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The Pace and Shape of Senescence in Angiosperms

    DEFF Research Database (Denmark)

    Baudisch, Annette; Salguero-Gómez, Roberto; Jones, Owen

    2013-01-01

    1. Demographic senescence, the decay in fertility and increase in the risk of mortality with age, is one of the most striking phenomena in ecology and evolution. Comparative studies of senescence patterns of plants are scarce, and consequently, little is known about senescence and its determinants...... (‘senescence’), decreases (‘negative senescence’) or remains constant over age (‘negligible senescence’). 3. We extract mortality trajectories from ComPADRe III, a data base that contains demographic information for several hundred plant species. We apply age-from-stage matrix decomposition methods to obtain...... age-specific trajectories from 290 angiosperm species of various growth forms distributed globally. From these trajectories, we survey pace and shape values and investigate how growth form and ecoregion influence these two aspects of mortality using a Bayesian regression analysis that accounts...

  13. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xin [Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province (China); Dai, Hui [Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province (China); Zhuang, Binyu [Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province (China); Chai, Li; Xie, Yanguang [Institute of Dermatology of Heilongjiang Province, Harbin, 150001, Heilongjiang Province (China); Li, Yuzhen, E-mail: liyuzhen@medmail.com.cn [Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province (China)

    2016-04-08

    The effects and the underlying mechanisms of hydrogen sulfide (H{sub 2}S) on keratinocyte proliferation and differentiation are still less known. In the current study, we investigated the effects and the underlying mechanisms of exogenous H{sub 2}S on keratinocyte proliferation and differentiation. Human keratinocytes (HaCaT cells) were treated with various concentrations (0.05, 0.25, 0.5 and 1 mM) of sodium hydrosulfide (NaHS, a donor of H{sub 2}S) for 24 h. A CCK-8 assay was used to assess cell viability. Western blot analysis was performed to determine the expression levels of proteins associated with differentiation and autophagy. Transmission electron microscopy was performed to observe autophagic vacuoles, and flow cytometry was applied to evaluate apoptosis. NaHS promoted the viability, induced the differentiation, and enhanced autophagic activity in a dose-dependent manner in HaCaT cells but had no effect on cell apoptosis. Blockage of autophagy by ATG5 siRNA inhibited NaHS-induced cell proliferation and differentiation. The current study demonstrated that autophagy in response to exogenous H{sub 2}S treatment promoted keratinocyte proliferation and differentiation. Our results provide additional insights into the potential role of autophagy in keratinocyte proliferation and differentiation. - Highlights: • Exogenous H{sub 2}S promotes keratinocyte proliferation and differentiation. • The effects of H{sub 2}S on proliferation and differentiation is modulated by autophagy. • Exogenous H{sub 2}S has no effect on keratinocyte apoptosis.

  14. H{sup +}/peptide transporter (PEPT2) is expressed in human epidermal keratinocytes and is involved in skin oligopeptide transport

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Michiko; Katayoshi, Takeshi; Kobayashi-Nakamura, Kumiko [DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025 (Japan); Akagawa, Mitsugu [Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Tsuji-Naito, Kentaro, E-mail: knaito@dhc.co.jp [DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025 (Japan)

    2016-07-08

    Peptide transporter 2 (PEPT2) is a member of the proton-coupled oligopeptide transporter family, which mediates the cellular uptake of oligopeptides and peptide-like drugs. Although PEPT2 is expressed in many tissues, its expression in epidermal keratinocytes remains unclear. We investigated PEPT2 expression profile and functional activity in keratinocytes. We confirmed PEPT2 mRNA expression in three keratinocyte lines (normal human epidermal keratinocytes (NHEKs), immortalized keratinocytes, and malignant keratinocytes) by reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. In contrast to PEPT1, PEPT2 expression in the three keratinocytes was similar or higher than that in HepG2 cells, used as PEPT2-positive cells. Immunolocalization analysis using human skin showed epidermal PEPT2 localization. We studied keratinocyte transport function by measuring the oligopeptide content using liquid chromatography/tandem mass spectrometry. Glycylsarcosine uptake in NHEKs was pH-dependent, suggesting that keratinocytes could absorb small peptides in the presence of an inward H{sup +} gradient. We also performed a skin-permeability test of several oligopeptides using skin substitute, suggesting that di- and tripeptides pass actively through the epidermis. In conclusion, PEPT2 is expressed in keratinocytes and involved in skin oligopeptide uptake. -- Highlights: •PEPT2 is expressed in keratinocytes, which are more common than other skin cells. •Immunolocalization analysis using human skin revealed epidermal PEPT2 localization. •Keratinocytes could absorb small peptides in the presence of an inward H{sup +} gradient. •Di- and tripeptide pass actively through the epidermis.

  15. Telomeres and replicative senescence: Is it only length that counts?

    Science.gov (United States)

    von Zglinicki, T

    2001-07-26

    Telomeres are well established as a major 'replicometer', counting the population doublings in primary human cell cultures and ultimately triggering replicative senescence. However, neither is the pace of this biological clock inert, nor is there a fixed threshold telomere length acting as the universal trigger of replicative senescence. The available data suggest that opening of the telomeric loop and unscheduled exposure of the single-stranded G-rich telomeric overhang might act like a semaphore to signal senescent cell cycle arrest. Short telomere length, telomeric single-strand breaks, low levels of loop-stabilizing proteins, or other factors may trigger this opening of the loop. Thus, both telomere shortening and the ultimate signalling into senescence are able to integrate different environmental and genetic factors, especially oxidative stress-mediated damage, which might otherwise become a thread to genomic stability.

  16. F4/80+ Macrophages Contribute to Clearance of Senescent Cells in the Mouse Postpartum Uterus.

    Science.gov (United States)

    Egashira, Mahiro; Hirota, Yasushi; Shimizu-Hirota, Ryoko; Saito-Fujita, Tomoko; Haraguchi, Hirofumi; Matsumoto, Leona; Matsuo, Mitsunori; Hiraoka, Takehiro; Tanaka, Tomoki; Akaeda, Shun; Takehisa, Chiaki; Saito-Kanatani, Mayuko; Maeda, Kei-Ichiro; Fujii, Tomoyuki; Osuga, Yutaka

    2017-07-01

    Cellular senescence, defined as an irreversible cell cycle arrest, exacerbates the tissue microenvironment. Our previous study demonstrated that mouse uterine senescent cells were physiologically increased according to gestational days and that their abnormal accumulation was linked to the onset of preterm delivery. We hypothesized that there is a mechanism for removal of senescent cells after parturition to maintain uterine function. In the current study, we noted abundant uterine senescent cells and their gradual disappearance in wild-type postpartum mice. F4/80+ macrophages were present specifically around the area rich in senescent cells. Depletion of macrophages in the postpartum mice using anti-F4/80 antibody enlarged the area of senescent cells in the uterus. We also found excessive uterine senescent cells and decreased second pregnancy success rate in a preterm birth model using uterine p53-deleted mice. Furthermore, a decrease in F4/80+ cells and an increase in CD11b+ cells with a senescence-associated inflammatory microenvironment were observed in the p53-deleted uterus, suggesting that uterine p53 deficiency affects distribution of the macrophage subpopulation, interferes with senescence clearance, and promotes senescence-induced inflammation. These findings indicate that the macrophage is a key player in the clearance of uterine senescent cells to maintain postpartum uterine function. Copyright © 2017 Endocrine Society.

  17. Th17 cell-mediated immune responses promote mast cell proliferation by triggering stem cell factor in keratinocytes

    International Nuclear Information System (INIS)

    Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee; Woo, So-Youn

    2017-01-01

    Although mast cells are traditionally thought to function as effector cells in allergic responses, they have increasingly been recognized as important regulators of various immune responses. Mast cells mature locally; thus, tissue-specific influences are important for promoting mast cell accumulation and survival in the skin and the gastrointestinal tract. In this study, we determined the effects of keratinocytes on mast cell accumulation during Th17-mediated skin inflammation. We observed increases in dermal mast cells in imiquimod-induced psoriatic dermatitis in mice accompanied by the expression of epidermal stem cell factor (SCF), a critical mast cell growth factor. Similar to mouse epidermal keratinocytes, SCF was highly expressed in the human HaCaT keratinocyte cell line following stimulation with IL−17. Further, keratinocytes promoted mast cell proliferation following stimulation with IL−17 in vitro. However, the effects of keratinocytes on mast cells were significantly diminished in the presence of anti−CD117 (stem cell factor receptor) blocking antibodies. Taken together, our results revealed that the Th17-mediated inflammatory environment promotes mast cell accumulation through keratinocyte-derived SCF. - Highlights: • Psoriasis-like skin inflammation increase dermal mast cells. • Keratinocyte produce stem cell factor in psoriasis-like skin inflammation. • Keratinocyte promote mast cell proliferation by stem cell factor dependent manner

  18. Keratinocytes express fibrillin and assemble microfibrils: implications for dermal matrix organization.

    Science.gov (United States)

    Haynes, S L; Shuttleworth, C A; Kielty, C M

    1997-07-01

    Fibrillin-containing microfibrils are key architectural structures of the upper dermis and integral components of the dermal elastic fibre network. Microfibril bundles intercalate into the dermal-epithelial junction and provide an elastic connection between the dermal elastic fibre network and the epidermis. Immunohistochemical studies have suggested that they are laid down both at the dermal-epithelial junction and in the deep dermis. While dermal fibroblasts are responsible for deposition of the elastin and microfibrillar components that comprise the elastic fibres of the deep dermis, the cellular origin of the microfibril bundles that extrude from the dermal-epithelial junction is not well defined. We have used fresh tissues, freshly isolated epidermis and primary human and porcine keratinocyte cultures to investigate the possibility that keratinocytes are responsible for deposition of these microfibrils. We have shown that keratinocytes in vivo and in vitro synthesize both fibrillin-1 and fibrillin-2, and assemble beaded microfibrils concurrently with expression of basement membrane collagen. These observations suggest that keratinocytes co-ordinate the secretion, deposition and assembly of these distinct structural elements of the dermal matrix, and have important implications for skin remodelling.

  19. Increased storage and secretion of phosphatidylcholines by senescent human peritoneal mesothelial cells.

    Science.gov (United States)

    Bartosova, Maria; Rudolf, Andras; Pichl, Sebastian; Schmidt, Kathrin; Okun, Jürgen G; Straub, Beate K; Rutkowski, Rafael; Witowski, Janusz; Schmitt, Claus P

    2016-08-01

    Human peritoneal mesothelial cells (HPMC) secrete phosphatidylcholines (PC) which form a lipid bilayer lining the peritoneum. They prevent frictions and adhesions and act as a barrier to the transport of water-soluble solutes while permitting water flux. PC may play an essential role in peritoneal integrity and function, the role of PD induced HPMC senescence on PC homeostasis, however, is unknown. HPMC cell lines were isolated from four non-uremic patients. Expression of the three PC synthesis genes (rt-PCR), and cellular storage and secretion of PC (ESI-mass-spectrometry) were analyzed in young and senescent HPMC (>Hayflick-limit). Senescent cells displayed significantly altered morphology; flow cytometry demonstrated extensive staining for senescence-associated beta galactosidase. Nine different PC were detected in HPMC with palmitoyl-myristoyl phosphatidylcholine (PMPC) being most abundant. In senescent HPMC mRNA expression of the three key PC synthesis genes was 1.5-, 2.4- and 6-fold increased as compared to young HPMC, with the latter, phosphatidylcholine cytidylyltransferase, being rate limiting. Intracellular storage of the nine PC was 75-450 % higher in senescent vs. young HPMC, PC secretion rates were 100-300 % higher. Intracellular PC concentrations were not correlated with the PC secretion rates. Electron microscopy demonstrated lamellar bodies, the primary storage site of PC, in senescent but not in young cells. Senescent HPMC store and secrete substantially more PC than young cells. Our findings indicate a novel protective mechanism, which should counteract peritoneal damage induced by chronic exposure to PD fluids.

  20. Integrin-Linked Kinase Is Indispensable for Keratinocyte Differentiation and Epidermal Barrier Function.

    Science.gov (United States)

    Sayedyahossein, Samar; Rudkouskaya, Alena; Leclerc, Valerie; Dagnino, Lina

    2016-02-01

    A functional permeability barrier is essential to prevent the passage of water and electrolytes, macromolecules, and pathogens through the epidermis. This is accomplished in terminally differentiated keratinocytes through formation of a cornified envelope and the assembly of tight intercellular junctions. Integrin-linked kinase (ILK) is a scaffold protein essential for hair follicle morphogenesis and epidermal attachment to the basement membrane. However, the biological functions of ILK in differentiated keratinocytes remain poorly understood. Furthermore, whether ILK is implicated in keratinocyte differentiation and intercellular junction formation has remained an unresolved issue. Here we describe a pivotal role for ILK in keratinocyte differentiation responses to increased extracellular Ca(2+), regulation of adherens and tight junction assembly, and the formation of an outside-in permeability barrier toward macromolecules. In the absence of ILK, the calcium sensing receptor, E-cadherin, and ZO-1 fail to translocate to the cell membrane, through mechanisms that involve abnormalities in microtubules and in RhoA activation. In situ, ILK-deficient epidermis exhibits reduced tight junction formation and increased outside-in permeability to a dextran tracer, indicating reduced barrier properties toward macromolecules. Therefore, ILK is an essential component of keratinocyte differentiation programs that contribute to epidermal integrity and the establishment of its barrier properties. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Chlorophyll loss associated with heat-induced senescence in bentgrass.

    Science.gov (United States)

    Jespersen, David; Zhang, Jing; Huang, Bingru

    2016-08-01

    Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat

  2. Analysis of aquaporin 9 expression in human epidermis and cultured keratinocytes

    Directory of Open Access Journals (Sweden)

    Yoshinori Sugiyama

    2014-01-01

    Full Text Available Aquaporin 9 (AQP9 is a member of the aquaglyceroporin family that transports glycerol, urea and other small solutes as well as water. Compared to the expression and function in epidermal keratinocytes of AQP3, another aquaglyceroporin, our knowledge of epidermal AQP9 remains elusive. In this study, we investigated the expression of AQP9 in the human epidermis and cultured keratinocytes. Immunofluorescence studies revealed that AQP9 expression is highly restricted to the stratum granulosum of the human epidermis, where occludin is also expressed at the tight junctions. Interestingly, the AQP3 staining decreased sharply below the cell layers in which AQP9 is expressed. In cultured normal human epidermal keratinocytes (NHEK, knock-down of AQP9 expression in the differentiated cells induced by RNA interference reduced glycerol uptake, which was not as pronounced as was the case with AQP3 knock-down cells. In contrast, similar reduction of urea uptake was detected in AQP9 and AQP3 knock-down cells. These findings suggested that AQP9 expression in NHEK facilitates at least the transport of glycerol and urea. Finally, we analyzed the effect of retinoic acid (RA, a potent stimulator of keratinocyte proliferation, on AQP3 and AQP9 mRNA expression in differentiated NHEK. Stimulation with RA at 1 μM for 24 h augmented AQP3 expression and down-regulated AQP9 expression. Collectively, these results indicate that AQP9 expression in epidermal keratinocytes is regulated in a different manner from that of AQP3.

  3. Die histologie en ultrastruktuur van die hepatopankreas van die bloukurper Oreochromis mossambicus

    Directory of Open Access Journals (Sweden)

    M. M. Nel

    1990-07-01

    Full Text Available Die histologie en ultrastruktuur van die hepatopankreas van die bloukurper Oreochromis mossambicus word beskryf. ’n Dun bindweefselkapsel omring die lewer. Die hepatosietrangskikking vertoon as lobules, met die koorde van hepatosiete wat vanaf ’n sentrale vene uitradieer en met mekaar anastomaseer. Indiwiduele lewerlohules vertoon nie duidelike grense nie, maar enkele duidelike triades word wel in die lewer van O. mossambicus aangetref. Die hepatosiete bevat ’n enkele ronde kern met ’n duidelike nukleolus en die growwe endoplasmiese retikula kom in twee of meer rye om die kerne en teen die selgrense van die hepatosiete voor. Die ander sitoplasmiese organelle kom verspreid in die hepatosietsitoplasma voor. Die eksokriene pankreasselle is om die portale venes gesetel. Die kerne van hierdie selle is rond en is hasaal in die kubies- tot silindervormige selle gelee. ’n Goedontwikkelde growwe endoplasmiese retikulum — vesikulêr, tubulêr en sirkulêr in vorm — en sektretoriese granules wat apikaal in die sel gelee is, kom voor.

  4. Senescence-related functional nuclear barrier by down-regulation of nucleo-cytoplasmic trafficking gene expression

    International Nuclear Information System (INIS)

    Kim, Sung Young; Ryu, Sung Jin; Ahn, Hong Ju; Choi, Hae Ri; Kang, Hyun Tae; Park, Sang Chul

    2010-01-01

    One of the characteristic natures of senescent cells is the hypo- or irresponsiveness not only to growth factors but also to apoptotic stress. In the present study, we confirmed the inhibition of nuclear translocation of activated p-ERK1/2 and NF-kB p50 in response to growth stimuli or LPS in the senescent human diploid fibroblasts. In order to elucidate the underlying mechanism for the senescence-associated hypo-responsiveness, we carried out the comparison study for gene expression profiles through microarray analysis. In consequence, we observed the vast reduction in expression of nucleo-cytoplasmic trafficking genes in senescent cells, when compared with those in young cells. Expression levels of several nucleoporins, karyopherin α, karyopherin β, Ran, and Ran-regulating factors were confirmed to be down-regulated in senescent HDFs by using RT-PCR and Western blot methods. Taken together, these data suggest the operation of certain senescence-associated functional nuclear barriers by down-regulation of the nucleo-cytoplasmic trafficking genes in the senescent cells.

  5. Senescence-related functional nuclear barrier by down-regulation of nucleo-cytoplasmic trafficking gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Young; Ryu, Sung Jin; Ahn, Hong Ju; Choi, Hae Ri; Kang, Hyun Tae [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Institute on Aging, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Park, Sang Chul, E-mail: scpark@snu.ac.kr [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Institute on Aging, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2010-01-01

    One of the characteristic natures of senescent cells is the hypo- or irresponsiveness not only to growth factors but also to apoptotic stress. In the present study, we confirmed the inhibition of nuclear translocation of activated p-ERK1/2 and NF-kB p50 in response to growth stimuli or LPS in the senescent human diploid fibroblasts. In order to elucidate the underlying mechanism for the senescence-associated hypo-responsiveness, we carried out the comparison study for gene expression profiles through microarray analysis. In consequence, we observed the vast reduction in expression of nucleo-cytoplasmic trafficking genes in senescent cells, when compared with those in young cells. Expression levels of several nucleoporins, karyopherin {alpha}, karyopherin {beta}, Ran, and Ran-regulating factors were confirmed to be down-regulated in senescent HDFs by using RT-PCR and Western blot methods. Taken together, these data suggest the operation of certain senescence-associated functional nuclear barriers by down-regulation of the nucleo-cytoplasmic trafficking genes in the senescent cells.

  6. Finding Shangri-La: Limiting the Impact of Senescence on Aging.

    Science.gov (United States)

    Trabucco, Sally E; Zhang, Hong

    2016-03-03

    Senescence plays an important role in the age-associated decline of tissue functions. Recent studies now show that targeting senescent cells can enhance the functions of stem/progenitor cells in aged mice and extend lifespan. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Functional age as an indicator of reservoir senescence

    Science.gov (United States)

    Miranda, Leandro E.; Krogman, R. M.

    2015-01-01

    It has been conjectured that reservoirs differ in the rate at which they manifest senescence, but no attempt has been made to find an indicator of senescence that performs better than chronological age. We assembled an indicator of functional age by creating a multimetric scale consisting of 10 metrics descriptive of reservoir environments that were expected to change directionally with reservoir senescence. In a sample of 1,022 U.S. reservoirs, chronological age was not correlated with functional age. Functional age was directly related to percentage of cultivated land in the catchment and inversely related to reservoir depth. Moreover, aspects of reservoir fishing quality and fish population characteristics were related to functional age. A multimetric scale to indicate reservoir functional age presents the possibility for management intervention from multiple angles. If a reservoir is functionally aging at an accelerated rate, action may be taken to remedy the conditions contributing most to functional age. Intervention to reduce scores of selected metrics in the scale can potentially reduce the rate of senescence and increase the life expectancy of the reservoir. This leads to the intriguing implication that steps can be taken to reduce functional age and actually make the reservoir grow younger.

  8. Insulin binding properties of normal and transformed human epidermal cultured keratinocytes

    International Nuclear Information System (INIS)

    Verrando, P.; Ortonne, J.P.

    1985-01-01

    Insulin binding to its receptors was studied in cultured normal and transformed (A431 line) human epidermal keratinocytes. The specific binding was a temperature-dependent, saturable process. Normal keratinocytes possess a mean value of about 80,000 receptors per cell. Fifteen hours exposure of the cells to insulin lowered their receptor number (about 65% loss in available sites); these reappeared when the hormone was removed from the culture medium. In the A431 epidermoid carcinoma cell line, there is a net decrease in insulin binding (84% of the initial bound/free hormone ratio in comparison with normal cells) essentially related to a loss in receptor affinity for insulin. Thus, cultured human keratinocytes which express insulin receptors may be a useful tool in understanding skin pathology related to insulin disorders

  9. Non-Cell Autonomous Effects of the Senescence-Associated Secretory Phenotype in Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Tareq Saleh

    2018-05-01

    Full Text Available In addition to promoting various forms of cell death, most conventional anti-tumor therapies also promote senescence. There is now extensive evidence that therapy-induced senescence (TIS might be transient, raising the concern that TIS could represent an undesirable outcome of therapy by providing a mechanism for tumor dormancy and eventual disease recurrence. The senescence-associated secretory phenotype (SASP is a hallmark of TIS and may contribute to aberrant effects of cancer therapy. Here, we propose that the SASP may also serve as a major driver of escape from senescence and the re-emergence of proliferating tumor cells, wherein factors secreted from the senescent cells contribute to the restoration of tumor growth in a non-cell autonomous fashion. Accordingly, anti-SASP therapies might serve to mitigate the deleterious outcomes of TIS. In addition to providing an overview of the putative actions of the SASP, we discuss recent efforts to identify and eliminate senescent tumor cells.

  10. Calculating the Rate of Senescence From Mortality Data

    DEFF Research Database (Denmark)

    Koopman, Jacob J E; Rozing, Maarten P; Kramer, Anneke

    2016-01-01

    , they do not fit mortality rates at young and old ages. Therefore, we developed a method to calculate senescence rates from the acceleration of mortality directly without modeling the mortality rates. We applied the different methods to age group-specific mortality data from the European Renal Association......, the rate of senescence can be calculated directly from non-modeled mortality rates, overcoming the disadvantages of an indirect estimation based on modeled mortality rates....

  11. die impak van metodologie op die verstaan van die nuwe testament

    African Journals Online (AJOL)

    voorbeeld eers een maal deur die bril van die vorm- en redaksiekritiek na die Evangelies gekyk het, dink jy vir altyd anders oor hulle tot- standkoming. Inderdaad, nuwe metodes lei tot nuwe perspektiewe! Dit is dan ook waar die fokus van hierdie artikel val: die impak van metodologie op die verstaan van die Nuwe ...

  12. Regulation of replicative senescence by NADP+ -dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kil, In Sup; Huh, Tae Lin; Lee, Young Sup; Lee, You Mie; Park, Jeen-Woo

    2006-01-01

    The free radical hypothesis of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species that are produced as by-products of normal metabolic processes. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic (IDPc) and mitochondrial NADP+ -dependent isocitrate dehydrogenase (IDPm) by supplying NADPH for antioxidant systems. In this paper, we demonstrate that modulation of IDPc or IDPm activity in IMR-90 cells regulates cellular redox status and replicative senescence. When we examined the regulatory role of IDPc and IDPm against the aging process with IMR-90 cells transfected with cDNA for IDPc or IDPm in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc or IDPm expressed in target cells and their susceptibility to senescence, which was reflected by changes in replicative potential, cell cycle, senescence-associated beta-galactosidase activity, expression of p21 and p53, and morphology of cells. Furthermore, lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher and cellular redox status shifted to a prooxidant condition in the cell lines expressing the lower level of IDPc or IDPm. The results suggest that IDPc and IDPm play an important regulatory role in cellular defense against oxidative stress and in the senescence of IMR-90 cells.

  13. Die vrede van Münster / Westfale en die betekenis daarvan vir die ...

    African Journals Online (AJOL)

    In die Suid-Afrikaanse kerkgeskiedenis egter is die Vrede van Münster as epogmakende gebeure tot dusver nie net in die algemeen verwaarloos nie, maar boonop is die direkte verband tussen hierdie sentrale historiese baken aan die een kant en aan die ander kant die vestiging van die VOC se verversingspos aan die ...

  14. Platelets Regulate the Migration of Keratinocytes via Podoplanin/CLEC-2 Signaling during Cutaneous Wound Healing in Mice.

    Science.gov (United States)

    Asai, Jun; Hirakawa, Satoshi; Sakabe, Jun-ichi; Kishida, Tsunao; Wada, Makoto; Nakamura, Naomi; Takenaka, Hideya; Mazda, Osam; Urano, Tetsumei; Suzuki-Inoue, Katsue; Tokura, Yoshiki; Katoh, Norito

    2016-01-01

    Podoplanin is an endogenous ligand for C-type lectin-like receptor 2 (CLEC-2), which is expressed on platelets. Recent evidence indicates that this specific marker of lymphatic endothelial cells is also expressed by keratinocytes at the edge of wounds. However, whether podoplanin or platelets play a role in keratinocyte activity during wound healing remains unknown. We evaluated the effect of podoplanin expression levels on keratinocyte motility using cultured primary normal human epidermal keratinocytes (NHEKs). Down-regulation of podoplanin in NHEKs via transfection with podoplanin siRNA inhibited their migration, indicating that podoplanin plays a mandatory role in this process. In addition, down-regulation of podoplanin was correlated with up-regulation of E-cadherin, suggesting that podoplanin-mediated stimulation of keratinocyte migration is associated with a loss of E-cadherin. Both the addition of platelets and treatment with CLEC-2 inhibited the migration of NHEKs. The down-regulation of RhoA activity and the up-regulation of E-cadherin in keratinocytes were also induced by CLEC-2. In conclusion, these results suggest that podoplanin/CLEC-2 signaling regulates keratinocyte migration via modulating E-cadherin expression through RhoA signaling. Altering the regulation of keratinocyte migration by podoplanin might be a novel therapeutic approach to improve wound healing. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Extracellular calcium alters the effects of retinoic acid on DNA synthesis in cultured murine keratinocytes

    International Nuclear Information System (INIS)

    Tong, P.; Mayes, D.; Wheeler, L.

    1986-01-01

    The rate of proliferation of epidermal keratinocytes was manipulated by growing the cells in medium containing high or low concentrations of calcium. Keratinocytes cultured in high extracellular Ca ++ (1.4 mM and 2.8 mM) proliferated twice as fast as those grown in low Ca ++ medium (0.09 mM) as measured by incorporation of [ 3 H] thymidine into DNA. Exposure of high calcium keratinocytes to all-trans retinoic acid for 4 days caused a dose-related inhibition of DNA synthesis with an IC 50 of about 10 μM. In contrast, incubating low calcium keratinocytes with all-trans retinoic acid caused a dose-related stimulation of DNA synthesis with maximum increase of 278% over control at 10 μM. This increase was accompanied by increases in culture confluency with maximum increase of 109% in cell number of control at 10 μM. These results are of importance since they suggest Ca ++ may influence the effect of retinoids on keratinocytes

  16. GRHL3 binding and enhancers rearrange as epidermal keratinocytes transition between functional states.

    Directory of Open Access Journals (Sweden)

    Rachel Herndon Klein

    2017-04-01

    Full Text Available Transcription factor binding, chromatin modifications and large scale chromatin re-organization underlie progressive, irreversible cell lineage commitments and differentiation. We know little, however, about chromatin changes as cells enter transient, reversible states such as migration. Here we demonstrate that when human progenitor keratinocytes either differentiate or migrate they form complements of typical enhancers and super-enhancers that are unique for each state. Unique super-enhancers for each cellular state link to gene expression that confers functions associated with the respective cell state. These super-enhancers are also enriched for skin disease sequence variants. GRHL3, a transcription factor that promotes both differentiation and migration, binds preferentially to super-enhancers in differentiating keratinocytes, while during migration, it binds preferentially to promoters along with REST, repressing the expression of migration inhibitors. Key epidermal differentiation transcription factor genes, including GRHL3, are located within super-enhancers, and many of these transcription factors in turn bind to and regulate super-enhancers. Furthermore, GRHL3 represses the formation of a number of progenitor and non-keratinocyte super-enhancers in differentiating keratinocytes. Hence, chromatin relocates GRHL3 binding and enhancers to regulate both the irreversible commitment of progenitor keratinocytes to differentiation and their reversible transition to migration.

  17. Insulin-like growth factor binding protein-6 delays replicative senescence of human fibroblasts

    DEFF Research Database (Denmark)

    Micutkova, Lucia; Diener, Thomas; Li, Chen

    2011-01-01

    Cellular senescence can be induced by a variety of mechanisms, and recent data suggest a key role for cytokine networks to maintain the senescent state. Here, we have used a proteomic LC-MS/MS approach to identify new extracellular regulators of senescence in human fibroblasts. We identified 26 e...

  18. die pers as bron oor die geskiedenis van die eerste vrydeidsoorlog

    African Journals Online (AJOL)

    dood agv wonde wat hy tydens die slag opgedoen het. Dit was vir die Britse volk onaanvaarbaar dat slegs twee Boere gedood is nadat daar tussen. 20 000 en 30 000 rondtes op die Boere afgevuur is. Die pers kon net nie die ware syfers publiseer nie, want dit sou na 'n onwaarheid Iyk. Het die. Britse volk egter die Boere ...

  19. The oxidative hypothesis of senescence

    Directory of Open Access Journals (Sweden)

    Gilca M

    2007-01-01

    Full Text Available The oxidative hypothesis of senescence, since its origin in 1956, has garnered significant evidence and growing support among scientists for the notion that free radicals play an important role in ageing, either as "damaging" molecules or as signaling molecules. Age-increasing oxidative injuries induced by free radicals, higher susceptibility to oxidative stress in short-lived organisms, genetic manipulations that alter both oxidative resistance and longevity and the anti-ageing effect of caloric restriction and intermittent fasting are a few examples of accepted scientific facts that support the oxidative theory of senescence. Though not completely understood due to the complex "network" of redox regulatory systems, the implication of oxidative stress in the ageing process is now well documented. Moreover, it is compatible with other current ageing theories (e.g., those implicating the mitochondrial damage/mitochondrial-lysosomal axis, stress-induced premature senescence, biological "garbage" accumulation, etc. This review is intended to summarize and critically discuss the redox mechanisms involved during the ageing process: sources of oxidant agents in ageing (mitochondrial -electron transport chain, nitric oxide synthase reaction- and non-mitochondrial- Fenton reaction, microsomal cytochrome P450 enzymes, peroxisomal β -oxidation and respiratory burst of phagocytic cells, antioxidant changes in ageing (enzymatic- superoxide dismutase, glutathione-reductase, glutathion peroxidase, catalase- and non-enzymatic glutathione, ascorbate, urate, bilirubine, melatonin, tocopherols, carotenoids, ubiquinol, alteration of oxidative damage repairing mechanisms and the role of free radicals as signaling molecules in ageing.

  20. Die partypolitiek en die toekoms van die Afrikaanse volkskultuur

    Directory of Open Access Journals (Sweden)

    A.P. Treurnicht

    1970-03-01

    Full Text Available Reeds in 1853 het die Zuid Afrikaan hom soos volg uitgelaat: „Dis ’n dwaling wat ons reeds meermale bestry het dat ons as Britse onderdane verplig sou wees, om die Britse nasionaliteit ons s’n te maak. Die Kolonis van Hollandse oorsprong kan geen Engelsman word nie, en moet ook geen Nederlander wil wees nie. Wanneer hy weet om sy standpunt te waardeer, dan sal hy as verligte kolonis die grondtrekke van die Engelse volkskarakter met dié van die Nederlandse harmonies leer verenig en daardeur word wat hy as Kapenaar moet word.”

  1. Crucial role of vinexin for keratinocyte migration in vitro and epidermal wound healing in vivo

    International Nuclear Information System (INIS)

    Kioka, Noriyuki; Ito, Takuya; Yamashita, Hiroshi; Uekawa, Natsuko; Umemoto, Tsutomu; Motoyoshi, Soh; Imai, Hiroshi; Takahashi, Kenzo; Watanabe, Hideto; Yamada, Masayasu; Ueda, Kazumitsu

    2010-01-01

    In the process of tissue injury and repair, epithelial cells rapidly migrate and form epithelial sheets. Vinexin is a cytoplasmic molecule of the integrin-containing cell adhesion complex localized at focal contacts in vitro. Here, we investigated the roles of vinexin in keratinocyte migration in vitro and wound healing in vivo. Vinexin knockdown using siRNA delayed migration of both HaCaT human keratinocytes and A431 epidermoid carcinoma cells in scratch assay but did not affect cell proliferation. Induction of cell migration by scratching the confluent monolayer culture of these cells activated both EGFR and ERK, and their inhibitors AG1478 and U0126 substantially suppressed scratch-induced keratinocyte migration. Vinexin knockdown in these cells inhibited the scratch-induced activation of EGFR, but not that of ERK, suggesting that vinexin promotes cell migration via activation of EGFR. We further generated vinexin (-/-) mice and isolated their keratinocytes. They similarly showed slow migration in scratch assay. Furthermore, vinexin (-/-) mice exhibited a delay in cutaneous wound healing in both the back skin and tail without affecting the proliferation of keratinocytes. Together, these results strongly suggest a crucial role of vinexin in keratinocyte migration in vitro and cutaneous wound healing in vivo.

  2. die heidelbergse kategismus en die kategesemateriaal van die ned

    African Journals Online (AJOL)

    subjek, objek, leerstof en die metodiek van die senior kategese. Bloemfontein: Algemene Jeugkommissie Sondagskoolboekhandel. de rAAd oer ned ger kerken in Zuid AfrikA. 1921. De zevende vergadering: handelinge. 1925. De negende vergadering: handelinge. de villierS, d. W. 1957. Die Kategese in die Ned. Geref.

  3. SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation.

    Directory of Open Access Journals (Sweden)

    Tomohisa Hayakawa

    Full Text Available Senescent cells develop a pro-inflammatory response termed the senescence-associated secretory phenotype (SASP. As many SASP components affect surrounding cells and alter their microenvironment, SASP may be a key phenomenon in linking cellular senesence with individual aging and age-related diseases. We herein demonstrated that the expression of Sirtuin1 (SIRT1 was decreased and the expression of SASP components was reciprocally increased during cellular senescence. The mRNAs and proteins of SASP components, such as IL-6 and IL-8, quickly accumulated in SIRT1-depleted cells, and the levels of these factors were also higher than those in control cells, indicating that SIRT1 negatively regulated the expression of SASP factors at the transcriptional level. SIRT1 bound to the promoter regions of IL-8 and IL-6, but dissociated from them during cellular senescence. The acetylation of Histone H3 (K9 and H4 (K16 of the IL-8 and IL-6 promoter regions gradually increased during cellular senescence. In SIRT1-depleted cells, the acetylation levels of these regions were already higher than those in control cells in the pre-senescent stage. Moreover, these acetylation levels in SIRT1-depleted cells were significantly higher than those in control cells during cellular senescence. These results suggest that SIRT1 repressed the expression of SASP factors through the deacetylation of histones in their promoter regions.

  4. Cryopreservation of dermal fibroblasts and keratinocytes in hydroxyethyl starch-based cryoprotectants.

    Science.gov (United States)

    Naaldijk, Yahaira; Johnson, Adiv A; Friedrich-Stöckigt, Annett; Stolzing, Alexandra

    2016-12-01

    Preservation of human skin fibroblasts and keratinocytes is essential for the creation of skin tissue banks. For successful cryopreservation of cells, selection of an appropriate cryoprotectant agent (CPA) is imperative. The aim of this study was to identify CPAs that minimize toxic effects and allow for the preservation of human fibroblasts and keratinocytes in suspension and in monolayers. We cryopreserved human fibroblasts and keratinocytes with different CPAs and compared them to fresh, unfrozen cells. Cells were frozen in the presence and absence of hydroxyethyl starch (HES) or dimethyl sulfoxide (DMSO), the latter of which is a commonly used CPA known to exert toxic effects on cells. Cell numbers were counted immediately post-thaw as well as three days after thawing. Cellular structures were analyzed and counted by labeling nuclei, mitochondria, and actin filaments. We found that successful cryopreservation of suspended or adherent keratinocytes can be accomplished with a 10% HES or a 5% HES, 5% DMSO solution. Cell viability of fibroblasts cryopreserved in suspension was maintained with 10% HES or 5% HES, 5% DMSO solutions. Adherent, cryopreserved fibroblasts were successfully maintained with a 5% HES, 5% DMSO solution. We conclude that skin tissue cells can be effectively cryopreserved by substituting all or a portion of DMSO with HES. Given that DMSO is the most commonly used CPA and is believed to be more toxic than HES, these findings are of clinical significance for tissue-based replacement therapies. Therapies that require the use of keratinocyte and fibroblast cells, such as those aimed at treating skin wounds or skin burns, may be optimized by substituting a portion or all of DMSO with HES during cryopreservation protocols.

  5. Identification of Secreted Proteins from Ionizing Radiation-Induced Senescent MCF7 Cells Using Comparative Proteomics

    International Nuclear Information System (INIS)

    Han, Na Kyung; Kim, Han Na; Hong, Mi Na; Park, Su Min; Lee, Jae Seon; Chi, Seong Gil

    2010-01-01

    Cellular senescence was first described by Hayflick and Moorhead in 1961 who observed that cultures of normal human fibroblasts had a limited replicative potential and eventually became irreversibly arrest. The majority of senescent cells assume a characteristic flattened and enlarged morphological change, senescence associated β-galactosidase positivity and over the years a large number of molecular phenotypes have been described, such as changes in gene expression, protein processing and chromatin organization. In contrast to apoptosis, senescence does not destroy the cells but leaves them metabolically and synthetically active and therefore able to affect their microenvironment. In particular, senescent fibroblasts and some cancer cells were found to secrete proteins with known or putative tumor-promoting functions such as growth factors or proteolytic enzymes. However, the knowledge about secreted proteins from senescent tumor cells and their functions to surrounding cells is still lacking. In this study, changes of senescence-associated secretory protein expression profile were observed in MCF7 human breast cancer cells exposed to gamma-ray radiation using two dimensional electrophoresis. Also, we identified up-regulated secretory proteins during ionizing radiation-induced cellular senescence

  6. Identification of Secreted Proteins from Ionizing Radiation-Induced Senescent MCF7 Cells Using Comparative Proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Han, Na Kyung; Kim, Han Na; Hong, Mi Na; Park, Su Min; Lee, Jae Seon [Korea Institue of Radiological and Medical Sciences, Seoul (Korea, Republic of); Chi, Seong Gil [Korea University, Seoul (Korea, Republic of)

    2010-05-15

    Cellular senescence was first described by Hayflick and Moorhead in 1961 who observed that cultures of normal human fibroblasts had a limited replicative potential and eventually became irreversibly arrest. The majority of senescent cells assume a characteristic flattened and enlarged morphological change, senescence associated beta-galactosidase positivity and over the years a large number of molecular phenotypes have been described, such as changes in gene expression, protein processing and chromatin organization. In contrast to apoptosis, senescence does not destroy the cells but leaves them metabolically and synthetically active and therefore able to affect their microenvironment. In particular, senescent fibroblasts and some cancer cells were found to secrete proteins with known or putative tumor-promoting functions such as growth factors or proteolytic enzymes. However, the knowledge about secreted proteins from senescent tumor cells and their functions to surrounding cells is still lacking. In this study, changes of senescence-associated secretory protein expression profile were observed in MCF7 human breast cancer cells exposed to gamma-ray radiation using two dimensional electrophoresis. Also, we identified up-regulated secretory proteins during ionizing radiation-induced cellular senescence

  7. Galectin-7 overexpression is associated with the apoptotic process in UVB-induced sunburn keratinocytes

    Science.gov (United States)

    Bernerd, Francoise; Sarasin, Alain; Magnaldo, Thierry

    1999-01-01

    Galectin-7 is a β-galactoside binding protein specifically expressed in stratified epithelia and notably in epidermis, but barely detectable in epidermal tumors and absent from squamous carcinoma cell lines. Galectin-7 gene is an early transcriptional target of the tumor suppressor protein P53 [Polyak, K., Xia, Y., Zweier, J., Kinzler, K. & Vogelstein, B. (1997) Nature (London) 389, 300–305]. Because p53 transcriptional activity is increased by genotoxic stresses we have examined the possible effects of ultraviolet radiations (UVB) on galectin-7 expression in epidermal keratinocytes. The amounts of galectin-7 mRNA and protein are increased rapidly after UVB irradiation of epidermal keratinocytes. The increase of galectin-7 is parallel to P53 stabilization. UVB irradiation of skin reconstructed in vitro and of human skin ex vivo demonstrates that galectin-7 overexpression is associated with sunburn/apoptotic keratinocytes. Transfection of a galectin-7 expression vector results in a significant increase in terminal deoxynucleotidyltransferase-mediated UTP end labeling-positive keratinocytes. The present findings demonstrate a keratinocyte-specific protein involved in the UV-induced apoptosis, an essential process in the maintenance of epidermal homeostasis. PMID:10500176

  8. Die invloed van die neo-marxistiese kultuuranalise op die Wêreldraad van Kerke en die Gereformeerde Kerke van Nederland

    Directory of Open Access Journals (Sweden)

    J. M. Vorster

    1979-05-01

    Full Text Available Toe die studente dwarsoor die VSA en Europa in die laat sestigerjare ’n plotselinge en radikale verset openbaar het teen die bestaande orde, het hulle die deur geopen vir ’n nuwe mededinger om die hart van die Westerse kultuur. Dit is die nou reeds bekende neo-Marxisme. Sedertdien het hierdie jongeling sy voetspore op vele vlakke van die Westerse kultuur gelaat.

  9. Concentration-dependent effect of platelet-rich plasma on keratinocyte and fibroblast wound healing.

    Science.gov (United States)

    Xian, Law Jia; Chowdhury, Shiplu Roy; Bin Saim, Aminuddin; Idrus, Ruszymah Bt Hj

    2015-03-01

    Platelet-rich plasma (PRP) has been found to contain a high concentration of growth factors that are present during the process of healing. Studies conducted found that application of PRP accelerates wound healing. In this study, we characterized the skin cell suspension harvested using the co-isolation technique and evaluated the effects of PRP (10% and 20%, v/v) on co-cultured keratinocytes and fibroblasts in terms of wound healing. Human keratinocytes and fibroblasts were harvested via co-isolation technique and separated via differential trypsinization. These cells were then indirectly co-cultured in medium supplemented with 10% or 20% PRP for 3 days without medium change for analysis of wound-healing potential. The wound-healing potential of keratinocytes and fibroblasts was evaluated in terms of growth property, migratory property, extracellular matrix gene expression and soluble factor secretion. The co-isolation technique yielded a skin cell population dominated by fibroblasts and keratinocytes, with a small amount of melanocytes. Comparison between the 10% and 20% PRP cultures showed that the 10% PRP culture exhibited higher keratinocyte apparent specific growth rate, and secretion of hepatocyte growth factor, monocyte chemoattractant protein-1, epithelial-derived neutrophil-activating protein 78 and vascular endothelial growth factor A, whereas the 20% PRP culture has significantly higher collagen type 1 and collagen type 3 expressions and produced more granulocyte-macrophage colony-stimulating factor. PRP concentration modulates keratinocyte and fibroblast wound healing potential, whereby the 10% PRP promotes wound remodeling, whereas the 20% PRP enhances inflammation and collagen deposition. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Die regsposisie van die gemolesteerde kind 1

    Directory of Open Access Journals (Sweden)

    P.J. Schabort

    1991-03-01

    Full Text Available Hoe reik die reg uit na die seksueel gemolesteerde kind? As na die reg in wye verband gekyk word, sou dit alie wetgewing en alle gemeneregsbeginsels en alle regsprosedures insluit waardeur die Staat poog om molestering te voorkom en die gemolesteerde kind in beskerming te neem. Dit le baie wyd en sou byvoorbeeld die maatreels insluit van die Kindenvet 33 van 1960; die Wet op Egskeiding 70 van 1979; die Wet op Kindersorg 74 van 1983; die Wet op die Status van Kinders 82 van 1987 en die Wet op Bemiddeling in Sekere Egskeidingsaangeleenthede 24 van 1987. Eersdaags sal dit moontlik ook ’n Manifes vir die Regte van Kinders insluit wat vermoedelik geskoei sal wees op die W O se Konvensie vir die Regte van die Kind (1989 w a arv an die RSA tan s nog nie ’n ondertekenaar is nie.

  11. IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Takahashi, Yutaka, E-mail: takahash@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Cellular senescence plays an important role in tumorigenesis and aging process. Black-Right-Pointing-Pointer We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. Black-Right-Pointing-Pointer IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. Black-Right-Pointing-Pointer These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated {beta}-galactosidase (SA-{beta}-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, {gamma}H2AX, the increased levels of p53 and p21 proteins, and activated SA-{beta}-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-{beta}-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

  12. IGF-I enhances cellular senescence via the reactive oxygen species–p53 pathway

    International Nuclear Information System (INIS)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro; Takahashi, Yutaka

    2012-01-01

    Highlights: ► Cellular senescence plays an important role in tumorigenesis and aging process. ► We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. ► IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. ► These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated β-galactosidase (SA-β-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, γH2AX, the increased levels of p53 and p21 proteins, and activated SA-β-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-β-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

  13. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Manali; Krynetskaia, Natalia [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Mishra, Anurag [Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Krynetskiy, Evgeny, E-mail: ekrynets@temple.edu [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States)

    2011-07-29

    Highlights: {yields} We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. {yields} GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. {yields} Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. {yields} Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-{beta}-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of {alpha} subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  14. Proteomic and Biochemical Changes during Senescence of Phalaenopsis 'Red Dragon' Petals.

    Science.gov (United States)

    Chen, Cong; Zeng, Lanting; Ye, Qingsheng

    2018-04-28

    Phalaenopsis flowers are some of the most popular ornamental flowers in the world. For most ornamental plants, petal longevity determines postharvest quality and garden performance. Therefore, it is important to have insight into the senescence mechanism of Phalaenopsis . In the present study, a proteomic approach combined with ultrastructural observation and activity analysis of antioxidant enzymes was used to profile the molecular and biochemical changes during pollination-induced petal senescence in Phalaenopsis “Red Dragon”. Petals appeared to be visibly wilting at 24 h after pollination, accompanied by the mass degradation of macromolecules and organelles during senescence. In addition, 48 protein spots with significant differences in abundance were found by two-dimensional electrophoresis (2-DE) and subjected to matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS). There were 42 protein spots successfully identified and homologous to known functional protein species involved in key biological processes, including antioxidant pathways, stress response, protein metabolism, cell wall component metabolism, energy metabolism, cell structure, and signal transduction. The activity of all reactive oxygen species (ROS)-scavenging enzymes was increased, keeping the content of ROS at a low level at the early stage of senescence. These results suggest that two processes, a counteraction against increased levels of ROS and the degradation of cellular constituents for maintaining nutrient recycling, are activated during pollination-induced petal senescence in Phalaenopsis . The information provides a basis for understanding the mechanism regulating petal senescence and prolonging the florescence of Phalaenopsis .

  15. Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Gokhan Yildiz

    Full Text Available Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become "immortal" by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15

  16. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence.

    Directory of Open Access Journals (Sweden)

    João F Passos

    2007-05-01

    Full Text Available Aging is an inherently stochastic process, and its hallmark is heterogeneity between organisms, cell types, and clonal populations, even in identical environments. The replicative lifespan of primary human cells is telomere dependent; however, its heterogeneity is not understood. We show that mitochondrial superoxide production increases with replicative age in human fibroblasts despite an adaptive UCP-2-dependent mitochondrial uncoupling. This mitochondrial dysfunction is accompanied by compromised [Ca(2+]i homeostasis and other indicators of a retrograde response in senescent cells. Replicative senescence of human fibroblasts is delayed by mild mitochondrial uncoupling. Uncoupling reduces mitochondrial superoxide generation, slows down telomere shortening, and delays formation of telomeric gamma-H2A.X foci. This indicates mitochondrial production of reactive oxygen species (ROS as one of the causes of replicative senescence. By sorting early senescent (SES cells from young proliferating fibroblast cultures, we show that SES cells have higher ROS levels, dysfunctional mitochondria, shorter telomeres, and telomeric gamma-H2A.X foci. We propose that mitochondrial ROS is a major determinant of telomere-dependent senescence at the single-cell level that is responsible for cell-to-cell variation in replicative lifespan.

  17. A crucial role for CDC42 in senescence-associated inflammation and atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Takashi K Ito

    Full Text Available Risk factors for atherosclerosis accelerate the senescence of vascular endothelial cells and promote atherogenesis by inducing vascular inflammation. A hallmark of endothelial senescence is the persistent up-regulation of pro-inflammatory genes. We identified CDC42 signaling as a mediator of chronic inflammation associated with endothelial senescence. Inhibition of CDC42 or NF-κB signaling attenuated the sustained up-regulation of pro-inflammatory genes in senescent human endothelial cells. Endothelium-specific activation of the p53/p21 pathway, a key mediator of senescence, also resulted in up-regulation of pro-inflammatory molecules in mice, which was reversed by Cdc42 deletion in endothelial cells. Likewise, endothelial-specific deletion of Cdc42 significantly attenuated chronic inflammation and plaque formation in atherosclerotic mice. While inhibition of NF-κB suppressed the pro-inflammatory responses in acute inflammation, the influence of Cdc42 deletion was less marked. Knockdown of cdc-42 significantly down-regulated pro-inflammatory gene expression and restored the shortened lifespan to normal in mutant worms with enhanced inflammation. These findings indicate that the CDC42 pathway is critically involved in senescence-associated inflammation and could be a therapeutic target for chronic inflammation in patients with age-related diseases without compromising host defenses.

  18. Die hervertolking van die paradigma in verband met die ...

    African Journals Online (AJOL)

    Kerkorde van De Mist en die Algemene Reglement van 1816, wat onderskeidelik vir die Kaapse Kerk en die .... Een van die eerstes was Sam Freiherr von Pufendorf (1632-1694) wat in sy werk De habitu religionis ..... Koning was weer aan bewind (vgl Diepenhorst sj:74w; De Visser 1926/1927 lll:202w). 43.1 JD Janssen ...

  19. Staphylococcus aureus keratinocyte invasion is mediated by integrin-linked kinase and Rac1.

    Science.gov (United States)

    Sayedyahossein, Samar; Xu, Stacey X; Rudkouskaya, Alena; McGavin, Martin J; McCormick, John K; Dagnino, Lina

    2015-02-01

    Staphylococcus aureus is a major component of the skin microbiota and causes a large number of serious infections. S. aureus first interacts with epidermal keratinocytes to breach the epidermal barrier through mechanisms not fully understood. By use of primary keratinocytes from mice with epidermis-restricted Ilk gene inactivation and control integrin-linked kinase (ILK)-expressing littermates, we investigated the role of ILK in epidermal S. aureus invasion. Heat-killed, but not live, bacteria were internalized to Rab5- and Rab7-positive phagosomes, and incubation with keratinocyte growth factor increased their uptake 2.5-fold. ILK-deficient mouse keratinocytes internalized bacteria 2- to 4-fold less efficiently than normal cells. The reduced invasion by live S. aureus of ILK-deficient cells was restored in the presence of exogenous, constitutively active Rac1. Thus, Rac1 functions downstream from ILK during invasion. Further, invasion by S. aureus of Rac1-deficient cells was 2.5-fold lower than in normal cells. Paradoxically, staphylococcal cutaneous penetration of mouse skin explants with ILK-deficient epidermis was 35-fold higher than that of normal skin, indicating defects in epidermal barrier function in the absence of ILK. Thus, we identified an ILK-Rac1 pathway essential for bacterial invasion of keratinocytes, and established ILK as a key contributor to prevent invasive staphylococcal cutaneous infection. © FASEB.

  20. Tofacitinib Represses the Janus Kinase-Signal Transducer and Activators of Transcription Signalling Pathway in Keratinocytes.

    Science.gov (United States)

    Srivastava, Ankit; Ståhle, Mona; Pivarcsi, Andor; Sonkoly, Enikö

    2018-05-08

    Tofacitinib is a Janus kinase (JAK) inhibitor, which has shown efficacy in treating psoriasis. The mode of action of tofacitinib is not completely understood but it has been thought to be mediated by the inhibition of CD4+ T-cell activation. Here, we investigated whether the molecular targets of tofacitinib are expressed in keratinocytes, and whether tofacitinib can modulate the activity of the JAK/Signal Transducer and Activators of Transcription (STAT)-pathway in keratinocytes. Transcriptomic profiling of human keratinocytes treated with IL-22 in combination with tofacitinib revealed that tofacitinib could prevent the majority of IL-22-mediated gene expression changes. Pathway analysis of tofacitinib-regulated genes in keratinocytes revealed enrichment of genes involved in the JAK/STAT signalling pathway. Quantitative real-time-PCR confirmed the upregulation of S100A7 and downregulation of EGR1 expression by IL-22, which was prevented by tofacitinib pre-treatment. These results indicate a direct effect of tofacinitib on keratinocytes, which can have relevance for systemic as well as for topical treatment of psoriasis with tofacitinib.

  1. NAC transcription factors in senescence

    DEFF Research Database (Denmark)

    Podzimska-Sroka, Dagmara; O'Shea, Charlotte; Gregersen, Per L.

    2015-01-01

    involving the hormone abscisic acid, Arabidopsis NAP promotes chlorophyll degradation, a hallmark of senescence. Furthermore, studies of the functional rice ortholog, OsNAP, suggest that NAC genes can be targeted to obtain specific changes in lifespan control and nutrient remobilization in crop plants...

  2. Functional characterization of PhGR and PhGRL1 during flower senescence in the petunia.

    Science.gov (United States)

    Yang, Weiyuan; Liu, Juanxu; Tan, Yinyan; Zhong, Shan; Tang, Na; Chen, Guoju; Yu, Yixun

    2015-09-01

    Petunia PhGRL1 suppression accelerated flower senescence and increased the expression of the genes downstream of ethylene signaling, whereas PhGR suppression did not. Ethylene plays an important role in flowers senescence. Homologous proteins Green-Ripe and Reversion to Ethylene sensitivity1 are positive regulators of ethylene responses in tomato and Arabidopsis, respectively. The petunia flower has served as a model for the study of ethylene response during senescence. In this study, petunia PhGR and PhGRL1 expression was analyzed in different organs, throughout floral senescence, and after exogenous ethylene treatment; and the roles of PhGR and PhGRL1 during petunia flower senescence were investigated. PhGRL1 suppression mediated by virus-induced gene silencing accelerated flower senescence and increased ethylene production; however, the suppression of PhGR did not. Taken together, these data suggest that PhGRL1 is involved in negative regulation of flower senescence, possibly via ethylene production inhibition and consequently reduced ethylene signaling activation.

  3. Aberrant localization of lamin B receptor (LBR) in cellular senescence in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Rumi; En, Atsuki; Ukekawa, Ryo [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Miki, Kensuke [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama 231-0048 (Japan); Fujii, Michihiko, E-mail: mifuji@yokohama-cu.ac.jp [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Ayusawa, Dai [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama 231-0048 (Japan)

    2016-05-13

    5-Bromodeoxyuridine (BrdU), a thymidine analogue, induces cellular senescence in mammalian cells. BrdU induces cellular senescence probably through the regulation of chromatin because BrdU destabilizes or disrupts nucleosome positioning and decondenses heterochromatin. Since heterochromatin is tethered to the nuclear periphery through the interaction with the nuclear envelope proteins, we examined the localization of the several nuclear envelope proteins such as lamins, lamin-interacting proteins, nuclear pore complex proteins, and nuclear transport proteins in senescent cells. We have shown here that lamin B receptor (LBR) showed a change in localization in both BrdU-induced and replicative senescent cells.

  4. Die teologiese skool in die P.U.K vir C.H.O.: met die betekenis van die teologiese skool vir die Christelike wetenskap

    Directory of Open Access Journals (Sweden)

    F. Postma

    1944-03-01

    Full Text Available Die Teologiese Skool van die Gereformeerde Kerk gedink op 29 November 1944 sy vyf-en-sewentigjarige bestaan.Die Raad en Senaat van die P.U.K. vir C.H.O. wil ook langs hierdie weg die Teologiese Skool van harte gelukwens en die versekering gee dat daar by die outoriteite van die P.U.K. ’n diepgevoelde dankbaarheid heers dat hierdie inrigting sovele jare deur onse God en Vader gedra en gespaar is.

  5. Gene expression studies on human keratinocytes transduced with human growth hormone gene for a possible utilization in gene therapy

    International Nuclear Information System (INIS)

    Mathor, Monica Beatriz.

    1994-01-01

    Taking advantage of the recent progress in the DNA-recombinant techniques and of the potentiality of normal human keratinocytes primary culture to reconstitute the epidermis, it was decided to genetically transform these keratinocytes to produce human growth hormone under controllable conditions that would be used in gene therapy at this hormone deficient patients. The first step to achieve this goal was to standardize infection of keratinocytes with retrovirus producer cells containing a construct which included the gene of bacterial b-galactosidase. The best result was obtained cultivating the keratinocytes for 3 days in a 2:1 mixture of retrovirus producer cells and 3T3-J2 fibroblasts irradiated with 60 Gy, and splitting these infected keratinocytes on 3T3-J2 fibroblasts feeder layer. Another preliminary experiment was to infect normal human keratinocytes with interleukin-6 gene (hIL-6) that, in pathologic conditions, could be reproduced by keratinocytes and secreted to the blood stream. Thus, we verify that infected keratinocytes secrete an average amount of 500 ng/10 6 cell/day of cytokin during the in vitro life time, that certify the stable character of the injection. These keratinocytes, when grafted in mice, secrete hIL-6 to the blood stream reaching levels of 40 pg/ml of serum. After these preliminary experiments, we construct a retroviral vector with the human growth hormone gene (h GH) driven by human metallothionein promoter (h PMT), designated DChPMTGH. Normal human keratinocytes were infected with DChPMTGH producer cells, following previously standardized protocol, obtaining infected keratinocytes secreting to the culture media 340 ng h GH/10 6 cell/day without promoter activation. This is the highest level of h GH secreted in human keratinocytes primary culture described in literature. The h GH value increases approximately 10 times after activation with 100 μM Zn +2 for 8-12 hours. (author). 158 refs., 42 figs., 6 tabs

  6. The cell cycle regulator protein P16 and the cellular senescence of dental follicle cells.

    Science.gov (United States)

    Morsczeck, Christian; Hullmann, Markus; Reck, Anja; Reichert, Torsten E

    2018-02-01

    Cellular senescence is a restricting factor for regenerative therapies with somatic stem cells. We showed previously that the onset of cellular senescence inhibits the osteogenic differentiation in stem cells of the dental follicle (DFCs), although the mechanism remains elusive. Two different pathways are involved in the induction of the cellular senescence, which are driven either by the cell cycle protein P21 or by the cell cycle protein P16. In this study, we investigated the expression of cell cycle proteins in DFCs after the induction of cellular senescence. The induction of cellular senescence was proved by an increased expression of β-galactosidase and an increased population doubling time after a prolonged cell culture. Cellular senescence regulated the expression of cell cycle proteins. The expression of cell cycle protein P16 was up-regulated, which correlates with the induction of cellular senescence markers in DFCs. However, the expression of cyclin-dependent kinases (CDK)2 and 4 and the expression of the cell cycle protein P21 were successively decreased in DFCs. In conclusion, our data suggest that a P16-dependent pathway drives the induction of cellular senescence in DFCs.

  7. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    Science.gov (United States)

    Noguchi, Fumihito; Nakajima, Takeshi; Inui, Shigeki; Reddy, Janardan K; Itami, Satoshi

    2014-01-01

    MED1 (Mediator complex subunit 1) is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/-)) that develop epidermal hyperplasia. Herein, to investigate the function(s) of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/-) and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/-) mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/-) mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/-) keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/-) keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/-) keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/-) keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/-) mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/-) mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/-) mice, indicating a decreased contribution of hair

  8. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    Directory of Open Access Journals (Sweden)

    Fumihito Noguchi

    Full Text Available MED1 (Mediator complex subunit 1 is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/- that develop epidermal hyperplasia. Herein, to investigate the function(s of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/- and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/- mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/- mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/- keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/- keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/- keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/- keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/- mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/- mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/- mice, indicating a decreased contribution of hair

  9. Death penalty for keratinocytes: apoptosis versus cornification.

    Science.gov (United States)

    Lippens, S; Denecker, G; Ovaere, P; Vandenabeele, P; Declercq, W

    2005-11-01

    Homeostasis implies a balance between cell growth and cell death. This balance is essential for the development and maintenance of multicellular organisms. Homeostasis is controlled by several mechanisms including apoptosis, a process by which cells condemned to death are completely eliminated. However, in some cases, total destruction and removal of dead cells is not desirable, as when they fulfil a specific function such as formation of the skin barrier provided by corneocytes, also known as terminally differentiated keratinocytes. In this case, programmed cell death results in accumulation of functional cell corpses. Previously, this process has been associated with apoptotic cell death. In this overview, we discuss differences and similarities in the molecular regulation of epidermal programmed cell death and apoptosis. We conclude that despite earlier confusion, apoptosis and cornification occur through distinct molecular pathways, and that possibly antiapoptotic mechanisms are implicated in the terminal differentiation of keratinocytes.

  10. Response of human epidermal keratinocytes to UV light

    International Nuclear Information System (INIS)

    Kartasova, A.A.

    1987-01-01

    This thesis presents a study on the response of human epidermal keratinocytes to UV light as well as to other agents like 4-NQO and TPA. The effects of ultraviolet (UV) light on the protein synthesis in cultured keratinocytes are presented in ch. III. The next chapter describes the construction of a cDNA library using mRNA isolated from UV irradiated kernatinocytes. This library was differentially screened with cDNA probes synthesized on mRNA from either UV irradiated or nonirradiated cells. Several groups of cDNA clones corresponding to transcripts whose level in the cytoplasm seem to be affected by exposure to UV light have been isolated and characterized by cross-hybridization, sequencing and Northern blot analysis. More detailed analysis of some of the cDNA clones is presented in the two chapters following ch. IV. The complete cDNA sequence of the proteinase inhibitor cystatin A and the modulation of its expression by UV light and the carcinogen 4-nitroquinoline 1-oxide (4-NQO) in keratinocytes are described in ch. V. Two other groups of cDNA clones have been isolated which do not cross-hybridize with each other on Southern blots. However, the primary structures of the proteins deduced from the nucleotide sequences of these two groups of cDNA clones are very similar. 212 refs.; 33 figs.; 2 tabs

  11. Delineating miRNA profile induced by chewing tobacco in oral keratinocytes

    Directory of Open Access Journals (Sweden)

    Mohd Younis Bhat

    2017-10-01

    Full Text Available The major established etiologic risk factor for oral cancer is tobacco (chewed, smoked and snuffed forms. Chewing form of tobacco is predominantly used in India making it the leading cause of oral cancer. Despite being one of the leading causes of oral cancer, the molecular alterations induced by chewing tobacco remains largely unclear. Carcinogenic effect of chewing tobacco is through chronic and not acute exposure. To understand the molecular alterations induced by chewing tobacco, we developed a cell line model where non-neoplastic oral keratinocytes were chronically exposed to chewing tobacco for a period of 6 months. This resulted in increased cellular proliferation and invasive ability of normal oral keratinocytes. Using this cellular model we studied the differential expression of miRNAs associated with chewing tobacco and the altered signaling pathways through which the aberrantly expressed miRNAs affect tumorigenesis. miRNA sequencing  was carried out using Illumina HiSeq 2500 platform  which resulted in the identification of 427 annotated miRNAs of which 10 were significantly dysregulated (≥ 4 fold; p-value ≤ 0.05 in tobacco exposed cells compared to untreated parental cells. To study the altered signaling in oral keratinocytes chronically exposed to chewing tobacco, we employed quantitative proteomics to characterize the dysregulated proteins. Integration of miRNA sequencing data with proteomic data resulted in identification of 36 proven protein targets which (≥1.5 fold; p-value ≤ 0.05 showed expression correlation with the 10 significantly dysregulated miRNAs. Pathway analysis of the dysregulated targets revealed enrichment of interferon signaling and mRNA processing related pathways in the chewing tobacco exposed cells. In addition, we also identified 6 novel miRNA in oral keratinocytes chronically exposed to chewing tobacco extract. Our study provides a framework to understand the oncogenic transformation induced by

  12. Inhibition of phosphatidylcholine-specific phospholipase C prevents bone marrow stromal cell senescence in vitro.

    Science.gov (United States)

    Sun, Chunhui; Wang, Nan; Huang, Jie; Xin, Jie; Peng, Fen; Ren, Yinshi; Zhang, Shangli; Miao, Junying

    2009-10-01

    Bone marrow stromal cells (BMSCs) can proliferate in vitro and can be transplanted for treating many kinds of diseases. However, BMSCs become senescent with long-term culture, which inhibits their application. To understand the mechanism underlying the senescence, we investigated the activity of phosphatidylcholine-specific phospholipase C (PC-PLC) and levels of integrin beta4, caveolin-1 and ROS with BMSC senescence. The activity of PC-PLC and levels of integrin beta4, caveolin-1 and ROS increased greatly during cell senescence. Selective inhibition of increased PC-PLC activity with D609 significantly decreased the number of senescence-associated beta galactosidase positive cells in BMSCs. Furthermore, D609 restored proliferation of BMSCs and their differentiation into adipocytes. Moreover, D609 suppressed the elevated levels of integrin beta4, caveolin-1 and ROS. The data suggest that PC-PLC is involved in senescence of BMSCs, and its function is associated with integrin beta4, caveolin-1 and ROS. (c) 2009 Wiley-Liss, Inc.

  13. The nuclear receptor NR2E1/TLX controls senescence

    Science.gov (United States)

    Krusche, Benjamin; Pemberton, Helen; Alonso, Marta M.; Chandler, Hollie; Brookes, Sharon; Parrinello, Simona; Peters, Gordon; Gil, Jesús

    2014-01-01

    The nuclear receptor NR2E1 (also known as TLX or tailless) controls the self-renewal of neural stem cells (NSCs) and has been implied as an oncogene which initiates brain tumours including glioblastomas. Despite NR2E1 regulating targets like p21CIP1 or PTEN we still lack a full explanation for its role in NSC self-renewal and tumorigenesis. We know that Polycomb repressive complexes (PRC) also control stem cell self-renewal and tumorigenesis, but so far, no formal connection has been established between NR2E1 and PRCs. In a screen for transcription factors regulating the expression of the Polycomb protein CBX7, we identified NR2E1 as one of its more prominent regulators. NR2E1 binds at the CBX7 promoter, inducing its expression. Notably CBX7 represses NR2E1 as part of a regulatory loop. Ectopic NR2E1 expression inhibits cellular senescence, extending cellular lifespan in fibroblasts via CBX7-mediated regulation of p16INK4a and direct repression of p21CIP1. In addition NR2E1 expression also counteracts oncogene-induced senescence (OIS). The importance of NR2E1 to restrain senescence is highlighted through the process of knocking down its expression, which causes premature senescence in human fibroblasts and epithelial cells. We also confirmed that NR2E1 regulates CBX7 and restrains senescence in NSCs. Finally, we observed that the expression of NR2E1 directly correlates with that of CBX7 in human glioblastoma multiforme. Overall we identified control of senescence and regulation of Polycomb action as two possible mechanisms that can join those so far invoked to explain the role of NR2E1 in control of NSC self-renewal and cancer. PMID:25328137

  14. The nuclear receptor NR2E1/TLX controls senescence.

    Science.gov (United States)

    O'Loghlen, Ana; Martin, Nadine; Krusche, Benjamin; Pemberton, Helen; Alonso, Marta M; Chandler, Hollie; Brookes, Sharon; Parrinello, Simona; Peters, Gordon; Gil, Jesús

    2015-07-30

    The nuclear receptor NR2E1 (also known as TLX or tailless) controls the self-renewal of neural stem cells (NSCs) and has been implied as an oncogene which initiates brain tumors including glioblastomas. Despite NR2E1 regulating targets like p21(CIP1) or PTEN we still lack a full explanation for its role in NSC self-renewal and tumorigenesis. We know that polycomb repressive complexes also control stem cell self-renewal and tumorigenesis, but so far, no formal connection has been established between NR2E1 and PRCs. In a screen for transcription factors regulating the expression of the polycomb protein CBX7, we identified NR2E1 as one of its more prominent regulators. NR2E1 binds at the CBX7 promoter, inducing its expression. Notably CBX7 represses NR2E1 as part of a regulatory loop. Ectopic NR2E1 expression inhibits cellular senescence, extending cellular lifespan in fibroblasts via CBX7-mediated regulation of p16(INK4a) and direct repression of p21(CIP1). In addition NR2E1 expression also counteracts oncogene-induced senescence. The importance of NR2E1 to restrain senescence is highlighted through the process of knocking down its expression, which causes premature senescence in human fibroblasts and epithelial cells. We also confirmed that NR2E1 regulates CBX7 and restrains senescence in NSCs. Finally, we observed that the expression of NR2E1 directly correlates with that of CBX7 in human glioblastoma multiforme. Overall we identified control of senescence and regulation of polycomb action as two possible mechanisms that can join those so far invoked to explain the role of NR2E1 in control of NSC self-renewal and cancer.

  15. Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors.

    Science.gov (United States)

    Piao, Yulan; Hung, Sandy Shen-Chi; Lim, Shiang Y; Wong, Raymond Ching-Bong; Ko, Minoru S H

    2014-07-01

    Keratinocytes represent an easily accessible cell source for derivation of human induced pluripotent stem (hiPS) cells, reportedly achieving higher reprogramming efficiency than fibroblasts. However, most studies utilized a retroviral or lentiviral method for reprogramming of keratinocytes, which introduces undesirable transgene integrations into the host genome. Moreover, current protocols of generating integration-free hiPS cells from keratinocytes are mostly inefficient. In this paper, we describe a more efficient, simple-to-use, and cost-effective method for generating integration-free hiPS cells from keratinocytes. Our improved method using lipid-mediated transfection achieved a reprogramming efficiency of ∼0.14% on average. Keratinocyte-derived hiPS cells showed no integration of episomal vectors, expressed stem cell-specific markers and possessed potentials to differentiate into all three germ layers by in vitro embryoid body formation as well as in vivo teratoma formation. To our knowledge, this represents the most efficient method to generate integration-free hiPS cells from keratinocytes. ©AlphaMed Press.

  16. Lipid profiling demonstrates that suppressing Arabidopsis phospholipase Dδ retards ABA-promoted leaf senescence by attenuating lipid degradation.

    Directory of Open Access Journals (Sweden)

    Yanxia Jia

    Full Text Available Senescence is the last phase of the plant life cycle and has an important role in plant development. Degradation of membrane lipids is an essential process during leaf senescence. Several studies have reported fundamental changes in membrane lipids and phospholipase D (PLD activity as leaves senesce. Suppression of phospholipase Dα1 (PLDα1 retards abscisic acid (ABA-promoted senescence. However, given the absence of studies that have profiled changes in the compositions of membrane lipid molecules during leaf senescence, there is no direct evidence that PLD affects lipid composition during the process. Here, we show that application of n-butanol, an inhibitor of PLD, and N-Acylethanolamine (NAE 12∶0, a specific inhibitor of PLDα1, retarded ABA-promoted senescence to different extents. Furthermore, phospholipase Dδ (PLDδ was induced in leaves treated with ABA, and suppression of PLDδ retarded ABA-promoted senescence in Arabidopsis. Lipid profiling revealed that detachment-induced senescence had different effects on plastidic and extraplastidic lipids. The accelerated degradation of plastidic lipids during ABA-induced senescence in wild-type plants was attenuated in PLDδ-knockout (PLDδ-KO plants. Dramatic increases in phosphatidic acid (PA and decreases in phosphatidylcholine (PC during ABA-induced senescence were also suppressed in PLDδ-KO plants. Our results suggest that PLDδ-mediated hydrolysis of PC to PA plays a positive role in ABA-promoted senescence. The attenuation of PA formation resulting from suppression of PLDδ blocks the degradation of membrane lipids, which retards ABA-promoted senescence.

  17. miR-125b inhibits keratinocyte proliferation and promotes keratinocyte apoptosis in oral lichen planus by targeting MMP-2 expression through PI3K/Akt/mTOR pathway.

    Science.gov (United States)

    Wang, Jing; Luo, Hong; Xiao, Yan; Wang, Luyao

    2016-05-01

    Oral lichen planus (OLP) is a chronic inflammatory mucosal disease that involves the degeneration of keratinocytes. However, the etiology and mechanisms of OLP pathogenesis have not been fully elucidated. In this study, we used keratinocytes HaCaT stimulated with lipopolysaccharide (LPS) to mimic a local OLP immune environment, and investigated the regulatory role of miR-125b in keratinocyte proliferation and apoptosis under OLP conditions. Immunohistochemical analysis and quantitative real-time PCR (qRT-PCR) assay showed that MMP-2 expression was up-regulated and miR-125b expression was down-regulated in both OLP mucosa tissues and LPS-incubated HaCaT cells. Western blot analysis indicated that miR-125b overexpression suppressed LPS-induced MMP-2 expression in HaCaT cells. Molecularly, our results confirmed that MMP-2 is a target gene of miR-125b in HaCaT cells. The effect of miR-125b on cell proliferation was revealed by CCK-8 assay, BrdU assay and cell cycle analysis, which illustrated that miR-125b overexpression impeded LPS-induced HaCaT cell proliferation. Flow cytometry analysis further demonstrated that miR-125b overexpression promoted HaCaT cell apoptosis. Moreover, these effects were involved in PI3K/Akt/mTOR activation, as miR-125b overexpression inhibited LPS-enhanced expression of p-Akt and p-mTOR proteins. Taken together, these data confirm that miR-125b might inhibit keratinocyte proliferation and promote keratinocyte apoptosis in OLP pathogenesis by targeting MMP-2 through PI3K/Akt/mTOR pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Changes in dermal matrix in the absence of Rac1 in keratinocytes

    DEFF Research Database (Denmark)

    Stanley, Alanna; Pedersen, Esben Ditlev Kølle; Brakebusch, Cord

    2016-01-01

    Keratinocytes, in response to irritants, secrete pro-inflammatory mediators which recruit and activate immune and mesenchymal cells, including fibroblasts, to repair the skin. Fibroblasts respond by synthesising collagen and promoting the crosslinking extracellular matrix (ECM). We recently showed....... As inflammation is intimately linked with fibrotic disease in the skin, this raised the question as to whether this deletion may also affect the deposition and arrangement of the dermal ECM. This study assessed the effects of Rac1 deletion in keratinocytes and of the heightened inflammatory status by induction...... that this increase in the diameter of collagen fibrils due to inflammation may serve as pre-fibrotic marker enabling earlier determination of fibrosis and earlier treatment. This study has revealed previously unknown effects on the ECM due to the deletion of Rac1 in keratinocytes....

  19. HJURP regulates cellular senescence in human fibroblasts and endothelial cells via a p53-dependent pathway.

    Science.gov (United States)

    Heo, Jong-Ik; Cho, Jung Hee; Kim, Jae-Ryong

    2013-08-01

    Holliday junction recognition protein (HJURP), a centromere protein-A (CENP-A) histone chaperone, mediates centromere-specific assembly of CENP-A nucleosome, contributing to high-fidelity chromosome segregation during cell division. However, the role of HJURP in cellular senescence of human primary cells remains unclear. We found that the expression levels of HJURP decreased in human dermal fibroblasts and umbilical vein endothelial cells in replicative or premature senescence. Ectopic expression of HJURP in senescent cells partially overcame cell senescence. Conversely, downregulation of HJURP in young cells led to premature senescence. p53 knockdown, but not p16 knockdown, abolished senescence phenotypes caused by HJURP reduction. These data suggest that HJURP plays an important role in the regulation of cellular senescence through a p53-dependent pathway and might contribute to tissue or organismal aging and protection of cellular transformation.

  20. Identification of senescence-associated genes in human bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Ryu, Eunsook; Hong, Su; Kang, Jaeku; Woo, Junghoon; Park, Jungjun; Lee, Jongho; Seo, Jeong-Sun

    2008-01-01

    Human bone marrow mesenchymal stem cells (hBMMSCs) are multipotent stem cells that can differentiate into several specialized cell types, including bone, cartilage, and fat cells. The proliferative capacity of hBMMSCs paves the way for the development of regenerative medicine and tissue engineering. However, long-term in vitro culture of hBMMSCs leads to a reduced life span of the cells due to senescence, which leads eventually to growth arrest. To investigate the molecular mechanism behind the cellular senescence of hBMMSCs, microarray analysis was used to compare the expression profiles of early passage hBMMSCs, late passage hBMMSCs and hBMMSCs ectopically expressing human telomerase reverse transcriptase (hTERT). Using an intersection analysis of 3892 differentially expressed genes (DEGs) out of 27,171 total genes analyzed, we identified 338 senescence-related DEGs. GO term categorization and pathway network analysis revealed that the identified genes are strongly related to known senescence pathways and mechanisms. The genes identified using this approach will facilitate future studies of the mechanisms underlying the cellular senescence of hBMMSCs

  1. Effect of 1,24R-dihydroxyvitamin D3 on the growth of human keratinocytes.

    LENUS (Irish Health Repository)

    Matsumoto, K

    1990-02-01

    The effect of 1,24R-dihydroxyvitamin D3 (1,24R(OH)2D3), a synthetic analogue of a biologically active form of vitamin D3 (1,25-dihydroxyvitamin D3, 1,25(OH)2D3), on the growth of human keratinocytes cultured in serum-free medium was investigated. The growth of cultured normal human keratinocytes was inhibited by 65% by 10(-8)M 1,24R(OH)2D3 and by 90% by 10(-7)M 1,24(OH)2D3. It inhibited cell growth almost completely at 10(-6)M. The DNA synthesis of keratinocytes was also inhibited with 1,24R(OH)2D3 by 27% at 10(-8)M, 59% at 10(-7)M, and 92% at 10(-6)M. The inhibition of cell growth and DNA synthesis were more remarkable by 1,24R(OH)2D3 than by 1,25(OH)2D3. 1,24R(OH)2D3 also inhibited the growth of keratinocytes derived from patients with psoriasis vulgaris; the growth inhibitory effect was again more remarkable with 1,24R(OH)2D3 than with 1,25(OH)2D3. The viability and protein synthesis of keratinocytes were not affected by 1,24R(OH)2D3, suggesting that the growth inhibitory effect is due to its biological activity, not to cytotoxicity. The binding of [3H]-labeled 1,25(OH)2D3 to its receptor in the cytosolic fraction of cultured keratinocytes was competitively substituted by unlabeled 1,24R(OH)2D3 as well as 1,25(OH)2D3, suggesting that 1,24R(OH)2D3 binds to the 1,25(OH)2D3 receptor. It was found that the affinity of 1,24R(OH)2D3 for the receptor was slightly higher than that of 1,25(OH)2D3. These results demonstrate that 1,24R(OH)2D3 functions as a potent growth inhibitor in vitro in human keratinocytes from both normal and psoriatic epidermis, and it possesses a higher affinity for the 1,25(OH)2D3 receptor in cultured human keratinocytes. The difference in affinity of 1,24R(OH)2D3 for the 1,25(OH)2D3 receptor correlates with its greater inhibition of keratinocyte growth than 1,25(OH)2D3. 1,24R(OH)2D3 may be useful in the treatment of psoriasis.

  2. Micronucleus formation in cultured human keratinocytes following exposure to mitomycin C and cyclophosphamide.

    Science.gov (United States)

    van Pelt, F N; Haring, R M; Overkamp, M J; Weterings, P J

    1991-02-01

    A method is described to investigate the induction of micronuclei in cultured human keratinocytes after short-term exposure to known clastogenic agents. The cytokinesis-block method was applied to facilitate the scoring of micronucleated cells. Mitomycin C, a direct-acting compound, caused a 5-20-fold increase in micronuclei over the controls at the highest concentration tested (1 microgram/ml). Cyclophosphamide, an agent requiring metabolic activation, did not induce the formation of micronuclei in cultured keratinocytes. However, after pretreatment of the keratinocyte cultures with Aroclor 1254 for 72 h, exposure to cyclophosphamide resulted in a 3-fold increase in micronucleus frequency over the controls. No cytogenetic effect of Aroclor 1254 was observed in control experiments.

  3. Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.

    Science.gov (United States)

    Chen, Junyi; Zhu, Xiaoyu; Ren, Jun; Qiu, Kai; Li, Zhongpeng; Xie, Zuokun; Gao, Jiong; Zhou, Xin; Kuai, Benke

    2017-03-01

    Although the biochemical pathway of chlorophyll (Chl) degradation has been largely elucidated, how Chl is rapidly yet coordinately degraded during leaf senescence remains elusive. Pheophytinase (PPH) is the enzyme for catalyzing the removal of the phytol group from pheophytin a , and PPH expression is significantly induced during leaf senescence. To elucidate the transcriptional regulation of PPH , we used a yeast ( Saccharomyces cerevisiae ) one-hybrid system to screen for its trans-regulators. SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), a key flowering pathway integrator, was initially identified as one of the putative trans-regulators of PPH After dark treatment, leaves of an SOC1 knockdown mutant ( soc1-6 ) showed an accelerated yellowing phenotype, whereas those of SOC1 -overexpressing lines exhibited a partial stay-green phenotype. SOC1 and PPH expression showed a negative correlation during leaf senescence. Substantially, SOC1 protein could bind specifically to the CArG box of the PPH promoter in vitro and in vivo, and overexpression of SOC1 significantly inhibited the transcriptional activity of the PPH promoter in Arabidopsis ( Arabidopsis thaliana ) protoplasts. Importantly, soc1-6 pph-1 (a PPH knockout mutant) double mutant displayed a stay-green phenotype similar to that of pph-1 during dark treatment. These results demonstrated that SOC1 inhibits Chl degradation via negatively regulating PPH expression. In addition, measurement of the Chl content and the maximum photochemical efficiency of photosystem II of soc1-6 and SOC1-OE leaves after dark treatment suggested that SOC1 also negatively regulates the general senescence process. Seven SENESCENCE-ASSOCIATED GENES ( SAGs ) were thereafter identified as its potential target genes, and NONYELLOWING1 and SAG113 were experimentally confirmed. Together, we reveal that SOC1 represses dark-induced leaf Chl degradation and senescence in general in Arabidopsis. © 2017 American Society of Plant Biologists. All

  4. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Pierpaola Davalli

    2016-01-01

    Full Text Available The aging process worsens the human body functions at multiple levels, thus causing its gradual decrease to resist stress, damage, and disease. Besides changes in gene expression and metabolic control, the aging rate has been associated with the production of high levels of Reactive Oxygen Species (ROS and/or Reactive Nitrosative Species (RNS. Specific increases of ROS level have been demonstrated as potentially critical for induction and maintenance of cell senescence process. Causal connection between ROS, aging, age-related pathologies, and cell senescence is studied intensely. Senescent cells have been proposed as a target for interventions to delay the aging and its related diseases or to improve the diseases treatment. Therapeutic interventions towards senescent cells might allow restoring the health and curing the diseases that share basal processes, rather than curing each disease in separate and symptomatic way. Here, we review observations on ROS ability of inducing cell senescence through novel mechanisms that underpin aging processes. Particular emphasis is addressed to the novel mechanisms of ROS involvement in epigenetic regulation of cell senescence and aging, with the aim to individuate specific pathways, which might promote healthy lifespan and improve aging.

  5. die sinodale verband van die nederduitse gereformeerde kerk in die

    African Journals Online (AJOL)

    Liezel

    Strauss. Die sinodale verband van die Nederduitse Gereformeerde Kerk. 122 die Vrystaatse Sinode anti-veranderingsgesind of eerder gesond-behoudend of gereformeerd-gematig? Veral as dit .... howe) in moeilike omstandighede gebring is (NG Kerk in die OVS 1865-1912:5). In 'n brief op 8 Augustus 1864 ontken Ds.

  6. Die kerkregtelike posisie van die ouderling en diaken in die ...

    African Journals Online (AJOL)

    ... drie dekades die Kerkreg gevestig as 'n selfstandige vak in die teologiese curriculum, maar ook 'n baie groot rol gespeel daarin dat die beginsels van die kerk like reg beter begryp word. Naas sy wetenskaplike bydrae word met eweveel genoegdoening gedink aan sy bcsondere persoonlikheid, sy werkvermoe, sy humor-.

  7. Derivation of keratinocytes from chicken embryonic stem cells: Establishment and characterization of differentiated proliferative cell populations

    Directory of Open Access Journals (Sweden)

    Mathilde Couteaudier

    2015-03-01

    Full Text Available A common challenge in avian cell biology is the generation of differentiated cell-lines, especially in the keratinocyte lineage. Only a few avian cell-lines are available and very few of them show an interesting differentiation profile. During the last decade, mammalian embryonic stem cell-lines were shown to differentiate into almost all lineages, including keratinocytes. Although chicken embryonic stem cells had been obtained in the 1990s, few differentiation studies toward the ectodermal lineage were reported. Consequently, we explored the differentiation of chicken embryonic stem cells toward the keratinocyte lineage by using a combination of stromal induction, ascorbic acid, BMP4 and chicken serum. During the induction period, we observed a downregulation of pluripotency markers and an upregulation of epidermal markers. Three homogenous cell populations were derived, which were morphologically similar to chicken primary keratinocytes, displaying intracellular lipid droplets in almost every pavimentous cell. These cells could be serially passaged without alteration of their morphology and showed gene and protein expression profiles of epidermal markers similar to chicken primary keratinocytes. These cells represent an alternative to the isolation of chicken primary keratinocytes, being less cumbersome to handle and reducing the number of experimental animals used for the preparation of primary cells.

  8. Actuarial senescence in a long-lived orchid challenges our current understanding of ageing

    DEFF Research Database (Denmark)

    Dahlgren, Johan; Colchero, Fernando; Jones, Owen

    2016-01-01

    The dominant evolutionary theory of actuarial senescence – an increase in death rate with advancing age – is based on the concept of a germ cell line that is separated from the somatic cells early in life. However, such a separation is not clear in all organisms. This has been suggested to explain...... the paucity of evidence for actuarial senescence in plants. We used a 32-year study of Dactylorhiza lapponica that replaces its organs each growing season, to test whether individuals of this tuberous orchid senesce. We performed a Bayesian survival trajectory analysis accounting for reproductive investment......, for individuals under two types of land-use, in two climatic regions. The mortality trajectory was best-approximated by a Weibull model, showing clear actuarial senescence. Rates of senescence in this model declined with advancing age, but were slightly higher in mown plots and in the more benign climatic region...

  9. Senescence-associated microRNAs target cell cycle regulatory genes in normal human lung fibroblasts.

    Science.gov (United States)

    Markopoulos, Georgios S; Roupakia, Eugenia; Tokamani, Maria; Vartholomatos, George; Tzavaras, Theodore; Hatziapostolou, Maria; Fackelmayer, Frank O; Sandaltzopoulos, Raphael; Polytarchou, Christos; Kolettas, Evangelos

    2017-10-01

    Senescence recapitulates the ageing process at the cell level. A senescent cell stops dividing and exits the cell cycle. MicroRNAs (miRNAs) acting as master regulators of transcription, have been implicated in senescence. In the current study we investigated and compared the expression of miRNAs in young versus senescent human fibroblasts (HDFs), and analysed the role of mRNAs expressed in replicative senescent HFL-1 HDFs. Cell cycle analysis confirmed that HDFs accumulated in G 1 /S cell cycle phase. Nanostring analysis of isolated miRNAs from young and senescent HFL-1 showed that a distinct set of 15 miRNAs were significantly up-regulated in senescent cells including hsa-let-7d-5p, hsa-let-7e-5p, hsa-miR-23a-3p, hsa-miR-34a-5p, hsa-miR-122-5p, hsa-miR-125a-3p, hsa-miR-125a-5p, hsa-miR-125b-5p, hsa-miR-181a-5p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-503-5p, hsa-miR-574-3p, hsa-miR-574-5p and hsa-miR-4454. Importantly, pathway analysis of miRNA target genes down-regulated during replicative senescence in a public RNA-seq data set revealed a significant high number of genes regulating cell cycle progression, both G 1 /S and G 2 /M cell cycle phase transitions and telomere maintenance. The reduced expression of selected miRNA targets, upon replicative and oxidative-stress induced senescence, such as the cell cycle effectors E2F1, CcnE, Cdc6, CcnB1 and Cdc25C was verified at the protein and/or RNA levels. Induction of G1/S cell cycle phase arrest and down-regulation of cell cycle effectors correlated with the up-regulation of miR-221 upon both replicative and oxidative stress-induced senescence. Transient expression of miR-221/222 in HDFs promoted the accumulation of HDFs in G1/S cell cycle phase. We propose that miRNAs up-regulated during replicative senescence may act in concert to induce cell cycle phase arrest and telomere erosion, establishing a senescent phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Flow cytometry of human primary epidermal and follicular keratinocytes.

    Science.gov (United States)

    Gragnani, Alfredo; Ipolito, Michelle Zampieri; Sobral, Christiane S; Brunialti, Milena Karina Coló; Salomão, Reinaldo; Ferreira, Lydia Masako

    2008-02-19

    The aim of this study was to characterize using flow cytometry cultured human primary keratinocytes isolated from the epidermis and hair follicles by different methods. Human keratinocytes derived from discarded fragments of total skin and scalp hair follicles from patients who underwent plastic surgery in the Plastic Surgery Division at UNIFESP were used. The epidermal keratinocytes were isolated by using 3 different methods: the standard method, upon exposure to trypsin for 30 minutes; the second, by treatment with dispase for 18 hours and with trypsin for 10 minutes; and the third, by treatment with dispase for 18 hours and with trypsin for 30 minutes. Follicular keratinocytes were isolated using the standard method. On comparing the group treated with dispase for 18 hours and with trypsin for 10 minutes with the group treated with dispase for 18 hours and with trypsin for 30 minutes, it was observed that the first group presented the largest number of viable cells, the smallest number of cells in late apoptosis and necrosis with statistical significance, and no difference in apoptosis. When we compared the group treated with dispase for 18 hours and with trypsin for 10 minutes with the group treated with trypsin, the first group presented the largest number of viable cells, the smallest number of cells in apoptosis with statistical significance, and no difference in late apoptosis and necrosis. When we compared the results of the group treated with dispase for 18 hours and with trypsin for 10 minutes with the results for follical isolation, there was a statistical difference in apoptosis and viable cells. The isolation method of treatment with dispase for 18 hours and with trypsin for 10 minutes produced the largest number of viable cells and the smallest number of cells in apoptosis/necrosis.

  11. Sustainability of keratinocyte gene transfer and cell survival in vivo.

    Science.gov (United States)

    Choate, K A; Khavari, P A

    1997-05-20

    The epidermis is an attractive site for therapeutic gene delivery because it is accessible and capable of delivering polypeptides to the systemic circulation. A number of difficulties, however, have emerged in attempts at cutaneous gene delivery, and central among these is an inability to sustain therapeutic gene production. We have examined two major potential contributing factors, viral vector stamina and involvement of long-lived epidermal progenitor cells. Human keratinocytes were either untreated or transduced with a retroviral vector for beta-galactosidase (beta-Gal) at > 99% efficiency and then grafted onto immunodeficient mice to regenerate human epidermis. Human epidermis was monitored in vivo after grafting for clinical and histologic appearance as well as for gene expression. Although integrated vector sequences persisted unchanged in engineered epidermis at 10 weeks post-grafting, retroviral long terminal repeat (LTR)-driven beta-Gal expression ceased in vivo after approximately 4 weeks. Endogenous cellular promoters, however, maintained consistently normal gene expression levels without evidence of time-dependent decline, as determined by immunostaining with species-specific antibodies for human involucrin, filaggrin, keratinocyte transglutaminase, keratin 10, type VII collagen, and Laminin 5 proteins out to week 14 post-grafting. Transduced human keratinocytes generated multilayer epidermis sustained through multiple epidermal turnover cycles; this epidermis demonstrated retention of a spatially appropriate pattern of basal and suprabasal epidermal marker gene expression. These results confirm previous findings suggesting that viral promoter-driven gene expression is not durable and demonstrate that keratinocytes passaged in vitro can regenerate and sustain normal epidermis for prolonged periods.

  12. A decrease in cyclin B1 levels leads to polyploidization in DNA damage-induced senescence.

    Science.gov (United States)

    Kikuchi, Ikue; Nakayama, Yuji; Morinaga, Takao; Fukumoto, Yasunori; Yamaguchi, Naoto

    2010-05-04

    Adriamycin, an anthracycline antibiotic, has been used for the treatment of various types of tumours. Adriamycin induces at least two distinct types of growth repression, such as senescence and apoptosis, in a concentration-dependent manner. Cellular senescence is a condition in which cells are unable to proliferate further, and senescent cells frequently show polyploidy. Although abrogation of cell division is thought to correlate with polyploidization, the mechanisms underlying induction of polyploidization in senescent cells are largely unclear. We wished, therefore, to explore the role of cyclin B1 level in polyploidization of Adriamycin-induced senescent cells. A subcytotoxic concentration of Adriamycin induced polyploid cells having the features of senescence, such as flattened and enlarged cell shape and activated beta-galactosidase activity. In DNA damage-induced senescent cells, the levels of cyclin B1 were transiently increased and subsequently decreased. The decrease in cyclin B1 levels occurred in G2 cells during polyploidization upon treatment with a subcytotoxic concentration of Adriamycin. In contrast, neither polyploidy nor a decrease in cyclin B1 levels was induced by treatment with a cytotoxic concentration of Adriamycin. These results suggest that a decrease in cyclin B1 levels is induced by DNA damage, resulting in polyploidization in DNA damage-induced senescence.

  13. Modulation of the Senescence-Associated Inflammatory Phenotype in Human Fibroblasts by Olive Phenols

    Directory of Open Access Journals (Sweden)

    Beatrice Menicacci

    2017-10-01

    Full Text Available Senescent cells display an increase in the secretion of growth factors, inflammatory cytokines and proteolytic enzymes, termed the “senescence-associated-secretory-phenotype” (SASP, playing a major role in many age-related diseases. The phenolic compounds present in extra-virgin olive oil are inhibitors of oxidative damage and have been reported to play a protective role in inflammation-related diseases. Particularly, hydroxytyrosol and oleuropein are the most abundant and more extensively studied. Pre-senescent human lung (MRC5 and neonatal human dermal (NHDF fibroblasts were used as cellular model to evaluate the effect of chronic (4–6 weeks treatment with 1 μM hydroxytyrosol (HT or 10 μM oleuropein aglycone (OLE on senescence/inflammation markers. Both phenols were effective in reducing β-galactosidase-positive cell number and p16 protein expression. In addition, senescence/inflammation markers such as IL-6 and metalloprotease secretion, and Ciclooxigenase type 2 (COX-2 and α-smooth-actin levels were reduced by phenol treatments. In NHDF, COX-2 expression, Nuclear Factor κ-light-chain-enhancer of activated B cells (NFκB protein level and nuclear localization were augmented with culture senescence and decreased by OLE and HT treatment. Furthermore, the inflammatory effect of Tumor Necrosis Factor α (TNFα exposure was almost completely abolished in OLE- and HT-pre-treated NHDF. Thus, the modulation of the senescence-associated inflammatory phenotype might be an important mechanism underlying the beneficial effects of olive oil phenols.

  14. Die gebruik van parallelplaatreologie vir die bepaling van die intrinsieke viskositeit van poli-etileentereftalaat

    Directory of Open Access Journals (Sweden)

    O. C. Vorster

    2005-09-01

    Full Text Available Die bepaling van die intrinsieke viskositeit van poli-etileentereftalaat word bemoeilik deur die feit dat daar tans slegs twee metodes in gebruik is. In die eerste metode word die bepaling deur middel van oplossingsviskometrie gedoen, maar die toksisiteit van die oplosmiddel, asook die tydperk wat dit neem om die bepaling te doen, is ’n probleem. Die tweede metode word beperk deur die kompleksiteit en beskikbaarheid van die apparatuur in Suid-Afrika. In hierdie studie word ’n alternatiewe metode, gebaseer op parallelplaatreologie, voorgestel wat albei hierdie probleme oorkom en die resultate sodoende verkry, word vergelyk met dié wat met bestaande metodes verkry is.

  15. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA

    NARCIS (Netherlands)

    M. Demaria (Marco); N. Ohtani (Naoko); S. Youssef (SamehA.); F. Rodier (Francis); W. Toussaint (Wendy); J. Mitchell (JamesR.); R.-M. Laberge (Remi-Martin); J. Vijg (Jan); H. VanSteeg (Harry); M. Dollé (MartijnE.T.); J. Hoeijmakers (JanH.J.); A. deBruin (Alain); E. Hara (Eiji); J. Campisi (Judith)

    2014-01-01

    textabstractCellular senescence suppresses cancer by halting the growth of premalignant cells, yet the accumulation of senescent cells is thought to drive age-related pathology through a senescence-associated secretory phenotype (SASP), the function of which is unclear. To understand the

  16. RNA transcription in isolated chloroplasts during senescence and rejuvenation of intact cotyledons of CUCURBITA PEPO L. (ZUCCHINI)

    International Nuclear Information System (INIS)

    Mishev, K.; Ananiev, E.; Denev, L.; Radeva, G.

    2006-01-01

    RNA transcription was studied in intact chloroplasts isolated from cotyledons of Cucurbita pepoL. (zucchini) during their growth and development including natural senescence and rejuvenation. Rejuvenation of cotyledons was studied after decapitation of the epicotyl above the senescing yellow cotyledons. Maximal incorporation of [32P] UTP into overall chloroplast RNA was measured two days after exposure of seedlings to light (day 6 th after the onset of germination), followed by a gradual decrease reaching minimal values at the age of 25-28 days when cotyledons began to yellow and eventually die. Rejuvenation of cotyledons completely restored chloroplast RNA synthesis and fifteen days after decapitation (at the age of 40 days), the values of chloroplast transcription even exceeded that of the maximal transcriptional activity in young cotyledons. Inhibitory analysis with tagetitoxin (a specific inhibitor of plastid encoded chloroplast RNA polymerase (PEP)) showed that in young and rejuvenated cotyledons about 85% of chloroplast RNA polymerase activity was due to PEP and only 15% corresponded to the nuclear encoded plastid RNA polymerase (NEP). Definite regions of two chloroplast encoded genes were amplified by means of PCR technique using specific DNA primers for Rubisco large subunit gene (rbcL) and the housekeeping gene for chloroplast 16S rRNA as well as chloroplast DNA as a template. The appropriate lengths of the amplified DNA fragments were checked by restriction analysis

  17. Nitric oxide prevents alveolar senescence and emphysema in a mouse model.

    Directory of Open Access Journals (Sweden)

    Amanda E Boe

    Full Text Available Nω-nitro-L-arginine methyl ester (L-NAME treatment induces arteriosclerosis and vascular senescence. Here, we report that the systemic inhibition of nitric oxide (NO production by L-NAME causes pulmonary emphysema. L-NAME-treated lungs exhibited both the structural (alveolar tissue destruction and functional (increased compliance and reduced elastance characteristics of emphysema development. Furthermore, we found that L-NAME-induced emphysema could be attenuated through both genetic deficiency and pharmacological inhibition of plasminogen activator inhibitor-1 (PAI-1. Because PAI-1 is an important contributor to the development of senescence both in vitro and in vivo, we investigated whether L-NAME-induced senescence led to the observed emphysematous changes. We found that L-NAME treatment was associated with molecular and cellular evidence of premature senescence in mice, and that PAI-1 inhibition attenuated these increases. These findings indicate that NO serves to protect and defend lung tissue from physiological aging.

  18. Human keratinocytes produce the complement inhibitor factor H: synthesis is regulated by interferon-gamma

    NARCIS (Netherlands)

    Timár, Krisztina K.; Pasch, Marcel C.; van den Bosch, Norbert H. A.; Jarva, Hanna; Junnikkala, Sami; Meri, Seppo; Bos, Jan D.; Asghar, Syed S.

    2006-01-01

    Locally synthesized complement is believed to play an important role in host defense and inflammation at organ level. In the epidermis, keratinocytes have so far been shown to synthesize two complement components, C3 and factor B. Here, we studied the synthesis of factor H by human keratinocytes. We

  19. Blocking negative effects of senescence in human skin fibroblasts with a plant extract.

    Science.gov (United States)

    Lämmermann, Ingo; Terlecki-Zaniewicz, Lucia; Weinmüllner, Regina; Schosserer, Markus; Dellago, Hanna; de Matos Branco, André Dargen; Autheried, Dominik; Sevcnikar, Benjamin; Kleissl, Lisa; Berlin, Irina; Morizot, Frédérique; Lejeune, Francois; Fuzzati, Nicola; Forestier, Sandra; Toribio, Alix; Tromeur, Anaïs; Weinberg, Lionel; Higareda Almaraz, Juan Carlos; Scheideler, Marcel; Rietveld, Marion; El Ghalbzouri, Abdoel; Tschachler, Erwin; Gruber, Florian; Grillari, Johannes

    2018-01-01

    There is increasing evidence that senescent cells are a driving force behind many age-related pathologies and that their selective elimination increases the life- and healthspan of mice. Senescent cells negatively affect their surrounding tissue by losing their cell specific functionality and by secreting a pro-tumorigenic and pro-inflammatory mixture of growth hormones, chemokines, cytokines and proteases, termed the senescence-associated secretory phenotype (SASP). Here we identified an extract from the plant Solidago virgaurea subsp. alpestris , which exhibited weak senolytic activity, delayed the acquisition of a senescent phenotype and induced a papillary phenotype with improved functionality in human dermal fibroblasts. When administered to stress-induced premature senescent fibroblasts, this extract changed their global mRNA expression profile and particularly reduced the expression of various SASP components, thereby ameliorating the negative influence on nearby cells. Thus, the investigated plant extract represents a promising possibility to block age-related loss of tissue functionality.

  20. Fatty acid and sterol contents during tulip leaf senescence induced by methyl jasmonate

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It has been shown previously that methyl jasmonate (JA-Me applied in lanolin paste on the bottom surface of intact tulip leaves causes a rapid and intense its senescence. The aim of this work was to study the effect of JA-Me on free and bound fatty acid and sterol contents during tulip leaf senescence. The main free and bound fatty acids of tulip leaf, in decreasing order of their abundance, were linolenic, linoleic, palmitic, oleic, stearic and myristic acids. Only the content of free linolenic acid decreased after treatment with JA-Me during visible stage of senescence. ß-Sitosterol (highest concentration, campesterol, stigmasterol and cholesterol were identified in tulip leaf. Methyl jasmonate evidently increased the level of ß-sitosterol, campesterol and stigmasterol during induced senescence. It is suggested that the increase in sterol concentrations under the influence of methyl jasmonate induced changes in membrane fluidity and permeability, which may be responsible for senescence.

  1. Changes in protein patterns and in vivo protein synthesis during senescence of hibiscus petals

    International Nuclear Information System (INIS)

    Woodson, W.R.; Handa, A.K.

    1986-01-01

    Changes in proteins associated with senescence of the flowers of Hibiscus rosa-sinensis was studied using SDS-PAGE. Total extractable protein from petals decreased with senescence. Changes were noted in patterns of proteins from aging petals. Flower opening and senescence was associated with appearance and disappearance of several polypeptides. One new polypeptide with an apparent mw of 41 kd was first seen the day of flower opening and increased to over 9% of the total protein content of senescent petal tissue. Protein synthesis during aging was investigated by following uptake and incorporation of 3 H-leucine into TCA-insoluble fraction of petal discs. Protein synthesis, as evidenced by the percent of label incorporated into the TCA-insoluble fraction, was greatest (32%) the day before flower opening. Senescent petal tissue incorporated 4% of label taken up into protein. Proteins were separated by SDS-PAGE and labelled polypeptides identified by fluorography. In presenescent petal tissue, radioactivity was distributed among several major polypeptides. In senescent tissue, much of the radioactivity was concentrated in the 41 kd polypeptide

  2. Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging.

    Science.gov (United States)

    Baar, Marjolein P; Brandt, Renata M C; Putavet, Diana A; Klein, Julian D D; Derks, Kasper W J; Bourgeois, Benjamin R M; Stryeck, Sarah; Rijksen, Yvonne; van Willigenburg, Hester; Feijtel, Danny A; van der Pluijm, Ingrid; Essers, Jeroen; van Cappellen, Wiggert A; van IJcken, Wilfred F; Houtsmuller, Adriaan B; Pothof, Joris; de Bruin, Ron W F; Madl, Tobias; Hoeijmakers, Jan H J; Campisi, Judith; de Keizer, Peter L J

    2017-03-23

    The accumulation of irreparable cellular damage restricts healthspan after acute stress or natural aging. Senescent cells are thought to impair tissue function, and their genetic clearance can delay features of aging. Identifying how senescent cells avoid apoptosis allows for the prospective design of anti-senescence compounds to address whether homeostasis can also be restored. Here, we identify FOXO4 as a pivot in senescent cell viability. We designed a FOXO4 peptide that perturbs the FOXO4 interaction with p53. In senescent cells, this selectively causes p53 nuclear exclusion and cell-intrinsic apoptosis. Under conditions where it was well tolerated in vivo, this FOXO4 peptide neutralized doxorubicin-induced chemotoxicity. Moreover, it restored fitness, fur density, and renal function in both fast aging Xpd TTD/TTD and naturally aged mice. Thus, therapeutic targeting of senescent cells is feasible under conditions where loss of health has already occurred, and in doing so tissue homeostasis can effectively be restored. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. An Essential Role for Senescent Cells in Optimal Wound Healing through Secretion of PDGF-AA

    NARCIS (Netherlands)

    Demaria, Marco; Ohtani, Naoko; Youssef Hassan, Sameh|info:eu-repo/dai/nl/374027080; Rodier, Francis; Toussaint, Wendy; Mitchell, James R; Laberge, Remi-Martin; Vijg, Jan; Van Steeg, Harry; Dollé, Martijn E T; Hoeijmakers, Jan H J; de Bruin, Alain|info:eu-repo/dai/nl/304837261; Hara, Eiji; Campisi, Judith

    2014-01-01

    Cellular senescence suppresses cancer by halting the growth of premalignant cells, yet the accumulation of senescent cells is thought to drive age-related pathology through a senescence-associated secretory phenotype (SASP), the function of which is unclear. To understand the physiological role(s)

  4. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA

    NARCIS (Netherlands)

    Demaria, Marco; Ohtani, Naoko; Youssef, Sameh A; Rodier, Francis; Toussaint, Wendy; Mitchell, James R; Laberge, Remi-Martin; Vijg, Jan; Van Steeg, Harry; Dollé, Martijn E T; Hoeijmakers, Jan H J; de Bruin, Alain; Hara, Eiji; Campisi, Judith

    2014-01-01

    Cellular senescence suppresses cancer by halting the growth of premalignant cells, yet the accumulation of senescent cells is thought to drive age-related pathology through a senescence-associated secretory phenotype (SASP), the function of which is unclear. To understand the physiological role(s)

  5. Induction of PDGF-B in TCA-treated epidermal keratinocytes.

    Science.gov (United States)

    Yonei, Nozomi; Kanazawa, Nobuo; Ohtani, Toshio; Furukawa, Fukumi; Yamamoto, Yuki

    2007-11-01

    Trichloroacetic acid (TCA) is one of the most widely used peeling agents, and induces full necrosis of the whole epidermis, followed by reconstitution of the epidermis and the matrix of the papillary dermis. The cytotoxic effects of TCA, such as suppressing proliferation of keratinocytes and fibroblasts and protein synthesis by fibroblasts, have already been reported. However, the entire biological mechanism responsible for TCA peeling has yet to be determined. Hypothetical activation effects of TCA treatment on epidermal cells to induce production of growth factors and cytokines are examined, and are compared with its cytotoxic effects in terms of time course and applied TCA concentrations. After various periods of incubation with TCA, viability of Pam212 murine keratinocytes was investigated with MTT assay and dye exclusion assay, and production of growth factors and cytokines with reverse transcription-polymerase chain reaction (RT-PCR). Changes in platelet-derived growth factor (PDGF)-B mRNA expression and protein production in the human skin specimens after TCA application were then examined by RT-PCR and immunohistochemistry, respectively. Incubation with TCA showed cytotoxicity and induced death of Pam212 cells, depending on the incubation period and the TCA concentration. In addition, expressions of PDGF-B, tumor growth factor (TGF)-alpha, TGF- beta1 and vascular endothelial growth factor, which are the growth factors reportedly secreted from keratinocytes during wound healing, were all detected in Pam212 cells after short-term treatment with TCA. Expressions of inflammatory cytokines such as interleukin (IL)-1 and IL-10 were also induced. In TCA-treated NIH-3T3 fibroblasts, in contrast, observed was upregulation of only keratinocyte growth factor, which is reportedly secreted from fibroblasts, as well as the similar cytotoxic effect. In human skin, PDGF-B mRNA expression became significantly upregulated after TCA application, and then immediately

  6. TCDD induces dermal accumulation of keratinocyte-derived matrix metalloproteinase-10 in an organotypic model of human skin

    Energy Technology Data Exchange (ETDEWEB)

    De Abrew, K. Nadira [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Thomas-Virnig, Christina L.; Rasmussen, Cathy A. [Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States); Bolterstein, Elyse A. [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Schlosser, Sandy J. [Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States); Allen-Hoffmann, B. Lynn, E-mail: blallenh@wisc.edu [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States)

    2014-05-01

    The epidermis of skin is the first line of defense against the environment. A three dimensional model of human skin was used to investigate tissue-specific phenotypes induced by the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Continuous treatment of organotypic cultures of human keratinocytes with TCDD resulted in intracellular spaces between keratinocytes of the basal and immediately suprabasal layers as well as thinning of the basement membrane, in addition to the previously reported hyperkeratinization. These tissue remodeling events were preceded temporally by changes in expression of the extracellular matrix degrading enzyme, matrix metalloproteinase-10 (MMP-10). In organotypic cultures MMP-10 mRNA and protein were highly induced following TCDD treatment. Q-PCR and immunoblot results from TCDD-treated monolayer cultures, as well as indirect immunofluorescence and immunoblot analysis of TCDD-treated organotypic cultures, showed that MMP-10 was specifically contributed by the epidermal keratinocytes but not the dermal fibroblasts. Keratinocyte-derived MMP-10 protein accumulated over time in the dermal compartment of organotypic cultures. TCDD-induced epidermal phenotypes in organotypic cultures were attenuated by the keratinocyte-specific expression of tissue inhibitor of metalloproteinase-1, a known inhibitor of MMP-10. These studies suggest that MMP-10 and possibly other MMP-10-activated MMPs are responsible for the phenotypes exhibited in the basement membrane, the basal keratinocyte layer, and the cornified layer of TCDD-treated organotypic cultures. Our studies reveal a novel mechanism by which the epithelial–stromal microenvironment is altered in a tissue-specific manner thereby inducing structural and functional pathology in the interfollicular epidermis of human skin. - Highlights: • TCDD causes hyperkeratosis and basement membrane changes in a model of human skin. • TCDD induces MMP-10 expression in organotypic cultures

  7. Die ontwikkeling van die bestuursmotiveringsvraelys (BMV

    Directory of Open Access Journals (Sweden)

    A. S. Engelbrecht

    1991-06-01

    Full Text Available The development of the Managerial Motivation Questionnaire (MMQ: Several criticisms of the psychometric suitability of existing measures of managerial motivation are reported in the literature. This study aimed at developing a new psychometrically sound instrument, the Managerial Motivation Questionnaire (MMQ. This was done on the basis of a comprehensive study of the literature on managerial motivation and the role-motivation theory. The preliminary MMQ was systematically shortened and refined until the final MMQ of 98 items was composed. This was based on social desirability and semantic appraisal, item analysis and factor analysis of the questionnaire. The results indicate that it was possible to develop a final MMQ that was relatively free of social desirability. It further demonstrated satsifactory internal consistencies on two samples (a = 0/90, N = 360; a = 0/91, N = 535, where all subscale items were found to be relatively pure measures of the isolated factors. Although some evidence was found providing support for the reliability of the MMQ, a need for further research on the construct validity of managerial motivation still exists. Opsomming In die literatuur word verskeie punte van kritiek teen die psigometriese geskiktheid van bestaande meetinstrumente van bestuursmotivering gerapporteer. Die doelstelling van hierdie studie was dus om aan die hand van die konseptuele omiyning van bestuursmotivering, en die rolmotiveringsteorie as algemene verwysingsraamwerk, 'n nuwe psigometries aanvaarbare meetinstrument, die Bestuursmotiveringsvraelys (BMV, te ontwikkel. Op grond van sosiale wenslikheids- en semantiese beoordeling, itemontleding en faktorontleding van die voorlopige BMV is die vraelys stelselmatig verkort en verfyn totdat die finale BMV van 98 items saamgestel is. Die resultate dui daarop dat hierdie studie wel daarin geslaag het om 'n finale BMV te ontwikkel wat relatief vry van sosiale wenslikheid is, bevredigende interne

  8. Dissociating markers of senescence and protective ability in memory T cells.

    Directory of Open Access Journals (Sweden)

    Martin Prlic

    Full Text Available No unique transcription factor or biomarker has been identified to reliably distinguish effector from memory T cells. Instead a set of surface markers including IL-7Rα and KLRG1 is commonly used to predict the potential of CD8 effector T cells to differentiate into memory cells. Similarly, these surface markers together with the tumor necrosis factor family member CD27 are frequently used to predict a memory T cell's ability to mount a recall response. Expression of these markers changes every time a memory cell is stimulated and repeated stimulation can lead to T cell senescence and loss of memory T cell responsiveness. This is a concern for prime-boost vaccine strategies which repeatedly stimulate T cells with the aim of increasing memory T cell frequency. The molecular cues that cause senescence are still unknown, but cell division history is likely to play a major role. We sought to dissect the roles of inflammation and cell division history in developing T cell senescence and their impact on the expression pattern of commonly used markers of senescence. We developed a system that allows priming of CD8 T cells with minimal inflammation and without acquisition of maximal effector function, such as granzyme expression, but a cell division history similar to priming with systemic inflammation. Memory cells derived from minimal effector T cells are fully functional upon rechallenge, have full access to non-lymphoid tissue and appear to be less senescent by phenotype upon rechallenge. However, we report here that these currently used biomarkers to measure senescence do not predict proliferative potential or protective ability, but merely reflect initial priming conditions.

  9. Delayed animal aging through the recovery of stem cell senescence by platelet rich plasma.

    Science.gov (United States)

    Liu, Hen-Yu; Huang, Chiung-Fang; Lin, Tzu-Chieh; Tsai, Ching-Yu; Tina Chen, Szu-Yu; Liu, Alice; Chen, Wei-Hong; Wei, Hong-Jian; Wang, Ming-Fu; Williams, David F; Deng, Win-Ping

    2014-12-01

    Aging is related to loss of functional stem cell accompanying loss of tissue and organ regeneration potentials. Previously, we demonstrated that the life span of ovariectomy-senescence accelerated mice (OVX-SAMP8) was significantly prolonged and similar to that of the congenic senescence-resistant strain of mice after platelet rich plasma (PRP)/embryonic fibroblast transplantation. The aim of this study is to investigate the potential of PRP for recovering cellular potential from senescence and then delaying animal aging. We first examined whether stem cells would be senescent in aged mice compared to young mice. Primary adipose derived stem cells (ADSCs) and bone marrow derived stem cells (BMSCs) were harvested from young and aged mice, and found that cell senescence was strongly correlated to animal aging. Subsequently, we demonstrated that PRP could recover cell potential from senescence, such as promote cell growth (cell proliferation and colony formation), increase osteogenesis, decrease adipogenesis, restore cell senescence related markers and resist the oxidative stress in stem cells from aged mice. The results also showed that PRP treatment in aged mice could delay mice aging as indicated by survival, body weight and aging phenotypes (behavior and gross morphology) in term of recovering the cellular potential of their stem cells compared to the results on aged control mice. In conclusion these findings showed that PRP has potential to delay aging through the recovery of stem cell senescence and could be used as an alternative medicine for tissue regeneration and future rejuvenation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. NOX2-Induced Activation of Arginase and Diabetes-Induced Retinal Endothelial Cell Senescence

    Directory of Open Access Journals (Sweden)

    Modesto Rojas

    2017-06-01

    Full Text Available Increases in reactive oxygen species (ROS and decreases in nitric oxide (NO have been linked to vascular dysfunction during diabetic retinopathy (DR. Diabetes can reduce NO by increasing ROS and by increasing activity of arginase, which competes with nitric oxide synthase (NOS for their commons substrate l-arginine. Increased ROS and decreased NO can cause premature endothelial cell (EC senescence leading to defective vascular repair. We have previously demonstrated the involvement of NADPH oxidase 2 (NOX2-derived ROS, decreased NO and overactive arginase in DR. Here, we investigated their impact on diabetes-induced EC senescence. Studies using diabetic mice and retinal ECs treated with high glucose or H2O2 showed that increases in ROS formation, elevated arginase expression and activity, and decreased NO formation led to premature EC senescence. NOX2 blockade or arginase inhibition prevented these effects. EC senescence was also increased by inhibition of NOS activity and this was prevented by treatment with a NO donor. These results indicate that diabetes/high glucose-induced activation of arginase and decreases in NO bioavailability accelerate EC senescence. NOX2-generated ROS contribute importantly to this process. Blockade of NOX2 or arginase represents a strategy to prevent diabetes-induced premature EC senescence by preserving NO bioavailability.

  11. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    Science.gov (United States)

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  12. Curcuma longa Is Able to Induce Apoptotic Cell Death of Pterygium-Derived Human Keratinocytes.

    Science.gov (United States)

    Sancilio, Silvia; Di Staso, Silvio; Sebastiani, Stefano; Centurione, Lucia; Di Girolamo, Nick; Ciancaglini, Marco; Di Pietro, Roberta

    2017-01-01

    Pterygium is a relatively common eye disease that can display an aggressive clinical behaviour. To evaluate the in vitro effects of Curcuma longa on human pterygium-derived keratinocytes, specimens of pterygium from 20 patients undergoing pterygium surgical excision were collected. Pterygium explants were put into culture and derived keratinocytes were treated with an alcoholic extract of 1.3% Curcuma longa in 0.001% Benzalkonium Chloride for 3, 6, and 24 h. Cultured cells were examined for CAM5.2 (anti-cytokeratin antibody) and CD140 (anti-fibroblast transmembrane glycoprotein antibody) expression between 3th and 16th passage to assess cell homogeneity. TUNEL technique and Annexin-V/PI staining in flow cytometry were used to detect keratinocyte apoptosis. We showed that Curcuma longa exerts a proapoptotic effect on pterygium-derived keratinocytes already after 3 h treatment. Moreover, after 24 h treatment, Curcuma longa induces a significant increase in TUNEL as well as Annexin-V/PI positive cells in comparison to untreated samples. Our study confirms previous observations highlighting the expression, in pterygium keratinocytes, of nuclear VEGF and gives evidence for the first time to the expression of nuclear and cytoplasmic VEGF-R1. All in all, these findings suggest that Curcuma longa could have some therapeutic potential in the treatment and prevention of human pterygium.

  13. Curcuma longa Is Able to Induce Apoptotic Cell Death of Pterygium-Derived Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Silvia Sancilio

    2017-01-01

    Full Text Available Pterygium is a relatively common eye disease that can display an aggressive clinical behaviour. To evaluate the in vitro effects of Curcuma longa on human pterygium-derived keratinocytes, specimens of pterygium from 20 patients undergoing pterygium surgical excision were collected. Pterygium explants were put into culture and derived keratinocytes were treated with an alcoholic extract of 1.3% Curcuma longa in 0.001% Benzalkonium Chloride for 3, 6, and 24 h. Cultured cells were examined for CAM5.2 (anti-cytokeratin antibody and CD140 (anti-fibroblast transmembrane glycoprotein antibody expression between 3th and 16th passage to assess cell homogeneity. TUNEL technique and Annexin-V/PI staining in flow cytometry were used to detect keratinocyte apoptosis. We showed that Curcuma longa exerts a proapoptotic effect on pterygium-derived keratinocytes already after 3 h treatment. Moreover, after 24 h treatment, Curcuma longa induces a significant increase in TUNEL as well as Annexin-V/PI positive cells in comparison to untreated samples. Our study confirms previous observations highlighting the expression, in pterygium keratinocytes, of nuclear VEGF and gives evidence for the first time to the expression of nuclear and cytoplasmic VEGF-R1. All in all, these findings suggest that Curcuma longa could have some therapeutic potential in the treatment and prevention of human pterygium.

  14. Toxicity of silver nanoparticles in monocytes and keratinocytes

    DEFF Research Database (Denmark)

    Orłowski, Piotr; Krzyzowska, Malgorzata; Winnicka, Anna

    2012-01-01

    Silver nanoparticles are of interest to be used as antimicrobial agents in wound dressings and coatings in medical devices, but potential adverse effects have been reported in the literature. The possible local inflammatory response to silver nanoparticles and the role of cell death in determining...... these effects are largely unknown. Effects of the mixture of silver nanoparticles of different sizes were compared in in vitro assays for cytotoxicity, caspase-1 and caspase-9 activity and bax expression. In all tested concentrations, silver nanoparticles were more toxic for RAW 264.7 monocytes than for 291.03C...... keratinocytes and induced significant caspase-1 activity and necrotic cell death. In keratinocytes, more significantly than in macrophages, silver nanoparticles led to increase of caspase-9 activity and apoptosis. These results indicate that effects of silver nanoparticles depend on the type of exposed cells...

  15. Cell Electrical Impedance as a Novel Approach for Studies on Senescence Not Based on Biomarkers

    Directory of Open Access Journals (Sweden)

    Jung-Joon Cha

    2016-01-01

    Full Text Available Senescence of cardiac myocytes is frequently associated with heart diseases. To analyze senescence in cardiac myocytes, a number of biomarkers have been isolated. However, due to the complex nature of senescence, multiple markers are required for a single assay to accurately depict complex physiological changes associated with senescence. In single cells, changes in both cytoplasm and cell membrane during senescence can affect the changes in electrical impedance. Based on this phenomenon, we developed MEDoS, a novel microelectrochemical impedance spectroscopy for diagnosis of senescence, which allows us to precisely measure quantitative changes in electrical properties of aging cells. Using cardiac myocytes isolated from 3-, 6-, and 18-month-old isogenic zebrafish, we examined the efficacy of MEDoS and showed that MEDoS can identify discernible changes in electrical impedance. Taken together, our data demonstrated that electrical impedance in cells at different ages is distinct with quantitative values; these results were comparable with previously reported ones. Therefore, we propose that MEDoS be used as a new biomarker-independent methodology to obtain quantitative data on the biological senescence status of individual cells.

  16. The vitamin D receptor is required for activation of cWnt and hedgehog signaling in keratinocytes.

    Science.gov (United States)

    Lisse, Thomas S; Saini, Vaibhav; Zhao, Hengguang; Luderer, Hilary F; Gori, Francesca; Demay, Marie B

    2014-10-01

    Alopecia (hair loss) in vitamin D receptor (VDR)-null mice is due to absence of ligand-independent actions of the VDR that are required for initiation of postmorphogenic hair cycles. Investigations were undertaken to determine whether the VDR is required for the induction of signaling pathways that play an important role in this process. The induction of cWnt and hedgehog target genes that characterizes early anagen was found to be dramatically attenuated in VDR(-/-) mice, relative to wild-type (WT) mice. To determine whether this reflects impaired responsiveness to cWnt ligands, in vitro studies were performed in primary keratinocytes. These studies demonstrated impaired induction of cWnt target genes in response to Wnt3a in VDR(-/-) keratinocytes, relative to wild-type keratinocytes. Chromatin immunoprecipitation analyses revealed that the VDR was recruited to the regulatory regions of cWnt and hedgehog target genes in WT keratinocytes but not in VDR(-/-) or Lef1(-/-) keratinocytes. Lef1 was enriched on these same regulatory regions in WT keratinocytes but not in VDR(-/-) keratinocytes. In vivo studies were performed to determine whether activation of the hedgehog pathway could bypass the defect in cWnt signaling observed in the absence of the unliganded VDR. In WT, but not VDR(-/-), mice, hedgehog agonist treatment resulted in an induction of cWnt and hedgehog target genes and the generation of mature anagen hair follicles. Thus, these studies demonstrate that the unliganded VDR interacts with regulatory regions in the cWnt and hedgehog target genes and is required for the induction of these pathways during the postnatal hair cycle.

  17. Die uitbouing van die Bybelse kanon in antieke Judaïsme en die ...

    African Journals Online (AJOL)

    31 Jul 2015 ... die oer-Christelike boodskap tot by sy Ou Testamentiese wortels, die geskrifte van Israel wat cum grano salis die 'Bybel' van die oer-Christendom geword het en die blywende verwysingspunt van die Christelike boodskap is. Erkenning. Hierdie artikel is vertaal na Afrikaans deur Prof. Jan G. van der Watt.

  18. Inability of keratinocytes lacking their specific transglutaminase to form cross-linked envelopes: Absence of envelopes as a simple diagnostic test for lamellar ichthyosis

    OpenAIRE

    Jeon, Saewha; Djian, Philippe; Green, Howard

    1998-01-01

    Epidermal keratinocytes, late in their terminal differentiation, form cross-linked envelopes resistant to ionic detergent and reducing agent. Because the cross-linking process is catalyzed by the keratinocyte transglutaminase, the absence of active transglutaminase should result in failure of the keratinocyte to form a cross-linked envelope. Three keratinocyte strains bearing mutations in the keratinocyte transglutaminase were examined: two contained no detectable transglutaminase mRNA and no...

  19. Chemical peeling by SA-PEG remodels photo-damaged skin: suppressing p53 expression and normalizing keratinocyte differentiation.

    Science.gov (United States)

    Dainichi, Teruki; Amano, Satoshi; Matsunaga, Yukiko; Iriyama, Shunsuke; Hirao, Tetsuji; Hariya, Takeshi; Hibino, Toshihiko; Katagiri, Chika; Takahashi, Motoji; Ueda, Setsuko; Furue, Masutaka

    2006-02-01

    Chemical peeling with salicylic acid in polyethylene glycol vehicle (SA-PEG), which specifically acts on the stratum corneum, suppresses the development of skin tumors in UVB-irradiated hairless mice. To elucidate the mechanism through which chemical peeling with SA-PEG suppresses skin tumor development, the effects of chemical peeling on photodamaged keratinocytes and cornified envelopes (CEs) were evaluated in vivo. Among UVB-irradiated hairless mice, the structural atypia and expression of p53 protein in keratinocytes induced by UVB irradiation were intensely suppressed in the SA-PEG-treated mice 28 days after the start of weekly SA-PEG treatments when compared to that in the control UVB-irradiated mice. Incomplete expression of filaggrin and loricrin in keratinocytes from the control mice was also improved in keratinocytes from the SA-PEG-treated mice. In photo-exposed human facial skin, immature CEs were replaced with mature CEs 4 weeks after treatment with SA-PEG. Restoration of photodamaged stratum corneum by treatment with SA-PEG, which may affect remodeling of the structural environment of the keratinocytes, involved the normalization of keratinocyte differentiation and suppression of skin tumor development. These results suggest that the stratum corneum plays a protective role against carcinogenesis, and provide a novel strategy for the prevention of photo-induced skin tumors.

  20. Overexpression of the novel senescence marker β-galactosidase (GLB1 in prostate cancer predicts reduced PSA recurrence.

    Directory of Open Access Journals (Sweden)

    Jennifer Wagner

    Full Text Available Senescence is a terminal growth arrest that functions as a tumor suppressor in aging and precancerous cells and is a response to selected anticancer compounds. Lysosomal-β-galactosidase (GLB1 hydrolyzes β-galactose from glycoconjugates and is the origin of senescence-associated β-gal activity (SA-β-gal. Using a new GLB1 antibody, senescence biology was investigated in prostate cancer (PCa tissues.In vitro characterization of GLB1 was determined in primary prostate epithelial cell cultures passaged to replicative senescence and in therapy-induced senescence in PCa lines using chemotherapeutic agents. FFPE tissue microarrays were subjected to immunofluorescent staining for GLB1, Ki67 and HP1γ and automated quantitative imaging initially using AQUA in exploratory samples and Vectra in a validation series.GLB1 expression accumulates in replicative and induced senescence and correlates with senescent morphology and P16 (CDKN2 expression. In tissue arrays, quantitative imaging detects increased GLB1 expression in high-grade prostatic intraepithelial neoplasia (HGPIN, known to contain senescent cells, and cancer compared to benign prostate tissues (p<0.01 and senescent cells contain low Ki67 and elevated HP1γ. Within primary tumors, elevated GLB1 associates with lower T stage (p=0.01, localized versus metastatic disease (p=0.0003 and improved PSA-free survival (p=0.03. Increased GLB1 stratifies better PSA-free survival in intermediate grade PCa (0.01. Tissues that elaborate higher GLB1 display increased uniformity of expression.Increased GLB1 is a valuable marker in formalin-fixed paraffin-embedded (FFPE tissues for the senescence-like phenotype and associates with improved cancer outcomes. This protein addresses a lack of senescence markers and should be applicable to study the biologic role of senescence in other cancers.

  1. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max).

    Science.gov (United States)

    Marquez-Garcia, Belén; Shaw, Daniel; Cooper, James William; Karpinska, Barbara; Quain, Marian Dorcas; Makgopa, Eugene Matome; Kunert, Karl; Foyer, Christine Helen

    2015-09-01

    Water is an increasingly scarce resource that limits crop productivity in many parts of the world, and the frequency and severity of drought are predicted to increase as a result of climate change. Improving tolerance to drought stress is therefore important for maximizing future crop yields. The aim of this study was to compare the effects of drought on soybean (Glycine max) leaves and nodules in order to define phenotypic markers and changes in cellular redox state that characterize the stress response in different organs, and to characterize the relationships between leaf and nodule senescence during drought. Leaf and crown nodule metabolite pools were measured together with leaf and soil water contents, and leaf chlorophyll, total protein contents and chlorophyll a fluorescence quenching parameters in nodulated soybeans that were grown under either well-watered conditions or deprived of water for up to 21 d. Ureides, ascorbate, protein, chlorophyll and the ratios of variable chlorophyll a fluorescence (Fv') to maximal chlorophyll a fluorescence (Fm') fell to levels below detection in the oldest leaves after 21 d of drought. While these drought-induced responses were not observed in the youngest leaf ranks, the Fv'/Fm' ratios, pyridine nucleotide levels and the reduction state of the ascorbate pool were lower in all leaf ranks after 21 d of drought. In contrast to leaves, total nodule protein, pyridine nucleotides, ureides, ascorbate and glutathione contents increased as a result of the drought treatment. However, the nodule ascorbate pool was significantly less reduced as a result of drought. Higher levels of transcripts encoding two peroxiredoxins were detected in nodules exposed to drought stress but senescence-associated transcripts and other mRNAs encoding redox-related proteins were similar under both conditions. While the physiological impact of the drought was perceived throughout the shoot, stress-induced senescence occurred only in the oldest

  2. A novel DLX3-PKC integrated signaling network drives keratinocyte differentiation.

    Science.gov (United States)

    Palazzo, Elisabetta; Kellett, Meghan D; Cataisson, Christophe; Bible, Paul W; Bhattacharya, Shreya; Sun, Hong-Wei; Gormley, Anna C; Yuspa, Stuart H; Morasso, Maria I

    2017-04-01

    Epidermal homeostasis relies on a well-defined transcriptional control of keratinocyte proliferation and differentiation, which is critical to prevent skin diseases such as atopic dermatitis, psoriasis or cancer. We have recently shown that the homeobox transcription factor DLX3 and the tumor suppressor p53 co-regulate cell cycle-related signaling and that this mechanism is functionally involved in cutaneous squamous cell carcinoma development. Here we show that DLX3 expression and its downstream signaling depend on protein kinase C α (PKCα) activity in skin. We found that following 12-O-tetradecanoyl-phorbol-13-acetate (TPA) topical treatment, DLX3 expression is significantly upregulated in the epidermis and keratinocytes from mice overexpressing PKCα by transgenic targeting (K5-PKCα), resulting in cell cycle block and terminal differentiation. Epidermis lacking DLX3 (DLX3cKO), which is linked to the development of a DLX3-dependent epidermal hyperplasia with hyperkeratosis and dermal leukocyte recruitment, displays enhanced PKCα activation, suggesting a feedback regulation of DLX3 and PKCα. Of particular significance, transcriptional activation of epidermal barrier, antimicrobial peptide and cytokine genes is significantly increased in DLX3cKO skin and further increased by TPA-dependent PKC activation. Furthermore, when inhibiting PKC activity, we show that epidermal thickness, keratinocyte proliferation and inflammatory cell infiltration are reduced and the PKC-DLX3-dependent gene expression signature is normalized. Independently of PKC, DLX3 expression specifically modulates regulatory networks such as Wnt signaling, phosphatase activity and cell adhesion. Chromatin immunoprecipitation sequencing analysis of primary suprabasal keratinocytes showed binding of DLX3 to the proximal promoter regions of genes associated with cell cycle regulation, and of structural proteins and transcription factors involved in epidermal differentiation. These results indicate

  3. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Ok-Nam [College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Ahn, Seyeon; Jin, Sun Hee; Hong, Soo Hyun; Lee, Jinyoung [College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Eun-Sun [College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Jeong, Tae Cheon [College of Pharmacy, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Chun, Young-Jin [College of Pharmacy, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Ai-Young, E-mail: leeay@duih.org [Department of Dermatology, Dongguk University Ilsan Hospital, Goyang 410-773 (Korea, Republic of); Noh, Minsoo, E-mail: minsoo@alum.mit.edu [College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2015-03-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD. - Highlights: • Pro-inflammatory cytokines induced VEGF production in normal human

  4. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor

    International Nuclear Information System (INIS)

    Bae, Ok-Nam; Ahn, Seyeon; Jin, Sun Hee; Hong, Soo Hyun; Lee, Jinyoung; Kim, Eun-Sun; Jeong, Tae Cheon; Chun, Young-Jin; Lee, Ai-Young; Noh, Minsoo

    2015-01-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD. - Highlights: • Pro-inflammatory cytokines induced VEGF production in normal human

  5. The emerging role of alternative splicing in senescence and aging.

    Science.gov (United States)

    Deschênes, Mathieu; Chabot, Benoit

    2017-10-01

    Deregulation of precursor mRNA splicing is associated with many illnesses and has been linked to age-related chronic diseases. Here we review recent progress documenting how defects in the machinery that performs intron removal and controls splice site selection contribute to cellular senescence and organismal aging. We discuss the functional association linking p53, IGF-1, SIRT1, and ING-1 splice variants with senescence and aging, and review a selection of splicing defects occurring in accelerated aging (progeria), vascular aging, and Alzheimer's disease. Overall, it is becoming increasingly clear that changes in the activity of splicing factors and in the production of key splice variants can impact cellular senescence and the aging phenotype. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  6. Die verband tussen die sielkundige kontrak en organisasieverbondenheid

    Directory of Open Access Journals (Sweden)

    K. J. Stanz

    1999-06-01

    Full Text Available The relationship between the psychological contract and organisational commitment. The aim of this study is to design a measuring instrument with acceptable metric characteristics for the strength of the psychological contract within the South African context, and to determine empirically the relation between the strength of the psychological contract and organisational commitment. The Dhammanungune Model served as foundation for the design of the Strength of the Psychological Contract Questionnaire which consists of two scales namely, a needs expectation scale and a needs fulfilment expectation scale. The items of each scale have been formulated in the manner that ensures that the respondent reacts consecutively to two instructions namely, (a the level of the expectation and (b the importance of the expectation. This questionnaire was administered together with the Organisational Commitment Questionnaire to two population groups within the military environment. The Pearson Product Moment Correlation was calculated between the strength of the psychological contract and organisational commitment and the significance of the correlations was evaluated. Opsomming Die doel van die studie is om 'n meetinstrument met aanvaarbare metriese eienskappe vir die sterkte van die sielkundige kontrak vir Suid-Afrikaanse omstandighede te ontwerp en om empirics die verband tussen die sterkte van die sielkundige kontrak en organisasieverbondenheid te bepaal. Die sterkte van die sielkundige kontrak vraelys is op grond van die Dhammanungune-model ontwerp en het uit twee skale naamlik, die behoefteverwagting- en vervullingsverwagtingskale bestaan. Items vir eike skaal is sodanig geformuleer dat die respondent agteropeenvolgens op twee instruksies naamlik (a die vlak van die verwagting en (b die belangrikheid van die verwagting moet reageer. Die vraelys is saam met die organisasieverbondenheidsvraelys op twee populasies uit 'n militere omgewing toegepas. Die Pearson

  7. Differential Gene Expression in Primary Human Skin Keratinocytes and Fibroblasts in Response to Ionizing Radiation

    Science.gov (United States)

    Warters, Raymond L.; Packard, Ann T.; Kramer, Gwen F.; Gaffney, David K.; Moos, Philip J.

    2009-01-01

    Although skin is usually exposed during human exposures to ionizing radiation, there have been no thorough examinations of the transcriptional response of skin fibroblasts and keratinocytes to radiation. The transcriptional response of quiescent primary fibroblasts and keratinocytes exposed to from 10 cGy to 5 Gy and collected 4 h after treatment was examined. RNA was isolated and examined by microarray analysis for changes in the levels of gene expression. Exposure to ionizing radiation altered the expression of 279 genes across both cell types. Changes in RNA expression could be arranged into three main categories: (1) changes in keratinocytes but not in fibroblasts, (2) changes in fibroblasts but not in keratinocytes, and (3) changes in both. All of these changes were primarily of p53 target genes. Similar radiation-induced changes were induced in immortalized fibroblasts or keratinocytes. In separate experiments, protein was collected and analyzed by Western blotting for expression of proteins observed in microarray experiments to be overexpressed at the mRNA level. Both Q-PCR and Western blot analysis experiments validated these transcription changes. Our results are consistent with changes in the expression of p53 target genes as indicating the magnitude of cell responses to ionizing radiation. PMID:19580510

  8. Interaction of plant growth regulators and reactive oxygen species to regulate petal senescence in wallflowers (Erysimum linifolium).

    Science.gov (United States)

    Salleh, Faezah Mohd; Mariotti, Lorenzo; Spadafora, Natasha D; Price, Anna M; Picciarelli, Piero; Wagstaff, Carol; Lombardi, Lara; Rogers, Hilary

    2016-04-02

    In many species floral senescence is coordinated by ethylene. Endogenous levels rise, and exogenous application accelerates senescence. Furthermore, floral senescence is often associated with increased reactive oxygen species, and is delayed by exogenously applied cytokinin. However, how these processes are linked remains largely unresolved. Erysimum linifolium (wallflower) provides an excellent model for understanding these interactions due to its easily staged flowers and close taxonomic relationship to Arabidopsis. This has facilitated microarray analysis of gene expression during petal senescence and provided gene markers for following the effects of treatments on different regulatory pathways. In detached Erysimum linifolium (wallflower) flowers ethylene production peaks in open flowers. Furthermore senescence is delayed by treatments with the ethylene signalling inhibitor silver thiosulphate, and accelerated with ethylene released by 2-chloroethylphosphonic acid. Both treatments with exogenous cytokinin, or 6-methyl purine (which is an inhibitor of cytokinin oxidase), delay petal senescence. However, treatment with cytokinin also increases ethylene biosynthesis. Despite the similar effects on senescence, transcript abundance of gene markers is affected differentially by the treatments. A significant rise in transcript abundance of WLS73 (a putative aminocyclopropanecarboxylate oxidase) was abolished by cytokinin or 6-methyl purine treatments. In contrast, WFSAG12 transcript (a senescence marker) continued to accumulate significantly, albeit at a reduced rate. Silver thiosulphate suppressed the increase in transcript abundance both of WFSAG12 and WLS73. Activity of reactive oxygen species scavenging enzymes changed during senescence. Treatments that increased cytokinin levels, or inhibited ethylene action, reduced accumulation of hydrogen peroxide. Furthermore, although auxin levels rose with senescence, treatments that delayed early senescence did not affect

  9. DIE ROL VAN DIE TAALWETENSKAP IN DIE ONTWIKKELING VAN ...

    African Journals Online (AJOL)

    aanslag op die sogenaamde "Intentional Fallacy", heelwat verder. n. Mens sou hier eintlik ook op die invloed van Lacan se toepassing van. De Sacs sure op Freud moet wys, en op Macherey se Theory of Literary. Production. Barthes is naamlik besig om repressie teen te werk, en die teks as produksieproses in stede van ...

  10. Curcumin elevates sirtuin level but does not postpone in vitro senescence of human cells building the vasculature

    Science.gov (United States)

    Grabowska, Wioleta; Suszek, Małgorzata; Wnuk, Maciej; Lewinska, Anna; Wasiak, Emilia; Sikora, Ewa; Bielak-Zmijewska, Anna

    2016-01-01

    It is believed that curcumin, a component of the turmeric that belongs to hormetins, possesses anti-aging propensity. This property of curcumin can be partially explained by its influence on the level of sirtuins. Previously, we have shown that relatively high (2.5-10 μM) doses of curcumin induce senescence of cancer cells and cells building the vasculature. In the present study we examined whether curcumin at low doses (0.1 and 1 μM) is able to delay cell senescence and upregulate the level of sirtuins in human cells building the vasculature, namely vascular smooth muscle (VSMC) and endothelial (EC) cells. To this end we used cells senescing in a replicative and premature manner. We showed that low doses of curcumin in case of VSMC neither postponed the replicative senescence nor protected from premature senescence induced by doxorubicin. Moreover, curcumin slightly accelerated replicative senescence of EC. Despite some fluctuations, a clear increasing tendency in the level of sirtuins was observed in curcumin-treated young, senescing or already senescent cells. Sirtuin activation could be caused by the activation of AMPK resulting from superoxide elevation and ATP reduction. Our results show that curcumin at low doses can increase the level of sirtuins without delaying senescence of VSMC. PMID:27034011

  11. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content.

    Science.gov (United States)

    Anderson, Rachel; Ryser, Peter

    2015-08-05

    Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over two growing seasons in the context of timing of leaf senescence. Red maple usually turns bright red in the autumn, but there is considerable variation among the trees. Leaf autumn anthocyanin contents were consistent between the two years of investigation. Autumn anthocyanin content strongly correlated with degree of chlorophyll degradation mid to late September, early senescing leaves having the highest concentrations of anthocyanins. It also correlated positively with leaf summer chlorophyll content and dry matter content, and negatively with specific leaf area. Time of leaf senescence and anthocyanin contents correlated with soil pH and with canopy openness. We conclude that the importance of anthocyanins in protection of leaf processes during senescence depends on the time of senescence. Rather than prolonging the growing season by enabling a delayed senescence, autumn anthocyanins in red maple in Ontario are important when senescence happens early, possibly due to the higher irradiance and greater danger of oxidative damage early in the season.

  12. The Benefit of Microskin in Combination With Autologous Keratinocyte Suspension to Treat Full Skin Loss In Vivo.

    Science.gov (United States)

    Yuru, Shang; Dawei, Li; Chuanan, Shen; Kai, Yin; Li, Ma; Longzhu, Li; Dongxu, Zhao; Wenfeng, Cheng

    Patients with extensive deep burns often lack enough autologous skin to cover the wounds. This study explores a new method using microskin in combination with autologous keratinocytes in the treatment of extensive deep burn. Wounds in the combination group were treated with automicroskin at an area expansion ratio of 20:1 (wound area to automicroskin area) and autologous keratinocyte suspension, which were compared with the following treatments: no autotransplant, only allografts (control group); autologous keratinocyte suspension only (keratinocyte only group); automicroskin at an area expansion ratio of 20:1 (20:1 group); and automicroskin at an area expansion ratio of 10:1 (10:1 group, positive control). The authors used epithelialization rate (epithelialized area on day 21 divided by original wound area), hematoxylin and eosin staining, laminin, and type IV collagen immunohistochemistry to assess wound healing. The epithelialization rate of combination group (74.2% ± 8.0%) was similar to that of 10: 1 group (84.3% ± 11.9%, P = .085) and significantly (P < .05) higher than that of 20:1 group (59.2% ± 10.8%), keratinocyte only group (53.8% ± 11.5%), and control group (22.7% ± 5.5%). The hematoxylin and eosin staining and immunohistochemistry showed the epithelialization in the combination group was better than that in the keratinocyte only group and control group. Microskin in combination with autologous keratinocyte suspension can promote the reepithelialization of full-thickness wounds and reduce the requirements for automircoskin, and it is a useful option in the treatment of extensive deep burns.

  13. Die belangrikste kenmerk van die diereproduksie- bedrywe oor die ...

    African Journals Online (AJOL)

    digdhede teen 1980 uit 'n kudde van 30 rnilj.skape ge- produseer moet word. Tweedens sal die faktore ... die Republiek van Suid-Mrika teen 1980 in totaal 28 milj. sal wees. Indien die produsente dit as 'n ..... Appendix Table 4 in Digestive Physiology and nutrition of ruminants Vol. 3 Ed. and Publ. D.C. Church, Oregon State ...

  14. MicroRNA-17-92 cluster promotes the proliferation and the chemokine production of keratinocytes: implication for the pathogenesis of psoriasis.

    Science.gov (United States)

    Zhang, Weigang; Yi, Xiuli; An, Yawen; Guo, Sen; Li, Shuli; Song, Pu; Chang, Yuqian; Zhang, Shaolong; Gao, Tianwen; Wang, Gang; Li, Chunying

    2018-05-11

    Keratinocytes are the main epidermal cell type that constitutes the skin barrier against environmental damages, which emphasizes the balance between the growth and the death of keratinocytes in maintaining skin homeostasis. Aberrant proliferation of keratinocytes and the secretion of inflammatory factors from keratinocytes are related to the formation of chronic inflammatory skin diseases like psoriasis. MicroRNA-17-92 (miRNA-17-92 or miR-17-92) is a miRNA cluster that regulates cell growth and immunity, but the role of miR-17-92 cluster in keratinocytes and its relation to skin diseases have not been well investigated. In the present study, we initially found that miR-17-92 cluster promoted the proliferation and the cell-cycle progression of keratinocytes via suppressing cyclin-dependent kinase inhibitor 2B (CDKN2B). Furthermore, miR-17-92 cluster facilitated the secretion of C-X-C motif chemokine ligand 9 (CXCL9) and C-X-C motif chemokine ligand 10 (CXCL10) from keratinocytes by inhibiting suppressor of cytokine signaling 1 (SOCS1), which enhanced the chemotaxis for T lymphocytes formed by keratinocytes. In addition, we detected increased expression of miR-17-92 cluster in psoriatic lesions and the level of lesional miR-17-92 cluster was positively correlated with the disease severity in psoriasis patients. At last, miR-17-92 cluster was increased in keratinocytes by cytokines through the activation of signal transducers and activators of transcription 1 (STAT1) signaling pathway. Our findings demonstrate that cytokine-induced overexpression of miR-17-92 cluster can promote the proliferation and the immune function of keratinocytes, and thus may contribute to the development of inflammatory skin diseases like psoriasis, which implicates miR-17-92 cluster as a potential therapeutic target for psoriasis and other skin diseases with similar inflammatory pathogenesis.

  15. HIV and drug abuse mediate astrocyte senescence in a β-catenin-dependent manner leading to neuronal toxicity.

    Science.gov (United States)

    Yu, Chunjiang; Narasipura, Srinivas D; Richards, Maureen H; Hu, Xiu-Ti; Yamamoto, Bryan; Al-Harthi, Lena

    2017-10-01

    Emerging evidence suggests that cell senescence plays an important role in aging-associated diseases including neurodegenerative diseases. HIV leads to a spectrum of neurologic diseases collectively termed HIV-associated neurocognitive disorders (HAND). Drug abuse, particularly methamphetamine (meth), is a frequently abused psychostimulant among HIV+ individuals and its abuse exacerbates HAND. The mechanism by which HIV and meth lead to brain cell dysregulation is not entirely clear. In this study, we evaluated the impact of HIV and meth on astrocyte senescence using in vitro and several animal models. Astrocytes constitute up to 50% of brain cells and play a pivotal role in marinating brain homeostasis. We show here that HIV and meth induce significant senescence of primary human fetal astrocytes, as evaluated by induction of senescence markers (β-galactosidase and p16 INK 4A ), senescence-associated morphologic changes, and cell cycle arrest. HIV- and meth-mediated astrocyte senescence was also demonstrated in three small animal models (humanized mouse model of HIV/NSG-huPBMCs, HIV-transgenic rats, and in a meth administration rat model). Senescent astrocytes in turn mediated neuronal toxicity. Further, we show that β-catenin, a pro-survival/proliferation transcriptional co-activator, is downregulated by HIV and meth in human astrocytes and this downregulation promotes astrocyte senescence while induction of β-catenin blocks HIV- and meth-mediated astrocyte senescence. These studies, for the first time, demonstrate that HIV and meth induce astrocyte senescence and implicate the β-catenin pathway as potential therapeutic target to overcome astrocyte senescence. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. The stress caused by nitrite with titanium dioxide nanoparticles under UVA irradiation in human keratinocyte cell

    International Nuclear Information System (INIS)

    Tu, Min; Huang, Yi; Li, Hai-Ling; Gao, Zhong-Hong

    2012-01-01

    Highlights: ► Nitrite increased photo-toxicity of nano-TiO 2 on human keratinocyte cells in a dose-dependant manner. ► Morphological study suggested the cell death may be mediated by apoptosis inducing factor. ► Protein nitration was generated in the cells, and the most abundant nitrated protein was identified as cystatin-A. ► Tyr35 was the most likely site to be nitrated in cystatin-A. -- Abstract: Our previous work found that in the presence of nitrite, titanium dioxide nanoparticles can cause protein tyrosine nitration under UVA irradiation in vivo. In this paper, the human keratinocyte cells was used as a skin cell model to further study the photo-toxicity of titanium dioxide nanoparticles when nitrite was present. The results showed that nitrite increased the photo-toxicity of titanium dioxide in a dose-dependant manner, and generated protein tyrosine nitration in keratinocyte cells. Morphological study of keratinocyte cells suggested a specific apoptosis mediated by apoptosis inducing factor. It was also found the main target nitrated in cells was cystatin-A, which expressed abundantly in cytoplasm and functioned as a cysteine protease inhibitor. The stress induced by titanium dioxide with nitrite under UVA irradiation in human keratinocyte cells appeared to trigger the apoptosis inducing factor mediated cell death and lose the inhibition of active caspase by cystatin-A. We conclude that nitrite can bring new damage and stress to human keratinocyte cells with titanium dioxide nanoparticles under UVA irradiation.

  17. Maintaining Low Voiding Solder Die Attach for Power Die While Minimizing Die Tilt

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Randy; Peterson, Kenneth A.

    2015-10-01

    This paper addresses work to minimize voiding and die tilt in solder attachment of a large power die, measuring 9.0 mm X 6.5 mm X 0.1 mm (0.354” x 0.256” x 0.004”), to a heat spreader. As demands for larger high power die continue, minimizing voiding and die tilt is of interest for improved die functionality, yield, manufacturability, and reliability. High-power die generate considerable heat, which is important to dissipate effectively through control of voiding under high thermal load areas of the die while maintaining a consistent bondline (minimizing die tilt). Voiding was measured using acoustic imaging and die tilt was measured using two different optical measurement systems. 80Au-20Sn solder reflow was achieved using a batch vacuum solder system with optimized fixturing. Minimizing die tilt proved to be the more difficult of the two product requirements to meet. Process development variables included tooling, weight and solder preform thickness.

  18. Die brein soos beskou deur die Grieke en Romeine

    Directory of Open Access Journals (Sweden)

    Francois P. Retief

    2015-02-01

    Full Text Available In Ou Egipte is mummifikasie met uitgebreide reseksie of uitsnyding van organe geassosieer, maar geen kennis is geneem van die morfologie van die brein nie. Griekse skrywers van die sesde en vyfde eeue v.C. het die brein aanvanklik gesien as die setel van intelligensie, die orgaan van sensoriese waarneming en gedeeltelik die oorsprong van sperma. Pneuma het ’n belangrike rol in breinfunksie gespeel. Hippokrates was die eerste om die brein te beskryf as ’n dubbele orgaan, wat met harsingvlies (meninges bedek, funksioneel van pneuma afhanklik en vertolker van begrip is. Tydgenote soos Plato, Aristoteles en Diokles het tot die beskrywing bygedra, maar laasgenoemde twee het beweer dat die hart die middelpunt van intelligensie is en nie die brein nie. Gedurende die laaste helfte van die vierde eeu v.C. is disseksie van die menslike liggaam tydelik aan die mediese skool van Alexandrië toegelaat en het dit tot merkwaardige vooruitgang in die begrip van die menslike anatomie en fisiologie gelei. Herofilus en Erasistratus het uitstekende beskrywings van die struktuur en funksie van die brein gegee wat eers in die tweede eeu n.C. deur Galenus geëwenaar is.

  19. Basal metabolic rate and the rate of senescence in the great tit

    NARCIS (Netherlands)

    Bouwhuis, Sandra; Sheldon, Ben C.; Verhulst, Simon; Koteja, Pawel

    1. Between-individual variation in rates of senescence has recently been found to relate to natal and early-life conditions in several natural populations. Mechanistic theories of senescence have predicted between-individual variation in basal metabolic rate (BMR) to also underlie such variation in

  20. Extracellular cystatin SN and cathepsin B prevent cellular senescence by inhibiting abnormal glycogen accumulation.

    Science.gov (United States)

    Oh, Sang-Seok; Park, Soojong; Lee, Ki-Won; Madhi, Hamadi; Park, Sae Gwang; Lee, Hee Gu; Cho, Yong-Yeon; Yoo, Jiyun; Dong Kim, Kwang

    2017-04-06

    Cystatin SN (CST1), a known inhibitor of cathepsin B (CatB), has important roles in tumor development. Paradoxically, CatB is a member of the cysteine cathepsin family that acts in cellular processes, such as tumor development and invasion. However, the relationship between CST1 and CatB, and their roles in tumor development are poorly understood. In this study, we observed that the knockdown of CST1 induced the activity of senescence-associated β-galactosidase, a marker of cellular senescence, and expression of senescence-associated secretory phenotype genes, including interleukin-6 and chemokine (C-C motif) ligand 20, in MDA-MB-231 and SW480 cancer cells. Furthermore, CST1 knockdown decreased extracellular CatB activity, and direct CatB inhibition, using specific inhibitors or shCatB, induced cellular senescence. Reconstitution of CST1 restored CatB activity and inhibited cellular senescence in CST1 knockdown cells. CST1 knockdown or CatB inhibition increased glycogen synthase (GS) kinase 3β phosphorylation at serine 9, resulting in the activation of GS and the induction of glycogen accumulation associated with cellular senescence. Importantly, CST1 knockdown suppressed cancer cell proliferation, soft agar colony growth and tumor growth in a xenograft model. These results indicate that CST1-mediated extracellular CatB activity enhances tumor development by preventing cellular senescence. Our findings suggest that antagonists of CST1 or inhibitors of CatB are potential anticancer agents.

  1. The role of hypoxia inducible factor-1 alpha in bypassing oncogene-induced senescence.

    Directory of Open Access Journals (Sweden)

    Mehtap Kilic Eren

    Full Text Available Oncogene induced senescence (OIS is a sustained anti-proliferative response acutely induced in primary cells via activation of mitogenic oncogenes such as Ras/BRAF. This mechanism acts as an initial barrier preventing normal cells transformation into malignant cell. Besides oncogenic activation and DNA damage response (DDR, senescence is modulated by a plethora of other factors, and one of the most important one is oxygen tension of the tissue. The aim of this study was to determine the impact of hypoxia on RasV12-induced senescence in human diploid fibroblasts (HDFs. We showed here that hypoxia prevents execution of oncogene induced senescence (OIS, through a strong down-regulation of senescence hallmarks, such as SA- β-galactosidase, H3K9me3, HP1γ, p53, p21CIP1 and p16INK4a in association with induction of hypoxia inducible factor-1α (HIF-1α. In addition, hypoxia also decreased marks of H-RasV12-induced DDR in both cell lines through down-regulation of ATM/ATR, Chk1 and Chk2 phosphorylation as well as decreased γ-H2AX positivity. Utilizing shRNA system targeting HIF-1α we show that HIF-1α is directly involved in down regulation of p53 and its target p21CIP1 but not p16INK4a. In line with this finding we found that knock down of HIF-1α leads to a strong induction of apoptotic response, but not restoration of senescence in Ras expressing HDFs in hypoxia. This indicates that HIF-1α is an important player in early steps of tumorigenesis, leading to suppression of senescence through its negative regulation of p53 and p21CIP1. In our work we describe a mechanism through which hypoxia and specifically HIF-1α preclude cells from maintaining senescence-driven anti proliferative response. These findings indicate the possible mechanism through which hypoxic environment helps premalignant cells to evade impingement of cellular failsafe pathways.

  2. Influence of ion implantation on the adhesion and grow of human keratinocytes

    International Nuclear Information System (INIS)

    Walachova, K.; Svorcik, V.; Dvorakova, B.; Vogtova, D.

    1999-01-01

    Interaction of keratinocytes with polymer modified by ion implantation was studied with the possibility of cultivate these cells for regeneration of dermal cover, for example, heavy burned persons. The modification on polyethylene (PE) with 100 μm thickness was processed by implantation the Ar + ions with the energy 63 keV and Xe + ions with the energy 156 keV. Some characteristics of superficial modified layers and influence of ion implantation on the adhesion and proliferation of keratinocytes were studied

  3. Die Britse owerheid en die onderwys op Heidelberg gedurende die ...

    African Journals Online (AJOL)

    The establishment of Christian National Education (CNE) Schools stimulated the concept of mother tongue education. Oor die klaskamerpraktyk en die werklike gehalte van onderrig tydens die kampskooltydperk is daar min bekend. Heidelberg wat na 1902 in 'n belangrike onderwyssentrum in Transvaal ontwikkel het, het ...

  4. The senescent microenvironment promotes the emergence of heterogeneous cancer stem-like cells.

    Science.gov (United States)

    Castro-Vega, Luis Jaime; Jouravleva, Karina; Ortiz-Montero, Paola; Liu, Win-Yan; Galeano, Jorge Luis; Romero, Martha; Popova, Tatiana; Bacchetti, Silvia; Vernot, Jean Paul; Londoño-Vallejo, Arturo

    2015-10-01

    There is a well-established association between aging and the onset of metastasis. Although the mechanisms through which age impinges upon the malignant phenotype remain uncharacterized, the role of a senescent microenvironment has been emphasized. We reported previously that human epithelial cells that undergo telomere-driven chromosome instability (T-CIN) display global microRNA (miR) deregulation and develop migration and invasion capacities. Here, we show that post-crisis cells are not able to form tumors unless a senescent microenvironment is provided. The characterization of cell lines established from such tumors revealed that these cells have acquired cell autonomous tumorigenicity, giving rise to heterogeneous tumors. Further experiments demonstrate that explanted cells, while displaying differences in cell differentiation markers, are all endowed of enhanced stem cell properties including self-renewal and multilineage differentiation capacity. Treatments of T-CIN+ cells with senescence-conditioned media induce sphere formation exclusively in cells with senescence-associated tumorigenicity, a capacity that depends on miR-145 repression. These results indicate that the senescent microenvironment, while promoting further transdifferentiations in cells with genome instability, is able to propel the progression of premalignant cells towards a malignant, cell stem-like state. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Sedimentêre omgewings van die Inhaca-eilandstelsel met spesiale verwysing na die petrografiese en geochemiese eienskappe van die sedimente spesiale verwysing na die petrografiese en geochemiese eienskappe van die sedimente

    Directory of Open Access Journals (Sweden)

    Marieke Peché

    2011-09-01

    Full Text Available Die Inhaca-eilandstelsel is geleë langs die suidooskus van Mosambiek. Die oostekant van die stelsel grens aan die Indiese Oseaan en die westekant aan die Baai van Maputo. Hierdie eilandstelsel bestaan uit Inhaca- en Portugese eiland, asook ’n groep sandbanke wat van die noordlike punt van Inhaca na Portugese eiland strek. Die doel van hierdie studie is om die verskillende moderne en oer-sedimentêre omgewings op die eilandstelsel te identifiseer en te beskryf, die invloed van getye en golfaksie op die moderne sedimentêre omgewing vas te stel en die geochemiese en petrografiese samestelling van die geologiese eenhede te bepaal.

  6. Die Ware Buch und die Philologie

    Directory of Open Access Journals (Sweden)

    Bernhard Hurch

    2017-10-01

    Full Text Available Die im 19. Jahrhundert sich verändernden Produktionsbedingungen für Druckwerke (Buchdruck, Satz, Papier, Bindung wirkten katalysierend auf die Fachkonstitution und Institutionalisierung der Philologien. Hier steht der tatsächliche Buchmarkt im Vordergrund der Darstellung, das Käuferpublikum und die Voraussetzungen des Vertriebs. Dazu gehören auch die Rezension als entstehende Textsorte und die rasch arbeitenden Rezensionsorgane. F.-R. Hausmann wurde in den letzten Jahren unentbehrlicher Mitarbeiter dieses im Rahmen des Grazer Schuchardt-Projekts "Netzwerk des Wissens" angesiedelten Ansatzes.

  7. Involvement of NADPH oxidase isoforms in the production of O2- manipulated by ABA in the senescing leaves of early-senescence-leaf (esl) mutant rice (Oryza sativa).

    Science.gov (United States)

    Li, Zhaowei; Wang, Fubiao; Zhao, Qian; Liu, Jianchao; Cheng, Fangmin

    2018-01-01

    In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage. Exogenous ABA treatment induced O2- generation; however, it was depressed by diphenyleneiodonium chloride (DPI) pretreatment in the detached leaf segments. This finding suggested the involvement of NADPH oxidase in ABA-induced O2- generation. The esl mutant exhibited significantly higher expression of OsNox2, OsNox5, OsNox6, and OsNox7 in the initial of grain-filling stage, followed by sharply decrease. The transcriptional levels of OsNox1, OsNox3, and OsFR07 in the flag leaf of the esl mutant were significantly lower than those in the wild-type cultivar. The expression levels of OsNox2, OsNox5, OsNox6, and OsNox7 were significantly enhanced by exogenous ABA treatments. The enhanced expression levels of OsNox2 and OsNox6 were dependent on the duration of ABA treatment. The inducible expression levels of OsNox5 and OsNox7 were dependent on ABA concentrations. By contrast, exogenous ABA treatment severely repressed the transcripts of OsNox1, OsNox3, and OsFR07 in the detached leaf segments. Therefore, OsNox2, OsNox5, OsNox6, and OsNox7 were probably involved in the ABA-induced O2- generation in the initial stage of leaf senescence. Subsequently, other oxidases activated in deteriorating cells were associated with ROS generation and accumulation in the

  8. Cytoplasmic chromatin triggers inflammation in senescence and cancer.

    Science.gov (United States)

    Dou, Zhixun; Ghosh, Kanad; Vizioli, Maria Grazia; Zhu, Jiajun; Sen, Payel; Wangensteen, Kirk J; Simithy, Johayra; Lan, Yemin; Lin, Yanping; Zhou, Zhuo; Capell, Brian C; Xu, Caiyue; Xu, Mingang; Kieckhaefer, Julia E; Jiang, Tianying; Shoshkes-Carmel, Michal; Tanim, K M Ahasan Al; Barber, Glen N; Seykora, John T; Millar, Sarah E; Kaestner, Klaus H; Garcia, Benjamin A; Adams, Peter D; Berger, Shelley L

    2017-10-19

    Chromatin is traditionally viewed as a nuclear entity that regulates gene expression and silencing. However, we recently discovered the presence of cytoplasmic chromatin fragments that pinch off from intact nuclei of primary cells during senescence, a form of terminal cell-cycle arrest associated with pro-inflammatory responses. The functional significance of chromatin in the cytoplasm is unclear. Here we show that cytoplasmic chromatin activates the innate immunity cytosolic DNA-sensing cGAS-STING (cyclic GMP-AMP synthase linked to stimulator of interferon genes) pathway, leading both to short-term inflammation to restrain activated oncogenes and to chronic inflammation that associates with tissue destruction and cancer. The cytoplasmic chromatin-cGAS-STING pathway promotes the senescence-associated secretory phenotype in primary human cells and in mice. Mice deficient in STING show impaired immuno-surveillance of oncogenic RAS and reduced tissue inflammation upon ionizing radiation. Furthermore, this pathway is activated in cancer cells, and correlates with pro-inflammatory gene expression in human cancers. Overall, our findings indicate that genomic DNA serves as a reservoir to initiate a pro-inflammatory pathway in the cytoplasm in senescence and cancer. Targeting the cytoplasmic chromatin-mediated pathway may hold promise in treating inflammation-related disorders.

  9. Die tug oor ampsdraers tydens die doleansie van 1886

    Directory of Open Access Journals (Sweden)

    J. Visser

    1986-06-01

    Full Text Available In art 29 van die Nederlandse Geloofsbelydenis word bely: “Die merktekens om die ware Kerk te ken is die volgende: As die Kerk die suiwere prediking van die evangelie uitoefen, as dit die suiwer bediening van die sakramente gebruik soos Christus dit ingestel het, as die kerklike tug gebruik word om die sondes te straf.” Dit spreek vanself dat wanneer ampsdraers, aan wie Christus sy kudde toevertrou het (Hand 20 : 28, met leer en /of lewenswandel in sonde volhard en nie daarin met tug gestuit word nie, word die ware kerk nie gebou nie maar afgebreek. 0ns sal later in hierdie artikel aantoon hoedanig die suiwer tug oor ampsdraers, veral leertug, tydens die Doleansie tot skade van die kerk van Christus agterweë gebly het.

  10. Phytohormones and microRNAs as sensors and regulators of leaf senescence: assigning macro roles to small molecules.

    Science.gov (United States)

    Sarwat, Maryam; Naqvi, Afsar Raza; Ahmad, Parvaiz; Ashraf, Muhammad; Akram, Nudrat Aisha

    2013-12-01

    Ageing or senescence is an intricate and highly synchronized developmental phase in the life of plant parts including leaf. Senescence not only means death of a plant part, but during this process, different macromolecules undergo degradation and the resulting components are transported to other parts of the plant. During the period from when a leaf is young and green to the stage when it senesces, a multitude of factors such as hormones, environmental factors and senescence associated genes (SAGs) are involved. Plant hormones including salicylic acid, abscisic acid, jasmonic acid and ethylene advance leaf senescence, whereas others like cytokinins, gibberellins, and auxins delay this process. The environmental factors which generally affect plant development and growth, can hasten senescence, the examples being nutrient dearth, water stress, pathogen attack, radiations, high temperature and light intensity, waterlogging, and air, water or soil contamination. Other important influences include carbohydrate accumulation and high carbon/nitrogen level. To date, although several genes involved in this complex process have been identified, still not much information exists in the literature on the signalling mechanism of leaf senescence. Now, the Arabidopsis mutants have paved our way and opened new vistas to elucidate the signalling mechanism of leaf senescence for which various mutants are being utilized. Recent studies demonstrating the role of microRNAs in leaf senescence have reinforced our knowledge of this intricate process. This review provides a comprehensive and critical analysis of the information gained particularly on the roles of several plant growth regulators and microRNAs in regulation of leaf senescence. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. The SETD8/PR-Set7 Methyltransferase Functions as a Barrier to Prevent Senescence-Associated Metabolic Remodeling

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2017-02-01

    Full Text Available Summary: Cellular senescence is an irreversible growth arrest that contributes to development, tumor suppression, and age-related conditions. Senescent cells show active metabolism compared with proliferating cells, but the underlying mechanisms remain unclear. Here we show that the SETD8/PR-Set7 methyltransferase, which catalyzes mono-methylation of histone H4 at lysine 20 (H4K20me1, suppresses nucleolar and mitochondrial activities to prevent cellular senescence. SETD8 protein was selectively downregulated in both oncogene-induced and replicative senescence. Inhibition of SETD8 alone was sufficient to trigger senescence. Under these states, the expression of genes encoding ribosomal proteins (RPs and ribosomal RNAs as well as the cyclin-dependent kinase (CDK inhibitor p16INK4A was increased, with a corresponding reduction of H4K20me1 at each locus. As a result, the loss of SETD8 concurrently stimulated nucleolar function and retinoblastoma protein-mediated mitochondrial metabolism. In conclusion, our data demonstrate that SETD8 acts as a barrier to prevent cellular senescence through chromatin-mediated regulation of senescence-associated metabolic remodeling. : Tanaka et al. show that SETD8/PR-Set7 methyltransferase represses senescence-associated genes including ribosomal proteins, ribosomal RNAs, and p16INK4A by catalyzing mono-methylation of histone H4 at lysine 20. Depletion of SETD8 derepresses these genes, resulting in nucleolar and mitochondrial coactivation characteristic of senescence-associated metabolic remodeling. Keywords: SETD8/PR-Set7, H4K20 methylation, senescence-associated metabolic remodeling, nucleolus, mitochondria

  12. Characterization of Fetal Keratinocytes, Showing Enhanced Stem Cell-Like Properties: A Potential Source of Cells for Skin Reconstruction

    Directory of Open Access Journals (Sweden)

    Kenneth K.B. Tan

    2014-08-01

    Full Text Available Epidermal stem cells have been in clinical application as a source of culture-generated grafts. Although applications for such cells are increasing due to aging populations and the greater incidence of diabetes, current keratinocyte grafting technology is limited by immunological barriers and the time needed for culture amplification. We studied the feasibility of using human fetal skin cells for allogeneic transplantation and showed that fetal keratinocytes have faster expansion times, longer telomeres, lower immunogenicity indicators, and greater clonogenicity with more stem cell indicators than adult keratinocytes. The fetal cells did not induce proliferation of T cells in coculture and were able to suppress the proliferation of stimulated T cells. Nevertheless, fetal keratinocytes could stratify normally in vitro. Experimental transplantation of fetal keratinocytes in vivo seeded on an engineered plasma scaffold yielded a well-stratified epidermal architecture and showed stable skin regeneration. These results support the possibility of using fetal skin cells for cell-based therapeutic grafting.

  13. Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Debets, A.J.M.; Slakhorst-Wandel, S.M.; Hoekstra, R.F.

    2008-01-01

    Since the first description of a linear mitochondrial plasmid in Podospora anserina, pAL2-1, and homologous plasmids have gone from being considered beneficial longevity plasmids, via neutral genetic elements, toward mutator plasmids causing senescence. The plasmid has an invertron structure, with

  14. Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence

    NARCIS (Netherlands)

    van Diepeningen, Anne D; Debets, Alfons J M; Slakhorst, S Marijke; Hoekstra, Rolf F

    Since the first description of a linear mitochondrial plasmid in Podospora anserina, pAL2-1, and homologous plasmids have gone from being considered beneficial longevity plasmids, via neutral genetic elements, toward mutator plasmids causing senescence. The plasmid has an invertron structure, with

  15. Influence of extracellular matrix proteins on human keratinocyte attachment, proliferation and transfer to a dermal wound model.

    Science.gov (United States)

    Dawson, R A; Goberdhan, N J; Freedlander, E; MacNeil, S

    1996-03-01

    The aim of this study was to investigate whether prior culture of cells on ECM proteins might positively influence the performance of keratinocytes when cells are transferred to a dermal in vitro wound bed model. Keratinocytes were cultured using a method for producing cultured epithelial autografts for severely burned patients (essentially using Green's medium, a mitogen-rich medium containing fetal calf serum, cholera toxin, EGF, insulin, transferrin and triiodothyronine). Cells were cultured either on irradiated 3T3 fibroblasts (as in the standard Rheinwald and Green technique) or, alternatively, on collagen I, collagen IV, matrigel, RGD, vitronectin or fibronectin. Under these conditions matrigel, collagen I and IV enhanced initial attachment, RGD, vitronectin, fibronectin and irradiated 3T3 fibroblasts did not. Proliferation of cells was positively influenced by matrigel, collagen I and IV and irradiated 3T3 fibroblasts; of these, however, only matrigel and 3T3 fibroblasts had sustained significant effects on keratinocyte proliferation over 4 days. Cells on fibronectin showed significantly reduced proliferation. An acellular non-viable dermis was then used to mimic the homograft allodermis onto which cultured epithelial autograft sheets are grafted clinically and cells cultured on the various ECM proteins for 96 h were transferred to this in vitro wound model. None of the substrates enhanced keratinocyte performance on this model. It was concluded that under these conditions some ECM proteins can significantly affect keratinocyte attachment and, to a lesser extent, proliferation but that the culture of keratinocytes on these ECM proteins does not appear to confer any lasting benefit to the attachment of these keratinocytes to an in vitro wound-bed model.

  16. In Vitro Toxicity of Aluminum Nanoparticles in Human Keratinocytes

    National Research Council Canada - National Science Library

    McCormack-Brown, Stephanie

    2008-01-01

    .... There is no published data on AL NP toxicity effects on human skin. This research used in vitro techniques to determine the cytotoxicity of AL NPs, sized 50, 80, and 120 nm, on human keratinocytes...

  17. Die kritiek van tradisie en die tradisie van kritiek in die Geesteswetenskappe. 'n Rekonstruksie van die debat tussen Habermas en Gadamer

    OpenAIRE

    Duvenage, Pieter

    2013-01-01

    In hierdie bydrae word die bekende debat (1967-1971) tussen Jürgen Habermas en Hans-Georg Gadamer gerekonstrueer. Die debat word hier in noue samehang met die kwessie van die geesteswetenskappe gelees. Die bydrae val in vier dele uiteen. In die eerste afdeling word Habermas se opening tot die debat in vyf onderafdelings uiteengesit. Dit gaan hier oor Gadamer se verdediging van tradisie en Habermas se kritiek op die begrip (1.1). In antwoord op Gadamer se begrip van tradisie ontwerp Habermas s...

  18. Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence.

    Science.gov (United States)

    Groten, Karin; Dutilleul, Christelle; van Heerden, Philippus D R; Vanacker, Hélène; Bernard, Stéphanie; Finkemeier, Iris; Dietz, Karl-Josef; Foyer, Christine H

    2006-02-20

    Redox factors contributing to nodule senescence were studied in pea. The abundance of the nodule cytosolic peroxiredoxin but not the mitochondrial peroxiredoxin protein was modulated by ascorbate. In contrast to redox-active antioxidants such as ascorbate and cytosolic peroxiredoxin that decreased during nodule development, maximal extractable nodule proteinase activity increased progressively as the nodules aged. Cathepsin-like activities were constant throughout development but serine and cysteine proteinase activities increased during senescence. Senescence-induced cysteine proteinase activity was inhibited by cysteine, dithiotreitol, or E-64. Senescence-dependent decreases in redox-active factors, particularly ascorbate and peroxiredoxin favour decreased redox-mediated inactivation of cysteine proteinases.

  19. Environmental stress, ageing and glial cell senescence: a novel mechanistic link to Parkinson's disease?

    Science.gov (United States)

    Chinta, S J; Lieu, C A; Demaria, M; Laberge, R-M; Campisi, J; Andersen, J K

    2013-05-01

    Exposure to environmental toxins is associated with a variety of age-related diseases including cancer and neurodegeneration. For example, in Parkinson's disease (PD), chronic environmental exposure to certain toxins has been linked to the age-related development of neuropathology. Neuronal damage is believed to involve the induction of neuroinflammatory events as a consequence of glial cell activation. Cellular senescence is a potent anti-cancer mechanism that occurs in a number of proliferative cell types and causes the arrest of proliferation of cells at risk of malignant transformation following exposure to potentially oncogenic stimuli. With age, senescent cells accumulate and express a senescence-associated secretory phenotype (SASP; that is the robust secretion of many inflammatory cytokines, growth factors and proteases). Whereas cell senescence in peripheral tissues has been causally linked to a number of age-related pathologies, little is known about the induction of cellular senescence and the SASP in the brain. On the basis of recently reported findings, we propose that environmental stressors associated with PD may act in part by eliciting senescence and the SASP within non neuronal glial cells in the ageing brain, thus contributing to the characteristic decline in neuronal integrity that occurs in this disorder. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  20. Die transvaalse ontwerp-ordonnansie oor die onderwys

    Directory of Open Access Journals (Sweden)

    J. C. Coetzee

    1952-03-01

    Full Text Available In ’n Buitengewone Provinsiale Koerant van die Provinsie Transvaal is onder datum 25 Junie 1952 gepubliseer ’n „Ontwerp-Ordonnansie tot samevatting en wysiging van die Wette betreffende die Sentrale Beheer van die Onderwys, die Plaaslike Beheer van Skole, Godsdiensonderrig in Openbare Skole, Taal en die Onderwys, Onderwyspersoneel, Verpligte Onderwys, Toelating van Leerlinge tot Skole, Klasse of Inrigtings, Openbare Onderwys, Private Skole, Onderwys vir Kleurlinge en Asiate en Onderwys vir Naturelle, en om vir sake in verband daarmee voorsiening te maak” .

  1. Enhanced constitutive invasion activity in human nontumorigenic keratinocytes exposed to a low level of barium for a long time.

    Science.gov (United States)

    Thang, Nguyen D; Yajima, Ichiro; Ohnuma, Shoko; Ohgami, Nobutaka; Kumasaka, Mayuko Y; Ichihara, Gaku; Kato, Masashi

    2015-02-01

    We have recently demonstrated that exposure to barium for a short time (≤4 days) and at a low level (5 µM = 687 µg/L) promotes invasion of human nontumorigenic HaCaT cells, which have characteristics similar to those of normal keratinocytes, suggesting that exposure to barium for a short time enhances malignant characteristics. Here we examined the effect of exposure to low level of barium for a long time, a condition mimicking the exposure to barium through well water, on malignant characteristics of HaCaT keratinocytes. Constitutive invasion activity, focal adhesion kinase (FAK) protein expression and activity, and matrix metalloproteinase 14 (MMP14) protein expression in primary cultured normal human epidermal keratinocytes, HaCaT keratinocytes, and HSC5 and A431 human squamous cell carcinoma cells were augmented following an increase in malignancy grade of the cells. Constitutive invasion activity, FAK phosphorylation, and MMP14 expression levels of HaCaT keratinocytes after treatment with 5 µM barium for 4 months were significantly higher than those of control untreated HaCaT keratinocytes. Taken together, our results suggest that exposure to a low level of barium for a long time enhances constitutive malignant characteristics of HaCaT keratinocytes via regulatory molecules (FAK and MMP14) for invasion. © 2013 Wiley Periodicals, Inc.

  2. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang [East Hospital, Tongji University School of Medicine, Shanghai (China); Dong, Chuanming [East Hospital, Tongji University School of Medicine, Shanghai (China); Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong (China); Sun, Chenxi; Ma, Rongjie; Yang, Danjing [East Hospital, Tongji University School of Medicine, Shanghai (China); Zhu, Hongwen, E-mail: hongwen_zhu@hotmail.com [Tianjin Hospital, Tianjin Academy of Integrative Medicine, Tianjin (China); Xu, Jun, E-mail: xunymc2000@yahoo.com [East Hospital, Tongji University School of Medicine, Shanghai (China)

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.

  3. Methotrexate treatment provokes apoptosis of proliferating keratinocyte in psoriasis patients.

    Science.gov (United States)

    Elango, Tamilselvi; Thirupathi, Anand; Subramanian, Swapna; Ethiraj, Purushoth; Dayalan, Haripriya; Gnanaraj, Pushpa

    2017-08-01

    Psoriasis is a chronic inflammatory skin disease characterized by hyper proliferation of keratinocytes. Recent data show that the epidermis thickening in psoriasis may be related to imbalance of homeostasis caused by abnormal apoptotic process. Maintenance of keratinocyte apoptotic process is very important in psoriasis. Methotrexate (MTX) has been used for many years to restore the normal skin in psoriasis condition. However, the exact mechanism of MTX in psoriasis condition is poorly understood. The aim of this study was to examine the role of MTX on keratinocyte apoptosis pathway in psoriasis patients. A total of 58 psoriasis vulgaris patients were recruited for this study. Nonlesional skin biopsies served as control. Skin biopsies of psoriatic patients were collected and analyzed for cytosolic, mitochondria and total cytochrome c by ELISA. Expression of caspase-9, NFκBp65, pAkt1 by western blot, real-time PCR and immunohistochemical analysis of c-FLIP protein was analyzed in nonlesional and lesional skin biopsies before (day 0) and after (at the end of 6 and 12 weeks) MTX treatment. After MTX treatment, a significant increase in cytochrome c was observed when compared with before MTX treatment in psoriasis patients (p psoriasis by controlling the acanthosis.

  4. UVA Irradiation of Dysplastic Keratinocytes: Oxidative Damage versus Antioxidant Defense

    Science.gov (United States)

    Nechifor, Marina T.; Niculiţe, Cristina M.; Urs, Andreea O.; Regalia, Teodor; Mocanu, Mihaela; Popescu, Alexandra; Manda, Gina; Dinu, Diana; Leabu, Mircea

    2012-01-01

    UVA affects epidermal cell physiology in a complex manner, but the harmful effects have been studied mainly in terms of DNA damage, mutagenesis and carcinogenesis. We investigated UVA effects on membrane integrity and antioxidant defense of dysplastic keratinocytes after one and two hours of irradiation, both immediately after exposure, and 24 h post-irradiation. To determine the UVA oxidative stress on cell membrane, lipid peroxidation was correlated with changes in fatty acid levels. Membrane permeability and integrity were assessed by propidium iodide staining and lactate dehydrogenase release. The effects on keratinocyte antioxidant protection were investigated in terms of catalase activity and expression. Lipid peroxidation increased in an exposure time-dependent manner. UVA exposure decreased the level of polyunsaturated fatty acids, which gradually returned to its initial value. Lactate dehydrogenase release showed a dramatic loss in membrane integrity after 2 h minimum of exposure. The cell ability to restore membrane permeability was noted at 24 h post-irradiation (for one hour exposure). Catalase activity decreased in an exposure time-dependent manner. UVA-irradiated dysplastic keratinocytes developed mechanisms leading to cell protection and survival, following a non-lethal exposure. The surviving cells gained an increased resistance to apoptosis, suggesting that their pre-malignant status harbors an abnormal ability to control their fate. PMID:23222638

  5. DIE PLEK VAN SANG EN MUSIEK IN DIE PROTESTANTSE ...

    African Journals Online (AJOL)

    Test

    Sy moet hierdie opdrag uitvoer deur mid del van die Prediking d.w.s. deur middel van die Woord-vorm, maar ook deur die bediening van die sakramente, dws. deur middel van die vorm van die Daad. Maar nou wil God nie hê dat die Kerk slegs één maal die Evangelie sal predik en die mense sal doop om hulle daarna.

  6. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana

    KAUST Repository

    Kim, Jeong Im

    2011-04-21

    The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgenic plants, displayed dramatic longevity. In addition, plants over-expressing YUCCA6 exhibited classical, delayed dark-induced and hormone-induced senescence in assays using detached rosette leaves. However, plants over-expressing an allele of YUCCA6, that carries mutations in the NADPH cofactor binding site, exhibited neither delayed leaf senescence phenotypes nor phenotypes typical of auxin overproduction. When the level of free IAA was reduced in yuc6-1D by conjugation to lysine, yuc6-1D leaves senesced at a rate similar to the wild-type leaves. Dark-induced senescence in detached leaves was accompanied by a decrease in their free IAA content, by the reduced expression of auxin biosynthesis enzymes such as YUCCA1 and YUCCA6 that increase cellular free IAA levels, and by the increased expression of auxin-conjugating enzymes encoded by the GH3 genes that reduce the cellular free auxin levels. Reduced transcript abundances of SAG12, NAC1, and NAC6 during senescence in yuc6-1D compared with the wild type suggested that auxin delays senescence by directly or indirectly regulating the expression of senescence-associated genes. 2011 The Author(s).

  7. In vitro induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 expression in keratinocytes by boron and manganese.

    Science.gov (United States)

    Chebassier, Nathalie; El Houssein, Ouijja; Viegas, Isabelle; Dréno, Brigitte

    2004-08-01

    Matrix metalloproteinase (MMP)-2 and MMP-9 are involved in keratinocyte migration and granulation tissue remodeling during wound healing. Thermal water cures are sometimes proposed as complementary treatment for accelerating healing of wounds resulting from burns and/or surgery, but their mechanisms of action remain unknown. Some thermal waters are rich in trace elements such as boron and manganese. Interestingly, clinical studies have shown the beneficial effects of trace elements such as boron and manganese for human wound healing. To try to specify the role of trace elements in cutaneous healing, the present study investigated the effects of these trace elements on the production of MMP-2 and MMP-9 by normal human keratinocytes cultured in vitro. Immunohistochemistry and Western blot showed that intracellular MMP-9 expression in keratinocytes was induced when incubated for 6 h with boron at 10 micro g/ml or manganese at 0.2 micro g/ml. Moreover, gelatin zymography on keratinocyte supernatants showed an increase of gelatinase secretion after 24 h of incubation of keratinocytes with boron or manganese, regardless of concentration. Gelatinase secretion was not associated with keratinocyte proliferation induced by trace elements. Thus, our results suggest that boron and manganese could play a role in the clinical efficiency of thermal water on wound healing.

  8. Thomas Erastus oor die struktuur van die gemeenskap'^

    African Journals Online (AJOL)

    óók aansprake en regte het, is die opvatting dat sowel die burgerlike gemeenskap as die kerk 'n perfecta societas sibi sufficiens is, nié werklik aanvaar nie. Die Middeleeuse gemeenskap was die corpus christianum,. 'n gemeenskap wat nie deur fisiese of politieke grense beperk was nie. Sy grense het gelê waar die grense ...

  9. Comparison between various biomarkers of senescence in bone marrow-derived stromal cells in vitro and ex-vivo

    DEFF Research Database (Denmark)

    Nehlin, Jan; Kassem, Moustapha; Frary, Charles

    Senescent stem cells are classified as non-quiescent, irreversibly growth-arrested, non-terminally differentiated, apoptosis resistant multipotent stem cells that maintain an altered gene expression from their juvenescent precursors. Established markers of senescence such as senescent-associated ...

  10. Die vestiging van die Kerk in Natal, die Vrystaat en Transvaal na ...

    African Journals Online (AJOL)

    as eerste predikant van die Voortrekkers laat orden en bevestig. Daama het verskeie kerksake van tyd tot tyd aandag geniet. Met betrekking tot die bevestiging van huwelike stel Retief 'n meer ordelike reëling daar, naamlik dat die gebooie van voomemende egpa- re van nou af drie maal in die kerk afgekondig moes wrord ...

  11. Stress-induced premature senescence of endothelial cells.

    Science.gov (United States)

    Chen, Jun; Patschan, Susann; Goligorsky, Michael S

    2008-01-01

    Stress-induced premature senescence (SIPS) is characterized by cell cycle arrest and curtailed Hayflick limit. Studies support a central role for Rb protein in controlling this process via signaling from the p53 and p16 pathways. Cellular senescence is considered an essential contributor to the aging process and has been shown to be an important tumor suppression mechanism. In addition, emerging evidence suggests that SIPS may be involved in the pathogenesis of chronic human diseases. Here, focusing on endothelial cells, we discuss recent advances in our understanding of SIPS and the pathways that trigger it, evaluate their correlation with the apoptotic response and examine their links to the development of chronic diseases, with the emphasis on vasculopathy. Emerging novel therapeutic interventions based on recent experimental findings are also reviewed.

  12. Die historiese betroubaarheid van die aartsvadervertellinge. 'n Beknopte bespreking van die huidige debat na aanleiding van die jongste publikasie

    Directory of Open Access Journals (Sweden)

    W. Vosloo

    1982-08-01

    Full Text Available Die afgelope twintig jaar was daar �n toenemende belangstelling in die aartsvadervertellinge in Genesis. Benewens die talle tydskrifartikels het skrywers soos die volgende ook boeke oor die onderwerp die lig laat sien: A. Parrot (1962, W. M. Clark (1964, R. Kilian (1966, R. E. Clements (1967, N. Lohfink (1967, H. Weidemann (1968, R. Martin-Achard (1969, T. L. Thompson (1974, J. van Seters (1975, J. P. Fokkelman (1975, C. Westermann (1976, R. Rendtorff (1977, J. Bright (1977, W. McKane (1979 en A. R. Millard en D. J. Wiseman (1980.

  13. RAC1 in keratinocytes regulates crosstalk to immune cells by Arp2/3-dependent control of STAT1

    DEFF Research Database (Denmark)

    Pedersen, Esben Ditlev Kølle; Wang, Zhipeng; Stanley, Alanna

    2012-01-01

    Crosstalk between keratinocytes and immune cells is crucial for the immunological barrier function of the skin, and aberrant crosstalk contributes to inflammatory skin diseases. Using mice with a keratinocyte-restricted deletion of the RAC1 gene we found that RAC1 in keratinocytes plays...... hypersensitive to inflammatory stimuli both in vitro and in vivo, suggesting a major role for RAC1 in regulating the crosstalk between the epidermis and the immune system....

  14. Prediking aan die hand van die metafoor van fiksieskryf

    African Journals Online (AJOL)

    p1243322

    HTS 64(3) 2008 siening van die self en waarheid. In die pre-moderne paradigma kan die dominante metafoor verstaan word aan die hand van 'n spieël wat die lig uit 'n transendente oorsprong weerkaats, terwyl die moderne paradigma uitgedruk word met die metafoor van 'n lamp wat 'n eie, oorspronklike lig binne die self.

  15. Enhancement of keratinocyte performance in the production of tissue-engineered skin using a low-calcium medium.

    Science.gov (United States)

    Hernon, Catherine A; Harrison, Caroline A; Thornton, Daniel J A; MacNeil, Sheila

    2007-01-01

    The success of laboratory-expanded autologous keratinocytes for the treatment of severe burn injuries is often compromised by their lack of dermal remnants and failure to establish a secure dermo-epidermal junction on the wound bed. We have developed a tissue-engineered skin substitute for in vivo use, based on a sterilized donor human dermis seeded with autologous keratinocytes and fibroblasts. However, culture rates are currently too slow for clinical use in acute burns. Our aim in this study was to increase the rate of production of tissue-engineered skin. Two approaches were explored: one using a commercial low-calcium media and the other supplementing well-established media for keratinocyte culture with the calcium-chelating agent ethylene glutamine tetra-acetic acid (EGTA). Using commercial low-calcium media for both the initial cell culture and subsequent culture of tissue-engineered skin did not produce tissue suitable for clinical use. However, it was possible to enhance the initial proliferation of keratinocytes and to increase their horizontal migration in tissue-engineered skin by supplementing established culture medium with 0.04 mM EGTA without sacrificing epidermal attachment and differentiation. Enhancement of keratinocyte migration with EGTA was also maximal in the absence of fibroblasts or basement membrane.

  16. Keratinocyte proliferation, differentiation, and apoptosis-Differential mechanisms of regulation by curcumin, EGCG and apigenin

    International Nuclear Information System (INIS)

    Balasubramanian, Sivaprakasam; Eckert, Richard L.

    2007-01-01

    We have proposed that it is important to examine the impact of chemopreventive agents on the function of normal human epidermal keratinocytes since these cells comprise the barrier that protects the body from a range of environmental insults. In this context, it is widely appreciated that cancer may be retarded by consumption or topical application of naturally occurring food-derived chemopreventive agents. Our studies show that (-)-epigallocatechin-3-gallate (EGCG), a green tea-derived polyphenol, acts to enhance the differentiation of normal human keratinocytes as evidenced by its ability to increase involucrin (hINV), transglutaminase type 1 (TG1) and caspase-14 gene expression. EGCG also stimulates keratinocyte morphological differentiation. These actions of EGCG are mediated via activation of a nPKC, Ras, MEKK1, MEK3, p38δ-ERK1/2 signaling cascade which leads to increased activator protein 1 (AP1) and CAATT enhancer binding protein (C/EBP) transcription factor expression, increased binding of these factors to DNA, and increased gene transcription. In contrast, apigenin, a dietary flavonoid derived from plants and vegetables, and curcumin, an agent derived from turmeric, inhibit differentiation by suppressing MAPK signal transduction and reducing API transcription factor level. Curcumin also acts to enhance apoptosis, although EGCG and apigenin do not stimulate apoptosis. In addition, all of these agents inhibit keratinocyte proliferation. These findings indicate that each of these diet-derived chemopreventive agents has a profound impact on normal human keratinocyte function and that they operate via distinct and sometimes opposing mechanisms. However, all are expected to act as chemopreventive agents

  17. Comparison of epidermal keratinocytes and dermal fibroblasts as potential target cells for somatic gene therapy of phenylketonuria

    DEFF Research Database (Denmark)

    Christensen, Rikke; Güttler, Flemming; Jensen, Thomas G

    2002-01-01

    gene therapy. We have previously shown that overexpression of PAH and GTP-CH in primary human keratinocytes leads to high levels of phenylalanine clearance without BH(4) supplementation [Gene Ther. 7 (2000) 1971]. Here, we investigate the capacity of fibroblasts, another cell type from the skin......, to metabolize phenylalanine. After retroviral gene transfer of PAH and GTP-CH both normal and PKU patient fibroblasts were able to metabolize phenylalanine, however, in lower amounts compared to genetically modified keratinocytes. Further comparative analyses between keratinocytes and fibroblasts revealed...

  18. Ionizing Radiation Induces Cellular Senescence of Articular Chondrocytes via Negative Regulation of SIRT1 by p38 Kinase

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Eun Hee; Hwang, Sang Gu [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-05-15

    Senescent cells exhibit irreversible growth arrest, large flat morphology, and up-regulated senescence-associated {beta}-galactosidase activity at pH 6.0. Several conditions, including oncogenic stress, oxidative stress, and DNA damage are associated with cellular senescence. Massive acute DNA double-strand breaks occurring as a result of mechanical and chemical stress can be repaired, but some DNA damage persists, eventually triggering premature senescence. Since ionizing radiation directly induces DBS, it is possible that cellular senescence is activated under these conditions. The biological events in chondrocytes following irradiation are poorly understood, and limited information is available on the molecular signal transduction mechanisms of cellular senescence at present. In this study, we identify SIRT1 as a target molecule of p38 kinase and demonstrate that the interactions between p38 kinase and SIRT1 protein play an important role in the regulation of cellular senescence in response to IR.

  19. Effect of L1-ORF2 on senescence of GES-1 cells and its molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Ying-nan LI

    2016-06-01

    Full Text Available Objective  To investigate the effect of long interspersed nuclear elements 1 open reading frame 2(L1-ORF2 gene on the senescence of GES-1 cells and its mechanism of molecular regulation. Methods  Cell culture of high glucose was used to construct stable model of senescent GES-1 cells. L1-ORF2 siRNA vector was constructed and then transfected into normal GES1 and senescent ones with liposome transfection reagents for transient expression. Forty eight hours after transfection, cell growth curves were drawn to show the speed of cell proliferation, flow cytometry was used to analyze the cell cycle, β-galactosidase staining to detect cell aging and Western blotting to detect the expressions of L1-ORF2, P53 and P21proteins. Results  Senescent GES-1 cell model and L1-ORF2 siRNA vector were constructed. Compared with negative control group, the L1-ORF2 expression decreased in normal and senescent GES-1 cells transfected with L1-ORF2 siRNA vector. There was a faster proliferation of senescent GES1 cells (P<0.05 and lower ratio of β-galactosidase (56% vs 69%, P<0.05 and G0/G1 phase (34.2% vs 39.3%, P<0.05 in senescent GES-1 cells transfected with L1-ORE2 siRNA vector than those transfected with negative control vector, while there was no obvious difference between normal GES-1 cells transfected with L1-ORF2 siRNA vector and negative control vector (P>0.05. P53 protein was expressed only in senescent GES-1 cell, while P21 protein was expressed in both normal and senescent GES-1 cells, and the latter had a higher expression level (P<0.05. The GES-1 cells transfected with L1-ORF2 siRNA vector showed lower expressions of P53 and P21 proteins than those transfected with negative control vector (P<0.05. Conclusions  L1-ORF2-siRNA vector could down-regulate the expression of L1-ORF2 protein in normal and senescent GES-1 cells and promote the proliferation of senescent GES-1 cells. P21 and P53 proteins participate in the process of L1-ORF2 regulating

  20. Ontsporing van die regstaatsbegrip en sy konsekwensies vir die afrikanervolk

    Directory of Open Access Journals (Sweden)

    N. G.S. Van der Walt

    1966-03-01

    Full Text Available Die opvatting van die suiwere regstaat bring sy vraagstukke mee wanneer dit in verband gebring word met die leer van die soewereiniteit in eie kring. Laasgenoemde leer wortel in die geloof dat God die mens roep tot diens aan Hom, en dat die mens vry moet wees om ten opsigte van alle lewensaspekte God na die hoogste mate te kan dien. Hierdie verskeidenheid van aspekte is deur dr. A. Kuyper en sy volgelinge gesistemati- seer tot menslike verbande en lewenskringe, elk met ’n be- paalde sfeer waarin ander kringe nie mag inmeng nie. Elkeen is dan soewerein binne sy eie kring. Met verwysing na die staat is dan gespreek van die staatstaak as synde die hand- hawing van die reg, en omdat die staat in toenemende mate hom veral in die latere tyd ook besig gehou het met bedrywig- hede wat nouliks as van juridiese aard beskou kan word, is daar die onderskeid gemaak tussen die primêre en sekundêre taak van die staat. Die sistematiek van die wetsidee, deur prof. Dooyeweerd ontwikkel, waar die staat sy bestemmingsfunksie in die regsaspek vind, het vanselfsprekend geen plek vir so 'n dualistiese staatstaak nie, en die oplossing is deur sommige daarin gesoek om sulke staatsoptrede te vertolk as hebbende wel betrekking op die regsgemeenskap of die regsverkeer. Staatsondernemings soos paaie, spoorweë, spellingreëling, ens. word dan beskou as noodsaaklik vir die instandhouding van die regsgemeenskap en regsverkeer. Tereg wys A. M. Donner1 daarop dat so ’n vertolking eintlik neerkom op ’n oorspanning van die regsbegrip. Hy self sien dan die staatstaak in vrede- of orde-handhawing, wat in die eerste plaas wel regshandha- wing veronderstel. Onder orde word dan alles verstaan wat noodsaaklik is vir die gladde verkeer in die ontwikkelingsgang van die regsgemeenskap. Die wese van die staat het dan vol- gens hom te doen met reg, maar sy taak is meer as suiwere regshandhawing. Wat onrus verwek en die orde versteur, moet uit die openbare lewe verwyder word, en die

  1. JNK inhibition sensitizes tumor cells to radiation-induced premature senescence via Bcl-2/ROS/DDR signaling pathway

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Lee, Je Jung

    2009-01-01

    Premature senescence is considered as a cellular defense mechanism to prevent tumorigenesis. Although recent evidences demonstrate that c-Jun N-terminal kinase (JNK) is involved in the senescence process, the target and exact mechanism of JNK signaling in the regulation of cell proliferation has yet to be defined. In this study, we investigated the role of JNK in premature senescence and demonstrated JNK inhibition sensitized tumor cells to radiation-induced premature senescence

  2. Accurate defect die placement and nuisance defect reduction for reticle die-to-die inspections

    Science.gov (United States)

    Wen, Vincent; Huang, L. R.; Lin, C. J.; Tseng, Y. N.; Huang, W. H.; Tuo, Laurent C.; Wylie, Mark; Chen, Ellison; Wang, Elvik; Glasser, Joshua; Kelkar, Amrish; Wu, David

    2015-10-01

    Die-to-die reticle inspections are among the simplest and most sensitive reticle inspections because of the use of an identical-design neighboring-die for the reference image. However, this inspection mode can have two key disadvantages: (1) The location of the defect is indeterminate because it is unclear to the inspector whether the test or reference image is defective; and (2) nuisance and false defects from mask manufacturing noise and tool optical variation can limit the usable sensitivity. The use of a new sequencing approach for a die-to-die inspection can resolve these issues without any additional scan time, without sacrifice in sensitivity requirement, and with a manageable increase in computation load. In this paper we explore another approach for die-to-die inspections using a new method of defect processing and sequencing. Utilizing die-to-die double arbitration during defect detection has been proven through extensive testing to generate accurate placement of the defect in the correct die to ensure efficient defect disposition at the AIMS step. The use of this method maintained the required inspection sensitivity for mask quality as verified with programmed-defectmask qualification and then further validated with production masks comparing the current inspection approach to the new method. Furthermore, this approach can significantly reduce the total number of defects that need to be reviewed by essentially eliminating the nuisance and false defects that can result from a die-to-die inspection. This "double-win" will significantly reduce the effort in classifying a die-to-die inspection result and will lead to improved cycle times.

  3. Delayed Senescence

    Science.gov (United States)

    2004-01-01

    Researcher Dr. Yi Li developed a technique to manipulate certain characteristics of plant growth such as anit-senescence. For example, the tobacco leaf was clipped from a transgenic plant (right), and a wildtype plant (left). During ground-based laboratory studies, both leaves were left in a darkened area for 4 months. When retrieved, the wildtype plant leaf was dried-out and the transgenic leaf remained fresh and green. A variation of this technology that involves manipulating plant hormones has been conducted in space-based studies on tomato plants through BioServe Space Technologies. The transport and distribution of auxin, an important plant hormone has shown to be influenced by microgravity, which could lead to improving the quality of fruits and vegetables grown on Earth.

  4. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor.

    Science.gov (United States)

    Bae, Ok-Nam; Ahn, Seyeon; Jin, Sun Hee; Hong, Soo Hyun; Lee, Jinyoung; Kim, Eun-Sun; Jeong, Tae Cheon; Chun, Young-Jin; Lee, Ai-Young; Noh, Minsoo

    2015-03-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The Herbal Bitter Drug Gentiana lutea Modulates Lipid Synthesis in Human Keratinocytes In Vitro and In Vivo.

    Science.gov (United States)

    Wölfle, Ute; Haarhaus, Birgit; Seiwerth, Jasmin; Cawelius, Anja; Schwabe, Kay; Quirin, Karl-Werner; Schempp, Christoph M

    2017-08-22

    Gentiana lutea is a herbal bitter drug that is used to enhance gastrointestinal motility and secretion. Recently we have shown that amarogentin, a characteristic bitter compound of Gentiana lutea extract (GE), binds to the bitter taste receptors TAS2R1 and TAS2R38 in human keratinocytes, and stimulates the synthesis of epidermal barrier proteins. Here, we wondered if GE also modulates lipid synthesis in human keratinocytes. To address this issue, human primary keratinocytes were incubated for 6 days with GE. Nile Red labeling revealed that GE significantly increased lipid synthesis in keratinocytes. Similarly, gas chromatography with flame ionization detector indicated that GE increases the amount of triglycerides in keratinocytes. GE induced the expression of epidermal ceramide synthase 3, but not sphingomyelinase. Lipid synthesis, as well as ceramide synthase 3 expression, could be specifically blocked by inhibitors of the p38 MAPK and PPARγ signaling pathway. To assess if GE also modulates lipid synthesis in vivo, we performed a proof of concept half side comparison on the volar forearms of 33 volunteers. In comparison to placebo, GE significantly increased the lipid content of the treated skin areas, as measured with a sebumeter. Thus, GE enhances lipid synthesis in human keratinocytes that is essential for building an intact epidermal barrier. Therefore, GE might be used to improve skin disorders with an impaired epidermal barrier, e.g., very dry skin and atopic eczema.

  6. In vivo relative quantitative proteomics reveals HMGB1 as a downstream mediator of oestrogen-stimulated keratinocyte migration.

    Science.gov (United States)

    Shin, Jung U; Noh, Ji Yeon; Lee, Ju Hee; Lee, Won Jai; Yoo, Jong Shin; Kim, Jin Young; Kim, Hyeran; Jung, Inhee; Jin, Shan; Lee, Kwang Hoon

    2015-06-01

    It is known that oestrogen influences skin wound healing by modulating the inflammatory response, cytokine expression and extracellular matrix deposition; accelerating re-epithelialization; and stimulating angiogenesis. To identify novel proteins associated with effects of oestrogen on keratinocyte, stable isotope labelling by amino acids in cell culture (SILAC)-based mass spectrometry was performed. Using SILAC, quantification of 1085 proteins was achieved. Among these proteins, 60 proteins were upregulated and 32 proteins were downregulated. Among significantly upregulated proteins, high-mobility group protein B1 (HMGB1) has been further evaluated for its role in the effect of oestrogen on keratinocytes. HMGB1 expression was strongly induced in oestrogen-treated keratinocytes in dose- and time-dependent manner. Further, HMGB1 was able to significantly accelerate the rate of HaCaT cell migration. To determine whether HMGB1 is involved in E2-induced HaCaT cell migration, cells were transfected with HMGB1 siRNA. Knockdown of HMGB1 blocked oestrogen-induced keratinocyte migration. Collectively, these experiments demonstrate that HMGB1 is a novel downstream mediator of oestrogen-stimulated keratinocyte migration. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. A novel DLX3–PKC integrated signaling network drives keratinocyte differentiation

    Science.gov (United States)

    Palazzo, Elisabetta; Kellett, Meghan D; Cataisson, Christophe; Bible, Paul W; Bhattacharya, Shreya; Sun, Hong-wei; Gormley, Anna C; Yuspa, Stuart H; Morasso, Maria I

    2017-01-01

    Epidermal homeostasis relies on a well-defined transcriptional control of keratinocyte proliferation and differentiation, which is critical to prevent skin diseases such as atopic dermatitis, psoriasis or cancer. We have recently shown that the homeobox transcription factor DLX3 and the tumor suppressor p53 co-regulate cell cycle-related signaling and that this mechanism is functionally involved in cutaneous squamous cell carcinoma development. Here we show that DLX3 expression and its downstream signaling depend on protein kinase C α (PKCα) activity in skin. We found that following 12-O-tetradecanoyl-phorbol-13-acetate (TPA) topical treatment, DLX3 expression is significantly upregulated in the epidermis and keratinocytes from mice overexpressing PKCα by transgenic targeting (K5-PKCα), resulting in cell cycle block and terminal differentiation. Epidermis lacking DLX3 (DLX3cKO), which is linked to the development of a DLX3-dependent epidermal hyperplasia with hyperkeratosis and dermal leukocyte recruitment, displays enhanced PKCα activation, suggesting a feedback regulation of DLX3 and PKCα. Of particular significance, transcriptional activation of epidermal barrier, antimicrobial peptide and cytokine genes is significantly increased in DLX3cKO skin and further increased by TPA-dependent PKC activation. Furthermore, when inhibiting PKC activity, we show that epidermal thickness, keratinocyte proliferation and inflammatory cell infiltration are reduced and the PKC-DLX3-dependent gene expression signature is normalized. Independently of PKC, DLX3 expression specifically modulates regulatory networks such as Wnt signaling, phosphatase activity and cell adhesion. Chromatin immunoprecipitation sequencing analysis of primary suprabasal keratinocytes showed binding of DLX3 to the proximal promoter regions of genes associated with cell cycle regulation, and of structural proteins and transcription factors involved in epidermal differentiation. These results indicate

  8. DIE ONTVC'ERP VAN 'N SENDINGBELEID IN DIE HUIDIGE ...

    African Journals Online (AJOL)

    Test

    DIE ONTVC'ERP VAN 'N SENDINGBELEID IN DIE. HUIDIGE SITUASIE. Sending is 'n deel van die vervulling van die apostoliese opdrag van die kerk. Dit geskied op grond van en in gehoorsaamheid aan Gods. \\C'oord. Teologiese besinning is daarom die eerste en grondliggende vereiste by die ontwerp van 'n ...

  9. Stanniocalcin-1 regulates re-epithelialization in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Bonnie H Y Yeung

    Full Text Available Stanniocalcin-1 (STC1, a glycoprotein hormone, is believed to be involved in various biological processes such as inflammation, oxidative responses and cell migration. Riding on these emerging evidences, we hypothesized that STC1 may participate in the re-epithelialization during wound healing. Re-epithelialization is a critical step that involves keratinocyte lamellipodia (e-lam formation, followed by cell migration. In this study, staurosporine (STS treatment induced human keratinocyte (HaCaT e-lam formation on fibronectin matrix and migration via the activation of focal adhesion kinase (FAK, the surge of intracellular calcium level [Ca²⁺]i and the inactivation of Akt. In accompanied with these migratory features, a time- and dose-dependent increase in STC1 expression was detected. STC1 gene expression was found not the downstream target of FAK-signaling as illustrated by FAK inhibition using PF573228. The reduction of [Ca²⁺]i by BAPTA/AM blocked the STS-mediated keratinocyte migration and STC1 gene expression. Alternatively the increase of [Ca²⁺]i by ionomycin exerted promotional effect on STS-induced STC1 gene expression. The inhibition of Akt by SH6 and GSK3β by lithium chloride (LiCl could respectively induce and inhibit the STS-mediated e-lam formation, cell migration and STC1 gene expression. The STS-mediated e-lam formation and cell migration were notably hindered or induced respectively by STC1 knockdown or overexpression. This notion was further supported by the scratched wound assay. Collectively the findings provide the first evidence that STC1 promotes re-epithelialization in wound healing.

  10. Stanniocalcin-1 regulates re-epithelialization in human keratinocytes.

    Science.gov (United States)

    Yeung, Bonnie H Y; Wong, Chris K C

    2011-01-01

    Stanniocalcin-1 (STC1), a glycoprotein hormone, is believed to be involved in various biological processes such as inflammation, oxidative responses and cell migration. Riding on these emerging evidences, we hypothesized that STC1 may participate in the re-epithelialization during wound healing. Re-epithelialization is a critical step that involves keratinocyte lamellipodia (e-lam) formation, followed by cell migration. In this study, staurosporine (STS) treatment induced human keratinocyte (HaCaT) e-lam formation on fibronectin matrix and migration via the activation of focal adhesion kinase (FAK), the surge of intracellular calcium level [Ca²⁺]i and the inactivation of Akt. In accompanied with these migratory features, a time- and dose-dependent increase in STC1 expression was detected. STC1 gene expression was found not the downstream target of FAK-signaling as illustrated by FAK inhibition using PF573228. The reduction of [Ca²⁺]i by BAPTA/AM blocked the STS-mediated keratinocyte migration and STC1 gene expression. Alternatively the increase of [Ca²⁺]i by ionomycin exerted promotional effect on STS-induced STC1 gene expression. The inhibition of Akt by SH6 and GSK3β by lithium chloride (LiCl) could respectively induce and inhibit the STS-mediated e-lam formation, cell migration and STC1 gene expression. The STS-mediated e-lam formation and cell migration were notably hindered or induced respectively by STC1 knockdown or overexpression. This notion was further supported by the scratched wound assay. Collectively the findings provide the first evidence that STC1 promotes re-epithelialization in wound healing.

  11. Protein modification and replicative senescence of WI-38 human embryonic fibroblasts

    DEFF Research Database (Denmark)

    Ahmed, Emad K; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter

    2010-01-01

    reflects a preferential accumulation of damaged proteins within the mitochondria during cellular senescence. Accumulation of AGE-modified proteins could be explained by the senescence-associated decreased activity of glyoxalase-I, the major enzyme involved in the detoxification of the glycating agents...... methylglyoxal and glyoxal, in both cytosol and mitochondria. This finding suggests a role of detoxification systems in the age-related build-up of damaged proteins. Moreover, the oxidized protein repair system methionine sulfoxide reductase was more affected in the mitochondria than in the cytosol during......Summary Oxidized proteins as well as proteins modified by the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) and by glycation (AGE) have been shown to accumulate with aging in vivo and during replicative senescence in vitro. To better understand the mechanisms by which these damaged proteins...

  12. Die sestienpersoonlikheidsfaktorvraelys as hulpmiddel by die takseersentrum

    Directory of Open Access Journals (Sweden)

    J. C. D. Augustyn

    1988-05-01

    Full Text Available The 16PF Personality Test as an aid to the assessment centre Assessment centres still remains costly and thime consuming. This study investigates the reduction of time and costs by the use of the 16 PF Personality Test as a method for measuring management dimensions. Promising results were obtained with a relatively small sample for the prediction of initiative and perseverance. Significant multiple correlations were also found for three criteria of management success. Further research may establish the use of the 16 PF as an aid to management assessment and thereby reduce the costs and time involved in assessment centres. Opsomming Takseersentrums se grootste probleem is gelee in die koste en tyd wat dit behels. Hierdie studie ondersoek die moontlikheid om beide te verminder deur die aanwending van die 16 PF Persoonlikheidsvraelys vir die meting van bestuursdimensies. Belowende resultate is met 'n relatiewe klein steekproef bevind ten opsigte van die voorspelling van inisiatiefen deursettingsvermoe. Beduidende meervoudige korrelasies is ook ten opsigte van drie kriteria van bestuursukses bevind. Verdere navorsing kan die gebruik van die 16 PF as hulpmiddel by bestuursevaluering vestig en sodoende die tydsduur en koste van takseersentrums verminder.

  13. Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase

    Directory of Open Access Journals (Sweden)

    Stefano eDel Duca

    2014-04-01

    Full Text Available Research on polyamines in plants laps a long way of about 50 years and many roles have been discovered for these aliphatic cations. Polyamines regulate cell division, differentiation, organogenesis, reproduction, dormancy-break and senescence, homeostatic adjustments in response to external stimuli and stresses. Nevertheless, the molecular mechanisms of their multiple activities are still matter of research. Polyamines are present in free and bound forms and interact with several important cell molecules; some of these interactions may occur by covalent linkages catalyzed by transglutaminase, giving rise to ‘cationisation’ or cross-links among specific proteins. Senescence and PCD can be delayed by polyamines; in order to re-interpret some of these effects and to obtain new insights into their molecular mechanisms, their conjugation has been revised here. The transglutaminase-mediated interactions between proteins and polyamines are the main target of this review. After an introduction on the characteristics of this enzyme, on its catalysis and role in PCD in animals, the plant senescence and PCD models in which TGase has been studied, are presented: the corolla of naturally senescing or excised flowers, the leaves senescing, either excised or not, the pollen during self-incompatible pollination, the hypersensitive response and the tuber storage parenchyma during dormancy release. In all the models examined, transglutaminase appears to be involved by a similar molecular mechanism as described during apoptosis in animal cells, even though several substrates are different. Its effect is probably related to the type of PCD, but mostly to the substrate to be modified in order to achieve the specific PCD program. As a cross-linker of polyamines and proteins, transglutaminase is an important factor involved in multiple, sometimes controversial, roles of polyamines during senescence and PCD.

  14. Interaction of urokinase A chain with the receptor of human keratinocytes stimulates release of urokinase-like plasminogen activator

    Energy Technology Data Exchange (ETDEWEB)

    Fibbi, G.; Magnelli, L.; Pucci, M.; Del Rosso, M. (Florence Univ. (Italy))

    1990-03-01

    On the basis of a fibrinolytic assay with {sup 125}I-fibrin, zymography, and immunoprobing with anti-human urokinase antibody, the authors have observed that the in vitro established NCTC human keratinocyte cell line releases into the culture medium a 54,000-Da plasminogen activator which is indistinguishable from human urokinase. Only the early release following the washing of keratinocyte monolayers is accounted for by secretion of preformed enzyme, while late secretory events require the de novo synthesis of urokinase. The released enzyme can interact by autocriny with its own receptor present on keratinocytes. The addition to the keratinocyte culture medium of the urokinase A chain can stimulate a concentration-dependent urokinase oversecretion, which is not paralleled by oversecretion of plasminogen activator inhibitor-1. Since stimulation of urokinase production can be obtained by an A chain concentration which was previously shown to be efficient in inducing keratinocyte mobilization in an in vitro migration model system, they hypothesize that this mechanism may be important in vivo during the process of wound repair.

  15. Astrocyte Senescence and Metabolic Changes in Response to HIV Antiretroviral Therapy Drugs

    Directory of Open Access Journals (Sweden)

    Justin Cohen

    2017-08-01

    Full Text Available With the advent of highly active antiretroviral therapy (HAART survival rates among patients infected by HIV have increased. However, even though survival has increased HIV-associated neurocognitive disorders (HAND still persist, suggesting that HAART-drugs may play a role in the neurocognitive impairment observed in HIV-infected patients. Given previous data demonstrating that astrocyte senescence plays a role in neurocognitive disorders such as Alzheimer’s disease (AD, we examined the role of HAART on markers of senescence in primary cultures of human astrocytes (HAs. Our results indicate HAART treatment induces cell cycle arrest, senescence-associated beta-galactosidase, and the cell cycle inhibitor p21. Highly active antiretroviral therapy treatment is also associated with the induction of reactive oxygen species and upregulation of mitochondrial oxygen consumption. These changes in mitochondria correlate with increased glycolysis in HAART drug treated astrocytes. Taken together these results indicate that HAART drugs induce the senescence program in HAs, which is associated with oxidative and metabolic changes that could play a role in the development of HAND.

  16. Transmembrane collagen XVII modulates integrin dependent keratinocyte migration via PI3K/Rac1 signaling.

    Directory of Open Access Journals (Sweden)

    Stefanie Löffek

    Full Text Available The hemidesmosomal transmembrane component collagen XVII (ColXVII plays an important role in the anchorage of the epidermis to the underlying basement membrane. However, this adhesion protein seems to be also involved in the regulation of keratinocyte migration, since its expression in these cells is strongly elevated during reepithelialization of acute wounds and in the invasive front of squamous cell carcinoma, while its absence in ColXVII-deficient keratinocytes leads to altered cell motility. Using a genetic model of murine Col17a1⁻/⁻ keratinocytes we elucidated ColXVII mediated signaling pathways in cell adhesion and migration. Col17a1⁻/⁻ keratinocytes exhibited increased spreading on laminin 332 and accelerated, but less directed cell motility. These effects were accompanied by increased expression of the integrin subunits β4 and β1. The migratory phenotype, as evidenced by formation of multiple unstable lamellipodia, was associated with enhanced phosphoinositide 3-kinase (PI3K activity. Dissection of the signaling pathway uncovered enhanced phosphorylation of the β4 integrin subunit and the focal adhesion kinase (FAK as activators of PI3K. This resulted in elevated Rac1 activity as a downstream consequence. These results provide mechanistic evidence that ColXVII coordinates keratinocyte adhesion and directed motility by interfering integrin dependent PI3K activation and by stabilizing lamellipodia at the leading edge of reepithelializing wounds and in invasive squamous cell carcinoma.

  17. Ecklonia cava Extract and Dieckol Attenuate Cellular Lipid Peroxidation in Keratinocytes Exposed to PM10.

    Science.gov (United States)

    Lee, Jeong-Won; Seok, Jin Kyung; Boo, Yong Chool

    2018-01-01

    Airborne particulate matter can cause oxidative stress, inflammation, and premature skin aging. Marine plants such as Ecklonia cava Kjellman contain high amounts of polyphenolic antioxidants. The purpose of this study was to examine the antioxidative effects of E. cava extract in cultured keratinocytes exposed to airborne particulate matter with a diameter of <10  μ m (PM10). After the exposure of cultured HaCaT keratinocytes to PM10 in the absence and presence of E. cava extract and its constituents, cell viability and cellular lipid peroxidation were assessed. The effects of eckol and dieckol on cellular lipid peroxidation and cytokine expression were examined in human epidermal keratinocytes exposed to PM10. The total phenolic content of E. cava extract was the highest among the 50 marine plant extracts examined. The exposure of HaCaT cells to PM10 decreased cell viability and increased lipid peroxidation. The PM10-induced cellular lipid peroxidation was attenuated by E. cava extract and its ethyl acetate fraction. Dieckol more effectively attenuated cellular lipid peroxidation than eckol in both HaCaT cells and human epidermal keratinocytes. Dieckol and eckol attenuated the expression of inflammatory cytokines such as tumor necrosis factor- (TNF-) α , interleukin- (IL-) 1 β , IL-6, and IL-8 in human epidermal keratinocytes stimulated with PM10. This study suggested that the polyphenolic constituents of E. cava , such as dieckol, attenuated the oxidative and inflammatory reactions in skin cells exposed to airborne particulate matter.

  18. Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L..

    Directory of Open Access Journals (Sweden)

    Sebastian Moschen

    Full Text Available Cultivated sunflower (Helianthus annuus L., an important source of edible vegetable oil, shows rapid onset of senescence, which limits production by reducing photosynthetic capacity under specific growing conditions. Carbon for grain filling depends strongly on light interception by green leaf area, which diminishes during grain filling due to leaf senescence. Transcription factors (TFs regulate the progression of leaf senescence in plants and have been well explored in model systems, but information for many agronomic crops remains limited. Here, we characterize the expression profiles of a set of putative senescence associated genes (SAGs identified by a candidate gene approach and sunflower microarray expression studies. We examined a time course of sunflower leaves undergoing natural senescence and used quantitative PCR (qPCR to measure the expression of 11 candidate genes representing the NAC, WRKY, MYB and NF-Y TF families. In addition, we measured physiological parameters such as chlorophyll, total soluble sugars and nitrogen content. The expression of Ha-NAC01, Ha-NAC03, Ha-NAC04, Ha-NAC05 and Ha-MYB01 TFs increased before the remobilization rate increased and therefore, before the appearance of the first physiological symptoms of senescence, whereas Ha-NAC02 expression decreased. In addition, we also examined the trifurcate feed-forward pathway (involving ORE1, miR164, and ethylene insensitive 2 previously reported for Arabidopsis. We measured transcription of Ha-NAC01 (the sunflower homolog of ORE1 and Ha-EIN2, along with the levels of miR164, in two leaves from different stem positions, and identified differences in transcription between basal and upper leaves. Interestingly, Ha-NAC01 and Ha-EIN2 transcription profiles showed an earlier up-regulation in upper leaves of plants close to maturity, compared with basal leaves of plants at pre-anthesis stages. These results suggest that the H. annuus TFs characterized in this work could

  19. Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Moschen, Sebastian; Bengoa Luoni, Sofia; Paniego, Norma B; Hopp, H Esteban; Dosio, Guillermo A A; Fernandez, Paula; Heinz, Ruth A

    2014-01-01

    Cultivated sunflower (Helianthus annuus L.), an important source of edible vegetable oil, shows rapid onset of senescence, which limits production by reducing photosynthetic capacity under specific growing conditions. Carbon for grain filling depends strongly on light interception by green leaf area, which diminishes during grain filling due to leaf senescence. Transcription factors (TFs) regulate the progression of leaf senescence in plants and have been well explored in model systems, but information for many agronomic crops remains limited. Here, we characterize the expression profiles of a set of putative senescence associated genes (SAGs) identified by a candidate gene approach and sunflower microarray expression studies. We examined a time course of sunflower leaves undergoing natural senescence and used quantitative PCR (qPCR) to measure the expression of 11 candidate genes representing the NAC, WRKY, MYB and NF-Y TF families. In addition, we measured physiological parameters such as chlorophyll, total soluble sugars and nitrogen content. The expression of Ha-NAC01, Ha-NAC03, Ha-NAC04, Ha-NAC05 and Ha-MYB01 TFs increased before the remobilization rate increased and therefore, before the appearance of the first physiological symptoms of senescence, whereas Ha-NAC02 expression decreased. In addition, we also examined the trifurcate feed-forward pathway (involving ORE1, miR164, and ethylene insensitive 2) previously reported for Arabidopsis. We measured transcription of Ha-NAC01 (the sunflower homolog of ORE1) and Ha-EIN2, along with the levels of miR164, in two leaves from different stem positions, and identified differences in transcription between basal and upper leaves. Interestingly, Ha-NAC01 and Ha-EIN2 transcription profiles showed an earlier up-regulation in upper leaves of plants close to maturity, compared with basal leaves of plants at pre-anthesis stages. These results suggest that the H. annuus TFs characterized in this work could play important

  20. From the Hayflick mosaic to the mosaics of ageing. Role of stress-induced premature senescence in human ageing.

    Science.gov (United States)

    Toussaint, Olivier; Remacle, Jose; Dierick, Jean-François; Pascal, Thierry; Frippiat, Christophe; Zdanov, Stéphanie; Magalhaes, Joao Pedro; Royer, Véronique; Chainiaux, Florence

    2002-11-01

    The Hayflick limit-senescence of proliferative cell types-is a fundamental feature of proliferative cells in vitro. Various human proliferative cell types exposed in vitro to many types of subcytotoxic stresses undergo stress-induced premature senescence (SIPS) (also called stress-induced premature senescence-like phenotype, according to the definition of senescence). The known mechanisms of appearance the main features of SIPS are reviewed: senescent-like morphology, growth arrest, senescence-related changes in gene expression, telomere shortening. Long before telomere-shortening induces senescence, other factors such as culture conditions or lack of 'feeder cells' can trigger either SIPS or prolonged reversible G(0) phase of the cell cycle. In vivo, 'proliferative' cell types of aged individuals are likely to compose a mosaic made of cells irreversibly growth arrested or not. The higher level of stress to which these cells have been exposed throughout their life span, the higher proportion of the cells of this mosaic will be in SIPS rather than in telomere-shortening dependent senescence. All cell types undergoing SIPS in vivo, most notably the ones in stressful conditions, are likely to participate in the tissular changes observed along ageing. For instance, human diploid fibroblasts (HDFs) exposed in vivo and in vitro to pro-inflammatory cytokines display biomarkers of senescence and might participate in the degradation of the extracellular matrix observed in ageing.

  1. die korrelasie tussen die gemiddelde daaglikse toename van ...

    African Journals Online (AJOL)

    'n Regressielyn is uit die gegewens bereken deur 'n beswaarde regressieanaliese en die 80 persent-voorspellings- bande is bepaal. Die punte wat ver buite die normale ver- spreidingsband geval hetkon almal met goeie rede as abnor- maal beskou word (sien tabel 1) en is nie ingesluit by die statistiese berekenings nie.

  2. Basal Cell Carcinoma in Gorlin's Patients: a Matter of Fibroblasts-Led Protumoral Microenvironment?

    Science.gov (United States)

    Gache, Yannick; Brellier, Florence; Rouanet, Sophie; Al-Qaraghuli, Sahar; Goncalves-Maia, Maria; Burty-Valin, Elodie; Barnay, Stéphanie; Scarzello, Sabine; Ruat, Martial; Sevenet, Nicolas; Avril, Marie-Françoise; Magnaldo, Thierry

    2015-01-01

    Basal cell carcinoma (BCC) is the commonest tumor in human. About 70% sporadic BCCs bear somatic mutations in the PATCHED1 tumor suppressor gene which encodes the receptor for the Sonic Hedgehog morphogen (SHH). PATCHED1 germinal mutations are associated with the dominant Nevoid Basal Cell Carcinoma Syndrome (NBCCS), a major hallmark of which is a high susceptibility to BCCs. Although the vast majority of sporadic BCCs arises exclusively in sun exposed skin areas, 40 to 50% BCCs from NBCCS patients develop in non photo-exposed skin. Since overwhelming evidences indicate that microenvironment may both be modified by- and influence the- epithelial tumor, we hypothesized that NBCCS fibroblasts could contribute to BCCs in NBCCS patients, notably those developing in non photo-exposed skin areas. The functional impact of NBCCS fibroblasts was then assessed in organotypic skin cultures with control keratinocytes. Onset of epidermal differentiation was delayed in the presence of primary NBCCS fibroblasts. Unexpectedly, keratinocyte proliferation was severely reduced and showed high levels of nuclear P53 in both organotypic skin cultures and in fibroblast-led conditioning experiments. However, in spite of increased levels of senescence associated β-galactosidase activity in keratinocytes cultured in the presence of medium conditioned by NBCCS fibroblasts, we failed to observe activation of P16 and P21 and then of bona fide features of senescence. Constitutive extinction of P53 in WT keratinocytes resulted in an invasive phenotype in the presence of NBCCS fibroblasts. Finally, we found that expression of SHH was limited to fibroblasts but was dependent on the presence of keratinocytes. Inhibition of SHH binding resulted in improved epidermal morphogenesis. Altogether, these data suggest that the repertoire of diffusible factors (including SHH) expressed by primary NBCCS fibroblasts generate a stress affecting keratinocytes behavior and epidermal homeostasis. Our findings

  3. Lovastatin-induced RhoA modulation and its effect on senescence in prostate cancer cells

    International Nuclear Information System (INIS)

    Lee, Jeeyun; Lee, Inkyoung; Park, Chaehwa; Kang, Won Ki

    2006-01-01

    Lovastatin inhibits a 3-hydroxy 3-methylglutaryl coenzyme A reductase and prevents the synthesis of cholesterol precursors, such as farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), responsible for important cell signaling in cell proliferation and migration. Recently, the anti-cancer effect of lovastatin has been suggested in various tumor types. In this study, we showed that a low dose lovastatin induced senescence and G1 cell cycle arrest in human prostate cancer cells. Addition of GGPP or mevalonate, but not FPP, prevented the lovastatin-induced G1 phase cell cycle arrest and cell senescence. We found that constitutively active RhoA (caRhoA) reversed lovastatin-induced senescence in caRhoA-transfected PC-3 cells. Thus, we postulate that modulation of RhoA may be critical in lovastatin-induced senescence in PC-3 cells

  4. Markers of T Cell Senescence in Humans

    Directory of Open Access Journals (Sweden)

    Weili Xu

    2017-08-01

    Full Text Available Many countries are facing the aging of their population, and many more will face a similar obstacle in the near future, which could be a burden to many healthcare systems. Increased susceptibility to infections, cardiovascular and neurodegenerative disease, cancer as well as reduced efficacy of vaccination are important matters for researchers in the field of aging. As older adults show higher prevalence for a variety of diseases, this also implies higher risk of complications, including nosocomial infections, slower recovery and sequels that may reduce the autonomy and overall quality of life of older adults. The age-related effects on the immune system termed as “immunosenescence” can be exemplified by the reported hypo-responsiveness to influenza vaccination of the elderly. T cells, which belong to the adaptive arm of the immune system, have been extensively studied and the knowledge gathered enables a better understanding of how the immune system may be affected after acute/chronic infections and how this matters in the long run. In this review, we will focus on T cells and discuss the surface and molecular markers that are associated with T cell senescence. We will also look at the implications that senescent T cells could have on human health and diseases. Finally, we will discuss the benefits of having these markers for investigators and the future work that is needed to advance the field of T cell senescence markers.

  5. miR-125b induces cellular senescence in malignant melanoma

    DEFF Research Database (Denmark)

    Nyholm, Anne Marie; Lerche, Catharina M; Manfé, Valentina

    2014-01-01

    transfected melanoma cell line Mel-Juso and then investigated the effect of the presence of a stable overexpression of miR-125b on growth by western blotting, flow cytometry and β-galactosidase staining. The tumourogenicity of the transfected cells was tested using a murine model and the tumours were further...... examined with in-situ-hybridization. RESULTS: In primary human tumours and in lymph node metastases increased expression of miR-125b was found in single, large tumour cells with abundant cytoplasm. A stable overexpression of miR-125b in human melanoma cell line Mel-Juso resulted in a G0/G1 cell cycle block...... and emergence of large cells expressing senescence markers: senescence-associated beta-galactosidase, p21, p27 and p53. Mel-Juso cells overexpressing miR-125b were tumourigenic in mice, but the tumours exhibited higher level of cell senescence and decreased expression of proliferation markers, cyclin D1 and Ki...

  6. Mitochondrial DNA Hypomethylation Is a Biomarker Associated with Induced Senescence in Human Fetal Heart Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Dehai Yu

    2017-01-01

    Full Text Available Background. Fetal heart can regenerate to restore its normal anatomy and function in response to injury, but this regenerative capacity is lost within the first week of postnatal life. Although the specific molecular mechanisms remain to be defined, it is presumed that aging of cardiac stem or progenitor cells may contribute to the loss of regenerative potential. Methods. To study this aging-related dysfunction, we cultured mesenchymal stem cells (MSCs from human fetal heart tissues. Senescence was induced by exposing cells to chronic oxidative stress/low serum. Mitochondrial DNA methylation was examined during the period of senescence. Results. Senescent MSCs exhibited flattened and enlarged morphology and were positive for the senescence-associated beta-galactosidase (SA-β-Gal. By scanning the entire mitochondrial genome, we found that four CpG islands were hypomethylated in close association with senescence in MSCs. The mitochondrial COX1 gene, which encodes the main subunit of the cytochrome c oxidase complex and contains the differentially methylated CpG island 4, was upregulated in MSCs in parallel with the onset of senescence. Knockdown of DNA methyltransferases (DNMT1, DNMT3a, and DNMT3B also upregulated COX1 expression and induced cellular senescence in MSCs. Conclusions. This study demonstrates that mitochondrial CpG hypomethylation may serve as a critical biomarker associated with cellular senescence induced by chronic oxidative stress.

  7. Senescence-Induced Alterations of Laminin Chain Expression Modulate Tumorigenicity of Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Cynthia C.T. Sprenger

    2008-12-01

    Full Text Available Prostate cancer is an age-associated epithelial cancer, and as such, it contributes significantly to the mortality of the elderly. Senescence is one possible mechanism by which the body defends itself against various epithelial cancers. Senescent cells alter the microenvironment, in part, through changes to the extracellular matrix. Laminins (LMs are extracellular proteins important to both the structure and function of the microenvironment. Overexpression of the senescence-associated gene mac25 in human prostate cancer cells resulted in increased mRNA levels of the LM α4 and β2 chains compared to empty vector control cells. The purpose of this study was to examine the effects of these senescence-induced LM chains on tumorigenicity of prostate cancer cells. We created stable M12 human prostate cancer lines overexpressing either the LM α4 or β2 chain or both chains. Increased expression of either the LM α4 or β2 chain resulted in increased in vitro migration and in vivo tumorigenicity of those cells, whereas high expression of both chains led to decreased in vitro proliferation and in vivo tumorigenicity compared to M12 control cells. This study demonstrates that senescent prostate epithelial cells can alter the microenvironment and that these changes modulate progression of prostate cancer.

  8. enkele fasette van die problematiek van die akademikus by die skryf

    African Journals Online (AJOL)

    Om verskeie redes het dit van die allergrootste belong geword dot 'n his- tories korrekte, wetenskaplike weerga- we van bogenoemde gebeure opge- teken moet word. Die sluier, in sommige gevalle am logiese redes toegepas, moes eenvoudig gelig word am gebeure wat die gewone man op stroot in Suid-Afrika dikwels ...

  9. The forms and fitness cost of senescence : Age-specific recapture, survival, reproduction, and reproductive value in a wild bird population

    NARCIS (Netherlands)

    Bouwhuis, Sandra; Choquet, Remi; Sheldon, Ben C.; Verhulst, Simon

    Longitudinal studies of senescence accumulate rapidly from natural populations. However, it is largely unknown whether different fitness components senesce in parallel, how reproductive and survival senescence contribute to declines in reproductive value, and how large the fitness cost of senescence

  10. Die huwelik as identiteitsmerker in die Ou Testament

    African Journals Online (AJOL)

    p1243322

    Gen 2:18). Uit die woorde van Genesis 2:24 dat man en vrou een sal wees, lei die derde formulier af dat dit “getuig dat die huwelik 'n allesinsluitende gemeenskap is ..... die formule gebruik word: “Hier volg die vertelling oor X se nageslag.” (Gen ..... verwys daarna as “intertwining the principal value concepts of tradition”.

  11. amp' van die ouderling in die Nuwe Testament

    African Journals Online (AJOL)

    Jesus self het geen kerk gestig nie en daarom, veral omdat die Jesus-beweging inter mums ten opsigte van die Joodse godsdiens van sy tyd tot stand gekom het, het ...... Die klem val dus nie op die npoTCTT0fievo<; se rang of outoriteit nie, maar op sy pastorale funksie in die huishouding of huisgemeente (kyk Reicke.

  12. The Lcn2-engineered HEK-293 cells show senescence under stressful condition

    Directory of Open Access Journals (Sweden)

    Bahareh Bahmani

    2015-05-01

    Full Text Available Objective(s: Lipocalin2 (Lcn2 gene is highly expressed in response to various types of cellular stresses. The precise role of Lcn2 has not been fully understood yet. However, it plays a key role in controlling vital cellular processes such as proliferation, apoptosis and metabolism. Recently it was shown that Lcn2 decreases senescence and increases proliferation of mesenchymal stem cells (MSC with finite life span under either normal or oxidative stress conditions. However, Lcn2 effects on immortal cell line with infinite proliferation are not defined completely.  Materials and Material and Methods: HEK-293 cells were transfected with recombinant pcDNA3.1 containing Lcn2 fragment (pcDNA3.1-Lcn2. Expression of lipocalin2 in transfected cells was evaluated by RT-PCR, real time RT-PCR, and ELISA. Different cell groups were treated with H2O2 and WST-1 assay was performed to determine their proliferation rate. Senescence was studied by β-galactosidase and gimsa staining methods as well as evaluation of the expression of senescence-related genes by real time RT-PCR. Results: Lcn2 increased cell proliferation under normal culture condition, while the proliferation slightly decreased under oxidative stress.  This decrease was further found to be attributed to senescence. Conclusion: Our findings indicated that under harmful conditions, Lcn2 gene is responsible for the regulation of cell survival through senescence.

  13. Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Takagi, Ryo; Yamato, Masayuki; Murakami, Daisuke; Sugiyama, Hiroaki; Okano, Teruo

    2011-01-01

    Highlights: → Normal human epidermal keratinocytes serially cultured under low calcium concentration were cytokeratin and vimentin double positive cells. → The human keratinocytes expressed some epithelial stem/progenitor cell makers, mesenchymal cell markers, and markers of epithelial-mesenchymal transition. → Mesenchymal cell-like phenotype in the keratinocytes was suppressed under high-calcium condition. -- Abstract: Epithelial-mesenchymal transition (EMT) is an important cellular phenomenon in organ developments, cancer invasions, and wound healing, and many types of transformed cell lines are used for investigating for molecular mechanisms of EMT. However, there are few reports for EMT in normal human epithelial cells, which are non-transformed or non-immortalized cells, in vitro. Therefore, normal human epidermal keratinocytes (NHEK) serially cultured in low-calcium concentration medium (LCM) were used for investigating relations between differentiation and proliferation and mesenchymal-like phenotype in the present study, since long-term cultivation of NHEK is achieved in LCM. Interestingly, NHEK serially cultured in LCM consisted essentially of cytokeratin-vimentin double positive cells (98%), although the NHEK exhibited differentiation under high-calcium culture condition with 3T3 feeder layer. The vimentin expression was suppressed under high-calcium condition. These results may indicate the importance of mesenchymal-like phenotype for serially cultivation of NHEK in vitro.

  14. Environmental stress, ageing and glial cell senescence: a novel mechanistic link to Parkinson’s disease?

    Science.gov (United States)

    Chinta, Shankar J; Lieu, Christopher A; DeMaria, Marco; Laberge, Remi-Martin; Campisi, Judith; Andersen, Julie K

    2013-01-01

    Exposure to environmental toxins is associated with a variety of age-related diseases including cancer and neurodegeneration. For example, in Parkinson’s disease (PD), chronic environmental exposure to certain toxins has been linked to the age-related development of neuropathology. Neuronal damage is believed to involve the induction of neuroinflammatory events as a consequence of glial cell activation. Cellular senescence is a potent anti-cancer mechanism that occurs in a number of proliferative cell types and causes the arrest of proliferation of cells at risk of malignant transformation following exposure to potentially oncogenic stimuli. With age, senescent cells accumulate and express a senescence-associated secretory phenotype (SASP; i.e. the robust secretion of many inflammatory cytokines, growth factors and proteases). Whereas cell senescence in peripheral tissues has been causally linked to a number of age-related pathologies, little is known about the induction of cellular senescence and the SASP in the brain. Based on recently reported findings, we propose that environmental stressors associated with PD may act in part by eliciting senescence and the SASP within non-neuronal glial cells in the ageing brain, thus contributing to the characteristic decline in neuronal integrity that occurs in this disorder. PMID:23600398

  15. Implication of p53-dependent cellular senescence related gene, TARSH in tumor suppression

    International Nuclear Information System (INIS)

    Wakoh, Takeshi; Uekawa, Natsuko; Terauchi, Kunihiko; Sugimoto, Masataka; Ishigami, Akihito; Shimada, Jun-ichi; Maruyama, Mitsuo

    2009-01-01

    A novel target of NESH-SH3 (TARSH) was identified as a cellular senescence related gene in mouse embryonic fibroblasts (MEFs) replicative senescence, the expression of which has been suppressed in primary clinical lung cancer specimens. However, the molecular mechanism underlying the regulation of TARSH involved in pulmonary tumorigenesis remains unclear. Here we demonstrate that the reduction of TARSH gene expression by short hairpin RNA (shRNA) system robustly inhibited the MEFs proliferation with increase in senescence-associated β-galactosidase (SA-β-gal) activity. Using p53 -/- MEFs, we further suggest that this growth arrest by loss of TARSH is evoked by p53-dependent p21 Cip1 accumulation. Moreover, we also reveal that TARSH reduction induces multicentrosome in MEFs, which is linked in chromosome instability and tumor development. These results suggest that TARSH plays an important role in proliferation of replicative senescence and may serve as a trigger of tumor development.

  16. Cdc42 is crucial for the maturation of primordial cell junctions in keratinocytes independent of Rac1

    DEFF Research Database (Denmark)

    Du, Dan; Pedersen, Esben; Wang, Zhipeng

    2008-01-01

    Cell-cell contacts are crucial for the integrity of all tissues. Contrasting reports have been published about the role of Cdc42 in epithelial cell-cell contacts in vitro. In keratinocytes, it was suggested that Rac1 and not Cdc42 is crucial for the formation of mature epithelial junctions, based...... on dominant negative inhibition experiments. Deletion of the Cdc42 gene in keratinocytes in vivo slowly impaired the maintenance of cell-cell contacts by an increased degradation of beta-catenin. Whether Cdc42 is required for the formation of mature junctions was not tested. We show now that Cdc42-deficient...... immortalized and primary keratinocytes form only punctate primordial cell contacts in vitro, which cannot mature into belt-like junctions. This defect was independent of enhanced degradation of beta-catenin, but correlated to an impaired activation and localization of aPKCzeta in the Cdc42-null keratinocytes...

  17. Enkele opmerkings oor die intrinsieke waarde van die Latynse teks van Kodeks Bezae as herstelbron vir die Griekse teks van die Nuwe Testament

    Directory of Open Access Journals (Sweden)

    G. J.C. Jordaan

    1985-05-01

    Full Text Available Een van die belangrikste oud-Latynse vertalings word gevind in Kodeks Bezae, ’n vyfde-eeuse manuskrip van die vier Evangelies. Kodeks Bezae bevat ’n Griekse teks (D en ’n Latynse teks (d van die Evangelies langs mekaar, die Latynse teks in ’n lettertipe wat baie aan die Griekse majuskelskrif herinner. Wat hierdie dokument so merkwaardig maak, is die feit dat dit die enigste manuskrip is wat ’n Griekse Evangelie-teks uit die Westerse teksfamilie bevat.

  18. n Oorsig van die huidige stand van navorsing oor die

    African Journals Online (AJOL)

    Test

    7 Jun 2011 ... Die eerste maal wat dit as deel van die teks van 1 Johannes aangehaal word, is in die. 4de eeu in 'n Latynse teks, Liber Apologeticus (hf 4). Eers aan die einde van die 16de eeu is dit in 'n amptelike Katolieke uitgawe van die Vulgaat ingesluit. Die doel van die Johannesbriewe. Waarom is die Briewe ...

  19. Die dogmatiese binding van die prediking

    African Journals Online (AJOL)

    genoemde probleemstelling wat ons homileties na riglyne wil soek, sonder die pretensie dat finale oplossings gevind sal word. Om hierdie probleem te ontleed is dit nodig om eers kortliks 'n begripsbepaling van die begrippe dogma, binding en prediking te maak. Vanuit die begripsbepaling kan ons dan probeer vasstel wat ...

  20. DIE HEDENDAAGSE SIENING VAN DIE NORMERING VAN DUITS ...

    African Journals Online (AJOL)

    v a k t a a l k w a l i £ i k a s i e s ) neem d i e I n s t i t u t t a l l e take waar ter u i t b r e i d i n g van kennis van die Duitse taal in die buiteland. Sedert 1964 publiseer die. Institut die tydskrif Deutsch als Fremdsprache met die bylae Sprachpraxis, asook 'n handboek met die titel Deutsch - eln Lehrbuch Eur Auslander (Duits.

  1. Die topkwark

    Directory of Open Access Journals (Sweden)

    R. Tegen

    1998-07-01

    Full Text Available ’n Oorsig van die belangrikheid van die onlangs ontdekte topkwark by Fermilab in Chicago word gegee. Daar word aangetnon dat die topkwark belangrik is in fisika van die Oerknal, oftewel "Big Bang", en in die Standaard Model van Elementêredeeltjie-fisika. Toepaslike literatuur vir verdere studie kan van die lys van verwysings in hierdie kort, nietegniese artikel, nagegaan word.

  2. oor die inhoud en boodskap van die heidelbergse kategismus

    African Journals Online (AJOL)

    Smit. Oor die Inhoud en Boodskap van die Heidelbergse Kategismus. 52. Uiteraard sal dié tema saamhang met die bedoelinge agter die opstel van die Kategismus. Ook die vraag na moontlike bedoelinge of motiewe is egter 'n ingewikkelder vraag as wat miskien gedink mag word. Uiteraard was daar agter elke kategismus ...

  3. Die vangnet van die woord: forensies-linguistiese getuienis in 'n ...

    African Journals Online (AJOL)

    Een van die redes daarvoor is waarskynlik die gepaardgaande sleurwerk verbonde aan die verwerking van die betrokke taaldata — iets wat egter deur die onlangse meteoriese vooruitgang in tegnologiese tegnieke op die agtergrond geskuif is en nuwe moontlikhede na vore laat kom het. In die lig van die kompleksiteit van ...

  4. Photosynthetic Characteristics of Flag Leaves in Rice White Stripe Mutant 6001 During Senescence Process

    Directory of Open Access Journals (Sweden)

    Xiao-hui ZHEN

    2014-11-01

    Full Text Available Physiological, biochemical and electron microscopy analyses were used to investigate the photosynthetic performance of flag leaves in rice white stripe mutant 6001 during the senescence process. Results showed that the chlorophyll content at the heading and milk-ripe stages in rice mutant 6001 were about 34.78% and 3.00% less than those in wild type 6028, respectively. However, the chlorophyll content at the fully-ripe stage in rice mutant 6001 was higher than that in wild type 6028. At the heading stage, the net photosynthetic rate (Pn in rice mutant 6001 was lower than that in wild type 6028. Rice mutant 6001 also exhibited a significantly slower decrease rate of Pn than wild type 6028 during the senescence progress, especially at the later stage. Furthermore, Ca2+-ATPase, Mg2+-ATPase and photophosphorylation activities exhibited the similar trends as the Pn. During the senescence process, the 68 kDa polypeptide concentrations in the thylakoid membrane proteins exhibited a significant change, which was one of the critical factors that contributed to the observed change in photosynthesis. We also observed that the chloroplasts of rice mutant 6001 exhibited higher integrity than those of wild type 6028, and the chloroplast membrane of rice mutant 6001 disintegrated more slow during the senescence process. In general, rice mutant 6001 had a relatively slower senescence rate than wild type 6028, and exhibited anti-senescence properties.

  5. Perception of Arabidopsis AtPep peptides, but not bacterial elicitors, accelerates starvation-induced senescence

    Directory of Open Access Journals (Sweden)

    Kay eGully

    2015-01-01

    Full Text Available Members of the AtPep group of Arabidopsis endogenous peptides have frequently been reported to induce pattern-triggered immunity and to increase resistance to diverse pathogens by amplifying the innate immune response. Here, we made the surprising observation that dark-induced leaf senescence was accelerated by the presence of Peps. Adult leaves as well as leaf discs of Col-0 wild type plants showed a Pep-triggered early onset of chlorophyll breakdown and leaf yellowing whereas pepr1 pepr2 double mutant plants were insensitive. In addition, this response was dependent on ethylene signaling and inhibited by the addition of cytokinins. Notably, addition of the bacterial elicitors flg22 or elf18, both potent inducers of pattern-triggered immunity, did not provoke an early onset of leaf senescence.Continuous darkness leads to energy deprivation and starvation and therewith promotes leaf senescence. We found that continuous darkness also strongly induced PROPEP3 transcription. Moreover, Pep-perception led to a rapid induction of PAO, APG7 and APG8a, genes indispensable for chlorophyll degradation as well as autophagy, respectively, and all three hallmarks of starvation and senescence. Notably, addition of sucrose as a source of energy inhibited the Pep-triggered early onset of senescence. In conclusion, we report that Pep-perception accelerates dark/starvation-induced senescence via an early induction of chlorophyll degradation and autophagy. This represents a novel and unique characteristic of PEPR signaling, unrelated to pattern-triggered immunity.

  6. Steroid synthesis by primary human keratinocytes; implications for skin disease

    Energy Technology Data Exchange (ETDEWEB)

    Hannen, Rosalind F., E-mail: r.f.hannen@qmul.ac.uk [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom); Michael, Anthony E. [Centre for Developmental and Endocrine Signalling, Academic Section of Obstetrics and Gynaecology, Division of Clinical Developmental Sciences, 3rd Floor, Lanesborough Wing, St. George' s, University of London, Cranmer Terrace, Tooting, London SW17 0RE (United Kingdom); Jaulim, Adil [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom); Bhogal, Ranjit [Life Science, Unilever R and D Colworth House, Sharnbrook, Bedfordshire MK44 1LQ (United Kingdom); Burrin, Jacky M. [Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ (United Kingdom); Philpott, Michael P. [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom)

    2011-01-07

    Research highlights: {yields} Primary keratinocytes express the steroid enzymes required for cortisol synthesis. {yields} Normal primary human keratinocytes can synthesise cortisol. {yields} Steroidogenic regulators, StAR and MLN64, are expressed in normal epidermis. {yields} StAR expression is down regulated in eczema and psoriatic epidermis. -- Abstract: Cortisol-based therapy is one of the most potent anti-inflammatory treatments available for skin conditions including psoriasis and atopic dermatitis. Previous studies have investigated the steroidogenic capabilities of keratinocytes, though none have demonstrated that these skin cells, which form up to 90% of the epidermis are able to synthesise cortisol. Here we demonstrate that primary human keratinocytes (PHK) express all the elements required for cortisol steroidogenesis and metabolise pregnenolone through each intermediate steroid to cortisol. We show that normal epidermis and cultured PHK express each of the enzymes (CYP11A1, CYP17A1, 3{beta}HSD1, CYP21 and CYP11B1) that are required for cortisol synthesis. These enzymes were shown to be metabolically active for cortisol synthesis since radiometric conversion assays traced the metabolism of [7-{sup 3}H]-pregnenolone through each steroid intermediate to [7-{sup 3}H]-cortisol in cultured PHK. Trilostane (a 3{beta}HSD1 inhibitor) and ketoconazole (a CYP17A1 inhibitor) blocked the metabolism of both pregnenolone and progesterone. Finally, we show that normal skin expresses two cholesterol transporters, steroidogenic acute regulatory protein (StAR), regarded as the rate-determining protein for steroid synthesis, and metastatic lymph node 64 (MLN64) whose function has been linked to cholesterol transport in steroidogenesis. The expression of StAR and MLN64 was aberrant in two skin disorders, psoriasis and atopic dermatitis, that are commonly treated with cortisol, suggesting dysregulation of epidermal steroid synthesis in these patients. Collectively these data

  7. Steroid synthesis by primary human keratinocytes; implications for skin disease

    International Nuclear Information System (INIS)

    Hannen, Rosalind F.; Michael, Anthony E.; Jaulim, Adil; Bhogal, Ranjit; Burrin, Jacky M.; Philpott, Michael P.

    2011-01-01

    Research highlights: → Primary keratinocytes express the steroid enzymes required for cortisol synthesis. → Normal primary human keratinocytes can synthesise cortisol. → Steroidogenic regulators, StAR and MLN64, are expressed in normal epidermis. → StAR expression is down regulated in eczema and psoriatic epidermis. -- Abstract: Cortisol-based therapy is one of the most potent anti-inflammatory treatments available for skin conditions including psoriasis and atopic dermatitis. Previous studies have investigated the steroidogenic capabilities of keratinocytes, though none have demonstrated that these skin cells, which form up to 90% of the epidermis are able to synthesise cortisol. Here we demonstrate that primary human keratinocytes (PHK) express all the elements required for cortisol steroidogenesis and metabolise pregnenolone through each intermediate steroid to cortisol. We show that normal epidermis and cultured PHK express each of the enzymes (CYP11A1, CYP17A1, 3βHSD1, CYP21 and CYP11B1) that are required for cortisol synthesis. These enzymes were shown to be metabolically active for cortisol synthesis since radiometric conversion assays traced the metabolism of [7- 3 H]-pregnenolone through each steroid intermediate to [7- 3 H]-cortisol in cultured PHK. Trilostane (a 3βHSD1 inhibitor) and ketoconazole (a CYP17A1 inhibitor) blocked the metabolism of both pregnenolone and progesterone. Finally, we show that normal skin expresses two cholesterol transporters, steroidogenic acute regulatory protein (StAR), regarded as the rate-determining protein for steroid synthesis, and metastatic lymph node 64 (MLN64) whose function has been linked to cholesterol transport in steroidogenesis. The expression of StAR and MLN64 was aberrant in two skin disorders, psoriasis and atopic dermatitis, that are commonly treated with cortisol, suggesting dysregulation of epidermal steroid synthesis in these patients. Collectively these data show that PHK are capable of extra

  8. Die Voortrekker-Monument

    Directory of Open Access Journals (Sweden)

    Gerard Moerdyk

    1938-03-01

    Full Text Available Die Eeufeesjaar is vir die Afrikaner ’n tydperk van besieling. Nog nooit sedert die ontstaan van ons volk het een enkele gebeurtenis soveel nasietrots gewek as die honderdjarige herdenking van die Groot Trek. Vir die eerste keer in ons geskiedenis voel ons ons nie meer Kapenaars, Vrystaters, Natalers, en Transvalers nie, maar Afrikaners, saamgesnoer deur die tradisies van ’n selfstandige kultuurvolk. Wanneer die klimaks van die Ossewatrek met die hocksteenlegging van die Voortrekker-Monument bereik word, sal die besieling nie uitsterf nie, die krag wat geskep is sal bly voortgroei tot ’n onweerstaanbare mag. Die Afrikaner sal homself vind, en as die Monument na sowat vyf jaar onthul word, sal die saad wat in hierdie jaar gesaai is, tot voile rypheid gekom het. Dan sal die Monument self tot die volk spreek; intussen egter, is dit wenslik, nee noodsaaklik selfs, om die Monument aan die Afrikaners te verklaar, om ‘n uiteensetting te gee van die noodsaaklikheid van so ’n Monument, sowel as om die motief te verduidelik wat as inspirasie gedien het vir die ontwerpdaar van.

  9. AMP-activated protein kinase reduces inflammatory responses and cellular senescence in pulmonary emphysema.

    Science.gov (United States)

    Cheng, Xiao-Yu; Li, Yang-Yang; Huang, Cheng; Li, Jun; Yao, Hong-Wei

    2017-04-04

    Current drug therapy fails to reduce lung destruction of chronic obstructive pulmonary disease (COPD). AMP-activated protein kinase (AMPK) has emerged as an important integrator of signals that control energy balance and lipid metabolism. However, there are no studies regarding the role of AMPK in reducing inflammatory responses and cellular senescence during the development of emphysema. Therefore, we hypothesize that AMPK reduces inflammatroy responses, senescence, and lung injury. To test this hypothesis, human bronchial epithelial cells (BEAS-2B) and small airway epithelial cells (SAECs) were treated with cigarette smoke extract (CSE) in the presence of a specific AMPK activator (AICAR, 1 mM) and inhibitor (Compound C, 5 μM). Elastase injection was performed to induce mouse emphysema, and these mice were treated with a specific AMPK activator metformin as well as Compound C. AICAR reduced, whereas Compound C increased CSE-induced increase in IL-8 and IL-6 release and expression of genes involved in cellular senescence. Knockdown of AMPKα1/α2 increased expression of pro-senescent genes (e.g., p16, p21, and p66shc) in BEAS-2B cells. Prophylactic administration of an AMPK activator metformin (50 and 250 mg/kg) reduced while Compound C (4 and 20 mg/kg) aggravated elastase-induced airspace enlargement, inflammatory responses and cellular senescence in mice. This is in agreement with therapeutic effect of metformin (50 mg/kg) on airspace enlargement. Furthermore, metformin prophylactically protected against but Compound C further reduced mitochondrial proteins SOD2 and SIRT3 in emphysematous lungs. In conclusion, AMPK reduces abnormal inflammatory responses and cellular senescence, which implicates as a potential therapeutic target for COPD/emphysema.

  10. Downregulation of B-myb promotes senescence via the ROS-mediated p53/p21 pathway, in vascular endothelial cells.

    Science.gov (United States)

    Zhou, Zhihui; Yin, Yanlin; Chang, Qun; Sun, Guanqun; Lin, Jiahui; Dai, Yalei

    2017-04-01

    To reveal whether B-myb is involved in preventing senescence of vascular endothelial cells, and if so, to identify possible mechanisms for it. C57/BL6 male mice and primary human aortic endothelial cells (HAECs) were used. Bleomycin was applied to induce stress-related premature senescence. B-myb knockdown was achieved using an siRNA technique and cell senescence was assessed using the senescence-associated β-galactosidase (SA-β-gal) assay. Intracellular reactive oxygen species (ROS) production was analysed using an ROS assay kit and cell proliferation was evaluated using KFluor488 EdU kit. Capillary tube network formation was determined by Matrigel assay. Expressions of mRNA and protein levels were detected by real-time PCR and western blotting. B-myb expression significantly decreased, while p53 and p21 expressions increased in the aortas of aged mice. This expression pattern was also found in replicative senescent HAECs and senescent HAECs induced by bleomycin. B-myb knockdown resulted in upregulation of p22 phox , ROS accumulation and cell senescence of HAECs. Downregulation of B-myb significantly inhibited cell proliferation and capillary tube network formation and activated the p53/p21 signalling pathway. Blocking ROS production or inhibiting p53 activation remarkably attenuated SA-β-gal activity and delayed cell senescence induced by B-myb-silencing. Downregulation of B-myb induced senescence by upregulation of p22 phox and activation of the ROS/p53/p21 pathway, in our vascular endothelial cells, suggesting that B-myb may be a novel candidate for regulating cell senescence to protect against endothelial senescence-related cardiovascular diseases. © 2016 John Wiley & Sons Ltd.

  11. Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in dermo-epidermal skin substitutes.

    Science.gov (United States)

    Böttcher-Haberzeth, Sophie; Biedermann, Thomas; Pontiggia, Luca; Braziulis, Erik; Schiestl, Clemens; Hendriks, Bart; Eichhoff, Ossia M; Widmer, Daniel S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst

    2013-02-01

    Recently, Biedermann et al. (2010) have demonstrated that human eccrine sweat gland cells can develop a multilayered epidermis. The question still remains whether these cells can fulfill exclusive and very specific functional properties of epidermal keratinocytes, such as the incorporation of melanin, a feature absent in sweat gland cells. We added human melanocytes to eccrine sweat gland cells to let them develop into an epidermal analog in vivo. The interaction between melanocytes and sweat gland-derived keratinocytes was investigated. The following results were gained: (1) macroscopically, a pigmentation of the substitutes was seen 2-3 weeks after transplantation; (2) we confirmed the development of a multilayered, stratified epidermis with melanocytes distributed evenly throughout the basal layer; (3) melanocytic dendrites projected to suprabasal layers; and (4) melanin was observed to be integrated into former eccrine sweat gland cells. These skin substitutes were similar or equal to skin substitutes cultured from human epidermal keratinocytes. The only differences observed were a delay in pigmentation and less melanin uptake. These data suggest that eccrine sweat gland cells can form a functional epidermal melanin unit, thereby providing striking evidence that they can assume one of the most characteristic keratinocyte properties.

  12. e .Kuraioriufn. DIE W ETENSKAPLIKE BETEKENIS VAN DIE W ERK

    African Journals Online (AJOL)

    Test

    ENGELBRECHT ver antwoordelik vir die Ou-Testamentiese vakke en Hebreeus. Die aan stelling van 'n derde professor het noodsaaklik geword, want dit sou. 85 .... De .Spreuken ran 5a/o?no omvat die nuwe vertaling en die ekse gese van die eerste 24 hoofstukke van die Spreukeboek. Die geskoold- heid in die Semitiese ...

  13. Retardation of senescence by UV-A light in barley (Hordeum vulgare L.) leaf segments

    International Nuclear Information System (INIS)

    Cuello, J.; Sanchez, M.D.; Sabater, B.

    1994-01-01

    The effects of low intensity (0.9–2.2 W m −2 ) UV-A radiation on barley leaf senescence were investigated. UV-A inhibited chlorophyll loss and caused increases in membrane permeability and chloroplast endopeptidases associated with senescence. The treatment of leaf segments with UV-A changed the type of proteins synthesized by chloroplasts, stimulating the synthesis of some specific polypeptides. It is concluded that the senescence of detached leaves provides an appropriate system for investigating effects of low UV-A intensities which are probably mediated by synthesis of specific proteins. (author)

  14. Keratinocyte growth factor mRNA expression in periodontal ligament fibroblasts

    DEFF Research Database (Denmark)

    Dabelsteen, S; Wandall, H H; Grøn, B

    1997-01-01

    Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF mRNA is expres......Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF m......RNA is expressed in periodontal ligament fibroblasts, and that the expression is increased upon serum stimulation. Fibroblasts from human periodontal ligament, from buccal mucosa, from gingiva, and from skin were established from explants. Alkaline phosphatase activity was used as an indicator of the periodontal...

  15. Involvement of NADPH oxidase isoforms in the production of O2− manipulated by ABA in the senescing leaves of early-senescence-leaf (esl) mutant rice (Oryza sativa)

    Science.gov (United States)

    Wang, Fubiao; Zhao, Qian; Liu, Jianchao; Cheng, Fangmin

    2018-01-01

    In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage. Exogenous ABA treatment induced O2- generation; however, it was depressed by diphenyleneiodonium chloride (DPI) pretreatment in the detached leaf segments. This finding suggested the involvement of NADPH oxidase in ABA-induced O2- generation. The esl mutant exhibited significantly higher expression of OsNox2, OsNox5, OsNox6, and OsNox7 in the initial of grain-filling stage, followed by sharply decrease. The transcriptional levels of OsNox1, OsNox3, and OsFR07 in the flag leaf of the esl mutant were significantly lower than those in the wild-type cultivar. The expression levels of OsNox2, OsNox5, OsNox6, and OsNox7 were significantly enhanced by exogenous ABA treatments. The enhanced expression levels of OsNox2 and OsNox6 were dependent on the duration of ABA treatment. The inducible expression levels of OsNox5 and OsNox7 were dependent on ABA concentrations. By contrast, exogenous ABA treatment severely repressed the transcripts of OsNox1, OsNox3, and OsFR07 in the detached leaf segments. Therefore, OsNox2, OsNox5, OsNox6, and OsNox7 were probably involved in the ABA-induced O2- generation in the initial stage of leaf senescence. Subsequently, other oxidases activated in deteriorating cells were associated with ROS generation and accumulation in the

  16. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    International Nuclear Information System (INIS)

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan

    2014-01-01

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However, the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening

  17. Tissue-specific regulation of CXCL9/10/11 chemokines in keratinocytes: Implications for oral inflammatory disease.

    Directory of Open Access Journals (Sweden)

    Alison Marshall

    Full Text Available The IFN-γ-inducible chemokines CXCL9, CXCL10, and CXCL11 play a key role in many inflammatory conditions, particularly those mediated by T cells. Therefore, the production of these chemokines in peripheral tissues could be instrumental in the pathophysiology of tissue-specific immunological diseases such as oral lichen planus (OLP. In the present study, we assessed the production of keratinocyte-derived CXCL9/10/11 under basal and inflammatory conditions and investigated whether these chemokines were involved in the pathogenesis of OLP. We used semi-quantitative PCR, ELISA, chemotaxis assays, and fluorescence-activated cell sorting (FACS to assess the expression and functional role of CXCL9/10/11 in oral keratinocytes (three strains of normal human oral keratinocytes (NHOK, and the H357 oral cancer cell line in the presence or absence of IFN-γ. CXCL9/10/11 were also assessed in tissues from normal patients and those with oral lichen planus (OLP. The time course study in oral keratinocytes treated with IFN-γ showed that expression of CXCL9/10/11 chemokines was significantly enhanced by IFN-γ in a time-dependent manner. In particular, CXCL10, a prominent chemokine that was overexpressed by IFN-γ-stimulated NHOK, was able to effectively recruit CD4 lymphocytes, mainly CD4+CD45RA- cells. Significantly higher levels of CXCL9/10/11 were found in tissues from patients with OLP compared to normal oral mucosa. Taken together, the results demonstrate that normal oral keratinocytes produce chemotactic molecules that mediate T cell recruitment. This study furthers understanding of chemokine production in oral keratinocytes and their role in the pathophysiology of oral mucosa, with particular relevance to OLP.

  18. A Petunia Homeodomain-Leucine Zipper Protein, PhHD-Zip, Plays an Important Role in Flower Senescence

    Science.gov (United States)

    Chang, Xiaoxiao; Donnelly, Linda; Sun, Daoyang; Rao, Jingping; Reid, Michael S.; Jiang, Cai-Zhong

    2014-01-01

    Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO), and ABA (NCED) biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA) and abiotic stresses (dehydration, NaCl and cold). Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence. PMID:24551088

  19. A Petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence.

    Science.gov (United States)

    Chang, Xiaoxiao; Donnelly, Linda; Sun, Daoyang; Rao, Jingping; Reid, Michael S; Jiang, Cai-Zhong

    2014-01-01

    Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO), and ABA (NCED) biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA) and abiotic stresses (dehydration, NaCl and cold). Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence.

  20. A Petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence.

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Chang

    Full Text Available Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO, and ABA (NCED biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29 was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA and abiotic stresses (dehydration, NaCl and cold. Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence.

  1. Die faktore gemeenskaplik aan die selfondersoekvraelys van Holland en die nuwe Suid-Afrikaanse beroepsbelangstellingsvraelys

    Directory of Open Access Journals (Sweden)

    C. Swanevelder

    1992-06-01

    Full Text Available The factors common to the Self Directed Search of Holland (SDS and the new South African Vocational Interest Inventory (SAVII. The new South African Vocational Interest Inventory was locally developed with the purpose to create a single vocational interest inventory for all population groups in the RSA. In this study the common factors underlying the SDS and the SAVII were determined with the aid of interbattery factor analysis. The results indicate that there are six common factors underlying the two instruments for both the standard nine boys and girls, and that these factors agree with the six factors built into the SDS by Holland. Opsomming Die nuwe Suid-Afrikaanse Beroepsbelangstellingsvraelys (SABBV is plaaslik ontwikkel met die doel om 'n enkele beroepsbelangstellingsvraelys vir alle bevolkingsgroepe binne die RSA, daar te stel. In hierdie studie is daar ondersoek ingestel na die gemeenskaplike faktore onderliggend aan die SABBV en die Selfondersoekvraelys (SOV van Holland met behulp van 'n interbatteryfaktorontleding. Daar is bevind dat daar ses gemeenskaplike faktore onderliggend aan die twee instrumente is vir sowel standerd nege seuns as dogters, en dat hierdie faktore ooreenstem met die ses faktore wat deur Holland in die SOV ingebou is.

  2. P. J. N. Smal, Die Universalisme in die Psalms. Academisch ...

    African Journals Online (AJOL)

    Test

    dat die historiese element in Israel se Godsopenbaring en daarmee die insig in sy betekenis te kort gedoen word. Die betekenis van die studie vir die historia revelationis is daardeur gering; as duidelike „tydlose” sistematisering van Outestamentiese gegewens oor die betrokke onder- werpe, soos die laaste hoofstuk, bl.

  3. Die Defects and Die Corrections in Metal Extrusion

    Directory of Open Access Journals (Sweden)

    Sayyad Zahid Qamar

    2018-05-01

    Full Text Available Extrusion is a very popular and multi-faceted manufacturing process. A large number of products for the automotive, aerospace, and construction sectors are produced through aluminum extrusion. Many defects in the extruded products occur because of the conditions of the dies and tooling. The problems in dies can be due to material issues, design and manufacturing, or severe usage. They can be avoided by maintaining the billet quality, by controlling the extrusion process parameters, and through routine maintenance. Die problems that occur on a day-to-day basis are mostly repairable and are rectified through various types of die correction operations. These defects and repair operations have not been reported in detail in the published literature. The current paper presents an in-depth description of repairable die defects and related die correction operations in metal extrusion. All major die defects are defined and classified, and their causes, preventive measures, and die correction operations are described. A brief frequency-based statistical study of die defects is also carried out to identify the most frequent die corrections. This work can be of direct benefit to plant engineers and operators and to researchers and academics in the field of metal extrusion.

  4. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence.

    Science.gov (United States)

    Lü, Peitao; Zhang, Changqing; Liu, Jitao; Liu, Xiaowei; Jiang, Guimei; Jiang, Xinqiang; Khan, Muhammad Ali; Wang, Liangsheng; Hong, Bo; Gao, Junping

    2014-05-01

    Rose (Rosa hybrida) is one of the most important ornamental plants worldwide; however, senescence of its petals terminates the ornamental value of the flower, resulting in major economic loss. It is known that the hormones abscisic acid (ABA) and ethylene promote petal senescence, while gibberellins (GAs) delay the process. However, the molecular mechanisms underlying the antagonistic effects amongst plant hormones during petal senescence are still unclear. Here we isolated RhHB1, a homeodomain-leucine zipper I transcription factor gene, from rose flowers. Quantitative RT-PCR and GUS reporter analyses showed that RhHB1 was strongly expressed in senescing petals, and its expression was induced by ABA or ethylene in petals. ABA or ethylene treatment clearly accelerated rose petal senescence, while application of the gibberellin GA3 delayed the process. However, silencing of RhHB1 delayed the ABA- or ethylene-mediated senescence, and resulted in higher petal anthocyanin levels and lower expression of RhSAG12. Moreover, treatment with paclobutrazol, an inhibitor of GA biosynthesis, repressed these delays. In addition, silencing of RhHB1 blocked the ABA- or ethylene-induced reduction in expression of the GA20 oxidase encoded by RhGA20ox1, a gene in the GA biosynthetic pathway. Furthermore, RhHB1 directly binds to the RhGA20ox1 promoter, and silencing of RhGA20ox1 promoted petal senescence. Eight senescence-related genes showed substantial differences in expression in petals after treatment with GA3 or paclobutrazol. These results suggest that RhHB1 mediates the antagonistic effect of GAs on ABA and ethylene during rose petal senescence, and that the promotion of petal senescence by ABA or ethylene operates through an RhHB1-RhGA20ox1 regulatory checkpoint. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  5. Potential roles of DNA methylation in the initiation and establishment of replicative senescence revealed by array-based methylome and transcriptome analyses.

    Directory of Open Access Journals (Sweden)

    Mizuho Sakaki

    Full Text Available Cellular senescence is classified into two groups: replicative and premature senescence. Gene expression and epigenetic changes are reported to differ between these two groups and cell types. Normal human diploid fibroblast TIG-3 cells have often been used in cellular senescence research; however, their epigenetic profiles are still not fully understood. To elucidate how cellular senescence is epigenetically regulated in TIG-3 cells, we analyzed the gene expression and DNA methylation profiles of three types of senescent cells, namely, replicatively senescent, ras-induced senescent (RIS, and non-permissive temperature-induced senescent SVts8 cells, using gene expression and DNA methylation microarrays. The expression of genes involved in the cell cycle and immune response was commonly either down- or up-regulated in the three types of senescent cells, respectively. The altered DNA methylation patterns were observed in replicatively senescent cells, but not in prematurely senescent cells. Interestingly, hypomethylated CpG sites detected on non-CpG island regions ("open sea" were enriched in immune response-related genes that had non-CpG island promoters. The integrated analysis of gene expression and methylation in replicatively senescent cells demonstrated that differentially expressed 867 genes, including cell cycle- and immune response-related genes, were associated with DNA methylation changes in CpG sites close to the transcription start sites (TSSs. Furthermore, several miRNAs regulated in part through DNA methylation were found to affect the expression of their targeted genes. Taken together, these results indicate that the epigenetic changes of DNA methylation regulate the expression of a certain portion of genes and partly contribute to the introduction and establishment of replicative senescence.

  6. Replicative senescence of T cells: does the Hayflick Limit lead to immune exhaustion?

    Science.gov (United States)

    Effros, R B; Pawelec, G

    1997-09-01

    Extensive in vitro research on fibroblasts has defined numerous genetic and phenotypic changes associated with replicative senescence. Identification of T-cell replicative senescence as a feature of human immunodeficiency virus (HIV) disease and ageing suggests this phenomenon merits more careful consideration by immunologists, especially with regard to chronic infection, memory and adoptive immunotherapy.

  7. Serially cultured keratinocytes from human scalp hair follicles: a tool for cytogenetic studies.

    Science.gov (United States)

    Weterings, P J; Roelofs, H M; Jansen, B A; Vermorken, A J

    1983-01-01

    Keratinocytes originating from adult human hair follicles, the most convenient biopsy tissue, can be serially cultured using a combination of two techniques. Primary cultures are established using plucked scalp hair follicles and the bovine eye lens capsule as a growth substrate. Subsequently, cells from these cultures are serially cultivated in the presence of irradiated 3T3 cells as feeders. By this combination of techniques many keratinocytes can be generated from one single hair follicle. These cultures, appropriately treated with colchicine, can provide an adequate number of metaphases suitable for chromosome studies.

  8. Senescence-associated β-galactosidase activity in the in vitro ovarian stromal fibroblasts

    Directory of Open Access Journals (Sweden)

    Lilian Chuaire-Noack

    2011-04-01

    Full Text Available A growing biological research field is the cellular senescence, a mechanism that has been associated, under certain circumstances, withmalignant transformation. Given the high incidence of ovarian cancerand its main origin from the ovarian surface epithelium, as well asthe possibility that an epithelial-mesenchymal transition occurs, weevaluated both the in vitro growth of stromal fibroblasts from the ovarian cortex and their β-galactosidase activity at pH 6,enzyme whose expression is considered as a marker of replicativesenescence. Methods: 48 samples of ovarian cortical fibroblasts fromdonors without a history of cancer were serially cultured untilthe end of their replicative life. β-galactosidase activity at pH 6was quantified in each passage by the chemiluminiscent method. Ascontrol, we used ovarian epithelial cell cultures from the samedonors. The enzyme activity was also evaluated in fibroblastspreviously induced to senescence by exposure to hydrogen peroxide.Results: The analysis of the enzyme activity and the replicativecapacity taken together showed that the fibroblast cultures reachedthe senescent state at passages 4-5, as what happened with the control epithelial cells. Fibroblasts induced to senescence showed high variability in the values of enzymatic activity. Conclusions:The similarity between both types of cells in reaching the senescent state deserves to be taken into account in relation to theepithelialmesenchymal transition that has been proposed to explaintheir behavior in the genesis of cancer arising from ovarian surfaceepithelium. Low β-galactosidase activity values at pH 6 would suggestpossible inactivation of the response pathways to oxidative stress.

  9. The effect of keratinocytes on the biomechanical characteristics and pore microstructure of tissue engineered skin using deep dermal fibroblasts.

    Science.gov (United States)

    Varkey, Mathew; Ding, Jie; Tredget, Edward E

    2014-12-01

    Fibrosis affects most organs, it results in replacement of normal parenchymal tissue with collagen-rich extracellular matrix, which compromises tissue architecture and ultimately causes loss of function of the affected organ. Biochemical pathways that contribute to fibrosis have been extensively studied, but the role of biomechanical signaling in fibrosis is not clearly understood. In this study, we assessed the effect keratinocytes have on the biomechanical characteristics and pore microstructure of tissue engineered skin made with superficial or deep dermal fibroblasts in order to determine any biomaterial-mediated anti-fibrotic influences on tissue engineered skin. Tissue engineered skin with deep dermal fibroblasts and keratinocytes were found to be less stiff and contracted and had reduced number of myofibroblasts and lower expression of matrix crosslinking factors compared to matrices with deep fibroblasts alone. However, there were no such differences between tissue engineered skin with superficial fibroblasts and keratinocytes and matrices with superficial fibroblasts alone. Also, tissue engineered skin with deep fibroblasts and keratinocytes had smaller pores compared to those with superficial fibroblasts and keratinocytes; pore size of tissue engineered skin with deep fibroblasts and keratinocytes were not different from those matrices with deep fibroblasts alone. A better understanding of biomechanical characteristics and pore microstructure of tissue engineered skin may prove beneficial in promoting normal wound healing over pathologic healing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The impact of extracellular syntaxin4 on HaCaT keratinocyte behavior

    International Nuclear Information System (INIS)

    Kadono, Nanako; Miyazaki, Takafumi; Okugawa, Yoji; Nakajima, Kiichiro; Hirai, Yohei

    2012-01-01

    Highlights: ► A subpopulation of syntaxin4 localizes extracellularly in the keratinocytes. ► Epimorphin and syntaxin4 confer the resistance to the oxidative stress. ► Epimorphin suppresses and syntaxin4 accelerates the CCE formation. ► The antagonistic peptide to syntaxin4 blocks the syntaxin4-dependent CCE formation. -- Abstract: Syntaxin4 belongs to t-SNARE protein family and functions as a vesicular fusion mediator in the plasma membrane in a wide variety of cell types. This protein resembles another family member, epimorphin, a subpopulation of which has been shown to be secreted extracellularly in order to exert signaling functions. Here, we demonstrate the secretion of syntaxin4 via a non-classical pathway and its extracellular functions by using the functionally normal keratinocyte HaCaT. Extracellularly presented syntaxin4 appeared to elicit many cell responses similar to epimorphin with an important exception: it clearly facilitated keratinocyte cornification. The circularized peptide ST4n1 was synthesized from the putative functional core of syntaxin4 (a.a. 103–108), which is equivalent to the previously generated antagonist of epimorphin, and neutralized this contradictory effect. Intriguingly, an epimorphin mutant (EP4M) in which the functional core was replaced by that of syntaxin4 behaved like epimorphin, which was again antagonized by ST4n1. Electrophoresis-based analyses demonstrated the distinct structure of syntaxin4 compared to epimorphin or EP4M. These results revealed, for the first time, the extracellular role of syntaxin4 and shed light on the division of the extracellular effects exerted by epimorphin and syntaxin4 on keratinocyte cornification.

  11. Geslagsverskille in die ouditiewe ontlokte potensiaal van die brein

    Directory of Open Access Journals (Sweden)

    Anita D Stuart

    2006-10-01

    Full Text Available Gender differences in the auditory evoked potential of the brain. Based on literature indications of an association between temperament characteristics and the evoked potential of the brain, and indications of gender differences in certain temperament traits, the purpose of this study was to ascertain whether evoked responses also differentiated between the genders. A sample of 81 male and 210 female students was randomly selected. Two auditory evoked potential procedures were applied. The results indicated statistically significant differences in evoked potential responses between the genders. The results are interpreted against the background of sensory and neurological sources of the evoked potential responses and linked to the neurophysiological foundations of temperament. Opsomming: Gegrond op aanduidings in die literatuur van ’n assosiasie tussen temperamentskenmerke en die ontlokte potensiaal van die brein, sowel as aanduidings van geslagsverskille in sekere temperamentstrekke, was die doel van die huidige studie om te bepaal of ontloktepotensiaal-response ook tussen die geslagte onderskei. ’n Steekproef van 81 manlike en 210 vroulike studente is ewekansig geselekteer. Twee ouditiewe ontloktepotensiaal- prosedures is toegepas. Die resultate het op statisties beduidende verskille tussen die geslagte gedui. Die bevindinge word teen die agtergrond van die sensoriese en neurologiese oorsprong van ontloktepotensiaal–response geïnterpreteer en verbind aan die neurofisiologiese verankering van temperament.

  12. Repeated summer drought and re-watering during the first growing year of oak (Quercus petraea delay autumn senescence and bud burst in the following spring

    Directory of Open Access Journals (Sweden)

    Kristine Vander Mijnsbrugge

    2016-03-01

    Full Text Available Climate change predicts harsher summer droughts for mid-latitudes in Europe. To enhance our understanding of the putative impacts on forest regeneration, we studied the response of oak seedlings (Quercus petraea to water deficit. Potted seedlings originating from three locally sourced provenances were subjected to two successive drought periods during the first growing season each followed by a plentiful re-watering. Here we describe survival and phenological responses after the second drought treatment, applying general linear mixed modelling. From the 441 drought treated seedlings 189 subsisted with higher chances of survival among smaller plants and among single plants per pot compared to doubles. Remarkably, survival was independent of the provenance, although relatively more plants had died off in two provenances compared to the third one with mean plant height being higher in one provenance and standard deviation of plant height being higher in the other. Timing of leaf senescence was clearly delayed after the severe drought treatment followed by re-watering, with two seedlings per pot showing a lesser retardation compared to single plants. This delay can be interpreted as a compensation time in which plants recover before entering the subsequent developmental process of leaf senescence, although it renders seedlings more vulnerable to early autumn frosts because of the delayed hardening of the shoots. Onset of bud flush in the subsequent spring still showed a significant but small delay in the drought treated group, independent of the number of seedlings per pot, and can be considered as an after effect of the delayed senescence. In both phenological models significant differences among the three provenances were detected independent from the treatment. The only provenance that is believed to be local of origin, displayed the earliest leaf senescence and the latest flushing, suggesting an adaptation to the local maritime climate. This

  13. die doeltreffendheid van die afrikaanse woordelys en spelreels

    African Journals Online (AJOL)

    sluiting by die reel vir die verdubbeling van medeklinkers na 'n kort, be- klemtoonde klinker, woorde soos ballet, ballon, terras, terrein, dissipel en dissipline slegs met een konsonant na die eerste vokaal gespel moes word, omdat daardie voorafgaande vokaal onbeklemtoon is. Ook hierdie uit- sondering op die reel word ...

  14. Tocotrienol-Rich Fraction Prevents Cell Cycle Arrest and Elongates Telomere Length in Senescent Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2011-01-01

    Full Text Available This study determined the molecular mechanisms of tocotrienol-rich fraction (TRF in preventing cellular senescence of human diploid fibroblasts (HDFs. Primary culture of HDFs at various passages were incubated with 0.5 mg/mL TRF for 24 h. Telomere shortening with decreased telomerase activity was observed in senescent HDFs while the levels of damaged DNA and number of cells in G0/G1 phase were increased and S phase cells were decreased. Incubation with TRF reversed the morphology of senescent HDFs to resemble that of young cells with decreased activity of SA-β-gal, damaged DNA, and cells in G0/G1 phase while cells in the S phase were increased. Elongated telomere length and restoration of telomerase activity were observed in TRF-treated senescent HDFs. These findings confirmed the ability of tocotrienol-rich fraction in preventing HDFs cellular ageing by restoring telomere length and telomerase activity, reducing damaged DNA, and reversing cell cycle arrest associated with senescence.

  15. Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma.

    Science.gov (United States)

    Mario Gonzalez-Meljem, Jose; Haston, Scott; Carreno, Gabriela; Apps, John R; Pozzi, Sara; Stache, Christina; Kaushal, Grace; Virasami, Alex; Panousopoulos, Leonidas; Neda Mousavy-Gharavy, Seyedeh; Guerrero, Ana; Rashid, Mamunur; Jani, Nital; Goding, Colin R; Jacques, Thomas S; Adams, David J; Gil, Jesus; Andoniadou, Cynthia L; Martinez-Barbera, Juan Pedro

    2017-11-28

    Senescent cells may promote tumour progression through the activation of a senescence-associated secretory phenotype (SASP), whether these cells are capable of initiating tumourigenesis in vivo is not known. Expression of oncogenic β-catenin in Sox2+ young adult pituitary stem cells leads to formation of clusters of stem cells and induction of tumours resembling human adamantinomatous craniopharyngioma (ACP), derived from Sox2- cells in a paracrine manner. Here, we uncover the mechanisms underlying this paracrine tumourigenesis. We show that expression of oncogenic β-catenin in Hesx1+ embryonic precursors also results in stem cell clusters and paracrine tumours. We reveal that human and mouse clusters are analogous and share a common signature of senescence and SASP. Finally, we show that mice with reduced senescence and SASP responses exhibit decreased tumour-inducing potential. Together, we provide evidence that senescence and a stem cell-associated SASP drive cell transformation and tumour initiation in vivo in an age-dependent fashion.

  16. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    International Nuclear Information System (INIS)

    Lu, Li; Song, Hui-Fang; Wei, Jiao-Long; Liu, Xue-Qin; Song, Wen-Hui; Yan, Ba-Yi; Yang, Gui-Jiao; Li, Ang; Yang, Wu-Lin

    2014-01-01

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5

  17. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Li, E-mail: luli7300@126.com [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Hui-Fang; Wei, Jiao-Long; Liu, Xue-Qin [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Wen-Hui [Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001 (China); Yan, Ba-Yi; Yang, Gui-Jiao [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Li, Ang [Department of Medicine, University of Hong Kong Faculty of Medicine, Hong Kong (Hong Kong); Department of Anatomy, University of Hong Kong Faculty of Medicine, Hong Kong (Hong Kong); Yang, Wu-Lin, E-mail: wulinyoung@163.com [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research - A*STAR (Singapore)

    2014-01-24

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.

  18. Knockdown of IL-8 Provoked Premature Senescence of Placenta-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Li, Juan-Juan; Ma, Feng-Xia; Wang, You-Wei; Chen, Fang; Lu, Shi-Hong; Chi, Ying; Du, Wen-Jing; Song, Bao-Quan; Hu, Liang-Ding; Chen, Hu; Han, Zhong-Chao

    2017-06-15

    Mesenchymal stem cells (MSCs) have shown promise for use in cell therapy, and due to their tumor tropism can serve as vehicles for delivering therapeutic agents to tumor sites. Because interleukin-8 (IL-8) is known to mediate the protumor effect of MSCs, elimination of IL-8 secretion by MSCs may enhance their safety for use in cancer gene therapy. However, little is known concerning the effect of endogenously secreted IL-8 on MSCs. We performed studies using placenta-derived MSCs (PMSCs) to determine whether knockdown of IL-8 would influence their biological activity. We first verified that IL-8 and its membrane receptor CXCR2, but not CXCR1, were highly expressed in PMSCs. We then employed lentivirus-mediated small hairpin RNA interference to generate stable IL-8-silenced PMSCs, which displayed a variety of characteristic senescent phenotypes. We observed that at day 9 post-transfection, IL-8-silenced PMSCs had become larger and displayed a more flattened appearance when compared with their controls. Moreover, their proliferation, colony forming unit-fibroblast formation, adipogenic and osteogenic differentiation, and immunosuppressive potentials were significantly impaired. Enhanced senescence-associated β-galactosidase (SA-β-gal) activity and specific global gene expression profiles confirmed that IL-8 silencing evoked the senescence process in PMSCs. Increased levels of p-Akt and decreased levels of FOXO3a protein expression suggested that reactive oxygen species played a role in the initiation and maintenance of senescence in IL-8-silenced PMSCs. Notably, the majority of CXCR2 ligands were downregulated in presenescent IL-8-silenced PMSCs but upregulated in senescent cells, indicating an antagonistic pleiotropy of the IL-8/CXCR2 signaling pathway in PMSCs. This effect may promote the proliferation of young cells and accelerate senescence of old cells.

  19. calvyn oor die leiding van die heilige gees in die verklaring van die

    African Journals Online (AJOL)

    Mittel alters, bis er zur Ruhe kommt bei den kanonischen Schriften der. Urzeit der christlichen Ära (Barth ... (ego tamen dimoveri non possum ab amore compendii, CO 10, 403). Deur die boodskap van die .... Idem ergo spiritus qui per os prophetarum loquutus est, in corda nostra penetret necesse est, ut persuadeat fideliter ...

  20. Comparative studies of types 1 and 2 herpes simplex virus infection of cultured normal keratinocytes.

    OpenAIRE

    Su, S J; Wu, H H; Lin, Y H; Lin, H Y

    1995-01-01

    AIMS--To investigate the differences in biological properties, multiplication patterns, and cytopathic effects between type 1 and type 2 herpes simplex virus (HSV) through the replication of HSV in cultured normal human keratinocytes. METHODS--Keratinocytes were obtained from surgical specimens of normal gingiva, cervix, trunk skin, and newborn foreskin. They were cultured in serum free, chemically defined, culture medium and infected with a pool of HSV collected from clinical specimens. RESU...

  1. Die verband tussen lokus van beheer en die werks prestasie van swart bemarkers in die lewensversekeringsbedryf

    Directory of Open Access Journals (Sweden)

    E. L. Coetzer

    1997-06-01

    Full Text Available The relationship between locus of control and the work performance of black marketers in the life assurance industry. The aim of the study was to establish the relationship between locus of control and the work performance of black marketers in the life assurance industry. These constructs were selected by virtue of the lack of empirical research regarding the assumed relationship between them. The Locus of Control Scale of Schepers (1995 was used for measuring locus of control. Work performance was measured by the commission earned per month by the marketer, the number of policies generated by the marketer, as well as the percentage of lapsed policies. The relevant measurements were obtained in respect of a sample of 149 black marketing personnel. The results indicated a modest but statistically significant relationship between external locus of control and the work performance of black marketers. Opsomming Die doel van die studie was om die verband tussen lokus van beheer en die werksprestasie van swart bemarkers in die lewensversekeringsbedryf te bepaal. Hierdie konstrukte is gekies op grond van die gebrek aan empiriese navorsing rakende die veronderstelde verband tussen genoemde konstrukte. Die Lokus van Beheer-vraelys van Schepers (1995 is in die meting van lokus van beheer gebruik. Werksprestasie is aan die hand van kommissie per maand verdien, aantal polisse gegenereer deur 'n bemarker en die persentasie vervalde polisse, gemeet. Die tersaaklike metinge is verkry ten opsigte van 'n steekproef van 149 swart bemarkers. Die resultate toon 'n klein, dog statisties beduidende verband tussen eksterne lokus van beheer en die werksprestasie van swart bemarkers in die lewensversekeringsbedryf.

  2. Mesenchymal Stem Cells Secretory Responses: Senescence Messaging Secretome and Immunomodulation Perspective

    Directory of Open Access Journals (Sweden)

    Victoria V. Lunyak

    2017-12-01

    Full Text Available Mesenchymal stem/stromal cells (MSC have been tested in a significant number of clinical trials, where they exhibit regenerative and repair properties directly through their differentiation into the cells of the mesenchymal origin or by modulation of the tissue/organ microenvironment. Despite various clinical effects upon transplantation, the functional properties of these cells in natural settings and their role in tissue regeneration in vivo is not yet fully understood. The omnipresence of MSC throughout vascularized organs equates to a reservoir of potentially therapeutic regenerative depots throughout the body. However, these reservoirs could be subjected to cellular senescence. In this review, we will discuss current progress and challenges in the understanding of different biological pathways leading to senescence. We set out to highlight the seemingly paradoxical property of cellular senescence: its beneficial role in the development and tissue repair and detrimental impact of this process on tissue homeostasis in aging and disease. Taking into account the lessons from the different cell systems, this review elucidates how autocrine and paracrine properties of senescent MSC might impose an additional layer of complexity on the regulation of the immune system in development and disease. New findings that have emerged in the last few years could shed light on sometimes seemingly controversial results obtained from MSC therapeutic applications.

  3. Effects of PSAG12-IPT gene expression on development and senescence in transgenic Lettuce

    NARCIS (Netherlands)

    McCabe, M.S.; Garratt, L.C.; Schepers, F.; Jordi, W.J.R.M.; Stoopen, G.M.; Davelaar, E.; Rhijn, van J.H.A.; Power, J.B.; Davey, M.R.

    2001-01-01

    An ipt gene under control of the senescence-specific SAG12 promoter from Arabidopsis (PSAG12-IPT) significantly delayed developmental and postharvest leaf senescence in mature heads of transgenic lettuce (Lactuca sativa L. cv Evola) homozygous for the transgene. Apart from retardation of leaf

  4. Proteome oxidative carbonylation during oxidative stress-induced premature senescence of WI-38 human fibroblasts

    DEFF Research Database (Denmark)

    Le Boulch, Marine; Ahmed, Emad K; Rogowska-Wrzesinska, Adelina

    2018-01-01

    Accumulation of oxidatively damaged proteins is a hallmark of cellular and organismal ageing, and is also a phenotypic feature shared by both replicative senescence and stress-induced premature senescence of human fibroblasts. Moreover, proteins that are building up as oxidized (i.e. the "Oxi-pro...

  5. Leptin regulates the pro-inflammatory response in human epidermal keratinocytes.

    Science.gov (United States)

    Lee, Moonyoung; Lee, Eunyoung; Jin, Sun Hee; Ahn, Sungjin; Kim, Sae On; Kim, Jungmin; Choi, Dalwoong; Lim, Kyung-Min; Lee, Seung-Taek; Noh, Minsoo

    2018-05-01

    The role of leptin in cutaneous wound healing process has been suggested in genetically obese mouse studies. However, the molecular and cellular effects of leptin on human epidermal keratinocytes are still unclear. In this study, the whole-genome-scale microarray analysis was performed to elucidate the effect of leptin on epidermal keratinocyte functions. In the leptin-treated normal human keratinocytes (NHKs), we identified the 151 upregulated and 53 downregulated differentially expressed genes (DEGs). The gene ontology (GO) enrichment analysis with the leptin-induced DEGs suggests that leptin regulates NHKs to promote pro-inflammatory responses, extracellular matrix organization, and angiogenesis. Among the DEGs, the protein expression of IL-8, MMP-1, fibronectin, and S100A7, which play roles in which is important in the regulation of cutaneous inflammation, was confirmed in the leptin-treated NHKs. The upregulation of the leptin-induced proteins is mainly regulated by the STAT3 signaling pathway in NHKs. Among the downregulated DEGs, the protein expression of nucleosome assembly-associated centromere protein A (CENPA) and CENPM was confirmed in the leptin-treated NHKs. However, the expression of CENPA and CENPM was not coupled with those of other chromosome passenger complex like Aurora A kinase, INCENP, and survivin. In cell growth kinetics analysis, leptin had no significant effect on the cell growth curves of NHKs in the normal growth factor-enriched condition. Therefore, leptin-dependent downregulation of CENPA and CENPM in NHKs may not be directly associated with mitotic regulation during inflammation.

  6. Senescence-Induced Alterations of Laminin Chain Expression Modulate Tumorigenicity of Prostate Cancer Cells1

    Science.gov (United States)

    Sprenger, Cynthia C T; Drivdahl, Rolf H; Woodke, Lillie B; Eyman, Daniel; Reed, May J; Carter, William G; Plymate, Stephen R

    2008-01-01

    Prostate cancer is an age-associated epithelial cancer, and as such, it contributes significantly to the mortality of the elderly. Senescence is one possible mechanism by which the body defends itself against various epithelial cancers. Senescent cells alter the microenvironment, in part, through changes to the extracellular matrix. Laminins (LMs) are extracellular proteins important to both the structure and function of the microenvironment. Overexpression of the senescence-associated gene mac25 in human prostate cancer cells resulted in increased mRNA levels of the LM α4 and β2 chains compared to empty vector control cells. The purpose of this study was to examine the effects of these senescence-induced LM chains on tumorigenicity of prostate cancer cells. We created stable M12 human prostate cancer lines overexpressing either the LM α4 or β2 chain or both chains. Increased expression of either the LM α4 or β2 chain resulted in increased in vitro migration and in vivo tumorigenicity of those cells, whereas high expression of both chains led to decreased in vitro proliferation and in vivo tumorigenicity compared to M12 control cells. This study demonstrates that senescent prostate epithelial cells can alter the microenvironment and that these changes modulate progression of prostate cancer. PMID:19048114

  7. Predictive value of plasma β2-microglobulin on human body function and senescence.

    Science.gov (United States)

    Dong, X-M; Cai, R; Yang, F; Zhang, Y-Y; Wang, X-G; Fu, S-L; Zhang, J-R

    2016-06-01

    To explore the correlation between plasma β2-microglobulin (β2-MG) as senescence factor with age, heart, liver and kidney function as well as the predictive value of β2-MG in human metabolism function and senescence. 387 cases of healthy people of different ages were selected and the automatic biochemical analyzer was used to test β2-MG in plasma based on immunoturbidimetry and also all biochemical indexes. The correlation between β2-MG and age, gender and all biochemical indexes was analyzed. β2-MG was positively correlated to age, r = 0.373; and the difference was of statistical significance (p human body function and anti-senescence and have significant basic research and clinical guidance values.

  8. Immune senescence: relative contributions of age and cytomegalovirus infection.

    Directory of Open Access Journals (Sweden)

    Andrea Mekker

    Full Text Available Immune senescence, defined as the age-associated dysregulation and dysfunction of the immune system, is characterised by impaired protective immunity and decreased efficacy of vaccines. Recent clinical, epidemiological and immunological studies suggest that Cytomegalovirus (CMV infection may be associated with accelerated immune senescence, possibly by restricting the naïve T cell repertoire. However, direct evidence whether and how CMV-infection is implicated in immune senescence is still lacking. In this study, we have investigated whether latent mouse CMV (MCMV infection with or without thymectomy (Tx alters antiviral immunity of young and aged mice. After infection with lymphocytic choriomeningitis virus (LCMV or Vaccinia virus, specific antiviral T cell responses were significantly reduced in old, old MCMV-infected and/or Tx mice compared to young mice. Importantly, control of LCMV replication was more profoundly impaired in aged MCMV-infected mice compared to age-matched MCMV-naïve or young mice. In addition, latent MCMV infection was associated with slightly reduced vaccination efficacy in old Tx mice. In contrast to the prevailing hypothesis of a CMV-mediated restriction of the naïve T cell repertoire, we found similar naïve T cell numbers in MCMV-infected and non-infected mice, whereas ageing and Tx clearly reduced the naïve T cell pool. Instead, MCMV-infection expanded the total CD8(+ T cell pool by a massive accumulation of effector memory T cells. Based on these results, we propose a new model of increased competition between CMV-specific memory T cells and any 'de novo' immune response in aged individuals. In summary, our results directly demonstrate in a mouse model that latent CMV-infection impairs immunity in old age and propagates immune senescence.

  9. Ectopic expression of Capsicum-specific cell wall protein Capsicum annuum senescence-delaying 1 (CaSD1) delays senescence and induces trichome formation in Nicotiana benthamiana.

    Science.gov (United States)

    Seo, Eunyoung; Yeom, Seon-In; Jo, Sunghwan; Jeong, Heejin; Kang, Byoung-Cheorl; Choi, Doil

    2012-04-01

    Secreted proteins are known to have multiple roles in plant development, metabolism, and stress response. In a previous study to understand the roles of secreted proteins, Capsicum annuum secreted proteins (CaS) were isolated by yeast secretion trap. Among the secreted proteins, we further characterized Capsicum annuum senescence-delaying 1 (CaSD1), a gene encoding a novel secreted protein that is present only in the genus Capsicum. The deduced CaSD1 contains multiple repeats of the amino acid sequence KPPIHNHKPTDYDRS. Interestingly, the number of repeats varied among cultivars and species in the Capsicum genus. CaSD1 is constitutively expressed in roots, and Agrobacterium-mediated transient overexpression of CaSD1 in Nicotiana benthamiana leaves resulted in delayed senescence with a dramatically increased number of trichomes and enlarged epidermal cells. Furthermore, senescence- and cell division-related genes were differentially regulated by CaSD1-overexpressing plants. These observations imply that the pepper-specific cell wall protein CaSD1 plays roles in plant growth and development by regulating cell division and differentiation.

  10. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Coppé

    2010-02-01

    Full Text Available Cellular senescence irreversibly arrests cell proliferation in response to oncogenic stimuli. Human cells develop a senescence-associated secretory phenotype (SASP, which increases the secretion of cytokines and other factors that alter the behavior of neighboring cells. We show here that "senescent" mouse fibroblasts, which arrested growth after repeated passage under standard culture conditions (20% oxygen, do not express a human-like SASP, and differ from similarly cultured human cells in other respects. However, when cultured in physiological (3% oxygen and induced to senesce by radiation, mouse cells more closely resemble human cells, including expression of a robust SASP. We describe two new aspects of the human and mouse SASPs. First, cells from both species upregulated the expression and secretion of several matrix metalloproteinases, which comprise a conserved genomic cluster. Second, for both species, the ability to promote the growth of premalignant epithelial cells was due primarily to the conserved SASP factor CXCL-1/KC/GRO-alpha. Further, mouse fibroblasts made senescent in 3%, but not 20%, oxygen promoted epithelial tumorigenesis in mouse xenographs. Our findings underscore critical mouse-human differences in oxygen sensitivity, identify conditions to use mouse cells to model human cellular senescence, and reveal novel conserved features of the SASP.

  11. Urea retranslocation from senescing Arabidopsis leaves is promoted by DUR3-mediated urea retrieval from leaf apoplast

    Science.gov (United States)

    Bohner, Anne; Kojima, Soichi; Hajirezaei, Mohammad; Melzer, Michael; von Wirén, Nicolaus

    2015-01-01

    In plants, urea derives either from root uptake or protein degradation. Although large quantities of urea are released during senescence, urea is mainly seen as a short-lived nitrogen (N) catabolite serving urease-mediated hydrolysis to ammonium. Here, we investigated the roles of DUR3 and of urea in N remobilization. During natural leaf senescence urea concentrations and DUR3 transcript levels showed a parallel increase with senescence markers like ORE1 in a plant age- and leaf age-dependent manner. Deletion of DUR3 decreased urea accumulation in leaves, whereas the fraction of urea lost to the leaf apoplast was enhanced. Under natural and N deficiency-induced senescence DUR3 promoter activity was highest in the vasculature, but was also found in surrounding bundle sheath and mesophyll cells. An analysis of petiole exudates from wild-type leaves revealed that N from urea accounted for >13% of amino acid N. Urea export from senescent leaves further increased in ureG-2 deletion mutants lacking urease activity. In the dur3 ureG double insertion line the absence of DUR3 reduced urea export from leaf petioles. These results indicate that urea can serve as an early metabolic marker for leaf senescence, and that DUR3-mediated urea retrieval contributes to the retranslocation of N from urea during leaf senescence. PMID:25440717

  12. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation.

    Science.gov (United States)

    Han, Xiaojuan; Tai, Haoran; Wang, Xiaobo; Wang, Zhe; Zhou, Jiao; Wei, Xiawei; Ding, Yi; Gong, Hui; Mo, Chunfen; Zhang, Jie; Qin, Jianqiong; Ma, Yuanji; Huang, Ning; Xiang, Rong; Xiao, Hengyi

    2016-06-01

    AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress-induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide-induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP-RFP-LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD(+) levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD(+) synthesis. In addition, the mechanistic relationship of autophagic flux and NAD(+) synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress-induced senescence by improving autophagic flux and NAD(+) homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD(+) homeostasis, and it is also valuable in the development of innovative strategies to combat aging. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  13. Hydrogen-enriched water restoration of impaired calcium propagation by arsenic in primary keratinocytes

    Science.gov (United States)

    Yu, Wei-Tai; Chiu, Yi-Ching; Lee, Chih-Hung; Yoshioka, Tohru; Yu, Hsin-Su

    2013-11-01

    Endemic contamination of artesian water for drinking by arsenic is known to cause several human cancers, including cancers of the skin, bladder, and lungs. In skin, multiple arsenic-induced Bowen's disease (As-BD) can develop into invasive cancers after decades of arsenic exposure. The characteristic histological features of As-BD include full-layer epidermal dysplasia, apoptosis, and abnormal proliferation. Calcium propagation is an essential cellular event contributing to keratinocyte differentiation, proliferation, and apoptosis, all of which occur in As-BD. This study investigated how arsenic interferes calcium propagation of skin keratinocytes through ROS production and whether hydrogen-enriched water would restore arsenic-impaired calcium propagation. Arsenic was found to induce oxidative stress and inhibit ATP- and thapsigaragin-induced calcium propagation. Pretreatment of arsenic-treated keratinocytes by hydrogen-enriched water or beta-mercaptoethanol with potent anti-oxidative effects partially restored the propagation of calcium by ATP and by thapsigaragin. It was concluded that arsenic may impair calcium propagation, likely through oxidative stress and interactions with thiol groups in membrane proteins.

  14. die doel en wese van opvoedende onderwys en die implikasies

    African Journals Online (AJOL)

    Oaar moet onderskei word tussen die doelstellings van opvoedende onderwys en die einddoel wat bereik word deur die nastrewing van hierdie doelstellings. Gunter praat van die naderliggende doelstellings (1981, b1.105). \\/at die enddoel van opvoedende onderwys bet ref, gaan die meeste opvoedkundi ges akkoord dat ...

  15. Is die ortodoksie se verstaan van die sondeval belemmerend vir die gesprek tussen teologie en natuurwetenskap?

    Directory of Open Access Journals (Sweden)

    Johan Buitendag

    2012-11-01

    Full Text Available In hierdie artikel is betoog dat die Gereformeerde Ortodoksie se begrip van die sondeval ’n  belemmering  was  vir  die  gesprek  tussen  teologie  en  natuurwetenskap.  Die  rede hiervoor was dat dit ten eerste ’n bepaalde verstaan van liniêre tyd nahou en ten tweede dat dit ’n bonatuurlike ingryp veronderstel het. Albei hierdie aspekte het die debat onnodig problematiseer. Die argument is ontwikkel deur eerstens die probleem te definieer, gevolg deur ’n uiteensetting van die standpunte van Augustinus en Calvyn onderskeidelik oor die sondeval. As ’n heuristiese sleutel is die konsepte van infralapsarisme en supralapsarisme aangewend om die tema te ontleed. Die artikel is afgesluit met die oortuiging dat die imago Dei ’n beliggaamde menslike persoon is wat biologies in die geskiedenis in terme van selfbewussyn en morele verantwoordelikheid ontluik het. Is the Orthodoxy’s notion of the Fall inhibitory for the dialogue between theology and science? In this article it was argued that the Reformed Orthodoxy’s interpretation of the Fall had become an impediment in the dialogue between theology and science. The reason was that it assumed firstly a specific understanding of linear time and secondly a metaphysical intervention. Both events were unnecessarily problematising the debate. The argument was deployed by stating the problem, followed by an exposition of the views of Augustine and Calvin on the Fall. As a heuristic key, the concepts of infralapsarism and supralapsarism were applied respectively to analyse the topic. The article concluded with the conviction that the imago Dei is an embodied human person that had biologically emerged in history as a center of self-awareness, and moral responsibility.

  16. 5-fluorouracil Toxicity Mechanism Determination in Human Keratinocytes: in vitro Study on HaCaT

    Directory of Open Access Journals (Sweden)

    Jan Hartinger

    2018-01-01

    Full Text Available 5-fluorouracil (5-FU and capecitabine therapy is often accompanied by palmar-plantar erythrodysesthesia (PPE which is manifestation of 5-FU toxicity in keratinocytes. The main mechanisms of 5-FU action are thymidylate synthase (TS inhibition which can be abrogated by thymidine and strengthened by calciumfolinate (CF and incorporation of fluorouridinetriphosphate into RNA which can be abrogated by uridine. For proper PPE treatment 5-FU mechanism of action in keratinocytes needs to be elucidated. We used the 5-FU toxicity modulators uridine, thymidine and CF to discover the mechanism of 5-FU action in human keratinocyte cell line HaCaT. To measure the cellular viability, we used MTT test and RTCA test. CF did not augment 5-FU toxicity and 5-FU toxicity was weakened by uridine. Therefore, the primary mechanism of 5-FU toxicity in keratinocytes is 5-FU incorporation into RNA. The uridine protective effect cannot fully develop in the presence of CF. Thymidine addition to 5-FU and uridine treated cells not only prevents the toxicity-augmenting CF effect but it also prolongs the 5-FU treated cells survival in comparison to uridine only. Therefore, it can be assumed that in the presence of uridine the 5-FU toxicity mechanism is switched from RNA incorporation to TS inhibition. Although particular 5-FU toxicity mechanisms were previously described in various cell types, this is the first time when various combinations of pyrimidine nucleosides and CF were used for 5-FU toxicity mechanism elucidation in human keratinocytes. We suggest that for PPE treatment ointment containing uridine and thymidine should be further clinically tested.

  17. Laser capture microdissection-based in vivo genomic profiling of wound keratinocytes identifies similarities and differences to squamous cell carcinoma

    DEFF Research Database (Denmark)

    Pedersen, Tanja Xenia; Leethanakul, Chidchanop; Patel, Vyomesh

    2003-01-01

    keratinocytes from incisional mouse skin wounds and adjacent normal skin keratinocytes. Changes in gene expression were determined by comparative cDNA array analyses, and the approach was validated by in situ hybridization. The analyses identified 48 candidate genes not previously associated with wound...... reepithelialization. Furthermore, the analyses revealed that the phenotypic resemblance of wound keratinocytes to squamous cell carcinoma is mimicked at the level of gene expression, but notable differences between the two tissue-remodeling processes were also observed. The combination of laser capture...

  18. Die opleiding van bedryfsielkundiges aan die universiteit van Fort Hare

    Directory of Open Access Journals (Sweden)

    W. Botha

    1977-11-01

    Full Text Available Die Departement Bedryfsielkunde aan die Universiteit van Fort Hare is 'n relatiewe jong departement en het eers in 1965 tot stand gekom. Voor hierdie datum is Bedryfsielkunde as 'n kort kursus deur die departement van suiwer Sielkunde aangebied en een van die destydse dosente, Dr. W. Backer, het die inisiatief geneem om 'n selfstandige departement van Bedryfsielkunde in die Fakulteit van Ekonomiese Wetenskappe op die been te bring.

  19. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana

    OpenAIRE

    Besseau, Sébastien; Li, Jing; Palva, E. Tapio

    2012-01-01

    The plant-specific WRKY transcription factor (TF) family with 74 members in Arabidopsis thaliana appears to be involved in the regulation of various physiological processes including plant defence and senescence. WRKY53 and WRKY70 were previously implicated as positive and negative regulators of senescence, respectively. Here the putative function of other WRKY group III proteins in Arabidopsis leaf senescence has been explored and the results suggest the involvement of two additional WRKY TF...

  20. RIP2: A novel player in the regulation of keratinocyte proliferation and cutaneous wound repair?

    International Nuclear Information System (INIS)

    Adams, Stephanie; Valchanova, Ralitsa S.; Munz, Barbara

    2010-01-01

    We could recently demonstrate an important role of receptor interacting protein 4 (RIP4) in the regulation of keratinocyte differentiation. Now, we analyzed a potential role of the RIP4 homolog RIP2 in keratinocytes. Specifically, we demonstrate here that rip2 expression is induced by scratch-wounding and after the induction of differentiation in these cells. Furthermore, serum growth factors and cytokines can induce rip2, with TNF-α-dependent induction being dependent on p38 MAPK. In addition, we demonstrate that scratch-induced upregulation of rip2 expression is completely blocked by the steroid dexamethasone. Since we also show that RIP2 is an important player in the regulation of keratinocyte proliferation, these data suggest that inhibition of rip2 upregulation after wounding might contribute to the reduced and delayed wound re-epithelialization phenotype seen in glucocorticoid-treated patients.