WorldWideScience

Sample records for semiconductor laser amplifier

  1. The Modulation Response of a Semiconductor Laser Amplifier

    DEFF Research Database (Denmark)

    Mørk, Jesper; Mecozzi, Antonio; Eisenstein, Gadi

    1999-01-01

    We present a theoretical analysis of the modulation response of a semiconductor laser amplifier. We find a resonance behavior similar to the well-known relaxation oscillation resonance found in semiconductor lasers, but of a different physical origin. The role of the waveguide (scattering) loss i...

  2. All-metal coupling and package of semiconductor laser and amplifier with optical fiber

    International Nuclear Information System (INIS)

    Xu Fenglan; Li Lina; Zhang Yueqing

    1992-01-01

    The semiconductor laser and optical amplifier made by Changchun Institute of Physics coupled with optical fiber by use of all-metal coupling are represented. The net gain of semiconductor laser amplifier with optical fiber is 14 ∼18 dB

  3. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  4. Construction of an optical semiconductor amplifier starting from a Fabry-Perot semiconductor laser

    International Nuclear Information System (INIS)

    Garcia, E.; Soto, H.; Marquez, H.; Valles V, N.

    2000-01-01

    A methodology to convert a semiconductor laser Fabry-Perot (SL-FP) in a semiconductor optical amplifier (SOA) is presented. In order to suppress the cavity resonant an optical thin film coating was deposited on the facets of the SL-FP. The experiment was carried out putting on service a new monitoring technique that consist in the observation of the laser power spectrum during the antireflection coatings deposition. This allows to determine the moment were the facets reflectivity is minimum. The SOA obtained was characterized for different polarization currents. (Author)

  5. The Dynamics of Semiconductor Optical Amplifiers – Modeling and Applications

    DEFF Research Database (Denmark)

    Mørk, Jesper; Nielsen, Mads Lønstrup; Berg, Tommy Winther

    2003-01-01

    The importance of semiconductor optical amplifiers is discussed. A semiconductor optical amplifier (SOA) is a semiconductor laser with anti-reflection coated facets that amplifies an injected light signal by means of stimulated emission. SOAs have a number of unique properties that open up...

  6. Construction of an optical semiconductor amplifier starting from a Fabry-Perot semiconductor laser; Construccion de un amplificador optico de semiconductor a partir de un laser de semiconductor Fabry-Perot

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E.; Soto, H.; Marquez, H.; Valles V, N. [Departamento de Electronica y Telecomunicaciones, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada. Km. 107, Carretera Tijuana-Ensenada, 22860 Ensenada, Baja California (Mexico)

    2000-07-01

    A methodology to convert a semiconductor laser Fabry-Perot (SL-FP) in a semiconductor optical amplifier (SOA) is presented. In order to suppress the cavity resonant an optical thin film coating was deposited on the facets of the SL-FP. The experiment was carried out putting on service a new monitoring technique that consist in the observation of the laser power spectrum during the antireflection coatings deposition. This allows to determine the moment were the facets reflectivity is minimum. The SOA obtained was characterized for different polarization currents. (Author)

  7. Spectral characteristics of DFB lasers in presence of a semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Champagne, A.; Camel, J.; Maciejko, R.

    2002-01-01

    The problem of the linewidth degradation in systems using distributed-feedback lasers together with strained-layer multi-quantum-well semiconductor optical amplifiers (SOAs) is examined. A numerical model combining finite element calculations in the transverse x - y plane and a longitudinal model...

  8. High gain semiconductor optical amplifierLaser diode at visible wavelength

    KAUST Repository

    Shen, Chao; Lee, Changmin; Ng, Tien Khee; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2017-01-01

    We reported on the first experimental demonstration of a two-section semipolar InGaN-based laser diode with monolithically integrated semiconductor optical amplifier (SOA-LD). The onset of amplification effect was measured at 4V SOA bias (VSOA). The SOA-LD shows a large gain of 5.32 dB at Vsoa = 6 V.

  9. High gain semiconductor optical amplifierLaser diode at visible wavelength

    KAUST Repository

    Shen, Chao

    2017-02-07

    We reported on the first experimental demonstration of a two-section semipolar InGaN-based laser diode with monolithically integrated semiconductor optical amplifier (SOA-LD). The onset of amplification effect was measured at 4V SOA bias (VSOA). The SOA-LD shows a large gain of 5.32 dB at Vsoa = 6 V.

  10. Linewidth broadening in a distributed feedback laser integrated with a semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Champagne, A.; Camel, J.; Maciejko, R.

    2002-01-01

    The problem of the linewidth degradation in systems using distributed-feedback lasers together with strained-layer multi-quantum-well semiconductor optical amplifiers (SOAs) is examined. A modified expression for the linewidth in the case of antireflection-coated SOA output facets is derived and ...

  11. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    Science.gov (United States)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  12. Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers

    International Nuclear Information System (INIS)

    Latkowski, Sylwester; Maldonado-Basilio, Ramon; Carney, Kevin; Parra-Cetina, Josue; Philippe, Severine; Landais, Pascal

    2010-01-01

    An all-optical heterodyne approach based on a room-temperature controlled semiconductor optical amplifier (SOA) for measuring the frequency and linewidth of the terahertz beat-tone signal from a passively mode-locked laser is proposed. Under the injection of two external cavity lasers, the SOA acts as a local oscillator at their detuning frequency and also as an optical frequency mixer whose inputs are the self-modulated spectrum of the device under test and the two laser beams. Frequency and linewidth of the intermediate frequency signal (and therefore, the beat-tone signal) are resolved by using a photodiode and an electrical spectrum analyzer.

  13. Degradation of Side-Mode Suppression Ratio in a DFB Laser Integrated With a Semiconductor Optical Amplifier

    DEFF Research Database (Denmark)

    Champagne, A.; Lestrade, Michel; Camel, Jérôme

    2004-01-01

    The degradation of the side-mode suppression ratio (SMSR) in a monolithically integrated distributed feedback laser and semiconductor optical amplifier (SOA) cavity is investigated. An expression is derived that gives the degradation of the SMSR in the case of a perfectly antireflection-coated SO...

  14. High-Power Hybrid Mode-Locked External Cavity Semiconductor Laser Using Tapered Amplifier with Large Tunability

    Directory of Open Access Journals (Sweden)

    Andreas Schmitt-Sody

    2008-01-01

    Full Text Available We report on hybrid mode-locked laser operation of a tapered semiconductor amplifier in an external ring cavity, generating pulses as short as 0.5 ps at 88.1 MHz with an average power of 60 mW. The mode locking is achieved through a combination of a multiple quantum well saturable absorber (>10% modulation depth and an RF current modulation. This designed laser has 20 nm tuning bandwidth in continuous wave and 10 nm tuning bandwidth in mode locking around 786 nm center wavelength at constant temperature.

  15. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.

    2000-01-01

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....

  16. Semiconductor optical amplifiers for the 1000-1100-nm spectral range

    International Nuclear Information System (INIS)

    Lobintsov, A A; Shramenko, M V; Yakubovich, S D

    2008-01-01

    Two types of semiconductor optical amplifiers (SOAs) based on a double-layer quantum-well (InGa)As/(GaAl)As/GaAs heterostructure are investigated. The optical gain of more than 30 dB and saturation output power of more than 30 mW are achived at 1060 nm in pigtailed SOA modules. These SOAs used as active elements of a tunable laser provide rapid continuous tuning within 85 nm and 45 nm at output powers of 0.5 mW and more than 30 mW, respectively. (active media, lasers, and amplifiers)

  17. Dielectric waveguide amplifiers and lasers

    NARCIS (Netherlands)

    Pollnau, Markus

    The performance of semiconductor amplifiers and lasers has made them the preferred choice for optical gain on a micro-chip. In the past few years, we have demonstrated that also rare-earth-ion-doped dielectric waveguides show remarkable performance, ranging from a small-signal gain per unit length

  18. Frequency-swept laser light source at 1050 nm with higher bandwidth due to multiple semiconductor optical amplifiers in series

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Thrane, Lars; Andersen, Peter E.

    2009-01-01

    We report on the development of an all-fiber frequency-swept laser light source in the 1050 nm range based on semiconductor optical amplifiers (SOA) with improved bandwidth due to multiple gain media. It is demonstrated that even two SOAs with nearly equal gain spectra can improve the performance...

  19. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  20. Four distributed feedback laser array integrated with multimode-interference and semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Ma Li; Zhu Hong-Liang; Liang Song; Zhao Ling-Juan; Chen Ming-Hua

    2013-01-01

    Monolithic integration of four 1.55-μm-range InGaAsP/InP distributed feedback (DFB) lasers using varied ridge width with a 4 × 1-multimode-interference (MMI) optical combiner and a semiconductor optical amplifier (SOA) is demonstrated. The average output power and the threshold current are 1.8 mW and 35 mA, respectively, when the injection current of the SOA is 100 mA, with a side mode suppression ratio (SMSR) exceeding 40 dB. The four channels have a 1-nm average channel spacing and can operate separately or simultaneously. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Development of semiconductor laser based Doppler lidars for wind-sensing applications

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Hu, Qi; Pedersen, Christian

    2015-01-01

    We summarize the progress we have made in the development of semiconductor laser (SL) based Doppler lidar systems for remote wind speed and direction measurements. The SL emitter used in our wind-sensing lidar is an integrated diode laser with a tapered (semiconductor) amplifier. The laser source...

  2. Measurement of carrier lifetime and linewidth enhancement factor for 1.5- mu m ridge-waveguide laser amplifier

    DEFF Research Database (Denmark)

    Storkfelt, Niels; Mikkelsen, B.; Olesen, D. S.

    1991-01-01

    Semiconductor optical amplifiers are used for investigation of the effective carrier lifetime and the linewidth enhancement factor. Contrary to semiconductor lasers, semiconductor optical amplifiers allow measurement at high levels of injected carrier density. The carrier lifetime and the linewid...

  3. Quantum Dot Semiconductor Optical Amplifiers - Physics and Applications

    DEFF Research Database (Denmark)

    Berg, Tommy Winther

    2004-01-01

    This thesis describes the physics and applications of quantum dot semiconductor optical amplifiers based on numerical simulations. These devices possess a number of unique properties compared with other types of semiconductor amplifiers, which should allow enhanced performance of semiconductor...... respects is comparable to those of fiber amplifiers. The possibility of inverting the optically active states to a large degree is essential in order to achieve this performance. Optical signal processing through cross gain modulation and four wave mixing is modeled and described. For both approaches...... and QW devices and to experiments on quantum dot amplifiers. These comparisons outline the qualitative differences between the different types of amplifiers. In all cases focus is put on the physical processes responsible the differences....

  4. Use of a reflective semiconductor optical amplifier and dual-ring architecture design to produce a stable multi-wavelength fiber laser

    International Nuclear Information System (INIS)

    Yeh, Chien-Hung; Chow, Chi-Wai; Lu, Shao-Sheng

    2014-01-01

    In this work, we propose and demonstrate a multi-wavelength laser source produced by utilizing a C-band reflective semiconductor optical amplifier (RSOA) with a dual-ring fiber cavity. Here, the laser cavity consists of an RSOA, a 1 × 2 optical coupler, a 2 × 2 optical coupler and a polarization controller. As a result, thirteen to eighteen wavelengths around the L band could be generated simultaneously when the bias current of the C-band RSOA was driven at 30–70 mA. In addition, the output stabilities of the power and wavelength are also discussed. (paper)

  5. Use of a reflective semiconductor optical amplifier and dual-ring architecture design to produce a stable multi-wavelength fiber laser

    Science.gov (United States)

    Yeh, Chien-Hung; Chow, Chi-Wai; Lu, Shao-Sheng

    2014-05-01

    In this work, we propose and demonstrate a multi-wavelength laser source produced by utilizing a C-band reflective semiconductor optical amplifier (RSOA) with a dual-ring fiber cavity. Here, the laser cavity consists of an RSOA, a 1 × 2 optical coupler, a 2 × 2 optical coupler and a polarization controller. As a result, thirteen to eighteen wavelengths around the L band could be generated simultaneously when the bias current of the C-band RSOA was driven at 30-70 mA. In addition, the output stabilities of the power and wavelength are also discussed.

  6. BROADBAND TRAVELLING WAVE SEMICONDUCTOR OPTICAL AMPLIFIER

    DEFF Research Database (Denmark)

    2010-01-01

    Broadband travelling wave semiconductor optical amplifier (100, 200, 300, 400, 800) for amplification of light, wherein the amplifier (100, 200, 300, 400, 800) comprises a waveguide region (101, 201, 301, 401, 801) for providing confinement of the light in transverse directions and adapted...

  7. Theory for passive mode-locking in semiconductor laser structures including the effects of self-phase modulation, dispersion and pulse collisions

    NARCIS (Netherlands)

    Koumans, R.G.M.P.; Roijen, van R.

    1996-01-01

    We present a theory for passive mode-locking in semiconductor laser structures using a semiconductor laser amplifier and absorber. The mode-locking system is described in terms of the different elements in the semiconductor laser structure. We derive mode-locking conditions and show how other

  8. Digitally tunable dual wavelength emission from semiconductor ring lasers with filtered optical feedback

    International Nuclear Information System (INIS)

    Khoder, Mulham; Verschaffelt, Guy; Nguimdo, Romain Modeste; Danckaert, Jan; Leijtens, Xaveer; Bolk, Jeroen

    2013-01-01

    We report on a novel integrated approach to obtain dual wavelength emission from a semiconductor laser based on on-chip filtered optical feedback. Using this approach, we show experiments and numerical simulations of dual wavelength emission of a semiconductor ring laser. The filtered optical feedback is realized on-chip by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifiers are placed in the feedback loop in order to control the feedback strength of each wavelength channel independently. By tuning the current injected into each of the amplifiers, we can effectively cancel the gain difference between the wavelength channels due to fabrication and material dichroism, thus resulting in stable dual wavelength emission. We also explore the accuracy needed in the operational parameters to maintain this dual wavelength emission. (letter)

  9. Semiconductor laser shearing interferometer

    International Nuclear Information System (INIS)

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  10. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    International Nuclear Information System (INIS)

    Deri, R.J.

    2011-01-01

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a ∼ 200 (micro)s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and

  11. Stabilization in laser wavelength semiconductor with fiber optical amplifier application doped with erbium

    International Nuclear Information System (INIS)

    Camas, J.; Anzueto, G.; Mendoza, S.; Hernandez, H.; Garcia, C.; Vazquez, R.

    2009-01-01

    In this work, we present a novel electronic design of a DC source, which automatically controls the temperature of a tunable laser. The temperature change in the laser is carried out by the control of DC that circulates through a cooling stage where the laser is set. The laser can be tuned in a wavelength around 1550 nm. Its application is in Erbium Doped Fiber Amplifier (EDFA) in reflective configuration. (Author)

  12. Antares laser power amplifier

    International Nuclear Information System (INIS)

    Stine, R.D.; Ross, G.F.; Silvernail, C.

    1979-01-01

    The overall design of the Antares laser power amplifier is discussed. The power amplifier is the last stage of amplification in the 100-kJ Antares laser. In the power amplifier a single, cylindrical, grid-controlle, cold-cathode electron gun is surrounded by 12 large-aperture CO 2 electron-beam sustained laser discharge sectors. Each power amplifier will deliver 18 kJ and the six modules used in Antares will produce the required 100 kJ for delivery to the target. A large-scale interaction between optical, mechanical, and electrical disciplines is required to meet the design objectives. Significant component advances required by the power amplifier design are discussed

  13. Quantum dots for lasers, amplifiers and computing

    International Nuclear Information System (INIS)

    Bimberg, Dieter

    2005-01-01

    For InAs-GaAs based quantum dot lasers emitting at 1300 nm, digital modulation showing an open eye pattern up to 12 Gb s -1 at room temperature is demonstrated, at 10 Gb s -1 the bit error rate is below 10 -12 at -2 dB m receiver power. Cut-off frequencies up to 20 GHz are realised for lasers emitting at 1.1 μm. Passively mode-locked QD lasers generate optical pulses with repetition frequencies between 5 and 50 GHz, with a minimum Fourier limited pulse length of 3 ps. The uncorrelated jitter is below 1 ps. We use here deeply etched narrow ridge waveguide structures which show excellent performance similar to shallow mesa structures, but a circular far field at a ridge width of 1 μm, improving coupling efficiency into fibres. No beam filamentation of the fundamental mode, low a-factors and strongly reduced sensitivity to optical feedback are observed. QD lasers are thus superior to QW lasers for any system or network. Quantum dot semiconductor optical amplifier (QD SOAs) demonstrate gain recovery times of 120-140 fs, 4-7 times faster than bulk/QW SOAs, and a net gain larger than 0.4 dB/(mm*QD-layer) providing us with novel types of booster amplifiers and Mach-Zehnder interferometers. These breakthroughs became possible due to systematic development of self-organized growth technologies

  14. Amplified spontaneous emission spectrum and gain characteristic of a two-electrode semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Wang Hanchao; Huang Lirong; Shi Zhongwei

    2011-01-01

    A two-electrode multi-quantum-well semiconductor optical amplifier is designed and fabricated. The amplified spontaneous emission (ASE) spectrum and gain were measured and analyzed. It is shown that the ASE spectrum and gain characteristic are greatly influencedby the distribution of the injection current density. By changing the injection current density of two electrodes, the full width at half maximum, peak wavelength, peak power of the ASE spectrum and the gain characteristic can be easily controlled. (semiconductor devices)

  15. Compact semiconductor lasers

    CERN Document Server

    Yu, Siyuan; Lourtioz, Jean-Michel

    2014-01-01

    This book brings together in a single volume a unique contribution by the top experts around the world in the field of compact semiconductor lasers to provide a comprehensive description and analysis of the current status as well as future directions in the field of micro- and nano-scale semiconductor lasers. It is organized according to the various forms of micro- or nano-laser cavity configurations with each chapter discussing key technical issues, including semiconductor carrier recombination processes and optical gain dynamics, photonic confinement behavior and output coupling mechanisms, carrier transport considerations relevant to the injection process, and emission mode control. Required reading for those working in and researching the area of semiconductors lasers and micro-electronics.

  16. COHERENT LIDAR SYSTEM BASED ON A SEMICONDUCTOR LASER AND AMPLIFIER

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a compact, reliable and low-cost coherent LIDAR (Light Detection And Ranging) system for remote wind-speed determination, determination of particle concentration, and/or temperature based on an all semiconductor light source and related methods. The present...... invention provides a coherent LIDAR system comprising a semiconductor laser for emission of a measurement beam of electromagnetic radiation directed towards a measurement volume for illumination of particles in the measurement volume, a reference beam generator for generation of a reference beam, a detector...... for generation of a detector signal by mixing of the reference beam with light emitted from the particles in the measurement volume illuminated by the measurement beam, and a signal processor for generating a velocity signal corresponding to the velocity of the particles based on the detector signal....

  17. Semiconductor lasers stability, instability and chaos

    CERN Document Server

    Ohtsubo, Junji

    2017-01-01

    This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...

  18. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    International Nuclear Information System (INIS)

    Andreeva, E V; Il'chenko, S N; Lobintsov, A A; Shramenko, M V; Ladugin, M A; Marmalyuk, A A; Yakubovich, S D

    2013-01-01

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  19. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, E V; Il' chenko, S N; Lobintsov, A A; Shramenko, M V [Superlum Diodes Ltd., Moscow (Russian Federation); Ladugin, M A [' Sigm Plyus' Ltd, Moscow (Russian Federation); Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2013-11-30

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  20. Ultrafast Dynamics of Quantum-Dot Semiconductor Optical Amplifiers

    DEFF Research Database (Denmark)

    Poel, Mike van der; Hvam, Jørn Märcher

    2007-01-01

    We report on a series of experiments on the dynamical properties of quantum-dot semiconductor optical amplifiers. We show how the amplifier responds to one or several ultrafast (170 fs) pulses in rapid succession and our results demonstrate applicability and ultimate limitations to application...

  1. Slow Light at High Frequencies in an Amplifying Semiconductor Waveguide

    DEFF Research Database (Denmark)

    Öhman, Filip; Yvind, Kresten; Mørk, Jesper

    2006-01-01

    We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz.......We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz....

  2. InP based lasers and optical amplifiers with wire-/dot-like active regions

    DEFF Research Database (Denmark)

    Reithmaier, J. P.; Somers, A.; Deubert, S.

    2005-01-01

    Long wavelength lasers and semiconductor optical amplifiers based on InAs quantum wire/dot-like active regions were developed on InP substrates dedicated to cover the extended telecommunication wavelength range between 1.4 - 1.65 mm. In a brief overview different technological approaches will be ...

  3. Semiconductor Laser Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  4. Tunable high-power narrow-spectrum external-cavity diode laser based on tapered amplifier at 668 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Erbert, G.; Sumpf, B.

    2010-01-01

    A 668 nm tunable high-power narrow-spectrum diode laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The laser system is tunable from 659 to 675 nm. As high as 1.38 W output power is obtained at 668.35 nm. The emission spectral bandwidth is less than...

  5. Two-section semiconductor optical amplifier used as an efficient channel dropping node

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Storkfelt, Niels; Durhuus, T.

    1992-01-01

    High responsivity in a two-section semiconductor optical amplifier/detector, serving as a channel dropping mode is described. A simple receiver constructed using a 50 Ω amplifier with a sensitivity of -30.2 dBm at 140 Mb/s is demonstrated......High responsivity in a two-section semiconductor optical amplifier/detector, serving as a channel dropping mode is described. A simple receiver constructed using a 50 Ω amplifier with a sensitivity of -30.2 dBm at 140 Mb/s is demonstrated...

  6. Physics of semiconductor lasers

    CERN Document Server

    Mroziewicz, B; Nakwaski, W

    2013-01-01

    Written for readers who have some background in solid state physics but do not necessarily possess any knowledge of semiconductor lasers, this book provides a comprehensive and concise account of fundamental semiconductor laser physics, technology and properties. The principles of operation of these lasers are therefore discussed in detail with the interrelations between their design and optical, electrical and thermal properties. The relative merits of a large number of laser structures and their parameters are described to acquaint the reader with the various aspects of the semiconductor l

  7. All-optical NRZ-to-RZ data format conversion with optically injected laser diode or semiconductor optical amplifier

    Science.gov (United States)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-09-01

    By injecting the optical NRZ data into a Fabry-Perot laser diode (FPLD) synchronously modulated at below threshold condition or a semiconductor optical amplifier (SOA) gain-depleted with a backward injected clock stream, the all-optical non-return to zero (NRZ) to return-to-zero (RZ) format conversion of a STM-64 date-stream for synchronous digital hierarchy (SDH) or an OC-192 data stream for synchronous optical network (SONET) in high-speed fiber-optic communication link can be performed. Without the assistance of any complicated RF electronic circuitry, the output RZ data-stream at bit rate of up to 10 Gbit/s is successfully transformed in the optically NRZ injection-locked FPLD, in which the incoming NRZ data induces gain-switching of the FPLD without DC driving current or at below threshold condition. A power penalty of 1.2 dB is measured after NRZ-to-RZ transformation in the FPLD. Alternatively, the all-optical 10Gbits/s NRZ-to-RZ format conversion can also be demonstrated in a semiconductor optical amplifier under a backward dark-optical-comb injection with its duty-cycle 70%, which is obtained by reshaping from the received data clock at 10 GHz. The incoming optical NRZ data-stream is transformed into a pulsed RZ data-stream with its duty-cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. In contrast to the FPLD, the SOA based NRZ-to-RZ converter exhibits an enhanced extinction ratio from 7 to 13 dB, and BER of 10 -13 at -18.5 dBm. In particular, the power penalty of the received RZ data-stream has greatly improved by 5 dB as compared to that obtained from FPLD.

  8. Flashlamp excited fluid laser amplified

    International Nuclear Information System (INIS)

    1976-01-01

    The patent describes a laser amplifier with chambers for containing and amplifying an intensifier medium. It serves the need for a large impulse repetition rate and high intensities as required e.g. for laser isotope separation

  9. An ultra-long cavity passively mode-locked fiber laser based on nonlinear polarization rotation in a semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Liu, Tonghui; Jia, Dongfang; Yang, Jingwen; Chen, Jiong; Wang, Zhaoying; Yang, Tianxin

    2013-01-01

    In this paper we investigate an ultra-long cavity passively mode-locked fiber laser based on a semiconductor optical amplifier (SOA). Experimental results are presented which indicate that stable mode-locked pulses can be obtained by combining nonlinear polarization rotation (NPR) in the SOA with a polarization controller. By adding a 4 km single mode fiber into the ring cavity, a stable fundamental-order mode-locked pulse train with a repetition rate of 50.72 kHz is generated through the NPR effect in the SOA. The central wavelength, 3 dB bandwidth and single pulse energy of the output pulse are 1543.95 nm, 1.506 nm and 33.12 nJ, respectively. Harmonic mode-locked pulses are also observed in experiments when the parameters are chosen properly. (paper)

  10. Two-wave mixing in a broad-area semiconductor amplifier

    DEFF Research Database (Denmark)

    Chi, M.; Jensen, S.B.; Huignard, J.P.

    2006-01-01

    The two-wave mixing in the broad-area semiconductor amplifier was investigated, both theoretically and experimentally. In detail we investigated how the optical gain is affected by the presence of the two-wave mixing interference grating. In the experimental setup we are able to turn on and off...... the interference pattern in the semiconductor amplifier. This arrangement allows us to determine the two-wave mixing gain. The coupled-wave equations of two-wave mixing were derived based on the Maxwell’s wave equation and rate equation of the carrier density. The analytical solutions of the coupled-wave equations...

  11. Gain dynamics and saturation in semiconductor quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper; Hvam, Jørn Märcher

    2004-01-01

    Quantum dot (QD)-based semiconductor optical amplifiers offer unique properties compared with conventional devices based on bulk or quantum well material. Due to the bandfilling properties of QDs and the existence of a nearby reservoir of carriers in the form of a wetting layer, QD semiconductor...... optical amplifiers may be operated in regimes of high linearity, i.e. with a high saturation power, but can also show strong and fast nonlinearities by breaking the equilibrium between discrete dot states and the continuum of wetting layer states. In this paper, we analyse the interplay of these two...

  12. EDITORIAL: Semiconductor lasers: the first fifty years Semiconductor lasers: the first fifty years

    Science.gov (United States)

    Calvez, S.; Adams, M. J.

    2012-09-01

    Anniversaries call for celebrations. Since it is now fifty years since the first semiconductor lasers were reported, it is highly appropriate to celebrate this anniversary with a Special Issue dedicated to the topic. The semiconductor laser now has a major effect on our daily lives since it has been a key enabler in the development of optical fibre communications (and hence the internet and e-mail), optical storage (CDs, DVDs, etc) and barcode scanners. In the early 1960s it was impossible for most people (with the exception of very few visionaries) to foresee any of these future developments, and the first applications identified were for military purposes (range-finders, target markers, etc). Of course, many of the subsequent laser applications were made possible by developments in semiconductor materials, in the associated growth and fabrication technology, and in the increased understanding of the underlying fundamental physics. These developments continue today, so that the subject of semiconductor lasers, although mature, is in good health and continues to grow. Hence, we can be confident that the pervasive influence of semiconductor lasers will continue to develop as optoelectronics technology makes further advances into other sectors such as healthcare, security and a whole host of applications based on the global imperatives to reduce energy consumption, minimise environmental impact and conserve resources. The papers in this Special Issue are intended to tell some of the story of the last fifty years of laser development as well as to provide evidence of the current state of semiconductor laser research. Hence, there are a number of papers where the early developments are recalled by authors who played prominent parts in the story, followed by a selection of papers from authors who are active in today's exciting research. The twenty-fifth anniversary of the semiconductor laser was celebrated by the publication of a number of papers dealing with the early

  13. Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications

    KAUST Repository

    Shen, Chao

    2018-02-14

    GaN-based semiconductor optical amplifier (SOA) and its integration with laser diode (LD) is an essential building block yet to be demonstrated for III-nitride photonic integrated circuits (PICs) at visible wavelength. This paper presents the InGaN/GaN quantum well (QW) based dual-section LD consisting of integrated amplifier and laser gain regions fabricated on a semipolar GaN substrate. The threshold current in the laser gain region was favorably reduced from 229mA to 135mA at SOA driving voltages, VSOA, of 0V and 6.25V, respectively. The amplification effect was measured based on a large gain of 5.7 dB at VSOA = 6.25V from the increased optical output power of 8.2 mW to 30.5 mW. Such integrated amplifier can be modulated to achieve Gbps data communication using on-off keying technique. The monolithically integrated amplifier-LD paves the way towards the III-nitride on-chip photonic system, providing a compact, low-cost, and multi-functional solution for applications such as smart lighting and visible light communications.

  14. Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications

    KAUST Repository

    Shen, Chao; Ng, Tien Khee; Lee, Changmin; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2018-01-01

    GaN-based semiconductor optical amplifier (SOA) and its integration with laser diode (LD) is an essential building block yet to be demonstrated for III-nitride photonic integrated circuits (PICs) at visible wavelength. This paper presents the InGaN/GaN quantum well (QW) based dual-section LD consisting of integrated amplifier and laser gain regions fabricated on a semipolar GaN substrate. The threshold current in the laser gain region was favorably reduced from 229mA to 135mA at SOA driving voltages, VSOA, of 0V and 6.25V, respectively. The amplification effect was measured based on a large gain of 5.7 dB at VSOA = 6.25V from the increased optical output power of 8.2 mW to 30.5 mW. Such integrated amplifier can be modulated to achieve Gbps data communication using on-off keying technique. The monolithically integrated amplifier-LD paves the way towards the III-nitride on-chip photonic system, providing a compact, low-cost, and multi-functional solution for applications such as smart lighting and visible light communications.

  15. Semiconductor Lasers Stability, Instability and Chaos

    CERN Document Server

    Ohtsubo, Junji

    2013-01-01

    This third edition of “Semiconductor Lasers, Stability, Instability and Chaos” was significantly extended.  In the previous edition, the dynamics and characteristics of chaos in semiconductor lasers after the introduction of the fundamental theory of laser chaos and chaotic dynamics induced by self-optical feedback and optical injection was discussed. Semiconductor lasers with new device structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are interesting devices from the viewpoint of chaotic dynamics since they essentially involve chaotic dynamics even in their free-running oscillations. These topics are also treated with respect to the new developments in the current edition. Also the control of such instabilities and chaos control are critical issues for applications. Another interesting and important issue of semiconductor laser chaos in this third edition is chaos synchronization between two lasers and the application to optical secure communication. One o...

  16. Semiconductor Lasers Stability, Instability and Chaos

    CERN Document Server

    Ohtsubo, Junji

    2008-01-01

    This monograph describes fascinating recent progress in the field of chaos, stability and instability of semiconductor lasers. Applications and future prospects are discussed in detail. The book emphasizes the various dynamics induced in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Recent results of both theoretical and experimental investigations are presented. Demonstrating applications of semiconductor laser chaos, control and noise, Semiconductor Lasers describes suppression and chaotic secure communications. For those who are interested in optics but not familiar with nonlinear systems, a brief introduction to chaos analysis is presented.

  17. Laser semiconductor diode integrated with frequency doubler

    International Nuclear Information System (INIS)

    Tighineanu, I.; Dorogan, V.; Suruceanu, G.

    2003-01-01

    The invention relates to the technology of optoelectronic semiconductor devices and may be used in the production of laser semiconductor diodes integrated with optical nonlinear elements. The laser semiconductor diode integrated with frequency doubler includes a semiconductor substrate, a laser structure with waveguide. metal contacts in the waveguide of the laser structure it is formed a nanostructured field so that the nanostructure provides for the fulfillment of the phase synchronism conditions

  18. Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Yu O; Lobintsov, A A; Shramenko, M V [OOO ' Opton' , Moscow (Russian Federation); Ladugin, M A; Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Chamorovsky, A Yu [Superlum Ltd., Unit B3, Fota Point Enterprise Park, Carrigtwohill, Co Cork (Ireland); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2015-08-31

    We have developed two new types of lasers based on quantum-confined semiconductor optical amplifiers with an acousto-optic tunable filter in an external fibre ring cavity. The lasers offer continuous wavelength tuning ranges from 780 to 885 and from 880 to 1010 nm, 20 mW of cw output power, and a tuning rate up to 10{sup 4} nm s{sup -1} at an instantaneous spectral linewidth less than 0.1 nm. (lasers)

  19. All-optical packet envelope detection using a slow semiconductor saturable absorber gate and a semiconductor optical amplifier

    NARCIS (Netherlands)

    Porzi, C.; Fresi, F.; Poti, L.; Bogoni, A.; Guina, M.; Orsila, L.; Okhotnikov, O.; Calabretta, N.

    2008-01-01

    Abstract—We propose a simple and effective scheme for alloptical packet envelope detection (AO-PED), exploiting a slow saturable absorber-based vertical cavity semiconductor gate and a semiconductor optical amplifier. A high extinction ratio of 15 dB was measured for the recovered envelope signal.

  20. Simulations of longitudinally pumped dye laser amplifier

    International Nuclear Information System (INIS)

    Takehisa, Kiwamu; Takemori, Satoshi

    1995-01-01

    Simulations of a copper laser pumped dye laser amplifier and new designs of the longitudinally pumped dye laser amplifier are presented. The simulations take the consideration of the amplified spontaneous emission (ASE). The new designs utilize a center-hole reflector instead of a dichroic mirror. The simulation results indicate that the poor spatial overlap between the pump beam and the dye beam in the transverse pumping not only reduces the laser output power, but also generates ASE strongly. The results also indicate that the longitudinal pumping is as efficient as the transverse pumping. (author)

  1. Ultrashort pulse-propagation effects in a semiconductor optical amplifier: Microscopic theory and experiment

    DEFF Research Database (Denmark)

    Hughes, S.; Borri, P.; Knorr, A.

    2001-01-01

    We present microscopic modeling and experimental measurements of femtosecond-pulse interactions in a semiconductor optical amplifier. Two novel nonlinear propagation effects are demonstrated: pulse breakup in the gain regime and pulse compression in the transparency regime. These propagation phen...... phenomena highlight the microscopic origin and important role of adiabatic following in semiconductor optical amplifiers. Fundamental light-matter interactions are discussed in detail and possible applications are highlighted....

  2. Squeezing in an injection-locked semiconductor laser

    Science.gov (United States)

    Inoue, S.; Machida, S.; Yamamoto, Y.; Ohzu, H.

    1993-09-01

    The intensity-noise properties of an injection-locked semiconductor laser were studied experimentally. The constant-current-driven semiconductor laser producing the amplitude-squeezed state whose intensity noise was reduced below the standard quantum limit (SQL) by 0.72 dB was injection-locked by an external master laser. The measured intensity-noise level of the injection-locked semiconductor laser was 0.91 dB below the SQL. This experimental result indicates that a phase-coherent amplitude-squeezed state or squeezed vacuum state together with a reference local oscillator wave can be generated directly by semiconductor laser systems.

  3. Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Huang Lirong; Yu Yi; Tian Peng; Huang Dexiu

    2009-01-01

    The optical gain of a quantum-dot semiconductor optical amplifier is usually seriously dependent on polarization; we propose a quantum-dot coupled tensile-strained quantum-well structure to obtain polarization insensitivity. The tensile-strained quantum well not only serves as a carrier injection layer of quantum dots but also offers gain to the transverse-magnetic mode. Based on the polarization-dependent coupled carrier rate-equation model, we study carrier competition among quantum well and quantum dots, and study the polarization dependence of the quantum-dot coupled quantum-well semiconductor optical amplifier. We also analyze polarization-dependent photon-mediated carrier distribution among quantum well and quantum dots. It is shown that polarization-insensitive gain can be realized by optimal design

  4. Broadband superluminescent diodes and semiconductor optical amplifiers for the spectral range 750 - 800 nm

    International Nuclear Information System (INIS)

    Il'chenko, S N; Kostin, Yu O; Kukushkin, I A; Ladugin, M A; Lapin, P I; Lobintsov, A A; Marmalyuk, Aleksandr A; Yakubovich, S D

    2011-01-01

    We have studied superluminescent diodes (SLDs) and semiconductor optical amplifiers (SOAs) based on an (Al x Ga 1-x )As/GaAs single quantum well structure with an Al content x ∼ 0.1 in a 10-nm-thick active layer. Depending on the length of the active channel, the single-mode fibre coupled cw output power of the SLDs is 1 to 30 mW at a spectral width of about 50 nm. The width of the optical gain band in the active channel exceeds 40 nm. Preliminary operating life tests have demonstrated that the devices are sufficiently reliable. (lasers)

  5. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  6. Laser Cooling of 2-6 Semiconductors

    Science.gov (United States)

    2016-08-12

    AFRL-AFOSR-JP-TR-2016-0067 Laser Cooling of II-VI Semiconductors Qihua Xiong NANYANG TECHNOLOGICAL UNIVERSITY Final Report 08/12/2016 DISTRIBUTION A...From - To) 15 May 2013 to 14 May 2016 4. TITLE AND SUBTITLE Laser Cooling of II-VI Semiconductors 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-13-1...13. SUPPLEMENTARY NOTES 14. ABSTRACT The breakthrough of laser cooling in semiconductor has stimulated strong interest in further scaling up towards

  7. Semiconductor lasers and herterojunction leds

    CERN Document Server

    Kressel, Henry

    2012-01-01

    Semiconductor Lasers and Heterojunction LEDs presents an introduction to the subject of semiconductor lasers and heterojunction LEDs. The book reviews relevant basic solid-state and electromagnetic principles; the relevant concepts in solid state physics; and the p-n junctions and heterojunctions. The text also describes stimulated emission and gain; the relevant concepts in electromagnetic field theory; and the modes in laser structures. The relation between electrical and optical properties of laser diodes; epitaxial technology; binary III-V compounds; and diode fabrication are also consider

  8. Solid-state disk amplifiers for fusion-laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.E.; Trenholme, J.B.; Linford, G.J.; Yarema, S.M.; Hurley, C.A.

    1981-09-01

    We review the design, performance, and operation of large-aperture (10 to 46 cm) solid-state disk amplifiers for use in laser systems. We present design data, prototype tests, simulations, and projections for conventional cylindrical pump-geometry amplifiers and rectangular pump-geometry disk amplifiers. The design of amplifiers for the Nova laser system is discussed.

  9. Carrier-envelope offset frequency stabilization of an ultrafast semiconductor laser

    Science.gov (United States)

    Jornod, Nayara; Gürel, Kutan; Wittwer, Valentin J.; Brochard, Pierre; Hakobyan, Sargis; Schilt, Stéphane; Waldburger, Dominik; Keller, Ursula; Südmeyer, Thomas

    2018-02-01

    We present the self-referenced stabilization of the carrier-envelope offset (CEO) frequency of a semiconductor disk laser. The laser is a SESAM-modelocked VECSEL emitting at a wavelength of 1034 nm with a repetition frequency of 1.8 GHz. The 270-fs pulses are amplified to 3 W and compressed to 120 fs for the generation of a coherent octavespanning supercontinuum spectrum. A quasi-common-path f-to-2f interferometer enables the detection of the CEO beat with a signal-to-noise ratio of 30 dB sufficient for its frequency stabilization. The CEO frequency is phase-locked to an external reference with a feedback signal applied to the pump current.

  10. Waveguide based external cavity semiconductor lasers

    NARCIS (Netherlands)

    Oldenbeuving, Ruud; Klein, E.J.; Offerhaus, Herman L.; Lee, Christopher James; Verhaegen, M.; Boller, Klaus J.

    2012-01-01

    We report on progress of the project waveguide based external cavity semiconductor laser (WECSL) arrays. Here we present the latest results on our efforts to mode lock an array of tunable, external cavity semiconductor lasers.

  11. An ultra-wideband tunable multi-wavelength Brillouin fibre laser based on a semiconductor optical amplifier and dispersion compensating fibre in a linear cavity configuration

    International Nuclear Information System (INIS)

    Zulkifli, M Z; Ahmad, H; Hassan, N A; Jemangin, M H; Harun, S W

    2011-01-01

    A multi-wavelength Brillouin fibre laser (MBFL) with an ultra-wideband tuning range from 1420 nm to 1620 nm is demonstrated. The MBFL uses an ultra-wideband semiconductor optical amplifier (SOA) and a dispersion compensating fibre (DCF) as the linear gain medium and nonlinear gain medium, respectively. The proposed MBFL has a wide tuning range covering the short (S-), conventional (C-) and long (L-) bands with a wavelength spacing of 0.08 nm, making it highly suitable for DWDM system applications. The output power of the observed Brillouin Stokes ranges approximately from -5.94 dBm to -0.41 dBm for the S-band, from -4.34 dBm to 0.02 dBm for the C-band and from -2.19 dBm to 0.39 dBm for the L-band. The spacing between each adjacent wavelengths of all the three bands is about 0.08 nm, which is approximately 10.7 GHz for the frequency domain. (lasers)

  12. The Nike electron-beam-pumped KrF laser amplifiers

    International Nuclear Information System (INIS)

    Sethian, J.D.; Pawley, C.J.; Obenschain, S.P.

    1997-01-01

    Nike is a recently completed multikilojoule krypton-fluoride (KrF) laser that has been built to study the physics of direct-drive inertial confinement fusion. The two final amplifiers of the Nike laser are both electron-beam-pumped systems. This paper describes these two amplifiers, with an emphasis on the pulsed power. The smaller of the two has a 20 x 20 cm aperture, and produces an output laser beam energy in excess of 100 J. This 20 cm Amplifier uses a single 12 kJ Marx generator to inject two 300 kV, 75 kA, 140 ns flat-top electron beams into opposite sides of the laser cell. The larger amplifier in Nike has a 60 x 60 cm aperture, and amplifies the laser beam up to 5 kJ. This 60 cm amplifier has two independent electron beam systems. Each system has a 170 kJ Marx generator that produces a 670 kV, 540 kA, 240 ns flat-top electron beam. Both amplifiers are complete, fully integrated into the laser, meet the Nike system requirements, and are used routinely for laser-target experiments

  13. Fundamentals of semiconductor lasers

    CERN Document Server

    Numai, Takahiro

    2015-01-01

    This book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes.   The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions.    Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves.

  14. Gain and Index Dynamics in Semiconductor Lasers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    Semiconductor optical amplifiers (SOAs) provide ultrafast, i.e. broadband components for optical communication systems. They enter not only as signal generators and amplifiers, but also as nonlinear elements for ultrafast signal processing such as wavelength conversion, switching, and regeneration...... changed character from bulk semiconductor to quantum wells and most recently to quantum dots. By quantum confinement of the carriers, the light-matter interactions can be significantly modified and the optical properties, including dynamics, can be engineered to match the required functionalities...

  15. Testing methodologies and systems for semiconductor optical amplifiers

    Science.gov (United States)

    Wieckowski, Michael

    Semiconductor optical amplifiers (SOA's) are gaining increased prominence in both optical communication systems and high-speed optical processing systems, due primarily to their unique nonlinear characteristics. This in turn, has raised questions regarding their lifetime performance reliability and has generated a demand for effective testing techniques. This is especially critical for industries utilizing SOA's as components for system-in-package products. It is important to note that very little research to date has been conducted in this area, even though production volume and market demand has continued to increase. In this thesis, the reliability of dilute-mode InP semiconductor optical amplifiers is studied experimentally and theoretically. The aging characteristics of the production level devices are demonstrated and the necessary techniques to accurately characterize them are presented. In addition, this work proposes a new methodology for characterizing the optical performance of these devices using measurements in the electrical domain. It is shown that optical performance degradation, specifically with respect to gain, can be directly qualified through measurements of electrical subthreshold differential resistance. This metric exhibits a linear proportionality to the defect concentration in the active region, and as such, can be used for prescreening devices before employing traditional optical testing methods. A complete theoretical analysis is developed in this work to explain this relationship based upon the device's current-voltage curve and its associated leakage and recombination currents. These results are then extended to realize new techniques for testing semiconductor optical amplifiers and other similarly structured devices. These techniques can be employed after fabrication and during packaged operation through the use of a proposed stand-alone testing system, or using a proposed integrated CMOS self-testing circuit. Both methods are capable

  16. Enhanced Gain in Photonic Crystal Amplifiers

    DEFF Research Database (Denmark)

    Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann

    2012-01-01

    We experimentally demonstrate enhanced gain in the slow-light regime of quantum well photonic crystal amplifiers. A strong gain enhancement is observed with the increase of the group refractive index, due to light slow-down. The slow light enhancement is shown in a amplified spontaneous emission....... These results are promising for short and efficient semiconductor optical amplifiers. This effect will also benefit other devices, such as mode locked lasers....

  17. Amplified spontaneous emission in solar-pumped iodine laser

    Science.gov (United States)

    Cho, Yong S.; Hwang, In H.; Han, Kwang S.; Lee, Ja H.

    1992-01-01

    The amplified spontaneous emission (ASE) from a long pulse, solar-simulating radiation pumped iodine laser amplifier is studied. The ASE threshold pump intensity is almost proportional to the inverse of the laser gain length when the gas pressure is constant in the laser tube.

  18. Development of microwave amplifier based on gallium nitride semiconductor structures

    International Nuclear Information System (INIS)

    Pavlov, D.Yi.; Prokopenko, O.V.; Tsvyirko, Yu.A.; Pavlov, Yi.L.

    2014-01-01

    Microwave properties of microwave amplifier based on gallium nitride (GN) semiconductor structures has been calculated numerically. We proposed the method of numerical calculation of device. This method is accurately sets the value of its characteristics depending on the elements that are used in design of amplifier. It is shown that the device based on GN HEMT-transistors could have amplification factor about 50 dB, while its sizes are 27x18x5.5 mm 3 . Also was provided the absolute stability an amplifier in the whole operating frequency range. It is quite important when using this type of amplifiers in different conditions of exploitation and various fields of use the radioelectronic equipment

  19. Tapered amplifier laser with frequency-shifted feedback

    Directory of Open Access Journals (Sweden)

    A. Bayerle, S. Tzanova, P. Vlaar, B. Pasquiou, F. Schreck

    2016-10-01

    Full Text Available We present a frequency-shifted feedback (FSF laser based on a tapered amplifier. The laser operates as a coherent broadband source with up to 370GHz spectral width and 2.3us coherence time. If the FSF laser is seeded by a continuous-wave laser a frequency comb spanning the output spectrum appears in addition to the broadband emission. The laser has an output power of 280mW and a center wavelength of 780nm. The ease and flexibility of use of tapered amplifiers makes our FSF laser attractive for a wide range of applications, especially in metrology.

  20. Temperature controller of semiconductor laser

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Vít; Číp, Ondřej

    2003-01-01

    Roč. 73, č. 3 (2003), s. 10 - 12 ISSN 0928-5008 Institutional research plan: CEZ:AV0Z2065902 Keywords : temperature controller * semiconductor laser * laser diode Subject RIV: BH - Optics, Masers, Lasers

  1. Progress in semiconductor laser diodes: SPIE volume 723

    International Nuclear Information System (INIS)

    Eichen, E.

    1987-01-01

    This book contains proceedings arranged under the following session headings: High power diode lasers; single emitters and arrays; Ultrahigh speed modulation of semiconductor diode lasers; Coherence and linewidth stabilized semiconductor lasers; and Growth, fabrication, and evaluation of laser diodes

  2. Semiconductor laser using multimode interference principle

    Science.gov (United States)

    Gong, Zisu; Yin, Rui; Ji, Wei; Wu, Chonghao

    2018-01-01

    Multimode interference (MMI) structure is introduced in semiconductor laser used in optical communication system to realize higher power and better temperature tolerance. Using beam propagation method (BPM), Multimode interference laser diode (MMI-LD) is designed and fabricated in InGaAsP/InP based material. As a comparison, conventional semiconductor laser using straight single-mode waveguide is also fabricated in the same wafer. With a low injection current (about 230 mA), the output power of the implemented MMI-LD is up to 2.296 mW which is about four times higher than the output power of the conventional semiconductor laser. The implemented MMI-LD exhibits stable output operating at the wavelength of 1.52 μm and better temperature tolerance when the temperature varies from 283.15 K to 293.15 K.

  3. Semi-analytical model of filtering effects in microwave phase shifters based on semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Xue, Weiqi; Öhman, Filip

    2008-01-01

    We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals.......We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals....

  4. Frequency modulation of semiconductor disk laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zolotovskii, I O; Korobko, D A; Okhotnikov, O G [Ulyanovsk State University, Ulyanovsk (Russian Federation)

    2015-07-31

    A numerical model is constructed for a semiconductor disk laser mode-locked by a semiconductor saturable absorber mirror (SESAM), and the effect that the phase modulation caused by gain and absorption saturation in the semiconductor has on pulse generation is examined. The results demonstrate that, in a laser cavity with sufficient second-order dispersion, alternating-sign frequency modulation of pulses can be compensated for. We also examine a model for tuning the dispersion in the cavity of a disk laser using a Gires–Tournois interferometer with limited thirdorder dispersion. (control of radiation parameters)

  5. Bit rate and pulse width dependence of four-wave mixing of short optical pulses in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Diez, S.; Mecozzi, A.; Mørk, Jesper

    1999-01-01

    We investigate the saturation properties of four-wave mixing of short optical pulses in a semiconductor optical amplifier. By varying the gain of the optical amplifier, we find a strong dependence of both conversion efficiency and signal-to-background ratio on pulse width and bit rate....... In particular, the signal-to-background ratio can be optimized for a specific amplifier gain. This behavior, which is coherently described in experiment and theory, is attributed to the dynamics of the amplified spontaneous emission, which is the main source of noise in a semiconductor optical amplifier....

  6. Dual-wavelength high-power diode laser system based on an external-cavity tapered amplifier with tunable frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    knowledge, this is the broadest tuning range of the frequency difference from a dual-wavelength diode laser system. The spectrum, output power, and beam quality of the diode laser system are characterized. The power stability of each wavelength is measured, and the power fluctuations of the two wavelengths......A dual-wavelength high-power semiconductor laser system based on a tapered amplifier with double-Littrow external cavity is demonstrated around 800 nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 10.0 THz. To our...

  7. 2R Regeneration in Concatenated Semiconductor Optical Amplifiers and Electroabsorbers

    DEFF Research Database (Denmark)

    Christiansen, Lotte Jin; Xu, Lin; Yvind, Kresten

    2004-01-01

    We present a novel 2R regenerator with a large level separation and steep step a sharp, adjustable threshold based on concatenated semiconductor optical amplifiers and electroabsorbers. We demonstrate demonstrate improvements in both extinction-ratio and BER sensitivity atfor a 10 Gb/s NRZ signal....

  8. The pursuit of electrically-driven organic semiconductor lasers

    NARCIS (Netherlands)

    Bisri, Satria Zulkarnaen; Takenobu, Taishi; Iwasa, Yoshihiro

    2014-01-01

    Organic semiconductors have many favourable and plastic-like optical properties that are promising for the development of low energy consuming laser devices. Although optically-pumped organic semiconductor lasers have been demonstrated since the early days of lasers, electrically-driven organic

  9. Semiconductor Laser Multi-Spectral Sensing and Imaging

    Directory of Open Access Journals (Sweden)

    Han Q. Le

    2010-01-01

    Full Text Available Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO. These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  10. Semiconductor laser multi-spectral sensing and imaging.

    Science.gov (United States)

    Le, Han Q; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  11. Giant Geometrically Amplified Piezoresistance in Metal-Semiconductor Hybrid Resistors

    DEFF Research Database (Denmark)

    Hansen, Ole; Reck, Kasper; Thomsen, Erik Vilain

    2008-01-01

    We show that very high geometrically amplified piezoresistance can indeed be obtained in microstructured metal-semiconductor hybrid devices, even significantly higher amplification factors than the factor of approximately 8 demonstrated recently by Rowe and co-workers may be achieved. However, we...... than the sensitivity of conventional piezoresistors fabricated in the same piezoresistive material. ©2008 American Institute of Physics...

  12. Laser vapor phase deposition of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Karlov, N.V.; Luk' ianchuk, B.S.; Sisakian, E.V.; Shafeev, G.A.

    1987-06-01

    The pyrolytic effect of IR laser radiation is investigated with reference to the initiation and control of the vapor phase deposition of semiconductor films. By selecting the gas mixture composition and laser emission parameters, it is possible to control the deposition and crystal formation processes on the surface of semiconductors, with the main control action achieved due to the nonadiabatic kinetics of reactions in the gas phase and high temperatures in the laser heating zone. This control mechanism is demonstrated experimentally during the laser vapor deposition of germanium and silicon films from tetrachlorides on single-crystal Si and Ge substrates. 5 references.

  13. Electrically Pumped Vertical-Cavity Amplifiers

    DEFF Research Database (Denmark)

    Greibe, Tine

    2007-01-01

    In this work, the design of electrically pumped vertical cavity semiconductor optical amplifiers (eVCAs) for use in a mode-locked external-cavity laser has been developed, investigated and analysed. Four different eVCAs, one top-emitting and three bottom emitting structures, have been designed...... and discussed. The thesis concludes with recommendations for further work towards the realisation of compact electrically pumped mode-locked vertical externalcavity surface emitting lasers....

  14. Fast optical source for quantum key distribution based on semiconductor optical amplifiers.

    Science.gov (United States)

    Jofre, M; Gardelein, A; Anzolin, G; Amaya, W; Capmany, J; Ursin, R; Peñate, L; Lopez, D; San Juan, J L; Carrasco, J A; Garcia, F; Torcal-Milla, F J; Sanchez-Brea, L M; Bernabeu, E; Perdigues, J M; Jennewein, T; Torres, J P; Mitchell, M W; Pruneri, V

    2011-02-28

    A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as 1.14×10⁻² while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication.

  15. Modelling colliding-pulse mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Bischoff, Svend

    or to determine the optimum operation conditions. The purpose of this thesis is to elucidate some of the physics of interest in the field of semiconductor laser modelling, semiconductor optics and fiber optics. To be more specific we will investigate: The Colliding-Pulse Mode-Locked (CPM) Quantum Well (QW) laser...... diode; the excitonic semiconductor response for varying material thickness in the case of linear optics; and modulational instability of electromagnetic waves in media with spatially varying non-linearity....

  16. Direct solar-pumped iodine laser amplifier

    Science.gov (United States)

    Han, Kwang S.; Hwang, In Heon

    1990-01-01

    The optimum conditions of a solar pumped iodine laser are found in this research for the case of a continuous wave operation and a pulsed operation. The optimum product of the pressure(p) inside the laser tube and the tube diameter(d) was pd=40 approx. 50 torr-cm on the contrary to the case of a high intensity flashlamp pumped iodine laser where the optimum value of the product is known to be pd=150 torr-cm. The pressure-diameter product is less than 1/3 of that of the high power iodine laser. During the research period, various laser materials were also studied for solar pumping. Among the laser materials, Nd:YAG is found to have the lowest laser threshold pumping intensity of about 200 solar constant. The Rhodamine 6G was also tested as the solar pumped laser material. The threshold pumping power was measured to be about 20,000 solar constant. The amplification experiment for a continuously pumped iodine laser amplifier was performed using Vortek solar simulator and the amplification factors were measured for single pass amplification and triple pass amplification of the 15 cm long amplifier tube. The amplification of 5 was obtained for the triple pass amplification.

  17. Design optimization of single-main-amplifier KrF laser-fusion systems

    International Nuclear Information System (INIS)

    Harris, D.B.; Pendergrass, J.H.

    1985-01-01

    KrF lasers appear to be a very promising laser fusion driver for commercial applications. The Large Amplifier Module for the Aurora Laser System at Los Alamos is the largest KrF laser in the world and is currently operating at 5 kJ with 10 to 15 kJ eventually expected. The next generation system is anticipated to be a single-main-amplifier system that generates approximately 100 kJ. This paper examines the cost and efficiency tradeoffs for a complete single-main-amplifier KrF laser fusion experimental facility. It has been found that a 7% efficient $310/joule complete laser-fusion system is possible by using large amplifier modules and high optical fluences

  18. Effect of gain nonlinearity in semiconductor lasers

    DEFF Research Database (Denmark)

    Jensen, Niels H.; Christiansen, Peter Leth; Skovgaard, Ove

    1988-01-01

    Semiconductor lasers are modeled by single-mode rate equations with Langevin noise terms and the influence of nonlinear gain is investigated. For cw operation the probability distribution for the carrier number and the photon number in the laser cavity is obtained. The corresponding (2+1)-dimensi......Semiconductor lasers are modeled by single-mode rate equations with Langevin noise terms and the influence of nonlinear gain is investigated. For cw operation the probability distribution for the carrier number and the photon number in the laser cavity is obtained. The corresponding (2...

  19. Terahertz lasers and amplifiers based on resonant optical phonon scattering to achieve population inversion

    Science.gov (United States)

    Williams, Benjamin S. (Inventor); Hu, Qing (Inventor)

    2009-01-01

    The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.

  20. Key techniques for space-based solar pumped semiconductor lasers

    Science.gov (United States)

    He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua

    2014-12-01

    In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.

  1. Theory of semiconductor laser cooling

    Science.gov (United States)

    Rupper, Greg

    Recently laser cooling of semiconductors has received renewed attention, with the hope that a semiconductor cooler might be able to achieve cryogenic temperatures. In order to study semiconductor laser cooling at cryogenic temperatures, it is crucial that the theory include both the effects of excitons and the electron-hole plasma. In this dissertation, I present a theoretical analysis of laser cooling of bulk GaAs based on a microscopic many-particle theory of absorption and luminescence of a partially ionized electron-hole plasma. This theory has been analyzed from a temperature 10K to 500K. It is shown that at high temperatures (above 300K), cooling can be modeled using older models with a few parameter changes. Below 200K, band filling effects dominate over Auger recombination. Below 30K excitonic effects are essential for laser cooling. In all cases, excitonic effects make cooling easier then predicted by a free carrier model. The initial cooling model is based on the assumption of a homogeneous undoped semiconductor. This model has been systematically modified to include effects that are present in real laser cooling experiments. The following modifications have been performed. (1) Propagation and polariton effects have been included. (2) The effect of p-doping has been included. (n-doping can be modeled in a similar fashion.) (3) In experiments, a passivation layer is required to minimize non-radiative recombination. The passivation results in a npn heterostructure. The effect of the npn heterostructure on cooling has been analyzed. (4) The effect of a Gaussian pump beam was analyzed and (5) Some of the parameters in the cooling model have a large uncertainty. The effect of modifying these parameters has been analyzed. Most of the extensions to the original theory have only had a modest effect on the overall results. However we find that the current passivation technique may not be sufficient to allow cooling. The passivation technique currently used appears

  2. Controlling the emission wavelength in group III-V semiconductor laser diodes

    KAUST Repository

    Ooi, Boon S.

    2016-12-29

    Methods are provided for modifying the emission wavelength of a semiconductor quantum well laser diode, e.g. by blue shifting the emission wavelength. The methods can be applied to a variety of semiconductor quantum well laser diodes, e.g. group III-V semiconductor quantum wells. The group III-V semiconductor can include AlSb, AlAs, Aln, AlP, BN, GaSb, GaAs, GaN, GaP, InSb, InAs, InN, and InP, and group III-V ternary semiconductors alloys such as AlxGai.xAs. The methods can results in a blue shifting of about 20 meV to 350 meV, which can be used for example to make group III-V semiconductor quantum well laser diodes with an emission that is orange or yellow. Methods of making semiconductor quantum well laser diodes and semiconductor quantum well laser diodes made therefrom are also provided.

  3. 1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system

    Science.gov (United States)

    Hansen, A. K.; Christensen, M.; Noordegraaf, D.; Heist, P.; Papastathopoulos, E.; Loyo-Maldonado, V.; Jensen, O. B.; Stock, M. L.; Skovgaard, P. M. W.

    2017-02-01

    Semiconductor lasers are ideal sources for efficient electrical-to-optical power conversion and for many applications where their small size and potential for low cost are required to meet market demands. Yellow lasers find use in a variety of bio-related applications, such as photocoagulation, imaging, flow cytometry, and cancer treatment. However, direct generation of yellow light from semiconductors with sufficient beam quality and power has so far eluded researchers. Meanwhile, tapered semiconductor lasers at near-infrared wavelengths have recently become able to provide neardiffraction- limited, single frequency operation with output powers up to 8 W near 1120 nm. We present a 1.9 W single frequency laser system at 562 nm, based on single pass cascaded frequency doubling of such a tapered laser diode. The laser diode is a monolithic device consisting of two sections: a ridge waveguide with a distributed Bragg reflector, and a tapered amplifier. Using single-pass cascaded frequency doubling in two periodically poled lithium niobate crystals, 1.93 W of diffraction-limited light at 562 nm is generated from 5.8 W continuous-wave infrared light. When turned on from cold, the laser system reaches full power in just 60 seconds. An advantage of using a single pass configuration, rather than an external cavity configuration, is increased stability towards external perturbations. For example, stability to fluctuating case temperature over a 30 K temperature span has been demonstrated. The combination of high stability, compactness and watt-level power range means this technology is of great interest for a wide range of biological and biomedical applications.

  4. Comprehensive and fully self-consistent modeling of modern semiconductor lasers

    International Nuclear Information System (INIS)

    Nakwaski, W.; Sarzał, R. P.

    2016-01-01

    The fully self-consistent model of modern semiconductor lasers used to design their advanced structures and to understand more deeply their properties is given in the present paper. Operation of semiconductor lasers depends not only on many optical, electrical, thermal, recombination, and sometimes mechanical phenomena taking place within their volumes but also on numerous mutual interactions between these phenomena. Their experimental investigation is quite complex, mostly because of miniature device sizes. Therefore, the most convenient and exact method to analyze expected laser operation and to determine laser optimal structures for various applications is to examine the details of their performance with the aid of a simulation of laser operation in various considered conditions. Such a simulation of an operation of semiconductor lasers is presented in this paper in a full complexity of all mutual interactions between the above individual physical processes. In particular, the hole-burning effect has been discussed. The impacts on laser performance introduced by oxide apertures (their sizes and localization) have been analyzed in detail. Also, some important details concerning the operation of various types of semiconductor lasers are discussed. The results of some applications of semiconductor lasers are shown for successive laser structures. (paper)

  5. CO2 laser pulse switching by optically excited semiconductors

    International Nuclear Information System (INIS)

    Silva, V.L. da.

    1986-01-01

    The construction and the study of a semi-conductor optical switch used for generating short infrared pulses and to analyse the semiconductor characteristics, are presented. The switch response time depends on semiconductor and control laser characteristics. The results obtained using a Ge switch controlled by N 2 , NdYag and Dye lasers are presented. The response time was 50 ns limited by Ge recombination time. The reflectivity increased from 7% to 59% using N 2 laser to control the switch. A simple model for semiconductor optical properties that explain very well the experimental results, is also presented. (author) [pt

  6. Rare-Earth Doped Photonic Crystal Fibre Lasers and Amplifiers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.

    2005-01-01

    In this thesis, a theoretical and numerical study of the use of rare-earthdoped photonic crystal fibres as optical amplifiers and lasers, has been performed. Photonic crystal fibres or microstructured optical fibres is a new kind of optical fibre in which the cladding region typically consist....... Their novel properties allow for design of optical fibre amplifiers and fibre lasers with superior performance, compared to solutions based on conventional fibres. The primary applications considered are high efficiency fibre amplifiers based on index guiding photonic crystal fibres, and cladding pumped....... The thesis also presents the basic properties of optical amplification, and describes the numerical model developed to model the behaviour of lasers and amplifiers based on photonic crystal fibres. The developed numerical tools are then used to investigate specific applications of photonic crystal fibres...

  7. Ultrafast dynamics in semiconductor optical amplifiers and all-optical processing: Bulk versus quantum dot devices

    DEFF Research Database (Denmark)

    Mørk, Jesper; Berg, Tommy Winther; Magnúsdóttir, Ingibjörg

    2003-01-01

    We discuss the dynamical properties of semiconductor optical amplifiers and the importance for all-optical signal processing. In particular, the dynamics of quantum dot amplifiers is considered and it is suggested that these may be operated at very high bit-rates without significant patterning...

  8. Power neodymium-glass amplifier of a repetitively pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, Aleksandr V; Gaganov, V E; Garanin, Sergey G; Zhidkov, N V; Krotov, V A; Martynenko, S P; Pozdnyakov, E V; Solomatin, I I [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)

    2011-11-30

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 Multiplication-Sign 25 mm and a {approx}40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 {mu}s. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass {approx}3.2, the linear gain {approx}0.031 cm{sup -1} with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 - 0.21 J cm{sup -3}. The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4{lambda} ({lambda} = 0.63 {mu}m is the probing radiation wavelength).

  9. Power neodymium-glass amplifier of a repetitively pulsed laser

    International Nuclear Information System (INIS)

    Vinogradov, Aleksandr V; Gaganov, V E; Garanin, Sergey G; Zhidkov, N V; Krotov, V A; Martynenko, S P; Pozdnyakov, E V; Solomatin, I I

    2011-01-01

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 × 25 mm and a ∼40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 μs. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass ∼3.2, the linear gain ∼0.031 cm -1 with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 - 0.21 J cm -3 . The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4λ (λ = 0.63 μm is the probing radiation wavelength).

  10. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    Science.gov (United States)

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.

  11. Free-electron laser system with Raman amplifier outcoupling

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J.

    1988-05-03

    A free-electron laser system is described comprising: a free-electron laser pump beam generator producing a high-power optical output beam in a vacuum environement; a Raman amplifier cell located in the path of the output beam from the pump beam generator; means for generating and introducing a Stokes seed beam into the Raman amplifier cell, a pair of gaseous windows through which the output beam enters and leaves the Raman amplifier cell, each window having a stream of gas moving continuously in a direction generally perpendicular to the beam; and a mirror positioned in the path of the output beam from the Raman amplifier, the mirror functioning to reflect and further direct the output beam, but not the unwanted spectral components.

  12. Amplifier channel for a fission fragment semiconductor detector

    International Nuclear Information System (INIS)

    Tyurin, G.P.

    1981-01-01

    To compensate the decrease of the transformation coefficient of fission fragment semiconductor detector (SCD) developed is a special amplification channel with controlled transfer coefficient. The block diagram of the channel is presented, the main functional units of which are as follows: preamplifying head with charge-sensitive and timing preamplifiers, linear amplifier and the circuit of spectrum position stabilization, which includes a differential discriminator, integrator and reference signal generator. The amplification channel is made in the CAMAC standard and has the following specifications: dinamical input capacitance of charge-sensitive amplifier c=10000 n PHI, signal amplitude at output of the linear amplifier at energy of fission fragments of 120 MeV has negative polarity and is equal to 5 V. Pulse amplitude change at SCD sensitivity decrease to 50% constitutes not more than 1%. Timing preamplifier has the gain factor at voltage of K=80 at front duration of 3.5 nc. Time resolution of the amplification channel is not worse than 1 nc. Dimensions of preamplifying head are 40x40x15 mm. The amplification channel permitted to use SCD for long-term measurements of fission fragment spectra [ru

  13. A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. II. Spatio-temporal dynamics

    Science.gov (United States)

    Böhringer, Klaus; Hess, Ortwin

    The spatio-temporal dynamics of novel semiconductor lasers is discussed on the basis of a space- and momentum-dependent full time-domain approach. To this means the space-, time-, and momentum-dependent Full-Time Domain Maxwell Semiconductor Bloch equations, derived and discussed in our preceding paper I [K. Böhringer, O. Hess, A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation], are solved by direct numerical integration. Focussing on the device physics of novel semiconductor lasers that profit, in particular, from recent advances in nanoscience and nanotechnology, we discuss the examples of photonic band edge surface emitting lasers (PBE-SEL) and semiconductor disc lasers (SDLs). It is demonstrated that photonic crystal effects can be obtained for finite crystal structures, and leading to a significant improvement in laser performance such as reduced lasing thresholds. In SDLs, a modern device concept designed to increase the power output of surface-emitters in combination with near-diffraction-limited beam quality, we explore the complex interplay between the intracavity optical fields and the quantum well gain material in SDL structures. Our simulations reveal the dynamical balance between carrier generation due to pumping into high energy states, momentum relaxation of carriers, and stimulated recombination from states near the band edge. Our full time-domain approach is shown to also be an excellent framework for the modelling of the interaction of high-intensity femtosecond and picosecond pulses with semiconductor nanostructures. It is demonstrated that group velocity dispersion, dynamical gain saturation and fast self-phase modulation (SPM) are the main causes for the induced changes and asymmetries in the amplified pulse shape and spectrum of an ultrashort high-intensity pulse. We attest that the time constants of the intraband scattering processes are critical to gain recovery. Moreover, we present

  14. Below-bandgap photoreflection spectroscopy of semiconductor laser structures

    International Nuclear Information System (INIS)

    Sotnikov, Aleksandr E; Chernikov, Maksim A; Ryabushkin, Oleg A; Trubenko, P; Moshegov, N; Ovchinnikov, A

    2004-01-01

    A new method of modulated light reflection - below-bandgap photoreflection, is considered. Unlike the conventional photoreflection method, the proposed method uses optical pumping by photons of energy smaller than the bandgap of any layer of a semiconductor structure under study. Such pumping allows one to obtain the modulated reflection spectrum for all layers of the structure without excitation of photoluminescence. This method is especially promising for the study of wide-gap semiconductors. The results of the study of semiconductor structures used in modern high-power multimode semiconductor lasers are presented. (laser applications and other topics in quantum electronics)

  15. Spherical distribution structure of the semiconductor laser diode stack for pumping

    International Nuclear Information System (INIS)

    Zhao Tianzhuo; Yu Jin; Liu Yang; Zhang Xue; Ma Yunfeng; Fan Zhongwei

    2011-01-01

    A semiconductor laser diode stack is used for pumping and 8 semiconductor laser diode arrays of the stack are put on a sphere, and the output of every bar is specially off-axis compressed to realize high coupling efficiency. The output beam of this semiconductor laser diode stack is shaped by a hollow duct to the laser active medium. The efficiency of the hollow light pipe, which is used for semiconductor laser diode stack coupling, is analyzed by geometric optics and ray tracing. Geometric optics analysis diagnoses the reasons for coupling loss and guides the design of the structure. Ray tracing analyzes the relation between the structural parameters and the output characteristics of this pumping system, and guides parameter optimization. Simulation and analysis results show that putting the semiconductor laser diode arrays on a spherical surface can increase coupling efficiency, reduce the optimum duct length and improve the output energy field distribution. (semiconductor devices)

  16. Pulsed hydrogen fluoride laser oscillator-amplifier experiments

    International Nuclear Information System (INIS)

    Schott, G.L.

    1975-01-01

    Pulsed HF chemical laser oscillator energies were scaled from millijoules to several kilojoules over the period 1970-1974, reaching approximately 10 J with SF 6 and transverse discharges, and using electron-beam initiation and elemental F 2 above 1000J. This demonstrated scalability to large energy with acceptable electrical efficiency is only one prerequisite for application of this gas laser in fusion; equally important matters are achievement of focusable, approximately 1 ns pulses, couplable to light-element targets, all from an affordable system. Exploratory MOPA experiments are reported which address control of HF laser beam focusability and pulse duration, using SF 6 -based experimental oscillator--amplifier sequences and Pockels' cell switching. Simultaneous multiline lasing with 2.6 less than or equal to lambda less than or equal to 3.1 μm and high specific gain and energy density are particularly important factors encountered with HF, where amplifier pumping and lasing occur in a substantially cw temporal relationship, even in less than 100 ns bursts. Time-resolved SF 6 --HI oscillator spectra contain 27 simultaneous lines from six vibrational bands. An apertured, SF 6 -hydrocarbon pin-discharge oscillator generates approximately 10 mJ of TEM 00 radiation, which is amplified to approximately 1 J in approximately 150 ns by a TEA amplifier and p []opagated tens of meters. A three-stage system coupling these elements through an approximately 1 ns electrooptic gate to a greater than 10 J, e-beam energized amplifier is under development. (auth)

  17. Cryogenic cooling for high power laser amplifiers

    Directory of Open Access Journals (Sweden)

    Perin J.P.

    2013-11-01

    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  18. Model of pulse extraction from a copper laser amplifier

    International Nuclear Information System (INIS)

    Boley, C.D.; Warner, B.E.

    1997-03-01

    A computational model of pulse propagation through a copper laser amplifier has been developed. The model contains a system of 1-D (in the axial direction), time-dependent equations for the laser intensity and amplified spontaneous emission (ASE), coupled to rate equations for the atomic levels. Detailed calculations are presented for a high-power amplifier at Lawrence Livermore National Laboratory. The extracted power agrees with experiment near saturation. At lower input power the calculation overestimates experiment, probably because of increased ASE effects. 6 refs., 6 figs

  19. Optimum design of a multi-stage dye-laser amplifier pumped with Cu-vapor lasers

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Uchiumi, Michihiro

    1990-01-01

    A numerical simulation code, based on the one-dimensional photon transport equation, was developed and analyzed to evaluate the performances of Rhodamine 6G dye laser amplifiers pumped with Cu-vapor lasers. The upper singlet-state absorption played an important role to determine the efficiency. The simulation code was applied to optimize a multi-stage amplifier system with a pulsed or a CW dye-laser oscillator. The analytical results gave a useful guideline to design a high-power pulsed dye-laser system for atomic uranium enrichment. (author)

  20. X-ray laser '' oscillator-amplifier'' experiments

    International Nuclear Information System (INIS)

    Shimkaveg, G.M.; Carter, M.R.; Young, B.K.F.; Walling, R.S.; Osterheld, A.L.; Trebes, J.E.; London, R.A.; Ratowsky, R.P.; Stewart, R.E.; Craxton, R.S.

    1993-01-01

    We present results from experiments directed toward increasing the degree of transverse coherence in x-ray laser beams. We have concentrated on the neon-like yttrium (Z=39) collisionally-pumped x-ray laser as the test system for these studies because of its unique combination of brightness, monochromaticity, and high-reflectivity optics availability. Attempts at improving laser performance using proximate feedback optics failed. Modest success has been found to date in ''double foil'' experiments, involving two x-ray lasers spatially separated by 29 cm and shot sequentially in an ''oscillator-amplifier'' configuration

  1. Method and system for homogenizing diode laser pump arrays

    Science.gov (United States)

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  2. Hybrid organic semiconductor lasers for bio-molecular sensing.

    Science.gov (United States)

    Haughey, Anne-Marie; Foucher, Caroline; Guilhabert, Benoit; Kanibolotsky, Alexander L; Skabara, Peter J; Burley, Glenn; Dawson, Martin D; Laurand, Nicolas

    2014-01-01

    Bio-functionalised luminescent organic semiconductors are attractive for biophotonics because they can act as efficient laser materials while simultaneously interacting with molecules. In this paper, we present and discuss a laser biosensor platform that utilises a gain layer made of such an organic semiconductor material. The simple structure of the sensor and its operation principle are described. Nanolayer detection is shown experimentally and analysed theoretically in order to assess the potential and the limits of the biosensor. The advantage conferred by the organic semiconductor is explained, and comparisons to laser sensors using alternative dye-doped materials are made. Specific biomolecular sensing is demonstrated, and routes to functionalisation with nucleic acid probes, and future developments opened up by this achievement, are highlighted. Finally, attractive formats for sensing applications are mentioned, as well as colloidal quantum dots, which in the future could be used in conjunction with organic semiconductors.

  3. Comparative study of the performance of semiconductor laser based coherent Doppler lidars

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2012-01-01

    Coherent Doppler Lidars (CDLs), operating at an eye-safe 1.5-micron wavelength, have found promising applications in the optimization of wind-power production. To meet the wind-energy sector's impending demand for more cost-efficient industrial sensors, we have focused on the development of conti......Coherent Doppler Lidars (CDLs), operating at an eye-safe 1.5-micron wavelength, have found promising applications in the optimization of wind-power production. To meet the wind-energy sector's impending demand for more cost-efficient industrial sensors, we have focused on the development...... of continuous-wave CDL systems using compact, inexpensive semiconductor laser (SL) sources. In this work, we compare the performance of two candidate emitters for an allsemiconductor CDL system: (1) a monolithic master-oscillator-power-amplifier (MOPA) SL and (2) an external-cavity tapered diode laser (ECTDL)....

  4. Large area electron beam pumped krypton fluoride laser amplifier

    International Nuclear Information System (INIS)

    Sethian, J.D.; Obenschain, S.P.; Gerber, K.A.; Pawley, C.J.; Serlin, V.; Sullivan, C.A.; Webster, W.; Deniz, A.V.; Lehecka, T.; McGeoch, M.W.; Altes, R.A.; Corcoran, P.A.; Smith, I.D.; Barr, O.C.

    1997-01-01

    Nike is a recently completed multi-kilojoule krypton fluoride (KrF) laser that has been built to study the physics of direct drive inertial confinement fusion. This paper describes in detail both the pulsed power and optical performance of the largest amplifier in the Nike laser, the 60 cm amplifier. This is a double pass, double sided, electron beam-pumped system that amplifies the laser beam from an input of 50 J to an output of up to 5 kJ. It has an optical aperture of 60 cm x 60 cm and a gain length of 200 cm. The two electron beams are 60 cm high x 200 cm wide, have a voltage of 640 kV, a current of 540 kA, and a flat top power pulse duration of 250 ns. A 2 kG magnetic field is used to guide the beams and prevent self-pinching. Each electron beam is produced by its own Marx/pulse forming line system. The amplifier has been fully integrated into the Nike system and is used on a daily basis for laser-target experiments. copyright 1997 American Institute of Physics

  5. Thermoreflectance spectroscopy—Analysis of thermal processes in semiconductor lasers

    Science.gov (United States)

    Pierścińska, D.

    2018-01-01

    This review focuses on theoretical foundations, experimental implementation and an overview of experimental results of the thermoreflectance spectroscopy as a powerful technique for temperature monitoring and analysis of thermal processes in semiconductor lasers. This is an optical, non-contact, high spatial resolution technique providing high temperature resolution and mapping capabilities. Thermoreflectance is a thermometric technique based on measuring of relative change of reflectivity of the surface of laser facet, which provides thermal images useful in hot spot detection and reliability studies. In this paper, principles and experimental implementation of the technique as a thermography tool is discussed. Some exemplary applications of TR to various types of lasers are presented, proving that thermoreflectance technique provides new insight into heat management problems in semiconductor lasers and in particular, that it allows studying thermal degradation processes occurring at laser facets. Additionally, thermal processes and basic mechanisms of degradation of the semiconductor laser are discussed.

  6. High-performace cladding-pumped erbium-doped fibre laser and amplifier

    International Nuclear Information System (INIS)

    Kotov, L V; Likhachev, M E; Bubnov, M M; Medvedkov, O I; Lipatov, D S; Vechkanov, N N; Guryanov, Aleksei N

    2012-01-01

    We report cladding-pumped erbium-doped fibre laser and amplifier configurations. Through fibre design optimisation, we have achieved a record-high laser slope efficiency, 40 % with respect to absorbed pump power (λ = 976 nm), and an output power of 7.5 W. The erbium-doped fibre amplifier efficiency reaches 32 %.

  7. The features of modelling semiconductor lasers with a wide contact

    Directory of Open Access Journals (Sweden)

    Rzhanov Alexey

    2017-01-01

    Full Text Available The aspects of calculating the dynamics and statics of powerful semiconductor laser diodes radiation are investigated. It takes into account the main physical mechanisms influencing power, spectral composition, far and near field of laser radiation. It outlines a dynamic distributed model of a semiconductor laser with a wide contact and possible algorithms for its implementation.

  8. Singly-resonant sum frequency generation of visible light in a semiconductor disk laser

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Schlosser, P.J.; Hastie, J.E.

    2009-01-01

    In this paper a generic approach for visible light generation is presented. It is based on sum frequency generation between a semiconductor disk laser and a solid-state laser, where the frequency mixing is achieved within the cavity of the semiconductor disk laser using a singlepass of the solid......-state laser light. This exploits the good beam quality and high intra-cavity power present in the semiconductor disk laser to achieve high conversion efficiency. Combining sum frequency mixing and semiconductor disk lasers in this manner allows in principle for generation of any wavelength within the visible...

  9. Direct solar pumping of semiconductor lasers: A feasibility study

    Science.gov (United States)

    Anderson, Neal G.

    1992-01-01

    This report describes results of NASA Grant NAG-1-1148, entitled Direct Solar Pumping of Semiconductor Lasers: A Feasibility Study. The goals of this study were to provide a preliminary assessment of the feasibility of pumping semiconductor lasers in space with directly focused sunlight and to identify semiconductor laser structures expected to operate at the lowest possible focusing intensities. It should be emphasized that the structures under consideration would provide direct optical-to-optical conversion of sunlight into laser light in a single crystal, in contrast to a configuration consisting of a solar cell or storage battery electrically pumping a current injection laser. With external modulation, such lasers could perhaps be efficient sources for intersatellite communications. We proposed specifically to develop a theoretical model of semiconductor quantum-well lasers photopumped by a broadband source, test it against existing experimental data where possible, and apply it to estimating solar pumping requirements and identifying optimum structures for operation at low pump intensities. These tasks have been accomplished, as described in this report of our completed project. The report is organized as follows: Some general considerations relevant to the solar-pumped semiconductor laser problem are discussed in Section 2, and the types of structures chosen for specific investigation are described. The details of the laser model we developed for this work are then outlined in Section 3. In Section 4, results of our study are presented, including designs for optimum lattice-matched and strained-layer solar-pumped quantum-well lasers and threshold pumping estimates for these structures. It was hoped at the outset of this work that structures could be identified which could be expected to operate continuously at solar photoexcitation intensities of several thousand suns, and this indeed turned out to be the case as described in this section. Our project is

  10. Reduced filamentation in high power semiconductor lasers

    DEFF Research Database (Denmark)

    Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter

    1999-01-01

    High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio......-temporal instabilities such as filamentation which degrades spatial coherence and brightness. We first evaluate performance of existing designs with a “top-hat” shaped transverse current density profile. The unstable nature of highly excited semiconductor material results in a run-away process where small modulations...

  11. Semiconductor Laser Tracking Frequency Distance Gauge

    Science.gov (United States)

    Phillips, James D.; Reasenberg, Robert D.

    2009-01-01

    Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require a spaceworthy laser distance gauge of substantially improved performance. The Tracking Frequency Gauge (TFG) uses a single beam, locking a laser to the measurement interferometer. We have demonstrated this technique with pm (10(exp -12) m) performance. We report on the version we are now developing based on space-qualifiable, fiber-coupled distributed-feedback semiconductor lasers.

  12. Study on guided waves in semiconductor lasers

    International Nuclear Information System (INIS)

    Pudensi, M.A.A.

    1980-01-01

    In This work we studied the guided waves in semiconductor lasers. In the first part we carried on the experimental measurements on lasers with stripe nonorthogonal to the mirrors. In the second part we developed a matrix method for the study of propagation and reflection of guided waves in lasers. (author) [pt

  13. Management of gingival hyperpigmentation by semiconductor diode laser

    Directory of Open Access Journals (Sweden)

    Geeti Gupta

    2011-01-01

    Full Text Available Gingival hyperpigmentation is caused by excessive deposition of melanin in the basal and suprabasal cell layers of the epithelium. Although melanin pigmentation of the gingiva is completely benign, cosmetic concerns are common, particularly in patients having a very high smile line (gummy smile. Various depigmentation techniques have been employed, such as scalpel surgery, gingivectomy, gingivectomy with free gingival autografting, cryosurgery, electrosurgery, chemical agents such as 90% phenol and 95% alcohol, abrasion with diamond burs, Nd:YAG laser, semiconductor diode laser, and CO 2 laser. The present case report describes simple and effective depigmentation technique using semiconductor diode laser surgery - for gingival depigmentation, which have produced good results with patient satisfaction.

  14. All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Klinkhammer, Sönke; Christiansen, Mads Brøkner

    2010-01-01

    Organic semiconductor lasers are of particular interest as tunable visible laser light sources. For bringing those to market encapsulation is needed to ensure practicable lifetimes. Additionally, fabrication technologies suitable for mass production must be used. We introduce all-polymer chips...... comprising encapsulated distributed feedback organic semiconductor lasers. Several chips are fabricated in parallel by thermal nanoimprint of the feedback grating on 4? wafer scale out of poly(methyl methacrylate) (PMMA) and cyclic olefin copolymer (COC). The lasers consisting of the organic semiconductor...... tris(8- hydroxyquinoline) aluminum (Alq3) doped with the laser dye 4-dicyanomethylene-2- methyl-6-(p-dimethylaminostyril)-4H-pyrane (DCM) are hermetically sealed by thermally bonding a polymer lid. The organic thin film is placed in a basin within the substrate and is not in direct contact to the lid...

  15. Optical oscillator-amplifier laser configuration

    International Nuclear Information System (INIS)

    McAllister, G.L.

    1975-01-01

    A laser is described that has incorporated therein an oscillator formed by a pair of mirrors, at least one of the mirrors being positioned outside of the envelope. The mirrors are dimensioned and spaced from each other so that the resonator has a relatively low Fresnel number and is operated unstably. The entire surface of one of these mirrors is convex and diffracts a portion of the energy outside of the oscillator region. Also incorporated into the laser is an amplifier region defined by a separate pair of mirrors which receive the energy diffracted from the oscillator region. The second pair of mirrors form an optical system with a high Fresnel number. A filter, modulator or other control for the laser signal may be placed outside the laser envelope in the optical path of the oscillator

  16. Amplified spontaneous emissions in a high-gain laser amplifier

    International Nuclear Information System (INIS)

    Osada, Hidenori; Gamo, Hideya.

    1978-01-01

    The gain and line-narrowing of the amplified spontaneous emissions(ASE) in a partially homogeneous high-gain Xe 3.51 μm laser amplifier were studied theoretically and experimentally with emphasis of saturation effect. The unidirectionally travelling ASE was generated by conveniently using optical isolators and used as a broadband radiation source. It has properties of 10 μW/mm 2 in intensity with fluctuation of less than 1% in 5 hours, 43.5 MHz of the linewidth and 1.0 x 10 -3 radians of beam divergence. The measured saturation intensity was 4.85 μW/mm 2 and a small signal gain was 0.1 cm -1 . The theoretical prediction of the line-narrowing shows reasonablly good agreement with the measured one. (author)

  17. High brightness semiconductor lasers with reduced filamentation

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.

    1999-01-01

    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture...

  18. LED-pumped Alexandrite laser oscillator and amplifier

    Science.gov (United States)

    Pichon, Pierre; Blanchot, Jean-Philippe; Balembois, François; Druon, Frédéric; Georges, Patrick

    2018-02-01

    In this paper, we report the first LED-pumped transition-metal-doped laser oscillator and amplifier based on an alexandrite crystal (Cr3+:BeAl2O4). A Ce:YAG luminescent concentrator illuminated by blue LEDs is used to reach higher pump powers than with LEDs alone. The luminescent 200-mm-long-composit luminescent concentrator involving 2240 LEDs can delivers up to 268 mJ for a peak irradiance of 8.5 kW/cm2. In oscillator configuration, an LED-pumped alexandrite laser delivering an energy of 2.9 mJ at 748 nm in free running operation is demonstrated. In the cavity, we measured a double pass small signal gain of 1.28, in good agreement with numerical simulations. As amplifier, the system demonstrated to boost a CW Ti:sapphire laser by a factor of 4 at 750 nm in 8 passes with a large tuning range from 710 nm to 800 nm.

  19. Ultrafast dynamics and laser action of organic semiconductors

    CERN Document Server

    Vardeny, Zeev Valy

    2009-01-01

    Spurred on by extensive research in recent years, organic semiconductors are now used in an array of areas, such as organic light emitting diodes (OLEDs), photovoltaics, and other optoelectronics. In all of these novel applications, the photoexcitations in organic semiconductors play a vital role. Exploring the early stages of photoexcitations that follow photon absorption, Ultrafast Dynamics and Laser Action of Organic Semiconductors presents the latest research investigations on photoexcitation ultrafast dynamics and laser action in pi-conjugated polymer films, solutions, and microcavities.In the first few chapters, the book examines the interplay of charge (polarons) and neutral (excitons) photoexcitations in pi-conjugated polymers, oligomers, and molecular crystals in the time domain of 100 fs-2 ns. Summarizing the state of the art in lasing, the final chapters introduce the phenomenon of laser action in organics and cover the latest optoelectronic applications that use lasing based on a variety of caviti...

  20. Auto-locking waveguide amplifier system for lidar and magnetometric applications

    Science.gov (United States)

    Pouliot, A.; Beica, H. C.; Carew, A.; Vorozcovs, A.; Carlse, G.; Kumarakrishnan, A.

    2018-02-01

    We describe a compact waveguide amplifier system that is suitable for optically pumping rubidium magnetometers. The system consists of an auto-locking vacuum-sealed external cavity diode laser, a semiconductor tapered amplifier and a pulsing unit based on an acousto-optic modulator. The diode laser utilises optical feedback from an interference filter to narrow the linewidth of an inexpensive laser diode to 500 kHz. This output is scannable over an 8 GHz range (at 780 nm) and can be locked without human intervention to any spectral marker in an expandable library of reference spectra, using the autolocking controller. The tapered amplifier amplifies the output from 50 mW up to 2 W with negligible distortions in the spectral quality. The system can operate at visible and near infrared wavelengths with MHz repetition rates. We demonstrate optical pumping of rubidium vapour with this system for magnetometric applications. The magnetometer detects the differential absorption of two orthogonally polarized components of a linearly polarized probe laser following optical pumping by a circularly polarized pump laser. The differential absorption signal is studied for a range of pulse lengths, pulse amplitudes and DC magnetic fields. Our results suggest that this laser system is suitable for optically pumping spin-exchange free magnetometers.

  1. Toward continuous-wave operation of organic semiconductor lasers

    Science.gov (United States)

    Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-01-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042

  2. Direct solar-pumped iodine laser amplifier

    Science.gov (United States)

    Han, Kwang S.

    1987-01-01

    This semiannual progress report covers the period from March 1, 1987 to September 30, 1987 under NASA grant NAG1-441 entitled 'Direct solar-pumped iodine laser amplifier'. During this period Nd:YAG and Nd:Cr:GSGG crystals have been tested for the solar-simulator pumped cw laser, and loss mechanisms of the laser output power in a flashlamp-pumped iodine laser also have been identified theoretically. It was observed that the threshold pump-beam intensities for both Nd:YAG and Nd:Cr:GSGG crystals were about 1000 solar constants, and the cw laser operation of the Nd:Cr:GSGG crystal was more difficult than that of the Nd:YAG crystal under the solar-simulator pumping. The possibility of the Nd:Cr:GSGG laser operation with a fast continuously chopped pumping was also observed. In addition, good agreement between the theoretical calculations and the experimental data on the loss mechanisms of a flashlamp-pumped iodine laser at various fill pressures and various lasants was achieved.

  3. Recent advances in long wavelength quantum dot lasers and amplifiers

    NARCIS (Netherlands)

    Nötzel, R.; Bente, E.A.J.M.; Smit, M.K.; Dorren, H.J.S.

    2009-01-01

    We demonstrate 1.55-µm InAs/InGaAsP/InP (100) quantum dot (QD) shallow and deep etched Fabry-Pérot and ring lasers, micro-ring lasers, mode-locked lasers, Butt-joint integrated lasers, polarization control of gain, and wavelength conversion in QD amplifiers.

  4. Silicon photonics WDM transmitter with single section semiconductor mode-locked laser

    Science.gov (United States)

    Müller, Juliana; Hauck, Johannes; Shen, Bin; Romero-García, Sebastian; Islamova, Elmira; Azadeh, Saeed Sharif; Joshi, Siddharth; Chimot, Nicolas; Moscoso-Mártir, Alvaro; Merget, Florian; Lelarge, François; Witzens, Jeremy

    2015-04-01

    We demonstrate a wavelength domain-multiplexed (WDM) optical link relying on a single section semiconductor mode-locked laser (SS-MLL) with quantum dash (Q-Dash) gain material to generate 25 optical carriers spaced by 60.8 GHz, as well as silicon photonics (SiP) resonant ring modulators (RRMs) to modulate individual optical channels. The link requires optical reamplification provided by an erbium-doped fiber amplifier (EDFA) in the system experiments reported here. Open eye diagrams with signal quality factors (Q-factors) above 7 are measured with a commercial receiver (Rx). For higher compactness and cost effectiveness, reamplification of the modulated channels with a semiconductor optical amplifier (SOA) operated in the linear regime is highly desirable. System and device characterization indicate compatibility with the latter. While we expect channel counts to be primarily limited by the saturation output power level of the SOA, we estimate a single SOA to support more than eight channels. Prior to describing the system experiments, component design and detailed characterization results are reported including design and characterization of RRMs, ring-based resonant optical add-drop multiplexers (RR-OADMs) and thermal tuners, S-parameters resulting from the interoperation of RRMs and RR-OADMs, and characterization of Q-Dash SS-MLLs reamplified with a commercial SOA. Particular emphasis is placed on peaking effects in the transfer functions of RRMs and RR-OADMs resulting from transient effects in the optical domain, as well as on the characterization of SS-MLLs in regard to relative intensity noise (RIN), stability of the modes of operation, and excess noise after reamplification.

  5. Controlling the emission wavelength in group III-V semiconductor laser diodes

    KAUST Repository

    Ooi, Boon S.; Majid, Mohammed Abdul; Afandy, Rami; Aljabr, Ahmad

    2016-01-01

    Methods are provided for modifying the emission wavelength of a semiconductor quantum well laser diode, e.g. by blue shifting the emission wavelength. The methods can be applied to a variety of semiconductor quantum well laser diodes, e.g. group III

  6. Return-map for semiconductor lasers with optical feedback

    DEFF Research Database (Denmark)

    Mørk, Jesper; Tromborg, Bjarne; Sabbatier, H.

    1999-01-01

    It is well known that a semiconductor laser exposed to moderate optical feedback and biased near threshold exhibits the phenomenon of low-frequency intensity fluctuations (LFF). While this behavior can be numerically simulated using the so-called Lang-Kobayshi model, the interpretation of the phe......It is well known that a semiconductor laser exposed to moderate optical feedback and biased near threshold exhibits the phenomenon of low-frequency intensity fluctuations (LFF). While this behavior can be numerically simulated using the so-called Lang-Kobayshi model, the interpretation...

  7. Self-slowdown and -advancement of fs pulses in a quantum-dot semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    2005-01-01

    We demonstrate changes in the propagation time of 180 femtosecond pulses in a quantum-dot semiconductor optical amplifier as function of pulse input power and bias current. The results interpreted as a result of pulse reshaping by gain saturation but are also analogous to coherent population osci...

  8. Design of a high-gain laser diode-array pumped Nd:YAG Alternating Precessive Slab Amplifier (APS-Amplifier)

    Science.gov (United States)

    Coyle, D. Barry

    1991-01-01

    In the design of space qualifiable laser systems for ranging and altimetry, such as NASA's Geodynamic Laser Ranging System (GLRS), the transmitter must be kept small, powerful yet efficient, and must consist of as few components as possible. A novel preamplifier design is examined which requires no external beam steering optics, yielding a compact component with simple alignment procedures. The gains achieved are comparable to multipass zigzag amplifiers using two or more sets of external optics for extra passes through the amplifying medium.

  9. Design of a high-gain laser diode-array pumped Nd:YAG alternating precessive slab amplifier (APS amplifier)

    Science.gov (United States)

    Coyle, D. B.

    1991-01-01

    In the design of space-qualifiable laser systems for ranging and altimetry, such as NASA's Geodynamic Laser Ranging System (GLRS), the transmitter must be kept small, powerful yet efficient, and must consist of as few components as possible. A novel preamplifier design is examined which requires no external beam steering optics, yielding a compact component with simple alignment procedures. The gains achieved are comparable to multipass zigzag amplifiers using two or more sets of external optics for extra passes through the amplifying medium.

  10. Quantum confined laser devices optical gain and recombination in semiconductors

    CERN Document Server

    Blood, Peter

    2015-01-01

    The semiconductor laser, invented over 50 years ago, has had an enormous impact on the digital technologies that now dominate so many applications in business, commerce and the home. The laser is used in all types of optical fibre communication networks that enable the operation of the internet, e-mail, voice and skype transmission. Approximately one billion are produced each year for a market valued at around $5 billion. Nearly all semiconductor lasers now use extremely thin layers of light emitting materials (quantum well lasers). Increasingly smaller nanostructures are used in the form of quantum dots. The impact of the semiconductor laser is surprising in the light of the complexity of the physical processes that determine the operation of every device. This text takes the reader from the fundamental optical gain and carrier recombination processes in quantum wells and quantum dots, through descriptions of common device structures to an understanding of their operating characteristics. It has a consistent...

  11. Optical double-locked semiconductor lasers

    Science.gov (United States)

    AlMulla, Mohammad

    2018-06-01

    Self-sustained period-one (P1) nonlinear dynamics of a semiconductor laser are investigated when both optical injection and modulation are applied for stable microwave frequency generation. Locking the P1 oscillation through modulation on the bias current, injection strength, or detuning frequency stabilizes the P1 oscillation. Through the phase noise variance, the different modulation types are compared. It is demonstrated that locking the P1 oscillation through optical modulation on the output of the master laser outperforms bias-current modulation of the slave laser. Master laser modulation shows wider P1-oscillation locking range and lower phase noise variance. The locking characteristics of the P1 oscillation also depend on the operating conditions of the optical injection system

  12. Single filament semiconductor laser

    International Nuclear Information System (INIS)

    Botez, D.

    1980-01-01

    A semiconductor laser comprising: a body of semiconductor material including a substrate having a surface and a pair of spaced, substantially parallel dove-tailed shaped grooves in said surface, said body having a pair of end surfaces between which said grooves extend, said end surfaces being reflective to light with at least one of said end surfaces being partially transparent to light a first epitaxial layer over said surface of the substrate and the surfaces of the grooves, said first epitaxial layer having a flat surface portion over the portion of the substrate surface between the grooves, a thin second epitaxial layer over said first epitaxial layer, a third epitaxial layer over said second epitaxial layer, said first and third epitaxial layers being of opposite conductivity types and the second epitaxial layer being the active recombination region of the laser with the light being generated therein in the vicinity of the portion which is over the flat surface portion of the first epitaxial layer, and a pair of contacts on said body with one contact being over said third epitaxial body and the other being on said substrate

  13. Semiconductor processing with excimer lasers

    International Nuclear Information System (INIS)

    Young, R.T.; Narayan, J.; Christie, W.H.; van der Leeden, G.A.; Rothe, D.E.; Cheng, L.J.

    1983-01-01

    The advantages of pulsed excimer lasers for semiconductor processing are reviewed. Extensive comparisons of the quality of annealing of ion-implanted Si obtained with XeCl and ruby lasers have been made. The results indicate that irrespective of the large differences in the optical properties of Si at uv and visible wavelengths, the efficiency of usage of the incident energy for annealing is comparable for the two lasers. However, because of the excellent optical beam quality, the XeCl laser can provide superior control of the surface melting and the resulting junction depth. Furthermore, the concentrations of electrically active point defects in the XeCl laser annealed region are 2 to 3 orders of magnitude lower than that obtained from ruby or Nd:YAG lasers. All these results seem to suggest that XeCl lasers should be suitable for fabricating not only solar cells but also the more advanced device structures required for VLSI or VHSIC applications

  14. Semiconductor laser technology for remote sensing experiments

    Science.gov (United States)

    Katz, Joseph

    1988-01-01

    Semiconductor injection lasers are required for implementing virtually all spaceborne remote sensing systems. Their main advantages are high reliability and efficiency, and their main roles are envisioned in pumping and injection locking of solid state lasers. In some shorter range applications they may even be utilized directly as the sources.

  15. Analysis and evaluation of zig-zag slab laser amplifier with optical diamond geometry

    International Nuclear Information System (INIS)

    Matsumoto, Osamu; Yasuhara, Ryo; Kanabe, Tadashi

    2007-01-01

    In this paper, we describe the development of a high-average-power solid-state laser system and the derivation of equations for the amplification of a laser beam. This laser system is capable of generating an output energy of 10J per pulse at a wavelength of 1,053nm in a 10 Hz operation for scientific and industrial applications. The main amplifier of our system is a laser-diode-pumped solid-state amplifier. A water-cooled Nd:glass slab is pumped with two 803 nm AlGaAs laser-diode modules. The laser beam propagates through zig-zag optical paths four times and is amplified. To estimate laser output energy, we have derived and evaluated equations for the amplification of the laser beam, and designed and constructed a laser system based on the calculated results. Experimental results reveal an output energy of 10.6 J at 1 Hz, which closely fits the results calculated using the derived equations. (author)

  16. Integrated semiconductor twin-microdisk laser under mutually optical injection

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ling-Xiu; Liu, Bo-Wen; Lv, Xiao-Meng; Yang, Yue-De; Xiao, Jin-Long; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2015-05-11

    We experimentally study the characteristics of an integrated semiconductor twin-microdisk laser under mutually optical injection through a connected optical waveguide. Based on the lasing spectra, four-wave mixing, injection locking, and period-two oscillation states are observed due to the mutually optical injection by adjusting the injected currents applied to the two microdisks. The enhanced 3 dB bandwidth is realized for the microdisk laser at the injection locking state, and photonic microwave is obtained from the electrode of the microdisk laser under the period-two oscillation state. The plentifully dynamical states similar as semiconductor lasers subject to external optical injection are realized due to strong optical interaction between the two microdisks.

  17. Coherent combining of high brightness tapered lasers in master oscillator power amplifier configuration

    Science.gov (United States)

    Albrodt, P.; Hanna, M.; Moron, F.; Decker, J.; Winterfeldt, M.; Blume, G.; Erbert, G.; Crump, P.; Georges, P.; Lucas-Leclin, G.

    2018-02-01

    Improved diode laser beam combining techniques are in strong demand for applications in material processing. Coherent beam combining (CBC) is the only combining approach that has the potential to maintain or even improve all laser properties, and thus has high potential for future systems. As part of our ongoing studies into CBC of diode lasers, we present recent progress in the coherent superposition of high-power single-pass tapered laser amplifiers. The amplifiers are seeded by a DFB laser at λ = 976 nm, where the seed is injected into a laterally single-mode ridge-waveguide input section. The phase pistons on each beam are actively controlled by varying the current in the ridge section of each amplifier, using a sequential hill-climbing algorithm, resulting in a combined beam with power fluctuations of below 1%. The currents into the tapered sections of the amplifiers are separately controlled, and remain constant. In contrast to our previous studies, we favour a limited number of individual high-power amplifiers, in order to preserve a high extracted power per emitter in a simple, low-loss coupling arrangement. Specifically, a multi-arm interferometer architecture with only three devices is used, constructed using 6 mm-long tapered amplifiers, mounted junction up on C-mounts, to allow separate contact to single mode and amplifier sections. A maximum coherently combined power of 12.9 W is demonstrated in a nearly diffraction-limited beam, corresponding to a 65% combining efficiency, with power mainly limited by the intrinsic beam quality of the amplifiers. Further increased combined power is currently sought.

  18. Driver circuit for pulse modulation of a semiconductor laser

    International Nuclear Information System (INIS)

    Ueki, A.

    1975-01-01

    A pulse modulation driver circuit for a semiconductor laser is disclosed which discriminates among input pulse signals composed of binary codes to detect the occurrence of a pulse having a code of ''I'' following a pulse having a code of ''0''. Detection of this pattern is used to control the driver to increase either or both the width or peak value of the pulse having a code of 1. The effect of this is to eliminate a pattern effect in the light emitted by the semiconductor laser caused by an attenuation of the population inversion in the laser. (U.S.)

  19. Modes in light wave propagating in semiconductor laser

    Science.gov (United States)

    Manko, Margarita A.

    1994-01-01

    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  20. Heteroclinic dynamics of coupled semiconductor lasers with optoelectronic feedback.

    Science.gov (United States)

    Shahin, S; Vallini, F; Monifi, F; Rabinovich, M; Fainman, Y

    2016-11-15

    Generalized Lotka-Volterra (GLV) equations are important equations used in various areas of science to describe competitive dynamics among a population of N interacting nodes in a network topology. In this Letter, we introduce a photonic network consisting of three optoelectronically cross-coupled semiconductor lasers to realize a GLV model. In such a network, the interaction of intensity and carrier inversion rates, as well as phases of laser oscillator nodes, result in various dynamics. We study the influence of asymmetric coupling strength and frequency detuning between semiconductor lasers and show that inhibitory asymmetric coupling is required to achieve consecutive amplitude oscillations of the laser nodes. These studies were motivated primarily by the dynamical models used to model brain cognitive activities and their correspondence with dynamics obtained among coupled laser oscillators.

  1. Compact fibre-laser-pumped Ho:YLF oscillator–amplifier system

    CSIR Research Space (South Africa)

    Koen, W

    2010-04-01

    Full Text Available of the amplifier crystal L and the pump spot radius wp ( Ω = 2pi · (1 − cosβ), with β = tan−1(wpL )). Calculating the local population in (3) and iterating (6) and (11) along the length of the amplifier crystal, we obtain the extracted photon densities...-pumped tunable Tm: silica- fibre laser. Appl. Phys. B 79, 559 (2004) 6. E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, G. Rustad, Mid- infrared laser source with high power and beam quality. Appl. Opt. 45, 3839 (2006) 7. S.A. Payne, L.L. Chase, L...

  2. Diagnostic studies of molecular plasmas using mid-infrared semiconductor lasers

    NARCIS (Netherlands)

    Röpcke, J.; Welzel, S.; Lang, N.; Hempel, F.; Gatilova, L.; Guaitella, O.; Rousseau, A.; Davies, P.B.

    2008-01-01

    Within the last decade mid-infrared absorption spectroscopy between 3 and 20 µm, known as infrared laser absorption spectroscopy (IRLAS) and based on tuneable semiconductor lasers, namely lead salt diode lasers, often called tuneable diode lasers (TDL), and quantum cascade lasers (QCL) has

  3. A study on the optical parts for a semiconductor laser module

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jun-Girl; Lee, Dong-Kil; Kim, Yang-Gyu; Lee, Kwang-Hoon; Park, Young-Sik [Korea Photonics Technology Institute, Gwangju (Korea, Republic of); Jang, Kwang-Ho [Hanvit Optoline, Gwangju (Korea, Republic of); Kang, Seung-Goo [COSET, Gwangju (Korea, Republic of)

    2014-11-15

    A semiconductor laser module consists of a LD (laser diode) chip that generates a laser beam, two cylindrical lenses to collimate the laser beam, a high-reflection mirror to produce a large output by collecting the laser beam, a collimator lens to guide the laser beam to an optical fiber and a protection filter to block reflected laser light that might damage the LD chip. The cylindrical lenses used in a semiconductor laser module are defined as FACs (fast axis collimators) and SACs (slow axis collimators) and are attached to the system module to control the shape of the laser beam. The FAC lens and the SAC lens are made of a glass material to protect the lenses from thermal deformation. In addition, they have aspheric shapes to improve optical performances. This paper presents a mold core grinding process for an asymmetrical aspheric lens and a GMP (glass molding press), what can be used to make aspheric cylindrical lenses for use as FACs or SACs, and a protection filter made by using IAD (ion-beam-assisted deposition). Finally, we developed the aspheric cylindrical lenses and the protection filter for a 10-W semiconductor laser module.

  4. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2000-01-01

    Semiconductor optical amplifiers are useful building blocks for all-optical gates as wavelength converters and OTDM demultiplexers. The paper reviews the progress from simple gates using cross-gain modulation and four-wave mixing to the integrated interferometric gates using cross-phase modulation....... These gates are very efficient for high-speed signal processing and open up interesting new areas, such as all-optical regeneration and high-speed all-optical logic functions...

  5. Electrically pumped edge-emitting photonic bandgap semiconductor laser

    Science.gov (United States)

    Lin, Shawn-Yu; Zubrzycki, Walter J.

    2004-01-06

    A highly efficient, electrically pumped edge-emitting semiconductor laser based on a one- or two-dimensional photonic bandgap (PBG) structure is described. The laser optical cavity is formed using a pair of PBG mirrors operating in the photonic band gap regime. Transverse confinement is achieved by surrounding an active semiconductor layer of high refractive index with lower-index cladding layers. The cladding layers can be electrically insulating in the passive PBG mirror and waveguide regions with a small conducting aperture for efficient channeling of the injection pump current into the active region. The active layer can comprise a quantum well structure. The quantum well structure can be relaxed in the passive regions to provide efficient extraction of laser light from the active region.

  6. Evolution of the Novalux extended cavity surface-emitting semiconductor laser (NECSEL)

    Science.gov (United States)

    McInerney, John G.

    2016-03-01

    Novalux Inc was an enterprise founded by Aram Mooradian in 1998 to commercialise a novel electrically pumped vertical extended cavity semiconductor laser platform, initially aiming to produce pump lasers for optical fiber telecommunication networks. Following successful major investment in 2000, the company developed a range of single- and multi-mode 980 nm pump lasers emitting from 100-500 mW with excellent beam quality and efficiency. This rapid development required solution of several significant problems in chip and external cavity design, substrate and DBR mirror optimization, thermal engineering and mode selection. Output coupling to single mode fiber was exceptional. Following the collapse of the long haul telecom market in late 2001, a major reorientation of effort was undertaken, initially to develop compact 60-100 mW hybrid monolithically integrated pumplets for metro/local amplified networks, then to frequency-doubled blue light emitters for biotech, reprographics and general scientific applications. During 2001-3 I worked at Novalux on a career break from University College Cork, first as R&D Director managing a small group tasked with producing new capabilities and product options based on the NECSEL platform, including high power, pulsed and frequency doubled versions, then in 2002 as Director of New Product Realization managing the full engineering team, leading the transition to frequency doubled products.

  7. KrF laser amplifier with phase-conjugate Brillouin retroreflectors.

    Science.gov (United States)

    Gower, M C

    1982-09-01

    We have demonstrated the use of phase-conjugate stimulated Brillouin scattering mirrors to produce high-quality, short-pulse KrF laser beams from angular multiplexed and regenerative amplifiers. The mirror was also shown to isolate systems optically from amplifier spontaneous emission. Automatic alignment of targets using this mirror as a retroreflector was also demonstrated.

  8. Review on the dynamics of semiconductor nanowire lasers

    Science.gov (United States)

    Röder, Robert; Ronning, Carsten

    2018-03-01

    Semiconductor optoelectronic devices have contributed tremendously to the technological progress in the past 50-60 years. Today, they also play a key role in nanophotonics stimulated by the inherent limitations of electronic integrated circuits and the growing demand for faster communications on chip. In particular, the field of ‘nanowire photonics’ has emerged including the search for coherent light sources with a nano-scaled footprint. The past decade has been dedicated to find suitable semiconductor nanowire (NW) materials for such nanolasers. Nowadays, such NW lasers consistently work at room temperature covering a huge spectral range from the ultraviolet down to the mid-infrared depending on the band gap of the NW material. Furthermore, first approaches towards the modification and optimization of such NW laser devices have been demonstrated. The underlying dynamics of the electronic and photonic NW systems have also been studied very recently, as they need to be understood in order to push the technological relevance of nano-scaled coherent light sources. Therefore, this review will first present novel measurement approaches in order to study the ultrafast temporal and optical mode dynamics of individual NW laser devices. Furthermore, these fundamental new insights are reviewed and deeply discussed towards the efficient control and adjustment of the dynamics in semiconductor NW lasers.

  9. Ultrafast disk lasers and amplifiers

    Science.gov (United States)

    Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha

    2012-03-01

    Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.

  10. Trial manufacture of inside ellipse mirror for laser amplifier

    International Nuclear Information System (INIS)

    Kodama, Kenzo; Numajiri, Fumio; Kikuta, Yozo; Takasawa, Minoru; Oohira, Susumu; Nagaoka, Isao

    1984-01-01

    Inside ellipse mirrors have been trially manufactured for high power glass laser amplifiers. Their cutting process, machining, surface roughness, usage of cutting tools, materials, and processing process are given. Trial manufacture of supplementary devices for adjusting the direction of laser beam axis is also given. (author)

  11. Efficient trigger signal generation from wasted backward amplified stimulated emission at optical amplifiers for optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Kim Seung Taek

    2015-01-01

    Full Text Available This paper propose an optical structure to generate trigger signals for optical coherence tomography (OCT using backward light which is usually disposed. The backward light is called backward amplified stimulated emission generated from semiconductor optical amplifier (SOA when using swept wavelength tunable laser (SWTL. A circulator is applied to block undesirable lights in the SWTL instead of an isolator in common SWTL. The circulator also diverts backward amplified spontaneous lights, which finally bring out trigger signals for a high speed digitizer. The spectra of the forward lights at SOA and the waveform of the backward lights were measured to check the procedure of the trigger formation in the experiment. The results showed that the trigger signals from the proposed SWTL with the circulator was quite usable in OCT.

  12. Ultrafast laser-semiconductor interactions

    International Nuclear Information System (INIS)

    Schile, L.A.

    1996-01-01

    Studies of the ultrafast (< 100 fs) interactions of infrared, sub-100 fs laser pulses with IR, photosensitive semiconductor materials InGaAs, InSb, and HgCdTe are reported. Both the carrier dynamics and the associated Terahertz radiation from these materials are discussed. The most recent developments of femtosecond (< 100 fs) Optical Parametric Oscillators (OPO) has extended the wavelength range from the visible to 5.2 μm. The photogenerated semiconductor free carrier dynamics are determined in the 77 to 300 degrees K temperature range using the Transmission Correlation Peak (TCP) method. The electron-phonon scattering times are typically 200 - 600 fs. Depending upon the material composition and substrate on which the IR crystalline materials are deposited, the nonlinear TCP absorption gives recombination rates as fast as 10's of picoseconds. For the HgCdTe, there exists a 400 fs electron-phonon scattering process along with a much longer 3600 fs loss process. Studies of the interactions of these ultrashort laser pulses with semiconductors produce Terahertz (Thz) radiative pulses. With undoped InSb, there is a substantial change in the spectral content of this THz radiation between 80 - 260 degrees K while the spectrum of Te-doped InSb remains nearly unchanged, an effect attributed to its mobility being dominated by impurity scattering. At 80 degrees K, the terahertz radiation from undoped InSb is dependent on wavelength, with both a higher frequency spectrum and much larger amplitudes generated at longer wavelengths. No such effect is observed at 260 degrees K. Finally, new results on the dependence of the emitted THz radiation on the InSb crystal's orientation is presented

  13. All-optical 1st- and 2nd-order differential equation solvers with large tuning ranges using Fabry-Pérot semiconductor optical amplifiers.

    Science.gov (United States)

    Chen, Kaisheng; Hou, Jie; Huang, Zhuyang; Cao, Tong; Zhang, Jihua; Yu, Yuan; Zhang, Xinliang

    2015-02-09

    We experimentally demonstrate an all-optical temporal computation scheme for solving 1st- and 2nd-order linear ordinary differential equations (ODEs) with tunable constant coefficients by using Fabry-Pérot semiconductor optical amplifiers (FP-SOAs). By changing the injection currents of FP-SOAs, the constant coefficients of the differential equations are practically tuned. A quite large constant coefficient tunable range from 0.0026/ps to 0.085/ps is achieved for the 1st-order differential equation. Moreover, the constant coefficient p of the 2nd-order ODE solver can be continuously tuned from 0.0216/ps to 0.158/ps, correspondingly with the constant coefficient q varying from 0.0000494/ps(2) to 0.006205/ps(2). Additionally, a theoretical model that combining the carrier density rate equation of the semiconductor optical amplifier (SOA) with the transfer function of the Fabry-Pérot (FP) cavity is exploited to analyze the solving processes. For both 1st- and 2nd-order solvers, excellent agreements between the numerical simulations and the experimental results are obtained. The FP-SOAs based all-optical differential-equation solvers can be easily integrated with other optical components based on InP/InGaAsP materials, such as laser, modulator, photodetector and waveguide, which can motivate the realization of the complicated optical computing on a single integrated chip.

  14. Modeling bidirectionally coupled single-mode semiconductor lasers

    International Nuclear Information System (INIS)

    Mulet, Josep; Masoller, Cristina; Mirasso, Claudio R.

    2002-01-01

    We develop a dynamical model suitable for the description of two mutually coupled semiconductor lasers in a face-to-face configuration. Our study considers the propagation of the electric field along the compound system as well as the evolution of the carrier densities within each semiconductor laser. Mutual injection, passive optical feedback, and multiple reflections are accounted for in this framework, although under weak to moderate coupling conditions. We systematically describe the effect of the coupling strength on the spectrum of monochromatic solutions and on the respective dynamical behavior. By assuming single-longitudinal-mode operation, weak mutual coupling and slowly varying approximation, the dynamical model can be reduced to rate equations describing the mutual injection from one laser to its counterpart and vice versa. A good agreement between the complete and simplified models is found for small coupling. For larger coupling, higher-order terms lead to a smaller threshold reduction, reflected itself in the spectrum of the monochromatic solutions and in the dynamics of the optical power

  15. Modeling of Semiconductor Optical Amplifier Gain Characteristics for Amplification and Switching

    Science.gov (United States)

    Mahad, Farah Diana; Sahmah, Abu; Supa'at, M.; Idrus, Sevia Mahdaliza; Forsyth, David

    2011-05-01

    The Semiconductor Optical Amplifier (SOA) is presently commonly used as a booster or pre-amplifier in some communication networks. However, SOAs are also a strong candidate for utilization as multi-functional elements in future all-optical switching, regeneration and also wavelength conversion schemes. With this in mind, the purpose of this paper is to simulate the performance of the SOA for improved amplification and switching functions. The SOA is modeled and simulated using OptSim software. In order to verify the simulated results, a MATLAB mathematical model is also used to aid the design of the SOA. Using the model, the gain difference between simulated and mathematical results in the unsaturated region is <1dB. The mathematical analysis is in good agreement with the simulation result, with only a small offset due to inherent software limitations in matching the gain dynamics of the SOA.

  16. ICESat-2 laser Nd:YVO4 amplifier

    Science.gov (United States)

    Sawruk, Nicholas W.; Burns, Patrick M.; Edwards, Ryan E.; Litvinovitch, Viatcheslav; Martin, Nigel; Witt, Greg; Fakhoury, Elias; Iskander, John; Pronko, Mark S.; Troupaki, Elisavet; Bay, Michael M.; He, Charles C.; Wang, Liqin L.; Cavanaugh, John F.; Farrokh, Babak; Salem, Jonathan A.; Baker, Eric

    2018-02-01

    We report on the cause and corrective actions of three amplifier crystal fractures in the space-qualified laser systems used in NASA Goddard Space Flight Center's (GSFC) Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). The ICESat-2 lasers each contain three end-pumped Nd:YVOO4 amplifier stages. The crystals are clamped between two gold plated copper heat spreaders with an indium foil thermal interface material, and the crystal fractures occurred after multiple years of storage and over a year of operational run-time. The primary contributors are high compressive loading of the NdYVO4 crystals at the beginning of life, a time dependent crystal stress caused by an intermetallic reaction of the gold plating and indium, and slow crack growth resulting in a reduction in crystal strength over time. An updated crystal mounting scheme was designed, analyzed, fabricated and tested. Thee fracture slab failure analysis, finite-element modeling and corrective actions are presented.

  17. Low-confinement high-power semiconductor lasers

    NARCIS (Netherlands)

    Buda, M.

    1999-01-01

    This thesis presents the results of studies related to optimisation of high power semiconductor laser diodes using the low confinement concept. This implies a different approach in designing the transversal layer structure before growth and in processing the wafer after growth, for providing the

  18. The Multidisk Diode-Pumped High Power Yb:YAG Laser Amplifier of High-Intensity Laser System with 1 kHz Repetition Rate

    Science.gov (United States)

    Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Kirpichnikov, A. V.; Pestryakov, E. V.

    2018-04-01

    The source of instabilities in the multidisk diode-pumped high power Yb:YAG laser amplifier with cryogenic closed-loop cooling in the laser amplification channel of the high-intensity laser system with 1 kHz repetition rate was determined. Dissected copper mounts were designed and used to suppress instabilities and to achieve repeatability of the system. The equilibrium temperature dependency of the active elements on average power was measured. The seed laser for the multidisk amplifier was numerically simulated and designed to allow one to increase pulses output energy after the amplifier up to 500 mJ.

  19. Demonstration of tunable microwave photonic notch filters using slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper

    2009-01-01

    We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz....

  20. Amplified spontaneous emission and thermal management on a high average-power diode-pumped solid-state laser - the Lucia laser system

    International Nuclear Information System (INIS)

    Albach, D.

    2010-01-01

    The development of the laser triggered the birth of numerous fields in both scientific and industrial domains. High intensity laser pulses are a unique tool for light/matter interaction studies and applications. However, current flash-pumped glass-based systems are inherently limited in repetition-rate and efficiency. Development within recent years in the field of semiconductor lasers and gain media drew special attention to a new class of lasers, the so-called Diode Pumped Solid State Laser (DPSSL). DPSSLs are highly efficient lasers and are candidates of choice for compact, high average-power systems required for industrial applications but also as high-power pump sources for ultra-high intense lasers. The work described in this thesis takes place in the context of the 1 kilowatt average-power DPSSL program Lucia, currently under construction at the 'Laboratoire d'Utilisation des Laser Intenses' (LULI) at the Ecole Polytechnique, France. Generation of sub-10 nanosecond long pulses with energies of up to 100 joules at repetition rates of 10 hertz are mainly limited by Amplified Spontaneous Emission (ASE) and thermal effects. These limitations are the central themes of this work. Their impact is discussed within the context of a first Lucia milestone, set around 10 joules. The developed laser system is shown in detail from the oscillator level to the end of the amplification line. A comprehensive discussion of the impact of ASE and thermal effects is completed by related experimental benchmarks. The validated models are used to predict the performances of the laser system, finally resulting in a first activation of the laser system at an energy level of 7 joules in a single-shot regime and 6.6 joules at repetition rates up to 2 hertz. Limitations and further scaling approaches are discussed, followed by an outlook for the further development. (author) [fr

  1. Laser amplification of optical images using a CW Nd:YAG amplifier

    International Nuclear Information System (INIS)

    Aman, H

    2013-01-01

    In this paper a scheme for the amplification of optical images is described, using a continuous wave (CW) diode-pumped Nd:YAG (yttrium aluminum garnet) laser module. A passively q-switched end-pumped Nd:YAG laser is used as a pump source, which carries the optical image distribution as an input which is transmitted towards the amplifier at a distance of about ten feet. For amplification, a three-side-pumped CW Nd:YAG laser module is utilized without the cavity mirrors. In this way, optical images are amplified by a factor of 3.2 and imaged at a distance of ten feet with a spatial resolution of 500 μm. (paper)

  2. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    International Nuclear Information System (INIS)

    Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G.; Sharples, Steve D.

    2010-01-01

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  3. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G. [Institute of Biophysics, Imaging and Optical Science, University of Nottingham, Nottinghamshire NG7 2RD (United Kingdom); Sharples, Steve D. [Applied Optics Group, Electrical Systems and Optics Research Division, University of Nottingham, Nottinghamshire NG7 2RD (United Kingdom)

    2010-02-15

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  4. Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s-1 directly modulated lasers and 40 Gb s-1 signal-regenerative amplifiers

    International Nuclear Information System (INIS)

    Sugawara, M; Hatori, N; Ishida, M; Ebe, H; Arakawa, Y; Akiyama, T; Otsubo, K; Yamamoto, T; Nakata, Y

    2005-01-01

    This paper presents recent progress in the field of semiconductor lasers and optical amplifiers with InAs-based self-assembled quantum dots in the active region for optical telecommunication. Based on our design in terms of the maximum bandwidth for high-speed modulation and p-type doping in quantum dots for high temperature stability, we realized temperature-insensitive 10 Gb s -1 laser diodes on a GaAs substrate at 1.3 μm. The output waveform at 10 Gb s -1 maintained a clear eye opening, average output power and extinction ratio without current adjustments from 20 deg. C to 70 deg. C. We developed ultrawide-band high-power amplifiers in the 1.5 μm wavelength region on an InP substrate. The amplifier showed ultrafast gain response under gain saturation, and enabled signal regeneration at 40 Gb s -1 by suppressing the '1'-level noise due to the beating between the signal and amplified spontaneous emission. We present our amplifier module with polarization diversity to enable a stable polarization-insensitive performance, and also, discuss prospects for polarization-insensitive quantum dots by the close stacking technique

  5. E-beam-pumped semiconductor lasers

    Science.gov (United States)

    Rice, Robert R.; Shanley, James F.; Ruggieri, Neil F.

    1995-04-01

    The collapse of the Soviet Union opened many areas of laser technology to the West. E-beam- pumped semiconductor lasers (EBSL) were pursued for 25 years in several Soviet Institutes. Thin single crystal screens of II-VI alloys (ZnxCd1-xSe, CdSxSe1-x) were incorporated in laser CRTs to produce scanned visible laser beams at average powers greater than 10 W. Resolutions of 2500 lines were demonstrated. MDA-W is conducting a program for ARPA/ESTO to assess EBSL technology for high brightness, high resolution RGB laser projection application. Transfer of II-VI crystal growth and screen processing technology is underway, and initial results will be reported. Various techniques (cathodoluminescence, one- and two-photon laser pumping, etc.) have been used to assess material quality and screen processing damage. High voltage (75 kV) video electronics were procured in the U.S. to operate test EBSL tubes. Laser performance was documented as a function of screen temperature, beam voltage and current. The beam divergence, spectrum, efficiency and other characteristics of the laser output are being measured. An evaluation of the effect of laser operating conditions upon the degradation rate is being carried out by a design-of-experiments method. An initial assessment of the projected image quality will be performed.

  6. Influence of temperature on the spectral characteristics of semiconductor lasers in the visible range

    Science.gov (United States)

    Adamov, A. A.; Baranov, M. S.; Khramov, V. N.

    2018-04-01

    The results of studies on the effect of temperature on the output spectral characteristics of continuous semiconductor lasers of the visible range are presented. The paper presents the results of studying the spectral-optical radiation parameters of semiconductor lasers, their coherence lengths, and the dependence of the position of the spectral peak of the wavelength on temperature. This is necessary for the selection of the most optimal laser in order to use it for medical ophthalmologic diagnosis. The experiment was carried out using semiconductor laser modules based on a laser diode. The spectra were recorded by using a two-channel automated spectral complex based on the MDR-23 monochromator. Spectral dependences on the temperature of semiconductor lasers are obtained, in the range from 300 to 370 K. The possibility of determining the internal damage to the stabilization of laser modules without opening the case is shown, but only with the use of their spectral characteristics. The obtained data allow taking into account temperature characteristics and further optimization of parameters of such lasers when used in medical practice, in particular, in ophthalmologic diagnostics.

  7. A Kinetics Model for KrF Laser Amplifiers

    Science.gov (United States)

    Giuliani, J. L.; Kepple, P.; Lehmberg, R.; Obenschain, S. P.; Petrov, G.

    1999-11-01

    A computer kinetics code has been developed to model the temporal and spatial behavior of an e-beam pumped KrF laser amplifier. The deposition of the primary beam electrons is assumed to be spatially uniform and the energy distribution function of the nascent electron population is calculated to be near Maxwellian below 10 eV. For an initial Kr/Ar/F2 composition, the code calculates the densities of 24 species subject to over 100 reactions with 1-D spatial resolution (typically 16 zones) along the longitudinal lasing axis. Enthalpy accounting for each process is performed to partition the energy into internal, thermal, and radiative components. The electron as well as the heavy particle temperatures are followed for energy conservation and excitation rates. Transport of the lasing photons is performed along the axis on a dense subgrid using the method of characteristics. Amplified spontaneous emission is calculated using a discrete ordinates approach and includes contributions to the local intensity from the whole amplifier volume. Specular reflection off side walls and the rear mirror are included. Results of the model will be compared with data from the NRL NIKE laser and other published results.

  8. Synchronization scenario of two distant mutually coupled semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mirasso, Claudio; Heil, Tilmann

    2004-01-01

    We present numerical and experimental investigations of the synchronization of the coupling-induced instabilities in two distant mutually coupled semiconductor lasers. In our experiments, two similar Fabry-Perot lasers are coupled via their coherent optical fields. Our theoretical framework is ba...

  9. Switchable semiconductor optical fiber laser incorporating AWG and broadband FBG with high SMSR

    International Nuclear Information System (INIS)

    Ahmad, H; Zulkifli, M Z; Thambiratnam, K; Latiff, A A; Harun, S W

    2009-01-01

    In this paper we propose and demonstrate a switchable wavelength fiber laser (SWFL) using a semiconductor optical amplifier (SOA) together with an arrayed waveguide grating (AWG). The proposed SOA-based SWFL is capable of generating up to 14 lasing channels from 1530.1 nm to 1534.9 nm at a channel spacing of 0.8 nm (100 GHz) and a bandwidth of 11.8 and 10.2 nm respectively. The EDFA-based SWFL has a higher peak power at –5 dBm, while to SOA-based SWFL has a peak power of only –10 dBm. However, the SOA-based SWFL exhibits a much better SMSR of between 10 to 20 dB as compared to the SMSR of the EDFA-based SWFL due to the inhomogeneous broadening properties of the SOA

  10. MBE System for Antimonide Based Semiconductor Lasers

    National Research Council Canada - National Science Library

    Lester, Luke

    1999-01-01

    .... SLR-770 inductively coupled plasma (ICP) processing system. The SLR-770 has been invaluable in the study of plasma etching of AlGaAsSb and GaSb-materials that form the backbone of antimonide-based semiconductor lasers...

  11. High Power Mid-IR Semiconductor Lasers for LADAR

    National Research Council Canada - National Science Library

    Lester, Luke

    2003-01-01

    The growing need for antimonide-based, room temperature, 2-5 micrometers, semiconductor lasers for trace gas spectroscopy, ultra-low loss communication, infrared countermeasures, and ladar motivated this work...

  12. Transverse pumped laser amplifier architecture

    Science.gov (United States)

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary

    2013-07-09

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  13. Injection seeded, diode pumped regenerative ring Nd:YAG amplifier for spaceborne laser ranging technology development

    Science.gov (United States)

    Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.

    1992-01-01

    A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.

  14. Nonlinear properties of quantum dot semiconductor optical amplifiers at 1.3 μm Invited Paper

    Institute of Scientific and Technical Information of China (English)

    D. Bimberg; C. Meuer; M. L(a)mmlin; S. Liebich; J. Kim; A. Kovsh; I. Krestnikov; G. Eisenstein

    2008-01-01

    @@ The dynamics of nonlinear processes in quantum dot (QD) semiconductor optical amplifiers (SOAs) are investigated. Using small-signal measurements, the suitabilities of cross-gain and cross-phase modulation as well as four wave mixing (FWM) for wavelength conversion are examined. The cross-gain modulation is found to be suitable for wavelength conversion up to a frequency of 40 GHz.

  15. Delay induced high order locking effects in semiconductor lasers

    Science.gov (United States)

    Kelleher, B.; Wishon, M. J.; Locquet, A.; Goulding, D.; Tykalewicz, B.; Huyet, G.; Viktorov, E. A.

    2017-11-01

    Multiple time scales appear in many nonlinear dynamical systems. Semiconductor lasers, in particular, provide a fertile testing ground for multiple time scale dynamics. For solitary semiconductor lasers, the two fundamental time scales are the cavity repetition rate and the relaxation oscillation frequency which is a characteristic of the field-matter interaction in the cavity. Typically, these two time scales are of very different orders, and mutual resonances do not occur. Optical feedback endows the system with a third time scale: the external cavity repetition rate. This is typically much longer than the device cavity repetition rate and suggests the possibility of resonances with the relaxation oscillations. We show that for lasers with highly damped relaxation oscillations, such resonances can be obtained and lead to spontaneous mode-locking. Two different laser types-—a quantum dot based device and a quantum well based device—are analysed experimentally yielding qualitatively identical dynamics. A rate equation model is also employed showing an excellent agreement with the experimental results.

  16. Laser interferometric method for determining the carrier diffusion length in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Manukhov, V. V. [Saint Petersburg State University (Russian Federation); Fedortsov, A. B.; Ivanov, A. S., E-mail: ivaleks58@gmail.com [Saint Petersburg Mining University (Russian Federation)

    2015-09-15

    A new laser interferometric method for measuring the carrier diffusion length in semiconductors is proposed. The method is based on the interference–absorption interaction of two laser radiations in a semiconductor. Injected radiation generates additional carriers in a semiconductor, which causes a change in the material’s optical constants and modulation of the probing radiation passed through the sample. When changing the distance between carrier generation and probing points, a decrease in the carrier concentration, which depends on the diffusion length, is recorded. The diffusion length is determined by comparing the experimental and theoretical dependences of the probe signal on the divergence of the injector and probe beams. The method is successfully tested on semiconductor samples with different thicknesses and surface states and can be used in scientific research and the electronics industry.

  17. Detection of weak optical signals with a laser amplifier

    International Nuclear Information System (INIS)

    Kozlovskii, A. V.

    2006-01-01

    Detection of weak and extremely weak light signals amplified by linear and four-wave mixing laser amplifiers is analyzed. Photoelectron distributions are found for different input photon statistics over a wide range of gain. Signal-to-noise ratios are calculated and analyzed for preamplification schemes using linear and four-wave mixing amplifiers. Calculations show that the high signal-to-noise ratio (much higher than unity), ensuring reliable detection of weak input signals, can be attained only with a four-wave mixing preamplification scheme. Qualitative dependence of the signal-to-noise ratio on the quantum statistical properties of both signal and idler waves is demonstrated

  18. Design and Characterisation of III-V Semiconductor Nanowire Lasers

    Science.gov (United States)

    Saxena, Dhruv

    The development of small, power-efficient lasers underpins many of the technologies that we utilise today. Semiconductor nanowires are promising for miniaturising lasers to even smaller dimensions. III-V semiconductors, such as Gallium Arsenide (GaAs) and Indium Phosphide (InP), are the most widely used materials for optoelectronic devices and so the development of nanowire lasers based on these materials is expected to have technologically significant outcomes. This PhD dissertation presents a comprehensive study of the design of III-V semiconductor nanowire lasers, with bulk and quantum confined active regions. Based on the design, various III-V semiconductor nanowire lasers are demonstrated, namely, GaAs nanowire lasers, GaAs/AlGaAs multi-quantum well (MQW) nanowire lasers and InP nanowire lasers. These nanowire lasers are shown to operate at room temperature, have low thresholds, and lase from different transverse modes. The structural and optoelectronic quality of nanowire lasers are characterised via electron microscopy and photoluminescence spectroscopic techniques. Lasing is characterised in all these devices by optical pumping. The lasing characteristics are analysed by rate equation modelling and the lasing mode(s) in these devices is characterised by threshold gain modelling, polarisation measurements and Fourier plane imaging. Firstly, GaAs nanowire lasers that operate at room temperature are demonstrated. This is achieved by determining the optimal nanowire diameter to reduce threshold gain and by passivating nanowires to improve their quantum efficiency (QE). High-quality surface passivated GaAs nanowires of suitable diameters are grown. The growth procedure is tailored to improve both QE and structural uniformity of nanowires. Room-temperature lasing is demonstrated from individual nanowires and lasing is characterised to be from TM01 mode by threshold gain modelling. To lower threshold even further, nanowire lasers with GaAs/AlGaAs coaxial multi

  19. Gain transient control for wavelength division multiplexed access networks using semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Osadchiy, Alexey Vladimirovich; Kjær, Rasmus

    2009-01-01

    Gain transients can severely hamper the upstream network performance in wavelength division multiplexed (WDM) access networks featuring erbium doped fiber amplifiers (EDFAs) or Raman amplification. We experimentally demonstrate for the first time using 10 Gb/s fiber transmission bit error rate...... measurements how a near-saturated semiconductor optical amplifier (SOA) can be used to control these gain transients. An SOA is shown to reduce the penalty of transients originating in an EDFA from 2.3 dB to 0.2 dB for 10 Gb/s transmission over standard single mode fiber using a 231-1 PRBS pattern. The results...... suggest that a single SOA integrated within a WDM receiver at the metro node could offer a convenient all-optical solution for upstream transient controlin WDM access networks....

  20. Amplification of UV ultrashort pulse laser in e-beam pumped KrF amplifier

    CERN Document Server

    Tang Xiu Zhang; Gong Kun; Ma Wei Yi; Shan Yu Sheng; Wang Nai Yan

    2002-01-01

    Experimental investigations were performed for amplification of ultrashort pulse laser with Heaven-I e-beam pumped KrF amplifier in CIAE. A 50 mJ, 420 fs UV ultrashort pulse was amplified to 2-3 J energy, 1.2 ps pulse duration, and 2TW laser power. Experimental technique such as synchronization were describe, some parameters such as nonlinear absorb coefficient were measured in experiment. As a result, it is possible to achieve ultra-strong UV laser with intensity higher than 10 sup 1 sup 9 W/cm sup 2 in recently years

  1. Amplification of UV ultrashort pulse laser in e-beam pumped KrF amplifier

    International Nuclear Information System (INIS)

    Tang Xiuzhang; Zhang Haifeng; Gong Kun; Ma Weiyi; Shan Yusheng; Wang Naiyan

    2002-01-01

    Experimental investigations were performed for amplification of ultrashort pulse laser with Heaven-I e-beam pumped KrF amplifier in CIAE. A 50 mJ, 420 fs UV ultrashort pulse was amplified to 2-3 J energy, 1.2 ps pulse duration, and 2TW laser power. Experimental technique such as synchronization were describe, some parameters such as nonlinear absorb coefficient were measured in experiment. As a result, it is possible to achieve ultra-strong UV laser with intensity higher than 10 19 W/cm 2 in recently years

  2. Optically pumped semiconductor lasers: Conception and characterization of a single mode source for Cesium atoms manipulation

    International Nuclear Information System (INIS)

    Cocquelin, B.

    2009-02-01

    Lasers currently used in atomic clocks or inertial sensors are suffering from a lack of power, narrow linewidth or compactness for future spatial missions. Optically pumped semiconductor lasers, which combine the approach of classical solid state lasers and the engineering of semiconductor laser, are considered here as a candidate to a metrological laser source dedicated to the manipulation of Cesium atoms in these instruments. These lasers have demonstrated high power laser emission in a circular single transverse mode, as well as single longitudinal mode emission, favoured by the semiconductor structure and the external cavity design. We study the definition and the characterization of a proper semiconductor structure for the cooling and the detection of Cesium atoms at 852 nm. A compact and robust prototype tunable on the Cesium D2 hyperfine structure is built. The laser frequency is locked to an atomic transition thanks to a saturated absorption setup. The emission spectral properties are investigated, with a particular attention to the laser frequency noise and the laser linewidth. Finally, we describe and model the thermal properties of the semiconductor structure, which enables the simulation of the laser power characteristic. The experimental parameters are optimised to obtain the maximum output power with our structure. Thanks to our analysis, we propose several ways to overcome these limitations, by reducing the structure heating. (authors)

  3. Development of the power control system for semiconductor lasers

    International Nuclear Information System (INIS)

    Kim, Kwang Suk; Kim, Cheol Jung

    1997-12-01

    For the first year plan of this program, we developed the power control system for semiconductor lasers. We applied the high-current switching mode techniques to fabricating a power control system. Then, we investigated the direct side pumping techniques with GaA1As diode laser bars to laser crystal without pumping optics. We obtained 0.5W average output power from this DPSSL. (author). 54 refs., 3 tabs., 18 figs

  4. Figures of merit for microwave photonic phase shifters based on semiconductor optical amplifiers.

    Science.gov (United States)

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2012-05-07

    We theoretically and experimentally compare the performance of two fully tunable phase shifter structures based on semiconductor optical amplifiers (SOA) by means of several figures of merit common to microwave photonic systems. A single SOA stage followed by a tailored notch filter is compared with a cascaded implementation comprising three SOA-based phase shifter stages. Attention is focused on the assessment of the RF net gain, noise figure and nonlinear distortion. Recommendations on the performance optimization of this sort of approaches are detailed.

  5. Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.

    Science.gov (United States)

    Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A

    2016-02-22

    With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.

  6. Output power PDF of a saturated semiconductor optical amplifier: Second-order noise contributions by path integral method

    DEFF Research Database (Denmark)

    Öhman, Filip; Mørk, Jesper; Tromborg, Bjarne

    2007-01-01

    We have developed a second-order small-signal model for describing the nonlinear redistribution of noise in a saturated semiconductor optical amplifier. In this paper, the details of the model are presented. A numerical example is used to compare the model to statistical simulations. We show that...

  7. Optimisation of 40 Gb/s wavelength converters based on four-wave mixing in a semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Schulze, K.; Petersen, Martin Nordal; Herrera, J.

    2007-01-01

    The optimum operating powers and wavelengths for a 40 Gb/s wavelength converter based on four-wave mixing in a semiconductor 14 optical amplifier are inferred from experimental results. From these measurements, some general rules of thumb are derived for this kind of devices. Generally, the optim...

  8. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy

    International Nuclear Information System (INIS)

    Li Nian-Qiang; Pan Wei; Yan Lian-Shan; Luo Bin; Xu Ming-Feng; Tang Yi-Long

    2012-01-01

    Symbolic transfer entropy (STE) is employed to quantify the dominant direction of information flow between two chaotic-semiconductor-laser time series. The information flow in unidirectionally and bidirectionally coupled systems was analyzed systematically. Numerical results show that the dependence relationship can be revealed if there exists any coupling between two chaotic semiconductor lasers. More importantly, in both unsynchronized and good synchronization regimes, the STE can be used to quantify the direction of information flow between the lasers, although the former case leads to a better identification. The results thus establish STE as an effective tool for quantifying the direction of information flow between chaotic-laser-based systems

  9. Laser apparatus for surgery and force therapy based on high-power semiconductor and fibre lasers

    International Nuclear Information System (INIS)

    Minaev, V P

    2005-01-01

    High-power semiconductor lasers and diode-pumped lasers are considered whose development qualitatively improved the characteristics of laser apparatus for surgery and force therapy, extended the scope of their applications in clinical practice, and enhanced the efficiency of medical treatment based on the use of these lasers. The characteristics of domestic apparatus are presented and their properties related to the laser emission wavelength used in them are discussed. Examples of modern medical technologies based on these lasers are considered. (invited paper)

  10. Individual optimization of InAlGaAsP-InP sections for 1.55-μm passively mode-locked lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina; Larsson, David; Semenova, Elizaveta

    2012-01-01

    We present integrated single QW semiconductor optical amplifier and MQW electroabsorber modulator based on InAlGaAsP-InP materials for application in a monolithic mode-locked laser. Optimized structures with high-quality butt-joint interfaces are demonstrated.......We present integrated single QW semiconductor optical amplifier and MQW electroabsorber modulator based on InAlGaAsP-InP materials for application in a monolithic mode-locked laser. Optimized structures with high-quality butt-joint interfaces are demonstrated....

  11. Direct solar-pumped iodine laser amplifier

    Science.gov (United States)

    Han, Kwang S.; Hwang, In Heon; Kim, Khong Hon; Stock, Larry V.

    1988-01-01

    A XeCl laser pumped iodine laser oscillator was developed which will be incorporated into the Master Oscillator Power Amplifier (MOPA) system. The developed XeCl laser produces output energy of about 60 mJ per pulse. The pulse duration was about 10 nsec. The kinetic model for the solar-pumped laser was refined and the algorithm for the calculation of a set of rate equations was improved to increase the accuracy and the efficiency of the calculation. The improved algorithm was applied to explain the existing experimental data taken from a flashlamp pumped iodine laser for three kinds of lasants, i-C3F7I, n-C4F9I, and t-C4F9I. Various solid laser materials were evaluated for solar-pumping. The materials studied were Nd:YAG, Nd:YLF, and Cr:Nd:GSGG crystals. The slope efficiency of 0.17 percent was measured for the Nd:YLF near the threshold pump intensity which was 211 solar constants (29W/sq cm). The threshold pump intensity of the Nd:YAG was measured to be 236 solar constants (32W/sq cm) and the near-threshold slope efficiency was 0.12 percent. True CW laser operation of Cr:Nd:GSGG was possible only at pump intensities less than or equal to 1,500 solar constants (203 W/sq cm). This fact was attributed to the high thermal focusing effect of the Cr:Nd:GSGG rod.

  12. Radially resolved simulation of a high-gain free electron laser amplifier

    International Nuclear Information System (INIS)

    Fawley, W.M.; Prosnitz, D.; Doss, S.; Gelinas, R.

    1983-01-01

    The results of a two-dimensional simulation of a high-gain free electron laser (FEL) amplifier is presented. The simulation solves the inhomogeneous paraxial wave equation. The source term is radially resolved and is obtained by tracking the interaction of the laser field with localized macroparticles

  13. Regime for a Self-ionizing Raman Laser Amplifier

    International Nuclear Information System (INIS)

    Clark, D.S.; Fisch, N.J.

    2001-01-01

    Backward Raman amplification and compression at high power might occur if a long pumping laser pulse is passed through a plasma to interact resonantly with a counter-propagating short seed pulse [V.M. Malkin, et al., Phys. Rev. Lett. 82 (1999) 4448-4451]. One critical issue, however, is that the pump may be unacceptably depleted due to spontaneous Raman backscatter from intrinsic fluctuations in the amplifying plasma medium prior to its useful interaction with the seed. Premature backscatter may be avoided, however, by employing a gaseous medium with pump intensities too low to ionize the medium, and using the intense seed to produce the plasma by rapid photoionization as it is being amplified [V.M. Malkin, et al., Phys. Plasmas (2001)]. In addition to allowing that only rather low power pumps be used, photoionization introduces a damping of the short pulse which must be overcome by the Raman growth rate for net amplification to occur. The parameter space of gas densities, laser wavelengths, and laser intensities is surveyed to identify favorable regimes for this effect. Output laser intensities of 10(superscript ''17'') W/cm(superscript ''2'') for 0.5 mm radiation are found to be feasible for such a scheme using a pump of 10(superscript ''13'') W/cm(superscript ''2'') and an initial seed of 5 x 10(superscript ''14'') W/cm(superscript ''2'') over an amplification length of 5.6 cm in hydrogen gas

  14. On increasing the efficiency of a streamer semiconductor laser

    International Nuclear Information System (INIS)

    Rusakov, K I; Parashchuk, V V

    2007-01-01

    The influence of intense electric and optical fields produced by a streamer discharge in wide-gap semiconductors on their spectroscopic properties is studied. The effect is manifested in the reversible change of the luminescence parameters of the active medium. Methods are proposed for increasing the service life and efficiency of a streamer laser in limiting regimes, which are based on the use of semiconductor protective layers of a certain crystallographic orientation and a crystal microrelief with the size of elements of the order of the wavelength of light. Streamer emission was observed and studied in new promising Eu:CaGa 2 S 4 and Eu:Ca 4 Ga 2 S 7 materials. (lasers)

  15. Studies of high repetition rate laser-produced plasma soft-X-ray amplifiers

    International Nuclear Information System (INIS)

    Cassou, K.

    2006-12-01

    The progress made as well on the Ti:Sa laser system, as in the control and the knowledge of laser produced X-UV sources allowed the construction of a X-UV laser station dedicated to the applications. My thesis work falls under the development of this station and more particularly on the characterization of a X-UV laser plasma amplifier. The experimental study relates to the coupling improvement of the pump infra-red laser with plasma within the framework of the transient collisional X-UV laser generation. These X-UV lasers are generated in a plasma formed by the interaction of a solid target and a laser pulse of approximately 500 ps duration, followed by a second infra-red laser pulse known as of pump (about 5 ps) impinging on the target in grazing incidence. For the first time, a complete parametric study was undertaken on the influence of the grazing angle on the pumping of the amplifying medium. One of the results was to reach very high peak brightness about 10 28 ph/s/mm 2 /mrad 2 /(0.1%bandwidth), which compares well with the free-electron laser brightness. Moreover, we modified then used a new two-dimensional hydrodynamic code with adaptive mesh refinement in order to understand the influence of the space-time properties of the infra-red laser on the formation and the evolution of the amplifying plasma. Our modeling highlighted the interest to use a super Gaussian transverse profile for the line focus leading to an increase in a factor two of the gain region size and a reduction of the electron density gradient by three orders of magnitude. These improvements should strongly increase the energy contained in X-UV laser beam. We thus used X-UV laser to study the appearance of transient defects produced by a laser IR on a beam-splitter rear side. We also began research on the mechanisms of DNA damage induced by a very intense X-UV radiation. (author)

  16. ytterbium- & erbium-doped silica for planar waveguide lasers & amplifiers

    DEFF Research Database (Denmark)

    Dyndgaard, Morten Glarborg

    2001-01-01

    The purpose of this work was to demonstrate ytterbium doped planar components and investigate the possibilities of making erbium/ytterbium codoped planar waveguides in germano-silica glass. Furthermore, tools for modelling lasers and erbium/ytterbium doped amplifiers. The planar waveguides were...

  17. Broadband tunability of gain-flattened quantum-well semiconductor lasers with an external grating

    International Nuclear Information System (INIS)

    Mittelstein, M.; Mehuys, D.; Yariv, A.; Sarfaty, R.; Ungar, J.E.

    1989-01-01

    Semiconductor injection lasers are known to be tunable over a range of order kΒ · T. Quantum-well lasers, in particular, are shown to exhibit flattened, broadband gain spectra at a particular pumping condition. The gain requirement for a grating-tuned external cavity configuration is examined and is applied to a semiconductor quantum-well laser with an optimized length of gain region. The coupled-cavity formalism is employed to examine the conditions for continuous tuning. The possible tuning range of double-heterostructure lasers is compared to that of quantum-well lasers. The predicted broadband tunability of quantum-well lasers is confirmed experimentally by grating-tuning of uncoated lasers exceeding 120 nm, with single, longitudinal mode output power exceeding 300 mW

  18. Criterion of transverse coherence of self-amplified spontaneous emission in high gain free electron laser amplifiers

    International Nuclear Information System (INIS)

    Xie, M.; Kim, K.J.

    1995-01-01

    In a high gain free electron laser amplifier based on Self-Amplified Spontaneous Emission (SASE) the spontaneous radiation generated by an electron beam near the undulator entrance is amplified many orders of magnitude along the undulator. The transverse coherence properties of the amplified radiation depends on both the amplification process and the coherence of the seed radiation (the undulator radiation generated in the first gain length or so). The evolution of the transverse coherence in the amplification process is studied based on the solution of the coupled Maxwell-Vlasov equations including higher order transverse modes. The coherence of the seed radiation is determined by the number of coherent modes in the phase space area of the undulator radiation. We discuss the criterion of transverse coherence and identify governing parameters over a broad range of parameters. In particular we re-examine the well known emittance criterion for the undulator radiation, which states that full transverse coherence is guaranteed if the rms emittance is smaller than the wavelength divided by 4π. It is found that this criterion is modified for SASE because of the different optimization conditions required for the electron beam. Our analysis is a generalization of the previous study by Yu and Krinsky for the case of vanishing emittance with parallel electron beam. Understanding the transverse coherence of SASE is important for the X-ray free electron laser projects now under consideration at SLAC and DESY

  19. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.

    Science.gov (United States)

    Wan, W J; Li, H; Zhou, T; Cao, J C

    2017-03-08

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.

  20. A semiconductor laser device

    Energy Technology Data Exchange (ETDEWEB)

    Takaro, K.; Naoki, T.; Satosi, K.; Yasutosi, K.

    1984-03-17

    A device is proposed which makes it possible to obtain single vertical mode emission in the absence of noise. Noise suppression is achieved by a method which determines the relationship between the donor densities in the second and third layers of an n type semiconductor laser, and the total output optical emission of layers with respect to the emission from the entire laser. The device consists of a photoresist film with a window applied to a 100 GaAs n type conductivity substrate using a standard method. Chemical etching through this window in the substrate is used to generate a slot approximately 1 micrometer in size. After the photoresist film is removed, the following layers are deposited from the liquid phase onto the substrate in the sequence indicated: a telurium doped protective layer of n type AlxGa(1-x) As; 2) an undoped active p type AlyGa(1-6) As layer and a tellurium doped upper protective n type conductivity GaAs layer.

  1. Object-oriented wavefront correction in an asymmetric amplifying high-power laser system

    Science.gov (United States)

    Yang, Ying; Yuan, Qiang; Wang, Deen; Zhang, Xin; Dai, Wanjun; Hu, Dongxia; Xue, Qiao; Zhang, Xiaolu; Zhao, Junpu; Zeng, Fa; Wang, Shenzhen; Zhou, Wei; Zhu, Qihua; Zheng, Wanguo

    2018-05-01

    An object-oriented wavefront control method is proposed aiming for excellent near-field homogenization and far-field distribution in an asymmetric amplifying high-power laser system. By averaging the residual errors of the propagating beam, smaller pinholes could be employed on the spatial filters to improve the beam quality. With this wavefront correction system, the laser performance of the main amplifier system in the Shen Guang-III laser facility has been improved. The residual wavefront aberration at the position of each pinhole is below 2 µm (peak-to-valley). For each pinhole, 95% of the total laser energy is enclosed within a circle whose diameter is no more than six times the diffraction limit. At the output of the main laser system, the near-field modulation and contrast are 1.29% and 7.5%, respectively, and 95% of the 1ω (1053 nm) beam energy is contained within a 39.8 µrad circle (6.81 times the diffraction limit) under a laser fluence of 5.8 J cm-2. The measured 1ω focal spot size and near-field contrast are better than the design values of the Shen Guang-III laser facility.

  2. High speed all optical logic gates based on quantum dot semiconductor optical amplifiers.

    Science.gov (United States)

    Ma, Shaozhen; Chen, Zhe; Sun, Hongzhi; Dutta, Niloy K

    2010-03-29

    A scheme to realize all-optical Boolean logic functions AND, XOR and NOT using semiconductor optical amplifiers with quantum-dot active layers is studied. nonlinear dynamics including carrier heating and spectral hole-burning are taken into account together with the rate equations scheme. Results show with QD excited state and wetting layer serving as dual-reservoir of carriers, as well as the ultra fast carrier relaxation of the QD device, this scheme is suitable for high speed Boolean logic operations. Logic operation can be carried out up to speed of 250 Gb/s.

  3. Semiconductor Mode-Locked Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten

    2003-01-01

    The thesis deals with the design and fabrication of semiconductor mode-locked lasers for use in optical communication systems. The properties of pulse sources and characterization methods are described as well as requirements for application in communication systems. Especially, the importance of...

  4. Laser amplifier based on a neodymium glass rod 150 mm in diameter

    Energy Technology Data Exchange (ETDEWEB)

    Shaykin, A A; Fokin, A P; Soloviev, A A; Kuzmin, A A; Shaikin, I A; Burdonov, K F; Khazanov, E A [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation); Charukhchev, A V [Public Limited Company " Scientific research Institute for Optoelectronic Instrument Engineering" , Leningrad region (Russian Federation)

    2014-05-30

    A unique large-aperture neodymium glass rod amplifier is experimentally studied. The small-signal gain distribution is measured at different pump energies. The aperture-averaged gain is found to be 2.3. The stored energy (500 J), the maximum possible pump pulse repetition rate, and the depolarisation in a single pulse and in a series of pulses with a repetition rate of one pulse per five minutes are calculated based on the investigations performed. It is shown that the use of this amplifier at the exit of the existing laser can increase the output pulse energy from 300 to 600 J. (lasers)

  5. Efficiency of soft tissue incision with a novel 445-nm semiconductor laser.

    Science.gov (United States)

    Braun, Andreas; Kettner, Moritz; Berthold, Michael; Wenzler, Johannes-Simon; Heymann, Paul Günther Baptist; Frankenberger, Roland

    2018-01-01

    Using a 445-nm semiconductor laser for tissue incision, an effective cut is expected due to the special absorption properties of blue laser light in soft tissues. The aim of the present study was the histological evaluation of tissue samples after incision with a 445-nm diode laser. Forty soft tissue specimens were obtained from pork oral mucosa and mounted on a motorized linear translation stage. The handpiece of a high-frequency surgery device, a 970-nm semiconductor laser, and a 445-nm semiconductor laser were connected to the slide, allowing a constant linear movement (2 mm/s) and the same distance of the working tip to the soft tissue's surface. Four incisions were made each: (I) 970-nm laser with conditioned fiber tip, contact mode at 3-W cw; (II-III): 445-nm laser with non-conditioned fiber tip, contact mode at 2-W cw, and non-contact mode (1 mm) at 2 W; and (IV): high-frequency surgery device with straight working tip, 90° angulation, contact mode at 50 W. Histological analysis was performed after H&E staining of the embedded specimens at 35-fold magnification. The comparison of the incision depths showed a significant difference depending on the laser wavelength and the selected laser parameters. The highest incision depth was achieved with the 445-nm laser contact mode (median depth 0.61 mm, min 0.26, max 1.17, interquartile range 0.58) (p laser, a higher cutting efficiency can be expected when compared with a 970-nm diode laser and high-frequency surgery. Even the 445-nm laser application in non-contact mode shows clinically acceptable incision depths without signs of extensive soft tissue denaturation.

  6. Theory of semiconductor lasers from basis of quantum electronics to analyses of the mode competition phenomena and noise

    CERN Document Server

    Yamada, Minoru

    2014-01-01

    This book provides a unified and complete theory for semiconductor lasers, covering topics ranging from the principles of classical and quantum mechanics to highly advanced levels for readers who need to analyze the complicated operating characteristics generated in the real application of semiconductor lasers.   The author conducts a theoretical analysis especially on the instabilities involved in the operation of semiconductor lasers. A density matrix into the theory for semiconductor lasers is introduced and the formulation of an improved rate equation to help understand the mode competition phenomena which cause the optical external feedback noise is thoroughly described from the basic quantum mechanics. The derivation of the improved rate equation will allow readers to extend the analysis for the different types of semiconductor materials and laser structures they deal with.   This book is intended not only for students and academic researchers but also for engineers who develop lasers for the market, ...

  7. Material Engineering for Monolithic Semiconductor Mode-Locked Lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina

    This thesis is devoted to the materials engineering for semiconductor monolithic passively mode-locked lasers (MLLs) as a compact energy-efficient source of ultrashort optical pulses. Up to the present day, the achievement of low-noise sub-picosecond pulse generation has remained a challenge...

  8. Optically pumped semiconductor lasers for atomic and molecular physics

    Science.gov (United States)

    Burd, S.; Leibfried, D.; Wilson, A. C.; Wineland, D. J.

    2015-03-01

    Experiments in atomic, molecular and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on spectral linewidth, power and intensity stability. Optically pumped semiconductor lasers (OPSLs), when combined with nonlinear frequency conversion, can potentially replace many of the laser systems currently in use. We are developing a source for laser cooling and spectroscopy of Mg+ ions at 280 nm, based on a frequency quadrupled OPSL with the gain chip fabricated at the ORC at Tampere Univ. of Technology, Finland. This OPSL system could serve as a prototype for many other sources used in atomic and molecular physics.

  9. Melting phenomenon and laser annealing in semiconductors

    International Nuclear Information System (INIS)

    Narayan, J.

    1981-03-01

    The work on annealing of displacement damage, dissolution of boron precipitates, and the broadening of dopant profiles in semiconductors after treating with ruby and dye laser pulses is reviewed in order to provide convincing evidence for the melting phenomenon and illustrate the mechanism associated with laser annealing. The nature of the solid-liquid interface and the interface instability during rapid solidification is considered in detail. It is shown that solute concentrations after pulsed laser annealing can far exceed retrograde maxima values. However, there is a critical solute concentration above which a planar solid-liquid interface becomes unstable and breaks into a cellular structure. The solute concentrations and cell sizes associated with this instability are calculated using a perturbation theory, and compared with experimental results

  10. Chaotic bursting in semiconductor lasers

    Science.gov (United States)

    Ruschel, Stefan; Yanchuk, Serhiy

    2017-11-01

    We investigate the dynamic mechanisms for low frequency fluctuations in semiconductor lasers subjected to delayed optical feedback, using the Lang-Kobayashi model. This system of delay differential equations displays pronounced envelope dynamics, ranging from erratic, so called low frequency fluctuations to regular pulse packages, if the time scales of fast oscillations and envelope dynamics are well separated. We investigate the parameter regions where low frequency fluctuations occur and compute their Lyapunov spectra. Using the geometric singular perturbation theory, we study this intermittent chaotic behavior and characterize these solutions as bursting slow-fast oscillations.

  11. Amplification of picosecond pulse by electron-beam pumped KrF laser amplifiers. Denshi beam reiki KrF laser zofukuki ni yoru piko byo pulse no zofuku

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, I.; Tomie, T.; Owadano, Y.; Yano, M. (Electrotechnical Laboratory, Tsukuba (Japan))

    1991-08-20

    Experiments on the amplification of a picosecond pulse by electron-beam pumped KrF laser amplifiers were carried out for the purpose of its application to the field such as excitation light source for soft X-ray laser which requires large energy besides peak power. The picosecond pulse was amplified by a discharge pumped KrF amplifier and two electron-beam pumped KrF amplifiers(at the middle stage and the final stage). The energy of 4J, which was the largest energy for short pulse excimer laser so far, was obtained by these devices. About 90% of the window area of the final amplifier with 29cm diameter was filled by the input beam, and energy density of the picosecond beam reached 3.9 times saturation energy density. Measured energy of amplified spontaneous emission(ASE) showed good agreement with the theoretically estimated value. Most of ASE was derived from the discharge pumped laser as the first amplifier. As for the focused power density, the power density ratio of the picosecond pulse to ASE was estimated to be as large as 10{sup 5}. 11 refs., 4 figs.

  12. Semiconductor laser diodes and the design of a D.C. powered laser diode drive unit

    OpenAIRE

    Cappuccio, Joseph C., Jr.

    1988-01-01

    Approved for public release; distribution is unlimited This thesis addresses the design, development and operational analysis of a D.C. powered semiconductor laser diode drive unit. A laser diode requires an extremely stable power supply since a picosecond spike of current or power supply switching transient could result in permanent damage. The design offers stability and various features for operational protection of the laser diode. The ability to intensity modulate (analog) and pulse m...

  13. Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers.

    Science.gov (United States)

    Vannahme, Christoph; Klinkhammer, Sönke; Lemmer, Uli; Mappes, Timo

    2011-04-25

    Laser light excitation of fluorescent markers offers highly sensitive and specific analysis for bio-medical or chemical analysis. To profit from these advantages for applications in the field or at the point-of-care, a plastic lab-on-a-chip with integrated organic semiconductor lasers is presented here. First order distributed feedback lasers based on the organic semiconductor tris(8-hydroxyquinoline) aluminum (Alq3) doped with the laser dye 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyril)-4H-pyrane (DCM), deep ultraviolet induced waveguides, and a nanostructured microfluidic channel are integrated into a poly(methyl methacrylate) (PMMA) substrate. A simple and parallel fabrication process is used comprising thermal imprint, DUV exposure, evaporation of the laser material, and sealing by thermal bonding. The excitation of two fluorescent marker model systems including labeled antibodies with light emitted by integrated lasers is demonstrated.

  14. Performance of a 200-J KrF laser amplifier for laser fusion research

    International Nuclear Information System (INIS)

    Owadano, Y.; Okuda, I.; Tanimoto, M.; Kasai, T.; Matsumoto, Y.; Yaoita, A.; Nemoto, F.; Komeiji, S.; Yano, M.

    1986-01-01

    An e-beam-pumped KrF laser has been developed as a middle-stage amplifier of a 1-kJ system for laser fusion research. The laser consists of one Marx generator (1MV, 11kJ), two PFLs (4.6 Ω, 100ns) with laser triggered output switches, two e-beam diodes (10 X 60 cm/sup 2/), and a laser cell (20- X 20- X 60-cm/sup 3/ active volume). Two e-beams are injected into the cell through carbon-sprayed Kapton anode and pressure foils. Up to now, a 120-J (70-ns) laser pulse has been generated with a 90% output coupling flat-flat resonator at 80% voltage operation. Overall efficiency is 1.5% in this case. A series of experiments has been performed with the laser to measure gain characteristics of a Kr-rich mixture, which is predicted to be more efficient than a normal Ar mixture in a high-laser-intensity region (>10 MW cm/sup -2/). An injection-locked oscillator mode was used to obtain a well-defined high-intensity laser beam, and a saturated intracavity intensity was measured

  15. Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry.

    Science.gov (United States)

    Keeley, James; Freeman, Joshua; Bertling, Karl; Lim, Yah L; Mohandas, Reshma A; Taimre, Thomas; Li, Lianhe H; Indjin, Dragan; Rakić, Aleksandar D; Linfield, Edmund H; Davies, A Giles; Dean, Paul

    2017-08-03

    The effects of optical feedback (OF) in lasers have been observed since the early days of laser development. While OF can result in undesirable and unpredictable operation in laser systems, it can also cause measurable perturbations to the operating parameters, which can be harnessed for metrological purposes. In this work we exploit this 'self-mixing' effect to infer the emission spectrum of a semiconductor laser using a laser-feedback interferometer, in which the terminal voltage of the laser is used to coherently sample the reinjected field. We demonstrate this approach using a terahertz frequency quantum cascade laser operating in both single- and multiple-longitudinal mode regimes, and are able to resolve spectral features not reliably resolved using traditional Fourier transform spectroscopy. We also investigate quantitatively the frequency perturbation of individual laser modes under OF, and find excellent agreement with predictions of the excess phase equation central to the theory of lasers under OF.

  16. Theory of Pulse Train Amplification Without Patterning Effects in Quantum Dot Semiconductor Optical Amplifiers

    DEFF Research Database (Denmark)

    Uskov, Alexander V.; Berg, Tommy Winther; Mørk, Jesper

    2004-01-01

    A theory for pulse amplification and saturation in quantum dot (QD) semiconductor optical amplifiers (SOAs) is developed. In particular, the maximum bit rate at which a data stream of pulses can be amplified without significant patterning effects is investigated. Simple expressions are derived th...... energies of 0.2–0.4 pJ. The superiority of QD SOAs is based on: 1) the faster achievement of the regime of maximum gain in QD SOAs compared to QW and bulk SOAs and 2) the lower effective cross section of photon-carrier interaction in QDs....... that clearly show the dependence of the maximum bit rate on material and device parameters. A comparative analysis of QD, quantum well (QW), and bulk SOAs shows that QD SOAs may have superior properties; calculations predict patterning-free amplification up to bit rates of 150–200 Gb/s with pulse output...

  17. Induction-linac based free-electron laser amplifiers for plasma heating

    International Nuclear Information System (INIS)

    Jong, R.A.

    1988-01-01

    We describe an induction-linac based free-electron laser amplifier that is presently under construction at the Lawrence Livermore National Laboratory. It is designed to produce up to 2 MW of average power at a frequency of 250 GHz for plasma heating experiments in the Microwave Tokamak Experiment. In addition, we shall describe a FEL amplifier design for plasma heating of advanced tokamak fusion devices. This system is designed to produce average power levels of about 10 MW at frequencies ranging form 280 to 560 GHz. 7 refs., 1 tab

  18. Nanoimprinted organic semiconductor laser pumped by a light-emitting diode.

    Science.gov (United States)

    Tsiminis, Georgios; Wang, Yue; Kanibolotsky, Alexander L; Inigo, Anto R; Skabara, Peter J; Samuel, Ifor D W; Turnbull, Graham A

    2013-05-28

    An organic semiconductor laser, simply fabricated by UV-nanoimprint lithography (UV-NIL), that is pumped with a pulsed InGaN LED is demonstrated. Molecular weight optimization of the polymer gain medium on a nanoimprinted polymer distributed feedback resonator enables the lowest reported UV-NIL laser threshold density of 770 W cm(-2) , establishing the potential for scalable organic laser fabrication compatible with mass-produced LEDs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. N.G. Basov and early works on semiconductor lasers at P.N. Lebedev Physics Institute

    International Nuclear Information System (INIS)

    Eliseev, P G

    2012-01-01

    A survey is presented of works on creation and investigation of semiconductor lasers during 1957 – 1977 at the P.N. Lebedev Physics Institute. Many of these works were initiated by N.G. Basov, starting from pre-laser time, when N.G. Basov and his coworkers formulated principal conditions of creation of lasers on interband transitions in semiconductors. Main directions of further works were diode lasers based on various materials and structures, their characteristics of output power, high-speed operation and reliability. (special issue devoted to the 90th anniversary of n.g. basov)

  20. All-optical OR/NOR Bi-functional logic gate by using cross-gain modulation in semiconductor optical amplifiers

    International Nuclear Information System (INIS)

    Choi, Kyoung Sun; Byun, Young Tae; Lee, Seok; Jhon, Young Min

    2010-01-01

    An OR/NOR bi-functional all-optical logic gate has been experimentally demonstrated at 10 Gbit/s by using cross-gain modulation (XGM) in only 2 semiconductor optical amplifiers (SOAs). One SOA was used for NOR operation and the other SOA was used for inversion to obtain OR operation. Numerical simulation has also been performed, which coincided well with the experimental results.

  1. Power Scaling of Laser Oscillators and Amplifiers Based on Nd:YVO4

    OpenAIRE

    Yarrow, Michael James

    2006-01-01

    This thesis presents a strategy for power and brightness scaling in diode-end-pumped, master-oscillator-power-amplifier laser systems, based on Nd:YVOIssues relating to further power and brightness scaling are discussed as well as the potential applications of these laser sources as pump sources for frequency conversion in optical parametric devices.

  2. Preliminary design of experiment high power density laser beam interaction with plasmas and development of a cold cathode electron beam laser amplifier

    International Nuclear Information System (INIS)

    Mosavi, R.K.; Kohanzadeh, Y.; Taherzadeh, M.; Vaziri, A.

    1976-01-01

    This experiment is designed to produce plasma by carbon dioxide pulsed laser, to measure plasma parameters and to study the interaction of the produced plasma with intense laser beams. The objectives of this experiment are the following: 1. To set up a TEA CO 2 laser oscillator and a cold cathode electron beam laser amplifier together as a system, to produce high energy optical pulses of short duration. 2. To achieve laser intensities of 10 11 watt/cm 2 or more at solid targets of polyethylene (C 2 H 4 )n, lithium hydride (LiH), and lithium deuteride in order to produce high temperature plasmas. 3. To design and develop diagnostic methods for studies of laser-induced plasmas. 4. To develop a high power CO 2 laser amplifier for the purpose of upgrading the optical energy delivered to the targets

  3. Mathematical modeling of thermal runaway in semiconductor laser operation

    NARCIS (Netherlands)

    Smith, W.R.

    2000-01-01

    A mathematical model describing the coupling of electrical, optical and thermal effects in semiconductor lasers is introduced. Through a systematic asymptotic expansion, the governing system of differential equations is reduced to a single second-order boundary value problem. This highly nonlinear

  4. Microwave phase shifter with controllable power response based on slow-and fast-light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose

    2009-01-01

    with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of 240° at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique...

  5. A transfer function approach to the small-signal response of saturated semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Blumenthal, D. J.; Mørk, Jesper

    2000-01-01

    A theoretical analysis of the small-signal frequency response (SSFR) of a wavelength converter based on cross-gain modulation in a semiconductor optical amplifier with a finite waveguide loss is presented. We use a transfer function formalism to explain the resonant behavior of the frequency...... response. The limitations to the magnitude of the spectral overshoot are also accounted for. Operating with the data and CW signals in a co-propagating configuration, we End that the resonance only exists for a finite waveguide loss. In a counter-propagating scheme, a resonance can exist regardless...

  6. Physical model for the incoherent writing/erasure of cavity solitons in semiconductor optical amplifiers.

    Science.gov (United States)

    Barbay, S; Kuszelewicz, R

    2007-09-17

    We present a physical mechanism that explains the recent observations of incoherent writing and erasure of Cavity Solitons in a semiconductor optical amplifier [S. Barbay et al, Opt. Lett. 31, 1504-1506 (2006)]. This mechanism allows to understand the main observations of the experiment. In particular it perfectly explains why writing and erasure are possible as a result of a local perturbation in the carrier density, and why a delay is observed along with the writing process. Numerical simulations in 1D are performed and show very good qualitative agreement with the experimental observations.

  7. Slow and fast light effects in semiconductor optical amplifiers for applications in microwave photonics

    DEFF Research Database (Denmark)

    Xue, Weiqi

    This thesis analyzes semiconductor optical amplifiers based slow and fast light effects with particular focus on the applications in microwave photonics. We conceive novel ideas and demonstrate a great enhancement of light slow down. Furthermore, by cascading several slow light stages, >360 degree...... microwave phase shifts over a bandwidth of several tens of gigahertz are achieved. These also satisfy the basic requirements of microwave photonic systems. As an application demonstration, a tunable microwave notch filter is realized, where slow light based phase shifters provide 100% fractional tuning over...

  8. Photonic processing and realization of an all-optical digital comparator based on semiconductor optical amplifiers

    Science.gov (United States)

    Singh, Simranjit; Kaur, Ramandeep; Kaler, Rajinder Singh

    2015-01-01

    A module of an all-optical 2-bit comparator is analyzed and implemented using semiconductor optical amplifiers (SOAs). By employing SOA-based cross phase modulation, the optical XNOR logic is used to get an A=B output signal, where as AB¯ and A¯B> logics operations are used to realize A>B and Aoperations results along with the wide open eye diagrams are obtained. It is suggested that the proposed system would be promising in all-optical high speed networks and computing systems.

  9. All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Danielsen, Søren Lykke; Stubkjær, Kristian

    1997-01-01

    This work assesses the prospects for high-speed all-optical wavelength conversion using the simple optical interaction with the gain in semiconductor optical amplifiers (SOAs) via the interband carrier recombination. Operation and design guidelines for conversion speeds above 10 Gb/s are described...... and the various tradeoffs are discussed. Experiments at bit rates up to 40 Gb/s are presented for both cross-gain modulation (XGM) and cross-phase modulation (XPM) in SOAs demonstrating the high-speed capability of these techniques...

  10. Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier.

    Science.gov (United States)

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2011-08-29

    A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and the optical input power injected in an SOA while properly profiting from the dispersion feature of a conveniently designed notch filter. It is shown that the optical filter can be advantageously employed to switch between positive and negative microwave phase shifts. Numerical calculations corroborate the experimental results showing an excellent agreement.

  11. Amplified spontaneous emission of an end-pumped cesium vapor laser

    International Nuclear Information System (INIS)

    An, Guofei; Wang, You; Cai, He; Han, Juhong; Wang, Shunyan; Rong, Kepeng; Yu, Hang; Xue, Liangping; Zhang, Wei; Wang, Hongyuan; Zhou, Jie

    2017-01-01

    Diode pumped alkali lasers (DPALs) provide a significant potential for construction of high-powered lasers. A series of models have been established to analyze the DPAL’s kinetic process and most of them are based on the algorithms in which the amplified spontaneous emission (ASE) effect has not been considered. However, ASE is harmful in realization of a high-powered DPAL since the gain is very high. Usually, ASE becomes serious when the volume of the gain medium is large and the pump power is high. Basically, the conclusions we obtained in this study can be extended to other kinds of laser configurations. (paper)

  12. Fabrication of metal/semiconductor nanocomposites by selective laser nano-welding.

    Science.gov (United States)

    Yu, Huiwu; Li, Xiangyou; Hao, Zhongqi; Xiong, Wei; Guo, Lianbo; Lu, Yongfeng; Yi, Rongxing; Li, Jiaming; Yang, Xinyan; Zeng, Xiaoyan

    2017-06-01

    A green and simple method to prepare metal/semiconductor nanocomposites by selective laser nano-welding metal and semiconductor nanoparticles was presented, in which the sizes, phases, and morphologies of the components can be maintained. Many types of nanocomposites (such as Ag/TiO 2 , Ag/SnO 2 , Ag/ZnO 2 , Pt/TiO 2 , Pt/SnO 2 , and Pt/ZnO) can be prepared by this method and their corresponding performances were enhanced.

  13. Beam quality management by periodic reproduction of wavefront aberrations in end-pumped Nd:YVO4 laser amplifiers.

    Science.gov (United States)

    Liu, Bin; Liu, Chong; Shen, Lifeng; Wang, Chunhua; Ye, Zhibin; Liu, Dong; Xiang, Zhen

    2016-04-18

    A method for beam quality management is presented in a master oscillator power amplifier (MOPA) using Nd:YVO4 as the gain medium by extra-cavity periodic reproduction of wavefront aberrations. The wavefront aberration evolution of the intra-cavity beams is investigated for both symmetrical and asymmetrical resonators. The wavefront aberration reproduction process is successfully realized outside the cavity in four-stage amplifiers. In the MOPA with a symmetrical oscillator, the laser power increases linearly and the beam quality hardly changes. In the MOPA with an asymmetrical oscillator, the beam quality is deteriorated after the odd-stage amplifier and is improved after the even-stage amplifier. The wavefront aberration reproduction during the extra-cavity beam propagation in the amplifiers is equivalent to that during the intra-cavity propagation. This solution helps to achieve the effective beam quality management in laser amplifier chains.

  14. Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Karni, O., E-mail: oulrik@tx.technion.ac.il; Mikhelashvili, V.; Eisenstein, G. [Electrical Engineering Department, Technion—Israel Institute of Technology, Haifa 32000 (Israel); Kuchar, K. J. [Electrical Engineering Department, Technion—Israel Institute of Technology, Haifa 32000 (Israel); Institute of Physics, Wroclaw University of Technology, Wroclaw 50-370 (Poland); Capua, A. [Electrical Engineering Department, Technion—Israel Institute of Technology, Haifa 32000 (Israel); IBM Almaden Research Center, San Jose, 95120 California (United States); Sęk, G.; Misiewicz, J. [Institute of Physics, Wroclaw University of Technology, Wroclaw 50-370 (Poland); Ivanov, V.; Reithmaier, J. P. [Technische Physik, Institute of Nanostructure Technology and Analytics, CINSaT, University of Kassel, Kassel D-34132 (Germany)

    2014-03-24

    We report on a characterization of fundamental gain dynamics in recently developed InAs/InP quantum-dot semiconductor optical amplifiers. Multi-wavelength pump-probe measurements were used to determine gain recovery rates, following a powerful optical pump pulse, at various wavelengths for different bias levels and pump excitation powers. The recovery was dominated by coupling between the electronic states in the quantum-dots and the high energy carrier reservoir via capture and escape mechanisms. These processes determine also the wavelength dependencies of gain saturation depth and the asymptotic gain recovery level. Unlike quantum-dash amplifiers, these quantum-dots exhibit no instantaneous gain response, confirming their quasi zero-dimensional nature.

  15. Diode-pumped laser amplifiers: application to 0.946 {mu}m Nd:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Norman P [NASA Langley Research Center, Hampton, VA 23681 (United States); Axenson, Theresa J [Science and Technology Corporation, 10 Basil Sawyer Drive, Hampton, VA 23666 (United States); Jr, Donald J Reichle [NASA Langley Research Center, Hampton, VA 23681 (United States); Walsh, Brian M [NASA Langley Research Center, Hampton, VA 23681 (United States)

    2003-03-14

    A diode-pumped laser amplifier model is derived from first principles and applied to a Nd:YAG amplifier operating on the {sup 4}F{sub 3/2} to {sup 4}I{sub 9/2} transition at 0.946 {mu}m. The effects of amplified spontaneous emission are included in the model and the addition of this effect is shown to produce better agreement with the data. The amplifier model includes effects of the transverse and longitudinal variation of the pump beam, transverse and longitudinal variation of the probe beam, and multiple passes of the probe beam. Experimental results obtained with a quasi four-level Nd:YAG amplifier operating at 0.946 {mu}m are used to validate the model. The amplifier was evaluated as a function of the pump energy, the probe energy, the probe beam radius, the pulse repetition frequency and the temperature. For all of the experimental conditions, the experimental results and the model agree.

  16. Semiconductor laser irradiation improves root canal sealing during routine root canal therapy

    Science.gov (United States)

    Hu, Xingxue; Wang, Dashan; Cui, Ting; Yao, Ruyong

    2017-01-01

    Objective To evaluate the effect of semiconductor laser irradiation on root canal sealing after routine root canal therapy (RCT). Methods Sixty freshly extracted single-rooted human teeth were randomly divided into six groups (n = 10). The anatomic crowns were sectioned at the cementoenamel junction and the remaining roots were prepared endodontically with conventional RCT methods. Groups A and B were irradiated with semiconductor laser at 1W for 20 seconds; Groups C and D were ultrasonically rinsed for 60 seconds as positive control groups; Groups E and F without treatment of root canal prior to RCT as negative control groups. Root canal sealing of Groups A, C and E were evaluated by measurements of apical microleakage. The teeth from Groups B, D and F were sectioned, and the micro-structures were examined with scanning electron microscopy (SEM). One way ANOVA and LSD-t test were used for statistical analysis (α = .05). Results The apical sealing of both the laser irradiated group and the ultrasonic irrigated group were significantly different from the control group (pirrigated group (p>0.5). SEM observation showed that most of the dentinal tubules in the laser irradiation group melted, narrowed or closed, while most of the dentinal tubules in the ultrasonic irrigation group were filled with tooth paste. Conclusion The application of semiconductor laser prior to root canal obturation increases the apical sealing of the roots treated. PMID:28957407

  17. Free electron laser amplifier driven by an induction linac

    International Nuclear Information System (INIS)

    Neil, V.K.

    1986-01-01

    This paper discusses the use of a free-electron laser amplifier as a means of converting the kinetic energy of an electron beam into coherent radiation. In particular, the use of an induction linear accelerator is discussed. The motion of the elections in the tapered and untapered wiggler magnets is discussed as well as the beam emittance, and the radiation fields involved

  18. Ultrashort-pulse laser machining system employing a parametric amplifier

    Science.gov (United States)

    Perry, Michael D.

    2004-04-27

    A method and apparatus are provided for increasing the energy of chirped laser pulses to an output in the range 0.001 to over 10 millijoules at a repetition rate 0.010 to 100 kHz by using a two stage optical parametric amplifier utilizing a bulk nonlinear crystal wherein the pump and signal beam size can be independently adjusted in each stage.

  19. Monolithic integration of microfluidic channels and semiconductor lasers

    Science.gov (United States)

    Cran-McGreehin, Simon J.; Dholakia, Kishan; Krauss, Thomas F.

    2006-08-01

    We present a fabrication method for the monolithic integration of microfluidic channels into semiconductor laser material. Lasers are designed to couple directly into the microfluidic channel, allowing submerged particles pass through the output beams of the lasers. The interaction between particles in the channel and the lasers, operated in either forward or reverse bias, allows for particle detection, and the optical forces can be used to trap and move particles. Both interrogation and manipulation are made more amenable for lab-on-a-chip applications through monolithic integration. The devices are very small, they require no external optical components, have perfect intrinsic alignment, and can be created with virtually any planar configuration of lasers in order to perform a variety of tasks. Their operation requires no optical expertise and only low electrical power, thus making them suitable for computer interfacing and automation. Insulating the pn junctions from the fluid is the key challenge, which is overcome by using photo-definable SU8-2000 polymer.

  20. Enhanced performance of semiconductor optical amplifier at high direct modulation speed with birefringent fiber loop

    Directory of Open Access Journals (Sweden)

    K. E. Zoiros

    2014-07-01

    Full Text Available We employ a birefringent fiber loop (BFL for enhancing the performance of a semiconductor optical amplifier (SOA which is directly modulated. By properly exploiting the BFL comb-like spectral response, we show that the SOA can be directly modulated at a data rate which is more than five times faster than that enabled by the SOA electrical bandwidth. The experimental results, which include chirp measurements, demonstrate the significant improvements achieved in the performance of the directly modulated SOA with the help of the BFL.

  1. Dynamics of laterally coupled semiconductor lasers: transition to chaos

    NARCIS (Netherlands)

    Yousefi, M.; Barsella, A.; Lenstra, D.; Lenstra, D.; Morthier, G.; Erneux, T.; Pessa, M.

    2004-01-01

    A method for the investigation of the dynamics of two semiconductor lasers, grown side-by-side on the same wafer to enhance the lateral optical coupling, is presented. Using steady state analysis, parameter regimes of relevant dynamics are identified. This is completed by a spectral analysis, were

  2. A proposal for Coulomb assisted laser cooling of piezoelectric semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Nia, Iman Hassani; Mohseni, Hooman, E-mail: hmohseni@ece.northwestern.edu [Bio-Inspired Sensors and Optoelectronics Laboratory (BISOL), Department of Electrical Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-07-28

    Anti-Stokes laser cooling of semiconductors as a compact and vibration-free method is very attractive. While it has achieved significant milestones, increasing its efficiency is highly desirable. The main limitation is the lack of the pristine material quality with high luminescence efficiency. Here, we theoretically demonstrate that the Coulomb interaction among electrons and holes in piezoelectric heterostructures could lead to coherent damping of acoustic phonons; rendering a significantly higher efficiency that leads to the possibility of cooling a broad range of semiconductors.

  3. Semiconductor ring lasers coupled by a single waveguide

    Science.gov (United States)

    Coomans, W.; Gelens, L.; Van der Sande, G.; Mezosi, G.; Sorel, M.; Danckaert, J.; Verschaffelt, G.

    2012-06-01

    We experimentally and theoretically study the characteristics of semiconductor ring lasers bidirectionally coupled by a single bus waveguide. This configuration has, e.g., been suggested for use as an optical memory and as an optical neural network motif. The main results are that the coupling can destabilize the state in which both rings lase in the same direction, and it brings to life a state with equal powers at both outputs. These are both undesirable for optical memory operation. Although the coupling between the rings is bidirectional, the destabilization occurs due to behavior similar to an optically injected laser system.

  4. Field-glass range finder with a semiconductor laser

    Science.gov (United States)

    Iwanejko, Leszek; Jankiewicz, Zdzislaw; Jarocki, Roman; Marczak, Jan

    1995-03-01

    This paper presents the project of a laboratory model of a field-glasses range-finger. The optical transmitter of the device contains a commercial pulse semiconductor laser which generates IR wavelength around 905 nm. Some of the technical parameters of this device are: a maximum range of up to 3 km; an accuracy of +/- 5 m, divergence of a laser beam of 1 mrad; a repetition rate of 1 kHz. Dichroic elements of the receiver ensure a capability of an optimization of a field of view, without the worsening of luminance and size of an observation field.

  5. Closely spaced mirror pair for reshaping and homogenizing pump beams in laser amplifiers

    International Nuclear Information System (INIS)

    Bass, I.L.

    1992-12-01

    Channeling a laser beam by multiple reflections between two closely-spaced, parallel or nearly parallel mirrors, serves to reshape and homogenize the beam at the output gap between the mirrors. Application of this device to improve the spatial overlap of a copper laser pump beam with the signal beam in a dye laser amplifier is described. This technique has been applied to the AVLIS program at the Lawrence Livermore National Laboratory

  6. Off-axis multipass amplifier as a large aperture driver stage for fusion lasers

    International Nuclear Information System (INIS)

    Murray, J.E.; Downs, D.C.; Junt, J.T.; Hermes, G.L.; Warren, W.E.

    1981-01-01

    A multipass amplifier configuration is described which has potential as a large aperture, high gain driver stage for fusion laser systems. We avoid the present limitations of large aperture switches by using an off-angle geometry that does not require an optical switch. The saturated gain characteristics of this multipass amplifier are optimized numerically. Three potential problems are investigated experimentally, self-lasing, output beam quality, and amplified spontaneous emission output. The results indicate comparable cost for comparable performance to a linear chain, with some operational advantage for the multipass driver stage

  7. Laser cavities with self-pumped phase conjugation by mixing of four waves in an amplifier

    International Nuclear Information System (INIS)

    Sillard, Pierre

    1998-01-01

    The purpose of this research thesis is to characterise a new type of cavities with self-pumped phase conjugation which uses a mixing of four waves degenerated in a solid amplifier. After a definition of phase conjugation and a brief overview of the history of this technique, the author describes and compares the different laser architectures with phase conjugation. He explains benefits and perspectives related to cavities with self-pumped phase conjugation using a mixing of four waves in an amplifier. He develops the necessary formalism for the resolution of the coupled equations of four wave mixing in transient regime for a resonant and saturated non-linearity. He shows how these results can be applied to solid amplifiers, in particularly to the Nd:YAG amplifier which is used in all experiments. In the next part, the author describes the principle and characteristics of cavity with self-pumped phase conjugation injected by another laser. An experiment is performed with two conventional Nd:YAG amplifiers pumped by flash lamps. The excellent performance of the cavity allows the study of cavity without this injection, but self-oscillating is to be envisaged, and a modelling of self-oscillating cavities is proposed and studied. Results are compared with those obtained with two N:YAG amplifiers pumped by flash lamps. Polarisation properties of the self-oscillating cavity are also studied. Finally, the author reports an experimental validation of a cavity with self-pumped phase conjugation all in solid state, pumped by laser diodes (a more efficient pumping) [fr

  8. Laser simulation applying Fox-Li iteration: investigation of reason for non-convergence

    Science.gov (United States)

    Paxton, Alan H.; Yang, Chi

    2017-02-01

    Fox-Li iteration is often used to numerically simulate lasers. If a solution is found, the complex field amplitude is a good indication of the laser mode. The case of a semiconductor laser, for which the medium possesses a self-focusing nonlinearity, was investigated. For a case of interest, the iterations did not yield a converged solution. Another approach was needed to explore the properties of the laser mode. The laser was treated (unphysically) as a regenerative amplifier. As the input to the amplifier, we required a smooth complex field distribution that matched the laser resonator. To obtain such a field, we found what would be the solution for the laser field if the strength of the self focusing nonlinearity were α = 0. This was used as the input to the laser, treated as an amplifier. Because the beam deteriorated as it propagated multiple passes in the resonator and through the gain medium (for α = 2.7), we concluded that a mode with good beam quality could not exist in the laser.

  9. A Hybrid Fiber/Solid-State Regenerative Amplifier with Tunable Pulse Widths for Satellite Laser Ranging

    Science.gov (United States)

    Coyle, Barry; Poulios, Demetrios

    2013-01-01

    A fiber/solid-state hybrid seeded regenerative amplifier, capable of achieving high output energy with tunable pulse widths, has been developed for satellite laser ranging applications. The regenerative amplifier cavity uses a pair of Nd:YAG zigzag slabs oriented orthogonally to one another in order to make thermal lensing effects symmetrical and simplify optical correction schemes. The seed laser used is a fiber-coupled 1,064-nm narrowband (pumped by a single 120-W, pulsed 808-nm laser diode array. In this configuration, the average pump beam distribution in the slabs had a 1-D Gaussian shape, which matches the estimated cavity mode size. A half-wave plate between the slabs reduces losses from Fresnel reflections due to the orthogonal slabs Brewster-cut end faces. Successful "temporal" seeding of the regenerative amplifier cavity results in a cavity Q-switch pulse envelope segmenting into shorter pulses, each having the width of the input seed, and having a uniform temporal separation corresponding to the cavity round-trip time of approx. =10 ns. The pulse energy is allowed to build on successive passes in the regenerative amplifier cavity until a maximum is reached, (when cavity gains and losses are equal), after which the pulse is electro- optically switched out on the next round trip The overall gain of the amplifier is approx. =82 dB (or a factor of 1.26 million). After directing the amplified output through a LBO frequency doubling crystal, approx. = 2.1 W of 532-nm output (>1 mJ) was measured. This corresponds to a nonlinear conversion efficiency of >60%. Furthermore, by pulse pumping this system, a single pulse per laser shot can be created for the SLR (satellite laser ranging) measurement, and this can be ejected into the instrument. This is operated at the precise frequency needed by the measurement, as opposed to commercial short-pulsed, mode-locked systems that need to operate in a continuous fashion, or CW (continuous wave), and create pulses at many

  10. Demultiplexing of OTDM-DPSK signals based on a single semiconductor optical amplifier and optical filtering

    DEFF Research Database (Denmark)

    Xu, Jing; Ding, Yunhong; Peucheret, Christophe

    2011-01-01

    We propose and demonstrate the use of a single semiconductor optical amplifier (SOA) and optical filtering to time demultiplex tributaries from an optical time division multiplexing-differential phase shift keying (OTDM-DPSK) signal. The scheme takes advantage of the fact that phase variations...... added to the target channel by cross-phase modulation from the control signal are effectively subtracted in the differential demodulation scheme employed for DPSK signals. Demultiplexing from 80 to 40 Gbit=s is demonstrated with moderate power penalty using an SOA with recovery time twice as long...

  11. Chaos-pass filtering in injection-locked semiconductor lasers

    International Nuclear Information System (INIS)

    Murakami, Atsushi; Shore, K. Alan

    2005-01-01

    Chaos-pass filtering (CPF) of semiconductor lasers has been studied theoretically. CPF is a phenomenon which occurs in laser chaos synchronization by injection locking and is a fundamental technique for the extraction of messages at the receiver laser in chaotic communications systems. We employ a simple theory based on driven damped oscillators to clarify the physical background of CPF. The receiver laser is optically driven by injection from the transmitter laser. We have numerically investigated the response characteristics of the receiver when it is driven by periodic (message) and chaotic (carrier) signals. It is thereby revealed that the response of the receiver laser in the two cases is quite different. For the periodic drive, the receiver exhibits a response depending on the signal frequency, while the chaotic drive provides a frequency-independent synchronous response to the receiver laser. We verify that the periodic and chaotic drives occur independently in the CPF response, and, consequently, CPF can be clearly understood in the difference of the two drives. Message extraction using CPF is also examined, and the validity of our theoretical explanation for the physical mechanism underlying CPF is thus verified

  12. Automatic alignment of double optical paths in excimer laser amplifier

    Science.gov (United States)

    Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun

    2013-05-01

    A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

  13. Megawatt dye laser oscillator-amplifier system for high resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Drell, P; Chu, S

    1979-03-01

    Peak powers in excess of 4 MW in the visible and 1.3 MW in the uv with linewidths as narrow as 80 MHz are generated with three YAG pumped amplifier stages following a cw dye oscillator. The laser pulses are nearly Fourier transform limited in frequency space and diffraction limited in coordinate space.

  14. Solid state laser driver for an ICF reactor

    International Nuclear Information System (INIS)

    Krupke, W.F.

    1988-01-01

    A conceptual design is presented of the main power amplifier of a multi-beamline, multi-megawatt solid state ICF reactor driver. Simultaneous achievement of useful beam quality and high average power is achieved by a proper choice of amplifier geometry. An amplifier beamline consists of a sequence of face-pumped rectangular slab gain elements, oriented at the Brewster angle relative to the beamline axis, and cooled on their large faces by helium gas that is flowing subsonically. The infrared amplifier output radiation is shifted to an appropriately short wavelength ( 10% (including all flow cooling input power) when the amplifiers are pumped by efficient high-power AlGaAs semiconductor laser diode arrays. 11 refs., 3 figs., 7 tabs

  15. Pre-Amplifier Module for Laser Inertial Confinement Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Heebner, J E; Bowers, M W

    2008-02-06

    The Pre-Amplifier Modules (PAMs) are the heart of the National Ignition Facility (NIF), providing most of the energy gain for the most energetic laser in the world. Upon completion, NIF will be the only laboratory in which scientists can examine the fusion processes that occur inside stars, supernovae, and exploding nuclear weapons and that may someday serve as a virtually inexhaustible energy source for electricity. Consider that in a fusion power plant 50 cups of water could provide the energy comparable to 2 tons of coal. Of paramount importance for achieving laser-driven fusion ignition with the least energy input is the synchronous and symmetric compression of the target fuel--a condition known as laser power balance. NIF's 48 PAMs thus must provide energy gain in an exquisitely stable and consistent manner. While building one module that meets performance requirements is challenging enough, our design has already enabled the construction and fielding of 48 PAMs that are stable, uniform, and interchangeable. PAM systems are being tested at the University of Rochester's Laboratory for Laser Energetics, and the Atomic Weapons Enterprise of Great Britain has purchased the PAM power system.

  16. FY1995 ultra-high performance semiconductor lasers for advanced optical information network; 1995 nendo kodo hikari joho tsushinmo e muketa kyokugen seino handotai laser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose of this research was to study and develop ultra-high performance semiconductor light source devices that should facilitate construction of advanced optical information networks. The semiconductor devices mentioned above are enhanced and integrated versions of distributed feedback (DFB) lasers based on 'gain coupling', which the group of the research coordinator has been investigating as a pioneer in the world. This research aimed at development of ultra-high performance semiconductor lasers that surpass the first generation conventional DFB lasers in any respect, by strengthening important device characteristics for system applications of the gain-coupled DFB lasers. The achievements of this research are listed below : 1. In-situ characterization of As-P exchange in MOVPE 2. Development of 1.55 {mu}m gain-coupled DFB lasers of absorptive grating type 3. Establishment of measurement technique for gain-coupling coefficients 4. Enlargement of small signal modulation response by the absorptive grating 5. Prediction of lower analog modulation distortion 6. Characterization of reflection-induced noise 7. Proposal and Demonstration of wavelength trimming 8. Proposal and Fabrication of GC DFB laser triode (NEDO)

  17. Deep-red semiconductor monolithic mode-locked lasers

    International Nuclear Information System (INIS)

    Kong, L.; Bajek, D.; White, S. E.; Forrest, A. F.; Cataluna, M. A.; Wang, H. L.; Pan, J. Q.; Wang, X. L.; Cui, B. F.; Ding, Y.

    2014-01-01

    A deep-red semiconductor monolithic mode-locked laser is demonstrated. Multi-section laser diodes based on an AlGaAs multi-quantum-well structure were passively mode-locked, enabling the generation of picosecond optical pulses at 752 nm, at pulse repetition rates of 19.37 GHz. An investigation of the dependence of the pulse duration as a function of reverse bias revealed a predominantly exponential decay trend of the pulse duration, varying from 10.5 ps down to 3.5 ps, which can be associated with the concomitant reduction of absorption recovery time with increasing applied field. A 30-MHz-tunability of the pulse repetition rate with bias conditions is also reported. The demonstration of such a compact, efficient and versatile ultrafast laser in this spectral region paves the way for its deployment in a wide range of applications such as biomedical microscopy, pulsed terahertz generation as well as microwave and millimeter-wave generation, with further impact on sensing, imaging and optical communications

  18. Micromachining of semiconductor by femtosecond laser for integrated circuit defect analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halbwax, M. [Laboratoire LP3 CNRS UMR 6182, Parc Scientifique et Technologique de Luminy, Case 917, 163 Avenue de Luminy, 13009 Marseille (France); Sarnet, T. [Laboratoire LP3 CNRS UMR 6182, Parc Scientifique et Technologique de Luminy, Case 917, 163 Avenue de Luminy, 13009 Marseille (France)], E-mail: sarnet@lp3.univ-mrs.fr; Hermann, J.; Delaporte, Ph.; Sentis, M. [Laboratoire LP3 CNRS UMR 6182, Parc Scientifique et Technologique de Luminy, Case 917, 163 Avenue de Luminy, 13009 Marseille (France); Fares, L.; Haller, G. [STMicroelectronics, 190 Avenue Celestin Coq, ZI, 13106 Rousset Cedex (France)

    2007-12-15

    The latest International Technology Roadmap for Semiconductors (ITRS) has highlighted the detection and analysis of defects in Integrated Circuits (IC) as a major challenge faced by the semiconductor industry. Advanced tools used today for defect cross sectioning include dual beams (focused ion- and electron-beam technologies) with resolution down to the sub-Angstrom level. However ion milling an IC with a FIB is time consuming because of the need to open wide cavities in front of the cross-sections that need to be analyzed. Therefore the use of a femtosecond laser as a tool for direct material removal is discussed in this paper. Experiments were performed on IC structures to reveal the different layers of fabrication: selective or total ablation can occur depending on the laser energy density, without delamination of the layers. Different laser irradiation conditions like pressure (air, vacuum), polarization, beam shaping, and scanning parameters have been used to produce different types of cavities. The femtosecond laser engraving of silicon-based structures could be useful for cross-sectioning devices but also for other applications like direct-write lithography, photomask repair, maskless implantation or reverse engineering/restructuring.

  19. Micromachining of semiconductor by femtosecond laser for integrated circuit defect analysis

    International Nuclear Information System (INIS)

    Halbwax, M.; Sarnet, T.; Hermann, J.; Delaporte, Ph.; Sentis, M.; Fares, L.; Haller, G.

    2007-01-01

    The latest International Technology Roadmap for Semiconductors (ITRS) has highlighted the detection and analysis of defects in Integrated Circuits (IC) as a major challenge faced by the semiconductor industry. Advanced tools used today for defect cross sectioning include dual beams (focused ion- and electron-beam technologies) with resolution down to the sub-Angstrom level. However ion milling an IC with a FIB is time consuming because of the need to open wide cavities in front of the cross-sections that need to be analyzed. Therefore the use of a femtosecond laser as a tool for direct material removal is discussed in this paper. Experiments were performed on IC structures to reveal the different layers of fabrication: selective or total ablation can occur depending on the laser energy density, without delamination of the layers. Different laser irradiation conditions like pressure (air, vacuum), polarization, beam shaping, and scanning parameters have been used to produce different types of cavities. The femtosecond laser engraving of silicon-based structures could be useful for cross-sectioning devices but also for other applications like direct-write lithography, photomask repair, maskless implantation or reverse engineering/restructuring

  20. Efficient ASE management in disk laser amplifiers with variable absorbing clads

    Czech Academy of Sciences Publication Activity Database

    Slezák, Ondřej; Lucianetti, Antonio; Mocek, Tomáš

    2014-01-01

    Roč. 50, č. 12 (2014), s. 1052-1060 ISSN 0018-9197 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : amplifiers * laser * absorbing * Yb:YAG * multi slab Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.887, year: 2014

  1. High-order diffraction gratings for high-power semiconductor lasers

    International Nuclear Information System (INIS)

    Vasil’eva, V. V.; Vinokurov, D. A.; Zolotarev, V. V.; Leshko, A. Yu.; Petrunov, A. N.; Pikhtin, N. A.; Rastegaeva, M. G.; Sokolova, Z. N.; Shashkin, I. S.; Tarasov, I. S.

    2012-01-01

    A deep diffraction grating with a large period (∼2 μm) within one of the cladding layers is proposed for the implementation of selective feedback in a semiconductor laser. Frequency dependences of reflectance in the 12th diffraction order for rectangular, triangular, and trapezoidal diffraction gratings are calculated. It is shown that the maximum reflectance of the waveguide mode is attained using a rectangular or trapezoidal grating ∼2 μm deep in the laser structure. Deep trapezoidal diffraction gratings with large periods are fabricated in the Al 0.3 Ga 0.7 As cladding layer of a GaAs/AlGaAs laser structure using photolithography and reactive ion etching.

  2. Conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation using optically injected semiconductor lasers.

    Science.gov (United States)

    Hung, Yu-Han; Tseng, Chin-Hao; Hwang, Sheng-Kwang

    2018-06-01

    This Letter investigates an optically injected semiconductor laser for conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation. The underlying mechanism relies solely on nonlinear laser characteristics and, thus, only a typical semiconductor laser is required as the key conversion unit. This conversion can be achieved for a broadly tunable frequency range up to at least 65 GHz. After conversion, the microwave phase quality, including linewidth and phase noise, is mostly preserved, and simultaneous microwave amplification up to 23 dB is feasible.

  3. Multi-wavelength laser based on an arrayed waveguide grating and Sagnac loop reflectors monolithically integrated on InP

    NARCIS (Netherlands)

    Muñoz, P.; García-Olcina, R.; Doménech, J.D.; Rius, M.; Capmany, J.; Chen, L.R.; Habib, C.; Leijtens, X.J.M.; Vries, de T.; Heck, M.J.R.; Augustin, L.M.; Nötzel, R.; Robbins, D.J.

    2010-01-01

    In this paper, a multi-wavelength laser monolithically integrated on InP is presented. A linear laser cavity is built between two integrated Sagnac loop reflectors, with an Arrayed Waveguide Grating (AWG) as frequency selective device, and Semiconductor Optical Amplifiers (SOA) as gain sections. The

  4. Spot-shadowing optimization to mitigate damage growth in a high-energy-laser amplifier chain.

    Science.gov (United States)

    Bahk, Seung-Whan; Zuegel, Jonathan D; Fienup, James R; Widmayer, C Clay; Heebner, John

    2008-12-10

    A spot-shadowing technique to mitigate damage growth in a high-energy laser is studied. Its goal is to minimize the energy loss and undesirable hot spots in intermediate planes of the laser. A nonlinear optimization algorithm solves for the complex fields required to mitigate damage growth in the National Ignition Facility amplifier chain. The method is generally applicable to any large fusion laser.

  5. Multiphoton microscopy in every lab: the promise of ultrafast semiconductor disk lasers

    Science.gov (United States)

    Emaury, Florian; Voigt, Fabian F.; Bethge, Philipp; Waldburger, Dominik; Link, Sandro M.; Carta, Stefano; van der Bourg, Alexander; Helmchen, Fritjof; Keller, Ursula

    2017-07-01

    We use an ultrafast diode-pumped semiconductor disk laser (SDL) to demonstrate several applications in multiphoton microscopy. The ultrafast SDL is based on an optically pumped Vertical External Cavity Surface Emitting Laser (VECSEL) passively mode-locked with a semiconductor saturable absorber mirror (SESAM) and generates 170-fs pulses at a center wavelength of 1027 nm with a repetition rate of 1.63 GHz. We demonstrate the suitability of this laser for structural and functional multiphoton in vivo imaging in both Drosophila larvae and mice for a variety of fluorophores (including mKate2, tdTomato, Texas Red, OGB-1, and R-CaMP1.07) and for endogenous second-harmonic generation in muscle cell sarcomeres. We can demonstrate equivalent signal levels compared to a standard 80-MHz Ti:Sapphire laser when we increase the average power by a factor of 4.5 as predicted by theory. In addition, we compare the bleaching properties of both laser systems in fixed Drosophila larvae and find similar bleaching kinetics despite the large difference in pulse repetition rates. Our results highlight the great potential of ultrafast diode-pumped SDLs for creating a cost-efficient and compact alternative light source compared to standard Ti:Sapphire lasers for multiphoton imaging.

  6. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    International Nuclear Information System (INIS)

    Höppner, H; Hage, A; Tanikawa, T; Schulz, M; Faatz, B; Riedel, R; Prandolini, M J; Teubner, U; Tavella, F

    2015-01-01

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation. (paper)

  7. Compact Aberration-Free Relay-Imaging Multi-Pass Layouts for High-Energy Laser Amplifiers

    Directory of Open Access Journals (Sweden)

    Jörg Körner

    2016-11-01

    Full Text Available We present the results from a theoretical investigation of laser beam propagation in relay imaging multi-pass layouts, which recently found application in high-energy laser amplifiers. Using a method based on the well-known ABCD-matrix formalism and proven by ray tracing, it was possible to derive a categorization of such systems. Furthermore, basic rules for the setup of such systems and the compensation for low order aberrations are derived. Due to the introduced generalization and parametrization, the presented results can immediately be applied to any system of the investigated kinds for a wide range of parameters, such as number of round-trips, focal lengths and optics sizes. It is shown that appropriate setups allow a close-to-perfect compensation of defocus caused by a thermal lens and astigmatism caused by non-normal incidence on the imaging optics, as well. Both are important to avoid intensity spikes leading to damages of optics in multi-pass laser amplifiers.

  8. Development of a high power millimeter wave free-electron laser amplifier

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Zhang, Z.X.; Antonsen, T.M. Jr.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Rodgers, J.; Freund, H.P.

    1992-01-01

    Progress on the development of a high-average-power millimeter wave free-electron laser amplifier is reported. Successful sheet electron beam propagation has been observed through a 54 cm long wiggler magnet. One hundred percent transport efficiency is reported with a 15 A, 0.1 cm x 2.0 cm, sheet electron beam through B w = 5.1 kG, λ w = 0.96 cm, planar electromagnet wiggler. Preliminary success with a novel, yet simple, method of side focusing using offset poles is reported. Status of development on a 94 GHz, 180 kW, pulsed amplifier is discussed with results from numerical simulation

  9. 1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Christensen, Mathias; Noordegraaf, Danny

    2017-01-01

    Semiconductor lasers are ideal sources for efficient electrical-to-optical power conversion and for many applications where their small size and potential for low cost are required to meet market demands. Yellow lasers find use in a variety of bio-related applications, such as photocoagulation......, imaging, flow cytometry, and cancer treatment. However, direct generation of yellow light from semiconductors with sufficient beam quality and power has so far eluded researchers. Meanwhile, tapered semiconductor lasers at near-infrared wavelengths have recently become able to provide neardiffraction...... power in just 60 seconds. An advantage of using a single pass configuration, rather than an external cavity configuration, is increased stability towards external perturbations. For example, stability to fluctuating case temperature over a 30 K temperature span has been demonstrated. The combination...

  10. Rippled beam free electron laser amplifier

    Science.gov (United States)

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  11. Thermal Management of Quantum Cascade Lasers in an individually Addressable Array Architecture

    Science.gov (United States)

    2016-02-08

    diode arrays, along with access to both front and rear facets. Hence, both laser and single-pass amplifier arrays can be accommodated. A module was... CW conditions at an emission wavelength of 9 m. OCIS codes: Semiconductor lasers , quantum cascade (140.5965), Laser arrays (140.3290) 1...Rubio, "Active coherent beam combining of diode lasers ," Opt. Lett. 36, 999-1001 (2011). 2. B. G. Saar, K. Creedon, L. Missaggia, C. A. Wang, M. K

  12. Laser photo-reflectance characterization of resonant nonlinear electro-refraction in thin semiconductor films

    International Nuclear Information System (INIS)

    Chism, Will; Cartwright, Jason

    2012-01-01

    Photo-reflectance (PR) measurements provide a non-contact means for the precise characterization of semiconductor electronic properties. In this paper, we investigate the use of a laser beam as the probe beam in the PR setup. In this case it is seen that the nonlinear refraction is responsible for the amplitude change of the reflected probe field, whereas the phase change is due to nonlinear absorption. The open aperture condition may then be used to eliminate the spatial phase at the detector, thereby isolating the electro-refractive contribution to the PR signal. This greatly simplifies the PR analysis and allows absolute measurements of electro-refraction in thin semiconductor films. We report the application of the laser PR technique to characterize physical strain in thin silicon on silicon-germanium films. - Highlights: ► We describe the theory of laser photoreflectance. ► Laser photoreflectance is used to independently characterize nonlinear refraction. ► We report the characterization of strain in thin strained silicon films.

  13. Construction and design of CO2-laser amplifiers with self-sustained and electron-beam-controlled gas discharge

    International Nuclear Information System (INIS)

    Schmid, W.E.

    1975-08-01

    Following a description of the fundamentals and of the manner of functioning of CO 2 lasers, a theoretical and experimental investigation is performed to see whether the self-sustained or the non-self-sustained gas discharge is suitable for an amplifier in a CO 2 high-power laser system. The measured results show that the excitation by non-self-sustained gas discharge is more advantageous for amplifiers. The reasons are given. (GG/LH) [de

  14. Overview of solid state lasers with applications as LIDAR transmitters and optical image amplifiers

    International Nuclear Information System (INIS)

    Powell, R.C.; Basiev, T.T.; Zverev, P.G.

    2000-01-01

    Full text: This talk will review the current status of solid state lasers. Then a specific class of solid state lasers, Raman lasers, will be discussed as a specific example of new technology development. The spectroscopic properties of the materials are used in these lasers is presented and the use of these materials in shared-, coupled-, and external-resonator laser systems is described. System design parameters affecting efficiency, beam quality, and temporal pulse width are discussed. Examples will be presented of the use of these lasers for transmitters in atmospheric and marine imaging light detection and ranging (LIDAR) systems and in optical amplifiers

  15. Bistability and self-oscillations effects in a polariton-laser semiconductor microcavity

    International Nuclear Information System (INIS)

    Cotta, E A; Matinaga, F M

    2007-01-01

    We report an experimental observation of polaritonic optical bistability of the laser emission in a planar semiconductor microcavity with a 100 0 A GaAs single quantum well in the strong-coupling regime. The bistability curves show crossings that indicate a competition between a Kerr-like effect induced by the polariton population and thermal effects. Associated with the bistability, laser-like emission occurs at the bare cavity mode

  16. Electron transport in solid targets and in the active mixture of a CO2 laser amplifier

    Science.gov (United States)

    Galkowski, A.

    The paper examines the use of the NIKE code for the Monte Carlo computation of the deposited energy profile and other characteristics of the absorption process of an electron beam in a solid target and the spatial distribution of primary ionization in the active mixture of a CO2 laser amplifier. The problem is considered in connection with the generation of intense electron beams and the acceleration of thin metal foils, as well as in connection with the electric discharge pumping of a CO2 laser amplifier.

  17. Generation of coherent soft x-rays using a single-pass free-electron laser amplifier

    International Nuclear Information System (INIS)

    Wang, T.F.; Goldstein, J.C.; Newnam, B.E.; McVey, B.D.

    1988-01-01

    We consider a single-pass free-electron laser (FEL) amplifier, driven by an rf-linac followed by a damping ring for reduced emittance, for use in generating coherent light in the soft x-ray region. The dependence of the optical gain on electron-beam quality, studied with the three-dimensional FEL simulation code FELEX, is given and related to the expected power of self-amplified spontaneous emission. We discuss issues for the damping ring designed to achieve the required electron beam quality. The idea of a multipass regenerative amplifier is also presented

  18. Thin disk amplifier-based 40 mJ, 1 kHz, picosecond laser at 515 nm

    Czech Academy of Sciences Publication Activity Database

    Novák, Jakub; Green, Jonathan T.; Metzger, T.; Mazanec, Tomáš; Himmel, Bedřich; Horáček, Martin; Hubka, Zbyněk; Boge, Robert; Antipenkov, Roman; Batysta, František; Naylon, Jack A.; Bakule, Pavel; Rus, Bedřich

    2016-01-01

    Roč. 24, č. 6 (2016), s. 5728-5733 ISSN 1094-4087 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE.2.3.20.0091 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OP VK 1 Laser Sys(XE) CZ.1.07/2.3.00/20.0091 Institutional support: RVO:68378271 Keywords : laser amplifiers * laser s * pulsed * laser s * diode -pumped * laser s * frequency doubled * ultrafast laser s Subject RIV: BH - Optics, Masers, Laser s Impact factor: 3.307, year: 2016

  19. Application of laser spot cutting on spring contact probe for semiconductor package inspection

    Science.gov (United States)

    Lee, Dongkyoung; Cho, Jungdon; Kim, Chan Ho; Lee, Seung Hwan

    2017-12-01

    A packaged semiconductor has to be electrically tested to make sure they are free of any manufacturing defects. The test interface, typically employed between a Printed Circuit Board and the semiconductor devices, consists of densely populated Spring Contact Probe (SCP). A standard SCP typically consists of a plunger, a barrel, and an internal spring. Among these components, plungers are manufactured by a stamping process. After stamping, plunger connecting arms need to be cut into pieces. Currently, mechanical cutting has been used. However, it may damage to the body of plungers due to the mechanical force engaged at the cutting point. Therefore, laser spot cutting is considered to solve this problem. The plunger arm is in the shape of a rectangular beam, 50 μm (H) × 90 μm (W). The plunger material used for this research is gold coated beryllium copper. Laser parameters, such as power and elapsed time, have been selected to study laser spot cutting. Laser material interaction characteristics such as a crater size, material removal zone, ablation depth, ablation threshold, and full penetration are observed. Furthermore, a carefully chosen laser parameter (Etotal = 1000mJ) to test feasibility of laser spot cutting are applied. The result show that laser spot cutting can be applied to cut SCP.

  20. Photoacoustic Techniques for Trace Gas Sensing Based on Semiconductor Laser Sources

    Directory of Open Access Journals (Sweden)

    Vincenzo Spagnolo

    2009-12-01

    Full Text Available The paper provides an overview on the use of photoacoustic sensors based on semiconductor laser sources for the detection of trace gases. We review the results obtained using standard, differential and quartz enhanced photoacoustic techniques.

  1. Design and construct of a tunable semiconductor laser

    Directory of Open Access Journals (Sweden)

    J. Sabbaghzadeh

    2000-06-01

    Full Text Available   In this paper we explain in detail the design of a semiconductor laser coupled with the reflected beams from a grating. Since the beams reflected are diffracted at different angles, only one component of them can be resonated in the cavity. This technique reduces the output frequency of the laser and increases its stability.   Since this system has various applications in the spectroscopy, gas concentrations, air pollution measurements, investigation of atomic and molecular structure, and so on, system is believed to be simple and accurate. This design is made for the first time in Iran and its reliability has been tested by the measurement of the rubidium atom, and the result is given.

  2. The theoretical and numerical models of the novel and fast tunable semiconductor ring laser

    Science.gov (United States)

    Zhu, Jiangbo; Zhang, Junwen; Chi, Nan; Yu, Siyuan

    2011-01-01

    Fast wavelength-tunable semiconductor lasers will be the key components in future optical packet switching networks. Especially, they are of great importance in the optical network nodes: transmitters, optical wavelength-routers, etc. In this paper, a new scheme of a next-generation fast tunable ring laser was given. Tunable lasers in this design have better wavelength tunability compared with others, for they are switched faster in wavelength and simpler to control with the injecting light from an external distributed Bragg-reflector(DBR). Then some discussion of the waveguide material system and coupler design of the ring laser were given. And we also derived the multimode rate equations corresponding to this scheme by analyzing some characteristics of the semiconductor ring cavity, directionality, nonlinear mode competition, optical injection locking, etc. We did MatLab simulation based on the new rate equations to research the process of mode competition and wavelength switching in the laser, and achieved the basic functions of a tunable laser. Finally some discussion of the impact of several key parameters was given.

  3. Gigahertz dual-comb modelocked diode-pumped semiconductor and solid-state lasers

    Science.gov (United States)

    Link, S. M.; Mangold, M.; Golling, M.; Klenner, A.; Keller, U.

    2016-03-01

    We present a simple approach to generate simultaneously two gigahertz mode-locked pulse trains from a single gain element. A bi-refringent crystal in the laser cavity splits the one cavity beam into two cross-polarized and spatially separated beams. This polarization-duplexing is successfully demonstrated for both a semiconductor disk laser (i.e. MIXSEL) and a diode-pumped solid-state Nd:YAG laser. The beat between the two beams results in a microwave frequency comb, which represents a direct link between the terahertz optical frequencies and the electronically accessible microwave regime. This dual-output technique enables compact and cost-efficient dual-comb lasers for spectroscopy applications.

  4. A high power gain switched diode laser oscillator and amplifier for the CEBAF polarized electron injector

    International Nuclear Information System (INIS)

    Poelker, M.; Hansknecht, J.

    1996-01-01

    The photocathode in the polarized electron source at Jefferson Lab is illuminated with pulsed laser light from a gain switched diode laser and diode optical amplifier. Laser pulse repetition rates up to 2,000 MHz, optical pulsewidths between 31 and 123 ps, and average power > 100 mW are demonstrated. The laser system is highly reliable and completely remotely controlled

  5. Multiple excitation regenerative amplifier inertial confinement system

    International Nuclear Information System (INIS)

    George, V.E.; Haas, R.A.; Krupke, W.F.; Schlitt, L.G.

    1980-01-01

    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation

  6. Modification of semiconductor materials using laser-produced ion streams additionally accelerated in the electric fields

    International Nuclear Information System (INIS)

    Rosinski, M.; Badziak, B.; Parys, P.; Wolowski, J.; Pisarek, M.

    2009-01-01

    The laser-produced ion stream may be attractive for direct ultra-low-energy ion implantation in thin layer of semiconductor for modification of electrical and optical properties of semiconductor devices. Application of electrostatic fields for acceleration and formation of laser-generated ion stream enables to control the ion stream parameters in broad energy and current density ranges. It also permits to remove the useless laser-produced ions from the ion stream designed for implantation. For acceleration of ions produced with the use of a low fluence repetitive laser system (Nd:glass: 2 Hz, pulse duration: 3.5 ns, pulse energy:∼0.5 J, power density: 10 10 W/cm 2 ) in IPPLM the special electrostatic system has been prepared. The laser-produced ions passing through the diaphragm (a ring-shaped slit in the HV box) have been accelerated in the system of electrodes. The accelerating voltage up to 40 kV, the distance of the diaphragm from the target, the diaphragm diameter and the gap width were changed for choosing the desired parameters (namely the energy band of the implanted ions) of the ion stream. The characteristics of laser-produced Ge ion streams were determined with the use of precise ion diagnostic methods, namely: electrostatic ion energy analyser and various ion collectors. The laser-produced and post-accelerated Ge ions have been used for implantation into semiconductor materials for nanocrystal fabrication. The characteristics of implanted samples were measured using AES

  7. Ring cavity surface emitting semiconductor lasers

    International Nuclear Information System (INIS)

    Mujagic, E.

    2010-01-01

    Quantum cascade lasers (QCLs) are electrically driven semiconductor lasers, which have undergone a steady improvement since the first demonstration in 1994. These are now well established as reliable sources of coherent light in the mid-infrared (MIR) and terahertz (THz)range of the electromagnetic spectrum (3-300 μm). The rapid progress of this type of lasers is based on a high degree of freedom in tailoring the emission wavelength within a large variety of semiconductor heterostructure designs and materials. These properties have attracted the attention of various applications such as gas analysis, chemical sensing, spectral imaging and free-space telecommunication. In order to improve the selectivity, sensitivity and efficiency of today's sensor systems, high optical power, continuous wave and room temperature performance, single-mode operation and low divergence optical beams, are highly desirable qualities of a compact laser source in this field of research. Since all of these features cannot be provided by a conventional edge-emitting device at the same time, research has put focus on the development of surface emitting devices. Nowadays, the vertical cavity surface emitting lasers (VCSELs) are the most prominent representative for this type of light emitters. With its capability of producing narrow circular beams, the feasibility of two-dimensional arrays and on-wafer testing, such a coherent light source results in a reduction of the fabrication effort and production costs. Since the radiation in QCLs is strictly polarized normal to the epitaxial layer plane, fabrication of VCSELs based on QC structures is not viable. The subject of this work is the design and realization of 'ring cavity surface emitting lasers' (ring-CSELs). This type of lasers employs a circular ring cavity and a resonant distributed feedback (DFB) surface grating. Ring-CSELs were fabricated on the basis of MIR and THz QC structures, which cover a wavelength range from 4 μm to 93

  8. Study on biological effect on mice and use safety of 830 nm semiconductor laser

    International Nuclear Information System (INIS)

    Li Keqiu; Li Jian; Miao Xuhong; Liu Shujuan; Li Guang

    2006-01-01

    Objective: To study biological effect on mice by 830 nm semiconductor laser in different dosage, and determine the optimal irradiating dosage by observing and analyzing the immunoregulation and cytogenetical damage of mice after irradiation. Methods: The spleen and thymus areas of Kunming mice were irradiated in vitro by 830 nm semiconductor laser of 30 mW for 5 min, 10 min and 20 min per day respectively, then the blood samples were collected from orbital vein. Further, the spleen tissue and sternum marrow were collected soon after the mice were killed. Afterwards, IgG, dopamine, serotonin in serum were detected respectively. Besides these, the rate of lymphocyte transformation and the rate of micronuclei in marrow polychromatic erythrocytes were also determined. Results: With the extending of irradiating time, the detected factors changed differently. Statistically, there were differences in IgG concentration and the rate of lymphocyte transformation between 10 min group, 20 min group and control group respectively, but no difference between each experimental group were found. /compare with control group, serotonin concentration in 10 min group increased, and there was statistical difference between these two groups, while there was no difference in dopamine concentration among each group. Besides these, the rate of micronuclei in 20 min group increased. Conclusion: In this study, irradiation by semiconductor laser for appropriate time can improve immuno function of mice, but irradiation in high dosage will result in the damage of genetic material. The optimal time of irradiation by 830 nm semiconductor laser was 10 min. (authors)

  9. Effects of chemical kinetics and starting material regeneration on the efficiency of an iodine laser amplifier

    International Nuclear Information System (INIS)

    Fisk, G.A.

    1977-05-01

    A model of the chemical kinetics occurring in an iodine laser amplifier is presented and used to calculate the degree to which the starting material is consumed as a result of laser operation. The cost of purchasing new starting material is estimated and shown to be prohibitive. A scheme for regenerating the starting material from the species present in the amplifier after lasing is proposed. It is shown that the estimated efficiency of this chemical regeneration process is appreciably higher than the projected optimum efficiency of the pumping process

  10. Nonlinear gain suppression in semiconductor lasers due to carrier heating

    International Nuclear Information System (INIS)

    Willatzen, M.; Uskov, A.; Moerk, J.; Olesen, H.; Tromborg, B.; Jauho, A.P.

    1991-01-01

    We present a simple model for carrier heating in semiconductor lasers, from which the temperature dynamics of the electron and hole distributions can be calculated. Analytical expressions for two new contributions to the nonlinear gain coefficient ε are derived, which reflect carrier heating due to stimulated emission and free carrier absorption. In typical cases, carrier heating and spectral holeburning are found to give comparable contributions to nonlinear gain suppression. The results are in good agreement with recent measurements on InGaAsP laser diodes. (orig.)

  11. Optical self-injection mode-locking of semiconductor optical amplifier fiber ring with electro-absorption modulation—fundamentals and applications

    International Nuclear Information System (INIS)

    Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    The optical self-injection mode-locking of a semiconductor optical amplifier incorporated fiber ring laser (SOAFL) with spectrally sliced multi-channel carriers is demonstrated for applications. The synthesizer-free SOAFL pulse-train is delivered by optical injection mode-locking with a 10 GHz self-pulsed electro-absorption modulator (EAM). Such a coupled optical and electronic resonator architecture facilitates a self-feedback oscillation with a higher Q-factor and lower phase/intensity noises when compared with conventional approaches. The theoretical model of such an injection-mode-locking SOAFL is derived to improve the self-pulsating performance of the optical return-to-zero (RZ) carrier, thus providing optimized pulsewidth, pulse extinction ratio, effective Q-factor, frequency variation and timing jitter of 11.4 ps, 9.1 dB, 4 × 10 5 , −1 bi-directional WDM transmission network with down-stream RZ binary phase-shift keying (RZ-BPSK) and up-stream re-modulated RZ on–off-keying (RZ-OOK) formats. Under BPSK/OOK bi-directional data transmission, the self-pulsed harmonic mode-locking SOAFL simultaneously provides four to six WDM channels for down-stream RZ-BPSK and up-stream RZ-OOK formats with receiving sensitivities of −17 and −15.2 dBm at a bit error rate of 10 −9 , respectively. (paper)

  12. Optical trapping with Bessel beams generated from semiconductor lasers

    International Nuclear Information System (INIS)

    Sokolovskii, G S; Dudelev, V V; Losev, S N; Soboleva, K K; Deryagin, A G; Kuchinskii, V I; Sibbett, W; Rafailov, E U

    2014-01-01

    In this paper, we study generation of Bessel beams from semiconductor lasers with high beam propagation parameter M 2 and their utilization for optical trapping and manipulation of microscopic particles including living cells. The demonstrated optical tweezing with diodegenerated Bessel beams paves the way to replace their vibronic-generated counterparts for a range of applications towards novel lab-on-a-chip configurations

  13. The first picosecond terawatt CO2 laser at the Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.; Ben-Zvi, I.; Babzien, M.

    1998-02-01

    The first terawatt picosecond CO 2 laser will be brought to operation at the Brookhaven Accelerator Test Facility in 1998. System consists of a single-mode TEA oscillator, picosecond semiconductor optical switch, multi-atmosphere. The authors report on design, simulation, and performance tests of the 10 atm final amplifier that allows for direct multi-joule energy extraction in a picosecond laser pulse

  14. Amplified Spontaneous Emission of Organic Pyridinium Dye doped Polymeric Waveguide

    International Nuclear Information System (INIS)

    Jun, Xi; Li-Hua, Ye; Qiong, Wang; Deng, Xu; Chang-Gui, Lu; Guo-Hua, Hu; Yi-Ping, Cui

    2009-01-01

    An organic dye salt trans-4-[p-(N-hydroxyethyl-N-methylamino)styryl]-N-methylpyridinium iodide (ASPI) is doped with an electron transport organic molecule tris(8-hydroxyquinoline) aluminium (Alq3) in a host matrix of poly(methylmethacrylate) (PMMA), and the amplified spontaneous emission (ASE) is studied. By efficient Forster energy transfer from Alq3 to ASPI, it is demonstrated that the ASE threshold of ASPI:Alq3:PMMA waveguide (about 11μJ/pulse) is much lower than that of ASPI:PMMA system (about 38μJ/pulse). Meanwhile, the peak position of ASE can be controlled by the effect of film thickness on waveguide modes. We show that the ASE peak position can be tuned over 37nm. These characteristics indicate the ASPI:Alq3 system as a promising gain medium for optical amplifiers and organic semiconductor lasers

  15. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    Science.gov (United States)

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  16. Optoelectronic integrated circuits utilising vertical-cavity surface-emitting semiconductor lasers

    International Nuclear Information System (INIS)

    Zakharov, S D; Fyodorov, V B; Tsvetkov, V V

    1999-01-01

    Optoelectronic integrated circuits with additional optical inputs/outputs, in which vertical-cavity surface-emitting (VCSE) lasers perform the data transfer functions, are considered. The mutual relationship and the 'affinity' between optical means for data transfer and processing, on the one hand, and the traditional electronic component base, on the other, are demonstrated in the case of implementation of three-dimensional interconnects with a high transmission capacity. Attention is drawn to the problems encountered when semiconductor injection lasers are used in communication lines. It is shown what role can be played by VCSE lasers in solving these problems. A detailed analysis is made of the topics relating to possible structural and technological solutions in the fabrication of single lasers and of their arrays, and also of the problems hindering integrating of lasers into emitter arrays. Considerable attention is given to integrated circuits with optoelectronic smart pixels. Various technological methods for vertical integration of GaAs VCSE lasers with the silicon substrate of a microcircuit (chip) are discussed. (review)

  17. Extracting physical properties of arbitrarily shaped laser-doped micro-scale areas in semiconductors

    International Nuclear Information System (INIS)

    Heinrich, Martin; Kluska, Sven; Hameiri, Ziv; Hoex, Bram; Aberle, Armin G.

    2013-01-01

    We present a method that allows the extraction of relevant physical properties such as sheet resistance and dopant profile from arbitrarily shaped laser-doped micro-scale areas formed in semiconductors with a focused pulsed laser beam. The key feature of the method is to use large laser-doped areas with an identical average number of laser pulses per area (laser pulse density) as the arbitrarily shaped areas. The method is verified using sheet resistance measurements on laser-doped silicon samples. Furthermore, the method is extended to doping with continuous-wave lasers by using the average number of passes per area or density of passes

  18. Multicanonical evaluation of the tails of the probability density function of semiconductor optical amplifier output power fluctuations

    DEFF Research Database (Denmark)

    Tromborg, Bjarne; Reimer, Michael; Yevick, David

    2010-01-01

    This paper presents a multicanonical Monte Carlo method for simulating the tails of a pdf distribution of the filtered output power from a semiconductor optical amplifier down to values of the order of 10−40. The influence of memory effects on the pdf is examined in order to demonstrate the manner...... in which the calculated pdf approaches the true pdf with increasing integration time. The simulated pdf is shown to be in good agreement with a second order analytic expression for the pdf....

  19. Experimental and theoretical investigation of semiconductor optical amplifier (SOA) based all-optical switches

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup

    2004-01-01

    This thesis analyzes semiconductor optical amplifier (SOA) based all-optical switches experimentally and through numerical simulations. These devices are candidates for optical signal processing functionalities such as wavelength conversion, regeneration, and logic processing in future transparent......, consisting of an SOA and an asymmetric MZI filter, is analyzed in the small-signal regime, and the obtainable modulation bandwidth is expressed analytically. A new optical spectrum approach to small signal analysis is introduced, and is used to assess the bandwidth enhancing effect of different optical...... filters, as well the impact of the filter phase response. Experiments at 40 Gb/s verify the predictions of the small-signal analysis. Wavelength conversion is demonstrated experimentally at 40 Gb/s using a simple filtering-assisted scheme with an ultra-low optical switching energy, and up to 80 Gb...

  20. General Method for Calculating the Response and Noise Spectra of Active Fabry-Perot Semiconductor Waveguides With External Optical Injection

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Mørk, Jesper

    2009-01-01

    We present a theoretical method for calculating small-signal modulation responses and noise spectra of active Fabry-Perot semiconductor waveguides with external light injection. Small-signal responses due to either a modulation of the pump current or due to an optical amplitude or phase modulatio...... amplifiers and an injection-locked laser. We also demonstrate the applicability of the method to analyze slow and fast light effects in semiconductor waveguides. Finite reflectivities of the facets are found to influence the phase changes of the injected microwave-modulated light....

  1. Nanonewton thrust measurement of photon pressure propulsion using semiconductor laser

    Science.gov (United States)

    Iwami, K.; Akazawa, Taku; Ohtsuka, Tomohiro; Nishida, Hiroyuki; Umeda, Norihiro

    2011-09-01

    To evaluate the thrust produced by photon pressure emitted from a 100 W class continuous-wave semiconductor laser, a torsion-balance precise thrust stand is designed and tested. Photon emission propulsion using semiconductor light sources attract interests as a possible candidate for deep-space propellant-less propulsion and attitude control system. However, the thrust produced by photon emission as large as several ten nanonewtons requires precise thrust stand. A resonant method is adopted to enhance the sensitivity of the biflier torsional-spring thrust stand. The torsional spring constant and the resonant of the stand is 1.245 × 10-3 Nm/rad and 0.118 Hz, respectively. The experimental results showed good agreement with the theoretical estimation. The thrust efficiency for photon propulsion was also defined. A maximum thrust of 499 nN was produced by the laser with 208 W input power (75 W of optical output) corresponding to a thrust efficiency of 36.7%. The minimum detectable thrust of the stand was estimated to be 2.62 nN under oscillation at a frequency close to resonance.

  2. Resistor-less charge sensitive amplifier for semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pelczar, K., E-mail: krzysztof.pelczar@doctoral.uj.edu.pl; Panas, K.; Zuzel, G.

    2016-11-01

    A new concept of a Charge Sensitive Amplifier without a high-value resistor in the feedback loop is presented. Basic spectroscopic parameters of the amplifier coupled to a coaxial High Purity Germanium detector (HPGe) are discussed. The amplifier signal input is realized with an n-channel J-FET transistor. The feedback capacitor is discharged continuously by the second, forward biased n-channel J-FET, driven by an RC low–pass filter. Both the analog—with a standard spectroscopy amplifier and a multi-channel analyzer—and the digital—by applying a Flash Analog to Digital Converter—signal readouts were tested. The achieved resolution in the analog and the digital readouts was 0.17% and 0.21%, respectively, at the Full Width at Half Maximum of the registered {sup 60}Co 1332.5 keV gamma line.

  3. Investigation of pump-to-seed beam matching on output features of Rb and Cs vapor laser amplifiers

    Science.gov (United States)

    Shen, Binglin; Huang, Jinghua; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2018-05-01

    Taking into account the beam radii of pump light and seed laser along the entire length of the cell and their intensities in the cross section, a physical model with ordinary differential equation methods for alkali vapor amplifiers is established. Applied to the reported optically pumped Rb and diode-pumped Cs vapor amplifiers, the model shows good agreement between the calculated and measured dependence of amplified power on the seed power. A larger width of the spontaneous emission region as compared to the widths of pump absorption and laser emission regions, which will result in very high energy losses, is observed in the cell. Influence of pump and seed beam waists on output performance is calculated, showing that the pump and seed beam should match each other not only in shape but also in size, thus an optimal combination of beam radii is very important for efficient operation of alkali vapor amplifiers.

  4. Memory Effect on Adaptive Decision Making with a Chaotic Semiconductor Laser

    Directory of Open Access Journals (Sweden)

    Takatomo Mihana

    2018-01-01

    Full Text Available We investigate the effect of a memory parameter on the performance of adaptive decision making using a tug-of-war method with the chaotic oscillatory dynamics of a semiconductor laser. We experimentally generate chaotic temporal waveforms of the semiconductor laser with optical feedback and apply them for adaptive decision making in solving a multiarmed bandit problem that aims at maximizing the total reward from slot machines whose hit probabilities are dynamically switched. We examine the dependence of making correct decisions on different values of the memory parameter. The degree of adaptivity is found to be enhanced with a smaller memory parameter, whereas the degree of convergence to the correct decision is higher for a larger memory parameter. The relations among the adaptivity, environmental changes, and the difficulties of the problem are also discussed considering the requirement of past decisions. This examination of ultrafast adaptive decision making highlights the importance of memorizing past events and paves the way for future photonic intelligence.

  5. Effect of amplifier component maintenance on laser system availability and reliability for the US National Ignition Facility

    International Nuclear Information System (INIS)

    Erlandson, A.C.; Lambert, H.; Zapata, L.E.

    1996-12-01

    We have analyzed the availability and reliability of the flashlamp-pumped, Nd:glass amplifiers that, as a part of a laser now being designed for future experiments, in inertial confinement fusion (ICF), will be used in the National Ignition Facility (NIF). Clearly , in order for large ICF systems such as the NIF to operate effectively as a whole, all components must meet demanding availability and reliability requirements. Accordingly, the NIF amplifiers can achieve high reliability and availability by using reliable parts, and by using a cassette-based maintenance design that allows most key amplifier parts to be 1744 replaced within a few hours. In this way, parts that degrade slowly, as the laser slabs, silver reflectors, and blastshields can be expected to do, based on previous experience, can be replaced either between shots or during scheduled maintenance periods, with no effect on availability or reliability. In contrast, parts that fail rapidly, such as the flashlamps, can and do cause unavailability or unreliability. Our analysis demonstrates that the amplifiers for the NIF will meet availability and reliability goals, respectively, of 99.8% and 99.4%, provided that the 7680 NIF flashlamps in NIF have failure rates of less than, or equal to, those experienced on Nova, a 5000-lamp laser at Lawrence Livermore National Laboratory (LLNL)

  6. Millimeter wave free electron laser amplifiers: Experiments and designs

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Zhang, Z.X.; Antonsen, T.M. Jr.; Bensen, D.M.; Destler, W.W.; Granatstein, V.L.; Lantham, P.E.; Levush, B.; Rodgers, J.

    1991-01-01

    Free electron laser amplifies are investigated as sources of high- average-power (1 MW) millimeter to submillimeter wave radiation (200 GHz - 600 GHz) for application to electron cyclotron resonance heating of magnetically confined fusion plasmas. As a stepping-stone to higher frequencies and cw operation a pulsed amplifier (τ pulse ≅ 80 ns) at 98 GHz is being developed. Status is reported on this experiment which investigates linear gain amplification with use of sheet electron beam (transverse cross section = 0.1 cm x 2.0 cm, V beam = 440 keV, I beam ≅ 10 A) and short-period wiggler (ell w = 0.96 cm) and with expected output of 140 W. Predictions of gain and efficiency from a 1-D universal formulation are presented. Beam propagation results, with wiggler focusing as a means of sheet beam confinement in both transverse dimensions, through the 54 cm (56 period) pulsed electromagnet wiggler are discussed. Peak wiggler fields of 5.1 kG on-axis have been achieved

  7. Theoretical analysis of quantum dot amplifiers with high saturation power and low noise figure

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    Semiconductor quantum dot amplifiers are predicted to exhibit superior characteristics such as high gain, and output power and low noise. The analysis provides criteria and design guidelines for the realization of high quality amplifiers.......Semiconductor quantum dot amplifiers are predicted to exhibit superior characteristics such as high gain, and output power and low noise. The analysis provides criteria and design guidelines for the realization of high quality amplifiers....

  8. First operation of a wiggler-focused, sheet beam free electron laser amplifier

    International Nuclear Information System (INIS)

    Destler, W.W.; Cheng, S.; Zhang, Z.X.; Antonsen, T.M. Jr.; Granatstein, V.L.; Levush, B.; Rodgers, J.

    1994-01-01

    A wiggler-focused, sheet beam free electron laser (FEL) amplifier utilizing a short-period wiggler magnet has been proposed as a millimeter-wave source for current profile modification and/or electron cyclotron resonance heating of tokamak plasmas. As proposed, such an amplifier would operate at a frequency of approximately 100--200 GHz with an output power of 1--10 MW CW. Electron beam energy would be in the range 500--1000 keV. To test important aspects of this concept, an initial sheet beam FEL amplifier experiment has been performed using a 1 mmx2 cm sheet beam produced by a pulse line accelerator with a pulse duration of 100 ns. The 500--570 keV, 4--18 A sheet beam is propagated through a 56 period uniform wiggler (λ w =9.6 mm) with a peak wiggler amplitude of 2--5 kG. Linear amplification of a 5--10 W, 94 GHz signal injected in the TE 01 rectangular mode is observed. All features of the amplified signal, including pulse shape and duration, are in accordance with the predictions of numerical simulation. Amplified signal gain has been measured as a function of injected beam energy, current, and wiggler field amplitude and is also in good agreement with simulation results. Continuation of this experiment will involve studying nonlinear amplifier operation and adding a section of tapered wiggler

  9. Mode-Locking in Broad-Area Semiconductor Lasers Enhanced by Picosecond-Pulse Injection

    OpenAIRE

    Kaiser, J; Fischer, I; Elsasser, W; Gehrig, E; Hess, O

    2004-01-01

    We present combined experimental and theoretical investigations of the picosecond emission dynamics of broad-area semiconductor lasers (BALs). We enhance the weak longitudinal self-mode-locking that is inherent to BALs by injecting a single optical 50-ps pulse, which triggers the output of a distinct regular train of 13-ps pulses. Modeling based on multimode Maxwell-Bloch equations illustrates how the dynamic interaction of the injected pulse with the internal laser field efficiently couples ...

  10. NIF/LMJ prototype amplifier mechanical design

    International Nuclear Information System (INIS)

    Horvath, J.

    1996-10-01

    Amplifier prototypes for the National Ignition Facility and the Laser Megajoule will be tested at Lawrence Livermore National Laboratory. The prototype amplifier, which is an ensemble of modules from LLNL and Centre d'Etudes de Limeil-Valenton, is cassette-based with bottom access for maintenance. A sealed maintenance transfer vehicle which moves optical cassettes between the amplifier and the assembly cleanroom, and a vacuum gripper which holds laser slabs during cassette assembly will also be tested. The prototype amplifier will be used to verify amplifier optical performance, thermal recovery time, and cleanliness of mechanical operations

  11. Mode structure of delay-coupled semiconductor lasers: influence of the pump current

    International Nuclear Information System (INIS)

    Erzgraeber, Hartmut; Krauskopf, Bernd; Lenstra, Daan

    2005-01-01

    We consider two identical, mutually delay-coupled semiconductor lasers and show that their compound laser modes (CLMs)-the basic continuous wave solutions-depend rather sensitively on the pump current of the lasers. Specifically, we show with figures and accompanying animations how the underlying CLM structure and the associated locking region, where both lasers operate stably with the same frequency, change as a function of the pump current. Our results provide a natural transition between rather different CLM structures that have been reported in the literature. Moreover, we demonstrate how the locking region as well as the different types of instabilities at its boundary depend on the pump current. This is of fundamental interest for the dynamics of coupled lasers and their possible application

  12. Frequency locking, quasiperiodicity, subharmonic bifurcations and chaos in high frequency modulated stripe geometry DH semiconductor lasers

    International Nuclear Information System (INIS)

    Zhao Yiguang

    1991-01-01

    The method of obtaining self-consistent solutions of the field equation and the rate equations of photon density and carrier concentration has been used to study frequecny locking, quasiperiodicity, subharmonic bifurcations and chaos in high frequency modulated stripe geometry DH semiconductor lasers. The results show that the chaotic behavior arises in self-pulsing stripe geometry semiconductor lasers. The route to chaos is not period-double, but quasiperiodicity to chaos. All of the results agree with the experiments. Some obscure points in previous theory about chaos have been cleared up

  13. Ten years optically pumped semiconductor lasers: review, state-of-the-art, and future developments

    Science.gov (United States)

    Kannengiesser, Christian; Ostroumov, Vasiliy; Pfeufer, Volker; Seelert, Wolf; Simon, Christoph; von Elm, Rüdiger; Zuck, Andreas

    2010-02-01

    Optically Pumped Semiconductor Lasers - OPSLs - have been introduced in 2001. Their unique features such as power scalability and wavelength flexibility, their excellent beam parameters, power stability and reliability opened this pioneering technology access to a wide range of applications such as flow cytometry, confocal microscopy, sequencing, medical diagnosis and therapy, semiconductor inspection, graphic arts, forensic, metrology. This talk will introduce the OPSL principles and compare them with ion, diode and standard solid state lasers. It will revue the first 10 years of this exciting technology, its current state and trends. In particular currently accessible wavelengths and power ranges, frequency doubling, ultra-narrow linewidth possibilities will be discussed. A survey of key applications will be given.

  14. Numerical investigations on the performance of external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    2004-01-01

    The performance of an external-cavity mode-locked semiconductor laser is analyzed theoretically and numerically. Passive mode-locking is described using a fully-distributed time-domain model including fast effects, spectral hole burning and carrier heating. We provide optimization rules in order ...

  15. Transient thermal analysis of semiconductor diode lasers under pulsed operation

    Science.gov (United States)

    Veerabathran, G. K.; Sprengel, S.; Karl, S.; Andrejew, A.; Schmeiduch, H.; Amann, M.-C.

    2017-02-01

    Self-heating in semiconductor lasers is often assumed negligible during pulsed operation, provided the pulses are `short'. However, there is no consensus on the upper limit of pulse width for a given device to avoid-self heating. In this paper, we present an experimental and theoretical analysis of the effect of pulse width on laser characteristics. First, a measurement method is introduced to study thermal transients of edge-emitting lasers during pulsed operation. This method can also be applied to lasers that do not operate in continuous-wave mode. Secondly, an analytical thermal model is presented which is used to fit the experimental data to extract important parameters for thermal analysis. Although commercial numerical tools are available for such transient analyses, this model is more suitable for parameter extraction due to its analytical nature. Thirdly, to validate this approach, it was used to study a GaSb-based inter-band laser and an InP-based quantum cascade laser (QCL). The maximum pulse-width for less than 5% error in the measured threshold currents was determined to be 200 and 25 ns for the GaSb-based laser and QCL, respectively.

  16. Self-amplified spontaneous emission free electron laser devices and nonideal electron beam transport

    Directory of Open Access Journals (Sweden)

    L. L. Lazzarino

    2014-11-01

    Full Text Available We have developed, at the SPARC test facility, a procedure for a real time self-amplified spontaneous emission free electron laser (FEL device performance control. We describe an actual FEL, including electron and optical beam transport, through a set of analytical formulas, allowing a fast and reliable on-line “simulation” of the experiment. The system is designed in such a way that the characteristics of the transport elements and the laser intensity are measured and adjusted, via a real time computation, during the experimental run, to obtain an on-line feedback of the laser performances. The detail of the procedure and the relevant experimental results are discussed.

  17. Interband optical pulse injection locking of quantum dot mode-locked semiconductor laser.

    Science.gov (United States)

    Kim, Jimyung; Delfyett, Peter J

    2008-07-21

    We experimentally demonstrate optical clock recovery from quantum dot mode-locked semiconductor lasers by interband optical pulse injection locking. The passively mode-locked slave laser oscillating on the ground state or the first excited state transition is locked through the injection of optical pulses generated via the opposite transition bands, i.e. the first excited state or the ground state transition from the hybridly mode-locked master laser, respectively. When an optical pulse train generated via the first excited state from the master laser is injected to the slave laser oscillating via ground state, the slave laser shows an asymmetric locking bandwidth around the nominal repetition rate of the slave laser. In the reverse injection case of, i.e. the ground state (master laser) to the first excited state (slave laser), the slave laser does not lock even though both lasers oscillate at the same cavity frequency. In this case, the slave laser only locks to higher injection rates as compared to its own nominal repetition rate, and also shows a large locking bandwidth of 6.7 MHz.

  18. Identification of amplitude and timing jitter in external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper; Kroh, Marcel

    2004-01-01

    We theoretically and experimentally investigate the dynamics of external-cavity mode-locked semiconductor lasers, focusing on stability properties, optimization of pulsewidth and timing jitter. A new numerical approach allows to clearly separate timing and amplitude jitter....

  19. Return-map for low-frequency fluctuations in semiconductor lasers with optical feedback

    DEFF Research Database (Denmark)

    Mørk, Jesper; Sabbatier, H.; Sørensen, Mads Peter

    1999-01-01

    We show that the phenomenon of low-frequency fluctuations (LFF) , commonly observed in semiconductor lasers with optical feedback, can be explained by a simple return-map, implying a tremendous simplification in the description of the slow time-scale dynamics of the system. Experimentally observed...

  20. Analog direct-modulation behavior of semiconductor laser transmitters using optical FM demodulation

    NARCIS (Netherlands)

    Yabre, G.S.

    1998-01-01

    In this paper, we report a theoretical investigation of the analog modulation performance of a semiconductor laser transmitter which employs the direct optical FM demodulation. This analysis is based on the rate equations in which Langevin noise functions are included. The optical FM response has

  1. Dynamics of InGaN tandem blue-violet semiconductor lasers

    International Nuclear Information System (INIS)

    Antohi, I.; Rusu, S.S.; Tronciu, V.Z.

    2013-01-01

    Full text: Blue-violet semiconductor lasers have received much attention because of their promise for high-density optical storage applications. In particular, blue-violet laser diodes operating at 400 nm are required for BD- systems and for use in medicine, biology, color printers and monitors, etc, In recent years, numerous fabrication methods have been proposed and developed for blue lasers with CW and self-pulsating operations and the lifetime of such lasers has been increased to over 15000 h. Recently, we have reported self-pulsation and excitable behaviour for an InGaN laser with a p-type saturable absorber, and SP in the frequency range from 1.6 to 2.9 GHz has been achieved with such lasers. In this paper, we present an investigation of the dynamics of tandem 400 nm blue-violet lasers with setup presented in Fig.1a. A particular feature of the devices is the connection of the contacts of the SA, to reduce the carrier lifetime in the SA with the intention of producing self-pulsation and excitability. We examine the laser dynamics in terms of bifurcation diagrams. A typical calculation of bifurcation for the periodic solution is shown in Fig. 1b. This figure shows the dependence of the peak of the photon number on the injected.

  2. Study of the Powerful Nd:YLF Laser Amplifiers for the CTF3 Photoinjectors

    CERN Document Server

    Petrarca, M; Luchinin, G; Divall, M

    2011-01-01

    A high-power neodymium-doped yttrium lithium fluoride (Nd:YLF) mode-locked 1.5-GHz laser currently used to drive the two photoinjectors of the Compact Linear Collider Test Facility project at the European Organization for Nuclear Research is described. A phenomenological characterization of the two powerful Nd:YLF amplifiers is presented and compared with the measurements. The laser system operates in a saturated steady-state mode. This mode provides good shot-to-shot stability with pulse train mean power in the 10 kW range.

  3. Instability of stationary lasing and self-starting mode locking in external-cavity semiconductor lasers

    International Nuclear Information System (INIS)

    Smetanin, Igor V; Vasil'ev, Petr P

    2009-01-01

    Parameters of external-cavity semiconductor lasers, when the stationary lasing becomes unstable, were analysed within the framework of a theoretical model of self-starting mode locking. In this case, a train of ultrashort pulses can be generated due to intrinsic nonlinearities of the laser medium. A decisive role of the transverse optical field nonuniformity, pump rate, and gain spectral bandwidth in the development of the instability of stationary lasing was demonstrated. (control of laser radiation parameters)

  4. Doping Optimization for High Efficiency in Semiconductor Diode Lasers and Amplifiers

    Science.gov (United States)

    2016-03-01

    ηiVph αm αm + αi (I − Ith) , (12) where ηi is the internal quantum efficiency, Vph is the voltage associated with the energy of a single photon, and...efficiency. In general, this could be a negligible detail; however, for certain cases such as V0 Vph , the difference could be significant, since...communications applications. Bour and Rosen provided an expression for the maximum PCE of a diode laser, given as [12] ηPCE = ηi Vph V0 αm αm + αi x( 1 + √ 1 + x

  5. Final amplifier design and mercury

    International Nuclear Information System (INIS)

    Rose, E.A.; Hanson, D.E.

    1991-01-01

    The final amplifier for the Mercury KrF excimer facility is being designed. The design exercise involves extensive modeling to predict amplifier performance. Models of the pulsed-power system, including a Child-Langmuir diode with closure, electron-beam energy deposition, KrF laser kinetics, amplified spontaneous emission (ASE), a time-dependent laser extraction in the presence of ASE are presented as a design package. The design exercise indicates that the energy objective of Phase I -- 100 joules -- will be met

  6. Fast iterative technique for the calculation of frequency dependent gain in excimer laser amplifiers

    International Nuclear Information System (INIS)

    Sze, R.C.

    1991-01-01

    The motivation in initiating these calculations is to allow us to observe the frequency evolution of a laser pulse as it propagates through an amplifier and then through a sequence of amplifiers. The question we seek to answer is what pulse shape do we need to produce out of a front-end oscillator so that after it propagates through the whole Aurora KrF fusion amplifier chain will result in high energy, broad-band laser fields of a given bandwidth that can be focussed onto a fusion target. The propagation of a single frequency source through an amplifier with distributed loss was considered by Rigrod and was significantly expanded by Hunter and Hunter. The latter included amplified spontaneous emission [ASE] considerations both in the direction of and transverse to the coherent field. Analytic solutions that include forward and backward prapagating fields and ASE were derived which were transcendental in nature but allowed for fairly easy computer calculations. Transverse ASE were calculated using the unsaturated gain resulting from longitudinal fields and were used to compare this with the longitudinal field equations. Large computer programs are now available at LANL which include the influence of transverse ASE on the longitudinal fields. However, none of these considerations have worried about the changes in the frequency characteristics of the propagating field or of how each of the frequency field components contributes to the saturation of the gain. The inclusion of full frequency characteristics to the analytic solutions of Hunter and Hunter proved impossible at least for this author and a new calculational technique was developed and is the subject of this talk

  7. Amplified spontaneous emission and laser emission from a high optical-gain medium of dye-doped dendrimer

    International Nuclear Information System (INIS)

    Yokoyama, Shiyoshi; Nakahama, Tatsuo; Mashiko, Shinro

    2005-01-01

    We measured the amplified spontaneous emission and laser emission from high-gain media of laser-dye encapsulated dendrimers. A highly branched poly(amidoamine) (PAMAM-OH) dendrimer formed a guest-host complex with a conventional laser-dye (DCM), resulting in a high optical-gain. Of particular note was the appearance of a laser threshold, above which a super-narrowed laser spectrum was observed, although laser feedback was caused without any mirror cavity devices. The optical feedback was attributed to spatial confinement of the light due to gain guiding under optical excitation. The laser spectrum clearly indicated a resonant laser-mode with a spectrum linewidth of less than 0.1 nm. This order of spectrum narrowing is comparable to that seen in the laser emission from ordinary laser devices

  8. Fast physical random bit generation with chaotic semiconductor lasers

    Science.gov (United States)

    Uchida, Atsushi; Amano, Kazuya; Inoue, Masaki; Hirano, Kunihito; Naito, Sunao; Someya, Hiroyuki; Oowada, Isao; Kurashige, Takayuki; Shiki, Masaru; Yoshimori, Shigeru; Yoshimura, Kazuyuki; Davis, Peter

    2008-12-01

    Random number generators in digital information systems make use of physical entropy sources such as electronic and photonic noise to add unpredictability to deterministically generated pseudo-random sequences. However, there is a large gap between the generation rates achieved with existing physical sources and the high data rates of many computation and communication systems; this is a fundamental weakness of these systems. Here we show that good quality random bit sequences can be generated at very fast bit rates using physical chaos in semiconductor lasers. Streams of bits that pass standard statistical tests for randomness have been generated at rates of up to 1.7 Gbps by sampling the fluctuating optical output of two chaotic lasers. This rate is an order of magnitude faster than that of previously reported devices for physical random bit generators with verified randomness. This means that the performance of random number generators can be greatly improved by using chaotic laser devices as physical entropy sources.

  9. Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor

    NARCIS (Netherlands)

    Serov, Alexander; Steenbergen, Wiendelt; de Mul, F.F.M.

    2002-01-01

    We utilized a complimentary metal oxide semiconductor video camera for fast f low imaging with the laser Doppler technique. A single sensor is used for both observation of the area of interest and measurements of the interference signal caused by dynamic light scattering from moving particles inside

  10. Semiconductor micro cavities: half light, half matter

    International Nuclear Information System (INIS)

    Baumberg, Jeremy J.

    2003-01-01

    Quantum wells sandwiched tightly between two mirrors can be used to make a new type of laser that can amplify light more than any other known material. What do you get if you cross light with matter? It is a question that fascinates today's researchers in quantum optoelectronics, who want to see how far the physical states of the world can be intertwined. Although we have a good understanding of the quantum ingredients of optics and solids - photons and atoms - it turns out that assembling these building blocks in deliberately unfamiliar ways can lead to what is new and often quite unexpected behaviour. Consider 'quantum wells', which form the basis of modern semiconductor lasers. First developed in the 1980s, they lie at the heart of optical-communication and optical-storage technologies such as DVD players and they now have a global market of over 10bn British Pounds. Quantum wells consist of a thin sheet of crystalline semiconductor sandwiched between two sheets of another semiconductor. The outer layers squash the wavefunctions of electrons within the central sheet, increasing the electrons' energy and their interaction with light. Engineers can control the colour of the light emitted by the laser simply by adjusting the energy levels within the central sheet, which acts as a potential well. But this bug-sized playground for electrons has not just had technological ramifications. It has also spawned an enormous variety of new physics, including the quantum Hall effect, which can be used as a fundamental standard for measuring the ratio between the charge on the electron and the Planck constant. Over the last ten years researchers have also become increasingly keen to incorporate quantum wells into what are known as 'semiconductor micro cavities'. Physicists have found that these painstakingly layered materials can be used to create new quantum states that resemble superfluids and can be used in interferometric quantum devices. In the March issue of Physics

  11. Plasma conditions generated by interaction of a high brightness, prepulse free Raman amplified KrF laser pulse with solid targets

    International Nuclear Information System (INIS)

    Riley, D.; Gizzi, L.A.; Khattak, F.Y.; Mackinnon, A.J.; Viana, S.M.; Willi, O.

    1992-01-01

    A high brightness, Raman amplified KrF laser has been used to irradiate solid targets with 12 ps laser pulses at intensities above 10 15 W/cm 2 without the presence of a preformed plasma caused by low level amplified spontaneous emission prepulse. Time-resolved x-ray spectroscopy of the K-shell emission from aluminum was used to infer electron densities in excess of 10 23 cm -3 at temperatures of several hundred electronvolts

  12. Experimental control of power dropouts by current modulation in a semiconductor laser with optical feedback

    International Nuclear Information System (INIS)

    Ticos, Catalin M; Andrei, Ionut R; Pascu, Mihail L; Bulinski, Mircea

    2011-01-01

    The injection current of an external-cavity semiconductor laser working in a regime of low-frequency fluctuations (LFFs) is modulated at several MHz. The rate of power dropouts in the laser emission is correlated with the amplitude and frequency of the modulating signal. The occurrence of dropouts becomes more regular when the laser is driven at 7 MHz, which is close to the dominant frequency of dropouts in the solitary laser. Driving the laser at 10 MHz also induces dropouts with a periodicity of 0.1 μs, resulting in LFFs with two dominant frequencies.

  13. Measurement of the linewidth enhancement factor based on nonlinear polarization rotation of semiconductor optical amplifier.

    Science.gov (United States)

    Liu, Guodong; Wu, Chongqing; Wang, Fu; Zhang, Tianyong; Shang, Chao; Gao, Kaiqiang

    2015-06-01

    A simple measurement scheme of the linewidth enhancement factor based on the nonlinear polarization rotation of a semiconductor optical amplifier is proposed. Considering the polarization dependent gain, the relationship between the linewidth enhancement factor and the Stokes vector was derived theoretically. It is proven that the linewidth enhancement factor can be calculated directly from the Stokes parameters without any other assistant measurement system. The results demonstrate that the linewidth enhancement factor varies in a small range from 10.5 to 8.5 for TE mode and from 8.2 to 5.8 for TM mode, respectively, when the input optical power varies from 50 μW to 1 mW and the bias current varies from 90 to 170 mA.

  14. Efficient fiber-laser-pumped Ho:YLF oscillator and amplifier utilizing the transmitted pump power of the oscillator

    CSIR Research Space (South Africa)

    Strauss, HJ

    2009-06-01

    Full Text Available the amplifier. OCIS codes: 140.0140, 140.3070, 140.3480, 140.3580, 140.5680s 1. Introduction High energy 2 �m laser sources are of great interested for applications in remote sensing, medicine and defense. Ho:YLF is an attractive laser material to use since...

  15. Fiber Based Optical Amplifier for High Energy Laser Pulses Final Report CRADA No. TC02100.0

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cunningham, P. [Boeing Company, Springfield, VA (United States)

    2017-09-06

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL), and The Boeing Company to develop an optical fiber-based laser amplifier capable of producing and sustaining very high-energy, nanosecond-scale optical pulses. The overall technical objective of this CRADA was to research, design, and develop an optical fiber-based amplifier that would meet specific metrics.

  16. Periodic dark pulse emission induced by delayed feedback in a quantum well semiconductor laser

    Directory of Open Access Journals (Sweden)

    L. Li

    2012-12-01

    Full Text Available We report the experimental observation of periodic dark pulse emission in a quantum-well semiconductor laser with delayed optical feedback. We found that under appropriate operation conditions the laser can also emit a stable train of dark pulses. The repetition frequency of the dark pulse is determined by the external cavity length. Splitting of the dark pulse was also observed. We speculate that the observed dark pulse is a kind of temporal cavity soliton formed in the laser.

  17. Packaging-induced failure of semiconductor lasers and optical telecommunications components

    Energy Technology Data Exchange (ETDEWEB)

    Sharps, J.A. [Corning Inc., NY (United States)

    1996-12-31

    Telecommunications equipment for field deployment generally have specified lifetimes of > 100,000 hr. To achieve this high reliability, it is common practice to package sensitive components in hermetic, inert gas environments. The intent is to protect components from particulate and organic contamination, oxidation, and moisture. However, for high power density 980 nm diode lasers used in optical amplifiers, the authors found that hermetic, inert gas packaging induced a failure mode not observed in similar, unpackaged lasers. They refer to this failure mode as packaging-induced failure, or PIF. PIF is caused by nanomole amounts of organic contamination which interact with high intensity 980 nm light to form solid deposits over the emitting regions of the lasers. These deposits absorb 980 nm light, causing heating of the laser, narrowing of the band gap, and eventual thermal runaway. The authors have found PIF is averted by packaging with free O{sub 2} and/or a getter material that sequesters organics.

  18. Optical Parametric Chirped-Pulse Amplifier as the Front End for the OMEGA EP Laser Chain

    International Nuclear Information System (INIS)

    Bagnoud, V.; Begishev, I.A.; Guardalben, M.J.; Keegan, J.; Puth, J.; Waxer, L.J.; Zuegel, J.D.

    2004-01-01

    A 145-mJ optical parametric amplifier has been developed as a front-end source prototype for the OEMGA EP laser chain. The system definition is presented together with experimental results that show 30% conversion efficiency

  19. Wide and Fast Wavelength-Swept Fiber Laser Based on Dispersion Tuning for Dynamic Sensing

    Directory of Open Access Journals (Sweden)

    Shinji Yamashita

    2009-01-01

    Full Text Available We have developed a unique wide and fast wavelength-swept fiber laser for dynamic and accurate fiber sensing. The wavelength tuning is based on the dispersion tuning technique, which simply modulates the loss/gain in the dispersive laser cavity. By using wideband semiconductor optical amplifiers (SOAs, the sweep range could be as wide as ∼180 nm. Since the cavity contains no mechanical components, such as tunable filters, we could achieve very high sweep rate, as high as ∼200 kHz. We have realized the swept lasers at three wavelength bands, 1550 nm, 1300 nm, and 800 nm, using SOAs along with erbium-doped fiber amplifiers (EDFAs, and in two laser configurations, ring and linear ones. We also succeeded in applying the swept laser for a dynamic fiber-Bragg grating (FBG sensor system. In this paper, we review our researches on the wide and fast wavelength-swept fiber lasers.

  20. Noise and saturation properties of semiconductor quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved.......We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved....

  1. Mid-infrared optical parametric oscillator pumped by an amplified random fiber laser

    Science.gov (United States)

    Shang, Yaping; Shen, Meili; Wang, Peng; Li, Xiao; Xu, Xiaojun

    2017-01-01

    Recently, the concept of random fiber lasers has attracted a great deal of attention for its feature to generate incoherent light without a traditional laser resonator, which is free of mode competition and insure the stationary narrow-band continuous modeless spectrum. In this Letter, we reported the first, to the best of our knowledge, optical parametric oscillator (OPO) pumped by an amplified 1070 nm random fiber laser (RFL), in order to generate stationary mid-infrared (mid-IR) laser. The experiment realized a watt-level laser output in the mid-IR range and operated relatively stable. The use of the RFL seed source allowed us to take advantage of its respective stable time-domain characteristics. The beam profile, spectrum and time-domain properties of the signal light were measured to analyze the process of frequency down-conversion process under this new pumping condition. The results suggested that the near-infrared (near-IR) signal light `inherited' good beam performances from the pump light. Those would be benefit for further develop about optical parametric process based on different pumping circumstances.

  2. A theoretical analysis for gigabit/second pulse code modulation of semiconductor lasers

    DEFF Research Database (Denmark)

    Danielsen, Magnus

    1976-01-01

    Investigation of the rate equations of a semiconductor laser suggests that bit rates of 3-4 Gbit/s can be achieved. Delay, ringing transients, and charge-storage effects can be removed by adjusting the dc-bias current and the peak and width of the current pulse to values prescribed by simple...

  3. The astigmatism factor for semiconductor injection lasers

    International Nuclear Information System (INIS)

    Zhao Yiguang; Guo Changzhi

    1988-03-01

    The relations between the astigmatism factor and the waveguide structure, working conditions etc. were accurately calculated, using a method for deriving a self-consistent solution of the optical field equation and the carrier diffusion equation. Various theoretical models regarding the spontaneous emission factor were analyzed and compared. The results show that there is a difference between astigmatism factors of semiconductor lasers with different waveguide structures. W. Streifer's results, for a model having an invariable distribution of the complex refractive index, are larger by a factor of 6 to 80 than the accurate calculated value. K. Petermann's theory regarding the spontaneous emission factor is more appropriate than other theories. (author). 19 refs, 6 figs

  4. An electrically injected rolled-up semiconductor tube laser

    Energy Technology Data Exchange (ETDEWEB)

    Dastjerdi, M. H. T.; Djavid, M.; Mi, Z., E-mail: zetian.mi@mcgill.ca [Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9 (Canada)

    2015-01-12

    We have demonstrated electrically injected rolled-up semiconductor tube lasers, which are formed when a coherently strained InGaAs/InGaAsP quantum well heterostructure is selectively released from the underlying InP substrate. The device exhibits strong coherent emission in the wavelength range of ∼1.5 μm. A lasing threshold of ∼1.05 mA is measured for a rolled-up tube with a diameter of ∼5 μm and wall thickness of ∼140 nm at 80 K. The Purcell factor is estimated to be ∼4.3.

  5. A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Pawlik, Michal

    2009-01-01

    A photonic ultra-wideband (UWB) pulse generator based on relaxation oscillations of a semiconductor laser is proposed and experimentally demonstrated. We numerically simulate the modulation response of a direct modulation laser (DML) and show that due to the relaxation oscillations of the laser......, the generated signals with complex shape in time domain match the Federal Communications Commission (FCC) mask in the frequency domain. Experimental results using a DML agree well with simulation predictions. Furthermore, we also experimentally demonstrate the generation of FCC compliant UWB signals...

  6. Modeling the energy deposition in the Aurora KrF laser amplifier chain

    International Nuclear Information System (INIS)

    Comly, J.C.; Czuchlewski, S.J.; Greene, D.P.; Hanson, D.E.; Krohn, B.J.; McCown, A.W.

    1988-01-01

    Monte Carlo calculations model the energy depositions by highly energetic electron beams into the cavities of the four KrF laser amplifiers in the Aurora chain. Deposited energy density distributions are presented and studied as functions of e-beam energy and gas pressure. Results are useful for analyzing small signal gain (SSG) measurements and optimizing deposition in future experiments. 7 refs., 7 figs., 1 tab

  7. Vibration-tolerant narrow-linewidth semiconductor disk laser using novel frequency-stabilisation schemes

    Science.gov (United States)

    Hunter, Craig R.; Jones, Brynmor E.; Schlosser, Peter; Sørensen, Simon Toft; Strain, Michael J.; McKnight, Loyd J.

    2018-02-01

    This paper will present developments in narrow-linewidth semiconductor-disk-laser systems using novel frequencystabilisation schemes for reduced sensitivity to mechanical vibrations, a critical requirement for mobile applications. Narrow-linewidth single-frequency lasers are required for a range of applications including metrology and highresolution spectroscopy. Stabilisation of the laser was achieved using a monolithic fibre-optic ring resonator with free spectral range of 181 MHz and finesse of 52 to act as passive reference cavity for the laser. Such a cavity can operate over a broad wavelength range and is immune to a wide band of vibrational frequency noise due to its monolithic implementation. The frequency noise of the locked system has been measured and compared to typical Fabry-Perotlocked lasers using vibration equipment to simulate harsh environments, and analysed here. Locked linewidths of portable, narrow-linewidth laser system for harsh environments that can be flexibly designed for a range of applications.

  8. Distributed feedback laser amplifiers combining the functions of amplifiers and channel filters

    DEFF Research Database (Denmark)

    Wang, Z.; Durhuus, T.; Mikkelsen, Benny

    1994-01-01

    A dynamic model for distributed feedback amplifiers, including the mode coupled equations and the carrier rate equation, is established. The presented mode coupled equations have taken into account the interaction between fast changing optical signal and the waveguide with corrugations. By showin...... the possibility of amplifying 100 ps pulses without pulse broadening, we anticipate that a distributed feedback amplifier can be used as a combined amplifier and channel filter in high bit rate transmission systems....

  9. Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser

    Energy Technology Data Exchange (ETDEWEB)

    Ancona, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); CNR-INFM Regional Laboratory ' LIT3' , Dipartimento Interuniversitario di Fisica, Bari (Italy); Nodop, D.; Limpert, J.; Nolte, S. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); Tuennermann, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Jena (Germany)

    2009-01-15

    We have investigated the ultra-fast microdrilling of metals using a compact and cheap fiber amplified passively Q-switched microchip laser. This laser system delivers 100-ps pulses with repetition rates higher than 100 kHz and pulse energies up to 80 {mu}J. The ablation process has been studied on metals with quite different thermal properties (copper, carbon steel and stainless steel). The dependence of the ablation depth per pulse on the pulse energy follows the same logarithmic scaling laws governing laser ablation with sub-picosecond pulses. Structures ablated with 100-ps laser pulses are accompanied only by a thin layer of melted material. Despite this, results with a high level of precision are obtained when using the laser trepanning technique. This simple and affordable laser system could be a valid alternative to nanosecond laser sources for micromachining applications. (orig.)

  10. The dynamical complexity of optically injected semiconductor lasers

    International Nuclear Information System (INIS)

    Wieczorek, S.; Krauskopf, B.; Simpson, T.B.; Lenstra, D.

    2005-01-01

    This report presents a modern approach to the theoretical and experimental study of complex nonlinear behavior of a semiconductor laser with optical injection-an example of a widely applied and technologically relevant forced nonlinear oscillator. We show that the careful bifurcation analysis of a rate equation model yields (i) a deeper understanding of already studied physical phenomena, and (ii) the discovery of new dynamical effects, such as multipulse excitability. Different instabilities, cascades of bifurcations, multistability, and sudden chaotic transitions, which are often viewed as independent, are in fact logically connected into a consistent web of bifurcations via special points called organizing centers. This theoretical bifurcation analysis has predictive power, which manifests itself in good agreement with experimental measurements over a wide range of parameters and diversity of dynamics. While it is dealing with the specific system of an optically injected laser, our work constitutes the state-of-the-art in the understanding and modeling of a nonlinear physical system in general

  11. Frequency response control of semiconductor laser by using hybrid modulation scheme.

    Science.gov (United States)

    Mieda, Shigeru; Yokota, Nobuhide; Isshiki, Ryuto; Kobayashi, Wataru; Yasaka, Hiroshi

    2016-10-31

    A hybrid modulation scheme that simultaneously applies the direct current modulation and intra-cavity loss modulation to a semiconductor laser is proposed. Both numerical calculations using rate equations and experiments using a fabricated laser show that the hybrid modulation scheme can control the frequency response of the laser by changing a modulation ratio and time delay between the two modulations. The modulation ratio and time delay provide the degree of signal mixing of the two modulations and an optimum condition is found when a non-flat frequency response for the intra-cavity loss modulation is compensated by that for the direct current modulation. We experimentally confirm a 8.64-dB improvement of the modulation sensitivity at 20 GHz compared with the pure direct current modulation with a 0.7-dB relaxation oscillation peak.

  12. High-performance semiconductor optical preamplifier receiver at 10 Gb/s

    DEFF Research Database (Denmark)

    Mikkelsen, Benny; Jørgensen, Carsten Gudmann; Jensen, N.

    1993-01-01

    A semiconductor optical preamplifier receiver for bitrates of 10 Gb/s is described. The measured sensitivity is -28 dBm, with a polarization sensitivity of less than 0.5 dB. Using the same transmitter and receiver configuration but with a 980-nm pumped fiber amplifier instead of the semiconductor...... amplifier, the sensitivity is -34 dBm...

  13. Dilute ferromagnetic semiconductors prepared by the combination of ion implantation with pulse laser melting

    International Nuclear Information System (INIS)

    Zhou, Shengqiang

    2015-01-01

    Combining semiconducting and ferromagnetic properties, dilute ferromagnetic semiconductors (DFS) have been under intensive investigation for more than two decades. Mn doped III–V compound semiconductors have been regarded as the prototype of DFS from both experimental and theoretic investigations. The magnetic properties of III–V:Mn can be controlled by manipulating free carriers via electrical gating, as for controlling the electrical properties in conventional semiconductors. However, the preparation of DFS presents a big challenge due to the low solubility of Mn in semiconductors. Ion implantation followed by pulsed laser melting (II-PLM) provides an alternative to the widely used low-temperature molecular beam epitaxy (LT-MBE) approach. Both ion implantation and pulsed-laser melting occur far enough from thermodynamic equilibrium conditions. Ion implantation introduces enough dopants and the subsequent laser pulse deposit energy in the near-surface region to drive a rapid liquid-phase epitaxial growth. Here, we review the experimental study on preparation of III–V:Mn using II-PLM. We start with a brief description about the development of DFS and the physics behind II-PLM. Then we show that ferromagnetic GaMnAs and InMnAs films can be prepared by II-PLM and they show the same characteristics of LT-MBE grown samples. Going beyond LT-MBE, II-PLM is successful to bring two new members, GaMnP and InMnP, into the family of III–V:Mn DFS. Both GaMnP and InMnP films show the signature of DFS and an insulating behavior. At the end, we summarize the work done for Ge:Mn and Si:Mn using II-PLM and present suggestions for future investigations. The remarkable advantage of II-PLM approach is its versatility. In general, II-PLM can be utilized to prepare supersaturated alloys with mismatched components. (topical review)

  14. Nonlinear effects in ultralong semiconductor optical amplifiers for optical communications. Physics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Runge, Patrick

    2010-10-19

    The presented work discusses physical properties of ultralong semiconductor optical amplifiers (UL-SOAs) and some of their possible applications in optical communication systems. At the beginning of this thesis the analytical framework for the optical properties of UL-SOAs is presented. Based on this theoretical description, a numerical simulation model is derived used for the investigation of this thesis. To obtain from the simulation model realistic results the important properties of UL-SOAs have to be included, e.g., being the saturation of the main part of the device. In this saturated part of the device, fast intraband effects dominate over the slow interband effects. The intention of UL-SOAs is to make use of these pronounced fast intraband effects in applications. Due to the short relaxation times of the fast intraband effects, they can be used for high-speed signal processing (>20 GBaud). With the help of an additional continuous wave (CW) signal propagating with the data signal in the UL-SOA, the capability for all-optical signal processing with 100 Gbit/s on-off keying RZ-50% pseudo random bit sequence signals has been demonstrated in this thesis. With an optimised device under proper driving conditions, bit pattern effects are negligible compared to the degradation due to amplified spontaneous emission. The suppression of the bit pattern effects can be ascribed to the additional CW signal operating as a holding beam. Investigations of the UL-SOA's driving condition showed that the data signal's extinction ratio (ER) can be regenerated if the two input signals are co-polarised and the data signal has a shorter wavelength than the CW signal. These two and other driving conditions have indicated, that parametric amplification due to four-wave mixing (FWM) (Bogatov-like effect) is the reason for the ER improvement. Moreover, due to the additional CW signal, all-optical wavelength conversion (AOWC) is possible which can be combined with the ER

  15. Wavelength-controlled external-cavity laser with a silicon photonic crystal resonant reflector

    Science.gov (United States)

    Gonzalez-Fernandez, A. A.; Liles, Alexandros A.; Persheyev, Saydulla; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of an alternative design of external-cavity hybrid lasers consisting of a III-V Semiconductor Optical Amplifier with fiber reflector and a Photonic Crystal (PhC) based resonant reflector on SOI. The Silicon reflector comprises a polymer (SU8) bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and sidemode suppression ratio of more than 25 dB.

  16. Theoretical analysis of four wave mixing in quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2003-01-01

    The four wave mixing properties of semiconductor quantum dot amplifiers have been investigated. The combination of strong non-equilibrium depletion of dot levels and a small linewidth enhancement factor results in efficient and symmetric four wave mixing.......The four wave mixing properties of semiconductor quantum dot amplifiers have been investigated. The combination of strong non-equilibrium depletion of dot levels and a small linewidth enhancement factor results in efficient and symmetric four wave mixing....

  17. Studies of high repetition rate laser-produced plasma soft-X-ray amplifiers; Etudes d'amplificateurs plasma laser a haute cadence dans le domaine X-UV et applications

    Energy Technology Data Exchange (ETDEWEB)

    Cassou, K

    2006-12-15

    The progress made as well on the Ti:Sa laser system, as in the control and the knowledge of laser produced X-UV sources allowed the construction of a X-UV laser station dedicated to the applications. My thesis work falls under the development of this station and more particularly on the characterization of a X-UV laser plasma amplifier. The experimental study relates to the coupling improvement of the pump infra-red laser with plasma within the framework of the transient collisional X-UV laser generation. These X-UV lasers are generated in a plasma formed by the interaction of a solid target and a laser pulse of approximately 500 ps duration, followed by a second infra-red laser pulse known as of pump (about 5 ps) impinging on the target in grazing incidence. For the first time, a complete parametric study was undertaken on the influence of the grazing angle on the pumping of the amplifying medium. One of the results was to reach very high peak brightness about 10{sup 28} ph/s/mm{sup 2}/mrad{sup 2}/(0.1%bandwidth), which compares well with the free-electron laser brightness. Moreover, we modified then used a new two-dimensional hydrodynamic code with adaptive mesh refinement in order to understand the influence of the space-time properties of the infra-red laser on the formation and the evolution of the amplifying plasma. Our modeling highlighted the interest to use a super Gaussian transverse profile for the line focus leading to an increase in a factor two of the gain region size and a reduction of the electron density gradient by three orders of magnitude. These improvements should strongly increase the energy contained in X-UV laser beam. We thus used X-UV laser to study the appearance of transient defects produced by a laser IR on a beam-splitter rear side. We also began research on the mechanisms of DNA damage induced by a very intense X-UV radiation. (author)

  18. Ultrawideband pulse generation based on overshooting effect in gain-switched semiconductor laser

    DEFF Research Database (Denmark)

    Torres-Company, V.; Prince, Kamau; Tafur Monroy, Idelfonso

    2008-01-01

    We demonstrate an alternative procedure to achieve ultrawideband (UWB) radio-frequency (RF) doublet impulses. It is based on the overshooting effect appearing by biasing a semiconductor laser close to the threshold with a large-amplitude signal. Specifically, with an optical bandpass filter...... a reliable, easy, and low-cost alternative for RF UWB impulse generation....

  19. Multi-level multi-thermal-electron FDTD simulation of plasmonic interaction with semiconducting gain media: applications to plasmonic amplifiers and nano-lasers.

    Science.gov (United States)

    Chen, X; Bhola, B; Huang, Y; Ho, S T

    2010-08-02

    Interactions between a semiconducting gain medium and confined plasmon-polaritons are studied using a multilevel multi-thermal-electron finite-difference time-domain (MLMTE-FDTD) simulator. We investigated the amplification of wave propagating in a plasmonic metal-semiconductor-metal (MSM) waveguide filled with semiconductor gain medium and obtained the conditions required to achieve net optical gain. The MSM gain waveguide is used to form a plasmonic semiconductor nano-ring laser(PSNRL) with an effective mode volume of 0.0071 microm3, which is about an order of magnitude smaller than the smallest demonstrated integrated photonic crystal based laser cavities. The simulation shows a lasing threshold current density of 1kA/cm2 for a 300 nm outer diameter ring cavity with 80 nm-wide ring. This current density can be realistically achieved in typical III-V semiconductor, which shows the experimental feasibility of the proposed PSNRL structure.

  20. Design and evaluation of modelocked semiconductor lasers for low noise and high stability

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Christiansen, Lotte Jin

    2005-01-01

    We present work on design of monolithic mode-locked semiconductor lasers with focus on the gain medium. The use of highly inverted quantum wells in a low-loss waveguide enables both low quantum noise, low-chirped pulses and a large stability region. Broadband noise measurements are performed...

  1. Design of an 1800nm Raman amplifier

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    We present the experimental results for a Raman amplifier that operates at 1810 nm and is pumped by a Raman fiber laser at 1680 nm. Both the pump laser and the Raman amplifier is polarization maintaining. A challenge when scaling Raman amplifiers to longer wavelengths is the increase...... in transmission loss, but also the reduction in the Raman gain coefficient as the amplifier wavelength is increased. Both polarization components of the Raman gain is characterized, initially for linearly co-polarized signal and pump, subsequently linearly polarized orthogonal signal and pump. The noise...

  2. Optical Regeneration and Noise in Semiconductor Devices

    DEFF Research Database (Denmark)

    Öhman, Filip

    2005-01-01

    In this report all-optical 2R-regeneration in optical communication systems is investigated. A simple regenerator device based on concatenated semiconductor optical amplifiers (SOAs) and electro absorbers (EAs) is introduced and examined. Experiments show that the monolithic SOA-EA 2R-regenerator......In this report all-optical 2R-regeneration in optical communication systems is investigated. A simple regenerator device based on concatenated semiconductor optical amplifiers (SOAs) and electro absorbers (EAs) is introduced and examined. Experiments show that the monolithic SOA-EA 2R...

  3. Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors.

    Science.gov (United States)

    Akhavan, Omid; Ghaderi, Elham; Shirazian, Soheil A

    2015-02-01

    Reduced graphene oxide nanomeshes (rGONMs), as p-type semiconductors with band-gap energy of ∼ 1 eV, were developed and applied in near infrared (NIR) laser stimulation of human neural stem cells (hNSCs) into neurons. The biocompatibility of the rGONMs in growth of hNSCs was found similar to that of the graphene oxide (GO) sheets. Proliferation of the hNSCs on the GONMs was assigned to the excess oxygen functional groups formed on edge defects of the GONMs, resulting in superhydrophilicity of the surface. Under NIR laser stimulation, the graphene layers (especially the rGONMs) exhibited significant cell differentiations, including more elongations of the cells and higher differentiation of neurons than glia. The higher hNSC differentiation on the rGONM than the reduced GO (rGO) was assigned to the stimulation effects of the low-energy photoexcited electrons injected from the rGONM semiconductors into the cells, while the high-energy photoelectrons of the rGO (as a zero band-gap semiconductor) could suppress the cell proliferation and/or even cause cell damages. Using conventional heating of the culture media up to ∼ 43 °C (the temperature typically reached under the laser irradiation), no significant differentiation was observed in dark. This further confirmed the role of photoelectrons in the hNSC differentiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Multiclustered chimeras in large semiconductor laser arrays with nonlocal interactions

    Science.gov (United States)

    Shena, J.; Hizanidis, J.; Hövel, P.; Tsironis, G. P.

    2017-09-01

    The dynamics of a large array of coupled semiconductor lasers is studied numerically for a nonlocal coupling scheme. Our focus is on chimera states, a self-organized spatiotemporal pattern of coexisting coherence and incoherence. In laser systems, such states have been previously found for global and nearest-neighbor coupling, mainly in small networks. The technological advantage of large arrays has motivated us to study a system of 200 nonlocally coupled lasers with respect to the emerging collective dynamics. Moreover, the nonlocal nature of the coupling allows us to obtain robust chimera states with multiple (in)coherent domains. The crucial parameters are the coupling strength, the coupling phase and the range of the nonlocal interaction. We find that multiclustered chimera states exist in a wide region of the parameter space and we provide quantitative characterization for the obtained spatiotemporal patterns. By proposing two different experimental setups for the realization of the nonlocal coupling scheme, we are confident that our results can be confirmed in the laboratory.

  5. Fiber optical laser spot microscope: A new concept for photoelectrochemical characterization of semiconductor electrodes

    OpenAIRE

    Carlsson, Per; Holmström, Bertil; Uosaki, Kohei; Kita, Hideaki

    1988-01-01

    A fiber optical laser spot microscope, which allows the simultaneous measurements of photocurrent and reflected light intensity or the measurement of laser spot photocurrent under the illumination of other light sources, has been developed to study semiconductor/electrolyte interfaces. The capability of this microscope was demonstrated on as-cleaved and Pt-treated p-InSe. The Pt treatment increased the photocurrent and improved the lateral resolution due to the increase of surface reaction ra...

  6. A Front End for Multipetawatt Lasers Based on a High-Energy, High-Average-Power Optical Parametric Chirped-Pulse Amplifier

    International Nuclear Information System (INIS)

    Bagnoud, V.

    2004-01-01

    We report on a high-energy, high-average-power optical parametric chirped-pulse amplifier developed as the front end for the OMEGA EP laser. The amplifier provides a gain larger than 109 in two stages leading to a total energy of 400 mJ with a pump-to-signal conversion efficiency higher than 25%

  7. 25 Gbit/s differential phase-shift-keying signal generation using directly modulated quantum-dot semiconductor optical amplifiers

    International Nuclear Information System (INIS)

    Zeghuzi, A.; Schmeckebier, H.; Stubenrauch, M.; Bimberg, D.; Meuer, C.; Schubert, C.; Bunge, C.-A.

    2015-01-01

    Error-free generation of 25-Gbit/s differential phase-shift keying (DPSK) signals via direct modulation of InAs quantum-dot (QD) based semiconductor optical amplifiers (SOAs) is experimentally demonstrated with an input power level of −5 dBm. The QD SOAs emit in the 1.3-μm wavelength range and provide a small-signal fiber-to-fiber gain of 8 dB. Furthermore, error-free DPSK modulation is achieved for constant optical input power levels from 3 dBm down to only −11 dBm for a bit rate of 20 Gbit/s. Direct phase modulation of QD SOAs via current changes is thus demonstrated to be much faster than direct gain modulation

  8. Polymer-Optical-Fiber Lasers and Amplifiers Doped with Organic Dyes

    Directory of Open Access Journals (Sweden)

    Joseba Zubia

    2011-07-01

    Full Text Available Polymer optical fibers (POFs doped with organic dyes can be used to make efficient lasers and amplifiers due to the high gains achievable in short distances. This paper analyzes the peculiarities of light amplification in POFs through some experimental data and a computational model capable of carrying out both power and spectral analyses. We investigate the emission spectral shifts and widths and on the optimum signal wavelength and pump power as functions of the fiber length, the fiber numerical aperture and the radial distribution of the dopant. Analyses for both step-index and graded-index POFs have been done.

  9. The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Chen, Yaohui; Öhman, Filip

    2009-01-01

    We experimentally investigate the initial chirp dependence of slow and fast light effects in a semiconductor optical amplifier followed by an optical filter. It is shown that the enhancement of the phase shift due to optical filtering strongly depends on the chirp of the input optical signal. We...... demonstrate ~120º phase delay as well as ~170º phase advance at a microwave frequency of 19 GHz for different optimum values of the input chirp. The experimental results are shown to be in good agreement with numerical results based on a four-wave mixing model. Finally, a simple physical explanation based...

  10. Advanced excimer laser technologies enable green semiconductor manufacturing

    Science.gov (United States)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  11. Preparation of antimony sulfide semiconductor nanoparticles by pulsed laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ren-De, E-mail: son003@sekisui.com [Research & Development Institute, High Performance Plastics Company, Sekisui Chemical Co., Ltd. 2-1 Hyakuyama, Shimamoto-Cho, Mishima-Gun, Osaka, 618-0021 (Japan); Tsuji, Takeshi [Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu-Cho, Matsue, 690-8504 (Japan)

    2015-09-01

    Highlights: • Pulsed laser ablation in liquid (LAL) was applied to prepare antimony sulfide nanoparticles (Sb{sub 2}S{sub 3} NPs). • Sb{sub 2}S{sub 3} NPs with a stoichiometric composition were successfully prepared by LAL in water without using any surfactants or capping agents. • Thus-prepared Sb{sub 2}S{sub 3} NPs showed low-temperature crystallization and melting at a temperature low as 200 °C. • The NPs-coated Sb{sub 2}S{sub 3} thin film showed comparable semiconductor properties (carrier mobility and carrier density) to the vacuum deposited one. • Byproducts such as CS{sub 2}, CH{sub 4} and CO were detected by GC-MS analysis when LAL was performed in organic solvent. • The LAL-induced decomposition mechanism of Sb{sub 2}S{sub 3} and organic solvents was discussed based on the GC-MS results. - Abstract: In this paper, we report on the synthesis of antimony sulfide (Sb{sub 2}S{sub 3}) semiconductor nanoparticles by pulsed laser ablation in liquid without using any surfactants or capping agents. Different results were obtained in water and organic solvents. In the case of water, Sb{sub 2}S{sub 3} nanoparticles with chemical compositions of stoichiometry were successfully prepared when laser irradiation was performed under the condition with the dissolved oxygen removed by argon gas bubbling. It was shown that thus-obtained Sb{sub 2}S{sub 3} nanoparticles exhibit features of not only low-temperature crystallization but also low-temperature melting at a temperature as low as 200 °C. Nanoparticle-coated Sb{sub 2}S{sub 3} thin films were found to show good visible light absorption and satisfying semiconductor properties (i.e., carrier mobility and density), which are essential for photovoltaic application. On the other hand, in the case of organic solvents (e.g., acetone, ethanol), such unexpected byproducts as CS{sub 2}, CO and CH{sub 4} were detected from the reaction system by GC-MS analysis, which suggests that both Sb{sub 2}S{sub 3} and organic

  12. Semiconductor Nanomaterials-Based Fluorescence Spectroscopic and Matrix-Assisted Laser Desorption/Ionization (MALDI Mass Spectrometric Approaches to Proteome Analysis

    Directory of Open Access Journals (Sweden)

    Suresh Kumar Kailasa

    2013-12-01

    Full Text Available Semiconductor quantum dots (QDs or nanoparticles (NPs exhibit very unusual physico-chemcial and optical properties. This review article introduces the applications of semiconductor nanomaterials (NMs in fluorescence spectroscopy and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS for biomolecule analysis. Due to their unique physico-chemical and optical properties, semiconductors NMs have created many new platforms for investigating biomolecular structures and information in modern biology. These semiconductor NMs served as effective fluorescent probes for sensing proteins and cells and acted as affinity or concentrating probes for enriching peptides, proteins and bacteria proteins prior to MALDI-MS analysis.

  13. Packaged semiconductor laser optical phase locked loop for photonic generation, processing and transmission of microwave signals

    DEFF Research Database (Denmark)

    Langley, L.N.; Elkin, M.D.; Edege, C.

    1999-01-01

    In this paper, we present the first fully packaged semiconductor laser optical phase-locked loop (OPLL) microwave photonic transmitter. The transmitter is based on semiconductor lasers that are directly phase locked without the use of any other phase noise-reduction mechanisms. In this transmitter......, the lasers have a free-running summed linewidth of 6 MHz and the OPLL has a feedback bandwidth of 70 MHz, A state-of-the-art performance is obtained, with a total phase-error variance of 0.05 rad(2) (1-GHz bandwidth) and a carrier phase-error variance of 7x10(-4) rad(2) in a 15-MHz bandwidth. Carriers...... are generated in the range of 7-14 GHz. The OPLL transmitter has been fully packaged for practical use in field trials. This is the first time this type of transmitter has been fabricated in a packaged state which is a significant advance on the route to practical application....

  14. FY1995 optoelectronic devices and circuits for terabit class network; 1995 nendo terabit kyu network yo hikari denshi device kairo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The necessary technology realizing Terabit class optical network is the signal multiplexing both in temporal and spectral domains. Controllability of ultrafast optoelectronic systems is therefore the priority issue. Specifically we chose semiconductor lasers as the key devices. The methodology for performance improvement and the creation of novel functionality are investigated. Firstly compression of semiconductor laser pulse reached the world record of 65 femto second. Secondly a proposal was made to control mode locked semiconductor lasers via subharmonic synchronization and a substantial phase noise reduction was demonstrated. Thirdly a new technology was developed to realize broadband anti-reflection coating on semiconductor laser amplifier facet, bringing about significant performance improvement. To compensate the dispersion induced signal distortion a broadband semiconductor laser amplifier four wave mixing was analyzed and also demonstrated experimentally. (NEDO)

  15. Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications

    Science.gov (United States)

    Opalevs, D.; Scholz, M.; Stuhler, J.; Gilfert, C.; Liu, L. J.; Wang, X. Y.; Vetter, A.; Kirner, R.; Scharf, T.; Noell, W.; Rockstuhl, C.; Li, R. K.; Chen, C. T.; Voelkel, R.; Leisching, P.

    2018-02-01

    We present a novel industrial-grade prototype version of a continuous-wave 193 nm laser system entirely based on solid state pump laser technology. Deep-ultraviolet emission is realized by frequency-quadrupling an amplified diode laser and up to 20 mW of optical power were generated using the nonlinear crystal KBBF. We demonstrate the lifetime of the laser system for different output power levels and environmental conditions. The high stability of our setup was proven in > 500 h measurements on a single spot, a crystal shifter multiplies the lifetime to match industrial requirements. This laser improves the relative intensity noise, brilliance, wall-plug efficiency and maintenance cost significantly. We discuss first lithographic experiments making use of this improvement in photon efficiency.

  16. 2 micron femtosecond fiber laser

    Science.gov (United States)

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  17. Laser radar IV; Proceedings of the Meeting, Orlando, FL, Mar. 29, 30, 1989

    Science.gov (United States)

    Becherer, Richard J.

    1989-09-01

    Various papers on laser radars are presented. Individual topics considered include: frequency chirp of a low-pressure hybrid TE CO2 laser, design of a high-power isotopic CO2 laser amplifier, monolithic beam steering for large aperture laser radar, laser radar receiver using a Digicon detector, all-solid-state CO2 laser driver, noise in an acoustooptic-modulated laser source, laser signature prediction using the Value computer program, laser radar acquisition and tracking, concept of a moving target indicator search ladar, system design philosophy for laser radar wavelength determination, imaging three-frequency CO2 laser radar, backscatter-modulation semiconductor laser radar, three-dimensional imaging using a single laser pulse, design and manufacture of a high-resolution laser radar scanner, calculations of vibrational signatures for coherent ladar, coherent subaperture ultraviolet imagery, and range-Doppler resolution degradation associated with amplitude distortion.

  18. Ultrafast optical signal processing using semiconductor quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing.......The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing....

  19. Development and characterization of a semi-conductor laser sensor for real time measurement and identification of atmospheric pollutants

    International Nuclear Information System (INIS)

    Boulos, F.; Zaatar, Y.; Atanas, J.P.; Bechara, J.

    2004-01-01

    Full text.Tunable diode laser absorption spectroscopy (TDLAS) in the near infrared (NIR) using semiconductor lasers of compounds between elements of group III (Ga, Al and In) and group V (P, As and Sb) is being increasingly used in various environmental and industrial process control applications. This technique exploits the unique properties of these laser materials i.e., high coherence, high monochromaticity, low divergence and high brightness to permit rapid sensitive detection with high selectivity and spectral resolution. A computer-interfaced near infrared semiconductor laser sensor has been developed in our laboratory for spectroscopic applications in air pollution monitoring. The sensor can be operated in two configurations: open path free beam coupled to a multiple pass White cell and fiber optic guided beam coupled to an evanescent wave sensor. This paper will present an overview of the system's modulation, sensing and data acquisition methods and some recent measurement results, together with a description of ongoing research and development for the improvement of the system's performance and sensitivity

  20. Effective Linewidth of Semiconductor Lasers for Coherent Optical Data Links

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Pang, Xiaodan; Schatz, Richard

    2016-01-01

    name “Effective Linewidth”. We derive this figure of merit analytically, explore it by numerical simulations and experimentally validate our results by transmitting a 28 Gbaud DP-16QAM over an optical link. Our investigations cover the use of semiconductor lasers both in the transmitter side...... and as a local oscillator at the receiver. The obtained results show that our proposed “effective linewidth” is easy to measure and accounts for frequency noise more accurately, and hence the penalties associated to phase noise in the received signal....

  1. Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis

    DEFF Research Database (Denmark)

    Mørk, Jesper; Tromborg, Bjarne; Christiansen, Peter Leth

    1988-01-01

    Near-threshold operation of a semiconductor laser exposed to moderate optical feedback may lead to low-frequency fluctuations. In the same region, a kink is observed in the light-current characteristic. Here it is demonstrated that these nonlinear phenomena are predicted by a noise driven multimode...

  2. Introduction to RF power amplifier design and simulation

    CERN Document Server

    Eroglu, Abdullah

    2015-01-01

    Introduction to RF Power Amplifier Design and Simulation fills a gap in the existing literature by providing step-by-step guidance for the design of radio frequency (RF) power amplifiers, from analytical formulation to simulation, implementation, and measurement. Featuring numerous illustrations and examples of real-world engineering applications, this book:Gives an overview of intermodulation and elaborates on the difference between linear and nonlinear amplifiersDescribes the high-frequency model and transient characteristics of metal-oxide-semiconductor field-effect transistorsDetails activ

  3. Comprehensive experimental analysis of nonlinear dynamics in an optically-injected semiconductor laser

    Directory of Open Access Journals (Sweden)

    Kevin Schires

    2011-09-01

    Full Text Available We present the first comprehensive experimental study, to our knowledge, of the routes between nonlinear dynamics induced in a semiconductor laser under external optical injection based on an analysis of time-averaged measurements of the optical and RF spectra and phasors of real-time series of the laser output. The different means of analysis are compared for several types of routes and the benefits of each are discussed in terms of the identification and mapping of the nonlinear dynamics. Finally, the results are presented in a novel audio/video format that describes the evolution of the dynamics with the injection parameters.

  4. Electroluminescence Analysis by Tilt Polish Technique of InP-Based Semiconductor Lasers

    Science.gov (United States)

    Ichikawa, Hiroyuki; Sasaki, Kouichi; Hamada, Kotaro; Yamaguchi, Akira

    2010-03-01

    We developed an effective electroluminescence (EL) analysis method to specify the degraded region of InP-based semiconductor lasers. The EL analysis method is one of the most important methods for failure analysis. However, EL observation was difficult because opaque electrodes surround an active layer. A portion of each electrode had to be left intact for wiring to inject the current. Thus, we developed a partial polish technique for the bottom electrode. Tilt polish equipment with a rotating table was introduced; a flat polished surface and a sufficiently wide remaining portion of the bottom electrode were obtained. As a result, clear EL from the back surface of the laser was observed.

  5. Effects of two-photon absorption on all optical logic operation based on quantum-dot semiconductor optical amplifiers

    Science.gov (United States)

    Zhang, Xiang; Dutta, Niloy K.

    2018-01-01

    We investigate all-optical logic operation in quantum-dot semiconductor optical amplifier (QD-SOA) based Mach-Zehnder interferometer considering the effects of two-photon absorption (TPA). TPA occurs during the propagation of sub-picosecond pulses in QD-SOA, which leads to a change in carrier recovery dynamics in quantum-dots. We utilize a rate equation model to take into account carrier refill through TPA and nonlinear dynamics including carrier heating and spectral hole burning in the QD-SOA. The simulation results show the TPA-induced pumping in the QD-SOA can reduce the pattern effect and increase the output quality of the all-optical logic operation. With TPA, this scheme is suitable for high-speed Boolean logic operation at 320 Gb/s.

  6. High Efficiency S-Band 20 Watt Amplifier

    Data.gov (United States)

    National Aeronautics and Space Administration — This project includes the design and build of a prototype 20 W, high efficiency, S-Band amplifier.   The design will incorporate the latest semiconductor technology,...

  7. Ball-milled nano-colloids of rare-earth compounds as liquid gain media for capillary optical amplifiers and lasers

    Science.gov (United States)

    Patel, Darayas; Blockmon, Avery; Ochieng, Vanesa; Lewis, Ashley; Wright, Donald M.; Lewis, Danielle; Valentine, Rueben; Valentine, Maucus; Wesley, Dennis; Sarkisov, Sergey S.; Darwish, Abdalla M.; Sarkisov, Avedik S.

    2017-02-01

    Nano-colloids and nano-crystals doped with ions of rare-earth elements have recently attracted a lot of attention in the scientific community due to their potential applications as biomarkers, fluorescent inks, gain media for lasers and optical amplifiers. Many rare-earth doped materials of different compositions, shapes and size distribution have been prepared by different synthetic methods, such as chemical vapor deposition, sol-gel process, micro-emulsion techniques, gas phase condensation methods, hydrothermal methods and laser ablation. In this paper micro-crystalline powder of the rare-earthdoped compound NaYF4:Yb3+, Er3+ was synthesized using a simple wet process followed by baking in open air. Under 980 nm diode laser excitation strong fluorescence in the 100 nm band around 1531-nm peak was observed from the synthesized micro-powder. The micro-powder was pulverized using a ball mill and prepared in the form of nano-colloids in different liquids. The particle size of the obtained nano-colloids was measured using an atomic force microscope and a dynamic light scatterometer. The size of the nano-particles was close to 100-nm. The nano-colloids were utilized as a filling media in capillary optical amplifiers and lasers. The gain of a 7-cm-long capillary optical amplifier (150-micron inner diameter) was as high as 6 dB at 200 mW pump power. The synthesized nano-colloids and the active optical components using them can be potentially used in optical communication, signal processing, optical computing, and other applications.

  8. All-optical pulse data generation in a semiconductor optical amplifier gain controlled by a reshaped optical clock injection

    Science.gov (United States)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-05-01

    Wavelength-maintained all-optical pulse data pattern transformation based on a modified cross-gain-modulation architecture in a strongly gain-depleted semiconductor optical amplifier (SOA) is investigated. Under a backward dark-optical-comb injection with 70% duty-cycle reshaping from the received data clock at 10GHz, the incoming optical data stream is transformed into a pulse data stream with duty cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. The high-pass filtering effect of the gain-saturated SOA greatly improves the extinction ratio of data stream by 8dB and reduces its bit error rate to 10-12 at -18dBm.

  9. Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser.

    Science.gov (United States)

    Lv, Hui; Yu, Yonglin; Shu, Tan; Huang, Dexiu; Jiang, Shan; Barry, Liam P

    2010-03-29

    Photonic ultra-wideband (UWB) pulses are generated by direct current modulation of a semiconductor optical amplifier (SOA) section of an SOA-integrated sampled grating distributed Bragg reflector (SGDBR) laser. Modulation responses of the SOA section of the laser are first simulated with a microwave equivalent circuit model. Simulated results show a resonance behavior indicating the possibility to generate UWB signals with complex shapes in the time domain. The UWB pulse generation is then experimentally demonstrated for different selected wavelength channels with an SOA-integrated SGDBR laser.

  10. Frequency doubling of an InGaAs multiple quantum wells semiconductor disk laser

    Science.gov (United States)

    Lidan, Jiang; Renjiang, Zhu; Maohua, Jiang; Dingke, Zhang; Yuting, Cui; Peng, Zhang; Yanrong, Song

    2018-01-01

    We demonstrate a good beam quality 483 nm blue coherent radiation from a frequency doubled InGaAs multiple quantum wells semiconductor disk laser. The gain chip is consisted of 6 repeats of strain uncompensated InGaAs/GaAs quantum wells and 25 pairs of GaAs/AlAs distributed Bragg reflector. A 4 × 4 × 7 mm3 type I phase-matched BBO nonlinear crystal is used in a V-shaped laser cavity for the second harmonic generation, and 210 mW blue output power is obtained when the absorbed pump power is 3.5 W. The M2 factors of the laser beam in x and y directions are about 1.04 and 1.01, respectively. The output power of the blue laser is limited by the relatively small number of the multiple quantum wells, and higher power can be expected by increasing the number of the multiple quantum wells and improving the heat management of the laser.

  11. Switching waves dynamics in optical bistable cavity-free system at femtosecond laser pulse propagation in semiconductor under light diffraction

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Egorenkov, Vladimir A.; Loginova, Maria M.

    2018-02-01

    We consider a propagation of laser pulse in a semiconductor under the conditions of an occurrence of optical bistability, which appears due to a nonlinear absorption of the semiconductor. As a result, the domains of high concentration of free charged particles (electrons and ionized donors) occur if an intensity of the incident optical pulse is greater than certain intensity. As it is well-known, that an optical beam must undergo a diffraction on (or reflection from) the domains boundaries. Usually, the beam diffraction along a coordinate of the optical pulse propagation does not take into account by using the slowly varying envelope approximation for the laser pulse interaction with optical bistable element. Therefore, a reflection of the beam from the domains with abrupt boundary does not take into account under computer simulation of the laser pulse propagation. However, the optical beams, reflected from nonhomogeneities caused by the domains of high concentration of free-charged particles, can essentially influence on a formation of switching waves in a semiconductor. We illustrate this statement by computer simulation results provided on the base of nonlinear Schrödinger equation and a set of PDEs, which describe an evolution of the semiconductor characteristics (concentrations of free-charged particles and potential of an electric field strength), and taking into account the longitudinal and transverse diffraction effects.

  12. Advances in semiconductor lasers

    CERN Document Server

    Coleman, James J; Jagadish, Chennupati

    2012-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scien

  13. Stimulated Brillouin scattering of laser in semiconductor plasma embedded with nano-sized grains

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Giriraj, E-mail: grsharma@gmail.com [SRJ Government Girls’ College, Neemuch (M P) (India); Dad, R. C. [Government P G College, Mandsaur (M P) (India); Ghosh, S. [School of Studies in Physics, Vikram University, Ujjain, (M P) (India)

    2015-07-31

    A high power laser propagating through semiconductor plasma undergoes Stimulated Brillouin scattering (SBS) from the electrostrictively generated acoustic perturbations. We have considered that nano-sized grains (NSGs) ions are embedded in semiconductor plasma by means of ion implantation. The NSGs are bombarded by the surrounding plasma particles and collect electrons. By considering a negative charge on the NSGs, we present an analytically study on the effects of NSGs on threshold field for the onset of SBS and Brillouin gain of generated Brillouin scattered mode. It is found that as the charge on the NSGs builds up, the Brillouin gain is significantly raised and the threshold pump field for the onset of SBS process is lowered.

  14. Numerical analysis of amplification of picosecond pulses in a THL-100 laser system with an increase in the pump energy of the XeF(C – A) amplifier

    Science.gov (United States)

    Yastremskii, A. G.; Ivanov, N. G.; Losev, V. F.

    2018-03-01

    Energy characteristics of laser radiation with a pulse width of 50 ps at an elevated pump energy of the XeF(C – A) amplifier of a hybrid THL-100 laser system are analysed numerically. The dynamics of the change in the energy and maximum intensity of laser radiation with an increase in the pump energy of the XeF(C – A) amplifier from 270 to 400 J is investigated. The results of studying the influence of the input beam divergence on the energy characteristics of the output beam are presented. It is shown that, for the existing system of mirrors, an increase in the pump energy to 400 J leads to an increase in the output energy from 3.2 to 5.5 J at a maximum radiation intensity of 57 GW cm-2. A system of amplifier mirrors with 27 laser beam passes and enlarged divergence angle of the amplified beam is considered. Theoretically, the proposed system of mirrors allows one to increase the laser pulse energy to 7.5 J at a maximum intensity of no more than 14.8 GW cm-2. The calculated efficiency of the conversion of the pump energy absorbed in the amplifier gas chamber into the lasing energy exceeds 3% in this regime.

  15. Ring cavity for a Raman capillary waveguide amplifier

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  16. High-power dual-wavelength external-Cavity diode laser based on tapered amplifier with tunable terahertz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2011-01-01

    Tunable dual-wavelength operation of a diode laser system based on a tapered diode amplifier with double-Littrow external-cavity feedback is demonstrated around 800nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5:0 THz......, this is the highest output power from a dual-wavelength diode laser system operating with tunable terahertz frequency difference. © 2011 Optical Society of America....

  17. Excitonic bistabilities, instabilities and chaos in laser-pumped semiconductor

    International Nuclear Information System (INIS)

    Nguyen Ba An; Nguyen Trung Dan; Hoang Xuan Nguyen

    1992-07-01

    The Hurwitz criteria are used for a stability analysis of the steady state excitonic optical bistability curves in a semiconductor pumped by an external laser resonant with the exciton level. Besides the middle branch of the bistability curves which is unstable in the sense of the linear stability theory, we have found other domains of instability in the upper and lower branches of the steady state curves. Numerical results show that a possible route to chaos in the photon-exciton system is period-doubling self-oscillation process. The influence of the presence of free carriers that coexist with the excitons is also discussed. (author). 16 refs, 6 figs

  18. Theoretical modeling of the dynamics of a semiconductor laser subject to double-reflector optical feedback

    Energy Technology Data Exchange (ETDEWEB)

    Bakry, A. [King Abdulaziz University, 80203, Department of Physics, Faculty of Science (Saudi Arabia); Abdulrhmann, S. [Jazan University, 114, Department of Physics, Faculty of Sciences (Saudi Arabia); Ahmed, M., E-mail: mostafa.farghal@mu.edu.eg [King Abdulaziz University, 80203, Department of Physics, Faculty of Science (Saudi Arabia)

    2016-06-15

    We theoretically model the dynamics of semiconductor lasers subject to the double-reflector feedback. The proposed model is a new modification of the time-delay rate equations of semiconductor lasers under the optical feedback to account for this type of the double-reflector feedback. We examine the influence of adding the second reflector to dynamical states induced by the single-reflector feedback: periodic oscillations, period doubling, and chaos. Regimes of both short and long external cavities are considered. The present analyses are done using the bifurcation diagram, temporal trajectory, phase portrait, and fast Fourier transform of the laser intensity. We show that adding the second reflector attracts the periodic and perioddoubling oscillations, and chaos induced by the first reflector to a route-to-continuous-wave operation. During this operation, the periodic-oscillation frequency increases with strengthening the optical feedback. We show that the chaos induced by the double-reflector feedback is more irregular than that induced by the single-reflector feedback. The power spectrum of this chaos state does not reflect information on the geometry of the optical system, which then has potential for use in chaotic (secure) optical data encryption.

  19. Introduction to Semiconductor Devices

    Science.gov (United States)

    Brennan, Kevin F.

    2005-03-01

    This volume offers a solid foundation for understanding the most important devices used in the hottest areas of electronic engineering today, from semiconductor fundamentals to state-of-the-art semiconductor devices in the telecommunications and computing industries. Kevin Brennan describes future approaches to computing hardware and RF power amplifiers, and explains how emerging trends and system demands of computing and telecommunications systems influence the choice, design and operation of semiconductor devices. In addition, he covers MODFETs and MOSFETs, short channel effects, and the challenges faced by continuing miniaturization. His book is both an excellent senior/graduate text and a valuable reference for practicing engineers and researchers.

  20. Continuous-wave, single-frequency 229  nm laser source for laser cooling of cadmium atoms.

    Science.gov (United States)

    Kaneda, Yushi; Yarborough, J M; Merzlyak, Yevgeny; Yamaguchi, Atsushi; Hayashida, Keitaro; Ohmae, Noriaki; Katori, Hidetoshi

    2016-02-15

    Continuous-wave output at 229 nm for the application of laser cooling of Cd atoms was generated by the fourth harmonic using two successive second-harmonic generation stages. Employing a single-frequency optically pumped semiconductor laser as a fundamental source, 0.56 W of output at 229 nm was observed with a 10-mm long, Brewster-cut BBO crystal in an external cavity with 1.62 W of 458 nm input. Conversion efficiency from 458 nm to 229 nm was more than 34%. By applying a tapered amplifier (TA) as a fundamental source, we demonstrated magneto-optical trapping of all stable Cd isotopes including isotopes Cd111 and Cd113, which are applicable to optical lattice clocks.

  1. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS

    International Nuclear Information System (INIS)

    2005-01-01

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  2. Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.

  3. Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer.

    Science.gov (United States)

    Liu, Xin; Klinkhammer, Sönke; Wang, Ziyao; Wienhold, Tobias; Vannahme, Christoph; Jakobs, Peter-Jürgen; Bacher, Andreas; Muslija, Alban; Mappes, Timo; Lemmer, Uli

    2013-11-18

    Optically excited organic semiconductor distributed feedback (DFB) lasers enable efficient lasing in the visible spectrum. Here, we report on the rapid and parallel fabrication of DFB lasers via transferring a nanograting structure from a flexible mold onto an unstructured film of the organic gain material. This geometrically well-defined structure allows for a systematic investigation of the laser threshold behavior. The laser thresholds for these devices show a strong dependence on the pump spot diameter. This experimental finding is in good qualitative agreement with calculations based on coupled-wave theory. With further investigations on various DFB laser geometries prepared by different routes and based on different organic gain materials, we found that these findings are quite general. This is important for the comparison of threshold values of various devices characterized under different excitation areas.

  4. Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer

    DEFF Research Database (Denmark)

    Liu, Xin; Klinkhammer, Sönke; Wang, Ziyao

    2013-01-01

    material. This geometrically well-defined structure allows for a systematic investigation of the laser threshold behavior. The laser thresholds for these devices show a strong dependence on the pump spot diameter. This experimental finding is in good qualitative agreement with calculations based on coupled......Optically excited organic semiconductor distributed feedback (DFB) lasers enable efficient lasing in the visible spectrum. Here, we report on the rapid and parallel fabrication of DFB lasers via transferring a nanograting structure from a flexible mold onto an unstructured film of the organic gain......-wave theory. With further investigations on various DFB laser geometries prepared by different routes and based on different organic gain materials, we found that these findings are quite general. This is important for the comparison of threshold values of various devices characterized under different...

  5. Calculations of the self-amplified spontaneous emission performance of a free-electron laser

    International Nuclear Information System (INIS)

    Dejus, R. J.

    1999-01-01

    The linear integral equation based computer code (RON: Roger Oleg Nikolai), which was recently developed at Argonne National Laboratory, was used to calculate the self-amplified spontaneous emission (SASE) performance of the free-electron laser (FEL) being built at Argonne. Signal growth calculations under different conditions are used for estimating tolerances of actual design parameters. The radiation characteristics are discussed, and calculations using an ideal undulator magnetic field and a real measured magnetic field will be compared and discussed

  6. Single-mode very wide tunability in laterally coupled semiconductor lasers with electrically controlled reflectivities

    Science.gov (United States)

    Griffel, Giora; Chen, Howard Z.; Grave, Ilan; Yariv, Amnon

    1991-04-01

    The operation of a novel multisection structure comprised of laterally coupled gain-guided semiconductor lasers is demonstrated. It is shown that tunable single longitudinal mode operation can be achieved with a high degree of frequency selectivity. The device has a tuning range of 14.5 nm, the widest observed to date in a monolithic device.

  7. Gain measurements on a prototype NIF/LMJ amplifier pump cavity

    International Nuclear Information System (INIS)

    Rotter, M.D.; McCracken, R.; Erlandson, A.; Guenet, M.

    1996-12-01

    We are currently developing large-aperture amplifiers for the National Ignition Facility (NIF) and Laser Megajoules (LMJ) lasers. These multisegment amplifiers are of the flashlamp-pumped, Nd:Glass qW and are designed to propagate a nominally 36 cm square beam. The apertures within a particular amplifier bundle are arranged in a four-high by two-wide configuration and utilize two side lamp arrays and a central flashlamp array for pumping. The configuration is very similar to that used in the Beamlet laser, a single-beam prototype for the NIF/LMJ lasers, which has four apertures arranged in a two- high by two-wide configuration

  8. Double-pass tapered amplifier diode laser with an output power of 1 W for an injection power of only 200 μW.

    Science.gov (United States)

    Bolpasi, V; von Klitzing, W

    2010-11-01

    A 1 W tapered amplifier requiring only 200 μW of injection power at 780 nm is presented in this paper. This is achieved by injecting the seeding light into the amplifier from its tapered side and feeding the amplified light back into the small side. The amplified spontaneous emission of the tapered amplifier is suppressed by 75 dB. The double-passed tapered laser, presented here, is extremely stable and reliable. The output beam remains well coupled to the optical fiber for a timescale of months, whereas the injection of the seed light did not require realignment for over a year of daily operation.

  9. Laser radiation in active amplifying media treated as a transport problem - Transfer equation derived and exactly solved

    Science.gov (United States)

    Gupta, S. R. D.; Gupta, Santanu D.

    1991-10-01

    The flow of laser radiation in a plane-parallel cylindrical slab of active amplifying medium with axial symmetry is treated as a problem in radiative transfer. The appropriate one-dimensional transfer equation describing the transfer of laser radiation has been derived by an appeal to Einstein's A, B coefficients (describing the processes of stimulated line absorption, spontaneous line emission, and stimulated line emission sustained by population inversion in the medium) and considering the 'rate equations' to completely establish the rational of the transfer equation obtained. The equation is then exactly solved and the angular distribution of the emergent laser beam intensity is obtained; its numerically computed values are given in tables and plotted in graphs showing the nature of peaks of the emerging laser beam intensity about the axis of the laser cylinder.

  10. Field performance of an all-semiconductor laser coherent Doppler lidar

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2012-01-01

    We implement and test what, to our knowledge, is the first deployable coherent Doppler lidar (CDL) system based on a compact, inexpensive all-semiconductor laser (SL). To demonstrate the field performance of our SL-CDL remote sensor, we compare a 36 h time series of averaged radial wind speeds...... measured by our instrument at an 80 m distance to those simultaneously obtained from an industry-standard sonic anemometer (SA). An excellent degree of correlation (R2=0.994 and slope=0.996) is achieved from a linear regression analysis of the CDL versus SA wind speed data. The lidar system is capable...

  11. Analysis of timing jitter in external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    2006-01-01

    We develop a comprehensive theoretical description of passive mode-locking in external-cavity mode-locked semiconductor lasers based on a fully distributed time-domain approach. The model accounts for the dispersion of both gain and refractive index, nonlinear gain saturation from ultrafast...... processes, self-phase modulation, and spontaneous emission noise. Fluctuations of the mode-locked pulses are characterized from the fully distributed model using direct integration of noise-skirts in the phase-noise spectrum and the soliton perturbations introduced by Haus. We implement the model in order...

  12. 1-W quasi-cw near-diffraction-limited semiconductor laser pumped optically by a fibre-coupled diode bar

    OpenAIRE

    Dhanjal, S.; Hoogland, S.; Roberts, J.S.; Hayward, R.A.; Clarkson, W.A.; Tropper, Anne

    2000-01-01

    We describe a diode-bar-pumped vertical-external-cavity surface-emitting semiconductor laser, which in quasi-cw operation emitted a peak power of >1 W at 1020 nm in a circular, near diffraction-limited beam.

  13. Stability diagrams for continuous wide-range control of two mutually delay-coupled semiconductor lasers

    International Nuclear Information System (INIS)

    Junges, Leandro; Gallas, Jason A C

    2015-01-01

    The dynamics of two mutually delay-coupled semiconductor lasers has been frequently studied experimentally, numerically, and analytically either for weak or strong detuning between the lasers. Here, we present a systematic numerical investigation spanning all detuning ranges. We report high-resolution stability diagrams for wide ranges of the main control parameters of the laser, as described by the Lang–Kobayashi model. In particular, we detail the parameter influence on dynamical performance and map the distribution of chaotic pulsations and self-generated periodic spiking with arbitrary periodicity. Special attention is given to the unfolding of regular pulse packages for both symmetric and non-symmetric configurations with respect to detuning. The influence of the delay –time on the self-organization of periodic and chaotic laser phases as a function of the coupling and detuning is also described in detail. (paper)

  14. High-power diode laser bars as pump sources for fiber lasers and amplifiers (Invited Paper)

    Science.gov (United States)

    Bonati, G.; Hennig, P.; Wolff, D.; Voelckel, H.; Gabler, T.; Krause, U.; T'nnermann, A.; Reich, M.; Limpert, J.; Werner, E.; Liem, A.

    2005-04-01

    Fiber lasers are pumped by fibercoupled, multimode single chip devices at 915nm. That"s what everybody assumes when asked for the type of fiber laser pumps and it was like this for many years. Coming up as an amplifier for telecom applications, the amount of pump power needed was in the range of several watts. Highest pump powers for a limited market entered the ten watts range. This is a range of power that can be covered by highly reliable multimode chips, that have to survive up to 25 years, e.g. in submarine applications. With fiber lasers entering the power range and the application fields of rod and thin disc lasers, the amount of pump power needed raised into the area of several hundred watts. In this area of pump power, usually bar based pumps are used. This is due to the much higher cost pressure of the industrial customers compared to telecom customers. We expect more then 70% of all industrial systems to be pumped by diode laser bars. Predictions that bar based pumps survive for just a thousand hours in cw-operation and fractions of this if pulsed are wrong. Bar based pumps have to perform on full power for 10.000h on Micro channel heat sinks and 20.000h on passive heatsinks in industrial applications, and they do. We will show a variety of data, "real" long time tests and statistics from the JENOPTIK Laserdiode as well as data of thousands of bars in the field, showing that bar based pumps are not just well suitable for industrial applications on high power levels, but even showing benefits compared to chip based pumps. And it"s reasonable, that the same objectives of cost effectiveness, power and lifetime apply as well to thin disc, rod and slab lasers as to fiber lasers. Due to the pumping of fiber lasers, examples will be shown, how to utilize bars for high brightness fiber coupling. In this area, the automation is on its way to reduce the costs on the fibercoupling, similar to what had been done in the single chip business. All these efforts are

  15. Wake fields in semiconductor plasmas

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Mahajan, S.M.

    1994-05-01

    It is shown that an intense short laser pulse propagating through a semiconductor plasma will generated longitudinal Langmuir waves in its wake. The measurable wake field can be used as a diagnostic to study nonlinear optical phenomena. For narrow gap semiconductors (for examples InSb) with Kane-type dispersion relation, the system can simulate, at currently available laser powers, the physics underlying wake-field accelerators. (author). 9 refs, 1 fig

  16. Automatic error compensation in dc amplifiers

    International Nuclear Information System (INIS)

    Longden, L.L.

    1976-01-01

    When operational amplifiers are exposed to high levels of neutron fluence or total ionizing dose, significant changes may be observed in input voltages and currents. These changes may produce large errors at the output of direct-coupled amplifier stages. Therefore, the need exists for automatic compensation techniques. However, previously introduced techniques compensate only for errors in the main amplifier and neglect the errors induced by the compensating circuitry. In this paper, the techniques introduced compensate not only for errors in the main operational amplifier, but also for errors induced by the compensation circuitry. Included in the paper is a theoretical analysis of each compensation technique, along with advantages and disadvantages of each. Important design criteria and information necessary for proper selection of semiconductor switches will also be included. Introduced in this paper will be compensation circuitry for both resistive and capacitive feedback networks

  17. Multi-pass amplifier architecture for high power laser systems

    Science.gov (United States)

    Manes, Kenneth R; Spaeth, Mary L; Erlandson, Alvin C

    2014-04-01

    A main amplifier system includes a first reflector operable to receive input light through a first aperture and direct the input light along an optical path. The input light is characterized by a first polarization. The main amplifier system also includes a first polarizer operable to reflect light characterized by the first polarization state. The main amplifier system further includes a first and second set of amplifier modules. Each of the first and second set of amplifier modules includes an entrance window, a quarter wave plate, a plurality of amplifier slablets arrayed substantially parallel to each other, and an exit window. The main amplifier system additionally includes a set of mirrors operable to reflect light exiting the first set of amplifier modules to enter the second set of amplifier modules and a second polarizer operable to reflect light characterized by a second polarization state.

  18. A megajoule class krypton fluoride amplifier for single shot, high gain ICF application

    International Nuclear Information System (INIS)

    Rose, E.; Hanson, D.; Krohn, B.; McLeod, J.; Kang, M.

    1988-01-01

    A design study is underway to define the optimal architecture for a KrF laser system which will deliver 10 MJ of 248-nm light to an ICF target. We present one approach which incorporates final power amplifiers in the megajoule class, achieving 10 MJ with four final amplifiers. Each double-pass laser amplifier employs two-sided electron-beam pumping of the laser gas medium. Details of the design are based on a Monte-Carlo electron-beam deposition code, a one-dimensional, time-dependent kinetics code, and pulsed power circuit modeling. Linear dimensions of the amplifier's extracted gain volume are 6.25 m in height and length and 5.12 m in width. Each amplifier handles 160 angularly multiplexed laser channels. The one-amagat, krypton-rich laser medium is e-beam pumped at 60-kW cm/sup /minus/3/ (4-MA at3.3-MV) over the 2-microsecond duration of the laser beam pulse train. 5 refs., 4 figs

  19. Pulsed laser deposition of II-VI and III-V semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Mele, A.; Di Palma, T.M.; Flamini, C.; Giardini Guidoni, A. [Rome, Univ. `La Sapienza` (Italy). Dep. di Chimica

    1998-12-01

    Pulsed laser irradiation of a solid target involves electronic excitation and heating, followed by expansion from the target of the elliptical gas cloud (plume) which can be eventually condensed on a suitable substrate. Pulsed laser ablation has been found to be a valuable technique to prepare II-VI and III-V thin films of semiconductor materials. Pulsed laser ablation deposition is discussed in the light of the results of an investigation on CdS, CdSe, CdTe and CdSe/CdTe multilayers and AIN, GaN and InN together with Al-Ga-In-N heterostructures. [Italiano] L`irradiazione di un target solido, mediante un fascio laser impulsato, genera una serie di processi che possono essere schematizzati come segue: riscaldamento ed eccitazione elettronica del target, da cui consegue l`espulsione di materiale sotto forma di una nube gassosa di forma ellissoidale (plume), che espande e puo` essere fatta depositare su un opportuno substrato. L`ablazione lasersi e` rivelata una tecnica valida per preparare film sottili di composti di elementi del II-VI e del III-V gruppo della tavola periodica. La deposizione via ablazione laser viene discussa alla luce dei risultati ottenuti nella preparazione di film di CdS, CdSe, CdTe e di film multistrato di CdSe/CdTe, di film di AIN, GaN, InN e di eterostrutture di Al-Ga-In-N.

  20. Optical-feedback semiconductor laser Michelson interferometer for displacement measurements with directional discrimination

    International Nuclear Information System (INIS)

    Rodrigo, Peter John; Lim, May; Saloma, Caesar

    2001-01-01

    An optical-feedback semiconductor laser Michelson interferometer (OSMI) is presented for measuring microscopic linear displacements without ambiguity in the direction of motion. The two waves from the interferometer arms, one from the reference mirror and the other from the reflecting moving target, are fed back into the lasing medium (λ=830 nm), causing variations in the laser output power. We model the OSMI into an equivalent Fabry-Perot resonator and derive the dependence of the output power (and the junction voltage) on the path difference between the two interferometer arms. Numerical and experimental results consistently show that the laser output power varies periodically (period, λ/2) with path difference. The output power variation exhibits an asymmetric behavior with the direction of motion, which is used to measure, at subwavelength resolution, the displacement vector (both amplitude and direction) of the moving sample. Two samples are considered in the experiments: (i) a piezoelectric transducer and (ii) an audio speaker

  1. Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector.

    Science.gov (United States)

    Liles, Alexandros A; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of a new design for external cavity hybrid lasers consisting of a III-V semiconductor optical amplifier (SOA) with fiber reflector and a photonic crystal (PhC)-based resonant reflector on SOI. The silicon reflector is composed of an SU8 polymer bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and side-mode suppression ratios of more than 25 dB.

  2. Operating regime for a backward Raman laser amplifier in preformed plasma

    International Nuclear Information System (INIS)

    Clark, Daniel S.; Fisch, Nathaniel J.

    2003-01-01

    A critical issue in the generation of ultraintense, ultrashort laser pulses by backward Raman scattering in plasma is the stability of the pumping pulse to premature backscatter from thermal fluctuations in the preformed plasma. Malkin et al. [Phys. Rev. Lett. 84, 1208 (2000)] demonstrated that density gradients may be used to detune the Raman resonance in such a way that backscatter of the pump from thermal noise can be stabilized while useful Raman amplification persists. Here plasma conditions for which the pump is stable to thermal Raman backscatter in a homogeneous plasma and the density gradients necessary to stabilize the pump for other plasma conditions are quantified. Other ancillary constraints on a Raman amplifier are also considered to determine a specific region in the T e -n e plane where Raman amplification is feasible. By determining an operability region, the degree of uncertainty in density or temperature tolerable for an experimental Raman amplifier is thus also identified. The fluid code F3D [R. L. Berger et al., Phys. Plasmas 5, 4337 (1998)], which includes the effects of thermal fluctuations, is used to verify these analytic estimates

  3. Operating Regime for a Backward Raman Laser Amplifier in Preformed Plasma

    International Nuclear Information System (INIS)

    Clark, Daniel S.; Fisch, Nathaniel J.

    2003-01-01

    A critical issue in the generation of ultra-intense, ultra-short laser pulses by backward Raman scattering in plasma is the stability of the pumping pulse to premature backscatter from thermal fluctuations in the preformed plasma. Malkin et al. [V.M. Malkin, et al., Phys. Rev. Lett. 84 (6):1208-1211, 2000] demonstrated that density gradients may be used to detune the Raman resonance in such a way that backscatter of the pump from thermal noise can be stabilized while useful Raman amplification persists. Here plasma conditions for which the pump is stable to thermal Raman backscatter in a homogeneous plasma and the density gradients necessary to stabilize the pump for other plasma conditions are quantified. Other ancillary constraints on a Raman amplifier are also considered to determine a specific region in the Te-he plane where Raman amplification is feasible. By determining an operability region, the degree of uncertainty in density or temperature tolerable for an experimental Raman amplifier is thus also identified. The fluid code F3D, which includes the effects of thermal fluctuations, is used to verify these analytic estimates

  4. Operating Regime for a Backward Raman Laser Amplifier in Preformed Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Daniel S. Clark; Nathaniel J. Fisch

    2003-02-06

    A critical issue in the generation of ultra-intense, ultra-short laser pulses by backward Raman scattering in plasma is the stability of the pumping pulse to premature backscatter from thermal fluctuations in the preformed plasma. Malkin et al. [V.M. Malkin, et al., Phys. Rev. Lett. 84 (6):1208-1211, 2000] demonstrated that density gradients may be used to detune the Raman resonance in such a way that backscatter of the pump from thermal noise can be stabilized while useful Raman amplification persists. Here plasma conditions for which the pump is stable to thermal Raman backscatter in a homogeneous plasma and the density gradients necessary to stabilize the pump for other plasma conditions are quantified. Other ancillary constraints on a Raman amplifier are also considered to determine a specific region in the Te-he plane where Raman amplification is feasible. By determining an operability region, the degree of uncertainty in density or temperature tolerable for an experimental Raman amplifier is thus also identified. The fluid code F3D, which includes the effects of thermal fluctuations, is used to verify these analytic estimates.

  5. Ultra-stable, diode-pumped Nd-doped glass regenerative amplifier for the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Crane, J.K.; Martinez, M.; Beach, R.J.; Mitchell, S.; Pratt, G.; Christensen, J.J.

    1995-12-01

    We describe a diode laser-pumped Nd:glass regenerative amplifier that amplifies temporally shaped pulses with low distortion, high pulse-to- pulse stability, and high gain. This laser amplifier is a prototype subsystem for the National Ignition Facility (NIF) laser system. 2 refs., 1 fig

  6. Development of high-power and high-energy 2 µm bulk solid-state lasers and amplifiers

    CSIR Research Space (South Africa)

    Koen, W

    2016-04-01

    Full Text Available 250 300 350 Pulse Repetition Frequency [Hz] P u l s e E n e r g y [ m J ] 0 1 2 3 4 5 6 7 8 9 10 A v e r a g e P o w e r [ W ] Osc Energy Amp Energy Osc average P Amp average P Figure 8: Output energy of the ring laser and amplifier...

  7. Ultrafast Spectroscopy of Semiconductor Devices

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Marcher

    1999-01-01

    In this work we present an experimental technique for investigating ultrafast carrier dynamics in semiconductor optical amplifiers at room temperature. These dynamics, influenced by carrier heating, spectral hole-burning and two-photon absorption, are very important for device applications in inf...

  8. Synchronization and bidirectional communication without delay line using strong mutually coupled semiconductor lasers

    Science.gov (United States)

    Li, Guang-Hui; Wang, An-Bang; Feng, Ye; Wang, Yang

    2010-07-01

    This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show that both of the two lasers' outputs synchronize with their input chaotic carriers. In addition, simulations demonstrate that this kind of synchronization can be used to realize bidirectional communications without delay line. Further studies indicate that within a small deviation in message amplitudes of two sides (±6%), the message can be extracted with signal-noise-ratio more than 10 dB; and the signal-noise-ratio is extremely sensitive to the message rates mismatch of two sides, which may be used as a key of bidirectional communication.

  9. Synchronization and bidirectional communication without delay line using strong mutually coupled semiconductor lasers

    International Nuclear Information System (INIS)

    Guang-Hui, Li; An-Bang, Wang; Ye, Feng; Yang, Wang

    2010-01-01

    This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show that both of the two lasers' outputs synchronize with their input chaotic carriers. In addition, simulations demonstrate that this kind of synchronization can be used to realize bidirectional communications without delay line. Further studies indicate that within a small deviation in message amplitudes of two sides (±6%), the message can be extracted with signal-noise-ratio more than 10 dB; and the signal-noise-ratio is extremely sensitive to the message rates mismatch of two sides, which may be used as a key of bidirectional communication. (general)

  10. Analytical model of ground-state lasing phenomenon in broadband semiconductor quantum dot lasers

    Science.gov (United States)

    Korenev, Vladimir V.; Savelyev, Artem V.; Zhukov, Alexey E.; Omelchenko, Alexander V.; Maximov, Mikhail V.

    2013-05-01

    We introduce an analytical approach to the description of broadband lasing spectra of semiconductor quantum dot lasers emitting via ground-state optical transitions of quantum dots. The explicit analytical expressions describing the shape and the width of lasing spectra as well as their temperature and injection current dependences are obtained in the case of low homogeneous broadening. It is shown that in this case these dependences are determined by only two dimensionless parameters, which are the dispersion of the distribution of QDs over the energy normalized to the temperature and loss-to-maximum gain ratio. The possibility of optimization of laser's active region size and structure by using the intentionally introduced disorder is also carefully considered.

  11. FDML swept source at 1060 nm using a tapered amplifier

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang

    2010-01-01

    We present a novel frequency-swept light source working at 1060nm that utilizes a tapered amplifier as gain medium. These devices feature significantly higher saturation power than conventional semiconductor optical amplifiers and can thus improve the limited output power of swept sources in this...... an axial resolution of 15 µm in air (~11µm in tissue) for OCT applications can be achieved....

  12. Si-Based Germanium Tin Semiconductor Lasers for Optoelectronic Applications

    Science.gov (United States)

    Al-Kabi, Sattar H. Sweilim

    Silicon-based materials and optoelectronic devices are of great interest as they could be monolithically integrated in the current Si complementary metal-oxide-semiconductor (CMOS) processes. The integration of optoelectronic components on the CMOS platform has long been limited due to the unavailability of Si-based laser sources. A Si-based monolithic laser is highly desirable for full integration of Si photonics chip. In this work, Si-based germanium-tin (GeSn) lasers have been demonstrated as direct bandgap group-IV laser sources. This opens a completely new avenue from the traditional III-V integration approach. In this work, the material and optical properties of GeSn alloys were comprehensively studied. The GeSn films were grown on Ge-buffered Si substrates in a reduced pressure chemical vapor deposition system with low-cost SnCl4 and GeH4 precursors. A systematic study was done for thin GeSn films (thickness 400 nm) with Sn composition 5 to 17.5%. The room temperature photoluminescence (PL) spectra were measured that showed a gradual shift of emission peaks towards longer wavelength as Sn composition increases. Strong PL intensity and low defect density indicated high material quality. Moreover, the PL study of n-doped samples showed bandgap narrowing compared to the unintentionally p-doped (boron) thin films with similar Sn compositions. Finally, optically pumped GeSn lasers on Si with broad wavelength coverage from 2 to 3 mum were demonstrated using high-quality GeSn films with Sn compositions up to 17.5%. The achieved maximum Sn composition of 17.5% broke the acknowledged Sn incorporation limit using similar deposition chemistry. The highest lasing temperature was measured at 180 K with an active layer thickness as thin as 270 nm. The unprecedented lasing performance is due to the achievement of high material quality and a robust fabrication process. The results reported in this work show a major advancement towards Si-based electrically pumped mid

  13. Copper vapour laser with an efficient semiconductor pump generator having comparable pump pulse and output pulse durations

    Energy Technology Data Exchange (ETDEWEB)

    Yurkin, A A [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-03-31

    We report the results of experimental studies of a copper vapour laser with a semiconductor pump generator capable of forming virtually optimal pump pulses with a current rise steepness of about 40 A ns{sup -1} in a KULON LT-1.5CU active element. To maintain the operating temperature of the active element's channel, an additional heating pulsed oscillator is used. High efficiency of the pump generator is demonstrated. (lasers)

  14. Effect of Suyuping combined with semiconductor laser irradiation on wound healing after anal fistula surgery

    Institute of Scientific and Technical Information of China (English)

    Min Zhao; Chang-Ye Sang; Zhen-Jun Wang; Yan-Chun Xu

    2016-01-01

    Objective:To explore the effect of Suyuping combined with semiconductor laser irradiation on the wound healing after anal fistula surgery.Methods:A total of 180 patients with anal fistula who were admitted in our hospital from October, 2013 to May, 2015 for surgery were included in the study and randomized into the treatment group and the control group with 90 cases in each group. The patients in the control group were given the conventional surgical debridement dressing, a time a day. On this basis, the patients in the treatment group were given Suyuping smearing on the wound sinus tract combined with semiconductor laser irradiation, a time a day for 10 min, continuous irradiation until wound healing. The postoperative wound swelling fading, wound surface secretion amount, and the clinical efficacy in the two groups were recorded.Results:The wound surface swelling degree and wound pain degree at each timing point after operation in the treatment group were significantly lower than those in the control group (P<0.05). The wound surface area at each timing point after operation in the treatment group was significantly lower than that in the control group (P<0.05). The wound surface secretion amount 6, 9, and 12 days after operation in the treatment group was significantly lower than that in the control group (P<0.05). The total effective rate in the treatment group was significantly higher than that in the control group (P<0.05). The average healing time in the treatment group was significantly faster than that in the control group (P<0.05). Conclusions: Suyuping combined with semiconductor laser irradiation in the treatment of patients after anal fistula can effectively improve the local blood and lymphatic circulation of wound surface, promote the growth of granulation tissues, and contribute the wound healing.

  15. Effect of Suyuping combined with semiconductor laser irradiation on wound healing after anal fistula surgery

    Directory of Open Access Journals (Sweden)

    Min Zhao

    2016-06-01

    Full Text Available Objective: To explore the effect of Suyuping combined with semiconductor laser irradiation on the wound healing after anal fistula surgery. Methods: A total of 180 patients with anal fistula who were admitted in our hospital from October, 2013 to May, 2015 for surgery were included in the study and randomized into the treatment group and the control group with 90 cases in each group. The patients in the control group were given the conventional surgical debridement dressing, a time a day. On this basis, the patients in the treatment group were given Suyuping smearing on the wound sinus tract combined with semiconductor laser irradiation, a time a day for 10 min, continuous irradiation until wound healing. The postoperative wound swelling fading, wound surface secretion amount, and the clinical efficacy in the two groups were recorded. Results: The wound surface swelling degree and wound pain degree at each timing point after operation in the treatment group were significantly lower than those in the control group (P<0.05. The wound surface area at each timing point after operation in the treatment group was significantly lower than that in the control group (P<0.05. The wound surface secretion amount 6, 9, and 12 days after operation in the treatment group was significantly lower than that in the control group (P<0.05. The total effective rate in the treatment group was significantly higher than that in the control group (P<0.05. The average healing time in the treatment group was significantly faster than that in the control group (P<0.05. Conclusions: Suyuping combined with semiconductor laser irradiation in the treatment of patients after anal fistula can effectively improve the local blood and lymphatic circulation of wound surface, promote the growth of granulation tissues, and contribute the wound healing.

  16. Erbium/ytterbium co-doped double clad fiber amplifier, its applications and effects in fiber optic communication systems

    Science.gov (United States)

    Dua, Puneit

    Increased demand for larger bandwidth and longer inter-amplifiers distances translates to higher power budgets for fiber optic communication systems in order to overcome large splitting losses and achieve acceptable signal-to-noise ratios. Due to their unique design ytterbium sensitized erbium doped, double clad fiber amplifiers; offer significant increase in the output powers that can be obtained. In this thesis we investigate, a one-stage, high power erbium and ytterbium co-doped double clad fiber amplifier (DCFA) with output power of 1.4W, designed and built in our lab. Experimental demonstration and numerical simulation techniques have been used to systematically study the applications of such an amplifier and the effects of incorporating it in various fiber optic communication systems. Amplitude modulated subcarrier multiplexed (AM-SCM) CATV distribution experiment has been performed to verify the feasibility of using this amplifier in an analog/digital communication system. The applications of the amplifier as a Fabry-Perot and ring fiber laser with an all-fiber cavity, a broadband supercontinuum source and for generation of high power, short pulses at 5GHz have been experimentally demonstrated. A variety of observable nonlinear effects occur due to the high intensity of the optical powers confined in micron-sized cores of the fibers, this thesis explores in detail some of these effects caused by using the high power Er/Yb double clad fiber amplifier. A fiber optic based analog/digital CATV system experiences composite second order (CSO) distortion due to the interaction between the gain tilt---the variation of gain with wavelength, of the doped fiber amplifier and the wavelength chirp of the directly modulated semiconductor laser. Gain tilt of the Er/Yb co-doped fiber amplifier has been experimentally measured and its contribution to the CSO of the system calculated. Theoretical analysis of a wavelength division multiplexed system with closely spaced

  17. A photodiode amplifier system for pulse-by-pulse intensity measurement of an x-ray free electron laser.

    Science.gov (United States)

    Kudo, Togo; Tono, Kensuke; Yabashi, Makina; Togashi, Tadashi; Sato, Takahiro; Inubushi, Yuichi; Omodani, Motohiko; Kirihara, Yoichi; Matsushita, Tomohiro; Kobayashi, Kazuo; Yamaga, Mitsuhiro; Uchiyama, Sadayuki; Hatsui, Takaki

    2012-04-01

    We have developed a single-shot intensity-measurement system using a silicon positive-intrinsic-negative (PIN) photodiode for x-ray pulses from an x-ray free electron laser. A wide dynamic range (10(3)-10(11) photons/pulse) and long distance signal transmission (>100 m) were required for this measurement system. For this purpose, we developed charge-sensitive and shaping amplifiers, which can process charge pulses with a wide dynamic range and variable durations (ns-μs) and charge levels (pC-μC). Output signals from the amplifiers were transmitted to a data acquisition system through a long cable in the form of a differential signal. The x-ray pulse intensities were calculated from the peak values of the signals by a waveform fitting procedure. This system can measure 10(3)-10(9) photons/pulse of ~10 keV x-rays by direct irradiation of a silicon PIN photodiode, and from 10(7)-10(11) photons/pulse by detecting the x-rays scattered by a diamond film using the silicon PIN photodiode. This system gives a relative accuracy of ~10(-3) with a proper gain setting of the amplifiers for each measurement. Using this system, we succeeded in detecting weak light at the developmental phase of the light source, as well as intense light during lasing of the x-ray free electron laser. © 2012 American Institute of Physics

  18. Highly Doped Phosphate Glass Fibers for Compact Lasers and Amplifiers: A Review

    Directory of Open Access Journals (Sweden)

    Nadia Giovanna Boetti

    2017-12-01

    Full Text Available In recent years, the exploitation of compact laser sources and amplifiers in fiber form has found extensive applications in industrial and scientific fields. The fiber format offers compactness, high beam quality through single-mode regime and excellent heat dissipation, thus leading to high laser reliability and long-term stability. The realization of devices based on this technology requires an active medium with high optical gain over a short length to increase efficiency while mitigating nonlinear optical effects. Multicomponent phosphate glasses meet these requirements thanks to the high solubility of rare-earth ions in their glass matrix, alongside with high emission cross-sections, chemical stability and high optical damage threshold. In this paper, we review recent advances in the field thanks to the combination of highly-doped phosphate glasses and innovative fiber drawing techniques. We also present the main performance achievements and outlook both in continuous wave (CW and pulsed mode regimes.

  19. A Phase-Controlled Optical Parametric Amplifier Pumped by Two Phase-Distorted Laser Beams

    International Nuclear Information System (INIS)

    Hong-Yan, Ren; Lie-Jia, Qian; Peng, Yuan; He-Yuan, Zhu; Dian-Yuan, Fan

    2010-01-01

    We theoretically study the phase characteristic of optical parametric amplification (OPA) or chirped pulse OPA (OPCPA) pumped by two phase-distorted laser beams. In the two-beam-pumped optical parametric amplification (TBOPA), due to spatial walk-off, both of the pump phase distortions will be partly transferred to signal in a single crystal so as to degrade the signal beam-quality, which will be more serious in high-energy OPCPA. An OPA configuration with a walkoff-compensated crystal pair is demonstrated for reducing the signal phase distortion experienced in the first stage and ensuring the signal phase independent of two pump phase distortions through the second crystal, hence maintaining the signal beam-quality. Such a TBOPA is similar to the conventional quantum laser amplifier by means of eliminating its sensitivity to the phase and number of the pump beams

  20. TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback

    International Nuclear Information System (INIS)

    Heil, T.; Uchida, A.; Davis, P.; Aida, T.

    2003-01-01

    We present a comprehensive experimental characterization of the dynamics of semiconductor lasers subject to polarization-rotated optical feedback. We find oscillatory instabilities appearing for large feedback levels and disappearing at large injection currents, which we classify in contrast to the well-known conventional optical-feedback-induced dynamics. In addition, we compare our experiments to theoretical results of a single-mode model assuming incoherence of the optical feedback, and we identify differences concerning the average power of the laser. Hence, we develop an alternative model accounting for both polarizations, where the emission of the dominant TE mode is injected with delay into the TM mode of the laser. Numerical simulations using this model show good qualitative agreement with our experimental results, correctly reproducing the parameter dependences of the dynamics. Finally, we discuss the application of polarization-rotated-feedback induced instabilities in chaotic carrier communication systems

  1. Photochemistry Aspects of the Laser Pyrolysis Addressing the Preparation of Oxide Semiconductor Photocatalysts

    Directory of Open Access Journals (Sweden)

    R. Alexandrescu

    2008-01-01

    Full Text Available The laser pyrolysis is a powerful and a versatile tool for the gas-phase synthesis of nanoparticles. In this paper, some fundamental and applicative characteristics of this technique are outlined and recent results obtained in the preparation of gamma iron oxide (γ-Fe2O3 and titania (TiO2 semiconductor nanostructures are illustrated. Nanosized iron oxide particles (4 to 9 nm diameter values have been directly synthesized by the laser-induced pyrolysis of a mixture containing iron pentacarbonyl/air (as oxidizer/ethylene (as sensitizer. Temperature-dependent Mossbauer spectroscopy shows that mainly maghemite is present in the sample obtained at higher laser power. The use of selected Fe2O3 samples for the preparation of water-dispersed magnetic nanofluids is also discussed. TiO2 nanoparticles comprising a mixture of anatase and rutile phases were synthesized via the laser pyrolysis of TiCl4- (vapors based gas-phase mixtures. High precursor concentration of the oxidizer was found to favor the prevalent anatase phase (about 90% in the titania nanopowders.

  2. A novel, simple and efficient dye laser with low amplified spontaneous emission background for analytical fluorescence and ionization spectroscopy

    International Nuclear Information System (INIS)

    Matveev, Oleg I.; Omenetto, Nicolo'

    1995-01-01

    A new, simple, compact and efficient, grazing- incidence type of dye laser is suggested which has a low level of Amplified Spontaneous Emission. By using a Coumarin dye (LD 5000) pumped with a 20 mJ XeCl excimer laser, and a diffraction grating with 3000 grooves/mm, an efficiency of 11%, a spectral bandwidth of 0.6 cm -1 and a tuning range from 458 to 517 nm have been obtained

  3. Preparation of ZnS semiconductor nanocrystals using pulsed laser ablation in aqueous surfactant solutions

    International Nuclear Information System (INIS)

    Choi, S-H; Sasaki, T; Shimizu, Y; Yoon, J-W; Nichols, W T; Sung, Y-E; Koshizaki, N

    2007-01-01

    Cubic ZnS semiconductor nanocrystals with the size of 2 to 5 nm were prepared by pulsed laser ablation in aqueous surfactant solutions of sodium dodecyl sulfate and cetyltrimethylammonium bromide without any further treatments. The obtained suspensions of the nanocrystals have broad photoluminescence emission from 375 to 600 nm. The abundance and emission intensity of the nanocrystals depend on the concentration of the surfactant in solution

  4. High-Speed Semiconductor Vertical-Cavity Surface-Emitting Lasers for Optical Data-Transmission Systems (Review)

    Science.gov (United States)

    Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Sakharov, A. V.; Ustinov, V. M.

    2018-01-01

    The main problems of providing a high-speed operation semiconductor lasers with a vertical microcavity (so-called "vertical-cavity surface-emitting lasers") under amplitude modulation and ways to solve them have been considered. The influence of the internal properties of the radiating active region and the electrical parasitic elements of the equivalent circuit of lasers are discussed. An overview of approaches that lead to an increase of the cutoff parasitic frequency, an increase of the differential gain of the active region, the possibility of the management of mode emission composition and the lifetime of photons in the optical microcavities, and reduction of the influence of thermal effects have been presented. The achieved level of modulation bandwidth of ˜30 GHz is close to the maximum achievable for the classical scheme of the direct-current modulation, which makes it necessary to use a multilevel modulation format to further increase the information capacity of optical channels constructed on the basis of vertical-cavity surface-emitting lasers.

  5. SHIVA Nd: glass disk-amplifier-assembly facility and special purpose fixtures

    International Nuclear Information System (INIS)

    Jones, W.A.; Patton, H.G.; Stowers, I.F.; Wentworth, D.E.

    1977-09-01

    The facility built to assemble and maintain the laser amplifiers in the SHIVA Laser System is described. The facility is a Class-100 clean room which includes a high pressure solvent spray box, optical inspection equipment, and several unique amplifier-assembly fixtures

  6. Cryogenic transimpedance amplifier for micromechanical capacitive sensors.

    Science.gov (United States)

    Antonio, D; Pastoriza, H; Julián, P; Mandolesi, P

    2008-08-01

    We developed a cryogenic transimpedance amplifier that works at a broad range of temperatures, from room temperature down to 4 K. The device was realized with a standard complementary metal oxide semiconductor 1.5 mum process. Measurements of current-voltage characteristics, open-loop gain, input referred noise current, and power consumption are presented as a function of temperature. The transimpedance amplifier has been successfully applied to sense the motion of a polysilicon micromechanical oscillator at low temperatures. The whole device is intended to serve as a magnetometer for microscopic superconducting samples.

  7. Wafer-scale laser pantography: Fabrication of n-metal-oxide-semiconductor transistors and small-scale integrated circuits by direct-write laser-induced pyrolytic reactions

    International Nuclear Information System (INIS)

    McWilliams, B.M.; Herman, I.P.; Mitlitsky, F.; Hyde, R.A.; Wood, L.L.

    1983-01-01

    A complete set of processes sufficient for manufacture of n-metal-oxide-semiconductor (n-MOS) transistors by a laser-induced direct-write process has been demonstrated separately, and integrated to yield functional transistors. Gates and interconnects were fabricated of various combinations of n-doped and intrinsic polysilicon, tungsten, and tungsten silicide compounds. Both 0.1-μm and 1-μm-thick gate oxides were micromachined with and without etchant gas, and the exposed p-Si [100] substrate was cleaned and, at times, etched. Diffusion regions were doped by laser-induced pyrolytic decomposition of phosphine followed by laser annealing. Along with the successful manufacture of working n-MOS transistors and a set of elementary digital logic gates, this letter reports the successful use of several laser-induced surface reactions that have not been reported previously

  8. Low-frequency fluctuation in multimode semiconductor laser subject to optical feedback

    Institute of Scientific and Technical Information of China (English)

    Xu Zhang; Huiying Ye; Zhaoxin Song

    2008-01-01

    Dynamics of a semiconductor laser subject to moderate optical feedback operating in the low-frequency fluctuation regime is numerically investigated.Multimode Lang-Kobayashi(LK)equations show that the low-frequency intensity dropout including the total intensity and sub-modes intensity is accompanied by sudden dropout simultaneously,which is in good agreement with experimental observation.The power fluctuation is quite annoying in practical applications,therefore it becomes important to study the mechanism of power fluctuation.It is also shown that many factors,such as spontaneous emission noise and feedback parameter,may influence power fluctuation larger than previously expected.

  9. A high-power millimeter-wave sheet beam free-electron laser amplifier

    International Nuclear Information System (INIS)

    Cheng, S.; Destler, W.W.; Granatstein, V.L.; Antonsen, T.M.; Levush, B.; Rodgers, J.; Zhang, Z.X.

    1996-01-01

    The results of experiments with a short period (9.6 mm) wiggler sheet electron beam (1.0 mm x 2.0 cm) millimeter-wave free electron laser (FEL) amplifier are presented. This FEL amplifier utilized a strong wiggler field for sheet beam confinement in the narrow beam dimension and an offset-pole side-focusing technique for the wide dimension beam confinement. The beam analysis herein includes finite emittance and space-charge effects. High-current beam propagation was achieved as a result of extensive analytical studies and experimental optimization. A design optimization resulted in a low sensitivity to structure errors and beam velocity spread, as well as a low required beam energy. A maximum gain of 24 dB was achieved with a 1-kW injected signal power at 86 GHz, a 450-kV beam voltage, 17-A beam current, 3.8-kG wiggler magnetic field, and a 74-period wiggler length. The maximum gain with a one-watt injected millimeter-wave power was observed to be over 30 dB. The lower gain at higher injection power level indicates that the device has approached saturation. The device was studied over a broad range of experimental parameters. The experimental results have a good agreement with expectations from a one-dimensional simulation code. The successful operation of this device has proven the feasibility of the original concept and demonstrated the advantages of the sheet beam FEL amplifier. The results of the studies will provide guidelines for the future development of sheet beam FEL's and/or other kinds of sheet beam devices. These devices have fusion application

  10. Cell damage evaluation of mammalian cells in cell manipulation by amplified femtosecond ytterbium laser

    Science.gov (United States)

    Hong, Z.-Y.; Iino, T.; Hagihara, H.; Maeno, T.; Okano, K.; Yasukuni, R.; Hosokawa, Y.

    2018-03-01

    A micrometer-scale explosion with cavitation bubble generation is induced by focusing a femtosecond laser in an aqueous solution. We have proposed to apply the explosion as an impulsive force to manipulate mammalian cells especially in microfluidic chip. Herein, we employed an amplified femtosecond ytterbium laser as an excitation source for the explosion and evaluated cell damage in the manipulation process to clarify the application potential. The damage of C2C12 myoblast cell prepared as a representative mammalian cell was investigated as a function of distance between cell and laser focal point. Although the cell received strong damage on the direct laser irradiation condition, the damage sharply decreased with increasing distance. Since the threshold distance, above which the cell had no damage, was consistent with radius of the cavitation bubble, impact of the cavitation bubble would be a critical factor for the cell damage. The damage had strong nonlinearity in the pulse energy dependence. On the other hand, cell position shift by the impact of the cavitation bubble was almost proportional to the pulse energy. In balance between the cell viability and the cell position shift, we elucidated controllability of the cell manipulation in microfluidic chip.

  11. New semiconductor laser technology for gas sensing applications in the 1650nm range

    Science.gov (United States)

    Morrison, Gordon B.; Sherman, Jes; Estrella, Steven; Moreira, Renan L.; Leisher, Paul O.; Mashanovitch, Milan L.; Stephen, Mark; Numata, Kenji; Wu, Stewart; Riris, Haris

    2017-08-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. CH4 also contributes to pollution in the lower atmosphere through chemical reactions leading to ozone production. Recent developments of LIDAR measurement technology for CH4 have been previously reported by Goddard Space Flight Center (GSFC). In this paper, we report on a novel, high-performance tunable semiconductor laser technology developed by Freedom Photonics for the 1650nm wavelength range operation, and for LIDAR detection of CH4. Devices described are monolithic, with simple control, and compatible with low-cost fabrication techniques. We present 3 different types of tunable lasers implemented for this application.

  12. Wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback

    International Nuclear Information System (INIS)

    Osborne, S; Heinricht, P; Brandonisio, N; Amann, A; O’Brien, S

    2012-01-01

    The wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback are presented. These devices incorporate slotted regions etched into the laser ridge waveguide for tailoring the output spectrum. Experimental measurements are presented demonstrating that optical injection in one or both modes of these devices can induce wavelength bistability. Measured switching dynamics with modulated optical injection are shown to be in excellent agreement with numerical simulations based on a simple rate equation model. We also demonstrate experimentally that time-delayed optical feedback can induce wavelength bistability for short external cavity lengths. Numerical simulations indicate that this two-colour optical feedback system can provide fast optical memory functionality based on injected optical pulses without the need for an external holding beam. (paper)

  13. Laser line scan underwater imaging by complementary metal-oxide-semiconductor camera

    Science.gov (United States)

    He, Zhiyi; Luo, Meixing; Song, Xiyu; Wang, Dundong; He, Ning

    2017-12-01

    This work employs the complementary metal-oxide-semiconductor (CMOS) camera to acquire images in a scanning manner for laser line scan (LLS) underwater imaging to alleviate backscatter impact of seawater. Two operating features of the CMOS camera, namely the region of interest (ROI) and rolling shutter, can be utilized to perform image scan without the difficulty of translating the receiver above the target as the traditional LLS imaging systems have. By the dynamically reconfigurable ROI of an industrial CMOS camera, we evenly divided the image into five subareas along the pixel rows and then scanned them by changing the ROI region automatically under the synchronous illumination by the fun beams of the lasers. Another scanning method was explored by the rolling shutter operation of the CMOS camera. The fun beam lasers were turned on/off to illuminate the narrow zones on the target in a good correspondence to the exposure lines during the rolling procedure of the camera's electronic shutter. The frame synchronization between the image scan and the laser beam sweep may be achieved by either the strobe lighting output pulse or the external triggering pulse of the industrial camera. Comparison between the scanning and nonscanning images shows that contrast of the underwater image can be improved by our LLS imaging techniques, with higher stability and feasibility than the mechanically controlled scanning method.

  14. Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser

    Directory of Open Access Journals (Sweden)

    A. A. Zholents

    2005-05-01

    Full Text Available We describe a technique for the generation of a solitary attosecond x-ray pulse in a free-electron laser (FEL, via a process of self-amplified spontaneous emission. In this method, electrons experience an energy modulation upon interacting with laser pulses having a duration of a few cycles within single-period wiggler magnets. Two consecutive modulation sections, followed by compression in a dispersive section, are used to obtain a single, subfemtosecond spike in the electron peak current. This region of the electron beam experiences an enhanced growth rate for FEL amplification. After propagation through a long undulator, this current spike emits a ∼250   attosecond x-ray pulse whose intensity dominates the x-ray emission from the rest of the electron bunch.

  15. Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion

    DEFF Research Database (Denmark)

    Durhuus, Terji; Mikkelsen, Benny; Stubkjær, Kristian

    1992-01-01

    . The model is used to assess intermodulation distortion and crosstalk. Cascaded amplifiers are considered, and the crosstalk and intermodulation distortion due to cascaded amplifiers are found to accumulate by adding together in amplitude; this may limit the number or cascaded amplifiers in multichannel...

  16. Dynamics of modal power distribution in a multimode semiconductor laser with optical feedback

    International Nuclear Information System (INIS)

    Buldu, J M; Trull, J; Torrent, M C; GarcIa-Ojalvo, J; Mirasso, Claudio R

    2002-01-01

    The dynamics of power distribution between longitudinal modes of a multimode semiconductor laser subjected to external optical feedback is experimentally analysed in the low-frequency fluctuation regime. Power dropouts in the total light intensity are invariably accompanied by sudden activations of several longitudinal modes. These activations are seen not to be simultaneous to the dropouts, but to occur after them. The phenomenon is statistically analysed in a systematic way, and the corresponding delay is estimated. (letter to the editor)

  17. Dynamics of modal power distribution in a multimode semiconductor laser with optical feedback

    Energy Technology Data Exchange (ETDEWEB)

    Buldu, J M [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); Trull, J [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); Torrent, M C [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); GarcIa-Ojalvo, J [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); Mirasso, Claudio R [Departament de FIsica, Universitat de les Illes Balears, E-07071 Palma de Mallorca (Spain)

    2002-02-01

    The dynamics of power distribution between longitudinal modes of a multimode semiconductor laser subjected to external optical feedback is experimentally analysed in the low-frequency fluctuation regime. Power dropouts in the total light intensity are invariably accompanied by sudden activations of several longitudinal modes. These activations are seen not to be simultaneous to the dropouts, but to occur after them. The phenomenon is statistically analysed in a systematic way, and the corresponding delay is estimated. (letter to the editor)

  18. Growth and characterization of ZnCdMgSe-based green light emitters and distributed Bragg reflectors towards II-VI based semiconductor disk lasers

    International Nuclear Information System (INIS)

    De Jesus, Joel; Gayen, Swapan K.; Garcia, Thor A.; Tamargo, Maria C.; Kartazaev, Vladimir; Jones, Brynmor E.; Schlosser, Peter J.; Hastie, Jennifer E.

    2015-01-01

    We report the structural and optical properties of molecular beam epitaxy grown II-VI semiconductor multiple quantum well (MQW) structures and distributed Bragg reflector (DBR) on InP substrates for application in developing optically-pumped semiconductor disk lasers (SDLs) operating in the green spectral range. One sample was grown directly on an InP substrate with an InGaAs buffer layer, while another had a 5-period ZnCdMgSe-based DBR grown on the InGaAs/InP substrate. X-ray diffraction and scanning electron microscopy measurements revealed sharp superlattice peaks and abrupt layer interfaces, while steady-state photoluminescence measurements demonstrated surface emission between 540-570 nm. Under pulsed excitation both samples exhibited features of amplified spontaneous emission (ASE) or stimulated emission, accompanied by luminescence lifetime shortening. The sample with the DBR showed higher surface luminescence and the onset of ASE at lower pump power. To further explore the design and performance of a ZnCdMgSe-based DBR, a 20-period DBR was grown and a reflectivity of 83% was obtained at ∝560 nm. We estimate that a DBR with ∝40 periods would be needed for optimal performance in a SDL using these materials. These results show the potential of II-VI MQW structures on InP substrates for the development of SDLs operational in the green-yellow wavelength range. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Study of laser pulses propagation through an ultrashort pulse amplifying systems for the development of an Offner temporal stretcher

    International Nuclear Information System (INIS)

    Cordeiro, Thiago da Silva

    2009-01-01

    The study of laser pulses propagation through an ultrashort pulses amplifying system containing dispersive and spectral modifying media was performed. The study emphasis was the development of an ultrashort pulse stretcher to replace the one inside a hybrid Ti:Sapphire/Cr:LiSAF CPA system operating at the Center for Lasers and Applications at IPEN/CNEN-SP. A spherical aberration free Offner stretcher was theoretically studied, aiming to obtain a stretching ratio larger than the one available in our system. The influence of the phase components in the amplified pulse final duration was also studied, and the bandwidth limiting elements of the system in operation were mapped, with the purpose of determining the conditions under which a new stretcher should be implemented. Based on the actual measurements, computing routines were implemented in order to determine the consequences of an ultrashort pulse travelling through a bandwidth limiting component. (author)

  20. Pulsed laser deposition of semiconductor-ITO composite films on electric-field-applied substrates

    International Nuclear Information System (INIS)

    Narazaki, Aiko; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki; Yabe, Akira; Sasaki, Takeshi; Koshizaki, Naoto

    2002-01-01

    The DC electric-field effect on the crystallinity of II-VI semiconductor in composite systems has been investigated for CdS-ITO films fabricated via alternative pulsed laser deposition (PLD) of CdS and indium tin oxide (ITO) on electric-field-applied substrates. The alternative laser ablation was performed under irradiation of ArF excimer laser in mixture gas of helium and oxygen. The application of electric-field facilitated the preferential crystal-growth of CdS in nanometer scale at low pressure, whereas all the films grown without the field were amorphous. There is a large difference in the crystallization between the films grown on field-applied and heated substrates; the latter showed the crystal-growth with random orientations. This difference indicates that the existence of electric-field has an influence on the transformation from amorphous to crystalline phase of CdS. The driving force for the field-induced crystallization is also discussed in the light of the Joule heat

  1. Rate equation analysis and non-Hermiticity in coupled semiconductor laser arrays

    Science.gov (United States)

    Gao, Zihe; Johnson, Matthew T.; Choquette, Kent D.

    2018-05-01

    Optically coupled semiconductor laser arrays are described by coupled rate equations. The coupled mode equations and carrier densities are included in the analysis, which inherently incorporate the carrier-induced nonlinearities including gain saturation and amplitude-phase coupling. We solve the steady-state coupled rate equations and consider the cavity frequency detuning and the individual laser pump rates as the experimentally controlled variables. We show that the carrier-induced nonlinearities play a critical role in the mode control, and we identify gain contrast induced by cavity frequency detuning as a unique mechanism for mode control. Photon-mediated energy transfer between cavities is also discussed. Parity-time symmetry and exceptional points in this system are studied. Unbroken parity-time symmetry can be achieved by judiciously combining cavity detuning and unequal pump rates, while broken symmetry lies on the boundary of the optical locking region. Exceptional points are identified at the intersection between broken symmetry and unbroken parity-time symmetry.

  2. Ultrafast dynamics of laser-pulse excited semiconductors: non-Markovian quantum kinetic equations with nonequilibrium correlations

    Directory of Open Access Journals (Sweden)

    V.V.Ignatyuk

    2004-01-01

    Full Text Available Non-Markovian kinetic equations in the second Born approximation are derived for a two-zone semiconductor excited by a short laser pulse. Both collision dynamics and running nonequilibrium correlations are taken into consideration. The energy balance and relaxation of the system to equilibrium are discussed. Results of numerical solution of the kinetic equations for carriers and phonons are presented.

  3. Integrated Photonics Enabled by Slow Light

    DEFF Research Database (Denmark)

    Mørk, Jesper; Chen, Yuntian; Ek, Sara

    2012-01-01

    In this talk we will discuss the physics of slow light in semiconductor materials and in particular the possibilities offered for integrated photonics. This includes ultra-compact slow light enabled optical amplifiers, lasers and pulse sources.......In this talk we will discuss the physics of slow light in semiconductor materials and in particular the possibilities offered for integrated photonics. This includes ultra-compact slow light enabled optical amplifiers, lasers and pulse sources....

  4. 110 GHz rapid, continous tuning from an optical parametric oscillator pumped by a fiber-amplified DBR diode laser

    NARCIS (Netherlands)

    Lindsay, I.D.; Adhimoolam, B.; Gross, P.; Klein, M.E.; Boller, Klaus J.

    2005-01-01

    A singly-resonant continuous-wave optical parametric oscillator (cw-OPO) pumped by a fiber-amplified diode laser is described. Tuning of the pump source allowed the OPO output to be tuned continuously, without mode-hops, over 110 GHz in 29 ms. Discontinuous pump tuning over 20 nm in the region of

  5. Hybrid RSOA and fibre raman amplified long reach feeder link for WiMAX-on-fibre

    DEFF Research Database (Denmark)

    Amaya Fernández, Ferney Orlando; Martinez, Javier; Yu, Xianbin

    2009-01-01

    A distributed fibre Raman amplified long reach optical access feeder link using a reflective semiconductor optical amplifier in the remote base station is experimentally demonstrated for supporting WiMAXover- fibre transmission. The measured values for the error vector magnitude for quadrature...

  6. Compact RGBY light sources with high luminance for laser display applications

    Science.gov (United States)

    Paschke, Katrin; Blume, Gunnar; Werner, Nils; Müller, André; Sumpf, Bernd; Pohl, Johannes; Feise, David; Ressel, Peter; Sahm, Alexander; Bege, Roland; Hofmann, Julian; Jedrzejczyk, Daniel; Tränkle, Günther

    2018-02-01

    Watt-class visible laser light with a high luminance can be created with high-power GaAs-based lasers either directly in the red spectral region or using single-pass second harmonic generation (SHG) for the colors in the blue-yellow spectral region. The concepts and results of red- and near infrared-emitting distributed Bragg reflector tapered lasers and master oscillator power amplifier systems as well as their application for SHG bench-top experiments and miniaturized modules are presented. Examples of these high-luminance light sources aiming at different applications such as flying spot display or holographic 3D cinema are discussed in more detail. The semiconductor material allows an easy adaptation of the wavelength allowing techniques such as six-primary color 3D projection or color space enhancement by adding a fourth yellow color.

  7. THE DETERMINATION OF A CRITICAL VALUE FOR DYNAMIC STABILITY OF SEMICONDUCTOR LASER DIODE WITH EXTERNAL OPTICAL FEEDBACK

    Directory of Open Access Journals (Sweden)

    Remzi YILDIRIM

    1998-01-01

    Full Text Available In this study, dynamic stability analysis of semiconductor laser diodes with external optical feedback has been realized. In the analysis the frequency response of the transfer function of laser diode H jw( , the transfer m function of laser diode with external optical feedback TF jw( , and optical feedback transfer function m K jw( obtained from small signal equations has been m accomplished using Nyquist stability analysis in complex domain. The effect of optical feedback on the stability of the system has been introduced and to bring the laser diode to stable condition the working critical boundary range of dampig frequency and reflection power constant (R has been determined. In the study the reflection power has been taken as ( .

  8. Instantaneous lineshape analysis of Fourier domain mode-locked lasers.

    Science.gov (United States)

    Todor, Sebastian; Biedermann, Benjamin; Wieser, Wolfgang; Huber, Robert; Jirauschek, Christian

    2011-04-25

    We present a theoretical and experimental analysis of the instantaneous lineshape of Fourier domain mode-locked (FDML) lasers, yielding good agreement. The simulations are performed employing a recently introduced model for FDML operation. Linewidths around 10 GHz are found, which is significantly below the sweep filter bandwidth. The effect of detuning between the sweep filter drive frequency and cavity roundtrip time is studied revealing features that cannot be resolved in the experiment, and shifting of the instantaneous power spectrum against the sweep filter center frequency is analyzed. We show that, in contrast to most other semiconductor based lasers, the instantaneous linewidth is governed neither by external noise sources nor by amplified spontaneous emission, but it is directly determined by the complex FDML dynamics.

  9. Observation of modulation speed enhancement, frequency modulation suppression, and phase noise reduction by detuned loading in a coupled-cavity semiconductor laser

    OpenAIRE

    Vahala, Kerry; Paslaski, Joel; Yariv, Amnon

    1985-01-01

    Simultaneous direct modulation response enhancement, phase noise (linewidth) reduction, and frequency modulation suppression are produced in a coupled-cavity semiconductor laser by the detuned loading mechanism.

  10. Picosecond mid-infrared amplifier for high average power.

    CSIR Research Space (South Africa)

    Botha, LR

    2007-04-01

    Full Text Available High pressure CO2 lasers are good candidates for amplifying picosecond mid infrared pulses. High pressure CO2 lasers are notorious for being unreliable and difficult to operate. In this paper a high pressure CO2 laser is presented based on well...

  11. Optimisation of 1.3 μm strained-layer semiconductor lasers

    International Nuclear Information System (INIS)

    Pacey, C.

    1999-03-01

    The objectives of the research undertaken have been to investigate the properties of semiconductor lasers operating at around 1.3 μm. The aim of the investigation is to suggest modifications which give rise to improved operating characteristics especially in the high temperature (approaching 85 deg. C) range. The investigation can be divided into 2 sections: a theoretical approach and an experimental section. The theoretical study examined the performance of compressively strained InGaAsP/InP multiple quantum-well lasers emitting at 1.3 μm. in order to investigate the important factors and trends in the threshold current density and differential gain with strain, well width and well number. Structures with a fixed compressive strain of 1% but variable well width, and also with a fixed well width but variable strain from 0% to 1.4% have been considered. It has been found that there is little benefit to having compressive strains greater than 1%. For structures with a fixed 1% compressive strain and unstrained barriers, an optimum structure for lowest threshold current density and a high differential gain has been found to consist of six 35 A quantum-wells. In addition, compensated strain (CS) structures with compressive wells and tensile barriers have been examined. It is shown that the conduction band offset can be significantly increased and the valence band offset reduced in such structures, to give band-offset ratios comparable with aluminium based 1.3 μm devices. The gain calculations performed suggest that there is little degradation in the threshold carrier density or differential gain due to these alterations in the band offsets; and hence a better laser performance is expected due to a reduction in thermal leakage currents due to the improved electron confinement. The experimental study concentrates on looking at certain key design parameters to investigate their effect on the laser performance. These design parameters range from the number of quantum

  12. Band Gap Distortion in Semiconductors Strongly Driven by Intense Mid-Infrared Laser Fields

    Science.gov (United States)

    Kono, J.; Chin, A. H.

    2000-03-01

    Crystalline solids non-resonantly driven by intense time-periodic electric fields are predicted to exhibit unusual band-gap distortion.(e.g., Y. Yacoby, Phys. Rev. 169, 610 (1968); L.C.M. Miranda, Solid State Commun. 45, 783 (1983); J.Z. Kaminski, Acta Physica Polonica A 83, 495(1993).) Such non-perturbative effects have not been observed to date because of the unavoidable sample damage due to the very high intensity required using conventional lasers ( 1 eV photon energy). Here, we report the first clear evidence of laser-induced bandgap shrinkage in semiconductors under intense mid-infrared (MIR) laser fields. The use of long-wavelength light reduces the required intensity and prohibits strong interband absorption, thereby avoiding the damage problem. The significant sub-bandgap absorption persists only during the existence of the MIR laser pulse, indicating the virtual nature of the effect. We show that this particular example of non-perturbative behavior, known as the dynamical Franz-Keldysh effect, occurs when the effective ponderomotive potential energy is comparable to the photon energy of the applied field. This work was supported by ONR, NSF, JST and NEDO.

  13. The design of a linear amplifier for very small DC-currents, called LASC

    International Nuclear Information System (INIS)

    Stroem, S.; Storruste, A.

    1989-12-01

    A linear amplifier for the monitoring of very small currents from a high pressure ionization chamber has been designed. In the traditional design of an ionization chamber current amplifier, selected semiconductors and resistors are chosen to measure the very small currents in question. As the leakage currents in these semiconductors are larger than the smallest currents to be measured, very sophisticated electronics must be employed to succeed with the design. In order to overcome this disadvantage, the reported design is based on the following basic features: A capacitor is charged by the chamber ion current during a fixed time period, without loading the amplifier input. The use of a peak detector makes bouncing of the time-lag relay contacts unimportant, and allows an analog-to-digital converter to store the voltage build-up in the capacitor as a digital value. The measuring range of the amplifier, 0.001 pA to 1000 pA, makes it suitable for measuring gamma radiation in the air, both under normal and abnormal conditions. The design of the amplifier is described and results from tests are presented. 6 refs.; 6 figs.; 3 tabs

  14. Field test of an all-semiconductor laser-based coherent continuous-wave Doppler lidar for wind energy applications

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Dellwik, Ebba; Hu, Qi

    -produced all-semiconductor laser. The instrument is a coherent continuous-wave lidar with two fixed-focus telescopes for launching laser beams in two different directions. The alternation between the telescopes is achieved by a novel switching technique without any moving parts. Here, we report results from...... signal strength from external atmospheric parameters such as relative humidity and concentrations of atmospheric particles is discussed. This novel lidar instrument design seems to offer a promising low-cost alternative for prevision remote sensing of wind turbine inflow....

  15. The dynamics of the laser-induced metal-semiconductor phase transition of samarium sulfide (SmS)

    International Nuclear Information System (INIS)

    Kaempfer, Tino

    2009-01-01

    The present thesis is dedicated to the experimental study of the metal-semiconductor phase transition of samarium sulfide (SmS): Temperature- and time-resolved experiments on the characterization of the phase transition of mixed-valence SmS samples (M-SmS) are presented. The measurement of the dynamics of the laser-induced phase transition pursues via time-resolved ultrashort-time microscopy and by X-ray diffraction with sub-picosecond time resolution. The electronic and structural processes, which follow an excitation of M-SmS with infrared femtosecond laser pulses, are physically interpreted on the base of the results obtained in this thesis and model imaginations. [de

  16. Gigashot Optical Laser Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Deri, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-13

    The Gigashot Optical Laser Demonstrator (GOLD) project has demonstrated a novel optical amplifier for high energy pulsed lasers operating at high repetition rates. The amplifier stores enough pump energy to support >10 J of laser output, and employs conduction cooling for thermal management to avoid the need for expensive and bulky high-pressure helium subsystems. A prototype amplifier was fabricated, pumped with diode light at 885 nm, and characterized. Experimental results show that the amplifier provides sufficient small-signal gain and sufficiently low wavefront and birefringence impairments to prove useful in laser systems, at repetition rates up to 60 Hz.

  17. Selective injection locking of a multi-mode semiconductor laser to a multi-frequency reference beam

    Science.gov (United States)

    Pramod, Mysore Srinivas; Yang, Tao; Pandey, Kanhaiya; Giudici, Massimo; Wilkowski, David

    2014-07-01

    Injection locking is a well known and commonly used method for coherent light amplification. Usually injection locking is obtained on a single-mode laser injected by a single-frequency seeding beam. In this work we show that selective injection locking of a single-frequency may also be achieved on a multi-mode semiconductor laser injected by a multi-frequency seeding beam, if the slave laser provides sufficient frequency filtering. This selective injection locking condition depends critically on the frequency detuning between the free-running slave emission frequency and each injected frequency component. Stable selective injection locking to a set of three seeding components separated by 1.2 GHz is obtained. This system provides an amplification up to 37 dB of each component. This result suggests that, using distinct slave lasers for each frequency line, a set of mutually coherent high-power radiation modes can be tuned in the GHz frequency domain.

  18. Method of developing all-optical trinary JK, D-type, and T-type flip-flops using semiconductor optical amplifiers.

    Science.gov (United States)

    Garai, Sisir Kumar

    2012-04-10

    To meet the demand of very fast and agile optical networks, the optical processors in a network system should have a very fast execution rate, large information handling, and large information storage capacities. Multivalued logic operations and multistate optical flip-flops are the basic building blocks for such fast running optical computing and data processing systems. In the past two decades, many methods of implementing all-optical flip-flops have been proposed. Most of these suffer from speed limitations because of the low switching response of active devices. The frequency encoding technique has been used because of its many advantages. It can preserve its identity throughout data communication irrespective of loss of light energy due to reflection, refraction, attenuation, etc. The action of polarization-rotation-based very fast switching of semiconductor optical amplifiers increases processing speed. At the same time, tristate optical flip-flops increase information handling capacity.

  19. Laser-based irradiation apparatus and method to measure the functional dose-rate response of semiconductor devices

    Science.gov (United States)

    Horn, Kevin M [Albuquerque, NM

    2008-05-20

    A broad-beam laser irradiation apparatus can measure the parametric or functional response of a semiconductor device to exposure to dose-rate equivalent infrared laser light. Comparisons of dose-rate response from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems can determine if aging has affected the device's overall functionality. The dependence of these changes on equivalent dose-rate pulse intensity and/or duration can be measured with the apparatus. The synchronized introduction of external electrical transients into the device under test can be used to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure while exposing the device to dose-rate equivalent infrared laser light.

  20. High Power Amplifiers Chain nonlinearity influence on the accelerating beam stability in free electron laser (FLASH)

    CERN Document Server

    Cichalewski, w

    2010-01-01

    The high power amplifiers transfer characteristics nonlinearities can have a negative influence on the overall system performance. This is also true for the TESLA superconducting cavities accelerating field parameters control systems. This Low Level Radio Frequency control systems uses microwave high power amplifiers (like 10 MW klystrons) as actuators in the mentioned feedback loops. The amplitude compression and phase deviations phenomena introduced to the control signals can reduce the feedback performance and cause electron beam energy instabilities. The transfer characteristics deviations in the Free Electron Laser in Hamburg experiment have been investigated. The outcome of this study together with the description of the developed linearization method based on the digital predistortion approach have been described in this paper. Additionally, the results from the linearization tool performance tests in the FLASH's RF systems have been placed.