WorldWideScience

Sample records for semiclassical electron dynamics

  1. Dynamic plasma screening effects on semiclassical inelastic electron endash ion collisions in dense plasmas

    International Nuclear Information System (INIS)

    Jung, Y.

    1997-01-01

    In dense plasmas, dynamic plasma screening effects are investigated on 1s→2p dipole transition probabilities for electron-impact excitation of hydrogenic ions. The electron endash ion interaction potential is considered by introduction of the plasma dielectric function. A semiclassical straight-line trajectory method is applied to the path of the projectile electron in order to visualize the semiclassical transition probability as a function of the impact parameter, projectile energy, and plasma parameters. The transition probability including the dynamic plasma screening effect is always greater than that including the static plasma screening effect. When the projectile velocity is smaller than the electron thermal velocity, the dynamic polarization screening effect becomes the static plasma screening effect. When the projectile velocity is greater than the electron thermal velocity, then the interaction potential is almost unshielded. The difference between the dynamic and static plasma screening effects is more significant for low-energy projectiles. It is also found that the static plasma screening formula obtained by the Debye endash Hueckel model overestimates the plasma screening effects on the atomic excitation processes in dense plasmas. copyright 1997 American Institute of Physics

  2. The semiclassical way to dynamics and spectroscopy

    CERN Document Server

    Heller, Eric

    2018-01-01

    Physical systems have been traditionally described in terms of either classical or quantum mechanics. But in recent years, semiclassical methods have developed rapidly, providing deep physical insight and computational tools for quantum dynamics and spectroscopy. In this book, Eric Heller introduces and develops this subject, demonstrating its power with many examples. In the first half of the book, Heller covers relevant aspects of classical mechanics, building from them the semiclassical way through the semiclassical limit of the Feynman path integral. The second half of the book applies this approach to various kinds of spectroscopy, such as molecular spectroscopy and electron imaging and quantum dynamical systems with an emphasis on tunneling. Adopting a distinctly time-dependent viewpoint, Heller argues for semiclassical theories from experimental and theoretical vantage points valuable to research in physics and chemistry. Featuring more than two hundred figures, the book provides a geometric, phase-sp...

  3. Semiclassical dynamics

    International Nuclear Information System (INIS)

    Balazs, N.L.

    1979-01-01

    It is pointed out that in semiclassical dynamics one is encouraged to study the evolution of those curves in phase space which classically represent ensembles corresponding to wave functions. It is shown that the fixed points generate new time scales so that for times longer than the critical times, quantum dynamics will profoundly differ from classical dynamics. (P.L.)

  4. Semiclassical theory of resonance inelastic electron-molecule collisions

    International Nuclear Information System (INIS)

    Kazanskij, A.K.

    1986-01-01

    Semiclassical approach to the theory of resonance electron-molecule collisions, unlocal with respect to interatomic distance was developed. Two problems were considered: modified adiabatic approach for sigle-pole approximation of R-matrix and Fano-Feshbach-Bardsley theory. It is shown that these problems are similar in semiclassical approximation. A simple equation system with coefficients expressed in quadratures was obtained. It enables to determine amplitudes of all processes (including dissociation adhesion, association ejection, free-free and free-bound transitions) in energetic representation with respect to nucleus vibrations in molecule with allowance for both descrete and continuous spectra of nucleus motion in molecule. Quantitative investigation of the system results to the notion of dynamic energy curve of intermediate state, generalizing the motion of such curve in boomerang theory

  5. Semiclassical theory of electronically nonadiabatic chemical dynamics: Incorporation of the Zhu-Nakamura theory into the frozen Gaussian propagation method

    International Nuclear Information System (INIS)

    Kondorskiy, A.; Nakamura, H.

    2004-01-01

    The title theory is developed by combining the Herman-Kluk semiclassical theory for adiabatic propagation on single potential-energy surface and the semiclassical Zhu-Nakamura theory for nonadiabatic transition. The formulation with use of natural mathematical principles leads to a quite simple expression for the propagator based on classical trajectories and simple formulas are derived for overall adiabatic and nonadiabatic processes. The theory is applied to electronically nonadiabatic photodissociation processes: a one-dimensional problem of H 2 + in a cw (continuous wave) laser field and a two-dimensional model problem of H 2 O in a cw laser field. The theory is found to work well for the propagation duration of several molecular vibrational periods and wide energy range. Although the formulation is made for the case of laser induced nonadiabatic processes, it is straightforwardly applicable to ordinary electronically nonadiabatic chemical dynamics

  6. Nonadiabatic semiclassical dynamics in the mixed quantum-classical initial value representation

    Science.gov (United States)

    Church, Matthew S.; Hele, Timothy J. H.; Ezra, Gregory S.; Ananth, Nandini

    2018-03-01

    We extend the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), a semiclassical method for computing real-time correlation functions, to electronically nonadiabatic systems using the Meyer-Miller-Stock-Thoss (MMST) Hamiltonian in order to treat electronic and nuclear degrees of freedom (dofs) within a consistent dynamic framework. We introduce an efficient symplectic integration scheme, the MInt algorithm, for numerical time evolution of the phase space variables and monodromy matrix under the non-separable MMST Hamiltonian. We then calculate the probability of transmission through a curve crossing in model two-level systems and show that MQC-IVR reproduces quantum-limit semiclassical results in good agreement with exact quantum methods in one limit, and in the other limit yields results that are in keeping with classical limit semiclassical methods like linearized IVR. Finally, exploiting the ability of the MQC-IVR to quantize different dofs to different extents, we present a detailed study of the extents to which quantizing the nuclear and electronic dofs improves numerical convergence properties without significant loss of accuracy.

  7. Nonadiabatic dynamics in the semiclassical Liouville representation: Locality, transformation theory, and the energy budget

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Craig C., E-mail: cmartens@uci.edu

    2016-12-20

    In this paper, we revisit the semiclassical Liouville approach to describing molecular dynamics with electronic transitions using classical trajectories. Key features of the formalism are highlighted. The locality in phase space and presence of nonclassical terms in the generalized Liouville equations are emphasized and discussed in light of trajectory surface hopping methodology. The representation dependence of the coupled semiclassical Liouville equations in the diabatic and adiabatic bases are discussed and new results for the transformation theory of the Wigner functions representing the corresponding density matrix elements given. We show that the diagonal energies of the state populations are not conserved during electronic transitions, as energy is stored in the electronic coherence. We discuss the implications of this observation for the validity of imposing strict energy conservation in trajectory based methods for simulating nonadiabatic processes.

  8. Dispersions in Semi-Classical Dynamics

    International Nuclear Information System (INIS)

    Zielinska-Pfabe, M.; Gregoire, C.

    1987-01-01

    Dispersions around mean values of one-body observables are obtained by restoring classical many-body correlations in Vlasov and Landau-Vlasov dynamics. The method is applied to the calculation of fluctuations in mass, charge and linear momentum in heavy-ion collisions. Results are compared to those obtained by the Balian-Veneroni variational principle in semi-classical approximation

  9. Semiclassical approaches to nuclear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Magner, A. G., E-mail: magner@kinr.kiev.ua; Gorpinchenko, D. V. [Institute for Nuclear Research NASU (Ukraine); Bartel, J. [Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien, CNRS/IN2P3 (France)

    2017-01-15

    The extended Gutzwiller trajectory approach is presented for the semiclassical description of nuclear collective dynamics, in line with the main topics of the fruitful activity of V.G. Solovjov. Within the Fermi-liquid droplet model, the leptodermous effective surface approximation was applied to calculations of energies, sum rules, and transition densities for the neutron–proton asymmetry of the isovector giant-dipole resonance and found to be in good agreement with the experimental data. By using the Strutinsky shell correction method, the semiclassical collective transport coefficients, such as nuclear inertia, friction, stiffness, and moments of inertia, can be derived beyond the quantum perturbation approximation of the response function theory and the cranking model. The averaged particle-number dependences of the low-lying collective vibrational states are described in good agreement with the basic experimental data, mainly due to the enhancement of the collective inertia as compared to its irrotational flow value. Shell components of the moment of inertia are derived in terms of the periodic-orbit free-energy shell corrections. A good agreement between the semiclassical extended Thomas–Fermi moments of inertia with shell corrections and the quantum results is obtained for different nuclear deformations and particle numbers. Shell effects are shown to be exponentially dampted out with increasing temperature in all the transport coefficients.

  10. Semiclassical approaches to nuclear dynamics

    International Nuclear Information System (INIS)

    Magner, A. G.; Gorpinchenko, D. V.; Bartel, J.

    2017-01-01

    The extended Gutzwiller trajectory approach is presented for the semiclassical description of nuclear collective dynamics, in line with the main topics of the fruitful activity of V.G. Solovjov. Within the Fermi-liquid droplet model, the leptodermous effective surface approximation was applied to calculations of energies, sum rules, and transition densities for the neutron–proton asymmetry of the isovector giant-dipole resonance and found to be in good agreement with the experimental data. By using the Strutinsky shell correction method, the semiclassical collective transport coefficients, such as nuclear inertia, friction, stiffness, and moments of inertia, can be derived beyond the quantum perturbation approximation of the response function theory and the cranking model. The averaged particle-number dependences of the low-lying collective vibrational states are described in good agreement with the basic experimental data, mainly due to the enhancement of the collective inertia as compared to its irrotational flow value. Shell components of the moment of inertia are derived in terms of the periodic-orbit free-energy shell corrections. A good agreement between the semiclassical extended Thomas–Fermi moments of inertia with shell corrections and the quantum results is obtained for different nuclear deformations and particle numbers. Shell effects are shown to be exponentially dampted out with increasing temperature in all the transport coefficients.

  11. Semiclassical methods in chemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Keshavamurthy, Srihari [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Semiclassical approximations, simple as well as rigorous, are formulated in order to be able to describe gas phase chemical reactions in large systems. We formulate a simple but accurate semiclassical model for incorporating multidimensional tunneling in classical trajectory simulations. This model is based on the existence of locally conserved actions around the saddle point region on a multidimensional potential energy surface. Using classical perturbation theory and monitoring the imaginary action as a function of time along a classical trajectory we calculate state-specific unimolecular decay rates for a model two dimensional potential with coupling. Results are in good comparison with exact quantum results for the potential over a wide range of coupling constants. We propose a new semiclassical hybrid method to calculate state-to-state S-matrix elements for bimolecular reactive scattering. The accuracy of the Van Vleck-Gutzwiller propagator and the short time dynamics of the system make this method self-consistent and accurate. We also go beyond the stationary phase approximation by doing the resulting integrals exactly (numerically). As a result, classically forbidden probabilties are calculated with purely real time classical trajectories within this approach. Application to the one dimensional Eckart barrier demonstrates the accuracy of this approach. Successful application of the semiclassical hybrid approach to collinear reactive scattering is prevented by the phenomenon of chaotic scattering. The modified Filinov approach to evaluating the integrals is discussed, but application to collinear systems requires a more careful analysis. In three and higher dimensional scattering systems, chaotic scattering is suppressed and hence the accuracy and usefulness of the semiclassical method should be tested for such systems.

  12. Semiclassical methods in chemical reaction dynamics

    International Nuclear Information System (INIS)

    Keshavamurthy, S.

    1994-12-01

    Semiclassical approximations, simple as well as rigorous, are formulated in order to be able to describe gas phase chemical reactions in large systems. We formulate a simple but accurate semiclassical model for incorporating multidimensional tunneling in classical trajectory simulations. This model is based on the existence of locally conserved actions around the saddle point region on a multidimensional potential energy surface. Using classical perturbation theory and monitoring the imaginary action as a function of time along a classical trajectory we calculate state-specific unimolecular decay rates for a model two dimensional potential with coupling. Results are in good comparison with exact quantum results for the potential over a wide range of coupling constants. We propose a new semiclassical hybrid method to calculate state-to-state S-matrix elements for bimolecular reactive scattering. The accuracy of the Van Vleck-Gutzwiller propagator and the short time dynamics of the system make this method self-consistent and accurate. We also go beyond the stationary phase approximation by doing the resulting integrals exactly (numerically). As a result, classically forbidden probabilties are calculated with purely real time classical trajectories within this approach. Application to the one dimensional Eckart barrier demonstrates the accuracy of this approach. Successful application of the semiclassical hybrid approach to collinear reactive scattering is prevented by the phenomenon of chaotic scattering. The modified Filinov approach to evaluating the integrals is discussed, but application to collinear systems requires a more careful analysis. In three and higher dimensional scattering systems, chaotic scattering is suppressed and hence the accuracy and usefulness of the semiclassical method should be tested for such systems

  13. Asymmetric recombination and electron spin relaxation in the semiclassical theory of radical pair reactions

    International Nuclear Information System (INIS)

    Lewis, Alan M.; Manolopoulos, David E.; Hore, P. J.

    2014-01-01

    We describe how the semiclassical theory of radical pair recombination reactions recently introduced by two of us [D. E. Manolopoulos and P. J. Hore, J. Chem. Phys. 139, 124106 (2013)] can be generalised to allow for different singlet and triplet recombination rates. This is a non-trivial generalisation because when the recombination rates are different the recombination process is dynamically coupled to the coherent electron spin dynamics of the radical pair. Furthermore, because the recombination operator is a two-electron operator, it is no longer sufficient simply to consider the two electrons as classical vectors: one has to consider the complete set of 16 two-electron spin operators as independent classical variables. The resulting semiclassical theory is first validated by comparison with exact quantum mechanical results for a model radical pair containing 12 nuclear spins. It is then used to shed light on the spin dynamics of a carotenoid-porphyrin-fullerene triad containing considerably more nuclear spins which has recently been used to establish a “proof of principle” for the operation of a chemical compass [K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, Nature (London) 453, 387 (2008)]. We find in particular that the intriguing biphasic behaviour that has been observed in the effect of an Earth-strength magnetic field on the time-dependent survival probability of the photo-excited C ·+ PF ·− radical pair arises from a delicate balance between its asymmetric recombination and the relaxation of the electron spin in the carotenoid radical

  14. Nonlinear dynamics of semiclassical coherent states in periodic potentials

    International Nuclear Information System (INIS)

    Carles, Rémi; Sparber, Christof

    2012-01-01

    We consider nonlinear Schrödinger equations with either local or nonlocal nonlinearities. In addition, we include periodic potentials as used, for example, in matter wave experiments in optical lattices. By considering the corresponding semiclassical scaling regime, we construct asymptotic solutions, which are concentrated both in space and in frequency around the effective semiclassical phase-space flow induced by Bloch’s spectral problem. The dynamics of these generalized coherent states is governed by a nonlinear Schrödinger model with effective mass. In the case of nonlocal nonlinearities, we establish a novel averaging-type result in the critical case. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  15. Electron self-mass in the semiclassical limit

    International Nuclear Information System (INIS)

    Pradham, T.; Khare, A.

    1978-01-01

    The semiclassical limit of the electron self-mass, which is the first order term in an expansion of the exact Dyson self-mass in powers of h/2π, is calculated. The result is quadratically divergent in the limit of the cut-off radius tending to zero. It is noted that the present result is quantum mechanical in the same sense as any WKB result and is exact to all orders in e 2 , in contrast to the logarithmically divergent self-mass given by other resuls. (U.K.)

  16. Semiclassical and phase space approaches to dynamic and collisional problems of nuclei

    International Nuclear Information System (INIS)

    Hasse, R.W.; Gregoire, C.; Remaud, B.; Jaenicke, J.; Schuck, P.

    1988-09-01

    This article summarises recent work on the semiclassical (Thomas-Fermi like) treatment of nuclear correlations and dynamical problems. After a short outline of hte general technique the nucleon-nucleus optical potential in the doorway approximation (2p-1h and 2h-1p intermediate states) is treated. The imaginary part serves to calculate the energy dependent correction to the real part. The level density parameter, occupation numbers, and the mean free path are discussed. The semiclassical treatment of the nuclear response function is given in detail. Applications to inelastic electron scattering in the quasi-elastic peak region are presented. Analogously, inelastic proton scattering is calculated. Because of the surface absorption this reaction excites the surface response. The imaginary part of the single-particle (hole) potential in the evaluation of the response function introduces a 2p-2h spreading. The missing charge in the longitudinal response is reduced but not all experimental puzzles can be explained. The experience gained in the description of phenomena close to equilibrium serves to construct solutions of the Landau-Vlasov (alias Vlasov-Uehling-Uhlenbeck) equation for the description of non-equilibrium processes encountered in heavy ion reactions

  17. Comparison of quantum-mechanical and semiclassical approaches for an analysis of spin dynamics in quantum dots

    International Nuclear Information System (INIS)

    Petrov, M. Yu.; Yakovlev, S. V.

    2012-01-01

    Two approaches to the description of spin dynamics of electron-nuclear system in quantum dots are compared: the quantum-mechanical one is based on direct diagonalization of the model Hamiltonian and semiclassical one is based on coupled equations for precession of mean electron spin and mean spin of nuclear spin fluctuations. The comparison was done for a model problem describing periodic excitation of electron-nuclear system by optical excitation. The computation results show that scattering of parameters related to fluctuation of the nuclear spin system leads to appearance of an ordered state in the system caused by periodic excitation and to the effect of electron-spin mode locking in an external magnetic field. It is concluded that both models can qualitatively describe the mode-locking effect, however give significantly different quantitative results. This may indicate the limited applicability of the precession model for describing the spin dynamics in quantum dots in the presence of optical pumping.

  18. Semiclassical dynamics and magnetic Weyl calculus

    International Nuclear Information System (INIS)

    Lein, Maximilian Stefan

    2011-01-01

    Weyl quantization and related semiclassical techniques can be used to study conduction properties of crystalline solids subjected to slowly-varying, external electromagnetic fields. The case where the external magnetic field is constant, is not covered by existing theory as proofs involving usual Weyl calculus break down. This is the regime of the so-called quantum Hall effect where quantization of transverse conductance is observed. To rigorously derive semiclassical equations of motion, one needs to systematically develop a magnetic Weyl calculus which contains a semiclassical parameter. Mathematically, the operators involved in the analysis are magnetic pseudodifferential operators, a topic which by itself is of interest for the mathematics and mathematical physics community alike. Hence, we will devote two additional chapters to further understanding of properties of those operators. (orig.)

  19. Semiclassical dynamics and magnetic Weyl calculus

    Energy Technology Data Exchange (ETDEWEB)

    Lein, Maximilian Stefan

    2011-01-19

    Weyl quantization and related semiclassical techniques can be used to study conduction properties of crystalline solids subjected to slowly-varying, external electromagnetic fields. The case where the external magnetic field is constant, is not covered by existing theory as proofs involving usual Weyl calculus break down. This is the regime of the so-called quantum Hall effect where quantization of transverse conductance is observed. To rigorously derive semiclassical equations of motion, one needs to systematically develop a magnetic Weyl calculus which contains a semiclassical parameter. Mathematically, the operators involved in the analysis are magnetic pseudodifferential operators, a topic which by itself is of interest for the mathematics and mathematical physics community alike. Hence, we will devote two additional chapters to further understanding of properties of those operators. (orig.)

  20. Semiclassical treatment of inelastic collisions between electrons and highly ionized atoms

    International Nuclear Information System (INIS)

    Frasier, S.M.

    1984-01-01

    The thesis is concerned with the calculation of excitation cross sections of ions by electron impact at intermediate energies in the limit of Z >> N/sub b/, where Z is the atomic number and N/sub b/ is the number of bound electrons. A semiclassical procedure is developed for calculating total cross sections using analytic bound states and averaged free electron wave functions derived in the second eikonal approximation. The analytic bound states are derived assuming a screened Coulomb potential and using orbital energies obtained from Hartree-Fock calculations. The functional form of the bound states reduces naturally to the hydrogen atom functions in the limit Z → infinity. The free electron functions used are semiclassical solutions to the free electron Schroedinger equation with a screened Coulomb potential. An exact solution is obtained in the second eikonal approximation, including all classical path contributions. This solution is averaged to extract the focusing and acceleration effects resulting from the long range Coulomb potential of the ion. The results are presented in the form of Born-like cross section formulae and demonstrate the appropriate correction of the Born cross section which arises from the acceleration and focusing of the free electrons by the long range Coulomb potential. Comparison is made with the Coulomb-Born results; the results agree to within 10% in most cases

  1. Applications of the semiclassical spectral method to nuclear, atomic, molecular, and polymeric dynamics

    International Nuclear Information System (INIS)

    Koszykowski, M.L.; Pfeffer, G.A.; Noid, D.W.

    1987-01-01

    Nonlinear dynamics plays a dominant role in a variety of important problems in chemical physics. Examples are unimolecular reactions, infrared multiphoton decomposition of molecules, the pumping process of the gamma ray laser, dissociation of vibrationally excited state-selected van der Waals's complexes, and many other chemical and atomic processes. The present article discusses recent theoretical studies on the quasi-periodic and chaotic dynamic aspects of vibrational-rotational states of atomic, nuclear, and molecular systems using the semiclassical spectral method (SSM). The authors note that the coordinates, momenta, and so on, are found using classical mechanics in the studies included in this review. They outline the semiclassical spectral method and a wide variety of applications. Although this technique was first developed ten years ago, it has proved to be tremendously successful as a tool used in dynamics problems. Applications include problems in nonlinear dynamics, molecular and atomic spectra, surface science, astronomy and stellar dynamics, nuclear physics, and polymer physics

  2. Coupled forward-backward trajectory approach for nonequilibrium electron-ion dynamics

    Science.gov (United States)

    Sato, Shunsuke A.; Kelly, Aaron; Rubio, Angel

    2018-04-01

    We introduce a simple ansatz for the wave function of a many-body system based on coupled forward and backward propagating semiclassical trajectories. This method is primarily aimed at, but not limited to, treating nonequilibrium dynamics in electron-phonon systems. The time evolution of the system is obtained from the Euler-Lagrange variational principle, and we show that this ansatz yields Ehrenfest mean-field theory in the limit that the forward and backward trajectories are orthogonal, and in the limit that they coalesce. We investigate accuracy and performance of this method by simulating electronic relaxation in the spin-boson model and the Holstein model. Although this method involves only pairs of semiclassical trajectories, it shows a substantial improvement over mean-field theory, capturing quantum coherence of nuclear dynamics as well as electron-nuclear correlations. This improvement is particularly evident in nonadiabatic systems, where the accuracy of this coupled trajectory method extends well beyond the perturbative electron-phonon coupling regime. This approach thus provides an attractive route forward to the ab initio description of relaxation processes, such as thermalization, in condensed phase systems.

  3. Semiclassical magnetotransport in strongly spin-orbit coupled Rashba two-dimensional electron systems

    Science.gov (United States)

    Xiao, Cong; Li, Dingping

    2016-06-01

    Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin-orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e. While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems.

  4. Semiclassical magnetotransport in strongly spin–orbit coupled Rashba two-dimensional electron systems

    International Nuclear Information System (INIS)

    Xiao, Cong; Li, Dingping

    2016-01-01

    Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin–orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e . While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems. (paper)

  5. Semiclassical analysis of the kicked Rydberg atom

    International Nuclear Information System (INIS)

    Yoshida, S.; Persson, E.; Burgdoerfer, J.; Grossmann, F.; Reinhold, C.

    2001-01-01

    Full text: The kicked atom is known as the testing ground for the study of quantum chaos and proven to show the quantum localization as the scarred wavefunction while the corresponding classical counterpart shows chaotic behavior. This apparent contradiction between the ubiquitousness of classical chaotic dynamics and the lack thereof in quantum dynamics brings into focus the open problem of a semiclassical description of quantum localization. We analyze the kicked atom using a semiclassical approximation based on Gaussian wave packets (Herman-Kluk Propagator) and examine the semiclassical manifestation of quantum localization. (author)

  6. Semiclassical electronic transport in MnAs thin films

    International Nuclear Information System (INIS)

    Helman, C.; Milano, J.; Steren, L.; Llois, A.M.

    2008-01-01

    Magneto-transport experiments have been recently performed on MnAs thin films. Hall effect and transverse magnetoresistance measurements have shown interesting and, until now, unknown results. For instance, the transverse magnetoresistance shows no saturation in the presence of very high magnetic fields. In order to understand the contribution of the electronic band structure to the non-saturating magnetoresistance, we perform ab initio calculations, using the Wien2K code and analyze the magneto-transport properties within the semiclassical approximation. We show that non-saturation may be due to the presence of open orbits on the majority Fermi surface

  7. Semiclassical electronic transport in MnAs thin films

    Energy Technology Data Exchange (ETDEWEB)

    Helman, C. [Dpto de Fisica, ' Juan Jose Giambiagi' , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Unidad de Actividad Fisica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Buenos Aires (Argentina)], E-mail: helman@tandar.cnea.gov.ar; Milano, J.; Steren, L. [Departamento de Fisica, Centro Atomico Bariloche, Comision Nacional de Energia Atomica, S.C. Bariloche (Argentina); Llois, A.M. [Dpto de Fisica, ' Juan Jose Giambiagi' , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Unidad de Actividad Fisica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    2008-07-15

    Magneto-transport experiments have been recently performed on MnAs thin films. Hall effect and transverse magnetoresistance measurements have shown interesting and, until now, unknown results. For instance, the transverse magnetoresistance shows no saturation in the presence of very high magnetic fields. In order to understand the contribution of the electronic band structure to the non-saturating magnetoresistance, we perform ab initio calculations, using the Wien2K code and analyze the magneto-transport properties within the semiclassical approximation. We show that non-saturation may be due to the presence of open orbits on the majority Fermi surface.

  8. Semiclassics for matrix Hamiltonians: The Gutzwiller trace formula with applications to graphene-type systems

    Science.gov (United States)

    Vogl, M.; Pankratov, O.; Shallcross, S.

    2017-07-01

    We present a tractable and physically transparent semiclassical theory of matrix-valued Hamiltonians, i.e., those that describe quantum systems with internal degrees of freedoms, based on a generalization of the Gutzwiller trace formula for a n ×n dimensional Hamiltonian H (p ̂,q ̂) . The classical dynamics is governed by n Hamilton-Jacobi (HJ) equations that act in a phase space endowed with a classical Berry curvature encoding anholonomy in the parallel transport of the eigenvectors of H (p ,q ) ; these vectors describe the internal structure of the semiclassical particles. At the O (ℏ1) level and for nondegenerate HJ systems, this curvature results in an additional semiclassical phase composed of (i) a Berry phase and (ii) a dynamical phase resulting from the classical particles "moving through the Berry curvature". We show that the dynamical part of this semiclassical phase will, generally, be zero only for the case in which the Berry phase is topological (i.e., depends only on the winding number). We illustrate the method by calculating the Landau spectrum for monolayer graphene, the four-band model of AB bilayer graphene, and for a more complicated matrix Hamiltonian describing the silicene band structure. Finally, we apply our method to an inhomogeneous system consisting of a strain engineered one-dimensional moiré in bilayer graphene, finding localized states near the Dirac point that arise from electron trapping in a semiclassical moiré potential. The semiclassical density of states of these localized states we show to be in perfect agreement with an exact quantum mechanical calculation of the density of states.

  9. Relative criterion for validity of a semiclassical approach to the dynamics near quantum critical points.

    Science.gov (United States)

    Wang, Qian; Qin, Pinquan; Wang, Wen-ge

    2015-10-01

    Based on an analysis of Feynman's path integral formulation of the propagator, a relative criterion is proposed for validity of a semiclassical approach to the dynamics near critical points in a class of systems undergoing quantum phase transitions. It is given by an effective Planck constant, in the relative sense that a smaller effective Planck constant implies better performance of the semiclassical approach. Numerical tests of this relative criterion are given in the XY model and in the Dicke model.

  10. "Divide-and-conquer" semiclassical molecular dynamics: An application to water clusters

    Science.gov (United States)

    Di Liberto, Giovanni; Conte, Riccardo; Ceotto, Michele

    2018-03-01

    We present an investigation of vibrational features in water clusters performed by means of our recently established divide-and-conquer semiclassical approach [M. Ceotto, G. Di Liberto, and R. Conte, Phys. Rev. Lett. 119, 010401 (2017)]. This technique allows us to simulate quantum vibrational spectra of high-dimensional systems starting from full-dimensional classical trajectories and projection of the semiclassical propagator onto a set of lower dimensional subspaces. The potential energy surface employed is a many-body representation up to three-body terms, in which monomers and two-body interactions are described by the high level Wang-Huang-Braams-Bowman (WHBB) water potential, while, for three-body interactions, calculations adopt a fast permutationally invariant ab initio surface at the same level of theory of the WHBB 3-body potential. Applications range from the water dimer up to the water decamer, a system made of 84 vibrational degrees of freedom. Results are generally in agreement with previous variational estimates in the literature. This is particularly true for the bending and the high-frequency stretching motions, while estimates of modes strongly influenced by hydrogen bonding are red shifted, in a few instances even substantially, as a consequence of the dynamical and global picture provided by the semiclassical approach.

  11. Semiclassical analysis of quantum localization of the periodically kicked Rydberg atom

    International Nuclear Information System (INIS)

    Yoshida, S.; Persson, E.; Burgdoerfer, J.; Grossmann, F.

    2004-01-01

    The periodically kicked Rydberg atom displays quantum localization, features of which depend on the orientation and strength of the unidirectional kicks. They include scarring of the wave function, localization by cantori, and exponential localization in the regime of strong perturbation resembling dynamical localization. Using the semiclassical Herman-Kluk propagator we investigate the degree to which semiclassical dynamics can mimic quantum localization. While the semiclassical approximation has difficulties to reproduce the scarred wave functions, the exponential tail which is a typical signature of the dynamical localization is well represented in the case of strong classical diffusion. Also the localization by broken tori is observed in the semiclassical recurrence probability for short times but the deviation from the corresponding quantum dynamics becomes more pronounced for the long-time evolution

  12. Semiclassical methods for nonseparable systems

    International Nuclear Information System (INIS)

    Garrett, B.C.

    1977-08-01

    Semiclassical techniques have been widely used for describing the dynamics of molecular collisions. The calculation of discrete energy eigenvalue spectra in bound systems has also employed semiclassical methods. Work has been done toward developing semiclassical theories for rate constants in reactive systems and semiclassical eigenvalues in bound systems. Application of these theories have been made to nonseparable multidimensional systems. Transition-state theory has played an important role in chemical kinetics, and is very useful for approximating reaction rate constants for molecular systems. Many shortcomings of transition-state theory can be attributed to the assumption of separability of motion along the reaction coordinate. Semiclassical approximations have been made to the quantum rate expression, and the resulting semiclassical theory has been applied to the reactive H + H 2 system. Comparison of this nonseparable theory with quantum scattering calculations shows agreement which is quite good. Although the quantum condition for one-dimensional bound systems is well-known, generalization of these results to multidimensional nonseparable systems is not obvious. Work has been done toward a semiclassical quantum condition which is closest to the approach of Born. The Hamilton--Jacobi equation for the systems is solved in action--angle variables; in this way the classical Hamiltonian can be expressed as a function of action variables which are constants of motion for the system. Requiring the action variables to be integers provides the semiclassical eigenvalues. Numerical calculations have been performed on a two-dimensional coupled potential well with good agreement with the quantum eigenvalues. 18 figures, 6 tables

  13. Electron dynamics in solid state via time varying wavevectors

    Science.gov (United States)

    Khaneja, Navin

    2018-06-01

    In this paper, we study electron wavepacket dynamics in electric and magnetic fields. We rigorously derive the semiclassical equations of electron dynamics in electric and magnetic fields. We do it both for free electron and electron in a periodic potential. We do this by introducing time varying wavevectors k(t). In the presence of magnetic field, our wavepacket reproduces the classical cyclotron orbits once the origin of the Schröedinger equation is correctly chosen to be center of cyclotron orbit. In the presence of both electric and magnetic fields, our equations for wavepacket dynamics differ from classical Lorentz force equations. We show that in a periodic potential, on application of electric field, the electron wave function adiabatically follows the wavefunction of a time varying Bloch wavevector k(t), with its energies suitably shifted with time. We derive the effective mass equation and discuss conduction in conductors and insulators.

  14. On a semiclassical analysis of high energy electron diffraction by imperfect crystals: the stacking fault

    International Nuclear Information System (INIS)

    Smith, A.E.; Chadderton, L.T.; Johnson, E.

    1978-01-01

    Electron diffraction amplitudes at the lower surface of a displaced sandwich crystal are obtained for the high energy limit in the real space formulation. Using semiclassical methods analytical approximations to a resulting overlap integral - central to the problem - are derived. (Auth.)

  15. Reconciling semiclassical and Bohmian mechanics. V. Wavepacket dynamics

    International Nuclear Information System (INIS)

    Poirier, Bill

    2008-01-01

    In previous articles [B. Poirier J. Chem. Phys. 121, 4501 (2004); C. Trahan and B. Poirier, ibid. 124, 034115 (2006); 124, 034116 (2006); B. Poirier and G. Parlant, J. Phys. Chem. A 111, 10400 (2007)] a bipolar counterpropagating wave decomposition, ψ=ψ + +ψ - , was presented for stationary states ψ of the one-dimensional Schroedinger equation, such that the components ψ ± approach their semiclassical Wentzel-Kramers-Brillouin analogs in the large action limit. The corresponding bipolar quantum trajectories are classical-like and well behaved, even when ψ has many nodes, or is wildly oscillatory. In this paper, the method is generalized for time-dependent wavepacket dynamics applications and applied to several benchmark problems, including multisurface systems with nonadiabatic coupling

  16. Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics

    International Nuclear Information System (INIS)

    White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry

    2014-01-01

    Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement

  17. Quantum screening effects on the electron-ion occurrence scattering time advance in strongly coupled semiclassical plasmas

    International Nuclear Information System (INIS)

    Song, Mi-Young; Jung, Young-Dae

    2003-01-01

    Quantum screening effects on the occurrence scattering time advance for elastic electron-ion collisions in strongly coupled semiclassical plasmas are investigated using the second-order eikonal analysis. The electron-ion interaction in strongly coupled semiclassical plasmas is obtained by the pseudopotential model taking into account the plasma screening and quantum effects. It is found that the quantum-mechanical effects significantly reduce the occurrence scattering time advance. It is also found that the occurrence scattering time advance increases with increasing Debye length. It is quite interesting to note that the domain of the maximum occurrence time advance is localized for the forward scattering case. The region of the scaled thermal de Broglie wave length (λ-bar) for the maximum occurrence time advance is found to be 0.4≤λ-bar≤1.4

  18. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits

    International Nuclear Information System (INIS)

    Fujii, Mikiya; Yamashita, Koichi

    2015-01-01

    We present a semiclassical quantization condition, i.e., quantum–classical correspondence, for steady states of nonadiabatic systems consisting of fast and slow degrees of freedom (DOFs) by extending Gutzwiller’s trace formula to a nonadiabatic form. The quantum–classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow DOF, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels. In addition to the semiclassical quantization condition, we also discuss chaotic dynamics involved in the classical limit of nonadiabatic dynamics

  19. Semiclassical eigenenergies in the wake of fast ions in solids

    International Nuclear Information System (INIS)

    Mueller, J.; Burgdoerfer, J.; Noid, D.W.

    1990-01-01

    We compare the semiclassical and quantum mechanical eigenenergies of an electron in the wake of a fast, highly charged ion traversing a solid. The classical dynamics of this system shows a transition from regular to chaotic motion as a function of the binding energy. The transition can also be seen in the quantal spectra. We find evidence for a connection between bifurcation of tori and disorder in the energy level sequences. 21 refs., 4 figs

  20. Quantum and semiclassical physics behind ultrafast optical nonlinearity in the midinfrared: the role of ionization dynamics within the field half cycle.

    Science.gov (United States)

    Serebryannikov, E E; Zheltikov, A M

    2014-07-25

    Ultrafast ionization dynamics within the field half cycle is shown to be the key physical factor that controls the properties of optical nonlinearity as a function of the carrier wavelength and intensity of a driving laser field. The Schrödinger-equation analysis of a generic hydrogen quantum system reveals universal tendencies in the wavelength dependence of optical nonlinearity, shedding light on unusual properties of optical nonlinearities in the midinfrared. For high-intensity low-frequency fields, free-state electrons are shown to dominate over bound electrons in the overall nonlinear response of a quantum system. In this regime, semiclassical models are shown to offer useful insights into the physics behind optical nonlinearity.

  1. An assessment of mean-field mixed semiclassical approaches: Equilibrium populations and algorithm stability

    International Nuclear Information System (INIS)

    Bellonzi, Nicole; Jain, Amber; Subotnik, Joseph E.

    2016-01-01

    We study several recent mean-field semiclassical dynamics methods, focusing on the ability to recover detailed balance for long time (equilibrium) populations. We focus especially on Miller and Cotton’s [J. Phys. Chem. A 117, 7190 (2013)] suggestion to include both zero point electronic energy and windowing on top of Ehrenfest dynamics. We investigate three regimes: harmonic surfaces with weak electronic coupling, harmonic surfaces with strong electronic coupling, and anharmonic surfaces with weak electronic coupling. In most cases, recent additions to Ehrenfest dynamics are a strong improvement upon mean-field theory. However, for methods that include zero point electronic energy, we show that anharmonic potential energy surfaces often lead to numerical instabilities, as caused by negative populations and forces. We also show that, though the effect of negative forces can appear hidden in harmonic systems, the resulting equilibrium limits do remain dependent on any windowing and zero point energy parameters.

  2. Graphics processing units accelerated semiclassical initial value representation molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tamascelli, Dario; Dambrosio, Francesco Saverio [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Conte, Riccardo [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States); Ceotto, Michele, E-mail: michele.ceotto@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano (Italy)

    2014-05-07

    This paper presents a Graphics Processing Units (GPUs) implementation of the Semiclassical Initial Value Representation (SC-IVR) propagator for vibrational molecular spectroscopy calculations. The time-averaging formulation of the SC-IVR for power spectrum calculations is employed. Details about the GPU implementation of the semiclassical code are provided. Four molecules with an increasing number of atoms are considered and the GPU-calculated vibrational frequencies perfectly match the benchmark values. The computational time scaling of two GPUs (NVIDIA Tesla C2075 and Kepler K20), respectively, versus two CPUs (Intel Core i5 and Intel Xeon E5-2687W) and the critical issues related to the GPU implementation are discussed. The resulting reduction in computational time and power consumption is significant and semiclassical GPU calculations are shown to be environment friendly.

  3. Semiclassical Hybrid Approach to Condensed Phase Molecular Dynamics: Application to the I2Kr17 Cluster

    Czech Academy of Sciences Publication Activity Database

    Buchholz, M.; Goletz, Ch. M.; Grossman, F.; Schmidt, B.; Heyda, J.; Jungwirth, Pavel

    2012-01-01

    Roč. 116, č. 46 (2012), s. 11199-11210 ISSN 1089-5639 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : semiclassical molecular dynamics * cluster * wavepacket * coherence * spectra Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.771, year: 2012

  4. Coherent semiclassical states for loop quantum cosmology

    International Nuclear Information System (INIS)

    Corichi, Alejandro; Montoya, Edison

    2011-01-01

    The spatially flat Friedmann-Robertson-Walker cosmological model with a massless scalar field in loop quantum cosmology admits a description in terms of a completely solvable model. This has been used to prove that: (i) the quantum bounce that replaces the big bang singularity is generic; (ii) there is an upper bound on the energy density for all states, and (iii) semiclassical states at late times had to be semiclassical before the bounce. Here we consider a family of exact solutions to the theory, corresponding to generalized coherent Gaussian and squeezed states. We analyze the behavior of basic physical observables and impose restrictions on the states based on physical considerations. These turn out to be enough to select, from all the generalized coherent states, those that behave semiclassical at late times. We study then the properties of such states near the bounce where the most 'quantum behavior' is expected. As it turns out, the states remain sharply peaked and semiclassical at the bounce and the dynamics is very well approximated by the ''effective theory'' throughout the time evolution. We compare the semiclassicality properties of squeezed states to those of the Gaussian semiclassical states and conclude that the Gaussians are better behaved. In particular, the asymmetry in the relative fluctuations before and after the bounce are negligible, thus ruling out claims of so-called 'cosmic forgetfulness'.

  5. Semiclassical approach to mesoscopic systems classical trajectory correlations and wave interference

    CERN Document Server

    Waltner, Daniel

    2012-01-01

    This volume describes mesoscopic systems with classically chaotic dynamics using semiclassical methods which combine elements of classical dynamics and quantum interference effects. Experiments and numerical studies show that Random Matrix Theory (RMT) explains physical properties of these systems well. This was conjectured more than 25 years ago by Bohigas, Giannoni and Schmit for the spectral properties. Since then, it has been a challenge to understand this connection analytically.  The author offers his readers a clearly-written and up-to-date treatment of the topics covered. He extends previous semiclassical approaches that treated spectral and conductance properties. He shows that RMT results can in general only be obtained semiclassically when taking into account classical configurations not considered previously, for example those containing multiply traversed periodic orbits. Furthermore, semiclassics is capable of describing effects beyond RMT. In this context he studies the effect of a non-zero Eh...

  6. Interparticle interaction and transport processes in dense semiclassical plasmas

    International Nuclear Information System (INIS)

    Baimbetov, F.B.; Giniyatova, Sh.G.

    2005-01-01

    On the basis of the density response formalism an expression for the pseudopotential of dense semiclassical plasma, which takes account of quantum-mechanical effects, local field corrections, and electronic screening effects is obtained. The static structure factors taking into account both local fields and quantum-mechanical effects are calculated. An electrical conductivity, thermal conductivity, and viscosity of dense semiclassical plasma are studied

  7. Dynamical cluster approximation plus semiclassical approximation study for a Mott insulator and d-wave pairing

    Science.gov (United States)

    Kim, SungKun; Lee, Hunpyo

    2017-06-01

    Via a dynamical cluster approximation with N c = 4 in combination with a semiclassical approximation (DCA+SCA), we study the doped two-dimensional Hubbard model. We obtain a plaquette antiferromagnetic (AF) Mott insulator, a plaquette AF ordered metal, a pseudogap (or d-wave superconductor) and a paramagnetic metal by tuning the doping concentration. These features are similar to the behaviors observed in copper-oxide superconductors and are in qualitative agreement with the results calculated by the cluster dynamical mean field theory with the continuous-time quantum Monte Carlo (CDMFT+CTQMC) approach. The results of our DCA+SCA differ from those of the CDMFT+CTQMC approach in that the d-wave superconducting order parameters are shown even in the high doped region, unlike the results of the CDMFT+CTQMC approach. We think that the strong plaquette AF orderings in the dynamical cluster approximation (DCA) with N c = 4 suppress superconducting states with increasing doping up to strongly doped region, because frozen dynamical fluctuations in a semiclassical approximation (SCA) approach are unable to destroy those orderings. Our calculation with short-range spatial fluctuations is initial research, because the SCA can manage long-range spatial fluctuations in feasible computational times beyond the CDMFT+CTQMC tool. We believe that our future DCA+SCA calculations should supply information on the fully momentum-resolved physical properties, which could be compared with the results measured by angle-resolved photoemission spectroscopy experiments.

  8. Increasing the efficiency and accuracy of time-resolved electronic spectra calculations with on-the-fly ab initio quantum dynamics methods

    Science.gov (United States)

    Vanicek, Jiri

    2014-03-01

    Rigorous quantum-mechanical calculations of coherent ultrafast electronic spectra remain difficult. I will present several approaches developed in our group that increase the efficiency and accuracy of such calculations: First, we justified the feasibility of evaluating time-resolved spectra of large systems by proving that the number of trajectories needed for convergence of the semiclassical dephasing representation/phase averaging is independent of dimensionality. Recently, we further accelerated this approximation with a cellular scheme employing inverse Weierstrass transform and optimal scaling of the cell size. The accuracy of potential energy surfaces was increased by combining the dephasing representation with accurate on-the-fly ab initio electronic structure calculations, including nonadiabatic and spin-orbit couplings. Finally, the inherent semiclassical approximation was removed in the exact quantum Gaussian dephasing representation, in which semiclassical trajectories are replaced by communicating frozen Gaussian basis functions evolving classically with an average Hamiltonian. Among other examples I will present an on-the-fly ab initio semiclassical dynamics calculation of the dispersed time-resolved stimulated emission spectrum of the 54-dimensional azulene. This research was supported by EPFL and by the Swiss National Science Foundation NCCR MUST (Molecular Ultrafast Science and Technology) and Grant No. 200021124936/1.

  9. Semiclassical modelling of finite-pulse effects on non-adiabatic photodynamics via initial condition filtering: The predissociation of NaI as a test case

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Mesa, Aliezer [Departmento de Física Teórica, Universidad de la Habana, San Lázaro y L, La Habana 10400 (Cuba); Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm (Germany); Saalfrank, Peter [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm (Germany)

    2015-05-21

    Femtosecond-laser pulse driven non-adiabatic spectroscopy and dynamics in molecular and condensed phase systems continue to be a challenge for theoretical modelling. One of the main obstacles is the “curse of dimensionality” encountered in non-adiabatic, exact wavepacket propagation. A possible route towards treating complex molecular systems is via semiclassical surface-hopping schemes, in particular if they account not only for non-adiabatic post-excitation dynamics but also for the initial optical excitation. One such approach, based on initial condition filtering, will be put forward in what follows. As a simple test case which can be compared with exact wavepacket dynamics, we investigate the influence of the different parameters determining the shape of a laser pulse (e.g., its finite width and a possible chirp) on the predissociation dynamics of a NaI molecule, upon photoexcitation of the A(0{sup +}) state. The finite-pulse effects are mapped into the initial conditions for semiclassical surface-hopping simulations. The simulated surface-hopping diabatic populations are in qualitative agreement with the quantum mechanical results, especially concerning the subpicosend photoinduced dynamics, the main deviations being the relative delay of the non-adiabatic transitions in the semiclassical picture. Likewise, these differences in the time-dependent electronic populations calculated via the semiclassical and the quantum methods are found to have a mild influence on the overall probability density distribution. As a result, the branching ratios between the bound and the dissociative reaction channels and the time-evolution of the molecular wavepacket predicted by the semiclassical method agree with those computed using quantum wavepacket propagation. Implications for more challenging molecular systems are given.

  10. A zeta function approach to the semiclassical quantization of maps

    International Nuclear Information System (INIS)

    Smilansky, Uzi.

    1993-11-01

    The quantum analogue of an area preserving map on a compact phase space is a unitary (evolution) operator which can be represented by a matrix of dimension L∝ℎ -1 . The semiclassical theory for spectrum of the evolution operator will be reviewed with special emphasize on developing a dynamical zeta function approach, similar to the one introduced recently for a semiclassical quantization of hamiltonian systems. (author)

  11. Semiclassical theory for the nuclear response function

    International Nuclear Information System (INIS)

    Stroth, U.

    1986-01-01

    In the first part of this thesis it was demonstrated how on a semiclassical base a RPA theory is developed and applied to electron scattering. It was shown in which fields of nuclear physics this semiclassical theory can be applied and how it is to be understood. In this connection we dedicated an extensive discussion to the Fermi gas model. From the free response function we calculated the RPA response with a finite-range residual interaction which we completely antisymmetrize. In the second part of this thesis we studied with our theory (e,e') data for the separated response functions. (orig./HSI) [de

  12. Kuang's Semi-Classical Formalism for Calculating Electron Capture Cross Sections: A Space- Physics Application

    Science.gov (United States)

    Barghouty, A. F.

    2014-01-01

    Accurate estimates of electroncapture cross sections at energies relevant to the modeling of the transport, acceleration, and interaction of energetic neutral atoms (ENA) in space (approximately few MeV per nucleon) and especially for multi-electron ions must rely on detailed, but computationally expensive, quantum-mechanical description of the collision process. Kuang's semi-classical approach is an elegant and efficient way to arrive at these estimates. Motivated by ENA modeling efforts for apace applications, we shall briefly present this approach along with sample applications and report on current progress.

  13. Classical molecular dynamics simulation of electronically non-adiabatic processes.

    Science.gov (United States)

    Miller, William H; Cotton, Stephen J

    2016-12-22

    Both classical and quantum mechanics (as well as hybrids thereof, i.e., semiclassical approaches) find widespread use in simulating dynamical processes in molecular systems. For large chemical systems, however, which involve potential energy surfaces (PES) of general/arbitrary form, it is usually the case that only classical molecular dynamics (MD) approaches are feasible, and their use is thus ubiquitous nowadays, at least for chemical processes involving dynamics on a single PES (i.e., within a single Born-Oppenheimer electronic state). This paper reviews recent developments in an approach which extends standard classical MD methods to the treatment of electronically non-adiabatic processes, i.e., those that involve transitions between different electronic states. The approach treats nuclear and electronic degrees of freedom (DOF) equivalently (i.e., by classical mechanics, thereby retaining the simplicity of standard MD), and provides "quantization" of the electronic states through a symmetrical quasi-classical (SQC) windowing model. The approach is seen to be capable of treating extreme regimes of strong and weak coupling between the electronic states, as well as accurately describing coherence effects in the electronic DOF (including the de-coherence of such effects caused by coupling to the nuclear DOF). A survey of recent applications is presented to illustrate the performance of the approach. Also described is a newly developed variation on the original SQC model (found universally superior to the original) and a general extension of the SQC model to obtain the full electronic density matrix (at no additional cost/complexity).

  14. Effects of temperature and isotopic substitution on electron attachment dynamics of guanine–cytosine base pair: Ring-polymer and classical molecular dynamics simulations

    International Nuclear Information System (INIS)

    Minoshima, Yusuke; Seki, Yusuke; Takayanagi, Toshiyuki; Shiga, Motoyuki

    2016-01-01

    Highlights: • Dynamics of excess electron attachment to guanine–cytosine base pair. • Ring-polymer and classical molecular dynamics simulations are performed. • Temperature and isotope substitution effects are investigated. - Abstract: The dynamical process of electron attachment to a guanine–cytosine pair in the normal (h-GC) and deuterated (d-GC) forms has been studied theoretically by semiclassical ring-polymer molecular dynamics (RPMD) simulations using the empirical valence bond model. The initially formed dipole-bound anion is converted rapidly to the valence-bound anion within about 0.1 ps in both h-GC and d-GC. However, the subsequent proton transfer in h-GC occurs with a rate five times greater than the deuteron transfer in d-GC. The change of rates with isotopic substitution and temperature variation in the RPMD simulations are quantitatively and qualitatively different from those in the classical molecular dynamics (MD) simulations, demonstrating the importance of nuclear quantum effects on the dynamics of this system.

  15. Effects of temperature and isotopic substitution on electron attachment dynamics of guanine–cytosine base pair: Ring-polymer and classical molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Minoshima, Yusuke; Seki, Yusuke [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Takayanagi, Toshiyuki, E-mail: tako@mail.saitama-u.ac.jp [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Shiga, Motoyuki [Center for Computational Science and E-Systems, Japan Atomic Energy Agency, 148-4, Kashiwanoha Campus, 178-4 Wakashiba, Kashiwa, Chiba 277-0871 (Japan)

    2016-06-15

    Highlights: • Dynamics of excess electron attachment to guanine–cytosine base pair. • Ring-polymer and classical molecular dynamics simulations are performed. • Temperature and isotope substitution effects are investigated. - Abstract: The dynamical process of electron attachment to a guanine–cytosine pair in the normal (h-GC) and deuterated (d-GC) forms has been studied theoretically by semiclassical ring-polymer molecular dynamics (RPMD) simulations using the empirical valence bond model. The initially formed dipole-bound anion is converted rapidly to the valence-bound anion within about 0.1 ps in both h-GC and d-GC. However, the subsequent proton transfer in h-GC occurs with a rate five times greater than the deuteron transfer in d-GC. The change of rates with isotopic substitution and temperature variation in the RPMD simulations are quantitatively and qualitatively different from those in the classical molecular dynamics (MD) simulations, demonstrating the importance of nuclear quantum effects on the dynamics of this system.

  16. Stellar Equilibrium in Semiclassical Gravity.

    Science.gov (United States)

    Carballo-Rubio, Raúl

    2018-02-09

    The phenomenon of quantum vacuum polarization in the presence of a gravitational field is well understood and is expected to have a physical reality, but studies of its backreaction on the dynamics of spacetime are practically nonexistent outside of the specific context of homogeneous cosmologies. Building on previous results of quantum field theory in curved spacetimes, in this Letter we first derive the semiclassical equations of stellar equilibrium in the s-wave Polyakov approximation. It is highlighted that incorporating the polarization of the quantum vacuum leads to a generalization of the classical Tolman-Oppenheimer-Volkoff equation. Despite the complexity of the resulting field equations, it is possible to find exact solutions. Aside from being the first known exact solutions that describe relativistic stars including the nonperturbative backreaction of semiclassical effects, these are identified as a nontrivial combination of the black star and gravastar proposals.

  17. Renormalized semiclassical quantization for rescalable Hamiltonians

    International Nuclear Information System (INIS)

    Takahashi, Satoshi; Takatsuka, Kazuo

    2004-01-01

    A renormalized semiclassical quantization method for rescalable Hamiltonians is proposed. A classical Hamilton system having a potential function that consists of homogeneous polynomials like the Coulombic potential can have a scale invariance in its extended phase space (phase space plus time). Consequently, infinitely many copies of a single trajectory constitute a one-parameter family that is characterized in terms of a scaling factor. This scaling invariance in classical dynamics is lost in quantum mechanics due to the presence of the Planck constant. It is shown that in a system whose classical motions have a self-similarity in the above sense, classical trajectories adopted in the semiclassical scheme interact with infinitely many copies of their own that are reproduced by the relevant scaling procedure, thereby undergoing quantum interference among themselves to produce a quantized spectrum

  18. Semiclassical calculation of ionisation rate for Rydberg helium atoms in an electric field

    International Nuclear Information System (INIS)

    Wang De-Hua

    2011-01-01

    The ionisation of Rydberg helium atoms in an electric field above the classical ionisation threshold has been examined using the semiclassical method, with particular emphasis on discussing the influence of the core scattering on the escape dynamics of electrons. The results show that the Rydberg helium atoms ionise by emitting a train of electron pulses. Unlike the case of the ionisation of Rydberg hydrogen atom in parallel electric and magnetic fields, where the pulses of the electron are caused by the external magnetic field, the pulse trains for Rydberg helium atoms are created through core scattering. Each peak in the ionisation rate corresponds to the contribution of one core-scattered combination trajectory. This fact further illustrates that the ionic core scattering leads to the chaotic property of the Rydberg helium atom in external fields. Our studies provide a simple explanation for the escape dynamics in the ionisation of nonhydrogenic atoms in external fields. (atomic and molecular physics)

  19. Semiclassical approach to fidelity amplitude

    International Nuclear Information System (INIS)

    García-Mata, Ignacio; Vallejos, Raúl O; Wisniacki, Diego A

    2011-01-01

    The fidelity amplitude (FA) is a quantity of paramount importance in echo-type experiments. We use semiclassical theory to study the average FA for quantum chaotic systems under external perturbation. We explain analytically two extreme cases: the random dynamics limit - attained approximately by strongly chaotic systems - and the random perturbation limit, which shows a Lyapunov decay. Numerical simulations help us to bridge the gap between both the extreme cases. (paper)

  20. A semi-classical analysis of Dirac fermions in 2+1 dimensions

    International Nuclear Information System (INIS)

    Maiti, Moitri; Shankar, R

    2012-01-01

    We investigate the semi-classical dynamics of massless Dirac fermions in 2+1 dimensions in the presence of external electromagnetic fields. By generalizing the α matrices by two generators of the SU(2) group in the (2S + 1)-dimensional representation and doing a certain scaling, we formulate an S → ∞ limit where the orbital and the spinor degrees become classical. We solve for the classical trajectories for a free particle on a cylinder and a particle in a constant magnetic field. We compare the semi-classical spectrum, obtained by Bohr–Sommerfeld quantization with the exact quantum spectrum for low values of S. For the free particle, the semi-classical spectrum is exact. For the particle in a constant magnetic field, the semi-classical spectrum reproduces all the qualitative features of the exact quantum spectrum at all S. The quantitative fit for S = 1/2 is reasonably good. (paper)

  1. Strong semiclassical approximation of Wigner functions for the Hartree dynamics

    KAUST Repository

    Athanassoulis, Agissilaos; Paul, Thierry; Pezzotti, Federica; Pulvirenti, Mario

    2011-01-01

    We consider the Wigner equation corresponding to a nonlinear Schrödinger evolution of the Hartree type in the semiclassical limit h → 0. Under appropriate assumptions on the initial data and the interaction potential, we show that the Wigner function is close in L 2 to its weak limit, the solution of the corresponding Vlasov equation. The strong approximation allows the construction of semiclassical operator-valued observables, approximating their quantum counterparts in Hilbert-Schmidt topology. The proof makes use of a pointwise-positivity manipulation, which seems necessary in working with the L 2 norm and the precise form of the nonlinearity. We employ the Husimi function as a pivot between the classical probability density and the Wigner function, which - as it is well known - is not pointwise positive in general.

  2. Quantum Dynamical Behaviour in Complex Systems - A Semiclassical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ananth, Nandini [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    One of the biggest challenges in Chemical Dynamics is describing the behavior of complex systems accurately. Classical MD simulations have evolved to a point where calculations involving thousands of atoms are routinely carried out. Capturing coherence, tunneling and other such quantum effects for these systems, however, has proven considerably harder. Semiclassical methods such as the Initial Value Representation (SC-IVR) provide a practical way to include quantum effects while still utilizing only classical trajectory information. For smaller systems, this method has been proven to be most effective, encouraging the hope that it can be extended to deal with a large number of degrees of freedom. Several variations upon the original idea of the SCIVR have been developed to help make these larger calculations more tractable; these range from the simplest, classical limit form, the Linearized IVR (LSC-IVR) to the quantum limit form, the Exact Forward-Backward version (EFB-IVR). In this thesis a method to tune between these limits is described which allows us to choose exactly which degrees of freedom we wish to treat in a more quantum mechanical fashion and to what extent. This formulation is called the Tuning IVR (TIVR). We further describe methodology being developed to evaluate the prefactor term that appears in the IVR formalism. The regular prefactor is composed of the Monodromy matrices (jacobians of the transformation from initial to finial coordinates and momenta) which are time evolved using the Hessian. Standard MD simulations require the potential surfaces and their gradients, but very rarely is there any information on the second derivative. We would like to be able to carry out the SC-IVR calculation without this information too. With this in mind a finite difference scheme to obtain the Hessian on-the-fly is proposed. Wealso apply the IVR formalism to a few problems of current interest. A method to obtain energy eigenvalues accurately for complex

  3. Pauli blocking and laser manipulation of the electron dynamics in atomic collisions

    International Nuclear Information System (INIS)

    Kirchner, T.

    2004-01-01

    Full text: The dynamics of ion-atom collisions are governed primarily by the Coulomb interactions between the active electrons and the projectile and target nuclei. This contribution is devoted to the question whether and how other phenomena can modify the outcome of atomic scattering experiments. Firstly, the role of the Pauli exclusion principle on electronic transitions will be considered. Supported by experimental data it will be argued that Pauli blocking may have an important influence on electron transfer processes if collision systems with electrons on target and projectile in the initial channel are addressed [1]. Secondly, it will be discussed to which extent the electron dynamics can be modified and manipulated by an external interaction, namely by a suitable laser field [2]. The prototype scattering system He 2+ -H will be considered in the framework of the semiclassical approximation, i.e., projectile and laser interactions are described in terms of time-dependent external potentials which govern the quantum dynamics of the electron. The focus will be on slow collisions, in which electron transfer dominates, and on relatively short wavelengths such that both time dependent potentials vary on comparable time scales. A strong enhancement of laser-assisted electron transfer is found at collision energies below 1 keV/amu [3]. Its origin and its disappearance at higher energies as well as implications for planned experiments will be discussed

  4. Fermions Tunneling from Higher-Dimensional Reissner-Nordström Black Hole: Semiclassical and Beyond Semiclassical Approximation

    Directory of Open Access Journals (Sweden)

    ShuZheng Yang

    2016-01-01

    Full Text Available Based on semiclassical tunneling method, we focus on charged fermions tunneling from higher-dimensional Reissner-Nordström black hole. We first simplify the Dirac equation by semiclassical approximation, and then a semiclassical Hamilton-Jacobi equation is obtained. Using the Hamilton-Jacobi equation, we study the Hawking temperature and fermions tunneling rate at the event horizon of the higher-dimensional Reissner-Nordström black hole space-time. Finally, the correct entropy is calculation by the method beyond semiclassical approximation.

  5. Semiclassical universe from first principles

    International Nuclear Information System (INIS)

    Ambjorn, J.; Jurkiewicz, J.; Loll, R.

    2005-01-01

    Causal dynamical triangulations in four dimensions provide a background-independent definition of the sum over space-time geometries in non-perturbative quantum gravity. We show that the macroscopic four-dimensional world which emerges in the Euclidean sector of this theory is a bounce which satisfies a semiclassical equation. After integrating out all degrees of freedom except for a global scale factor, we obtain the ground state wave function of the universe as a function of this scale factor

  6. On the effect of electron's runaway in partially ionized hydrogen semiclassical nonideal plasma

    International Nuclear Information System (INIS)

    Turekhanova, K.M.

    2011-01-01

    Complete text of publication follows. The effect of runaway electrons occurs frequently in tokamak plasmas. The majority of experiments in tokamak research have been devoted to the study of confinement properties of runaway electrons. Runaway electrons are reason of various destroying untolarance in tokamak plasmas. At high plasma density, when the critical energy is comparable with the rest energy the multiplication of runaway electrons accelerate at the sacrifice of increase of plasma density. The plasma conductivity is determined by electrons with energy several times higher than the thermal one and does not practically depend on slower electrons distribution. It is important to analyze the probability of runaway electrons at investigation of physical properties of nonideal plasmas under external electric field and running numerical simulations of their. The present paper is devoted to the investigation of effect of runaway electrons in partially ionized hydrogen dense plasma using the effective potentials of particle's interaction. At the investigation of composition of plasma we used the Saha equation with corrections to nonideality (lowering of ionization potentials). The Saha equation was solved for obtaining of plasma ionization stages at the different number density and temperature. As well, when take into account quantum-mechanical diffraction and screening effects, whereas free path of electrons increases with increase of plasma coupling parameter. The condition for appearance of runaway electrons in semiclassical partially ionized plasma is more favorable in regime of dense plasma. In summary it means that the probability of runaway electron in dense plasma is more than the same in rarified plasma that is possibly connected with formation of some ordered structures in dense plasma.

  7. Nonadiabatic effects in electronic and nuclear dynamics

    Directory of Open Access Journals (Sweden)

    Martin P. Bircher

    2017-11-01

    Full Text Available Due to their very nature, ultrafast phenomena are often accompanied by the occurrence of nonadiabatic effects. From a theoretical perspective, the treatment of nonadiabatic processes makes it necessary to go beyond the (quasi static picture provided by the time-independent Schrödinger equation within the Born-Oppenheimer approximation and to find ways to tackle instead the full time-dependent electronic and nuclear quantum problem. In this review, we give an overview of different nonadiabatic processes that manifest themselves in electronic and nuclear dynamics ranging from the nonadiabatic phenomena taking place during tunnel ionization of atoms in strong laser fields to the radiationless relaxation through conical intersections and the nonadiabatic coupling of vibrational modes and discuss the computational approaches that have been developed to describe such phenomena. These methods range from the full solution of the combined nuclear-electronic quantum problem to a hierarchy of semiclassical approaches and even purely classical frameworks. The power of these simulation tools is illustrated by representative applications and the direct confrontation with experimental measurements performed in the National Centre of Competence for Molecular Ultrafast Science and Technology.

  8. Improved multidimensional semiclassical tunneling theory.

    Science.gov (United States)

    Wagner, Albert F

    2013-12-12

    We show that the analytic multidimensional semiclassical tunneling formula of Miller et al. [Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willets, A. Chem. Phys. Lett. 1990, 172, 62] is qualitatively incorrect for deep tunneling at energies well below the top of the barrier. The origin of this deficiency is that the formula uses an effective barrier weakly related to the true energetics but correctly adjusted to reproduce the harmonic description and anharmonic corrections of the reaction path at the saddle point as determined by second order vibrational perturbation theory. We present an analytic improved semiclassical formula that correctly includes energetic information and allows a qualitatively correct representation of deep tunneling. This is done by constructing a three segment composite Eckart potential that is continuous everywhere in both value and derivative. This composite potential has an analytic barrier penetration integral from which the semiclassical action can be derived and then used to define the semiclassical tunneling probability. The middle segment of the composite potential by itself is superior to the original formula of Miller et al. because it incorporates the asymmetry of the reaction barrier produced by the known reaction exoergicity. Comparison of the semiclassical and exact quantum tunneling probability for the pure Eckart potential suggests a simple threshold multiplicative factor to the improved formula to account for quantum effects very near threshold not represented by semiclassical theory. The deep tunneling limitations of the original formula are echoed in semiclassical high-energy descriptions of bound vibrational states perpendicular to the reaction path at the saddle point. However, typically ab initio energetic information is not available to correct it. The Supporting Information contains a Fortran code, test input, and test output that implements the improved semiclassical tunneling formula.

  9. Semiclassical regularization of Vlasov equations and wavepackets for nonlinear Schrödinger equations

    Science.gov (United States)

    Athanassoulis, Agissilaos

    2018-03-01

    We consider the semiclassical limit of nonlinear Schrödinger equations with initial data that are well localized in both position and momentum (non-parametric wavepackets). We recover the Wigner measure (WM) of the problem, a macroscopic phase-space density which controls the propagation of the physical observables such as mass, energy and momentum. WMs have been used to create effective models for wave propagation in: random media, quantum molecular dynamics, mean field limits, and the propagation of electrons in graphene. In nonlinear settings, the Vlasov-type equations obtained for the WM are often ill-posed on the physically interesting spaces of initial data. In this paper we are able to select the measure-valued solution of the 1  +  1 dimensional Vlasov-Poisson equation which correctly captures the semiclassical limit, thus finally resolving the non-uniqueness in the seminal result of Zhang et al (2012 Comm. Pure Appl. Math. 55 582-632). The same approach is also applied to the Vlasov-Dirac-Benney equation with small wavepacket initial data, extending several known results.

  10. Semiclassical scalar propagators in curved backgrounds: Formalism and ambiguities

    International Nuclear Information System (INIS)

    Grain, J.; Barrau, A.

    2007-01-01

    The phenomenology of quantum systems in curved space-times is among the most fascinating fields of physics, allowing--often at the gedankenexperiment level--constraints on tentative theories of quantum gravity. Determining the dynamics of fields in curved backgrounds remains, however, a complicated task because of the highly intricate partial differential equations involved, especially when the space metric exhibits no symmetry. In this article, we provide--in a pedagogical way--a general formalism to determine this dynamics at the semiclassical order. To this purpose, a generic expression for the semiclassical propagator is computed and the equation of motion for the probability four-current is derived. Those results underline a direct analogy between the computation of the propagator in general relativistic quantum mechanics and the computation of the propagator for stationary systems in nonrelativistic quantum mechanics. A possible application of this formalism to curvature-induced quantum interferences is also discussed

  11. Characterization of electron-deficient chemical bonding of diborane with attosecond electron wavepacket dynamics and laser response

    International Nuclear Information System (INIS)

    Yonehara, Takehiro; Takatsuka, Kazuo

    2009-01-01

    We report a theoretical study of non-adiabatic electrons-nuclei coupled dynamics of diborane H 2 BH 2 BH 2 under several types of short pulse lasers. This molecule is known to have particularly interesting geometrical and electronic structures, which originate from the electron-deficient chemical bondings. We revisit the chemical bonding of diborane from the view point of electron wavepacket dynamics coupled with nuclear motions, and attempt to probe the characteristics of it by examining its response to intense laser fields. We study in the following three aspects, (i) bond formation of diborane by collision between two monoboranes, (ii) attosecond electron wavepacket dynamics in the ground state and first excited state by circularly polarized laser pulse, and (iii) induced fragmentation back to monoborane molecules by linearly polarized laser. The wave lengths of two types of laser field employed are 200 nm (in UV range) and 800 nm (in IR range), and we track the dynamics from hundreds of attoseconds up to few tens of femtoseconds. To this end, we apply the ab initio semiclassical Ehrenfest theory, into which the classical vector potential of a laser field is introduced. Basic features of the non-adiabatic response of electrons to the laser fields is elucidated in this scheme. To analyze the electronic wavepackets thus obtained, we figure out bond order density that is a spatial distribution of the bond order and bond order flux density arising only from the bonding regions, and so on. Main findings in this work are: (i) dimerization of monoboranes to diborane is so efficient that even intense laser is hard to prevent it; (ii) collective motions of electron flux emerge in the central BHHB bonding area in response to the circularly polarized laser fields; (iii) laser polarization with the direction of central two BH bonding vector is efficient for the cleavage of BH 3 -BH 3 ; and (iv) nuclear derivative coupling plays a critical role in the field induced

  12. Semi-classical scalar propagators in curved backgrounds: formalism and ambiguities

    Energy Technology Data Exchange (ETDEWEB)

    Grain, J. [Laboratory for Subatomic Physics and Cosmology, Grenoble Universites, CNRS, IN2P3, 53, avenue de Martyrs, 38026 Grenoble cedex (France)]|[AstroParticle and Cosmology, Universite Paris 7, CNRS, IN2P3, 10, rue Alice Domon et Leonie Duquet, 75205 Paris cedex 13 (France); Barrau, A. [Laboratory for Subatomic Physics and Cosmology, Grenoble Universites, CNRS, IN2P3, 53, avenue de Martyrs, 38026 Grenoble cedex (France)

    2007-05-15

    The phenomenology of quantum systems in curved space-times is among the most fascinating fields of physics, allowing - often at the Gedanken experiment level - constraints on tentative theories of quantum gravity. Determining the dynamics of fields in curved backgrounds remains however a complicated task because of the highly intricate partial differential equations involved, especially when the space metric exhibits no symmetry. In this article, we provide - in a pedagogical way - a general formalism to determine this dynamics at the semi-classical order. To this purpose, a generic expression for the semi-classical propagator is computed and the equation of motion for the probability four-current is derived. Those results underline a direct analogy between the computation of the propagator in general relativistic quantum mechanics and the computation of the propagator for stationary systems in non-relativistic quantum mechanics. (authors)

  13. Semi-classical scalar propagators in curved backgrounds: formalism and ambiguities

    International Nuclear Information System (INIS)

    Grain, J.; Barrau, A.

    2007-05-01

    The phenomenology of quantum systems in curved space-times is among the most fascinating fields of physics, allowing - often at the Gedanken experiment level - constraints on tentative theories of quantum gravity. Determining the dynamics of fields in curved backgrounds remains however a complicated task because of the highly intricate partial differential equations involved, especially when the space metric exhibits no symmetry. In this article, we provide - in a pedagogical way - a general formalism to determine this dynamics at the semi-classical order. To this purpose, a generic expression for the semi-classical propagator is computed and the equation of motion for the probability four-current is derived. Those results underline a direct analogy between the computation of the propagator in general relativistic quantum mechanics and the computation of the propagator for stationary systems in non-relativistic quantum mechanics. (authors)

  14. Classical and semiclassical aspects of chemical dynamics

    International Nuclear Information System (INIS)

    Gray, S.K.

    1982-08-01

    Tunneling in the unimolecular reactions H 2 C 2 → HC 2 H, HNC → HCN, and H 2 CO → H 2 + CO is studied with a classical Hamiltonian that allows the reaction coordinate and transverse vibrational modes to be considered directly. A combination of classical perturbation theory and the semiclassical WKB method allows tunneling probabilities to be obtained, and a statistical theory (RRKM) is used to construct rate constants for these reactions in the tunneling regime. In this fashion, it is found that tunneling may be important, particularly for low excitation energies. Nonadiabatic charge transfer in the reaction Na + I → Na + + I - is treated with classical trajectories based on a classical Hamiltonian that is the analogue of a quantum matrix representation. The charge transfer cross section obtained is found to agree reasonably well with the exact quantum results. An approximate semiclassical formula, valid at high energies, is also obtained. The interaction of radiation and matter is treated from a classical viewpoint. The excitation of an HF molecule in a strong laser is described with classical trajectories. Quantum mechanical results are also obtained and compared to the classical results. Although the detailed structure of the pulse time averaged energy absorption cannot be reproduced classically, classical mechanics does predict the correct magnitude of energy absorption, as well as certain other qualitative features. The classical behavior of a nonrotating diatomic molecule in a strong laser field is considered further, by generating a period advance map that allows the solution over many periods of oscillation of the laser to be obtained with relative ease. Classical states are found to form beautiful spirals in phase space as time progresses. A simple pendulum model is found to describe the major qualitative features

  15. Microscopic Electron Dynamics in Metal Nanoparticles for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Katarzyna Kluczyk

    2018-06-01

    Full Text Available Nanoparticles—regularly patterned or randomly dispersed—are a key ingredient for emerging technologies in photonics. Of particular interest are scattering and field enhancement effects of metal nanoparticles for energy harvesting and converting systems. An often neglected aspect in the modeling of nanoparticles are light interaction effects at the ultimate nanoscale beyond classical electrodynamics. Those arise from microscopic electron dynamics in confined systems, the accelerated motion in the plasmon oscillation and the quantum nature of the free electron gas in metals, such as Coulomb repulsion and electron diffusion. We give a detailed account on free electron phenomena in metal nanoparticles and discuss analytic expressions stemming from microscopic (Random Phase Approximation—RPA and semi-classical (hydrodynamic theories. These can be incorporated into standard computational schemes to produce more reliable results on the optical properties of metal nanoparticles. We combine these solutions into a single framework and study systematically their joint impact on isolated Au, Ag, and Al nanoparticles as well as dimer structures. The spectral position of the plasmon resonance and its broadening as well as local field enhancement show an intriguing dependence on the particle size due to the relevance of additional damping channels.

  16. Charge dynamics in graphene and graphene superlattices under a high-frequency electric field: a semiclassical approach

    International Nuclear Information System (INIS)

    Kryuchkov, S V; Kukhar’, E I; Zav’yalov, D V

    2013-01-01

    The semiclassical theory of the dynamics of the charge carriers in graphene and in graphene superlattices exposed to a high-frequency electric field is developed. The dispersion law of the solid averaged over the period of the high-frequency electric field is found with the Kapitza method. The band gap in graphene is shown to arise under a high-frequency electric field polarized circularly. The effective mass of charge carriers in the center of the Brillouin band of the graphene superlattice is found to change sign under certain values of the amplitude of the high-frequency field. These values are shown to determine the bounds of the regions of the electromagnetic 2π-pulse stability. The dynamics of the π-pulse in a graphene superlattice is studied. (paper)

  17. Modified method of perturbed stationary states. II. Semiclassical and low-velocity quantal approximations

    International Nuclear Information System (INIS)

    Green, T.A.

    1978-10-01

    For one-electron heteropolar systems, the wave-theoretic Lagrangian of Paper I 2 is simplified in two distinct approximations. The first is semiclassical; the second is quantal, for velocities below those for which the semiclassical treatment is reliable. For each approximation, unitarity and detailed balancing are discussed. Then, the variational method as described by Demkov is used to determine the coupled equations for the radial functions and the Euler-Lagrange equations for the translational factors which are part of the theory. Specific semiclassical formulae for the translational factors are given in a many-state approximation. Low-velocity quantal formulae are obtained in a one-state approximation. The one-state results of both approximations agree with an earlier determination by Riley. 14 references

  18. A semiclassical treatment of correlation energy for nuclear systems

    International Nuclear Information System (INIS)

    Nielsen, M.

    1988-01-01

    Starting with the separation of the many-body density operator in two parts, one describing the one-body aspects of the full density and the other containing all dynamic correlations information, the semiclassical approximation for the system correlation energy, was calculated. It is showm that, in this case, the Gaussian Wave Packets Phase Space Representation is more convenient than the Wely-Wigner Rrepresentation for the analysis of the semiclassical correlation energy. Using a phenomenological interaction, the correlation energy to the nuclear matter and some simmetric finite nucleus was calculated. The Fermi Surface Diffusivity, was also calculated. Finally, from the relation between this theory and the pertubation theory, we have done some considerations about the viability on the local densities expansion for energy functionals. (author) [pt

  19. Interior design of a two-dimensional semiclassical black hole: Quantum transition across the singularity

    International Nuclear Information System (INIS)

    Levanony, Dana; Ori, Amos

    2010-01-01

    We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.

  20. Interior design of a two-dimensional semiclassical black hole: Quantum transition across the singularity

    Science.gov (United States)

    Levanony, Dana; Ori, Amos

    2010-05-01

    We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.

  1. Comparative study of quantal and semiclassical treatments of charge transfer between O+ and He

    Science.gov (United States)

    Zhao, L. B.; Joseph, D. C.; Saha, B. C.; Liebermann, H. P.; Funke, P.; Buenker, R. J.

    2009-03-01

    A comparative study for the electron capture process O+(S40,D20,P20)+He→O(P3)+He+ is reported. The cross sections are calculated using fully quantal and semiclassical molecular-orbital close-coupling (MOCC) approaches in the adiabatic representation. Detailed comparison of transition probabilities and cross sections is made from both MOCC approaches and displays close agreement above ˜125eV/u . The remarkable discrepancies between the earlier semiclassical and quantal MOCC approaches may be attributed to the insufficient step-size resolution in their semiclassical calculation [M. Kimura , Phys. Rev. A 50, 4854 (1994)]. Our results have also been compared with experiment and found to be in good agreement.

  2. Quantum effects in biological electron transfer

    Czech Academy of Sciences Publication Activity Database

    de la Lande, A.; Babcock, N. S.; Řezáč, Jan; Levy, B.; Sanders, B. C.; Salahub, D.

    2012-01-01

    Roč. 14, č. 17 (2012), s. 5902-5918 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z40550506 Keywords : electron transfer * tunnelling * decoherence * semi-classical molecular dynamics * density functional theory Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.829, year: 2012

  3. Signatures of unstable semiclassical trajectories in tunneling

    International Nuclear Information System (INIS)

    Levkov, D G; Panin, A G; Sibiryakov, S M

    2009-01-01

    It was found recently that processes of multidimensional tunneling are generally described at high energies by unstable semiclassical trajectories. We study two observational signatures related to the instability of trajectories. First, we find an additional power-law dependence of the tunneling probability on the semiclassical parameter as compared to the standard case of potential tunneling. The second signature is a substantial widening of the probability distribution over final-state quantum numbers. These effects are studied using a modified semiclassical technique which incorporates stabilization of the tunneling trajectories. The technique is derived from first principles. We obtain expressions for the inclusive and exclusive tunneling probabilities in the case of unstable semiclassical trajectories. We also investigate the 'phase transition' between the cases of stable and unstable trajectories across certain 'critical' values of energy. Finally, we derive the relation between the semiclassical probabilities of tunneling from the low-lying and highly excited initial states. This puts on firm ground a conjecture made previously in the semiclassical description of collision-induced tunneling in field theory

  4. A derivation of the Derbenev-Kondratenko formula using semi-classical electrodynamics

    International Nuclear Information System (INIS)

    Mane, S.R.

    1985-11-01

    We present a detailed exposition of the mechanism for the build-up of polarization in electron storage rings. A semi-classical approach is used to derive the rate of growth and asymptotic degree of polarization in an electron storage ring (the Derbenev-Kondratenko formula). Statistical mechanical concepts used to obtain as classical an understanding as possible of this phenomenon. (orig.)

  5. Some applications of semiclassical methods to quantum chaos

    International Nuclear Information System (INIS)

    Mouchet, A.

    1996-01-01

    This thesis is made of four chapters. The first chapter is devoted to the description of the band structure, using the semiclassical periodic orbit theory, for a one electron system in a two-dimensional crystal with a high magnetic field perpendicular to the crystal plane. Complex orbits turn out to be fundamental for a proper description of the band structure since they incorporate conduction processes through tunneling mechanisms. In the second part, the author focuses on the role played in semiclassical expansions by complex orbits. They give exponentially small contribution when h is small only in a precise situation. In all other cases, complex orbits give birth to corrections in powers in h but unlike the extreme case they are hidden in the shadow of usual Gutzwiller contributions of real orbits. In the third chapter, a semiclassical expansion of the Berry two-form in terms of finite number of periodic orbits for a discrete chaotic map defined on a compact phase space and governed by external parameters is given. Besides, when dealing with a toroidal geometry, the author gives a similar expansion for the Chern index of any Bloch band of the quasi-energy spectrum and is thus led to a semiclassical interpretation of the Hall effect. In the last chapter, the author sets out a mechanism to explain how symmetries can create Berry phase shifts higher than 2π in a 3D-adiabatic transport. He shows how one can understand in a topological point of view why these shifts are necessarily integer multiple of 2π. An explicit construction of such arbitrary large phase shifts is finally proposed. (N.T.)

  6. Semiclassical description of resonant tunneling

    International Nuclear Information System (INIS)

    Bogomolny, E.B.; Rouben, D.C.

    1996-01-01

    A semiclassical formula is calculated for the tunneling current of electrons trapped in a potential well which can tunnel into and across a wide quantum well. The tunneling current is measured at the second interface of this well and the calculations idealized an experimental situation where a strong magnetic field tilted with respect to an electric field was used. It is shown that the contribution to the tunneling current, due to trajectories which begin at the first interface and end on the second, is dominant for periodic orbits which hit both walls of the quantum well. (author)

  7. Remnants of semiclassical bistability in the few-photon regime of cavity QED.

    Science.gov (United States)

    Kerckhoff, Joseph; Armen, Michael A; Mabuchi, Hideo

    2011-11-21

    Broadband homodyne detection of the light transmitted by a Fabry-Perot cavity containing a strongly-coupled (133)Cs atom is used to probe the dynamic optical response in a regime where semiclassical theory predicts bistability but strong quantum corrections should apply. While quantum fluctuations destabilize true equilibrium bistability, our observations confirm the existence of metastable states with finite lifetimes and a hysteretic response is apparent when the optical drive is modulated on comparable timescales. Our experiment elucidates remnant semiclassical behavior in the attojoule (~10 photon) regime of single-atom cavity QED, of potential significance for ultra-low power photonic signal processing. © 2011 Optical Society of America

  8. Nonadiabatic Dynamics May Be Probed through Electronic Coherence in Time-Resolved Photoelectron Spectroscopy.

    Science.gov (United States)

    Bennett, Kochise; Kowalewski, Markus; Mukamel, Shaul

    2016-02-09

    We present a hierarchy of Fermi golden rules (FGRs) that incorporate strongly coupled electronic/nuclear dynamics in time-resolved photoelectron spectroscopy (TRPES) signals at different levels of theory. Expansion in the joint electronic and nuclear eigenbasis yields the numerically most challenging exact FGR (eFGR). The quasistatic Fermi Golden Rule (qsFGR) neglects nuclear motion during the photoionization process but takes into account electronic coherences as well as populations initially present in the pumped matter as well as those generated internally by coupling between electronic surfaces. The standard semiclassical Fermi Golden Rule (scFGR) neglects the electronic coherences and the nuclear kinetic energy during the ionizing pulse altogether, yielding the classical Condon approximation. The coherence contributions depend on the phase-profile of the ionizing field, allowing coherent control of TRPES signals. The photoelectron spectrum from model systems is simulated using these three levels of theory. The eFGR and the qsFGR show temporal oscillations originating from the electronic or vibrational coherences generated as the nuclear wave packet traverses a conical intersection. These oscillations, which are missed by the scFGR, directly reveal the time-evolving splitting between electronic states of the neutral molecule in the curve-crossing regime.

  9. Semiclassical versus exact quantization of the Sinh-Gordon model

    Energy Technology Data Exchange (ETDEWEB)

    Grossehelweg, Juliane

    2009-12-15

    In this work we investigate the semiclassics of the Sinh-Gordon model. The Sinh-Gordon model is integrable, its explicit solutions of the classical and the quantum model are well known. This allows for a comprehensive investigation of the semiclassical quantization of the classical model as well as of the semiclassical limit of the exact quantum solution. Semiclassical means in this case that the key objects of quantum theory are constructed as formal power series. A quantity playing an important role in the quantum theory is the Q-function. The purpose of this work is to investigate to what extend the classical integrability of the model admits of a construction of the semiclassical expansion of the Q-function. Therefore we used two conceptual independent approaches. In the one approach we start from the exact nonperturbative solution of the quantum model and calculate the semiclassical limit up to the next to leading order. Thereby we found the spectral curve, as well as the semiclassical expansion of the Q-function and of the eigenvalue of the monodromy matrix. In the other approach we constructed the first two orders of the semiclassical expansion of the Q-function, starting from the classical solution theory. The results of both approaches coincide. (orig.)

  10. Semiclassical Path Integral Calculation of Nonlinear Optical Spectroscopy.

    Science.gov (United States)

    Provazza, Justin; Segatta, Francesco; Garavelli, Marco; Coker, David F

    2018-02-13

    Computation of nonlinear optical response functions allows for an in-depth connection between theory and experiment. Experimentally recorded spectra provide a high density of information, but to objectively disentangle overlapping signals and to reach a detailed and reliable understanding of the system dynamics, measurements must be integrated with theoretical approaches. Here, we present a new, highly accurate and efficient trajectory-based semiclassical path integral method for computing higher order nonlinear optical response functions for non-Markovian open quantum systems. The approach is, in principle, applicable to general Hamiltonians and does not require any restrictions on the form of the intrasystem or system-bath couplings. This method is systematically improvable and is shown to be valid in parameter regimes where perturbation theory-based methods qualitatively breakdown. As a test of the methodology presented here, we study a system-bath model for a coupled dimer for which we compare against numerically exact results and standard approximate perturbation theory-based calculations. Additionally, we study a monomer with discrete vibronic states that serves as the starting point for future investigation of vibronic signatures in nonlinear electronic spectroscopy.

  11. Semiclassical scattering in Yang-Mills theory

    International Nuclear Information System (INIS)

    Gould, T.M.; Poppitz, E.R.

    1994-01-01

    A classical solution to the Yang-Mills theory is given a semiclassical interpretation. The boundary value problem on a complex time contour which arises from the semiclassical approximation to multiparticle scattering amplitudes is reviewed and applied to the case of Yang-Mills theory. The solution describes a classically forbidden transition between states with a large average number of particles in the limit g→0. It dominates a transition probability with a semiclassical suppression factor equal to twice the action of the well-known BPST instanton. Hence, it is relevant to the problem of high-energy tunnelling. It describes transitions of unit topological charge for an appropriate time contour. Therefore, it may have a direct interpretation in terms of fermion-number violating processes in electroweak theory. The solution describes a transition between an initial state with parametrically fewer particles than the final state. Thus, it may be relevant to the study of semiclassical initial-state corrections in the limit of a small number of initial particles. The implications of these results for multiparticle production in electroweak theory are also discussed. (orig.)

  12. Semiclassical analysis of loop quantum gravity

    International Nuclear Information System (INIS)

    Conrady, F.

    2005-01-01

    In this Ph.D. thesis, we explore and develop new methods that should help in determining an effective semiclassical description of canonical loop quantum gravity and spin foam gravity. A brief introduction to loop quantum gravity is followed by three research papers that present the results of the Ph.D. project. In the first article, we deal with the problem of time and a new proposal for implementing proper time as boundary conditions in a sum over histories: we investigate a concrete realization of this formalism for free scalar field theory. In the second article, we translate semiclassical states of linearized gravity into states of loop quantum gravity. The properties of the latter indicate how semiclassicality manifests itself in the loop framework, and how this may be exploited for doing semiclassical expansions. In the third part, we propose a new formulation of spin foam models that is fully triangulation- and background-independent: by means of a symmetry condition, we identify spin foam models whose triangulation-dependence can be naturally removed. (orig.)

  13. Semiclassical analysis of loop quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Conrady, F.

    2005-10-17

    In this Ph.D. thesis, we explore and develop new methods that should help in determining an effective semiclassical description of canonical loop quantum gravity and spin foam gravity. A brief introduction to loop quantum gravity is followed by three research papers that present the results of the Ph.D. project. In the first article, we deal with the problem of time and a new proposal for implementing proper time as boundary conditions in a sum over histories: we investigate a concrete realization of this formalism for free scalar field theory. In the second article, we translate semiclassical states of linearized gravity into states of loop quantum gravity. The properties of the latter indicate how semiclassicality manifests itself in the loop framework, and how this may be exploited for doing semiclassical expansions. In the third part, we propose a new formulation of spin foam models that is fully triangulation- and background-independent: by means of a symmetry condition, we identify spin foam models whose triangulation-dependence can be naturally removed. (orig.)

  14. Modified semiclassical approximation for trapped Bose gases

    International Nuclear Information System (INIS)

    Yukalov, V.I.

    2005-01-01

    A generalization of the semiclassical approximation is suggested allowing for an essential extension of its region of applicability. In particular, it becomes possible to describe Bose-Einstein condensation of a trapped gas in low-dimensional traps and in traps of low confining dimensions, for which the standard semiclassical approximation is not applicable. The result of the modified approach is shown to coincide with purely quantum-mechanical calculations for harmonic traps, including the one-dimensional harmonic trap. The advantage of the semiclassical approximation is in its simplicity and generality. Power-law potentials of arbitrary powers are considered. The effective thermodynamic limit is defined for any confining dimension. The behavior of the specific heat, isothermal compressibility, and density fluctuations is analyzed, with an emphasis on low confining dimensions, where the usual semiclassical method fails. The peculiarities of the thermodynamic characteristics in the effective thermodynamic limit are discussed

  15. Modeling non-adiabatic photoexcited reaction dynamics in condensed phases

    International Nuclear Information System (INIS)

    Coker, D.F.

    2003-01-01

    Reactions of photoexcited molecules, ions, and radicals in condensed phase environments involve non-adiabatic dynamics over coupled electronic surfaces. We focus on how local environmental symmetries can effect non-adiabatic coupling between excited electronic states and thus influence, in a possibly controllable way, the outcome of photo-excited reactions. Semi-classical and mixed quantum-classical non-adiabatic molecular dynamics methods, together with semi-empirical excited state potentials are used to probe the dynamical mixing of electronic states in different environments from molecular clusters, to simple liquids and solids, and photo-excited reactions in complex reaction environments such as zeolites

  16. Semi-classical quantization of chaotic billiards

    International Nuclear Information System (INIS)

    Smilansky, U.

    1992-02-01

    The semi-classical quantization of chaotic billiards will be developed using scattering theory approach. This will be used to introduce and explain the inherent difficulties in the semi-classical quantization of chaos, and to show some of the modern tools which were developed recently to overcome these difficulties. To this end, we shall first obtain a semi-classical secular equation which is based on a finite number of classical periodic orbits. We shall use it to derive some spectral properties, and in particular to investigate the relationship between spectral statistics of quantum chaotic systems and the predictions of random-matrix theory. We shall finally discuss an important family of chaotic billiard, whose statistics does not follow any of the canonical ensembles, (GOE,GUE,...) but rather, corresponds to a new universality class. (author)

  17. On the semiclassical description of rotating nuclei

    International Nuclear Information System (INIS)

    Durand, M.; Kunz, J.; Schuck, P.

    1983-01-01

    The technique of partial h-resummation is used to obtain semiclassical, i.e. average current distributions in the body fixed system of heavy nuclei. It thereby turns out that this average intrinsic current only flows in the nuclear surface. A Strutinsky smoothing of the current is also performed and gives nice agreement with the semiclassical results. We also show how one can incorporate superfluidity into the semiclassical treatment. To lowest order in h we find that the moment of inertia of superfluid nuclei is zero. The same result is obtained by a quantum mechanical calculation if the gap goes to infinity. The importance of including n-corrections is pointed out

  18. Damping in nuclear collective modes in a semiclassical fluid-dynamical approximation

    International Nuclear Information System (INIS)

    Vignolo, C.E.; Hernandez, Susana

    1989-01-01

    A semiclassical fluiddynamical model based on an usual scaling approximation (SCA) was extended to investigate the role of one and two-body dissipation in the widths of nuclear collective modes. The competition between one and two-body viscosity in: i) the collisionless (elastic) limit; ii) the hydrodynamical case and iii) the general viscoelastic regime is examined over the whole range of nuclear collision time scales. Numerical solutions are investigated for the first magnetic 2 - twist mode in 208 Pb. (Author) [es

  19. Semiclassical description of resonant tunnel effect: bifurcations and periodic orbits in the resonant current

    International Nuclear Information System (INIS)

    Rouben, D.C.

    1997-01-01

    A semiclassical method for resonant tunneling in a quantum well in the presence of a magnetic field tilted with regard to an electric field is developed. In particular a semiclassical formula is derived for the total current of electrons after the second barrier of the quantum well. The contribution of the stable and unstable orbits is studied. It appears that the parameters which describe the classical chaos in the quantum well have an important effect on the tunneling current. A numerical experiment is led, the contributions to the current of some particular orbits are evaluated and the results are compared with those given by the quantum theory. (A.C.)

  20. Semiclassical description of scattering with internal degrees of freedom

    International Nuclear Information System (INIS)

    Cruz-Barrios, S.; Gomez-Camacho, J.

    1998-01-01

    The scattering of systems with internal degrees of freedom is studied in the semi-classical approximation. It is found that a special set of states, named coherent internal states, are specially relevant for the semi-classical treatment. A classical trajectory is defined for each coherent internal state. The semi-classical expressions obtained satisfy the superposition principle and are valid for arbitrary coupling strength. (orig.)

  1. Semiclassical analysis spectral correlations in mesoscopic systems

    International Nuclear Information System (INIS)

    Argaman, N.; Imry, Y.; Smilansky, U.

    1991-07-01

    We consider the recently developed semiclassical analysis of the quantum mechanical spectral form factor, which may be expressed in terms of classically defiable properties. When applied to electrons whose classical behaviour is diffusive, the results of earlier quantum mechanical perturbative derivations, which were developed under a different set of assumptions, are reproduced. The comparison between the two derivations shows that the results depends not on their specific details, but to a large extent on the principle of quantum coherent superposition, and on the generality of the notion of diffusion. The connection with classical properties facilitates application to many physical situations. (author)

  2. Semiclassical propagation of Wigner functions.

    Science.gov (United States)

    Dittrich, T; Gómez, E A; Pachón, L A

    2010-06-07

    We present a comprehensive study of semiclassical phase-space propagation in the Wigner representation, emphasizing numerical applications, in particular as an initial-value representation. Two semiclassical approximation schemes are discussed. The propagator of the Wigner function based on van Vleck's approximation replaces the Liouville propagator by a quantum spot with an oscillatory pattern reflecting the interference between pairs of classical trajectories. Employing phase-space path integration instead, caustics in the quantum spot are resolved in terms of Airy functions. We apply both to two benchmark models of nonlinear molecular potentials, the Morse oscillator and the quartic double well, to test them in standard tasks such as computing autocorrelation functions and propagating coherent states. The performance of semiclassical Wigner propagation is very good even in the presence of marked quantum effects, e.g., in coherent tunneling and in propagating Schrodinger cat states, and of classical chaos in four-dimensional phase space. We suggest options for an effective numerical implementation of our method and for integrating it in Monte-Carlo-Metropolis algorithms suitable for high-dimensional systems.

  3. Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation

    Science.gov (United States)

    Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui

    2014-01-01

    Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904

  4. Quantum tunneling beyond semiclassical approximation

    International Nuclear Information System (INIS)

    Banerjee, Rabin; Majhi, Bibhas Ranjan

    2008-01-01

    Hawking radiation as tunneling by Hamilton-Jacobi method beyond semiclassical approximation is analysed. We compute all quantum corrections in the single particle action revealing that these are proportional to the usual semiclassical contribution. We show that a simple choice of the proportionality constants reproduces the one loop back reaction effect in the spacetime, found by conformal field theory methods, which modifies the Hawking temperature of the black hole. Using the law of black hole mechanics we give the corrections to the Bekenstein-Hawking area law following from the modified Hawking temperature. Some examples are explicitly worked out.

  5. Second order semiclassics with self-generated magnetic fields

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    $ effectively determines the strength of the field. We consider the weak field regime with $\\beta h^{2}\\ge {const}>0$, where $h$ is the semiclassical parameter. For smooth potentials we prove that the semiclassical asymptotics of the total energy is given by the non-magnetic Weyl term to leading order...... with an error bound that is smaller by a factor $h^{1+\\e}$, i.e. the subleading term vanishes. However, for potentials with a Coulomb singularity the subleading term does not vanish due to the non-semiclassical effect of the singularity. Combined with a multiscale technique, this refined estimate is used...

  6. Numerical solutions of ideal quantum gas dynamical flows governed by semiclassical ellipsoidal-statistical distribution.

    Science.gov (United States)

    Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin

    2014-01-08

    The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al . 2012 Proc. R. Soc. A 468 , 1799-1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi-Dirac or Bose-Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas.

  7. Numerical solutions of ideal quantum gas dynamical flows governed by semiclassical ellipsoidal-statistical distribution

    Science.gov (United States)

    Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin

    2014-01-01

    The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al. 2012 Proc. R. Soc. A 468, 1799–1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi–Dirac or Bose–Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas. PMID:24399919

  8. Semiclassical theory of plate vibrations

    International Nuclear Information System (INIS)

    Bogomolny, E.; Hugues, E.

    1996-11-01

    The bi-harmonic equation of flexural vibrations of elastic plates is studied by a semiclassical method which can easily be generalized for other models of wave propagation. The surface and perimeter terms of the asymptotic number of levels are derived exactly. The next constant term is also derived. A semiclassical approximation of the quantization condition is obtained. A Berry-Tabor formula and a Gutzwiller trace formula are deduced for the integrable and chaotic cases respectively. From 600 eigenvalues of a clamped stadium plate obtained by a specially developed numerical algorithm, the trace formula is assessed, looking at its Fourier transform compared with the membrane case. (author)

  9. Semiclassical shell structure in rotating Fermi systems

    International Nuclear Information System (INIS)

    Magner, A. G.; Sitdikov, A. S.; Khamzin, A. A.; Bartel, J.

    2010-01-01

    The collective moment of inertia is derived analytically within the cranking model for any rotational frequency of the harmonic-oscillator potential well and at a finite temperature. Semiclassical shell-structure components of the collective moment of inertia are obtained for any potential by using the periodic-orbit theory. We found semiclassically their relation to the free-energy shell corrections through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. The shell effects in the moment of inertia exponentially disappear with increasing temperature. For the case of the harmonic-oscillator potential, one observes a perfect agreement of the semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures.

  10. Combinatorial theory of the semiclassical evaluation of transport moments. I. Equivalence with the random matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Berkolaiko, G., E-mail: berko@math.tamu.edu [Department of Mathematics, Texas A and M University, College Station, Texas 77843-3368 (United States); Kuipers, J., E-mail: Jack.Kuipers@physik.uni-regensburg.de [Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg (Germany)

    2013-11-15

    To study electronic transport through chaotic quantum dots, there are two main theoretical approaches. One involves substituting the quantum system with a random scattering matrix and performing appropriate ensemble averaging. The other treats the transport in the semiclassical approximation and studies correlations among sets of classical trajectories. There are established evaluation procedures within the semiclassical evaluation that, for several linear and nonlinear transport moments to which they were applied, have always resulted in the agreement with random matrix predictions. We prove that this agreement is universal: any semiclassical evaluation within the accepted procedures is equivalent to the evaluation within random matrix theory. The equivalence is shown by developing a combinatorial interpretation of the trajectory sets as ribbon graphs (maps) with certain properties and exhibiting systematic cancellations among their contributions. Remaining trajectory sets can be identified with primitive (palindromic) factorisations whose number gives the coefficients in the corresponding expansion of the moments of random matrices. The equivalence is proved for systems with and without time reversal symmetry.

  11. Semiclassical model of atomic collisions: stopping and capture of the heavy charged particles and exotic atom formation

    International Nuclear Information System (INIS)

    Beck, W.A.

    2000-01-01

    The semiclassical model of atomic collisions, especially in different areas of the maximum stopping, when proton collides at the velocity of the boron order velocity, providing as the result for interactions of many bodies with an electron target, enabling application of the model with high degree of confidence to a clearly expressed experimental problem, such the antiproton capture on helium, is presented. The semiclassical collision model and stopping energy are considered. The stopping and capture of negatively-charged particles are investigated. The capture and angular moments of antiprotons, captures at the end of the collision cascade, are presented [ru

  12. Geometry-based approach to studying the semi-classical limit in quantum dynamics by the coherent states and quantum mechanics on the torus

    International Nuclear Information System (INIS)

    Faure, F.

    1993-01-01

    This thesis deals with problems linked to the study of the semi-classical limit in quantum dynamics. The first part presents a geometrical formulation which is tantamount to the time dependent variational principle. The classical dynamics is considered as an orthogonal projection of the quantum dynamics on the family of coherent states. The angle of projection provides an information on the validity of the approximation. This angle is studied in an illustrating example. In the second part, we study quantum mechanics on the torus as a phase space, and particularly degeneracies in the spectrum of Harper like models or kicked Harper like models which manifest chaotic dynamics. These models find direct applications in solid state physics, especially with the quantum Hall effect. In this study, we use the Chern index, which is a topological characterization of the localization of the eigenfunctions as some periodicity conditions are changed. The use of the Husimi distribution provides a phase space representation of the quantum states. We discuss the role played by separatrix-states, by the effects of quantum tunneling, and by a classically chaotic dynamics. (orig.)

  13. Semi-classical signal analysis

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Cré peau, Emmanuelle; Sorine, Michel

    2012-01-01

    This study introduces a new signal analysis method, based on a semi-classical approach. The main idea in this method is to interpret a pulse-shaped signal as a potential of a Schrödinger operator and then to use the discrete spectrum

  14. Semiclassical multicomponent wave function

    NARCIS (Netherlands)

    Mostovoy, M.V.

    A consistent method for obtaining the semiclassical multicomponent wave function for any value of adiabatic parameter is discussed and illustrated by examining the motion of a neutral particle in a nonuniform magnetic field. The method generalizes the Bohr-Sommerfeld quantization rule to

  15. Few-body semiclassical approach to nucleon transfer and emission reactions

    Directory of Open Access Journals (Sweden)

    Sultanov Renat A.

    2014-04-01

    Full Text Available A three-body semiclassical model is proposed to describe the nucleon transfer and emission reactions in a heavy-ion collision. In this model the two heavy particles, i.e. nuclear cores A1(ZA1, MA1 and A2(ZA2, MA2, move along classical trajectories R→1(t${{\\vec R}_1}\\left( t \\right$ and R→2(t${{\\vec R}_2}\\left( t \\right$ respectively, while the dynamics of the lighter neutron (n is considered from a quantum mechanical point of view. Here, Mi are the nucleon masses and Zi are the Coulomb charges of the heavy nuclei (i = 1, 2. A Faddeev-type semiclassical formulation using realistic paired nuclear-nuclear potentials is applied so that all three channels (elastic, rearrangement and break-up are described in a unified manner. In order to solve the time-dependent equations the Faddeev components of the total three-body wave-function are expanded in terms of the input and output channel target eigenfunctions. In the special case, when the nuclear cores are identical (A1 ≡ A2 and also the two-level approximation in the expansion over the target (subsystem functions is used, the time-dependent semiclassical Faddeev equations are resolved in an explicit way. To determine the realistic R→1(t${{\\vec R}_1}\\left( t \\right$ and R→2(t${{\\vec R}_2}\\left( t \\right$ trajectories of the nuclear cores, a self-consistent approach based on the Feynman path integral theory is applied.

  16. Regular black holes from semi-classical down to Planckian size

    Science.gov (United States)

    Spallucci, Euro; Smailagic, Anais

    In this paper, we review various models of curvature singularity free black holes (BHs). In the first part of the review, we describe semi-classical solutions of the Einstein equations which, however, contains a “quantum” input through the matter source. We start by reviewing the early model by Bardeen where the metric is regularized by-hand through a short-distance cutoff, which is justified in terms of nonlinear electro-dynamical effects. This toy-model is useful to point-out the common features shared by all regular semi-classical black holes. Then, we solve Einstein equations with a Gaussian source encoding the quantum spread of an elementary particle. We identify, the a priori arbitrary, Gaussian width with the Compton wavelength of the quantum particle. This Compton-Gauss model leads to the estimate of a terminal density that a gravitationally collapsed object can achieve. We identify this density to be the Planck density, and reformulate the Gaussian model assuming this as its peak density. All these models, are physically reliable as long as the BH mass is big enough with respect to the Planck mass. In the truly Planckian regime, the semi-classical approximation breaks down. In this case, a fully quantum BH description is needed. In the last part of this paper, we propose a nongeometrical quantum model of Planckian BHs implementing the Holographic Principle and realizing the “classicalization” scenario recently introduced by Dvali and collaborators. The classical relation between the mass and radius of the BH emerges only in the classical limit, far away from the Planck scale.

  17. Numerical approaches to complex quantum, semiclassical and classical systems

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Gerald

    2008-11-03

    anharmonicity. To this end we consider the linearised semiclassical propagator method, the Wigner-Moyal approach and the recently proposed quantum tomography. Finally, in chapter 4 we calculate the dynamics of a classical many-particle system under the influence of external fields. Considering a low-temperature rf-plasma, we investigate the interplay of the plasma dynamics and the motion of dust particles, immersed into the plasma for diagnostic reasons. (orig.)

  18. Numerical approaches to complex quantum, semiclassical and classical systems

    International Nuclear Information System (INIS)

    Schubert, Gerald

    2008-01-01

    anharmonicity. To this end we consider the linearised semiclassical propagator method, the Wigner-Moyal approach and the recently proposed quantum tomography. Finally, in chapter 4 we calculate the dynamics of a classical many-particle system under the influence of external fields. Considering a low-temperature rf-plasma, we investigate the interplay of the plasma dynamics and the motion of dust particles, immersed into the plasma for diagnostic reasons. (orig.)

  19. Spectral line shape simulation for electron stark-broadening of ion emitters in plasmas

    International Nuclear Information System (INIS)

    Dufour, Emmanuelle; Calisti, Annette; Talin, Bernard; Gigosos, Marco A.; Gonzalez, Manuel A.; Dufty, Jim W.

    2002-01-01

    Electron broadening for ions in plasmas is investigated in the framework of a simplified semi-classical model involving an ionic emitter imbedded in an electron gas. A regularized Coulomb potential that removes the divergence at short distances is postulated for the ion-electron interaction. Line shape simulations based on Molecular Dynamics for the ion impurity and the electrons, accounting for all the correlations, are reported. Comparisons with line shapes obtained with a quasi-particle model show expected correlation effects. Through an analysis of the results with the line shape code PPP, it is inferred that the correlation effect results mainly from the microfield dynamic properties

  20. Semi-classical derivation of charge-quantization through charge-field self-interaction

    International Nuclear Information System (INIS)

    Kosok, M.; Madhyastha, V.L.

    1990-01-01

    A semi-classical synthesis of classical mechanics, wave mechanics, and special relativity yields a unique nonlinear energy-wave structure of relations (velocity triad uv = c 2 ) fundamental to modern physics. Through the above vehicle, using Maxwell's equations, charge quantization and the fine structure constant are derived. It is shown that the numerical value of the nonlinear charge-field self-interaction range for the electron is of the order of 10 -13 m, which is greater than the classical electron radius but less than the Compton wavelength of the electron. Finally, it is suggested that the structure of the electron-in-space is expressed by a self-extending nonlinear ''fractal geometry'' based on derived numerical values obtained from our model, thus opening this presentation of charge-field structure to experimental testing for possible verification

  1. Error of semiclassical eigenvalues in the semiclassical limit - an asymptotic analysis of the Sinai billiard

    Science.gov (United States)

    Dahlqvist, Per

    1999-10-01

    We estimate the error in the semiclassical trace formula for the Sinai billiard under the assumption that the largest source of error is due to penumbra diffraction: namely, diffraction effects for trajectories passing within a distance Ricons/Journals/Common/cdot" ALT="cdot" ALIGN="TOP"/>O((kR)-2/3) to the disc and trajectories being scattered in very forward directions. Here k is the momentum and R the radius of the scatterer. The semiclassical error is estimated by perturbing the Berry-Keating formula. The analysis necessitates an asymptotic analysis of very long periodic orbits. This is obtained within an approximation originally due to Baladi, Eckmann and Ruelle. We find that the average error, for sufficiently large values of kR, will exceed the mean level spacing.

  2. Semiclassical initial value treatment of wave functions

    International Nuclear Information System (INIS)

    Kay, Kenneth G.

    2010-01-01

    A semiclassical initial value approximation for time-independent wave functions, previously derived for integrable systems, is rederived in a form which allows it to be applied to more general systems. The wave function is expressed as an integral over a Lagrangian manifold that is constructed by propagating trajectories from an initial manifold formed on a Poincare surface. Even in the case of bound, integrable systems, it is unnecessary to identify action-angle variables or construct quantizing tori. The approximation is numerically tested for separable and highly chaotic two-dimensional quartic oscillator systems. For the separable (but highly anharmonic) system, the accuracy of the approximation is found to be excellent: overlaps of the semiclassical wave functions with the corresponding quantum wave functions exceed 0.999. For the chaotic system, semiclassical-quantum overlaps are found to range from 0.989 to 0.994, indicating accuracy that is still very good, despite the short classical trajectories used in the calculations.

  3. Combinatorial theory of the semiclassical evaluation of transport moments II: Algorithmic approach for moment generating functions

    Energy Technology Data Exchange (ETDEWEB)

    Berkolaiko, G. [Department of Mathematics, Texas A and M University, College Station, Texas 77843-3368 (United States); Kuipers, J. [Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg (Germany)

    2013-12-15

    Electronic transport through chaotic quantum dots exhibits universal behaviour which can be understood through the semiclassical approximation. Within the approximation, calculation of transport moments reduces to codifying classical correlations between scattering trajectories. These can be represented as ribbon graphs and we develop an algorithmic combinatorial method to generate all such graphs with a given genus. This provides an expansion of the linear transport moments for systems both with and without time reversal symmetry. The computational implementation is then able to progress several orders further than previous semiclassical formulae as well as those derived from an asymptotic expansion of random matrix results. The patterns observed also suggest a general form for the higher orders.

  4. Linearized semiclassical initial value time correlation functions with maximum entropy analytic continuation.

    Science.gov (United States)

    Liu, Jian; Miller, William H

    2008-09-28

    The maximum entropy analytic continuation (MEAC) method is used to extend the range of accuracy of the linearized semiclassical initial value representation (LSC-IVR)/classical Wigner approximation for real time correlation functions. LSC-IVR provides a very effective "prior" for the MEAC procedure since it is very good for short times, exact for all time and temperature for harmonic potentials (even for correlation functions of nonlinear operators), and becomes exact in the classical high temperature limit. This combined MEAC+LSC/IVR approach is applied here to two highly nonlinear dynamical systems, a pure quartic potential in one dimensional and liquid para-hydrogen at two thermal state points (25 and 14 K under nearly zero external pressure). The former example shows the MEAC procedure to be a very significant enhancement of the LSC-IVR for correlation functions of both linear and nonlinear operators, and especially at low temperature where semiclassical approximations are least accurate. For liquid para-hydrogen, the LSC-IVR is seen already to be excellent at T=25 K, but the MEAC procedure produces a significant correction at the lower temperature (T=14 K). Comparisons are also made as to how the MEAC procedure is able to provide corrections for other trajectory-based dynamical approximations when used as priors.

  5. Semiclassical propagator of the Wigner function.

    Science.gov (United States)

    Dittrich, Thomas; Viviescas, Carlos; Sandoval, Luis

    2006-02-24

    Propagation of the Wigner function is studied on two levels of semiclassical propagation: one based on the Van Vleck propagator, the other on phase-space path integration. Leading quantum corrections to the classical Liouville propagator take the form of a time-dependent quantum spot. Its oscillatory structure depends on whether the underlying classical flow is elliptic or hyperbolic. It can be interpreted as the result of interference of a pair of classical trajectories, indicating how quantum coherences are to be propagated semiclassically in phase space. The phase-space path-integral approach allows for a finer resolution of the quantum spot in terms of Airy functions.

  6. Diffraction and angular momentum effects in semiclassical atomic scattering theory

    International Nuclear Information System (INIS)

    Russek, A.

    1979-01-01

    The semiclassical scattering theory of Mott and Massey and Ford and Wheeler is here extended to multichannel scattering as occurs at a crossing or pseudocrossing of the transient molecule formed by the colliding atoms. The generalized theory incorporates both interference and diffraction phenomena, but the emphasis in this work is on diffraction. For small-angle scattering, diffraction effects become broader, not narrower, as the collision energy increases: ΔbΔtau > or = h[E/sub inc//(2m)]/sup 1/2/ relates the uncertainties in impact parameter b and reduced scattering angle tau = E/sub inc/theta, and determines the range in b required to resolve a structure in the deflection function of height Δtau. In the kilovolt range of collision energies, the effects of local maxima and minima in the deflection function are washed out, and the Airy-function approximation of Ford and Wheeler is inappropriate to describe the differential cross section. More generally, it is shown that at keV collision energies the stationary-phase approximation, heretofore essential in the reduction to the semiclassical limit, breaks down in the vicinity of a level crossing. An approximate theorem is proposed which remains valid in this region and elsewhere reduces to the standard stationary-phase approximation. Several illustrative examples are considered. A separate development treats the effect on the differential scattering cross section of a change in electronic angular momentum when electronic excitation occurs

  7. Semiclassical strings and non-Abelian T-duality

    Directory of Open Access Journals (Sweden)

    S. Zacarías

    2014-10-01

    Full Text Available We study semiclassical strings in the Klebanov–Witten and in the non-Abelian T-dual Klebanov–Witten backgrounds. We show that both backgrounds share a subsector of equivalent states up to conditions on the T-dual coordinates. We also analyse string configurations where the strings are stretched along the T-dual coordinates. This semiclassical analysis predicts the existence of (almost chiral primary operators for the dual superconformal field theory whose (anomalous bare dimensions depend on the T-dual coordinates. We briefly discuss the Penrose limit of the dualised background.

  8. Role of nuclear dynamics in the asymmetric molecular-frame photoelectron angular distributions for C 1s photoejection from CO2

    International Nuclear Information System (INIS)

    Miyabe, S.; Haxton, D. J.; Rescigno, T. N.; McCurdy, C. W.

    2011-01-01

    We report the results of semiclassical calculations of the asymmetric molecular-frame photoelectron angular distributions for C 1s ionization of CO 2 measured with respect to the CO + and O + ions produced by subsequent Auger decay, and show how the decay event can be used to probe ultrafast molecular dynamics of the transient cation. The fixed-nuclei photoionization amplitudes were constructed using variationally obtained electron-molecular-ion scattering wave functions. The amplitudes are then used in a semiclassical manner to investigate their dependence on the nuclear dynamics of the cation. The method introduced here can be used to study other core-level ionization events.

  9. Semiclassical calculation for collision induced dissociation. II. Morse oscillator model

    International Nuclear Information System (INIS)

    Rusinek, I.; Roberts, R.E.

    1978-01-01

    A recently developed semiclassical procedure for calculating collision induced dissociation probabilities P/sup diss/ is applied to the collinear collision between a particle and a Morse oscillator diatomic. The particle--diatom interaction is described with a repulsive exponential potential function. P/sup diss/ is reported for a system of three identical particles, as a function of collision energy E/sub t/ and initial vibrational state of the diatomic n 1 . The results are compared with the previously reported values for the collision between a particle and a truncated harmonic oscillator. The two studies show similar features, namely: (a) there is an oscillatory structure in the P/sup diss/ energy profiles, which is directly related to n 1 ; (b) P/sup diss/ becomes noticeable (> or approx. =10 -3 ) for E/sub t/ values appreciably higher than the energetic threshold; (c) vibrational enhancement (inhibition) of collision induced dissociation persists at low (high) energies; and (d) good agreement between the classical and semiclassical results is found above the classical dynamic threshold. Finally, the convergence of P/sup diss/ for increasing box length is shown to be rapid and satisfactory

  10. Coherent state methods for semi-classical heavy-ion physics

    International Nuclear Information System (INIS)

    Remaud, B.; Sebille, F.; Raffray, Y.

    1985-01-01

    A semi-classical model of many fermion systems is developed in view of solving the Vlasov equation; it provides an unified description of both static and dynamic properties of the system. The phase space distribution functions are written as convolution products of generalized coherent state distributions with semi-probabilistic weight functions. The generalized coherent states are defined from the local constants of motion of the dynamical system; they may reduce to the usuel ones (eigen states of the annihilation operator) only at the harmonic limit. Solving the Vlasov equation consists in two steps: (i) search for weight functions which properly describe the initial density distributions (ii) calculation of the evolutions of the coherent state set which acts as a moving basis for the Vlasov equation solutions. Sample applications to statics are analyzed: fermions in a harmonic field, self-consistent nuclear slabs. Outlooks of dynamical applications are discussed with a special attention to the fast nucleon emission in heavy-ion reactions

  11. Particle on a torus knot: Constrained dynamics and semi-classical quantization in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Das, Praloy, E-mail: praloydasdurgapur@gmail.com; Pramanik, Souvik, E-mail: souvick.in@gmail.com; Ghosh, Subir, E-mail: subirghosh20@gmail.com

    2016-11-15

    Kinematics and dynamics of a particle moving on a torus knot poses an interesting problem as a constrained system. In the first part of the paper we have derived the modified symplectic structure or Dirac brackets of the above model in Dirac’s Hamiltonian framework, both in toroidal and Cartesian coordinate systems. This algebra has been used to study the dynamics, in particular small fluctuations in motion around a specific torus. The spatial symmetries of the system have also been studied. In the second part of the paper we have considered the quantum theory of a charge moving in a torus knot in the presence of a uniform magnetic field along the axis of the torus in a semiclassical quantization framework. We exploit the Einstein–Brillouin–Keller (EBK) scheme of quantization that is appropriate for multidimensional systems. Embedding of the knot on a specific torus is inherently two dimensional that gives rise to two quantization conditions. This shows that although the system, after imposing the knot condition reduces to a one dimensional system, even then it has manifested non-planar features which shows up again in the study of fractional angular momentum. Finally we compare the results obtained from EBK (multi-dimensional) and Bohr–Sommerfeld (single dimensional) schemes. The energy levels and fractional spin depend on the torus knot parameters that specifies its non-planar features. Interestingly, we show that there can be non-planar corrections to the planar anyon-like fractional spin.

  12. Footprints of electron correlation in strong-field double ionization of Kr close to the sequential-ionization regime

    Science.gov (United States)

    Li, Xiaokai; Wang, Chuncheng; Yuan, Zongqiang; Ye, Difa; Ma, Pan; Hu, Wenhui; Luo, Sizuo; Fu, Libin; Ding, Dajun

    2017-09-01

    By combining kinematically complete measurements and a semiclassical Monte Carlo simulation we study the correlated-electron dynamics in the strong-field double ionization of Kr. Interestingly, we find that, as we step into the sequential-ionization regime, there are still signatures of correlation in the two-electron joint momentum spectrum and, more intriguingly, the scaling law of the high-energy tail is completely different from early predictions on the low-Z atom (He). These experimental observations are well reproduced by our generalized semiclassical model adapting a Green-Sellin-Zachor potential. It is revealed that the competition between the screening effect of inner-shell electrons and the Coulomb focusing of nuclei leads to a non-inverse-square central force, which twists the returned electron trajectory at the vicinity of the parent core and thus significantly increases the probability of hard recollisions between two electrons. Our results might have promising applications ranging from accurately retrieving atomic structures to simulating celestial phenomena in the laboratory.

  13. Thermal spin pumping mediated by magnons in the semiclassical regime

    International Nuclear Information System (INIS)

    Nakata, Kouki

    2012-01-01

    We microscopically analyze thermal spin pumping mediated by magnons, at the interface between a ferromagnetic insulator and a non-magnetic metal, in the semiclassical regime. The generation of a spin current is discussed by calculating the thermal spin transfer torque, which breaks the spin conservation law for conduction electrons and operates the coherent magnon state. Inhomogeneous thermal fluctuations between conduction electrons and magnons induce a net spin current, which is pumped into the adjacent non-magnetic metal. The pumped spin current is proportional to the temperature difference. When the effective temperature of magnons is lower than that of conduction electrons, localized spins lose spin angular momentum by emitting magnons and conduction electrons flip from down to up by absorbing all the emitted momentum, and vice versa. Magnons at the zero mode cannot contribute to thermal spin pumping because they are eliminated by the spin-flip condition. Consequently thermal spin pumping does not cost any kind of applied magnetic fields

  14. Semiclassical regime of Regge calculus and spin foams

    International Nuclear Information System (INIS)

    Bianchi, Eugenio; Satz, Alejandro

    2009-01-01

    Recent attempts to recover the graviton propagator from spin foam models involve the use of a boundary quantum state peaked on a classical geometry. The question arises whether beyond the case of a single simplex this suffices for peaking the interior geometry in a semiclassical configuration. In this paper we explore this issue in the context of quantum Regge calculus with a general triangulation. Via a stationary phase approximation, we show that the boundary state succeeds in peaking the interior in the appropriate configuration, and that boundary correlations can be computed order by order in an asymptotic expansion. Further, we show that if we replace at each simplex the exponential of the Regge action by its cosine-as expected from the semiclassical limit of spin foam models-then the contribution from the sign-reversed terms is suppressed in the semiclassical regime and the results match those of conventional Regge calculus

  15. The semiclassical approximation in the local theory of resonance inelastic interaction of slow electrons with molecules

    International Nuclear Information System (INIS)

    Kazansky, A.K.

    1984-01-01

    The semiclassical approach is developed to calculate the cross sections of vibrational excitation and dissociative attachment for diatomic molecules within the framework of the 'boomerang model'. The formulae obtained reveal the energy dependence of the cross sections on the parameters of the system. Numerical calculations for N 2 , CO, H 2 , HD and D 2 confirm the high accuracy of the method. (author)

  16. Spurious Excitations in Semiclassical Scattering Theory.

    Science.gov (United States)

    Gross, D. H. E.; And Others

    1980-01-01

    Shows how through proper handling of the nonuniform motion of semiclassical coordinates spurious excitation terms are eliminated. An application to the problem of nuclear Coulomb excitation is presented as an example. (HM)

  17. Stability and semiclassics in self-generated fields

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2013-01-01

    We consider non-interacting particles subject to a fixed external potential V and a self-generated magnetic field B. The total energy includes the field energy β∫B^2 and we minimize over all particle states and magnetic fields. In the case of spin-1/2 particles this minimization leads...... measuring the field strength in the semiclassical limit is κ=βh. We are not able to give the exact leading order semiclassical asymptotics uniformly in κ or even for fixed κ. We do however give upper and lower bounds on E with almost matching dependence on κ. In the simultaneous limit h→0 and κ→∞ we show...

  18. Microscopic and semi-classical treatments of octupole deformation in the light actinides

    International Nuclear Information System (INIS)

    Chasman, R.R.

    1984-01-01

    Microscopic and semi-classical descriptions of octupole deformation are compared. New semi-classical results, obtained with the use of a Woods-Saxon potential are presented. Comparisons with experiment are made. 21 references

  19. Separation of electron and hole dynamics in the semimetal LaSb

    Energy Technology Data Exchange (ETDEWEB)

    Han, F.; Xu, J.; Botana, A. S.; Xiao, Z. L.; Wang, Y. L.; Yang, W. G.; Chung, D. Y.; Kanatzidis, M. G.; Norman, M. R.; Crabtree, G. W.; Kwok, W. K.

    2017-09-01

    We report investigations on the magnetotransport in LaSb, which exhibits extremely large magnetoresistance (XMR). Foremost, we demonstrate that the resistivity plateau can be explained without invoking topological protection. We then determine the Fermi surface from Shubnikov–de Haas (SdH) quantum oscillation measurements and find good agreement with the bulk Fermi pockets derived from first-principles calculations. Using a semiclassical theory and the experimentally determined Fermi pocket anisotropies, we quantitatively describe the orbital magnetoresistance, including its angle dependence.We show that the origin of XMR in LaSb lies in its high mobility with diminishing Hall effect, where the high mobility leads to a strong magnetic-field dependence of the longitudinal magnetoconductance. Unlike a one-band material, when a system has two or more bands (Fermi pockets) with electron and hole carriers, the added conductance arising from the Hall effect is reduced, hence revealing the latent XMR enabled by the longitudinal magnetoconductance. With diminishing Hall effect, the magnetoresistivity is simply the inverse of the longitudinal magnetoconductivity, enabling the differentiation of the electron and hole contributions to the XMR, which varies with the strength and orientation of the magnetic field. This work demonstrates a convenient way to separate the dynamics of the charge carriers and to uncover the origin of XMR in multiband materials with anisotropic Fermi surfaces. Our approach can be readily applied to other XMR materials.

  20. Wigner measure and semiclassical limits of nonlinear Schrödinger equations

    CERN Document Server

    Zhang, Ping

    2008-01-01

    This book is based on a course entitled "Wigner measures and semiclassical limits of nonlinear Schrödinger equations," which the author taught at the Courant Institute of Mathematical Sciences at New York University in the spring of 2007. The author's main purpose is to apply the theory of semiclassical pseudodifferential operators to the study of various high-frequency limits of equations from quantum mechanics. In particular, the focus of attention is on Wigner measure and recent progress on how to use it as a tool to study various problems arising from semiclassical limits of Schrödinger-ty

  1. Kinetic theory for electron dynamics near a positive ion

    International Nuclear Information System (INIS)

    Wrighton, Jeffrey M; Dufty, James W

    2008-01-01

    A theoretical description of time correlation functions for electron properties in the presence of a positive ion of charge number Z is given. The simplest case of an electron gas distorted by a single ion is considered. A semi-classical representation with a regularized electron–ion potential is used to obtain a linear kinetic theory that is asymptotically exact at short times. This Markovian approximation includes all initial (equilibrium) electron–electron and electron–ion correlations through renormalized pair potentials. The kinetic theory is solved in terms of single-particle trajectories of the electron–ion potential and a dielectric function for the inhomogeneous electron gas. The results are illustrated by a calculation of the autocorrelation function for the electron field at the ion. The dependence on charge number Z is shown to be dominated by the bound states of the effective electron–ion potential. On this basis, a very simple practical representation of the trajectories is proposed and shown to be accurate over a wide range including strong electron–ion coupling. This simple representation is then used for a brief analysis of the dielectric function for the inhomogeneous electron gas

  2. Semiclassical geometry of integrable systems

    Science.gov (United States)

    Reshetikhin, Nicolai

    2018-04-01

    The main result of this paper is a formula for the scalar product of semiclassical eigenvectors of two integrable systems on the same symplectic manifold. An important application of this formula is the Ponzano–Regge type of asymptotic of Racah–Wigner coefficients. Dedicated to the memory of P P Kulish.

  3. A theory of electron baths: One-electron system dynamics

    International Nuclear Information System (INIS)

    McDowell, H.K.

    1992-01-01

    The second-quantized, many-electron, atomic, and molecular Hamiltonian is partitioned both by the identity or labeling of the spin orbitals and by the dynamics of the spin orbitals into a system coupled to a bath. The electron bath is treated by a molecular time scale generalized Langevin equation approach designed to include one-electron dynamics in the system dynamics. The bath is formulated as an equivalent chain of spin orbitals through the introduction of equivalent-chain annihilation and creation operators. Both the dynamics and the quantum grand canonical statistical properties of the electron bath are examined. Two versions for the statistical properties of the bath are pursued. Using a weak bath assumption, a bath statistical average is defined which allows one to achieve a reduced dynamics description of the electron system which is coupled to the electron bath. In a strong bath assumption effective Hamiltonians are obtained which reproduce the dynamics of the bath and which lead to the same results as found in the weak bath assumption. The effective (but exact) Hamiltonian is found to be a one-electron Hamiltonian. A reduced dynamics equation of motion for the system population matrix is derived and found to agree with a previous version. This equation of motion is useful for studying electron transfer in the system when coupled to an electron bath

  4. Multidimensional Quantum Mechanical Modeling of Electron Transfer and Electronic Coherence in Plant Cryptochromes: The Role of Initial Bath Conditions.

    Science.gov (United States)

    Mendive-Tapia, David; Mangaud, Etienne; Firmino, Thiago; de la Lande, Aurélien; Desouter-Lecomte, Michèle; Meyer, Hans-Dieter; Gatti, Fabien

    2018-01-11

    A multidimensional quantum mechanical protocol is used to describe the photoinduced electron transfer and electronic coherence in plant cryptochromes without any semiempirical, e.g., experimentally obtained, parameters. Starting from a two-level spin-boson Hamiltonian we look at the effect that the initial photoinduced nuclear bath distribution has on an intermediate step of this biological electron transfer cascade for two idealized cases. The first assumes a slow equilibration of the nuclear bath with respect to the previous electron transfer step that leads to an ultrafast decay with little temperature dependence; while the second assumes a prior fast bath equilibration on the donor potential energy surface leading to a much slower decay, which contrarily displays a high temperature dependence and a better agreement with previous theoretical and experimental results. Beyond Marcus and semiclassical pictures these results unravel the strong impact that the presence or not of equilibrium initial conditions has on the electronic population and coherence dynamics at the quantum dynamics level in this and conceivably in other biological electron transfer cascades.

  5. Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents

    KAUST Repository

    Athanassoulis, Agissilaos; Katsaounis, Theodoros; Kyza, Irene

    2016-01-01

    Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.

  6. Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents

    KAUST Repository

    Athanassoulis, Agissilaos

    2016-08-30

    Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.

  7. Closed almost-periodic orbits in semiclassical quantization of generic polygons

    Science.gov (United States)

    Biswas

    2000-05-01

    Periodic orbits are the central ingredients of modern semiclassical theories and corrections to these are generally nonclassical in origin. We show here that, for the class of generic polygonal billiards, the corrections are predominantly classical in origin owing to the contributions from closed almost-periodic (CAP) orbit families. Furthermore, CAP orbit families outnumber periodic families but have comparable weights. They are hence indispensable for semiclassical quantization.

  8. Microscopic theory of nuclear collective dynamics

    International Nuclear Information System (INIS)

    Sakata, Fumihiko; Marumori, Toshio; Hashimoto, Yukio; Tsukuma, Hidehiko; Yamamoto, Yoshifumi; Iwasawa, Kazuo.

    1990-10-01

    A recent development of the INS-TSUKUBA joint research project on large-amplitude collective motion is summarized by putting special emphasis on an inter-relationship between quantum chaos and nuclear spectroscopy. Aiming at introducing various concepts used in this lecture, we start with recapitulating the semi-classical theory of nuclear collective dynamics formulated within the time-dependent Hartree-Fock (TDHF) theory. The central part of the semi-classical theory is provided by the self-consistent collective coordinate (SCC) method which has been developed to properly take account of the non-linear dynamics specific for the finite many-body quantum system. A decisive role of the level crossing dynamics on the order-to-chaos transition of collective motion is discussed in detail. Extending the basic idea of the semi-classical theory, we discuss a full quantum theory of nuclear collective dynamics which allows us to properly define a concept of the quantum integrability as well as the quantum chaoticity for each eigenfunction. The lecture is arranged so as to clearly show the similar structure between the semi-classical and quantum theories of nuclear collective dynamics. Using numerical calculations, we illustrate what the quantum chaos for each eigenfunction means and relate it to the usual definition of quantum chaos for nearest neighbor level spacing statistics based on the random matrix theory. (author)

  9. MD and FFM Electron Broadening for Warm and Dense Hydrogen Plasmas

    International Nuclear Information System (INIS)

    Ferri, S.; Calisti, A.; Mosse, C.; Talin, B.; Gonzalez, M. A.; Gigosos, M. A.

    2006-01-01

    Direct integration of the semi-classical evolution equation based on Molecular Dynamics simulations (MD) and the Frequency Fluctuation Model (FFM) have long been used to synthesize spectra accounting for ion dynamics. Cross comparisons of these approaches generally show results in good agreement. Recently, interest in low temperature (Te ∼ 1eV) and high density (Ne ∼ 1018 cm-3) hydrogen plasma spectroscopy has motivated extended applications of FFM. Arising discrepancies were found to originate in electron collision operators suggesting an improper use of impact approximations for warm and dense plasma conditions. In order to clarify this point, new useful cross comparisons between MD and FFM have been carried out for electron broadening

  10. Numerical indications on the semiclassical limit of the flipped vertex

    Energy Technology Data Exchange (ETDEWEB)

    Magliaro, Elena; Perini, Claudio; Rovelli, Carlo [Centre de Physique Theorique de Luminy , Case 907, F-13288 Marseille (France)

    2008-05-07

    We introduce a technique for testing the semiclassical limit of a quantum gravity vertex amplitude. The technique is based on the propagation of a semiclassical wave packet. We apply this technique to the newly introduced 'flipped' vertex in loop quantum gravity, in order to test the intertwiner dependence of the vertex. Under some drastic simplifications, we find very preliminary, but surprisingly good numerical evidence for the correct classical limit.

  11. Some applications of semiclassical methods to quantum chaos; Quelques applications des methodes semiclassiques en chaos quantique

    Energy Technology Data Exchange (ETDEWEB)

    Mouchet, A

    1996-11-29

    This thesis is made of four chapters. The first chapter is devoted to the description of the band structure, using the semiclassical periodic orbit theory, for a one electron system in a two-dimensional crystal with a high magnetic field perpendicular to the crystal plane. Complex orbits turn out to be fundamental for a proper description of the band structure since they incorporate conduction processes through tunneling mechanisms. In the second part, the author focuses on the role played in semiclassical expansions by complex orbits. They give exponentially small contribution when h is small only in a precise situation. In all other cases, complex orbits give birth to corrections in powers in h but unlike the extreme case they are hidden in the shadow of usual Gutzwiller contributions of real orbits. In the third chapter, a semiclassical expansion of the Berry two-form in terms of finite number of periodic orbits for a discrete chaotic map defined on a compact phase space and governed by external parameters is given. Besides, when dealing with a toroidal geometry, the author gives a similar expansion for the Chern index of any Bloch band of the quasi-energy spectrum and is thus led to a semiclassical interpretation of the Hall effect. In the last chapter, the author sets out a mechanism to explain how symmetries can create Berry phase shifts higher than 2{pi} in a 3D-adiabatic transport. He shows how one can understand in a topological point of view why these shifts are necessarily integer multiple of 2{pi}. An explicit construction of such arbitrary large phase shifts is finally proposed. (N.T.).

  12. Semiclassical analysis of quasiexact solvability

    International Nuclear Information System (INIS)

    Bender, C.M.; Dunne, G.V.; Moshe, M.

    1997-01-01

    Higher-order WKB methods are used to investigate the border between the solvable and insolvable portions of the spectrum of quasiexactly solvable quantum-mechanical potentials. The analysis reveals scaling and factorization properties that are central to quasiexact solvability. These two properties define a new class of semiclassically quasiexactly solvable potentials. copyright 1997 The American Physical Society

  13. Moments of inertia in a semiclassical approach

    International Nuclear Information System (INIS)

    Benchein, K.

    1993-01-01

    Semiclassical calculations have been performed for 31 nuclei. As a result of preliminary non-fully self-consistent calculations, the moments of inertia in investigated nuclei abd spin degrees of freedom are found

  14. Semiclassical limit and well-posedness of nonlinear Schrodinger-Poisson systems

    Directory of Open Access Journals (Sweden)

    Hailiang Li

    2003-09-01

    Full Text Available This paper concerns the well-posedness and semiclassical limit of nonlinear Schrodinger-Poisson systems. We show the local well-posedness and the existence of semiclassical limit of the two models for initial data with Sobolev regularity, before shocks appear in the limit system. We establish the existence of a global solution and show the time-asymptotic behavior of a classical solutions of Schrodinger-Poisson system for a fixed re-scaled Planck constant.

  15. Semiclassical unimodular gravity

    International Nuclear Information System (INIS)

    Fiol, Bartomeu; Garriga, Jaume

    2010-01-01

    Classically, unimodular gravity is known to be equivalent to General Relativity (GR), except for the fact that the effective cosmological constant Λ has the status of an integration constant. Here, we explore various formulations of unimodular gravity beyond the classical limit. We first consider the non-generally covariant action formulation in which the determinant of the metric is held fixed to unity. We argue that the corresponding quantum theory is also equivalent to General Relativity for localized perturbative processes which take place in generic backgrounds of infinite volume (such as asymptotically flat spacetimes). Next, using the same action, we calculate semiclassical non-perturbative quantities, which we expect will be dominated by Euclidean instanton solutions. We derive the entropy/area ratio for cosmological and black hole horizons, finding agreement with GR for solutions in backgrounds of infinite volume, but disagreement for backgrounds with finite volume. In deriving the above results, the path integral is taken over histories with fixed 4-volume. We point out that the results are different if we allow the 4-volume of the different histories to vary over a continuum range. In this ''generalized'' version of unimodular gravity, one recovers the full set of Einstein's equations in the classical limit, including the trace, so Λ is no longer an integration constant. Finally, we consider the generally covariant theory due to Henneaux and Teitelboim, which is classically equivalent to unimodular gravity. In this case, the standard semiclassical GR results are recovered provided that the boundary term in the Euclidean action is chosen appropriately

  16. Decoherence and back reaction: The origin of the semiclassical Einstein equations

    International Nuclear Information System (INIS)

    Paz, J.P.; Sinha, S.

    1991-01-01

    Two basic properties defining classical behavior are ''decoherence'' and ''correlations between coordinates and momenta.'' We study how the correlations that define the semiclassical decohering histories of the relevant cosmological variables are affected by the interaction with an environment formed by unobserved (''irrelevant'') degrees of freedom. For some quantum cosmological models we analyze under what conditions the semiclassical coarse-grained histories obey the so-called semiclassical Einstein's equations (i.e., G μν =κ left-angle T μν right-angle). These equations are shown to be valid only as a description of adiabatic regions of histories for which the interference effects have been suppressed. We also discuss the problem related to the existence of divergences in the decoherence factor of various quantum cosmological models

  17. Thermoelectric properties of fully hydrogenated graphene: Semi-classical Boltzmann theory

    International Nuclear Information System (INIS)

    Reshak, A. H.

    2015-01-01

    Based on the calculated band structure, the electronic transport coefficients of chair-/boat-like graphane were evaluated by using the semi-classical Boltzmann theory and rigid band model. The maximum value of electrical conductivity for chair (boat)-like graphane of about 1.4 (0.6) × 10 19 (Ωms) −1 is achieved at 600 K. The charge carrier concentration and the electrical conductivity linearly increase with increasing the temperature in agreement with the experimental work for graphene. The investigated materials exhibit the highest value of Seebeck coefficient at 300 K. We should emphasize that in the chemical potential between ∓0.125 μ(eV) the investigated materials exhibit minimum value of electronic thermal conductivity, therefore, maximum efficiency. As the temperature increases, the electronic thermal conductivity increases exponentially, in agreement with the experimental data of graphene. We also calculated the power factor of chair-/boat-like graphane at 300 and 600 K as a function of chemical potential between ∓0.25 μ(eV)

  18. Semi-classical signal analysis

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2012-09-30

    This study introduces a new signal analysis method, based on a semi-classical approach. The main idea in this method is to interpret a pulse-shaped signal as a potential of a Schrödinger operator and then to use the discrete spectrum of this operator for the analysis of the signal. We present some numerical examples and the first results obtained with this method on the analysis of arterial blood pressure waveforms. © 2012 Springer-Verlag London Limited.

  19. Semiclassical S-matrix for black holes

    CERN Document Server

    Bezrukov, Fedor; Sibiryakov, Sergey

    2015-01-01

    We propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(-B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states. The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordstrom black hole. Our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.

  20. A semiclassical approach to many-body interference in Fock-space

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Thomas

    2015-11-01

    Many-body systems draw ever more physicists' attention. Such an increase of interest often comes along with the development of new theoretical methods. In this thesis, a non-perturbative semiclassical approach is developed, which allows to analytically study many-body interference effects both in bosonic and fermionic Fock space and is expected to be applicable to many research areas in physics ranging from Quantum Optics and Ultracold Atoms to Solid State Theory and maybe even High Energy Physics. After the derivation of the semiclassical approximation, which is valid in the limit of large total number of particles, first applications manifesting the presence of many-body interference effects are shown. Some of them are confirmed numerically thus verifying the semiclassical predictions. Among these results are coherent back-/forward-scattering in bosonic and fermionic Fock space as well as a many-body spin echo, to name only the two most important ones.

  1. Electron Cyclotron Resonances in Electron Cloud Dynamics

    International Nuclear Information System (INIS)

    Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-01-01

    We report a previously unknown resonance for electron cloud dynamics. The 2D simulation code 'POSINST' was used to study the electron cloud buildup at different z positions in the International Linear Collider positron damping ring wiggler. An electron equilibrium density enhancement of up to a factor of 3 was found at magnetic field values for which the bunch frequency is an integral multiple of the electron cyclotron frequency. At low magnetic fields the effects of the resonance are prominent, but when B exceeds ∼(2 pi mec/(elb)), with lb = bunch length, effects of the resonance disappear. Thus short bunches and low B fields are required for observing the effect. The reason for the B field dependence, an explanation of the dynamics, and the results of the 2D simulations and of a single-particle tracking code used to elucidate details of the dynamics are discussed

  2. Atom dynamics in laser fields

    International Nuclear Information System (INIS)

    Jang, Su; Mi, No Gin

    2004-12-01

    This book introduces coherent dynamics of internal state, spread of atoms wave speed, semiclassical atoms density matrix such as dynamics equation in both still and moving atoms, excitation of atoms in movement by light, dipole radiating power, quantum statistical mechanics by atoms in movement, semiclassical atoms in movement, atoms in movement in the uniform magnetic field including effects of uniform magnetic field, atom cooling using laser such as Doppler cooling, atom traps using laser and mirrors, radiant heat which particles receive, and near field interactions among atoms in laser light.

  3. Semiclassical shell structure of moments of inertia in deformed Fermi systems

    International Nuclear Information System (INIS)

    Magner, A.G.; Gzhebinsky, A.M.; Sitdikov, A.S.; Khamzin, A.A.; Bartel, J.

    2010-01-01

    The collective moment of inertia is derived analytically within the cranking model in the adiabatic mean-field approximation at finite temperature. Using the nonperturbative periodic-orbit theory the semiclassical shell-structure components of the collective moment of inertia are obtained for any potential well. Their relation to the free-energy shell corrections are found semiclassically as being given through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. Shell effects in the moment of inertia disappear exponentially with increasing temperature. For the case of the harmonic-oscillator potential one observes a perfect agreement between semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures. (author)

  4. Lamb shift in quantum electrodynamics (semiclassical theory)

    International Nuclear Information System (INIS)

    Blaive, B.; Boudet, R.

    1989-01-01

    This paper aims to bring some arguments to the proof of the Barut and Van Huele formula, which gives the Lamb shift in the semi-classical theory model: by shortening the calculation owing to the use of a decomposition of the self-potential of the electron; by eliminating the appeal to a divergent series; by bringing justifications and clarifications on some important points of the proof. The effective calculation of the coefficients of the formula is achieved for some of them, and the general analytical form of these coefficients is explicited. It is also proved that the B. and V.H. formula must give results at least as close to the experiment as those of the Bethe formula, which is obtained in Quantum Theory of Fields. Finally one shows that the B. and V.H. formula provides a justification de facto for the cut-off which is used for associating finite numbers to the divergent integrals of the Bethe formula [fr

  5. Equivalence between the semiclassical and effective approaches to gravity

    International Nuclear Information System (INIS)

    Paszko, Ricardo; Accioly, Antonio

    2010-01-01

    Semiclassical and effective theories of gravitation are quite distinct from each other as far as the approximation scheme employed is concerned. In fact, while in the semiclassical approach gravity is a classical field and the particles and/or remaining fields are quantized, in the effective approach everything is quantized, including gravity, but the Feynman amplitude is expanded in terms of the momentum exchanged between the particles and/or fields. In this paper, we show that these approaches, despite being radically different, lead to equivalent results if one of the masses under consideration is much greater than all the other energies involved.

  6. Semiclassical propagation: Hilbert space vs. Wigner representation

    Science.gov (United States)

    Gottwald, Fabian; Ivanov, Sergei D.

    2018-03-01

    A unified viewpoint on the van Vleck and Herman-Kluk propagators in Hilbert space and their recently developed counterparts in Wigner representation is presented. Based on this viewpoint, the Wigner Herman-Kluk propagator is conceptually the most general one. Nonetheless, the respective semiclassical expressions for expectation values in terms of the density matrix and the Wigner function are mathematically proven here to coincide. The only remaining difference is a mere technical flexibility of the Wigner version in choosing the Gaussians' width for the underlying coherent states beyond minimal uncertainty. This flexibility is investigated numerically on prototypical potentials and it turns out to provide neither qualitative nor quantitative improvements. Given the aforementioned generality, utilizing the Wigner representation for semiclassical propagation thus leads to the same performance as employing the respective most-developed (Hilbert-space) methods for the density matrix.

  7. Semiclassical quantization of the nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nohl, C.R.

    1976-01-01

    Using the functional integral technique of Dashen, Hasslacher, and Neveu, we perform a semiclassical quantization of the nonlinear Schrodinger equation (NLSE), which reproduces McGuire's exact result for the energy levels of the bound states of the theory. We show that the stability angle formalism leads to the one-loop normal ordering and self-energy renormalization expected from perturbation theory, and demonstrate that taking into account center-of-mass motion gives the correct nonrelativistic energy--momentum relation. We interpret the classical solution in the context of the quantum theory, relating it to the matrix element of the field operator between adjacent bound states in the limit of large quantum numbers. Finally, we quantize the NLSE as a theory of N component fermion fields and show that the semiclassical method yields the exact energy levels and correct degeneracies

  8. Semiclassical use of action-angle variables in the presence of tunnelling

    International Nuclear Information System (INIS)

    Carvalho, R.E. de; Almeida, A.M.O. de

    1988-01-01

    Semiclassical approximations of quantum mechanics are known to be invariant with respect to classical cannonical transformations even though these are not in general isomorphic to unitary transformations in quantum mechanics. It is verified computationally that the energy eigenlevels of a resonant system computed in a harmonic oscillator basis are in good agreement with the semiclassical values obtained with the use of action-angle variables. (A.C.A.S.) [pt

  9. Semiclassical approximation to time-dependent Hartree--Fock theory

    International Nuclear Information System (INIS)

    Dworzecka, M.; Poggioli, R.

    1976-01-01

    Working within a time-dependent Hartree-Fock framework, one develops a semiclassical approximation appropriate for large systems. It is demonstrated that the standard semiclassical approach, the Thomas-Fermi approximation, is inconsistent with Hartree-Fock theory when the basic two-body interaction is short-ranged (as in nuclear systems, for example). However, by introducing a simple extension of the Thomas-Fermi approximation, one overcomes this problem. One also discusses the infinite nuclear matter problem and point out that time-dependent Hartree-Fock theory yields collective modes of the zero sound variety instead of ordinary hydrodynamic (first) sound. One thus emphasizes that one should be extremely circumspect when attempting to cast the equations of motion of time-dependent Hartree-Fock theory into a hydrodynamic-like form

  10. Relativistic classical and quantum dynamics in intense crossed laser beams of various polarizations

    Directory of Open Access Journals (Sweden)

    M. Verschl

    2007-02-01

    Full Text Available The dynamics of an electron in crossed laser fields is investigated analytically. Two different standing wave configurations are compared. The counterpropagating laser waves are either linearly or circularly polarized. Both configurations have in common that there are one-dimensional trajectories on which the electron can oscillate with vanishing Lorentz force. The dynamics is analyzed for the situations when the electron moves in the vicinity of these ideal axes. If the laser intensities imply nonrelativistic electron dynamics, the system is described quantum mechanically. A semiclassical treatment renders the strongly relativistic regime accessible as well. To describe relativistic wave packets, the results of the classical analysis are employed for a Monte Carlo ensemble. This allows for a comparison of the wave packet dynamics for both configurations in the strongly relativistic regime. It is found for certain cases that relativity slows down the dynamics, i.e., for higher laser intensities, wave packet spreading and the drift away from the ideal axis of vanishing Lorentz force are shown to be increasingly suppressed.

  11. Qutrit squeezing via semiclassical evolution

    International Nuclear Information System (INIS)

    Klimov, Andrei B; Dinani, Hossein Tavakoli; Medendorp, Zachari E D; Guise, Hubert de

    2011-01-01

    We introduce a concept of squeezing in collective qutrit systems through a geometrical picture connected to the deformation of the isotropic fluctuations of su(3) operators when evaluated in a coherent state. This kind of squeezing can be generated by Hamiltonians nonlinear in the generators of su(3) algebra. A simplest model of such a nonlinear evolution is analyzed in terms of semiclassical evolution of the SU(3) Wigner function. (paper)

  12. Quantum flesh on classical bones: Semiclassical bridges across the quantum-classical divide

    Energy Technology Data Exchange (ETDEWEB)

    Bokulich, Alisa [Center for Philosophy and History of Science, Boston University, Boston, MA (United States)

    2014-07-01

    Traditionally quantum mechanics is viewed as having made a sharp break from classical mechanics, and the concepts and methods of these two theories are viewed as incommensurable with one another. A closer examination of the history of quantum mechanics, however, reveals that there is a strong sense in which quantum mechanics was built on the backbone of classical mechanics. As a result, there is a considerable structural continuity between these two theories, despite their important differences. These structural continuities provide a ground for semiclassical methods in which classical structures, such as trajectories, are used to investigate and model quantum phenomena. After briefly tracing the history of semiclassical approaches, I show how current research in semiclassical mechanics is revealing new bridges across the quantum-classical divide.

  13. Dynamical basis set

    International Nuclear Information System (INIS)

    Blanco, M.; Heller, E.J.

    1985-01-01

    A new Cartesian basis set is defined that is suitable for the representation of molecular vibration-rotation bound states. The Cartesian basis functions are superpositions of semiclassical states generated through the use of classical trajectories that conform to the intrinsic dynamics of the molecule. Although semiclassical input is employed, the method becomes ab initio through the standard matrix diagonalization variational method. Special attention is given to classical-quantum correspondences for angular momentum. In particular, it is shown that the use of semiclassical information preferentially leads to angular momentum eigenstates with magnetic quantum number Vertical BarMVertical Bar equal to the total angular momentum J. The present method offers a reliable technique for representing highly excited vibrational-rotational states where perturbation techniques are no longer applicable

  14. Superluminal warp drives are semiclassically unstable

    Energy Technology Data Exchange (ETDEWEB)

    Finazzi, S; Liberati, S [SISSA, via Beirut 2-4, Trieste 34151, Italy and INFN sezione di Trieste (Italy); Barcelo, C, E-mail: finazzi@sissa.i, E-mail: liberati@sissa.i, E-mail: carlos@iaa.e [Instituto de Astrofisica de AndalucIa, CSIC, Camino Bajo de Huetor 50, 18008 Granada (Spain)

    2010-04-01

    Warp drives are very interesting configurations of General Relativity: they provide a way to travel at superluminal speeds, albeit at the cost of requiring exotic matter to build them. Even if one succeeded in providing the necessary exotic matter, it would still be necessary to check whether they would survive to the switching on of quantum effects. Semiclassical corrections to warp-drive geometries created out of an initially flat spacetime have been analyzed in a previous work by the present authors in special locations, close to the wall of the bubble and in its center. Here, we present an exact numerical analysis of the renormalized stress-energy tensor (RSET) in the whole bubble. We find that the the RSET will exponentially grow in time close to the front wall of the superluminal bubble, after some transient terms have disappeared, hence strongly supporting our previous conclusion that the warp-drive geometries are unstable against semiclassical back-reaction. This result seems to implement the chronology protection conjecture, forbiddig the set up of a structure potentially dangerous for causality.

  15. Recent developments in semiclassical mechanics: eigenvalues and reaction rate constants

    International Nuclear Information System (INIS)

    Miller, W.H.

    1976-04-01

    A semiclassical treatment of eigenvalues for a multidimensional non-separable potential function and of the rate constant for a chemical reaction with an activation barrier is presented. Both phenomena are seen to be described by essentially the same semiclassical formalism, which is based on a construction of the total Hamiltonian in terms of the complete set of ''good'' action variables (or adiabatic invariants) associated with the minimum in the potential energy surface for the eigenvalue case, or the saddle point in the potential energy surface for the case of chemical reaction

  16. Wave packets, Maslov indices, and semiclassical quantization

    International Nuclear Information System (INIS)

    Littlejohn, R.G.

    1989-01-01

    The Bohr-Sommerfeld quantization condition, as refined by Keller and Maslov, reads I=(n+m/4)h, where I is the classical action, n is the quantum number, and where m is the Maslov index, an even integer. The occurrence of the integers n and m in this formula is a reflection of underlying topological features of semiclassical quantization. In particular, the work of Arnold and others has shown that m/2 is a winding number of closed curves on the classical symplectic group manifold, Sp(2N). Wave packets provide a simple and elegant means of establishing the connection between semiclassical quantization and the homotopy classes of Sp(2N), as well as a practical way of calculating Maslov indices in complex problems. Topological methods can also be used to derive general formulas for the Maslov indices of invariant tori in the classical phase space corresponding to resonant motion. (orig.)

  17. Stark broadening of the Hα line of hydrogen at low densities: quantal and semiclassical results

    International Nuclear Information System (INIS)

    Stehle, C.; Feautrier, N.

    1984-01-01

    Stark profiles of the Hα lines of hydrogen are computed at low densities in the 'impact' theory. By a comparison with quantal results, it is shown that a simple semiclassical perturbational approach with appropriate cutoffs is sufficient to give accurate profiles in the line centre. Neglecting the natural broadening and the fine-structure effects, the authors prove that the electronic broadening is negligible and that the profile has a Lorentzian shape. An analytical expression of the half width is given. (author)

  18. Generalized Gibbs distribution and energy localization in the semiclassical FPU problem

    Science.gov (United States)

    Hipolito, Rafael; Danshita, Ippei; Oganesyan, Vadim; Polkovnikov, Anatoli

    2011-03-01

    We investigate dynamics of the weakly interacting quantum mechanical Fermi-Pasta-Ulam (qFPU) model in the semiclassical limit below the stochasticity threshold. Within this limit we find that initial quantum fluctuations lead to the damping of FPU oscillations and relaxation of the system to a slowly evolving steady state with energy localized within few momentum modes. We find that in large systems this state can be described by the generalized Gibbs ensemble (GGE), with the Lagrange multipliers being very weak functions of time. This ensembles gives accurate description of the instantaneous correlation functions, both quadratic and quartic. Based on these results we conjecture that GGE generically appears as a prethermalized state in weakly non-integrable systems.

  19. Adiabatic perturbation theory in quantum dynamics

    CERN Document Server

    Teufel, Stefan

    2003-01-01

    Separation of scales plays a fundamental role in the understanding of the dynamical behaviour of complex systems in physics and other natural sciences. A prominent example is the Born-Oppenheimer approximation in molecular dynamics. This book focuses on a recent approach to adiabatic perturbation theory, which emphasizes the role of effective equations of motion and the separation of the adiabatic limit from the semiclassical limit. A detailed introduction gives an overview of the subject and makes the later chapters accessible also to readers less familiar with the material. Although the general mathematical theory based on pseudodifferential calculus is presented in detail, there is an emphasis on concrete and relevant examples from physics. Applications range from molecular dynamics to the dynamics of electrons in a crystal and from the quantum mechanics of partially confined systems to Dirac particles and nonrelativistic QED.

  20. Dynamics of a strongly driven two-component Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Salmond, G.L.; Holmes, C.A.; Milburn, G.J.

    2002-01-01

    We consider a two-component Bose-Einstein condensate in two spatially localized modes of a double-well potential, with periodic modulation of the tunnel coupling between the two modes. We treat the driven quantum field using a two-mode expansion and define the quantum dynamics in terms of the Floquet Operator for the time periodic Hamiltonian of the system. It has been shown that the corresponding semiclassical mean-field dynamics can exhibit regions of regular and chaotic motion. We show here that the quantum dynamics can exhibit dynamical tunneling between regions of regular motion, centered on fixed points (resonances) of the semiclassical dynamics

  1. Semiclassical description of hot nuclear systems

    International Nuclear Information System (INIS)

    Brack, M.

    1984-01-01

    We present semiclassical density variational calculations for highly excited nuclear systems. We employ the newly derived functionals tau[rho] and sigma[rho] of the extended Thomas-Fermi (ETF) model, generalized to finite temperatures. Excellent agreement is reached with Hartree-Fock (HF) results. We also calculated the fission barrier of 240 Pu as a function of the nuclear temperature

  2. Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation

    CERN Document Server

    Kamvissis, Spyridon; Miller, Peter D

    2003-01-01

    This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important applications in the telecommunications industry. The authors exploit complete integrability to establish pointwise asymptotics for this problem's solution in the semiclassical regime and explicit integration for the underlying nonlinear, elliptic, partial differential equations suspected of governing

  3. Lasing in nanowires: Ab initio semiclassical model

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2013-01-01

    The semiclassical equations which describe lasing in nanowires are derived from first principles. Both the lasing threshold condition and the steady-state regime of operation are discussed. It is shown that the lasing is governed by the Fourier coefficients of the field susceptibility averaged ov...

  4. Semiclassical mechanics with molecular applications

    CERN Document Server

    Child, M S

    2014-01-01

    Semiclassical mechanics, which stems from the old quantum theory, has seen a remarkable revival in recent years as a physically intuitive and computationally accurate scheme for the interpretation of modern experiments. The main text concentrates less on the mathematical foundations than on the global influence of the classical phase space structures on the quantum mechanical observables. Further mathematical detail is contained in the appendices. Worked problem sets are included as an aid to the student.

  5. Multiconfiguration time-dependent self-consistent field approximations in the numerical solution of quantum dynamical problems

    International Nuclear Information System (INIS)

    Kotler, Z.; Neria, E.; Nitzan, A.

    1991-01-01

    The use of the time-dependent self-consistent field approximation (TDSCF) in the numerical solution of quantum curve crossing and tunneling dynamical problems is investigated. Particular emphasis is given to multiconfiguration TDSCF (MCTDSCF) approximations, which are shown to perform considerably better with only a small increase in computational effort. We investigate a number of simple models in which a 'system' characterized by two electronic potential surfaces evolves while interacting with a 'bath' mode described by an harmonic oscillator, and compare exact numerical solutions to one- and two-configuration TDSCF approximations. We also introduce and investigate a semiclassical approximation in which the 'bath' mode is described by semiclassical wavepackets (one for each electronic state) and show that for all models investigated this scheme works very well in comparison with the fully quantum MCTDSCF approximation. This provides a potentially very useful method to simulate strongly quantum systems coupled to an essentially classical environment. (orig.)

  6. Multiconfiguration time-dependent self-consistent field approximations in the numerical solution of quantum dynamical problems

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, Z.; Neria, E.; Nitzan, A. (Tel Aviv Univ. (Israel). School of Chemistry)

    1991-02-01

    The use of the time-dependent self-consistent field approximation (TDSCF) in the numerical solution of quantum curve crossing and tunneling dynamical problems is investigated. Particular emphasis is given to multiconfiguration TDSCF (MCTDSCF) approximations, which are shown to perform considerably better with only a small increase in computational effort. We investigate a number of simple models in which a 'system' characterized by two electronic potential surfaces evolves while interacting with a 'bath' mode described by an harmonic oscillator, and compare exact numerical solutions to one- and two-configuration TDSCF approximations. We also introduce and investigate a semiclassical approximation in which the 'bath' mode is described by semiclassical wavepackets (one for each electronic state) and show that for all models investigated this scheme works very well in comparison with the fully quantum MCTDSCF approximation. This provides a potentially very useful method to simulate strongly quantum systems coupled to an essentially classical environment. (orig.).

  7. Semiclassical force for electroweak baryogenesis three-dimensional derivation

    CERN Document Server

    Kainulainen, K; Schmidt, M G; Weinstock, S; Kainulainen, Kimmo; Prokopec, Tomislav; Schmidt, Michael G.; Weinstock, Steffen

    2002-01-01

    We derive a semiclassical transport equation for fermions propagating in the presence of a CP-violating planar bubble wall at a first order electroweak phase transition. Starting from the Kadanoff-Baym (KB) equation for the two-point (Wightman) function we perform an expansion in gradients, or equivalently in the Planck constant h-bar. We show that to first order in h-bar the KB equations have a spectral solution, which allows for an on-shell description of the plasma excitations. The CP-violating force acting on these excitations is found to be enhanced by a boost factor in comparison with the 1+1-dimensional case studied in a former paper. We find that an identical semiclassical force can be obtained by the WKB method. Applications to the MSSM are also mentioned.

  8. Semiclassical relations and IR effects in de Sitter and slow-roll space-times

    DEFF Research Database (Denmark)

    B. Giddings, Steven; Sloth, Martin Snoager

    2010-01-01

    We calculate IR divergent graviton one-loop corrections to scalar correlators in de Sitter space, and show that the leading IR contribution may be reproduced via simple semiclassical consistency relations. One can likewise use such semiclassical relations to calculate leading IR corrections to co...... with a sharp perturbative calculation of "missing information" in Hawking radiation....

  9. Uniform semiclassical approximation for absorptive scattering systems

    International Nuclear Information System (INIS)

    Hussein, M.S.; Pato, M.P.

    1987-07-01

    The uniform semiclassical approximation of the elastic scattering amplitude is generalized to absorptive systems. An integral equation is derived which connects the absorption modified amplitude to the absorption free one. Division of the amplitude into a diffractive and refractive components is then made possible. (Author) [pt

  10. A new approach to the semi-classical relativistic two-body problem for charged fermions

    International Nuclear Information System (INIS)

    Leiter, D.

    1978-01-01

    Generalizing from a recently developed hybrid formulation of classical electrodynamics with ''direct (charge-field) action'' structure an analogous semi-classical Dirac formulation of the theory is constructed, which is capable of describing the semi-classical quantum mechanics of two identical spin-1/2 particles. This semi-classical formulation is to be used as a heuristic aid in searching for the theoretical structure of a fully ''second quantized'' theory. The Pauli exclusion principle is incorporated by making the interaction fields (in the action principle) antisymmetric with respect to ''charge-field'' labeling. In this manner, ''position correlation'' effects associated with ''configuration interaction'' can also be accounted for. By studying the nature of the stationary-state solutions, the formalism is compared with the conventional quantum-mechanical one (to understand the similarities and the differences between this approach and the usual correlated Hartree-Fock approximation of ordinary relativistic quantum theory). The stationary-state solutions to the semi-classical formalism are shown to closely approximate the usual quantum-mechanical solutions when the wave functions are represented as a superposition of Slater determinants of Dirac-Coulombic-type wave functions with radial parts having a form which extremizes the total Breit energy. The manner in which this semi-classical theory might be extended to a fully ''second quantized'' formalism is sketched. (author)

  11. Dynamic screening and electron dynamics in low-dimensional metal systems

    International Nuclear Information System (INIS)

    Silkin, V.M.; Quijada, M.; Vergniory, M.G.; Alducin, M.; Borisov, A.G.; Diez Muino, R.; Juaristi, J.I.; Sanchez-Portal, D.; Chulkov, E.V.; Echenique, P.M.

    2007-01-01

    Recent advances in the theoretical description of dynamic screening and electron dynamics in metallic media are reviewed. The time-dependent building-up of screening in different situations is addressed. Perturbative and non-perturbative theories are used to study electron dynamics in low-dimensional systems, such as metal clusters, image states, surface states and quantum wells. Modification of the electronic lifetimes due to confinement effects is analyzed as well

  12. Semiclassical methods in curved spacetime and black hole thermodynamics

    International Nuclear Information System (INIS)

    Camblong, Horacio E.; Ordonez, Carlos R.

    2005-01-01

    Improved semiclassical techniques are developed and applied to a treatment of a real scalar field in a D-dimensional gravitational background. This analysis, leading to a derivation of the thermodynamics of black holes, is based on the simultaneous use of (i) a near-horizon description of the scalar field in terms of conformal quantum mechanics; (ii) a novel generalized WKB framework; and (iii) curved-spacetime phase-space methods. In addition, this improved semiclassical approach is shown to be asymptotically exact in the presence of hierarchical expansions of a near-horizon type. Most importantly, this analysis further supports the claim that the thermodynamics of black holes is induced by their near-horizon conformal invariance

  13. Semiclassical approximations for gravity and the issue of backreaction

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    1989-01-01

    Semiclassical approximations, which are useful in the study of a quantum system interacting with a classical system, are studied and compared. In particular, we consider the Born-Oppenheimer approximation (BOA) (corresponding to G → O at fixed ℎ), the effective action approach (ℎ → O at fixed G) and their combinations. We show that in the strict BOA limit there is no backreaction on gravity. In the effective action approach one can obtain a semi-classical description of gravity, if certain stringent requirements are satisfied. In most situations of interest these conditions will not be met and the O(ℎ) contribution from gravitons will be comparable to that from quantum fields. (author)

  14. Symplectic and semiclassical aspects of the Schläfli identity

    Science.gov (United States)

    Hedeman, Austin; Kur, Eugene; Littlejohn, Robert G.; Haggard, Hal M.

    2015-03-01

    The Schläfli identity, which is important in Regge calculus and loop quantum gravity, is examined from a symplectic and semiclassical standpoint in the special case of flat, three-dimensional space. In this case a proof is given, based on symplectic geometry. A series of symplectic and Lagrangian manifolds related to the Schläfli identity, including several versions of a Lagrangian manifold of tetrahedra, are discussed. Semiclassical interpretations of the various steps are provided. Possible generalizations to three-dimensional spaces of constant (nonzero) curvature, involving Poisson-Lie groups and q-deformed spin networks, are discussed.

  15. Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics

    International Nuclear Information System (INIS)

    Huo, Pengfei; Miller, Thomas F. III; Coker, David F.

    2013-01-01

    A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-adiabatic and adiabatic regimes as the electronic coupling is varied, while other commonly used semi-classical methods are less accurate over the broad range of electronic couplings considered. Further, we show that the approach reliably recovers the Marcus turnover as a function of thermodynamic driving force, giving highly accurate rates over four orders of magnitude from the normal to the inverted regimes. We also demonstrate that the approach yields accurate rate estimates over five orders of magnitude of inverse temperature. Finally, the approach outlined here accurately captures the electronic coherence in the flux-flux correlation function that is responsible for the decreased rate in the inverted regime

  16. Semi-classical limit of relativistic quantum mechanics

    Indian Academy of Sciences (India)

    It is shown that the semi-classical limit of solutions to the Klein–Gordon equation gives the particle probability density that is in direct proportion to the inverse of the particle velocity. It is also shown that in the case of the Dirac equation a different result is obtained.

  17. Foundation of the semiclassical approximation by means of path integral methods

    International Nuclear Information System (INIS)

    Krisztinkovics, F.

    1984-01-01

    The aim of our study is to find a technically unique semiclassical treatment to describe the collision processes between heavy ions. Thereby it shall be started from a complete quantum mechanical formulation of the collision process. This aim requires: 1. A completely quantum mechanical initial formulation for the whole system, 2. a unique and conceptually clear transition to semiclassics. In order to fulfil the requirements a method is offered which is in closest connection with the Feynman propagator respectively influence functional. (orig./HSI) [de

  18. Hydrogen atom in a magnetic field: Ghost orbits, catastrophes, and uniform semiclassical approximations

    International Nuclear Information System (INIS)

    Main, J.; Wunner, G.

    1997-01-01

    Applying closed-orbit theory to the recurrence spectra of the hydrogen atom in a magnetic field, one can interpret most, but not all, structures semiclassically in terms of closed classical orbits. In particular, conventional closed-orbit theory fails near bifurcations of orbits where semiclassical amplitudes exhibit unphysical divergences. Here we analyze the role of ghost orbits living in complex phase space. The ghosts can explain resonance structures in the spectra of the hydrogen atom in a magnetic field at positions where no real orbits exist. For three different types of catastrophes, viz. fold, cusp, and butterfly catastrophes, we construct uniform semiclassical approximations and demonstrate that these solutions are completely determined by classical parameters of the real orbits and complex ghosts. copyright 1997 The American Physical Society

  19. Semiclassical scattering theory

    International Nuclear Information System (INIS)

    Di Salvo, A.

    1985-01-01

    It is intended to write the semiclassical scattering amplitude as a sum of terms, each of them being associated to trajectory. First of all the classical equations of motion are studied, considering both the analytical (real and complex) solutions and a certain type of singular solutions, which behave similary to the difracted rays in optics; in particular, in the case of a central nuclear potential, classical effects like rainbow and orbiting and also wave effects like diffraction and direct reflection are singled out. Successively, considering the Debye expansion of the scattering amplitude relative to a central nuclear potential, and evaluating asymptotically each term by means of the saddle point technique, the decay exponents and difraction coefficients relative to such a potential are determined

  20. A self-consistent semiclassical sum rule approach to the average properties of giant resonances

    International Nuclear Information System (INIS)

    Li Guoqiang; Xu Gongou

    1990-01-01

    The average energies of isovector giant resonances and the widths of isoscalar giant resonances are evaluated with the help of a self-consistent semiclassical Sum rule approach. The comparison of the present results with the experimental ones justifies the self-consistent semiclassical sum rule approach to the average properties of giant resonances

  1. Semiclassical description of soliton-antisoliton pair production in particle collisions

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, S.V.; Levkov, D.G. [Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation)

    2015-11-10

    We develop a consistent semiclassical method to calculate the probability of topological soliton-antisoliton pair production in collisions of elementary particles. In our method one adds an auxiliary external field pulling the soliton and antisoliton in the opposite directions. This transforms the original scattering process into a Schwinger pair creation of the solitons induced by the particle collision. One describes the Schwinger process semiclassically and recovers the original scattering probability in the limit of vanishing external field. We illustrate the method in (1+1)-dimensional scalar field model where the suppression exponents of soliton-antisoliton production in the multiparticle and two-particle collisions are computed numerically.

  2. Chaos in the Dicke model: quantum and semiclassical analysis

    International Nuclear Information System (INIS)

    Bastarrachea-Magnani, Miguel Angel; Hirsch, Jorge G; López-del-Carpio, Baldemar; Lerma-Hernández, Sergio

    2015-01-01

    The emergence of chaos in an atom-field system is studied employing both semiclassical and numerical quantum techniques, taking advantage of the algebraic character of the Hamiltonian. A semiclassical Hamiltonian is obtained by considering the expectation value of the quantum Hamiltonian in Glauber (for the field) and Bloch (for the atoms) coherent states. Regular and chaotic regions are identified by looking at the Poincaré sections for different energies and parameter values. An analytical expression for the semiclassical energy density of states is obtained by integrating the available phase space, which provides an exact unfolding to extract the fluctuations in the level statistics. Quantum chaos is recognized in these fluctuations, as a function of the coupling strength, for different regions in the energy spectrum, evaluating the Anderson–Darling (A–D) parameter, which distinguishes the Wigner- or Poisson-like distributions. Peres lattices play a role similar to the Poincaré section for quantum states. They are calculated employing efficient numerical solutions and are a powerful visual tool to identify individual states belonging to a regular or chaotic region, classified by utilizing the Poincaré sections and the A–D parameter. Finally, the quantum Husimi function for selected excited states is shown to have a noticeable similitude with the Poincaré sections at the same energy. (invited comment)

  3. Instanton and noninstanton tunneling in periodically perturbed barriers: semiclassical and quantum interpretations.

    Science.gov (United States)

    Takahashi, Kin'ya; Ikeda, Kensuke S

    2012-11-01

    In multidimensional barrier tunneling, there exist two different types of tunneling mechanisms, instanton-type tunneling and noninstanton tunneling. In this paper we investigate transitions between the two tunneling mechanisms from the semiclassical and quantum viewpoints taking two simple models: a periodically perturbed Eckart barrier for the semiclassical analysis and a periodically perturbed rectangular barrier for the quantum analysis. As a result, similar transitions are observed with change of the perturbation frequency ω for both systems, and we obtain a comprehensive scenario from both semiclassical and quantum viewpoints for them. In the middle range of ω, in which the plateau spectrum is observed, noninstanton tunneling dominates the tunneling process, and the tunneling amplitude takes the maximum value. Noninstanton tunneling explained by stable-unstable manifold guided tunneling (SUMGT) from the semiclassical viewpoint is interpreted as multiphoton-assisted tunneling from the quantum viewpoint. However, in the limit ω→0, instanton-type tunneling takes the place of noninstanton tunneling, and the tunneling amplitude converges on a constant value depending on the perturbation strength. The spectrum localized around the input energy is observed, and there is a scaling law with respect to the width of the spectrum envelope, i.e., the width ∝ℏω. In the limit ω→∞, the tunneling amplitude converges on that of the unperturbed system, i.e., the instanton of the unperturbed system.

  4. Semiclassical initial value approximation for Green's function.

    Science.gov (United States)

    Kay, Kenneth G

    2010-06-28

    A semiclassical initial value approximation is obtained for the energy-dependent Green's function. For a system with f degrees of freedom the Green's function expression has the form of a (2f-1)-dimensional integral over points on the energy surface and an integral over time along classical trajectories initiated from these points. This approximation is derived by requiring an integral ansatz for Green's function to reduce to Gutzwiller's semiclassical formula when the integrations are performed by the stationary phase method. A simpler approximation is also derived involving only an (f-1)-dimensional integral over momentum variables on a Poincare surface and an integral over time. The relationship between the present expressions and an earlier initial value approximation for energy eigenfunctions is explored. Numerical tests for two-dimensional systems indicate that good accuracy can be obtained from the initial value Green's function for calculations of autocorrelation spectra and time-independent wave functions. The relative advantages of initial value approximations for the energy-dependent Green's function and the time-dependent propagator are discussed.

  5. Comparison of local exchange potentials for electron--N2 scattering

    International Nuclear Information System (INIS)

    Rumble, J.R. Jr.; Truhlar, D.G.

    1980-01-01

    We consider vibrationally and electronically elastic electron scattering by N 2 at 2--30 eV impact energy. We consider static, static-exchange, and static--exchange-plus-polarization potentials, Cade--Sales--Wahl and INDO/1s wave functions, and semiclassical exchange and Hara free-electron--gas exchange potentials. We show that the semiclassical exchange approximation is too attractive at low energy for N 2 . We show quantitatively by consideration of partial and total integral cross sections how the effects of approximations to exchange become smaller as the incident energy is increased until these differences are about 8% for the total integral cross section at 30 eV

  6. Current-induced atomic dynamics, instabilities, and Raman signals

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Brandbyge, Mads; Hedegard, Per

    2012-01-01

    We derive and employ a semiclassical Langevin equation obtained from path integrals to describe the ionic dynamics of a molecular junction in the presence of electrical current. The electronic environment serves as an effective nonequilibrium bath. The bath results in random forces describing Joule...... heating, current-induced forces including the nonconservative wind force, dissipative frictional forces, and an effective Lorentz-type force due to the Berry phase of the nonequilibrium electrons. Using a generic two-level molecular model, we highlight the importance of both current-induced forces...... and Joule heating for the stability of the system. We compare the impact of the different forces, and the wide-band approximation for the electronic structure on our result. We examine the current-induced instabilities (excitation of runaway "waterwheel" modes) and investigate the signature...

  7. Semiclassical treatment of nuclear effects in Coulomb excitation

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F; Donangelo, R [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Rasmussen, J O; Ring, P; Stoyer, M A [Lawrence Berkeley Lab., CA (USA). Nuclear Science Div.

    1990-09-27

    We introduce the effects of the nuclear potential in the semiclassical Alder-Winther-de Boer method, both in the coupling matrix elements and as corrections to the Rutherford orbit. We compare our results to those of pure Coulomb excitation and to coupled-channel calculations. (orig.).

  8. Quantum and Classical Approaches in Graphene and Topological Insulators

    DEFF Research Database (Denmark)

    Posvyanskiy, Vladimir

    mechanical study, this approach can give simple and pictorial explanation of the topological edge states. In our work we find the semiclassical orbits for the samples of different geometries and also discuss the influence of the quantum effects, the Berry phase, on the semiclassical electron dynamics....... Finally, we try to find the semiclassical mechanism responsible for topological protection of the edge states....

  9. Resolution of potential ambiguities through farside angular structure: Semiclassical analysis

    International Nuclear Information System (INIS)

    Fricke, S.H.; Brandan, M.E.; McVoy, K.W.

    1988-01-01

    The optical potential fits summarized in the preceding paper are subjected to a semiclassical analysis of the Ford-Wheeler--Knoll-Schaeffer type. The important broad dips in their farside cross sections, which are essential in greatly reducing potential ambiguities, are found (in partial agreement with a suggestion of Goldberg's) to be mainly weak ''Airy'' or rainbow minima, that serve to identify deeply penetrating trajectories. The semiclassical analysis also permits the identification and understanding of a new category of discrete and continuous potential ambiguities, and suggests the manner in which specific features of the angular distributions (such as spacings and depths of various angular minima) determine the Woods-Saxon parameters found by a chi-squared search

  10. Classical properties and semiclassical quantization of a spherical nuclear potential

    International Nuclear Information System (INIS)

    Carbonell, J.; Brut, F.; Arvieu, R.; Touchard, J.

    1984-03-01

    The geometrical properties of the classical energy-action surface are studied for a nuclear Woods-Saxon-like spherical potential, in connection with the E.B.K. semiclassical method of quantization. Comparisons are made with other well known cases: the spherical harmonic oscillator and the spherical billiard. The shift of single particle energies from A = 208 to A = 16 is calculated by a simple method inspired by the Erhenfest adiabatic invariants. Semiclassical results are then compared with exact Schroedinger energies. It is seen that the most significant features of the single particle spectrum are explained by local properties of the energy action surface (curvature, slope) and by their evolution with the particle number

  11. Spin dynamics in electron synchrotrons

    International Nuclear Information System (INIS)

    Schmidt, Jan Felix

    2017-01-01

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  12. Newtonian semiclassical gravity in the Ghirardi–Rimini–Weber theory with matter density ontology

    International Nuclear Information System (INIS)

    Derakhshani, Maaneli

    2014-01-01

    We propose a Newtonian semiclassical gravity theory based on the GRW collapse theory with matter density ontology (GRWm), which we term GRWmN. The theory is proposed because, as we show from previous arguments in the literature, the standard Newtonian semiclassical gravity theory based on the Schroedinger–Newton equations does not have a consistent Born rule probability interpretation for gravitationally self-interacting particles and implies gravitational cat states for macroscopic mass superpositions. By contrast, we show that GRWmN has a consistent statistical description of gravitationally self-interacting particles and adequately suppresses the cat states for macroscopic superpositions. Two possible routes to experimentally testing GRWmN are also considered. We conclude with a discussion of possible variants of GRWmN, what a general relativistic extension would involve, and various objections that might be raised against semiclassical gravity theories like GRWmN.

  13. Newtonian semiclassical gravity in the Ghirardi–Rimini–Weber theory with matter density ontology

    Energy Technology Data Exchange (ETDEWEB)

    Derakhshani, Maaneli, E-mail: maanelid@yahoo.com

    2014-03-01

    We propose a Newtonian semiclassical gravity theory based on the GRW collapse theory with matter density ontology (GRWm), which we term GRWmN. The theory is proposed because, as we show from previous arguments in the literature, the standard Newtonian semiclassical gravity theory based on the Schroedinger–Newton equations does not have a consistent Born rule probability interpretation for gravitationally self-interacting particles and implies gravitational cat states for macroscopic mass superpositions. By contrast, we show that GRWmN has a consistent statistical description of gravitationally self-interacting particles and adequately suppresses the cat states for macroscopic superpositions. Two possible routes to experimentally testing GRWmN are also considered. We conclude with a discussion of possible variants of GRWmN, what a general relativistic extension would involve, and various objections that might be raised against semiclassical gravity theories like GRWmN.

  14. Quantum versus semiclassical description of selftrapping: anharmonic effects

    International Nuclear Information System (INIS)

    Raghavan, S.; Bishop, A.R.; Kenkre, V.M.

    1998-09-01

    Selftrapping has been traditionally studied on the assumption that quasiparticles interact with harmonic phonons and that this interaction is linear in the displacement of the phonon. To complement recent semiclassical studies of anharmonicity and nonlinearity in this context, we present below a fully quantum mechanical analysis of a two-site system, where the oscillator is described by a tunably anharmonic potential, with a square well with infinite walls and the harmonic potential as its extreme limits, and wherein the interaction is nonlinear in the oscillator displacement. We find that even highly anharmonic polarons behave similar to their harmonic counterparts in that selftrapping is preserved for long times in the limit of strong coupling, and that the polaronic tunneling time scale depends exponentially on the polaron binding energy. Further, in agreement with earlier results related to harmonic polarons, the semiclassical approximation agrees with the full quantum result in the massive oscillator limit of small oscillator frequency and strong quasiparticle-oscillator coupling. (author)

  15. Semiclassical model for single-particle transitions in nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Milek, B.; Joint Inst. for Nuclear Research, Dubna; Technische Univ., Dresden; Reif, R.; Pham Khan Van; Revai, J.

    1990-04-01

    A previously elaborated semiclassical one-body model for the dynamics of a single particle, moving in two potentials, in heavy-ion reactions or in fissioning systems has been extended with respect to the inclusion of angular momenta and more realistic separable potentials. The collective relative motion is assumed to proceed along a trajectory which is calculated from classical equations of motion including conservative and phenomenological friction forces. The formalism has been derived involving three-dimensional trajectories for symmetric as well as for asymmetric nucleus-nucleus systems. The model allows for the calculation of correct quantum mechanical transition amplitudes to final bound and continuum states. It has been applied for the investigation of the excitation of a neutron during a fission process, covering also non-statistical differential emission probabilities. From the numerical calculations, using parameters adapted to 252 Cf(sf), one can conclude that in the underlying model without 'sudden' processes the energy spectrum consists of two parts. The low lying component is created in the neck region while a high lying part seems to be governed mainly by the dynamics of the underlying collective motion rather than by the specific initial conditions. (orig.)

  16. Semiclassical model of cross section for fast neutrons

    International Nuclear Information System (INIS)

    Rosato, A.; D'Oliveira, A.A.

    1977-01-01

    A study for main aspects of fast neutron scattering is presented and, a semiclassical approximation applying to several pratic cases is described. The obtained results are compared with experimental data for deformed nuclei, and, with theoretical data based on optical model without treatment of deformations. (M.C.K.) [pt

  17. Structures in semiclassical spectra: a question of scale

    International Nuclear Information System (INIS)

    Berry, M.V.

    1984-01-01

    Theories of semiclassical bound state spectra for systems with N freedoms are reviewed, emphasizing the different features occurring on successively finer scales of energy E, measured in terms of h/2π, and attempting to correlate these with whether the underlying classical motion is regular or irregular. (Auth.)

  18. Topics in bound-state dynamical processes: semiclassical eigenvalues, reactive scattering kernels and gas-surface scattering models

    International Nuclear Information System (INIS)

    Adams, J.E.

    1979-05-01

    The difficulty of applying the WKB approximation to problems involving arbitrary potentials has been confronted. Recent work has produced a convenient expression for the potential correction term. However, this approach does not yield a unique correction term and hence cannot be used to construct the proper modification. An attempt is made to overcome the uniqueness difficulties by imposing a criterion which permits identification of the correct modification. Sections of this work are: semiclassical eigenvalues for potentials defined on a finite interval; reactive scattering exchange kernels; a unified model for elastic and inelastic scattering from a solid surface; and selective absorption on a solid surface

  19. The nonlinear dynamics of the classical few body problem

    International Nuclear Information System (INIS)

    Tabor, M.

    1981-01-01

    The complicated behavior that small dynamical systems can display is reviewed and its relevance to such diverse fields as celestial mechanics, semi-classical mechanics and fluid dynamics is discussed. (orig.)

  20. Mathematical and computational methods for semiclassical Schrödinger equations

    KAUST Repository

    Jin, Shi

    2011-04-28

    We consider time-dependent (linear and nonlinear) Schrödinger equations in a semiclassical scaling. These equations form a canonical class of (nonlinear) dispersive models whose solutions exhibit high-frequency oscillations. The design of efficient numerical methods which produce an accurate approximation of the solutions, or at least of the associated physical observables, is a formidable mathematical challenge. In this article we shall review the basic analytical methods for dealing with such equations, including WKB asymptotics, Wigner measure techniques and Gaussian beams. Moreover, we shall give an overview of the current state of the art of numerical methods (most of which are based on the described analytical techniques) for the Schrödinger equation in the semiclassical regime. © 2011 Cambridge University Press.

  1. Semiclassical approximation in Batalin-Vilkovisky formalism

    International Nuclear Information System (INIS)

    Schwarz, A.

    1993-01-01

    The geometry of supermanifolds provided with a Q-structure (i.e. with an odd vector field Q satisfying {Q, Q}=0), a P-structure (odd symplectic structure) and an S-structure (volume element) or with various combinations of these structures is studied. The results are applied to the analysis of the Batalin-Vilkovisky approach to the quantization of gauge theories. In particular the semiclassical approximation in this approach is expressed in terms of Reidemeister torsion. (orig.)

  2. Semiclassical quantization of integrable systems of few interacting anyons in a strong magnetic field

    International Nuclear Information System (INIS)

    Sivan, N.; Levit, S.

    1992-01-01

    We present a semiclassical theory of charged interacting anyons in a strong magnetic field. We derive the appropriate generalization of the WKB quantization conditions and determine the corresponding wave functions for non separable integrable anyonic systems. This theory is applies to a system of two interacting anyons, two interacting anyons in the presence of an impurity and three interacting anyons. We calculate the dependence of the semiclassical energy levels on the statistical parameter and find regions in which dependence follows very different patterns. The semiclassical treatment allows to find the correlation between these patterns and the change in the character of the classical motion of the system. We also test the accuracy of the mean field approximation for low and high energy states of the three anyons. (author)

  3. Nonadiabatic electron wavepacket dynamics behind molecular autoionization

    Science.gov (United States)

    Matsuoka, Takahide; Takatsuka, Kazuo

    2018-01-01

    A theoretical method for real-time dynamics of nonadiabatic reorganization of electronic configurations in molecules is developed, with dual aim that the intramolecular electron dynamics can be probed by means of direct and/or indirect photoionizations and that the physical origins behind photoionization signals attained in the time domain can be identified in terms of the language of time-dependent quantum chemistry. In doing so, we first formulate and implement a new computational scheme for nonadiabatic electron dynamics associated with molecular ionization, which well fits in the general theory of nonadiabatic electron dynamics. In this method, the total nonadiabatic electron wavepackets are propagated in time directly with complex natural orbitals without referring to Hartree-Fock molecular orbitals, and the amount of electron flux from a molecular region leading to ionization is evaluated in terms of the relevant complex natural orbitals. In the second half of this paper, we apply the method to electron dynamics in the elementary processes consisting of the Auger decay to demonstrate the methodological significance. An illustrative example is taken from an Auger decay starting from the 2a1 orbital hole-state of H2O+. The roles of nuclear momentum (kinetic) couplings in electronic-state mixing during the decay process are analyzed in terms of complex natural orbitals, which are schematically represented in the conventional language of molecular symmetry of the Hartree-Fock orbitals.

  4. Orbital free molecular dynamics; Approche sans orbitale des plasmas denses

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, F

    2007-08-15

    The microscopic properties of hot and dense plasmas stay a field essentially studied thanks to classical theories like the One Component Plasma, models which rely on free parameters, particularly ionization. In order to investigate these systems, we have used, in this PhD work, a semi-classical model, without free parameters, that is based on coupling consistently classical molecular dynamics for the nuclei and orbital free density functional theory for the electrons. The electronic fluid is represented by a free energy entirely determined by the local density. This approximation was validated by a comparison with an ab initio technique, quantum molecular dynamics. This one is identical to the previous except for the description of the free energy that depends on a quantum-independent-particle model. Orbital free molecular dynamics was then used to compute equation of state of boron and iron plasmas in the hot and dense regime. Furthermore, comparisons with classical theories were performed on structural and dynamical properties. Finally, equation of state and transport coefficients mixing laws were studied by direct simulation of a plasma composed of deuterium and copper. (author)

  5. Semiclassical approximations in a mean-field theory with collision terms

    International Nuclear Information System (INIS)

    Galetti, D.

    1986-01-01

    Semiclassical approximations in a mean-field theory with collision terms are discussed taking the time dependent Hartree-Fock method as framework in the obtainment of the relevant parameters.(L.C.) [pt

  6. Electron cloud dynamics in the Cornell Electron Storage Ring Test Accelerator wiggler

    Directory of Open Access Journals (Sweden)

    C. M. Celata

    2011-04-01

    Full Text Available The interference of stray electrons (also called “electron clouds” with accelerator beams is important in modern intense-beam accelerators, especially those with beams of positive charge. In magnetic wigglers, used, for instance, for transverse emittance damping, the intense synchrotron radiation produced by the beam can generate an electron cloud of relatively high density. In this paper the complicated dynamics of electron clouds in wigglers is examined using the example of a wiggler in the Cornell Electron Storage Ring Test Accelerator experiment at the Cornell Electron Storage Ring. Three-dimensional particle-in-cell simulations with the WARP-POSINST computer code show different density and dynamics for the electron cloud at locations near the maxima of the vertical wiggler field when compared to locations near the minima. Dynamics in these regions, the electron cloud distribution vs longitudinal position, and the beam coherent tune shift caused by the wiggler electron cloud will be discussed.

  7. Semiclassical interpretation of the Aharonov-Bohm effect

    International Nuclear Information System (INIS)

    Weisz, J.F.

    1990-10-01

    A semiclassical calculation gives the exact answer for the Aharonov-Bohm phase shift due to a magnetic field; either in free space or in metallic or semiconducting rings. The magnetic vector potential is not required. The effect is interpretable as a special case of energy conservation involving the Lorentz force. The effect is nonlocal because conservation of energy is nonlocal. (author). 11 refs, 2 figs

  8. Semiclassical description of resonant tunnel effect: bifurcations and periodic orbits in the resonant current; Description semiclassique de l`effet tunnel resonant: bifurcations et orbites periodiques dans le courant resonant

    Energy Technology Data Exchange (ETDEWEB)

    Rouben, D C

    1997-11-28

    A semiclassical method for resonant tunneling in a quantum well in the presence of a magnetic field tilted with regard to an electric field is developed. In particular a semiclassical formula is derived for the total current of electrons after the second barrier of the quantum well. The contribution of the stable and unstable orbits is studied. It appears that the parameters which describe the classical chaos in the quantum well have an important effect on the tunneling current. A numerical experiment is led, the contributions to the current of some particular orbits are evaluated and the results are compared with those given by the quantum theory. (A.C.) 70 refs.

  9. Semiclassical shell structure and nuclear double-humped fission barriers

    Directory of Open Access Journals (Sweden)

    A. G. Magner

    2010-09-01

    Full Text Available We derived the semiclassical trace formulas for the level density as sums over periodic-orbit families and isolated orbits within the improved stationary phase method. Averaged level-density shell corrections and shell-structure energies are continuous through all symmetry-breaking (bifurcation points with the correct asymptotics of the standard stationary phase approach accounting for continuous symmetries. We found enhancement of the nuclear shell structure near bifurcations in the superdeformed region. Our semiclassical results for the averaged level densities with the gross-shell and more thin-shell structures and the energy shell corrections for critical deformations are in good agreement with the quantum calculations for several single-particle Hamiltonians, in particular for the potentials with a sharp spheroidal shape. Enhancement of the shell structure owing to bifurcations of the shortest 3-dimensional orbits from equatorial orbits is responsible for the second well of fission barrier in a superdeformation region.

  10. Cyclotron Resonances in Electron Cloud Dynamics

    International Nuclear Information System (INIS)

    Celata, C.M.; Furman, M.A.; Vay, J.L.; Grote, D.P.; Ng, J.T.; Pivi, M.F.; Wang, L.F.

    2009-01-01

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where l b c , (l b = bunch duration, ω c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ∼ 3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined density 'stripes' of multipactoring found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations, the reason for the bunch-length dependence, and details of the dynamics will be discussed

  11. Semiclassical quantum gravity: statistics of combinatorial Riemannian geometries

    International Nuclear Information System (INIS)

    Bombelli, L.; Corichi, A.; Winkler, O.

    2005-01-01

    This paper is a contribution to the development of a framework, to be used in the context of semiclassical canonical quantum gravity, in which to frame questions about the correspondence between discrete spacetime structures at ''quantum scales'' and continuum, classical geometries at large scales. Such a correspondence can be meaningfully established when one has a ''semiclassical'' state in the underlying quantum gravity theory, and the uncertainties in the correspondence arise both from quantum fluctuations in this state and from the kinematical procedure of matching a smooth geometry to a discrete one. We focus on the latter type of uncertainty, and suggest the use of statistical geometry as a way to quantify it. With a cell complex as an example of discrete structure, we discuss how to construct quantities that define a smooth geometry, and how to estimate the associated uncertainties. We also comment briefly on how to combine our results with uncertainties in the underlying quantum state, and on their use when considering phenomenological aspects of quantum gravity. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  12. A time-dependent semiclassical wavepacket method using a fast Fourier transform (FFT) algorithm

    International Nuclear Information System (INIS)

    Gauss, J.; Heller, E.J.

    1991-01-01

    A new semiclassical propagator based on a local expansion of the potential up to second order around the moving center of the wavepackt is proposed. Formulas for the propagator are derived and the implementation using grid and fast Fourier transform (FFT) methods is discussed. The semiclassical propagator can be improved up to the exact quantum mechanical limit by including anharmonic corrections using a split operator approach. Preliminary applications to the CH 3 I photodissociation problem show the applicability and accuracy of the proposed method. (orig.)D

  13. Semiclassical moment of inertia shell-structure within the phase-space approach

    International Nuclear Information System (INIS)

    Gorpinchenko, D V; Magner, A G; Bartel, J; Blocki, J P

    2015-01-01

    The moment of inertia for nuclear collective rotations is derived within a semiclassical approach based on the cranking model and the Strutinsky shell-correction method by using the non-perturbative periodic-orbit theory in the phase-space variables. This moment of inertia for adiabatic (statistical-equilibrium) rotations can be approximated by the generalized rigid-body moment of inertia accounting for the shell corrections of the particle density. A semiclassical phase-space trace formula allows us to express the shell components of the moment of inertia quite accurately in terms of the free-energy shell corrections for integrable and partially chaotic Fermi systems, which is in good agreement with the corresponding quantum calculations. (paper)

  14. Semiclassical delta self-energy

    International Nuclear Information System (INIS)

    Voutier, E.

    1992-01-01

    We present a semiclassical approach in the Δ self-energy. We show that the in-medium corrections of the Δ width issued from the Pauli blocking and the coupling to the 2N-1h continuum are in good agreement with the previous approaches and particularly with the quantum Δ-h model even for light nuclei. We separate out the different sources of the imaginary part of the self-energy. The predominant corrections come from two antagonistic origins: The Pauli blocking and the contribution to the two-nucleon emission channel, the latter being model dependent. We further show that the non-diagonal spin matrix elements of the self-energy, generated by its tensor component, are mostly due to the Pauli blocking. (orig.)

  15. Dynamic Flaps Electronic Scan Antenna

    National Research Council Canada - National Science Library

    Gonzalez, Daniel

    2000-01-01

    A dynamic FLAPS(TM) electronic scan antenna was the focus of this research. The novelty S of this SBIR resides in the use of plasma as the main component of this dynamic X-Band phased S array antenna...

  16. Quantum complex rotation and uniform semiclassical calculations of complex energy eigenvalues

    International Nuclear Information System (INIS)

    Connor, J.N.L.; Smith, A.D.

    1983-01-01

    Quantum and semiclassical calculations of complex energy eigenvalues have been carried out for an exponential potential of the form V 0 r 2 exp(-r) and Lennard-Jones (12,6) potential. A straightforward method, based on the complex coordinate rotation technique, is described for the quantum calculation of complex eigenenergies. For singular potentials, the method involves an inward and outward integration of the radial Schroedinger equation, followed by matching of the logarithmic derivatives of the wave functions at an intermediate point. For regular potentials, the method is simpler, as only an inward integration is required. Attention is drawn to the World War II researches of Hartree and co-workers who anticipated later quantum mechanical work on the complex rotation method. Complex eigenenergies are also calculated from a uniform semiclassical three turning point quantization formula, which allows for the proximity of the outer pair of complex turning points. Limiting cases of this formula, which are valid for very narrow or very broad widths, are also used in the calculations. We obtain good agreement between the semiclassical and quantum results. For the Lennard-Jones (12,6) potential, we compare resonance energies and widths from the complex energy definition of a resonance with those obtained from the time delay definition

  17. Semi-classical calculation of the spin-isospin response functions

    International Nuclear Information System (INIS)

    Chanfray, G.

    1987-03-01

    We present a semi-classical calculation of the nuclear response functions beyond the Thomas-Fermi approximation. We apply our formalism to the spin-isospin responses and show that the surface peaked h/2π corrections considerably decrease the ratio longitudinal/transverse as obtained through hadronic probes

  18. Semi-classical approach of heavy ion physics at intermediate energies

    International Nuclear Information System (INIS)

    Vinet, L.

    1986-01-01

    The study of heavy ion collisions at intermediate energies (10 to 100 MeV/A), can be undertaken by a semi-classical approach: the nuclear Vlasov equation. It is possible to decompose the one body distribution function over a suitable coherent state basis for dynamical studies. This method is applied for colliding slabs, and the results are compared with those of TDHF. With imposed spherical symmetry, the isoscalar monopole resonance, evaporation, formation of bubble nuclei and total evaporation, are obtained. The extension to three dimensions and to the Landau-Vlasov equation through the residual interaction included in the Uehling-Uhlenbeck collision term, permits a general study of the dynamical instability of highly excited nuclei. The application to heavy ion collisions gives a description of both the main mechanisms of reaction, and the ineffective fusion for the system 40 Ar (35 MeV/A) + 27 Al. Alpha particle multiplicities in correlation with evaporated residues in the experience 40 Ar (27 MeV/A) + 27 Al, have been extracted. From theoretical results, different scenari are proposed (entrance channel limitation and exit channel disintegration), in order to explain the disappearance of the fusion component observed for this system at energies above 32 MeV/A [fr

  19. Quantization ambiguity, ergodicity and semiclassics

    International Nuclear Information System (INIS)

    Kaplan, Lev

    2002-01-01

    It is well known that almost all eigenstates of a classically ergodic system are individually ergodic on coarse-grained scales. This has important implications for the quantization ambiguity in ergodic systems: the difference between alternative quantizations is suppressed compared with the O( h-bar 2 ) ambiguity in the integrable or regular case. For two-dimensional ergodic systems in the high-energy regime, individual eigenstates are independent of the choice of quantization procedure, in contrast with the regular case, where even the ordering of eigenlevels is ambiguous. Surprisingly, semiclassical methods are shown to be much more precise in any dimension for chaotic than for integrable systems

  20. Semiclassical instability of warp drives

    Energy Technology Data Exchange (ETDEWEB)

    Barcelo, C [Instituto de Astrofisica de Andalucia, IAA-CSIC, Glorieta de la Astronomia s/n, 18008 Granada (Spain); Finazzi, S; Liberati, S, E-mail: carlos@iaa.e, E-mail: finazzi@sissa.i, E-mail: liberati@sissa.i

    2010-05-01

    Warp drives, at least theoretically, provide a way to travel at superluminal speeds. However, even if one succeeded in providing the necessary exotic matter to construct them, it would still be necessary to check whether they would survive to the switching on of quantum effects. In this contribution we will report on the behaviour of the Renormalized Stress-Energy Tensor (RSET) in the spacetimes associated with superluminal warp drives. We find that the RSET will exponentially grow in time close to the front wall of the superluminal bubble, hence strongly supporting the conclusion that the warp-drive geometries are unstable against semiclassical back-reaction.

  1. Semiclassical evolution of dissipative Markovian systems

    International Nuclear Information System (INIS)

    Ozorio de Almeida, A M; Rios, P de M; Brodier, O

    2009-01-01

    A semiclassical approximation for an evolving density operator, driven by a 'closed' Hamiltonian operator and 'open' Markovian Lindblad operators, is obtained. The theory is based on the chord function, i.e. the Fourier transform of the Wigner function. It reduces to an exact solution of the Lindblad master equation if the Hamiltonian operator is a quadratic function and the Lindblad operators are linear functions of positions and momenta. Initially, the semiclassical formulae for the case of Hermitian Lindblad operators are reinterpreted in terms of a (real) double phase space, generated by an appropriate classical double Hamiltonian. An extra 'open' term is added to the double Hamiltonian by the non-Hermitian part of the Lindblad operators in the general case of dissipative Markovian evolution. The particular case of generic Hamiltonian operators, but linear dissipative Lindblad operators, is studied in more detail. A Liouville-type equivariance still holds for the corresponding classical evolution in double phase space, but the centre subspace, which supports the Wigner function, is compressed, along with expansion of its conjugate subspace, which supports the chord function. Decoherence narrows the relevant region of double phase space to the neighbourhood of a caustic for both the Wigner function and the chord function. This difficulty is avoided by a propagator in a mixed representation, so that a further 'small-chord' approximation leads to a simple generalization of the quadratic theory for evolving Wigner functions

  2. Non-trapping condition for semiclassical Schr dinger operators with matrix-valued potentials.

    CERN Document Server

    Jecko, T

    2004-01-01

    We consider semiclassical Schr dinger operators with matrix-valued, long-range, smooth potential, for which different eigenvalues may cross on a codimension one submanifold. We denote by h the semiclassical parameter and we consider energies above the bottom of the essential spectrum. Under some invariance condition on the matricial structure of the potential near the eigenvalues crossing and some structure condition at infinity, we prove that the boundary values of the resolvent at energy lambda, as bounded operators on suitable weighted spaces, are O(1/h) if and only if lambda is a non-trapping energy for all the Hamilton flows generated by the eigenvalues of the operator's symbol.

  3. Spectral statistics in semiclassical random-matrix ensembles

    International Nuclear Information System (INIS)

    Feingold, M.; Leitner, D.M.; Wilkinson, M.

    1991-01-01

    A novel random-matrix ensemble is introduced which mimics the global structure inherent in the Hamiltonian matrices of autonomous, ergodic systems. Changes in its parameters induce a transition between a Poisson and a Wigner distribution for the level spacings, P(s). The intermediate distributions are uniquely determined by a single scaling variable. Semiclassical constraints force the ensemble to be in a regime with Wigner P(s) for systems with more than two freedoms

  4. A semiclassical study of optical potentials - potential resonances -

    International Nuclear Information System (INIS)

    Lee, S.Y.; Takigawa, N.; Marty, C.

    1977-01-01

    A semiclassical method is used to analyze resonances produced by complex potentials. The absorption plays a central role: when it is not too great, resonances manifest themselves by enhancement of cross sections near π. The reverse is not necessarily true, for instance the anomalous large angle scattering for α-Ca is due to a coherent superposition of many partial waves

  5. Dissociative photoionization of molecular hydrogen. A joint experimental and theoretical study of the electron-electron correlations induced by XUV photoionization and nuclear dynamics on IR-laser dressed transition states

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Andreas

    2015-01-13

    In this thesis, the dissociative single-ionization of molecular hydrogen is investigated in a kinematically complete experiment by employing extreme ultraviolet attosecond pulse trains and infrared femtosecond laser pulses. Induced by the absorption of a single XUV photon, a pronounced energy-dependent asymmetry of the relative emission direction of the photoelectron and the ion is observed. The asymmetry pattern is explained in terms of an interference of two ionization pathways involving a doubly-excited state. This interpretation is validated by a semi-classical model which only takes the nuclear motion into account. Using this model and the observed asymmetry, it is furthermore possible to disentangle the two dissociation pathways which allows for the determination of the autoionization lifetime of the contributing doubly-excited state as a function of the internuclear distance. Moreover, using a pump-probe experiment the dissociation dynamics of molecular hydrogen is investigated. A time-delay dependent momentum distribution of the fragments is observed. With a combined quantum mechanical and semi-classical approach the mechanism giving rise to the observed time-dependence is identified in terms of an intuitive elevator mechanism.

  6. On the late-time behavior of Virasoro blocks and a classification of semiclassical saddles

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, A. Liam [Department of Physics, Boston University,Commonwealth Avenue, Boston, MA 02215 (United States); Kaplan, Jared [Department of Physics and Astronomy, Johns Hopkins University,Charles Street, Baltimore, MD 21218 (United States)

    2017-04-12

    Recent work has demonstrated that black hole thermodynamics and information loss/restoration in AdS{sub 3}/CFT{sub 2} can be derived almost entirely from the behavior of the Virasoro conformal blocks at large central charge, with relatively little dependence on the precise details of the CFT spectrum or OPE coefficients. Here, we elaborate on the non-perturbative behavior of Virasoro blocks by classifying all ‘saddles’ that can contribute for arbitrary values of external and internal operator dimensions in the semiclassical large central charge limit. The leading saddles, which determine the naive semiclassical behavior of the Virasoro blocks, all decay exponentially at late times, and at a rate that is independent of internal operator dimensions. Consequently, the semiclassical contribution of a finite number of high-energy states cannot resolve a well-known version of the information loss problem in AdS{sub 3}. However, we identify two infinite classes of sub-leading saddles, and one of these classes does not decay at late times.

  7. Relativeness in quantum gravity: limitations and frame dependence of semiclassical descriptions

    International Nuclear Information System (INIS)

    Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J.

    2015-01-01

    Consistency between quantum mechanical and general relativistic views of the world is a longstanding problem, which becomes particularly prominent in black hole physics. We develop a coherent picture addressing this issue by studying the quantum mechanics of an evolving black hole. After interpreting the Bekenstein-Hawking entropy as the entropy representing the degrees of freedom that are coarse-grained to obtain a semiclassical description from the microscopic theory of quantum gravity, we discuss the properties these degrees of freedom exhibit when viewed from the semiclassical standpoint. We are led to the conclusion that they show features which we call extreme relativeness and spacetime-matter duality — a nontrivial reference frame dependence of their spacetime distribution and the dual roles they play as the “constituents” of spacetime and as thermal radiation. We describe black hole formation and evaporation processes in distant and infalling reference frames, showing that these two properties allow us to avoid the arguments for firewalls and to make the existence of the black hole interior consistent with unitary evolution in the sense of complementarity. Our analysis provides a concrete answer to how information can be preserved at the quantum level throughout the evolution of a black hole, and gives a basic picture of how general coordinate transformations may work at the level of full quantum gravity beyond the approximation of semiclassical theory.

  8. Electron Beam Diagnosis and Dynamics using DIADYN Plasma Source

    International Nuclear Information System (INIS)

    Toader, D.; Craciun, G.; Manaila, E.; Oproiu, C.; Marghitu, S.

    2009-01-01

    This paper is presenting results obtained with the DIADYN installation after replacing its vacuum electron source (VES L V) with a plasma electron source (PES L V). DIADYN is a low energy laboratory equipment operating with 10 to 50 keV electron beams and designed to help realize non-destructive diagnosis and dynamics for low energy electron beams but also to be used in future material irradiations. The results presented here regard the beam diagnosis and dynamics made with beams obtained from the newly replaced plasma source. We discuss both results obtained in experimental dynamics and dynamics calculation results for electron beams extracted from the SEP L V source.

  9. Gaussian and 1/N approximations in semiclassical cosmology

    International Nuclear Information System (INIS)

    Mazzitelli, F.D.; Paz, J.P.

    1989-01-01

    We study the λphi 4 theory and the interacting O(N) model in a curved background using the Gaussian approximation for the former and the large-N approximation for the latter. We obtain the renormalized version of the semiclassical Einstein equations having in mind a future application of these models to investigate the physics of the very early Universe. We show that, while the Gaussian approximation has two different phases, in the large-N limit only one is present. The different features of the two phases are analyzed at the level of the effective field equations. We discuss the initial-value problem and find the initial conditions that make the theory renormalizable. As an example, we study the de Sitter self-consistent solutions of the semiclassical Einstein equations. Finally, for an identically zero mean value of the field we find the evolution equations for the classical field Ω(x) = (λ 2 >)/sup 1/2/ and the spacetime metric. They are very similar to the ones obtained by replacing the classical potential by the one-loop effective potential in the classical equations but do not have the drawbacks of the one-loop approximation

  10. Sign and other aspects of semiclassical Casimir energies

    International Nuclear Information System (INIS)

    Schaden, Martin

    2006-01-01

    The Casimir energy of a massless scalar field is semiclassically given by contributions due to classical periodic rays. The required subtractions in the spectral density are determined explicitly. The semiclassical Casimir energies so defined coincide with those of zeta function regularization in the cases studied. Poles in the analytic continuation of zeta function regularization are related to nonuniversal subtractions in the spectral density. The sign of the Casimir energy of a scalar field on a smooth manifold is estimated by the sign of the contribution due to the shortest periodic rays only. Demanding continuity of the Casimir energy under small deformations of the manifold, the method is extended to integrable systems. The Casimir energy of a massless scalar field on a manifold with boundaries includes contributions due to periodic rays that lie entirely within the boundaries. These contributions in general depend on the boundary conditions. Although the Casimir energy due to a massless scalar field may be sensitive to the physical dimensions of manifolds with boundary. In favorable cases its sign can, contrary to conventional wisdom, be inferred without calculation of the Casimir energy

  11. Coherent and semiclassical states in a magnetic field in the presence of the Aharonov-Bohm solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G [Department of Physics, Tomsk State University, 634050 Tomsk (Russian Federation); Gavrilov, S P; Gitman, D M; Filho, D P Meira, E-mail: bagrov@phys.tsu.ru, E-mail: gavrilovsergeyp@yahoo.com, E-mail: gitman@dfn.if.usp.br, E-mail: dmeira@dfn.if.usp.br [Institute of Physics, University of Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo, SP (Brazil)

    2011-02-04

    A new approach to constructing coherent states (CS) and semiclassical states (SS) in a magnetic-solenoid field is proposed. The main idea is based on the fact that the AB solenoid breaks the translational symmetry in the xy-plane; this has a topological effect such that there appear two types of trajectories which embrace and do not embrace the solenoid. Due to this fact, one has to construct two different kinds of CS/SS which correspond to such trajectories in the semiclassical limit. Following this idea, we construct CS in two steps, first the instantaneous CS (ICS) and then the time-dependent CS/SS as an evolution of the ICS. The construction is realized for nonrelativistic and relativistic spinning particles both in (2 + 1) and (3 + 1) dimensions and gives a non-trivial example of SS/CS for systems with a nonquadratic Hamiltonian. It is stressed that CS depending on their parameters (quantum numbers) describe both pure quantum and semiclassical states. An analysis is represented that classifies parameters of the CS in such respect. Such a classification is used for the semiclassical decompositions of various physical quantities.

  12. Coherent and semiclassical states in a magnetic field in the presence of the Aharonov-Bohm solenoid

    International Nuclear Information System (INIS)

    Bagrov, V G; Gavrilov, S P; Gitman, D M; Filho, D P Meira

    2011-01-01

    A new approach to constructing coherent states (CS) and semiclassical states (SS) in a magnetic-solenoid field is proposed. The main idea is based on the fact that the AB solenoid breaks the translational symmetry in the xy-plane; this has a topological effect such that there appear two types of trajectories which embrace and do not embrace the solenoid. Due to this fact, one has to construct two different kinds of CS/SS which correspond to such trajectories in the semiclassical limit. Following this idea, we construct CS in two steps, first the instantaneous CS (ICS) and then the time-dependent CS/SS as an evolution of the ICS. The construction is realized for nonrelativistic and relativistic spinning particles both in (2 + 1) and (3 + 1) dimensions and gives a non-trivial example of SS/CS for systems with a nonquadratic Hamiltonian. It is stressed that CS depending on their parameters (quantum numbers) describe both pure quantum and semiclassical states. An analysis is represented that classifies parameters of the CS in such respect. Such a classification is used for the semiclassical decompositions of various physical quantities.

  13. Semiclassical expansions for confined N fermion systems

    International Nuclear Information System (INIS)

    Krivine, H.; Martorell, J.; Casas, M.

    1989-01-01

    A new derivation of the Wigner Kirkwood expansion for N-fermion systems is presented, showing explicitly the connection to the WKB approximation for a single level. This allows to study separately the two ansatz required to obtain the semiclassical expansions: the asymptotic expansions in powers of ℎ and the smoothing of quantal effects. We discuss the one dimensional and three dimensional, with spherical symmetry, cases. Applications for standard potentials used in nuclear physics are described in detail

  14. Semiclassical limit of the FZZT Liouville theory

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Jaskolski, Zbigniew

    2006-01-01

    The semiclassical limit of the FZZT Liouville theory on the upper half plane with bulk operators of arbitrary type and with elliptic boundary operators is analyzed. We prove the Polyakov conjecture for an appropriate classical Liouville action. This action is calculated in a number of cases: One bulk operator of arbitrary type, one bulk and one boundary, and two boundary elliptic operators. The results are in agreement with the classical limits of the corresponding quantum correlators

  15. Semiclassical limit of the FZZT Liouville theory

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew

    2006-11-01

    The semiclassical limit of the FZZT Liouville theory on the upper half plane with bulk operators of arbitrary type and with elliptic boundary operators is analyzed. We prove the Polyakov conjecture for an appropriate classical Liouville action. This action is calculated in a number of cases: One bulk operator of arbitrary type, one bulk and one boundary, and two boundary elliptic operators. The results are in agreement with the classical limits of the corresponding quantum correlators.

  16. Semiclassical limit of the FZZT Liouville theory

    OpenAIRE

    Hadasz, Leszek; Jaskolski, Zbigniew

    2006-01-01

    The semiclassical limit of the FZZT Liouville theory on the upper half plane with bulk operators of arbitrary type and with elliptic boundary operators is analyzed. We prove the Polyakov conjecture for an appropriate classical Liouville action. This action is calculated in a number of cases: one bulk operator of arbitrary type, one bulk and one boundary, and two boundary elliptic operators. The results are in agreement with the classical limits of the corresponding quantum correlators.

  17. Semiclassical limit of the FZZT Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek [Physikalisches Institut, Rheinische Friedrich-Wilhelms-Universitaet, Nussallee 12, 53115 Bonn (Germany); M. Smoluchowski Institute of Physics, Jagiellonian University, W. Reymonta 4, 30-059 Cracow (Poland)]. E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew [Institute of Theoretical Physics, University of Wroclaw, pl. M. Borna 9, 50-204 Wroclaw (Poland)]. E-mail: jask@ift.uni.wroc.pl

    2006-11-27

    The semiclassical limit of the FZZT Liouville theory on the upper half plane with bulk operators of arbitrary type and with elliptic boundary operators is analyzed. We prove the Polyakov conjecture for an appropriate classical Liouville action. This action is calculated in a number of cases: One bulk operator of arbitrary type, one bulk and one boundary, and two boundary elliptic operators. The results are in agreement with the classical limits of the corresponding quantum correlators.

  18. Role of electron-electron scattering on spin transport in single layer graphene

    Directory of Open Access Journals (Sweden)

    Bahniman Ghosh

    2014-01-01

    Full Text Available In this work, the effect of electron-electron scattering on spin transport in single layer graphene is studied using semi-classical Monte Carlo simulation. The D’yakonov-P’erel mechanism is considered for spin relaxation. It is found that electron-electron scattering causes spin relaxation length to decrease by 35% at 300 K. The reason for this decrease in spin relaxation length is that the ensemble spin is modified upon an e-e collision and also e-e scattering rate is greater than phonon scattering rate at room temperature, which causes change in spin relaxation profile due to electron-electron scattering.

  19. Quasinormal modes of semiclassical electrically charged black holes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Piedra, Owen Pavel [Departamento de Fisica y Quimica, Facultad de Mecanica, Universidad de Cienfuegos, Carretera a Rodas, km 4, Cuatro Caminos, Cienfuegos (Cuba); De Oliveira, Jeferson, E-mail: opavel@ucf.edu.cu, E-mail: jeferson@fma.if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, CP 66318, 05315-970, Sao Paulo (Brazil)

    2011-04-21

    We report the results concerning the influence of vacuum polarization due to quantum massive vector, scalar and spinor fields on the scalar sector of quasinormal modes in spherically symmetric charged black holes. The vacuum polarization from quantized fields produces a shift in the values of the quasinormal frequencies, and correspondingly the semiclassical system becomes a better oscillator with respect to the classical Reissner-Nordstroem black hole.

  20. Domain shape dependence of semiclassical corrections to energy

    International Nuclear Information System (INIS)

    Kwiatkowski, Grzegorz

    2017-01-01

    Stationary solution of a one-dimensional sine-Gordon system is embedded in a multidimensional theory with an explicitly finite domain in the added spatial dimensions. Semiclassical corrections to energy are calculated for a static kink solution with emphasis on the impact of the scale of the domain as well as the choice of boundary conditions on the results for a rectangular cross-section. (paper)

  1. Evasive levels in quantisation through wavepacket coupling: a semi-classical investigation

    International Nuclear Information System (INIS)

    Amiot, P.; Giraud, B.

    1984-01-01

    A new method is presented to introduce classical mechanics elements into the problem of obtaining the spectrum of an operator H-circumflex(p-circumflex, q-circumflex). A finite-rank functional space is created by centering complex wavepackets on a discrete number of points on an equi-energy of the classical H(p,q) and by placing real wavepackets in the classically forbidden region. The latter span the active subspace, P, and the former the inactive subspace, Q, for an application of the method of Bloch-Horowitz. A semi-classical study of the Green function in the inactive subspace Q, classically allowed, gives a clear explanation of this phenomenon and sheds new light on the significance of this semi-classical approximation for the propagator. An extension to the problem of barrier penetration is proposed. (author)

  2. Semiclassical treatment of transport and spin relaxation in spin-orbit coupled systems

    Energy Technology Data Exchange (ETDEWEB)

    Lueffe, Matthias Clemens

    2012-02-10

    The coupling of orbital motion and spin, as derived from the relativistic Dirac equation, plays an important role not only in the atomic spectra but as well in solid state physics. Spin-orbit interactions are fundamental for the young research field of semiconductor spintronics, which is inspired by the idea to use the electron's spin instead of its charge for fast and power saving information processing in the future. However, on the route towards a functional spin transistor there is still some groundwork to be done, e.g., concerning the detailed understanding of spin relaxation in semiconductors. The first part of the present thesis can be placed in this context. We have investigated the processes contributing to the relaxation of a particularly long-lived spin-density wave, which can exist in semiconductor heterostructures with Dresselhaus and Rashba spin-orbit coupling of precisely the same magnitude. We have used a semiclassical spindiffusion equation to study the influence of the Coulomb interaction on the lifetime of this persistent spin helix. We have thus established that, in the presence of perturbations that violate the special symmetry of the problem, electron-electron scattering can have an impact on the relaxation of the spin helix. The resulting temperature-dependent lifetime reproduces the experimentally observed one in a satisfactory manner. It turns out that cubic Dresselhaus spin-orbit coupling is the most important symmetry-breaking element. The Coulomb interaction affects the dynamics of the persistent spin helix also via an Hartree-Fock exchange field. As a consequence, the individual spins precess about the vector of the surrounding local spin density, thus causing a nonlinear dynamics. We have shown that, for an experimentally accessible degree of initial spin polarization, characteristic non-linear effects such as a dramatic increase of lifetime and the appearance of higher harmonics can be expected. Another fascinating solid

  3. Electron Beam Diagnosis and Dynamics using DIADYN Plasma Source

    Energy Technology Data Exchange (ETDEWEB)

    Toader, D; Craciun, G; Manaila, E; Oproiu, C [National Institute of Research for Laser, Plasma and Radiation Physics Bucuresti (Romania); Marghitu, S [ICPE Electrostatica S.A - Bucuresti (Romania)

    2009-11-15

    This paper is presenting results obtained with the DIADYN installation after replacing its vacuum electron source (VES{sub L}V) with a plasma electron source (PES{sub L}V). DIADYN is a low energy laboratory equipment operating with 10 to 50 keV electron beams and designed to help realize non-destructive diagnosis and dynamics for low energy electron beams but also to be used in future material irradiations. The results presented here regard the beam diagnosis and dynamics made with beams obtained from the newly replaced plasma source. We discuss both results obtained in experimental dynamics and dynamics calculation results for electron beams extracted from the SEP{sub L}V source.

  4. Energetics and dynamics of excess electrons in simple fluids

    International Nuclear Information System (INIS)

    Space, B.

    1992-01-01

    Excess electronic dynamical and equilibrium properties are modeled in both polarizable and nonpolarizable noble gas fluids. Explicit dynamical calculations are carried out for excess electrons in fluid helium, where excess electronic eigenstates are localized. Energetics and dynamics are considered for fluids which span the entire range of polarizability present in the rare gases. Excess electronic eigenstates and eigenvalues are calculated for fluids of helium, argon and xenon. Both equilibrium and dynamical information is obtained from the calculation of these wavefunctions. A surface hopping trajectory method for studying nonadiabatic excess electronic relaxation in condensed systems is used to explore the nonadiabatic relaxation after photoexciting an equilibrated excess electron in dense fluid helium. The different types on nonadiabatic phenomena which are important in excess electronic relaxation are surveyed. The same surface hopping trajectory method is also used to study the rapid nonadiabatic relaxation after an excess electron is injected into unperturbed fluid helium. Several distinctively different relaxation processes, characterized by their relative importance at different times during the relaxation to a localized equilibrium state, are detailed. Though the dynamical properties of excess electrons under the conditions considered here have never been studied before, the behavior is remarkably similar to that observed in both experimental and theoretical studies of electron hydration dynamics, indicating that the processes described may be very general relaxation mechanisms for localization and trapping in fluids. Additionally, ground state energies of an excess electron, e 0 , are computed as a function of solvent density using model electron-atom pseudopotentials in fluid helium, argon, and xenon. The nonuniqueness of the pseudopotential description of electron-molecule interactions is demonstrated

  5. The Geometry of the Semiclassical Wave Front Set for Schrödinger Eigenfunctions on the Torus

    Energy Technology Data Exchange (ETDEWEB)

    Cardin, Franco, E-mail: cardin@math.unipd.it; Zanelli, Lorenzo, E-mail: lzanelli@math.unipd.it [University of Padova, Department of Mathematics “Tullio Levi Civita” (Italy)

    2017-06-15

    This paper deals with the phase space analysis for a family of Schrödinger eigenfunctions ψ{sub ℏ} on the flat torus #Mathematical Double-Struck Capital T#{sup n} = (ℝ/2πℤ){sup n} by the semiclassical Wave Front Set. We study those ψ{sub ℏ} such that WF{sub ℏ}(ψ{sub ℏ}) is contained in the graph of the gradient of some viscosity solutions of the Hamilton-Jacobi equation. It turns out that the semiclassical Wave Front Set of such Schrödinger eigenfunctions is stable under viscous perturbations of Mean Field Game kind. These results provide a further viewpoint, and in a wider setting, of the link between the smooth invariant tori of Liouville integrable Hamiltonian systems and the semiclassical localization of Schrödinger eigenfunctions on the torus.

  6. The symmetric = ω -semi-classical orthogonal polynomials of class one

    Science.gov (United States)

    Maroni, P.; Mejri, M.

    2008-12-01

    We give the system of Laguerre-Freud equations associated with the = ω -semi-classical functionals of class one, where = ω is the divided difference operator. This system is solved in the symmetric case. There are essentially two canonical cases. The corresponding integral representations are given.

  7. Quantum versus semiclassical description of self-trapping: Anharmonic effects

    International Nuclear Information System (INIS)

    Raghavan, S.; Bishop, A.R.; Kenkre, V.M.

    1999-01-01

    Self-trapping has been traditionally studied on the assumption that quasiparticles interact with harmonic phonons and that this interaction is linear in the displacement of the phonon. To complement recent semiclassical studies of anharmonicity and nonlinearity in this context, we present below a fully quantum-mechanical analysis of a two-site system, where the oscillator is described by a tunably anharmonic potential, with a square well with infinite walls and the harmonic potential as its extreme limits, and wherein the interaction is nonlinear in the oscillator displacement. We find that even highly anharmonic polarons behave similar to their harmonic counterparts in that self-trapping is preserved for long times in the limit of strong coupling, and that the polaronic tunneling time scale depends exponentially on the polaron binding energy. Further, in agreement, with earlier results related to harmonic polarons, the semiclassical approximation agrees with the full quantum result in the massive oscillator limit of small oscillator frequency and strong quasiparticle-oscillator coupling. copyright 1999 The American Physical Society

  8. The Wigner transform and the semi-classical approximations

    International Nuclear Information System (INIS)

    Shlomo, S.

    1985-01-01

    The Wigner transform provides a reformulation of quantum mechanics in terms of classical concepts. Some properties of the Wigner transform of the density matrix which justify its interpretation as the quantum-mechanical analog of the classical phase-space distribution function are presented. Considering some applications, it is demonstrated that the Wigner distribution function serves as a good starting point for semi-classical approximations to properties of the (nuclear) many-body system

  9. Relaxation dynamics following transition of solvated electrons

    International Nuclear Information System (INIS)

    Barnett, R.B.; Landman, U.; Nitzan, A.

    1989-01-01

    Relaxation dynamics following an electronic transition of an excess solvated electron in clusters and in bulk water is studied using an adiabatic simulation method. In this method the solvent evolves classically and the electron is constrained to a specified state. The coupling between the solvent and the excess electron is evaluated via the quantum expectation value of the electron--water molecule interaction potential. The relaxation following excitation (or deexcitation) is characterized by two time scales: (i) a very fast (/similar to/20--30 fs) one associated with molecular rotations in the first solvation shell about the electron, and (ii) a slower stage (/similar to/200 fs), which is of the order of the longitudinal dielectric relaxation time. The fast relaxation stage exhibits an isotope effect. The spectroscopical consequences of the relaxation dynamics are discussed

  10. Dynamics simulation of a π-conjugated light-harvesting dendrimer II: phenylene-based dendrimer (phDG2)

    International Nuclear Information System (INIS)

    Kodama, Yasunobu; Ishii, Soh; Ohno, Kaoru

    2009-01-01

    We investigate the light-harvesting property of a π-conjugated dendrimer, phenylene-based dendrimer (phDG2), by carrying out a semi-classical Ehrenfest dynamics simulation based on the time-dependent density functional theory. Similar to our previous study of star-shaped stilbenoid phthalocyanine (SSS1Pc), phDG2 shows electron and hole transfer from the periphery to the core through a π-conjugated network when an electron is selectively excited in the periphery. The one-way electron and hole transfer occurs more easily in dendrimers with planar structure than in those with steric hindrance because π-conjugation is well maintained in the planar structure. The present results explain recent experiments by Akai et al (2005 J. Lumin. 112 449).

  11. Dynamical coupling of electrons and ions in Xray-induced dynamics

    International Nuclear Information System (INIS)

    Saalmann, Ulf; Camacho, Abraham; Rost, Jan-Michael

    2015-01-01

    Photo-absorption from short and intense Xray pulses by a molecule or a cluster triggers a complicated electron and ion dynamics. Whereas the excitation process concerns largely core-shell electrons, there are various subsequent relaxation channels like electronic decays and ionic Coulomb explosion. We will discuss the interplay of those processes for molecular clusters and fullerenes. (paper)

  12. Dynamical localization of two electrons in triple-quantum-dot shuttles

    International Nuclear Information System (INIS)

    Qu, Jinxian; Duan, Suqing; Yang, Ning

    2012-01-01

    The dynamical localization phenomena in two-electron quantum-dot shuttles driven by an ac field have been investigated and analyzed by the Floquet theory. The dynamical localization occurs near the anti-crossings in Floquet eigenenergy spectrum. The oscillation of the quantum-dot shuttles may increase the possibility of the dynamical localization. Especially, even if the two electrons are initialized in two neighbor dots, they can be localized there for appropriate intensity of the driven field. The studies may help the understanding of dynamical localization in electron shuttles and expand the application potential of nanoelectromechanical devices. -- Highlights: ► The dynamical localization in electron shuttle is studied by Floquet theory. ► There is a relation between quasi-energy anti-crossings and dynamical localization. ► The oscillation of quantum dot increases the dynamical localization. ► Even the electrons are initialized in different dots, the localization can occur.

  13. Semiclassical analysis, Witten Laplacians, and statistical mechanis

    CERN Document Server

    Helffer, Bernard

    2002-01-01

    This important book explains how the technique of Witten Laplacians may be useful in statistical mechanics. It considers the problem of analyzing the decay of correlations, after presenting its origin in statistical mechanics. In addition, it compares the Witten Laplacian approach with other techniques, such as the transfer matrix approach and its semiclassical analysis. The author concludes by providing a complete proof of the uniform Log-Sobolev inequality. Contents: Witten Laplacians Approach; Problems in Statistical Mechanics with Discrete Spins; Laplace Integrals and Transfer Operators; S

  14. Electron-translation effects in heavy-ion scattering

    International Nuclear Information System (INIS)

    Heinz, U.; Greiner, W.; Mueller, B.

    1981-01-01

    The origin and importance of electron-translation effects within a molecular description of electronic excitations in heavy-ion collisions is investigated. First, a fully consistent quantum-mechanical description of the scattering process is developed; the electrons are described by relativistic molecular orbitals, while the nuclear motion is approximated nonrelativistically. Leaving the quantum-mechanical level by using the semiclassical approximation for the nuclear motion, a set of coupled differential equations for the occupation amplitudes of the molecular orbitals is derived. In these coupled-channel equations the spurious asymptotic dynamical couplings are corrected for by additional matrix elements stemming from the electron translation. Hence, a molecular description of electronic excitations in heavy-ion scattering has been achieved, which is free from the spurious asymptotic couplings of the conventional perturbated stationary-state approach. The importance of electron-translation effects for continuum electrons and positrons is investigated. To this end an algorithm for the description of continuum electrons is proposed, which for the first time should allow for the calculation of angular distributions for delta electrons. Finally, the practical consequences of electron-translation effects are studied by calculating the corrected coupling matrix elements for the Pb-Cm system and comparing the corresponding K-vacancy probabilities with conventional calculations. We critically discuss conventional methods for cutting off the coupling matrix elements in coupled-channel calculations

  15. The hyperbola billiard: A model for the semiclassical quantization of chaotic systems

    International Nuclear Information System (INIS)

    Sieber, M.

    1991-04-01

    Classical and quantum mechanical properties of a chaotic billiard system are studied with special emphasis on a detailed numerical investigation of the periodic-orbit theory of Gutzwiller. This theory gives semiclassical approximations to the quantum mechanical energies of a classically chaotic system by means of a sum over all periodic orbits of the system. Parts of the derivation of the periodic-orbit theory are reviewed. The convergence properties of the periodic-orbit sum are discussed and smoothing techniques are introduced, which allow the determination of the energies by absolutely convergent sums. A code is introduced for the periodic orbits of the hyperbola billiard, a chaotic system which is bounded by the x-axis, the y-axis and the hyperbola y=1/x. An extremum principle for the periodic orbits is proved, which allows a very fast and accurate determination of the periodic orbits. The distributions of lengths and Lyapunov exponents of the orbits are studied. The quantum mechanical energies of the hyperbola billiard are determined by a boundary element method. A correction to the asymptotic approximation for the spectral staircase N(E), which counts the number of energy eigenvalues of the Schroedinger equation below a given energy E, is determined numerically. The properties of the periodic-orbit theory are investigated by an evaluation of the unsmoothed Gutzwiller trace formula and various versions of smoothed trace formulae. The advantage of different smoothing methods are discussed and compared. The effect of the semiclassical approximation is demonstrated by a smoothing, which leads to a truncation of the periodic-orbit sum. An alternative approximation for the energies in terms of a dynamical zeta function is investigated and shown to yield comparable results as the previous trace formulae. An approximation to this zeta function in analogy to the Riemann-Siegel formula for the Riemann zeta function is studied. (orig./HSI)

  16. Full quantum treatment of charge dynamics in amorphous molecular semiconductors

    Science.gov (United States)

    de Vries, Xander; Friederich, Pascal; Wenzel, Wolfgang; Coehoorn, Reinder; Bobbert, Peter A.

    2018-02-01

    We present a treatment of charge dynamics in amorphous molecular semiconductors that accounts for the coupling of charges to all intramolecular phonon modes in a fully quantum mechanical way. Based on ab initio calculations, we derive charge transfer rates that improve on the widely used semiclassical Marcus rate and obtain benchmark results for the mobility and energetic relaxation of electrons and holes in three semiconductors commonly applied in organic light-emitting diodes. Surprisingly, we find very similar results when using the simple Miller-Abrahams rate. We conclude that extracting the disorder strength from temperature-dependent charge transport studies is very possible but extracting the reorganization energy is not.

  17. Quantum Bound to Chaos and the Semiclassical Limit

    Science.gov (United States)

    Kurchan, Jorge

    2018-06-01

    We discuss the quantum bound on chaos in the context of the free propagation of a particle in an arbitrarily curved surface at low temperatures. The semiclassical calculation of the Lyapunov exponent can be performed in much the same way as the corresponding one for the `Loschmidt echo'. The bound appears here as the impossibility to scatter a wave, by effect of the curvature, over characteristic lengths smaller than the deBroglie wavelength.

  18. Strongly coupled semiclassical plasma: interaction model and some properties

    International Nuclear Information System (INIS)

    Baimbetov, N.F.; Bekenov, N.A.

    1999-01-01

    In the report a fully ionized strongly coupled hydrogen plasma is considered. The density number is considered within range n=n e =n i ≅(10 21 -2·10 25 )sm -3 , and the temperature domian is T≅(5·10 4 -10 6 ) K. The coupling parameter Γ is defined by Γ=e 2 /αk B T, where k B is the Boltzmann constant and e is electrical charge, α=(3/4πn) 1/3 is the average distance between the particles (Wigner-Seitz radius). The dimensionless density parameter r s =α/α B is given in terms of the Bohr radius α B =ℎ 2 /me 2 ∼0.529·10 - 8 sm. The degeneracy parameter for the electron was defined by the ratio between the thermal energy k B T and the Fermi energy E F :Θ=k B T/E F ∼0.54·r s /Γ. The intermediate temperature-density region, where Γ≥1; Θ≅1; T>13.6 eV is examined. A semiclassical effective potential which account for the short-range, quantum diffraction and symmetry effects of charge carriers screening

  19. Dynamics of photoexcited quasiparticles in heavy electron compounds

    International Nuclear Information System (INIS)

    Demsar, Jure; Sarrao, John L; Taylor, Antoinette J

    2006-01-01

    Femtosecond real-time spectroscopy is an emerging new tool for studying low energy electronic structure in correlated electron systems. Motivated by recent advances in understanding the nature of relaxation phenomena in various correlated electron systems (superconductors, density wave systems) the technique has been applied to heavy electron compounds in comparison with their non-magnetic counterparts. While the dynamics in their non-magnetic analogues are similar to the dynamics observed in noble metals (only weak temperature dependences are observed) and can be treated with a simple two-temperature model, the photoexcited carrier dynamics in heavy electron systems show dramatic changes as a function of temperature and excitation level. In particular, below some characteristic temperature the relaxation rate starts to decrease, dropping by more than two orders of magnitude upon cooling down to liquid He temperatures. This behaviour has been consistently observed in various heavy fermion metals as well as Kondo insulators, and is believed to be quite general. In order to account for the experimental observations, two theoretical models have been proposed. The first treats the heavy electron systems as simple metals with very flat electron dispersion near the Fermi level. An electron-phonon thermalization scenario can account for the observed slowing down of the relaxation provided that there exists a mechanism for suppression of electron-phonon scattering when both the initial and final electronic states lie in the region of flat dispersion. An alternative scenario argues that the relaxation dynamics in heavy electron systems are governed by the Rothwarf-Taylor bottleneck, where the dynamics are governed by the presence of a narrow gap in the density of states near the Fermi level. The so-called hybridization gap results from hybridization between localized moments and the conduction electron background. Remarkable agreement with the model suggests that carrier

  20. On the Anticipatory Aspects of the Four Interactions: what the Known Classical and Semi-Classical Solutions Teach us

    International Nuclear Information System (INIS)

    Lusanna, Luca

    2004-01-01

    The four (electro-magnetic, weak, strong and gravitational) interactions are described by singular Lagrangians and by Dirac-Bergmann theory of Hamiltonian constraints. As a consequence a subset of the original configuration variables are gauge variables, not determined by the equations of motion. Only at the Hamiltonian level it is possible to separate the gauge variables from the deterministic physical degrees of freedom, the Dirac observables, and to formulate a well posed Cauchy problem for them both in special and general relativity. Then the requirement of causality dictates the choice of retarded solutions at the classical level. However both the problems of the classical theory of the electron, leading to the choice of (1/2) (retarded + advanced) solutions, and the regularization of quantum field theory, leading to the Feynman propagator, introduce anticipatory aspects. The determination of the relativistic Darwin potential as a semi-classical approximation to the Lienard-Wiechert solution for particles with Grassmann-valued electric charges, regularizing the Coulomb self-energies, shows that these anticipatory effects live beyond the semi-classical approximation (tree level) under the form of radiative corrections, at least for the electro-magnetic interaction.Talk and 'best contribution' at The Sixth International Conference on Computing Anticipatory Systems CASYS'03, Liege August 11-16, 2003

  1. Effects of electron-phonon interaction on thermal and electrical transport through molecular nano-conductors

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Jing-Tao, E-mail: jtlu@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, 430074 Wuhan (China); Zhou, Hangbo [Department of Physics and Center for Computational Science and Engineering, National University of Singapore, 117551 Singapore (Singapore); NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456 Singapore (Singapore); Jiang, Jin-Wu [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, 200072 Shanghai (China); Wang, Jian-Sheng [Department of Physics and Center for Computational Science and Engineering, National University of Singapore, 117551 Singapore (Singapore)

    2015-05-15

    The topic of this review is the effects of electron-phonon interaction (EPI) on the transport properties of molecular nano-conductors. A nano-conductor connects to two electron leads and two phonon leads, possibly at different temperatures or chemical potentials. The EPI appears only in the nano-conductor. We focus on its effects on charge and energy transport. We introduce three approaches. For weak EPI, we use the nonequilibrium Green’s function method to treat it perturbatively. We derive the expressions for the charge and heat currents. For weak system-lead couplings, we use the quantum master equation approach. In both cases, we use a simple single level model to study the effects of EPI on the system’s thermoelectric transport properties. It is also interesting to look at the effect of currents on the dynamics of the phonon system. For this, we derive a semi-classical generalized Langevin equation to describe the nano-conductor’s atomic dynamics, taking the nonequilibrium electron system, as well as the rest of the atomic degrees of freedom as effective baths. We show simple applications of this approach to the problem of energy transfer between electrons and phonons.

  2. Effects of electron-phonon interaction on thermal and electrical transport through molecular nano-conductors

    International Nuclear Information System (INIS)

    Lü, Jing-Tao; Zhou, Hangbo; Jiang, Jin-Wu; Wang, Jian-Sheng

    2015-01-01

    The topic of this review is the effects of electron-phonon interaction (EPI) on the transport properties of molecular nano-conductors. A nano-conductor connects to two electron leads and two phonon leads, possibly at different temperatures or chemical potentials. The EPI appears only in the nano-conductor. We focus on its effects on charge and energy transport. We introduce three approaches. For weak EPI, we use the nonequilibrium Green’s function method to treat it perturbatively. We derive the expressions for the charge and heat currents. For weak system-lead couplings, we use the quantum master equation approach. In both cases, we use a simple single level model to study the effects of EPI on the system’s thermoelectric transport properties. It is also interesting to look at the effect of currents on the dynamics of the phonon system. For this, we derive a semi-classical generalized Langevin equation to describe the nano-conductor’s atomic dynamics, taking the nonequilibrium electron system, as well as the rest of the atomic degrees of freedom as effective baths. We show simple applications of this approach to the problem of energy transfer between electrons and phonons

  3. Path integral centroid molecular dynamics simulations of semiinfinite slab and bulk liquid of para-hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kinugawa, Kenichi [Nara Women`s Univ., Nara (Japan). Dept. of Chemistry

    1998-10-01

    It has been unsuccessful to solve a set of time-dependent Schroedinger equations numerically for many-body quantum systems which involve, e.g., a number of hydrogen molecules, protons, and excess electrons at a low temperature, where quantum effect evidently appears. This undesirable situation is fatal for the investigation of real low-temperature chemical systems because they are essentially composed of many quantum degrees of freedom. However, if we use a new technique called `path integral centroid molecular dynamics (CMD) simulation` proposed by Cao and Voth in 1994, the real-time semi-classical dynamics of many degrees of freedom can be computed by utilizing the techniques already developed in the traditional classical molecular dynamics (MD) simulations. Therefore, the CMD simulation is expected to be very powerful tool for the quantum dynamics studies or real substances. (J.P.N.)

  4. Time Dependent Hartree Fock Equation: Gateway to Nonequilibrium Plasmas

    International Nuclear Information System (INIS)

    Dufty, James W.

    2007-01-01

    This is the Final Technical Report for DE-FG02-2ER54677 award 'Time Dependent Hartree Fock Equation - Gateway to Nonequilibrium Plasmas'. Research has focused on the nonequilibrium dynamics of electrons in the presence of ions, both via basic quantum theory and via semi-classical molecular dynamics (MD) simulation. In addition, fundamental notions of dissipative dynamics have been explored for models of grains and dust, and for scalar fields (temperature) in turbulent edge plasmas. The specific topics addressed were Quantum Kinetic Theory for Metallic Clusters, Semi-classical MD Simulation of Plasmas , and Effects of Dissipative Dynamics.

  5. Semiclassical expansions on and near caustics

    International Nuclear Information System (INIS)

    Meetz, K.

    1984-09-01

    We show that the standard WKB expansion can be generalized so that it reproduces the behavior of the wave function on and near a caustic in two-dimensional space time. The expansion is related to the unfolding polynomials of the elementary catastrophes occurring in two dimensions: the fold and the cusp catastrophe. The method determines control parameters and transport coefficients in a self-consistent way from differential equations and does not refer to the asymptotic expansion of Feynman path integrals. The lowest order equations are solved explicitly in terms of the multivalued classical action. The result is a generalized semiclassical approximation on and beyond a caustic. (orig.)

  6. Semiclassical approach to black hole evaporation

    International Nuclear Information System (INIS)

    Lowe, D.A.

    1993-01-01

    Black hole evaporation may lead to massive or massless remnants, or naked singularities. This paper investigates this process in the context of two quite different two-dimensional black hole models. The first is the original Callan-Giddings-Harvey-Strominger (CGHS) model, the second is another two-dimensional dilaton-gravity model, but with properties much closer to physics in the real, four-dimensional, world. Numerical simulations are performed of the formation and subsequent evaporation of black holes and the results are found to agree qualitatively with the exactly solved modified CGHS models, namely, that the semiclassical approximation breaks down just before a naked singularity appears

  7. Emergent semiclassical time in quantum gravity: II. Full geometrodynamics and minisuperspace examples

    International Nuclear Information System (INIS)

    Anderson, Edward

    2007-01-01

    I apply the preceding paper's emergent semiclassical time approach to geometrodynamics. The analogy between the two papers is useful at the level of the quadratic constraints, while I document the differences between the two due to the underlying differences in their linear constraints. I find that the emergent time-dependent wave equation for the universe in general not a time-dependent Schroedinger equation but rather a more general equation containing second time derivatives, and estimate in which regime this becomes significant. I provide a specific minisuperspace example for my emergent semiclassical time scheme and compare it with the hidden York time scheme. Overall, interesting connections are shown between Newtonian, Leibniz-Mach-Barbour, Wentzel-Kramers-Brillouin (WKB) and cosmic times, while the Euler and York hidden dilational times are argued to be somewhat different from these

  8. Insights inot the atomic many-particle dynamics of scattering processes by ab-initio calculations

    International Nuclear Information System (INIS)

    Zapukhlyak, Myroslav

    2008-01-01

    The present thesis gives a theoretical contribution to the understanding of the many-particle dynamics in inelastic ion-atom collisions. Many-electron dynamics in ion-helium collisions and proton-sodium collisions was theoretically studied. The description is based on the semiclassical approximation with the straight orbit for the projectile motion. The ion-atom collision problem is by this reduced to a time-dependent many-electron problem and in the non-relativistic approximation described by the time-dependent Schroedinger equation. The solution of the many-electron problem pursues in the framework of the time-dependent density functional theory. The time-dependent Schroedinger equation for the interacting many-electron problem is transformed to the system of the time-dependent Kohn-Sham equations and solved by the two-center-basis generator method. The unknown time-dependent exchange-correlation one-particle potential forces different approximation int he time-dependent Kohn-Shan scheme. In this thesis the model of the independent electrons was applied as basis model, in which the electron-electron correlation is consistently neglected in all parts and in all steps. Differential cross sections for different one- and two-electron processes were calculated in the so-called eikonal approximation for the collisional systems p-He, He 2+ -He, and Ar q+ -He (q=15-18) [de

  9. Electron transfer dynamics: Zusman equation versus exact theory

    International Nuclear Information System (INIS)

    Shi Qiang; Chen Liping; Nan Guangjun; Xu Ruixue; Yan Yijing

    2009-01-01

    The Zusman equation has been widely used to study the effect of solvent dynamics on electron transfer reactions. However, application of this equation is limited by the classical treatment of the nuclear degrees of freedom. In this paper, we revisit the Zusman equation in the framework of the exact hierarchical equations of motion formalism, and show that a high temperature approximation of the hierarchical theory is equivalent to the Zusman equation in describing electron transfer dynamics. Thus the exact hierarchical formalism naturally extends the Zusman equation to include quantum nuclear dynamics at low temperatures. This new finding has also inspired us to rescale the original hierarchical equations and incorporate a filtering algorithm to efficiently propagate the hierarchical equations. Numerical exact results are also presented for the electron transfer reaction dynamics and rate constant calculations.

  10. Dynamism in Electronic Performance Support Systems.

    Science.gov (United States)

    Laffey, James

    1995-01-01

    Describes a model for dynamic electronic performance support systems based on NNAble, a system developed by the training group at Apple Computer. Principles for designing dynamic performance support are discussed, including a systems approach, performer-centered design, awareness of situated cognition, organizational memory, and technology use.…

  11. Spatiotemporal Observation of Electron-Impact Dynamics in Photovoltaic Materials Using 4D Electron Microscopy

    KAUST Repository

    Shaheen, Basamat

    2017-05-17

    Understanding light-triggered charge carrier dynamics near photovoltaic-material surfaces and at interfaces has been a key element and one of the major challenges for the development of real-world energy devices. Visualization of such dynamics information can be obtained using the one-of-a-kind methodology of scanning ultrafast electron microscopy (S-UEM). Here, we address the fundamental issue of how the thickness of the absorber layer may significantly affect the charge carrier dynamics on material surfaces. Time-resolved snapshots indicate that the dynamics of charge carriers generated by electron impact in the electron-photon dynamical probing regime is highly sensitive to the thickness of the absorber layer, as demonstrated using CdSe films of different thicknesses as a model system. This finding not only provides the foundation for potential applications of S-UEM to a wide range of devices in the fields of chemical and materials research, but also has impact on the use and interpretation of electron beam-induced current for optimization of photoactive materials in these devices.

  12. Semi-classical quantization non-manifestly using the method of harmonic balance

    International Nuclear Information System (INIS)

    Stepanov, S.S.; Tutik, R.S.; Yaroshenko, A.P.; Schlippe, W. von.

    1990-01-01

    Based on the ideas of the harmonic balance method and h-expansion a semi-classical procedure for deriving approximations to the energy levels of one-dimensional quantum systems is developed. The procedure is applied to treat the perturbed oscillator potentials. 12 refs.; 2 tabs

  13. A classical model for the electron

    International Nuclear Information System (INIS)

    Visser, M.

    1989-01-01

    The construction of classical and semi-classical models for the electron has had a long and distinguished history. Such models are useful more for what they teach us about field theory than what they teach us about the electron. In this Letter I exhibit a classical model of the electron consisting of ordinary electromagnetism coupled with a self-interacting version of Newtonian gravity. The gravitational binding energy of the system balances the electrostatic energy in such a manner that the total rest mass of the electron is finite. (orig.)

  14. Angular momentum projected semiclassics

    International Nuclear Information System (INIS)

    Hasse, R.W.

    1986-10-01

    By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle- one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space (r, r') the relevant quantities depend on vertical stroker - r 3 vertical stroke instead of vertical stroker - r'vertical stroke and in Wigner space (R, P) they become proportional to the angular momentum constraints δ(vertical strokeRxPvertical stroke/ℎ - l) and δ((RxP) z /ℎ - m). As applications we calculate the single-particle and one particle- one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction. (orig.)

  15. Electron-nuclear dynamics of molecular systems

    International Nuclear Information System (INIS)

    Diz, A.; Oehrn, Y.

    1994-01-01

    The content of an ab initio time-dependent theory of quantum molecular dynamics of electrons and atomic nuclei is presented. Employing the time-dependent variational principle and a family of approximate state vectors yields a set of dynamical equations approximating the time-dependent Schroedinger equation. These equations govern the time evolution of the relevant state vector parameters as molecular orbital coefficients, nuclear positions, and momenta. This approach does not impose the Born-Oppenheimer approximation, does not use potential energy surfaces, and takes into account electron-nuclear coupling. Basic conservation laws are fully obeyed. The simplest model of the theory employs a single determinantal state for the electrons and classical nuclei and is implemented in the computer code ENDyne. Results from this ab-initio theory are reported for ion-atom and ion-molecule collisions

  16. Ultrafast dynamics of correlated electrons

    International Nuclear Information System (INIS)

    Rettig, Laurenz

    2012-01-01

    This work investigates the ultrafast electron dynamics in correlated, low-dimensional model systems using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES) directly in the time domain. In such materials, the strong electron-electron (e-e) correlations or coupling to other degrees of freedom such as phonons within the complex many-body quantum system lead to new, emergent properties that are characterized by phase transitions into broken-symmetry ground states such as magnetic, superconducting or charge density wave (CDW) phases. The dynamical processes related to order like transient phase changes, collective excitations or the energy relaxation within the system allow deeper insight into the complex physics governing the emergence of the broken-symmetry state. In this work, several model systems for broken-symmetry ground states and for the dynamical charge balance at interfaces have been studied. In the quantum well state (QWS) model system Pb/Si(111), the charge transfer across the Pb/Si interface leads to an ultrafast energetic stabilization of occupied QWSs, which is the result of an increase of the electronic confinement to the metal film. In addition, a coherently excited surface phonon mode is observed. In antiferromagnetic (AFM) Fe pnictide compounds, a strong momentum-dependent asymmetry of electron and hole relaxation rates allows to separate the recovery dynamics of the AFM phase from electron-phonon (e-ph) relaxation. The strong modulation of the chemical potential by coherent phonon modes demonstrates the importance of e-ph coupling in these materials. However, the average e-ph coupling constant is found to be small. The investigation of the excited quasiparticle (QP) relaxation dynamics in the high-T c 4 superconductor Bi 2 Sr 2 CaCu 2 O 8+δ reveals a striking momentum and fluence independence of the QP life times. In combination with the momentum-dependent density of excited QPs, this demonstrates the suppression of momentum

  17. The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation

    Science.gov (United States)

    Filipuk, Galina; Van Assche, Walter; Zhang, Lun

    2012-05-01

    We show that the coefficients of the three-term recurrence relation for orthogonal polynomials with respect to a semi-classical extension of the Laguerre weight satisfy the fourth Painlevé equation when viewed as functions of one of the parameters in the weight. We compare different approaches to derive this result, namely, the ladder operators approach, the isomonodromy deformations approach and combining the Toda system for the recurrence coefficients with a discrete equation. We also discuss a relation between the recurrence coefficients for the Freud weight and the semi-classical Laguerre weight and show how it arises from the Bäcklund transformation of the fourth Painlevé equation.

  18. The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation

    International Nuclear Information System (INIS)

    Filipuk, Galina; Van Assche, Walter; Zhang Lun

    2012-01-01

    We show that the coefficients of the three-term recurrence relation for orthogonal polynomials with respect to a semi-classical extension of the Laguerre weight satisfy the fourth Painlevé equation when viewed as functions of one of the parameters in the weight. We compare different approaches to derive this result, namely, the ladder operators approach, the isomonodromy deformations approach and combining the Toda system for the recurrence coefficients with a discrete equation. We also discuss a relation between the recurrence coefficients for the Freud weight and the semi-classical Laguerre weight and show how it arises from the Bäcklund transformation of the fourth Painlevé equation. (paper)

  19. Semiclassical perturbation theory for diffraction in heavy atom surface scattering.

    Science.gov (United States)

    Miret-Artés, Salvador; Daon, Shauli; Pollak, Eli

    2012-05-28

    The semiclassical perturbation theory formalism of Hubbard and Miller [J. Chem. Phys. 78, 1801 (1983)] for atom surface scattering is used to explore the possibility of observation of heavy atom diffractive scattering. In the limit of vanishing ℏ the semiclassical theory is shown to reduce to the classical perturbation theory. The quantum diffraction pattern is sensitive to the characteristics of the beam of incoming particles. Necessary conditions for observation of quantum diffraction are derived for the angular width of the incoming beam. An analytic expression for the angular distribution as a function of the angular and momentum variance of the incoming beam is obtained. We show both analytically and through some numerical results that increasing the angular width of the incident beam leads to decoherence of the quantum diffraction peaks and one approaches the classical limit. However, the incoherence of the beam in the parallel direction does not destroy the diffraction pattern. We consider the specific example of Ar atoms scattered from a rigid LiF(100) surface.

  20. Molecular electron recollision dynamics in intense circularly polarized laser pulses

    Science.gov (United States)

    Bandrauk, André D.; Yuan, Kai-Jun

    2018-04-01

    Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.

  1. Electron-ion recombination at low energy

    International Nuclear Information System (INIS)

    Andersen, L.H.

    1993-01-01

    The work is based on results obtained with a merged-beams experiment. A beam of electronics with a well characterized density and energy distribution was merged with a fast, monoenergetic ion beam. Results have been obtained for radiative recombination and dielectronic recombination at low relative energies (0 to ∼70eV). The obtained energy resolution was improved by about a factor of 30. High vacuum technology was used to suppress interactions with electrons from the environments. The velocity distribution of the electron beam was determined. State-selective dielectronic-recombination measurements were performable. Recombination processes were studied. The theoretical background for radiative recombination and Kramers' theory are reviewed. The quantum mechanical result and its relation to the semiclassical theory is discussed. Radiative recombination was also measured with several different non-bare ions, and the applicability of the semiclassical theory to non-bare ions was investigated. The use of an effective charge is discussed. For dielectronic recombination, the standard theoretical approach in the isolated resonance and independent-processes approximation is debated. The applicability of this method was tested. The theory was able to reproduce most of the experimental data except when the recombination process was sensitive to couplings between different electronic configurations. The influence of external perturbing electrostatic fields is discussed. (AB) (31 refs.)

  2. Photo double-ionization of helium: a new approach combining R matrix and semiclassical techniques in an hyperspherical framework

    International Nuclear Information System (INIS)

    Malegat, L.; Kazansky, A.; Selles, P.

    1999-01-01

    We introduce a new method for computing photo double ionization (PDI) cross sections for two electron atoms. It is formulated in terms of the hyperspherical radius R and relies upon a combination of R matrix techniques in the inner region R≤R 0 with a semiclassical approximation for the R motion in the outer region. We present a first application of this method to the PDI of He within a model of reduced dimensionality where r 1 =r 2 . It demonstrates the validity of our numerical scheme and provides a first quantitative estimate of the energy domain of validity of the Wannier mechanism. (orig.)

  3. Classical and semi-classical solutions of the Yang--Mills theory

    International Nuclear Information System (INIS)

    Jackiw, R.; Nohl, C.; Rebbi, C.

    1977-12-01

    This review summarizes what is known at present about classical solutions to Yang-Mills theory both in Euclidean and Minkowski space. The quantal meaning of these solutions is also discussed. Solutions in Euclidean space expose multiple vacua and tunnelling of the quantum theory. Those in Minkowski space-time provide a semi-classical spectrum for a conformal generator

  4. A wave propagation matrix method in semiclassical theory

    International Nuclear Information System (INIS)

    Lee, S.Y.; Takigawa, N.

    1977-05-01

    A wave propagation matrix method is used to derive the semiclassical formulae of the multiturning point problem. A phase shift matrix and a barrier transformation matrix are introduced to describe the processes of a particle travelling through a potential well and crossing a potential barrier respectively. The wave propagation matrix is given by the products of phase shift matrices and barrier transformation matrices. The method to study scattering by surface transparent potentials and the Bloch wave in solids is then applied

  5. Semiclassical scar functions in phase space

    International Nuclear Information System (INIS)

    Rivas, Alejandro M F

    2007-01-01

    We develop a semiclassical approximation for the scar function in the Weyl-Wigner representation in the neighborhood of a classically unstable periodic orbit of chaotic two-dimensional systems. The prediction of hyperbolic fringes, asymptotic to the stable and unstable manifolds, is verified computationally for a (linear) cat map, after the theory is adapted to a discrete phase space appropriate to a quantized torus. Characteristic fringe patterns can be distinguished even for quasi-energies where the fixed point is not Bohr-quantized. Also the patterns are highly localized in the neighborhood of the periodic orbit and along its stable and unstable manifolds without any long distance patterns that appear for the case of the spectral Wigner function

  6. Regular and chaotic motion of two dimensional electrons in a strong magnetic field

    International Nuclear Information System (INIS)

    Bar-Lev, Oded; Levit, Shimon.

    1992-05-01

    For two dimensional system of electrons in a strong magnetic field a standard approximation is the projection on a single Landau level. The resulting Hamiltonian is commonly treated semiclassically. An important element in applying the semiclassical approximation is the integrability of the corresponding classical system. We discuss the relevant integrability conditions and give a simple example of a non-integrable system-two interacting electrons in the presence of two impurities-which exhibits a coexistence of regular and chaotic classical motions. Since the inverse of the magnetic field plays the role of the Planck constant in these problems, one has the opportunity to control the 'closeness' of chaotic physical systems to the classical limit. (author)

  7. Control of dynamical localization

    International Nuclear Information System (INIS)

    Gong Jiangbin; Woerner, Hans Jakob; Brumer, Paul

    2003-01-01

    Control over the quantum dynamics of chaotic kicked rotor systems is demonstrated. Specifically, control over a number of quantum coherent phenomena is achieved by a simple modification of the kicking field. These include the enhancement of the dynamical localization length, the introduction of classical anomalous diffusion assisted control for systems far from the semiclassical regime, and the observation of a variety of strongly nonexponential line shapes for dynamical localization. The results provide excellent examples of controlled quantum dynamics in a system that is classically chaotic and offer opportunities to explore quantum fluctuations and correlations in quantum chaos

  8. Electron-nuclear corellations for photoinduced dynamics in molecular dimers

    Science.gov (United States)

    Kilin, Dmitri S.; Pereversev, Yuryi V.; Prezhdo, Oleg V.

    2003-03-01

    Ultrafast photoinduced dynamics of electronic excitation in molecular dimers is drastically affected by dynamic reorganization of of inter- and intra- molecular nuclear configuration modelled by quantized nuclear degree of freedom [1]. The dynamics of the electronic population and nuclear coherence is analyzed with help of both numerical solution of the chain of coupled differential equations for mean coordinate, population inversion, electronic-vibrational correlation etc.[2] and by propagating the Gaussian wavepackets in relevant adiabatic potentials. Intriguing results were obtained in the approximation of small energy difference and small change of nuclear equilibrium configuration for excited electronic states. In the limiting case of resonance between electronic states energy difference and frequency of the nuclear mode these results have been justified by comparison to exactly solvable Jaynes-Cummings model. It has been found that the photoinduced processes in dimer are arranged according to their time scales:(i) fast scale of nuclear motion,(ii) intermediate scale of dynamical redistribution of electronic population between excited states as well as growth and dynamics of electronic -nuclear correlation,(iii) slow scale of electronic population approaching to the quasiequilibrium distribution, decay of electronic-nuclear correlation, and diminishing the amplitude of mean coordinate oscillations, accompanied by essential growth of the nuclear coordinate dispersion associated with the overall nuclear wavepacket width. Demonstrated quantum-relaxational features of photoinduced vibronic dinamical processess in molecular dimers are obtained by simple method, applicable to large biological systems with many degrees of freedom. [1] J. A. Cina, D. S. Kilin, T. S. Humble, J. Chem. Phys. (2003) in press. [2] O. V. Prezhdo, J. Chem. Phys. 117, 2995 (2002).

  9. Semiclassical theory for liquidlike behavior of the frustrated magnet Ca10Cr7O28

    Science.gov (United States)

    Biswas, Sounak; Damle, Kedar

    2018-03-01

    We identify the low energy effective Hamiltonian that is expected to describe the low temperature properties of the frustrated magnet Ca10Cr7O28 . Motivated by the fact that this effective Hamiltonian has S =3 /2 effective moments as its degrees of freedom, we use semiclassical spin-wave theory to study the T =0 physics of this effective model and argue that singular spin-wave fluctuations destabilize the spiral order favored by the exchange couplings of this effective Hamiltonian. We also use a combination of classical Monte-Carlo simulations and molecular dynamics, as well as analytical approximations, to study the physics at low, nonzero temperatures. The results of these nonzero temperature calculations capture the liquidlike structure factors observed in the temperature range accessed by recent experiments. Additionally, at still lower temperatures, they predict that a transition to nematic order in the bond energies reflects itself in the spin channel in the form of a crossover to a regime with large but finite correlation length for spiral spin correlations and a corresponding slowing down of spin dynamics.

  10. Various semiclassical limits of torus conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Alkalaev, Konstantin [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky ave. 53, Moscow, 119991 (Russian Federation); Department of General and Applied Physics, Moscow Institute of Physics and Technology,Institutskiy per. 7, Dolgoprudnyi, Moscow region, 141700 (Russian Federation); Geiko, Roman [Mathematics Department, National Research University Higher School of Economics,Usacheva str. 6, Moscow, 119048 (Russian Federation); Rappoport, Vladimir [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky ave. 53, Moscow, 119991 (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, Moscow, 127994 (Russian Federation)

    2017-04-12

    We study four types of one-point torus blocks arising in the large central charge regime. There are the global block, the light block, the heavy-light block, and the linearized classical block, according to different regimes of conformal dimensions. It is shown that the blocks are not independent being connected to each other by various links. We find that the global, light, and heavy-light blocks correspond to three different contractions of the Virasoro algebra. Also, we formulate the c-recursive representation of the one-point torus blocks which is relevant in the semiclassical approximation.

  11. Electrons as probes of dynamics in molecules and clusters: A contribution from Time Dependent Density Functional Theory

    International Nuclear Information System (INIS)

    Wopperer, P.; Dinh, P.M.; Reinhard, P.-G.; Suraud, E.

    2015-01-01

    There are various ways to analyze the dynamical response of clusters and molecules to electromagnetic perturbations. Particularly rich information can be obtained from measuring the properties of electrons emitted in the course of the excitation dynamics. Such an analysis of electron signals covers observables such as total ionization, Photo-Electron Spectra (PES), Photoelectron Angular Distributions (PAD), and ideally combined PES/PAD. It has a long history in molecular physics and was increasingly used in cluster physics as well. Recent progress in the design of new light sources (high intensity, high frequency, ultra short pulses) opens new possibilities for measurements and thus has renewed the interest on these observables, especially for the analysis of various dynamical scenarios, well beyond a simple access to electronic density of states. This, in turn, has motivated many theoretical investigations of the dynamics of electronic emission for molecules and clusters up to such a complex and interesting system as C 60 . A theoretical tool of choice is here Time-Dependent Density Functional Theory (TDDFT) propagated in real time and on a spatial grid, and augmented by a Self-Interaction Correction (SIC). This provides a pertinent, robust, and efficient description of electronic emission including the detailed pattern of PES and PAD. A direct comparison between experiments and well founded elaborate microscopic theories is thus readily possible, at variance with more demanding observables such as for example fragmentation or dissociation cross sections. The purpose of this paper is to describe the theoretical tools developed on the basis of real-time and real-space TDDFT and to address in a realistic manner the analysis of electronic emission following irradiation of clusters and molecules by various laser pulses. After a general introduction, we shall present in a second part the available experimental results motivating such studies, starting from the simplest

  12. Semiclassical methods in solid state physics : two examples

    Science.gov (United States)

    Bellissard, Jean; Barelli, Armelle

    1993-02-01

    We present here a review of two problems motivated by 2D models for high T, superconductivity. The first part concerns the energy spectrum of 2D Bloch electrons in a uniform magnetic field. A semiclassical analysis provides a qualitative as well as a quantitative understanding of this spectrum. In the second part we make the case for the application of “Quantum Chaos" to strongly correlated fermion systems. It is illustrated by the level spacing distribution for the t - J model in two dimensions. Ce travail est une revue de deux problèmes motivés par l'étude des modèles bidimensionnels pour la supraconductivité à haute température critique. La première partie concerne l'étude du spectre d'énergie pour des électrons de Bloch bidimensionnels soumis à un champ magnétique uniforme. Une analyse semi-classique permet d'en comprendre les propriétés qualitatives et quantitatives. La deuxième partie est un plaidoyer pour l'utilisation des méthodes du “Chaos Quantique" dans l'étude des systèmes de fermions fortement corrélés. La distribution des écarts de niveaux d'un modèle t - J en deux dimensions, en fournit une illustration.

  13. Ultrafast dynamics of correlated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, Laurenz

    2012-07-09

    This work investigates the ultrafast electron dynamics in correlated, low-dimensional model systems using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES) directly in the time domain. In such materials, the strong electron-electron (e-e) correlations or coupling to other degrees of freedom such as phonons within the complex many-body quantum system lead to new, emergent properties that are characterized by phase transitions into broken-symmetry ground states such as magnetic, superconducting or charge density wave (CDW) phases. The dynamical processes related to order like transient phase changes, collective excitations or the energy relaxation within the system allow deeper insight into the complex physics governing the emergence of the broken-symmetry state. In this work, several model systems for broken-symmetry ground states and for the dynamical charge balance at interfaces have been studied. In the quantum well state (QWS) model system Pb/Si(111), the charge transfer across the Pb/Si interface leads to an ultrafast energetic stabilization of occupied QWSs, which is the result of an increase of the electronic confinement to the metal film. In addition, a coherently excited surface phonon mode is observed. In antiferromagnetic (AFM) Fe pnictide compounds, a strong momentum-dependent asymmetry of electron and hole relaxation rates allows to separate the recovery dynamics of the AFM phase from electron-phonon (e-ph) relaxation. The strong modulation of the chemical potential by coherent phonon modes demonstrates the importance of e-ph coupling in these materials. However, the average e-ph coupling constant is found to be small. The investigation of the excited quasiparticle (QP) relaxation dynamics in the high-T{sub c}4 superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} reveals a striking momentum and fluence independence of the QP life times. In combination with the momentum-dependent density of excited QPs, this demonstrates the

  14. Electronic structure and transport in the low-temperature thermoelectric CsBi4Te6: Semiclassical transport equations

    DEFF Research Database (Denmark)

    Lykke, Lars; Iversen, Bo Brummerstedt; Madsen, Georg

    2006-01-01

    The band structure of the low-temperature thermoelectric material, CsBi4Te6, is calculated and analyzed using the semiclassic transport equations. It is shown that to obtain a quantitative agreement with measured transport properties, a band gap of 0.08 eV must be enforced. A gap in reasonable...... agreement with experiment was obtained using the generalized gradient functional of Engel and Vosko [E. Engel and S. H. Vosko, Phys. Rev. B 47, 13164 (1993)]. We found that the experimental p-type sample has a carrier concentration close to optimal. Furthermore, the conduction bands have a form equally well...

  15. Semiclassical Weyl Formula for a Class of Weakly Regular Elliptic Operators

    Energy Technology Data Exchange (ETDEWEB)

    Zielinski, Lech [Universite du Littoral, LMPA, Centre Mi-Voix (France)], E-mail: Lech.Zielinski@lmpa.univ-littoral.fr

    2006-02-15

    We investigate the semiclassical Weyl formula describing the asymptotic behaviour of the counting function for the number of eigenvalues in the case of self-adjoint elliptic differential operators satisfying weak regularity hypotheses. We consider symbols with possible critical points and with coefficients which have Hoelder continuous derivatives of first order.

  16. Semiclassical Weyl Formula for a Class of Weakly Regular Elliptic Operators

    International Nuclear Information System (INIS)

    Zielinski, Lech

    2006-01-01

    We investigate the semiclassical Weyl formula describing the asymptotic behaviour of the counting function for the number of eigenvalues in the case of self-adjoint elliptic differential operators satisfying weak regularity hypotheses. We consider symbols with possible critical points and with coefficients which have Hoelder continuous derivatives of first order

  17. Hot electrons in superlattices: quantum transport versus Boltzmann equation

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka; Rott, S.

    1999-01-01

    A self-consistent solution of the transport equation is presented for semiconductor superlattices within different approaches: (i) a full quantum transport model based on nonequilibrium Green functions, (ii) the semiclassical Boltzmann equation for electrons in a miniband, and (iii) Boltzmann...

  18. Semiclassical analysis of long-wavelength multiphoton processes: The Rydberg atom

    International Nuclear Information System (INIS)

    Vela-Arevalo, Luz V.; Fox, Ronald F.

    2004-01-01

    We study the problem of multiphoton processes for intense, long-wavelength irradiation of atomic and molecular electrons. An exact, nonperturbative approach is applied to the standard vector potential coupling Hamiltonian for a three-dimensional hydrogenlike atom in a microwave field treated semiclassically. Multiphoton probability exchange is calculated in both the velocity and the length gauges, by applying the Goeppert-Mayer gauge transformation. The expansion of the time-dependent solution in terms of Floquet states delineates the mechanism of multiphoton transitions. A detailed analysis of the Floquet states and quasienergies as functions of the field parameters allows us to describe the relation between avoided quasienergy crossings and multiphoton probability exchange. We formulate analytical expressions for the variation of quasienergies and Floquet states with respect to the field parameters, and demonstrate that avoided quasienergy crossings are accompanied by dramatic changes in the Floquet states. Analysis of the Floquet states, for small values of the field strength, yields selection rules for the avoided quasienergy crossings. In the case of strong fields, the simultaneous choice of frequency and strength of the field producing an avoided crossing results in improved ionization probability

  19. Semiclassical calculation for collision induced dissociation. III. Restricted two dimensional Morse oscillator model

    International Nuclear Information System (INIS)

    Rusinek, I.

    1980-01-01

    A semiclassical procedure previously used for collinear CID calculations is applied to the perpendicular collisions (2D, no rotation, zero impact parameter) of a Morse homonuclear diatomic molecule and an atom, interacting via an exponential repulsive potential. Values of the dissociation probability (P/sup diss/) are given as a function of total energy (E/sub t/) and initial vibrational state (n 1 =0,1,3,5) for a system with three identical masses. The results are compared with the P/sup diss/ previously reported for an identical one dimensional system. We find: (a) quasiclassical P/sup diss/ that are a good approximation to the semiclassical ones, if CID is classically allowed, (b) vibrational enhancement of CID, and (c) energetic thresholds for dissociation similar to the ones found in the collinear case

  20. Semiclassical and quantum motions on the non-commutative plane

    International Nuclear Information System (INIS)

    Baldiotti, M.C.; Gazeau, J.P.; Gitman, D.M.

    2009-01-01

    We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a θ-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man'ko states and circular squeezed states. The relation between these states and the 'classical' trajectories is investigated, and we present numerical explorations of some semiclassical quantities.

  1. Quantum Dynamics in Biological Systems

    Science.gov (United States)

    Shim, Sangwoo

    In the first part of this dissertation, recent efforts to understand quantum mechanical effects in biological systems are discussed. Especially, long-lived quantum coherences observed during the electronic energy transfer process in the Fenna-Matthews-Olson complex at physiological condition are studied extensively using theories of open quantum systems. In addition to the usual master equation based approaches, the effect of the protein structure is investigated in atomistic detail through the combined application of quantum chemistry and molecular dynamics simulations. To evaluate the thermalized reduced density matrix, a path-integral Monte Carlo method with a novel importance sampling approach is developed for excitons coupled to an arbitrary phonon bath at a finite temperature. In the second part of the thesis, simulations of molecular systems and applications to vibrational spectra are discussed. First, the quantum dynamics of a molecule is simulated by combining semiclassical initial value representation and density funcitonal theory with analytic derivatives. A computationally-tractable approximation to the sum-of-states formalism of Raman spectra is subsequently discussed.

  2. On semiclassical analysis of pure spinor superstring in an AdS{sub 5} x S{sup 5} background

    Energy Technology Data Exchange (ETDEWEB)

    Aisaka, Yuri [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Sao Paulo State Univ. (Brazil). Inst. de Fisica Teorica; Ibiapina Bevilaqua, L. [Univ. Federal do Rio Grande do Norte, Natal (Brazil). Esola de Ciencias e Tecnologia; Vallilo, Brenno C. [Santiago Univ. (Chile). Dept. de Ciencias Fisicas

    2012-06-15

    Relation between semiclassical analyses of Green-Schwarz and pure spinor formalisms in an AdS{sub 5} x S{sup 5} background is clarified. It is shown that the two formalisms have identical semiclassical partition functions for a simple family of classical solutions. It is also shown that, when the classical string is furthermore rigid, this in turn implies that the two formalisms predict the same one-loop corrections to spacetime energies.

  3. Probing electron correlation and nuclear dynamics in Momentum Space

    International Nuclear Information System (INIS)

    Deleuze, M S; Hajgato, B; Morini, F; Knippenberg, S

    2010-01-01

    Orbital imaging experiments employing Electron Momentum Spectroscopy are subject to many complications, such as distorted wave effects, conformational mobility in the electronic ground state, ultra-fast nuclear dynamics in the final state, or a dispersion of the ionization intensity over electronically excited (shake-up) configurations of the cation. The purpose of the present contribution is to illustrate how a proper treatment of these complications enables us to probe in momentum space the consequences of electron correlation and nuclear dynamics in neutral and cationic states.

  4. Spin dynamics in electron synchrotrons; Spindynamik in Elektronensynchrotronen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jan Felix

    2017-07-14

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  5. On the semiclassical description of shell effects in finite fermion systems; Zur semiklassischen Beschreibung von Schaleneffekten in endlichen Fermionensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Peter Johann

    2009-09-19

    An extension of Gutzwiller's semiclassical ''Periodic Orbit Theory'' for systems with continous symmetries is used to predict the ground state deformations of simple metal clusters which are described in the framework of the shell model. Restrictions of the theory caused by the semiclassical approximations are discussed and possible generalizations are demonstrated. The results are compared with corresponding quantum mechanical calculations. (orig.)

  6. Influence of semiclassical plasma on the energy levels and radiative transitions in highly charged ions★

    Science.gov (United States)

    Hu, Hong-Wei; Chen, Zhan-Bin; Chen, Wen-Cong; Liu, Xiao-Bin; Fu, Nian; Wang, Kai

    2017-11-01

    Considering the quantum effects of diffraction and the collective screening effects, the potential of test charge in semiclassical plasmas is derived. It is generalized exponential screened Coulomb potential. Using the Ritz variational method incorporating this potential, the effects of semiclassical plasma on the energy levels and radiative transitions are investigated systematically, taking highly charged H-like ion as an example. The Debye plasma model is also employed for comparison purposes. Comparisons and analysis are made between these two sets of results and the differences are discussed. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  7. On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach

    Directory of Open Access Journals (Sweden)

    Milan S. Dimitrijević

    2014-08-01

    Full Text Available The significance of Stark broadening data for problems in astrophysics, physics, as well as for technological plasmas is discussed and applications of Stark broadening parameters calculated using a semiclassical perturbation method are analyzed.

  8. Comment on Dynamic plasma screening effects on semiclassical inelastic electron ion collisions in dense plasmas [Phys. Plasmas 4, 21 (1997)

    International Nuclear Information System (INIS)

    Murillo, M.S.

    1997-01-01

    Jung's analysis of dynamics screening appears to be flawed by attempting to patch many-body effects into a single-body theory and a more rigorous foundation is necessary. Jung's result and dynamical screening have been previously analyzed many times

  9. Semiclassical theory of the tunneling anomaly in partially spin-polarized compressible quantum Hall states

    Science.gov (United States)

    Chowdhury, Debanjan; Skinner, Brian; Lee, Patrick A.

    2018-05-01

    Electron tunneling into a system with strong interactions is known to exhibit an anomaly, in which the tunneling conductance vanishes continuously at low energy due to many-body interactions. Recent measurements have probed this anomaly in a quantum Hall bilayer of the half-filled Landau level, and shown that the anomaly apparently gets stronger as the half-filled Landau level is increasingly spin polarized. Motivated by this result, we construct a semiclassical hydrodynamic theory of the tunneling anomaly in terms of the charge-spreading action associated with tunneling between two copies of the Halperin-Lee-Read state with partial spin polarization. This theory is complementary to our recent work (D. Chowdhury, B. Skinner, and P. A. Lee, arXiv:1709.06091) where the electron spectral function was computed directly using an instanton-based approach. Our results show that the experimental observation cannot be understood within conventional theories of the tunneling anomaly, in which the spreading of the injected charge is driven by the mean-field Coulomb energy. However, we identify a qualitatively new regime, in which the mean-field Coulomb energy is effectively quenched and the tunneling anomaly is dominated by the finite compressibility of the composite Fermion liquid.

  10. On the fly quantum dynamics of electronic and nuclear wave packets

    Science.gov (United States)

    Komarova, Ksenia G.; Remacle, F.; Levine, R. D.

    2018-05-01

    Multielectronic states quantum dynamics on a grid is described in a manner motivated by on the fly classical trajectory computations. Non stationary electronic states are prepared by a few cycle laser pulse. The nuclei respond and begin moving. We solve the time dependent Schrödinger equation for the electronic and nuclear dynamics for excitation from the ground electronic state. A satisfactory accuracy is possible using a localized description on a discrete grid. This enables computing on the fly for both the nuclear and electronic dynamics including non-adiabatic couplings. Attosecond dynamics in LiH is used as an example.

  11. Semiclassical Loop Quantum Gravity and Black Hole Thermodynamics

    Directory of Open Access Journals (Sweden)

    Arundhati Dasgupta

    2013-02-01

    Full Text Available In this article we explore the origin of black hole thermodynamics using semiclassical states in loop quantum gravity. We re-examine the case of entropy using a density matrix for a coherent state and describe correlations across the horizon due to SU(2 intertwiners. We further show that Hawking radiation is a consequence of a non-Hermitian term in the evolution operator, which is necessary for entropy production or depletion at the horizon. This non-unitary evolution is also rooted in formulations of irreversible physics.

  12. A study of the relationship between the semi-classical and the generator coordinate methods

    International Nuclear Information System (INIS)

    Passos, E.J.V. de; Souza Cruz, F.F. de.

    Using a very simple type of wave-packet which is obtained by letting unitary displacement operators having as generators canonical operators Q and P in the many-body Hilbert space act on a reference state, the relatinship between the semi-classical and the generator coordinate methods is investigated. The semi-classical method is based on the time-dependent variational principle whereas in the generator coordinate method the wave-packets are taken as generator states. To establish the equivalence of the two-methods, the concept of redundancy of the wave-packet and the importance of the zero-point energy effects are examined in detail, using tools developed in previous works. A numerical application to the case of the Goldhaber-Teller mode in 4 He is made. (Author) [pt

  13. SAM revisited: uniform semiclassical approximation with absorption

    International Nuclear Information System (INIS)

    Hussein, M.S.; Pato, M.P.

    1986-01-01

    The uniform semiclassical approximation is modified to take into account strong absorption. The resulting theory, very similar to the one developed by Frahn and Gross is used to discuss heavy-ion elastic scattering at intermediate energies. The theory permits a reasonably unambiguos separation of refractive and diffractive effects. The systems 12 C+ 12 C and 12 C+ 16 O, which seem to exhibit a remnant of a nuclear rainbow at E=20 Mev/N, are analysed with theory which is built directly on a model for the S-matrix. Simple relations between the fit S-matrix and the underlying complex potential are derived. (Author) [pt

  14. Semiclassical methods in field theories

    International Nuclear Information System (INIS)

    Ventura, I.

    1978-10-01

    A new scheme is proposed for semi-classical quantization in field theory - the expansion about the charge (EAC) - which is developed within the canonical formalism. This method is suitable for quantizing theories that are invariant under global gauge transformations. It is used in the treatment of the non relativistic logarithmic theory that was proposed by Bialynicki-Birula and Mycielski - a theory we can formulate in any number of spatial dimensions. The non linear Schroedinger equation is also quantized by means of the EAC. The classical logarithmic theories - both, the non relativistic and the relativistic one - are studied in detail. It is shown that the Bohr-Sommerfeld quantization rule(BSQR) in field theory is, in many cases, equivalent to charge quantization. This rule is then applied to the massive Thirring Model and the logarithmic theories. The BSQR can be see as a simplified and non local version of the EAC [pt

  15. Semiclassical investigation of the revival phenomena in a one-dimensional system

    International Nuclear Information System (INIS)

    Wang Zhexian; Heller, Eric J

    2009-01-01

    In a quantum revival, a localized wave packet re-forms or 'revives' into a compact reincarnation of itself long after it has spread in an unruly fashion over a region restricted only by the potential energy. This is a purely quantum phenomenon, which has no classical analog. Quantum revival and Anderson localization are members of a small class of subtle interference effects resulting in a quantum distribution radically different from the classical after long time evolution under classically nonlinear evolution. However, it is not clear that semiclassical methods, which start with the classical density and add interference effects, are in fact capable of capturing the revival phenomenon. Here we investigate two different one-dimensional systems, the infinite square well and Morse potential. In both the cases, after a long time the underlying classical manifolds are spread rather uniformly over phase space and are correspondingly spread in coordinate space, yet the semiclassical amplitudes are able to destructively interfere over most of coordinate space and constructively interfere in a small region, correctly reproducing a quantum revival. Further implications of this ability are discussed

  16. Semiclassical investigation of the revival phenomena in a one-dimensional system

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhexian [Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Heller, Eric J [Department of Physics and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 (United States)

    2009-07-17

    In a quantum revival, a localized wave packet re-forms or 'revives' into a compact reincarnation of itself long after it has spread in an unruly fashion over a region restricted only by the potential energy. This is a purely quantum phenomenon, which has no classical analog. Quantum revival and Anderson localization are members of a small class of subtle interference effects resulting in a quantum distribution radically different from the classical after long time evolution under classically nonlinear evolution. However, it is not clear that semiclassical methods, which start with the classical density and add interference effects, are in fact capable of capturing the revival phenomenon. Here we investigate two different one-dimensional systems, the infinite square well and Morse potential. In both the cases, after a long time the underlying classical manifolds are spread rather uniformly over phase space and are correspondingly spread in coordinate space, yet the semiclassical amplitudes are able to destructively interfere over most of coordinate space and constructively interfere in a small region, correctly reproducing a quantum revival. Further implications of this ability are discussed.

  17. Semiclassical investigation of the revival phenomena in a one-dimensional system

    Science.gov (United States)

    Wang, Zhe-xian; Heller, Eric J.

    2009-07-01

    In a quantum revival, a localized wave packet re-forms or 'revives' into a compact reincarnation of itself long after it has spread in an unruly fashion over a region restricted only by the potential energy. This is a purely quantum phenomenon, which has no classical analog. Quantum revival and Anderson localization are members of a small class of subtle interference effects resulting in a quantum distribution radically different from the classical after long time evolution under classically nonlinear evolution. However, it is not clear that semiclassical methods, which start with the classical density and add interference effects, are in fact capable of capturing the revival phenomenon. Here we investigate two different one-dimensional systems, the infinite square well and Morse potential. In both the cases, after a long time the underlying classical manifolds are spread rather uniformly over phase space and are correspondingly spread in coordinate space, yet the semiclassical amplitudes are able to destructively interfere over most of coordinate space and constructively interfere in a small region, correctly reproducing a quantum revival. Further implications of this ability are discussed.

  18. Stochastic semi-classical description of sub-barrier fusion reactions

    Directory of Open Access Journals (Sweden)

    Ayik Sakir

    2011-10-01

    Full Text Available A semi-classical method that incorporates the quantum effects of the low-lying vibrational modes is applied to fusion reactions. The quantum effect is simulated by stochastic sampling of initial zero-point fluctuations of the surface modes. In this model, dissipation of the relative energy into non-collective excitations of nuclei can be included straightforwardly. The inclusion of dissipation is shown to increase the agreement with the fusion cross section data of Ni isotopes.

  19. Semiclassical and quantum motions on the non-commutative plane

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M.C., E-mail: baldiott@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Gazeau, J.P., E-mail: gazeau@apc.univ-paris7.f [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Gitman, D.M., E-mail: gitman@dfn.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)

    2009-10-19

    We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a theta-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man'ko states and circular squeezed states. The relation between these states and the 'classical' trajectories is investigated, and we present numerical explorations of some semiclassical quantities.

  20. Dynamical mechanism of charge separation by photoexcited generation of proton–electron pairs in organic molecular systems. A nonadiabatic electron wavepacket dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Kentaro, E-mail: kyamamoto@fukui.kyoto-u.ac.jp; Takatsuka, Kazuo, E-mail: kaztak@fukui.kyoto-u.ac.jp

    2016-08-22

    Graphical abstract: Asymptotic biradical state produced by the excited-state coupled proton–electron transfer (CPET), resulting in charge separation (proton–electron pair creation) on a proton–electron acceptor A, in a series of photochemical systems generally denoted as X–Mn–OH{sub 2}⋯A, where X = (OH, Ca(OH){sub 3}) and A = (N-methylformamidine, guanidine, imidazole, or ammonia clusters). - Abstract: In this perspective article, we review, along with presenting new results, a series of our theoretical analyses on the excited-state mechanism of charge separation (proton–electron pair creation) relevant to the photoinduced water-splitting reaction (2H{sub 2}O → 4H{sup +} + 4e{sup −} + O{sub 2}) in organic and biological systems, which quite often includes Mn clusters in various molecular configurations. The present mechanism is conceived to be universal in the triggering process of the photoexcited water splitting dynamics. In other words, any Mn-based catalytic charge separation is quite likely to be initiated according to this mechanism. As computationally tractable yet realistic models, we examine a series of systems generally expressed as X–Mn–OH{sub 2}⋯A, where X = (OH, Ca(OH){sub 3}) and A = (N-methylformamidine, guanidine, imidazole or ammonia cluster) in terms of the theory of nonadiabatic electron wavepacket dynamics. We first find both an electron and a proton are simultaneously transferred to the acceptors through conical intersections upon photoexcitation. In this mechanism, the electron takes different pathways from that of the proton and reaches the densely lying Rydberg-like states of the acceptors in the end, thereby inducing charge separation. Therefore the presence of the Rydberg-like diffused unoccupied states as an electron acceptor is critical for this reaction to proceed. We also have found another crucial nonadiabatic process that deteriorates the efficiency of charge separation by rendering the created pair of proton

  1. The comparative roles of connected and disconnected trajectories in the evaluation of the semiclassical coherent-state propagator

    International Nuclear Information System (INIS)

    Rubin, A.; Klauder, J.R.

    1995-01-01

    The semiclassical approximation of the coherent-state propagator developed by Klauder and subsequently modified by Adachi is applied to the quartic oscillator. This approximation involves classical trajectories which must satisfy complex boundary conditions. It is found that these complex classical trajectories fall into two broad categories basically characterized by the descriptive titles ''continuously connected'' and ''disconnected'' given to the two different types. The continuously connected type is found to always contribute in the evaluation of the semiclassical propagator while the disconnected type will only contribute under specific conditions. copyright 1995 Academic Press, Inc

  2. Pair production in semiclassical and quantum-field theoretical description; Paarerzeugung in semiklassischer und quantenfeldtheoretischer Beschreibung

    Energy Technology Data Exchange (ETDEWEB)

    Woellert, Anton

    2016-07-27

    Pair production of electron-positron pairs in ultra-intense laser fields is considered in this work. Two regimes are investigated separately. The first regime is the so-called tunnel regime of pair production. The existing tunneling picture which is applicable in this regime will be enhanced by the effects of a magnetic field and an additional, perturbatively treated photon. Both effects are incorporated by the semi-classical approximation. In contrast, no straightforward approach exists so far for the second regime of pair production. Therefore, numerical calculations will be carried out by applying the framework of the in/out-formalism in external fields. These simulations show non-trivial effects that are be expected in this regime. Specifically, the influence of the electromagnetic fields' polarization upon the produced pair spectra is investigated. Furthermore, multi-pair states are studied.

  3. Dynamics of coupled electron-nuclei-systems in laser fields

    International Nuclear Information System (INIS)

    Falge, Mirjam

    2012-01-01

    This work aimed at the theoretical analysis of high harmonic generation in molecules and the influence of coupled electron and nuclear dynamics on ultra-short pulse ionization processes. In the first part of this thesis, the isotope effect and influence of vibrational excitation on high harmonic generation were investigated for the isotope pairs H 2 O/D 2 O and H 2 /D 2 . It was shown that on the one hand high harmonic intensities strongly depend on the vibrational quantum number of the initial state of the water molecule and on the other hand the spectra of H 2 O and D 2 O exhibit a clear isotope effect for certain vibrationally excited states. Also it was shown that high harmonics of vibrationally excited states show an even more pronounced isotope effect than the ground state. The second and third part of this work treats the influence of coupled electron and nuclear dynamics on photoelectron spectra. In order to facilitate a numerically exact description of this dynamics, a simple one-dimensional model system (Shin-Metiu model) was used. It consists of only a single electronic and nuclear degree-of-freedom and allows for a switching between adiabatic and strongly non-adiabatic dynamics by its parameterization. This model served for the analysis of the dynamics of three different cases ranging from weak over intermediate to strong electron-nuclear coupling. To investigate the influence of non-adiabatic effects on photoelectron spectra, time-resolved photoelectron spectra were calculated applying two methods: a numerically exact treatment and an adiabatic approach neglecting the electron-nuclear coupling. Subsequently, the dependence of the efficiency of a non-adiabatic transition on the nuclear mass was analysed. To this end, the population dynamics and photoelectron spectra were calculated numerically exactly for a strong electron and nuclear coupling. Thereafter the asymmetry in forward and backward direction of time-resolved photoelectron spectra and the

  4. XXIII International Conference on Nonlinear Dynamics of Electronic Systems

    CERN Document Server

    Stoop, Ruedi; Stramaglia, Sebastiano

    2017-01-01

    This book collects contributions to the XXIII international conference “Nonlinear dynamics of electronic systems”. Topics range from non-linearity in electronic circuits to synchronisation effects in complex networks to biological systems, neural dynamics and the complex organisation of the brain. Resting on a solid mathematical basis, these investigations address highly interdisciplinary problems in physics, engineering, biology and biochemistry.

  5. Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy

    Science.gov (United States)

    Li, Tao E.; Nitzan, Abraham; Sukharev, Maxim; Martinez, Todd; Chen, Hsing-Ta; Subotnik, Joseph E.

    2018-03-01

    The dynamics of an electronic two-level system coupled to an electromagnetic field are simulated explicitly for one- and three-dimensional systems through semiclassical propagation of the Maxwell-Liouville equations. We consider three flavors of mixed quantum-classical dynamics: (i) the classical path approximation (CPA), (ii) Ehrenfest dynamics, and (iii) symmetrical quasiclassical (SQC) dynamics. Our findings are as follows: (i) The CPA fails to recover a consistent description of spontaneous emission, (ii) a consistent "spontaneous" emission can be obtained from Ehrenfest dynamics, provided that one starts in an electronic superposition state, and (iii) spontaneous emission is always obtained using SQC dynamics. Using the SQC and Ehrenfest frameworks, we further calculate the dynamics following an incoming pulse, but here we find very different responses: SQC and Ehrenfest dynamics deviate sometimes strongly in the calculated rate of decay of the transient excited state. Nevertheless, our work confirms the earlier observations by Miller [J. Chem. Phys. 69, 2188 (1978), 10.1063/1.436793] that Ehrenfest dynamics can effectively describe some aspects of spontaneous emission and highlights interesting possibilities for studying light-matter interactions with semiclassical mechanics.

  6. Semiclassical model of deuteron dissociation in the Coulomb-Nuclear field

    International Nuclear Information System (INIS)

    Aleshin, V.P.; Sidorenko, B.I.

    1995-01-01

    We consider the survival probability of a deuteron which moves in the field of a heavy nucleus. This quantity was calculated within a semiclassical approach to the intrinsic motion within a deuteron and in the framework of an approach which makes use of the imaginary part of the phenomenological deuteron optical potential. A close agreement is obtained between these approaches in a broad range of deuteron energies and orbital momenta

  7. A uniform semi-classical approach to the Coulomb fission problem

    International Nuclear Information System (INIS)

    Levit, S.; Smilansky, U.

    1978-01-01

    A semi-classical theory based on the path integral formalism is applied to the description of Coulomb fission. Complex classical trajectories are used to compute the classically forbidden transitions from the target's ground state to fission. In a simple model the energy spectrum and angular distributions of the fragments are calculated for the Coulomb fission in the Xe + U collision. Theoretical predictions are made which may be checked experimentally. (author)

  8. Semi-classical theory of fluctuations in nuclear matter

    International Nuclear Information System (INIS)

    Benhassine, B.

    1994-01-01

    At intermediate energies the heavy ion collisions can be studied within the framework of a semi-classical approach based on the Vlasov-Uehling-Uhlenbeck (VUU) equation. Such an approach reduces the N-body problem to its description in terms of the one-body distribution function and constitutes the basis of several successful simulation models. Our aim in this work is to extend these average approaches to treat fluctuations. Within the framework of a linear approximation, we derived a Fokker-Planck transport equation in the one-body phase space. When it is reduced to its first moments, one recovers the VUU equation for the average dynamics together with the time evolution equation for the correlations. The collective transport coefficients are then obtained by projection on the one-body collective space. Independently, using a projection method introduced by Van Kampen, based on the constants of motion, we deduce the stationary expressions for the covariance matrix in phase space. We extract then, the equilibrium dispersions of one-body observables in a homogeneous case and in a spherical symmetric one. These results are compared with two types of simulation models in a relaxation time approximation. In the first one which is of Lagrangian type, the collective transport coefficients are directly extracted from the simulation and consequently the numerical fluctuations are washed out. The second model, due to its Eulerian character, allows us to make a microscopical comparison. (author)

  9. Storm-time radiation belt electron dynamics: Repeatability in the outer radiation belt

    Science.gov (United States)

    Murphy, K. R.; Mann, I. R.; Rae, J.; Watt, C.; Boyd, A. J.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.

    2017-12-01

    During intervals of enhanced solar wind driving the outer radiation belt becomes extremely dynamic leading to geomagnetic storms. During these storms the flux of energetic electrons can vary by over 4 orders of magnitude. Despite recent advances in understanding the nature of competing storm-time electron loss and acceleration processes the dynamic behavior of the outer radiation belt remains poorly understood; the outer radiation belt can exhibit either no change, an enhancement, or depletion in radiation belt electrons. Using a new analysis of the total radiation belt electron content, calculated from the Van Allen probes phase space density (PSD), we statistically analyze the time-dependent and global response of the outer radiation belt during storms. We demonstrate that by removing adiabatic effects there is a clear and repeatable sequence of events in storm-time radiation belt electron dynamics. Namely, the relativistic (μ=1000 MeV/G) and ultra-relativistic (μ=4000 MeV/G) electron populations can be separated into two phases; an initial phase dominated by loss followed by a second phase dominated by acceleration. At lower energies, the radiation belt seed population of electrons (μ=150 MeV/G) shows no evidence of loss but rather a net enhancement during storms. Further, we investigate the dependence of electron dynamics as a function of the second adiabatic invariant, K. These results demonstrate a global coherency in the dynamics of the source, relativistic and ultra-relativistic electron populations as function of the second adiabatic invariant K. This analysis demonstrates two key aspects of storm-time radiation belt electron dynamics. First, the radiation belt responds repeatably to solar wind driving during geomagnetic storms. Second, the response of the radiation belt is energy dependent, relativistic electrons behaving differently than lower energy seed electrons. These results have important implications in radiation belt research. In particular

  10. Time ordering in multi-electron dynamics

    International Nuclear Information System (INIS)

    McGuire, J H; Godunov, A L; Shakov, Kh Kh; Shipakov, V A; Merabet, H; Bruch, R; Hanni, J

    2003-01-01

    Time ordering of interactions in dynamic quantum multi-electron systems provides a constraint that interconnects the time evolution of different electrons. In energy space, time ordering appears as the principal value contribution from the Green function, which corresponds to the asymptotic condition that specifies whether the system has outgoing (or possibly incoming) scattered waves. We report evidence of effects of time correlation found by comparing calculations to recent spectropolarimetric data

  11. Time ordering in multi-electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, J H [Department of Physics, Tulane University, New Orleans, LA (United States); Godunov, A L [Department of Physics, Tulane University, New Orleans, LA (United States); Shakov, Kh Kh [Department of Physics, Tulane University, New Orleans, LA (United States); Shipakov, V A [Troitsk Institute for Innovation and Fusion Research, Troitsk (Russian Federation); Merabet, H [Department of Physics, University of Nevada Reno, Reno, NV (United States); Bruch, R [Department of Physics, University of Nevada Reno, Reno, NV (United States); Hanni, J [Department of Physics, University of Nevada Reno, Reno, NV (United States)

    2003-01-28

    Time ordering of interactions in dynamic quantum multi-electron systems provides a constraint that interconnects the time evolution of different electrons. In energy space, time ordering appears as the principal value contribution from the Green function, which corresponds to the asymptotic condition that specifies whether the system has outgoing (or possibly incoming) scattered waves. We report evidence of effects of time correlation found by comparing calculations to recent spectropolarimetric data.

  12. Horizons of semiclassical black holes are cold

    Energy Technology Data Exchange (ETDEWEB)

    Brustein, Ram [Department of Physics, Ben-Gurion University,Beer-Sheva 84105 (Israel); CAS, Ludwig-Maximilians-Universität München,80333 München (Germany); Medved, A.J.M. [Department of Physics & Electronics, Rhodes University,Grahamstown 6140 (South Africa)

    2014-06-10

    We calculate, using our recently proposed semiclassical framework, the quantum state of the Hawking pairs that are produced during the evaporation of a black hole (BH). Our framework adheres to the standard rules of quantum mechanics and incorporates the quantum fluctuations of the collapsing shell spacetime in Hawking’s original calculation, while accounting for back-reaction effects. We argue that the negative-energy Hawking modes need to be regularly integrated out; and so these are effectively subsumed by the BH and, as a result, the number of coherent negative-energy modes N{sub coh} at any given time is parametrically smaller than the total number of the Hawking particles N{sub total} emitted during the lifetime of the BH. We find that N{sub coh} is determined by the width of the BH wavefunction and scales as the square root of the BH entropy. We also find that the coherent negative-energy modes are strongly entangled with their positive-energy partners. Previously, we have found that N{sub coh} is also the number of coherent outgoing particles and that information can be continually transferred to the outgoing radiation at a rate set by N{sub coh}. Our current results show that, while the BH is semiclassical, information can be released without jeopardizing the nearly maximal inside-out entanglement and imply that the state of matter near the horizon is approximately the vacuum. The BH firewall proposal, on the other hand, is that the state of matter near the horizon deviates substantially from the vacuum, starting at the Page time. We find that, under the usual assumptions for justifying the formation of a firewall, one does indeed form at the Page time. However, the possible loophole lies in the implicit assumption that the number of strongly entangled pairs can be of the same order of N{sub total}.

  13. Semiclassical relations and IR effects in de Sitter and slow-roll space-times

    Energy Technology Data Exchange (ETDEWEB)

    Giddings, Steven B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Sloth, Martin S., E-mail: giddings@physics.ucsb.edu, E-mail: sloth@cern.ch [CERN, Physics Department, Theory Unit, CH-1211 Geneva 23 (Switzerland)

    2011-01-01

    We calculate IR divergent graviton one-loop corrections to scalar correlators in de Sitter space, and show that the leading IR contribution may be reproduced via simple semiclassical consistency relations. One can likewise use such semiclassical relations to calculate leading IR corrections to correlators in slow-roll inflation. The regulated corrections shift the tensor/scalar ratio and consistency relation of single field inflation, and non-gaussianity parameters averaged over very large distances. For inflation of sufficient duration, for example arising from a chaotic inflationary scenario, these corrections become of order unity. First-order corrections of this size indicate a breakdown of the perturbative expansion, and suggest the need for a non-perturbative description of the corresponding regime. This is analogous to a situation argued to arise in black hole evolution, and to interfere with a sharp perturbative calculation of ''missing information'' in Hawking radiation.

  14. Semiclassical relations and IR effects in de Sitter and slow-roll space-times

    International Nuclear Information System (INIS)

    Giddings, Steven B.; Sloth, Martin S.

    2011-01-01

    We calculate IR divergent graviton one-loop corrections to scalar correlators in de Sitter space, and show that the leading IR contribution may be reproduced via simple semiclassical consistency relations. One can likewise use such semiclassical relations to calculate leading IR corrections to correlators in slow-roll inflation. The regulated corrections shift the tensor/scalar ratio and consistency relation of single field inflation, and non-gaussianity parameters averaged over very large distances. For inflation of sufficient duration, for example arising from a chaotic inflationary scenario, these corrections become of order unity. First-order corrections of this size indicate a breakdown of the perturbative expansion, and suggest the need for a non-perturbative description of the corresponding regime. This is analogous to a situation argued to arise in black hole evolution, and to interfere with a sharp perturbative calculation of ''missing information'' in Hawking radiation

  15. Classical properties and semiclassical calculations in a spherical nuclear average potential

    International Nuclear Information System (INIS)

    Carbonell, J.; Brut, F.; Arvieu, R.; Touchard, J.

    1984-03-01

    We study the relation between the classical properties or an average nuclear potential and its spectral properties. We have drawn the energy-action surface of this potential and related its properties to the spectral ones in the framework of the EBK semiclassical method. We also describe a method allowing us to get the evolution of the spectrum with the mass number

  16. Time-resolved imaging of purely valence-electron dynamics during a chemical reaction

    DEFF Research Database (Denmark)

    Hockett, Paul; Bisgaard, Christer Z.; Clarkin, Owen J.

    2011-01-01

    Chemical reactions are manifestations of the dynamics of molecular valence electrons and their couplings to atomic motions. Emerging methods in attosecond science can probe purely electronic dynamics in atomic and molecular systems(1-6). By contrast, time-resolved structural-dynamics methods...... such as electron(7-10) or X-ray diffraction(11) and X-ray absorption(12) yield complementary information about the atomic motions. Time-resolved methods that are directly sensitive to both valence-electron dynamics and atomic motions include photoelectron spectroscopy(13-15) and high-harmonic generation(16......,17): in both cases, this sensitivity derives from the ionization-matrix element(18,19). Here we demonstrate a time-resolved molecular-frame photoelectron-angular-distribution (TRMFPAD) method for imaging the purely valence-electron dynamics during a chemical reaction. Specifically, the TRMFPADs measured during...

  17. Localized second-order optical potential for electron scattering in terms of imaginary-frequency susceptibilities

    International Nuclear Information System (INIS)

    Valone, S.M.; Truhlar, D.G.; Thirumialai, D.

    1982-01-01

    A local approximation to the second-order optical potential for elastic scattering of low-energy electrons from ground-state atoms is expressed in terms of the imaginary-frequency susceptibilities of the atom due to a point charge and to modified perturbing potentials. This provides a basis for the physically appealing concept of regarding the perturbation due to the projectile as having a position-dependent effective frequency associated with it. The result is extended to higher energies with the use of the concept of a local kinetic energy. With a semiclassical approximation the result reduces to a simple general form that should be useful for model potential studies of electron-atom and electron-molecule scattering. Alternatively, variational functionals for the susceptibilities can be used to calculate the approximate optical potential most rigorously without making effective-frequency, average-kinetic-energy, or semiclassical approximations. Intermediate levels of rigor are also possible

  18. Electron Impact Ionization of C60

    International Nuclear Information System (INIS)

    Duenser, B.; Lezius, M.; Scheier, P.; Deutsch, H.; Maerk, T.D.

    1995-01-01

    Absolute partial and total cross sections for the electron impact ionization of C 60 have been measured using a novel approach for the absolute calibration. The results obtained reveal not only an anomalous large parent ion cross section (as compared to the other ionization channels), but also anomalies for the production of multiply charged parent and fragment ions. This special behavior has its origin in the specific electronic and geometric structure of C 60 . Semiclassical calculations for singly charged ions support the measured data

  19. Quantum dynamics on potential energy surfaces. Simpler states and simpler dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Johannes Friedrich

    2015-09-25

    In this dissertation we analyze and simplify wave functions and observables in the context of quantum molecular dynamics. The two main topics we discuss are the structure of Hagedorn wave packets in position and phase space, and semiclassical approximations for the propagation of quantum expectations with nonnegative phase space densities. We provide algorithmic discretizations for these approximations and illustrate their validity and applicability by means of numerical experiments.

  20. Comparison of dynamical aspects of nonadiabatic electron, proton, and proton-coupled electron transfer reactions

    International Nuclear Information System (INIS)

    Hatcher, Elizabeth; Soudackov, Alexander; Hammes-Schiffer, Sharon

    2005-01-01

    The dynamical aspects of a model proton-coupled electron transfer (PCET) reaction in solution are analyzed with molecular dynamics simulations. The rate for nonadiabatic PCET is expressed in terms of a time-dependent probability flux correlation function. The impact of the proton donor-acceptor and solvent dynamics on the probability flux is examined. The dynamical behavior of the probability flux correlation function is dominated by a solvent damping term that depends on the energy gap correlation function. The proton donor-acceptor motion does not impact the dynamical behavior of the probability flux correlation function but does influence the magnitude of the rate. The approximations previously invoked for the calculation of PCET rates are tested. The effects of solvent damping on the proton donor-acceptor vibrational motion are found to be negligible, and the short-time solvent approximation, in which only equilibrium fluctuations of the solvent are considered, is determined to be valid for these types of reactions. The analysis of PCET reactions is compared to previous analyses of single electron and proton transfer reactions. The dynamical behavior is qualitatively similar for all three types of reactions, but the time scale of the decay of the probability flux correlation function is significantly longer for single proton transfer than for PCET and single electron transfer due to a smaller solvent reorganization energy for proton transfer

  1. Instantaneous and dynamical decoherence

    Science.gov (United States)

    Polonyi, Janos

    2018-04-01

    Two manifestations of decoherence, called instantaneous and dynamical, are investigated. The former reflects the suppression of the interference between the components of the current state while the latter reflects that within the initial state. These types of decoherence are computed in the case of the Brownian motion and the harmonic and anharmonic oscillators within the semiclassical approximation. A remarkable phenomenon, namely the opposite orientation of the time arrow of the dynamical variables compared to that of the quantum fluctuations generates a double exponential time dependence of the dynamical decoherence in the presence of a harmonic force. For the weakly anharmonic oscillator the dynamical decoherence is found to depend in a singular way on the amount of the anharmonicity.

  2. Semi-classical propagation of wavepackets for the phase space Schroedinger equation: interpretation in terms of the Feichtinger algebra

    International Nuclear Information System (INIS)

    Gosson, Maurice A de

    2008-01-01

    The nearby orbit method is a powerful tool for constructing semi-classical solutions of Schroedinger's equation when the initial datum is a coherent state. In this paper, we first extend this method to arbitrary squeezed states and thereafter apply our results to the Schroedinger equation in phase space. This adaptation requires the phase-space Weyl calculus developed in previous work of ours. We also study the regularity of the semi-classical solutions from the point of view of the Feichtinger algebra familiar from the theory of modulation spaces

  3. Dynamical tunneling in systems with a mixed phase space

    International Nuclear Information System (INIS)

    Loeck, Steffen

    2010-01-01

    Tunneling is one of the most prominent features of quantum mechanics. While the tunneling process in one-dimensional integrable systems is well understood, its quantitative prediction for systems with a mixed phase space is a long-standing open challenge. In such systems regions of regular and chaotic dynamics coexist in phase space, which are classically separated but quantum mechanically coupled by the process of dynamical tunneling. We derive a prediction of dynamical tunneling rates which describe the decay of states localized inside the regular region towards the so-called chaotic sea. This approach uses a fictitious integrable system which mimics the dynamics inside the regular domain and extends it into the chaotic region. Excellent agreement with numerical data is found for kicked systems, billiards, and optical microcavities, if nonlinear resonances are negligible. Semiclassically, however, such nonlinear resonance chains dominate the tunneling process. Hence, we combine our approach with an improved resonance-assisted tunneling theory and derive a unified prediction which is valid from the quantum to the semiclassical regime. We obtain results which show a drastically improved accuracy of several orders of magnitude compared to previous studies. (orig.)

  4. Dynamical tunneling in systems with a mixed phase space

    Energy Technology Data Exchange (ETDEWEB)

    Loeck, Steffen

    2010-04-22

    Tunneling is one of the most prominent features of quantum mechanics. While the tunneling process in one-dimensional integrable systems is well understood, its quantitative prediction for systems with a mixed phase space is a long-standing open challenge. In such systems regions of regular and chaotic dynamics coexist in phase space, which are classically separated but quantum mechanically coupled by the process of dynamical tunneling. We derive a prediction of dynamical tunneling rates which describe the decay of states localized inside the regular region towards the so-called chaotic sea. This approach uses a fictitious integrable system which mimics the dynamics inside the regular domain and extends it into the chaotic region. Excellent agreement with numerical data is found for kicked systems, billiards, and optical microcavities, if nonlinear resonances are negligible. Semiclassically, however, such nonlinear resonance chains dominate the tunneling process. Hence, we combine our approach with an improved resonance-assisted tunneling theory and derive a unified prediction which is valid from the quantum to the semiclassical regime. We obtain results which show a drastically improved accuracy of several orders of magnitude compared to previous studies. (orig.)

  5. Imaging Electron Dynamics with Ultrashort Light Pulses: A Theory Perspective

    Directory of Open Access Journals (Sweden)

    Daria Popova-Gorelova

    2018-02-01

    Full Text Available A wide range of ultrafast phenomena in various atomic, molecular and condense matter systems is governed by electron dynamics. Therefore, the ability to image electronic motion in real space and real time would provide a deeper understanding of such processes and guide developments of tools to control them. Ultrashort light pulses, which can provide unprecedented time resolution approaching subfemtosecond time scale, are perspective to achieve real-time imaging of electron dynamics. This task is challenging not only from an experimental view, but also from a theory perspective, since standard theories describing light-matter interaction in a stationary regime can provide erroneous results in an ultrafast case as demonstrated by several theoretical studies. We review the theoretical framework based on quantum electrodynamics, which has been shown to be necessary for an accurate description of time-resolved imaging of electron dynamics with ultrashort light pulses. We compare the results of theoretical studies of time-resolved nonresonant and resonant X-ray scattering, and time- and angle-resolved photoelectron spectroscopy and show that the corresponding time-resolved signals encode analogous information about electron dynamics. Thereby, the information about an electronic system provided by these time-resolved techniques is different from the information provided by their time-independent analogues.

  6. Instanton calculus without equations of motion: semiclassics from monodromies of a Riemann surface

    Science.gov (United States)

    Gulden, Tobias; Janas, Michael; Kamenev, Alex

    2015-02-01

    Instanton calculations in semiclassical quantum mechanics rely on integration along trajectories which solve classical equations of motion. However in systems with higher dimensionality or complexified phase space these are rarely attainable. A prime example are spin-coherent states which are used e.g. to describe single molecule magnets (SMM). We use this example to develop instanton calculus which does not rely on explicit solutions of the classical equations of motion. Energy conservation restricts the complex phase space to a Riemann surface of complex dimension one, allowing to deform integration paths according to Cauchy’s integral theorem. As a result, the semiclassical actions can be evaluated without knowing actual classical paths. Furthermore we show that in many cases such actions may be solely derived from monodromy properties of the corresponding Riemann surface and residue values at its singular points. As an example, we consider quenching of tunneling processes in SMM by an applied magnetic field.

  7. Hyperspherical time-dependent method with semiclassical outgoing waves for double photoionization of helium

    International Nuclear Information System (INIS)

    Kazansky, A.K.; Selles, P.; Malegat, L.

    2003-01-01

    The hyperspherical time-dependent method with semiclassical outgoing waves for study of double photoionization of helium is presented. It is closely related to the hyperspherical R-matrix method with semiclassical outgoing waves [Phys. Rev. A 65, 032711 (2002)]: both split configuration space into two regions to solve the stationary inhomogeneous Schroedinger equation associated with the one-photon ionization problem, and both apply the same treatment to the outer region. However, the two methods differ radically in their treatments of the problem in the inner region: the most recent one applies a time-dependent approach for calculating the stationary wave function, while the previous one uses a R-matrix treatment. The excellent agreement observed between the triple differential cross sections obtained from these two basically different methods provides very strong support for both of them. Importantly, the very different numerical structures of both methods might make the most recent one a better candidate for investigating the near-threshold region

  8. Frozen Gaussian approximation based domain decomposition methods for the linear Schrödinger equation beyond the semi-classical regime

    Science.gov (United States)

    Lorin, E.; Yang, X.; Antoine, X.

    2016-06-01

    The paper is devoted to develop efficient domain decomposition methods for the linear Schrödinger equation beyond the semiclassical regime, which does not carry a small enough rescaled Planck constant for asymptotic methods (e.g. geometric optics) to produce a good accuracy, but which is too computationally expensive if direct methods (e.g. finite difference) are applied. This belongs to the category of computing middle-frequency wave propagation, where neither asymptotic nor direct methods can be directly used with both efficiency and accuracy. Motivated by recent works of the authors on absorbing boundary conditions (Antoine et al. (2014) [13] and Yang and Zhang (2014) [43]), we introduce Semiclassical Schwarz Waveform Relaxation methods (SSWR), which are seamless integrations of semiclassical approximation to Schwarz Waveform Relaxation methods. Two versions are proposed respectively based on Herman-Kluk propagation and geometric optics, and we prove the convergence and provide numerical evidence of efficiency and accuracy of these methods.

  9. Semiclassical expansions of the nuclear relativistic Hartree-Fock theory

    International Nuclear Information System (INIS)

    Weigel, M.K.; Haddad, S.

    1991-01-01

    Semiclassical expansions for Green functions, self-energy, phase-space density and density are given and discussed. The many-body problem was treated in the relativistic Hartree-Fock approximation with a Lagrangian with a standard OBE potential structure including the possibility of space-dependent couplings. The expansions are obtained by formulating the many-body problem in the mixed position-momentum (Wigner) representation and application of the (h/2π)-Wigner-Kirkwood expansion scheme. The resulting self-consistency problems for the zeroth and second order are formulated in three versions. (author)

  10. Comparative role of potential structure in classical, semiclassical, and quantum mechanics

    International Nuclear Information System (INIS)

    Judson, R.S.; Shi, S.; Rabitz, H.

    1989-01-01

    The corresponding effects of features in the potential on classical, semiclassical, and quantum mechanics are probed using the technique of functional sensitivity analysis. It is shown that the classical and quantum functional sensitivities are equivalent in the classical (small (h/2π)) and harmonic limits. Classical and quantum mechanics are known to react in qualitatively similar ways provided that features on the potential are smooth on the length scale of oscillations in the quantum wave function. By using functional sensitivity analysis, we are able to show in detail how the classical and quantum dynamics differ in the way that they sense the potential. Two examples are given, the first of which is the harmonic oscillator. This problem is well understood by other means but is useful to examine because it illustrates the detailed information about the interaction of the potential and the dynamics which can be provided by functional sensitivity analysis, simplifying the analysis of more complex systems. The second example is the collinear H+H 2 reaction. In that case there are a number of detailed and striking differences between the ways that classical and quantum mechanics react to features on the potential. For features which are broad compared to oscillations in the wave function, the two react in qualitatively the same way. The sensitivities are oscillatory, however, and there are phasing differences between the classical and quantum sensitivity functions. This means that using classical mechanics plus experimental data in an inversion scheme intended to find the ''true'' potential will necessarily introduce sizeable errors

  11. Electron beam dynamics in Pasotron microwave sources

    International Nuclear Information System (INIS)

    Carmel, Y.; Shkvarunets, A.; Nusinovich, G.S.; Rodgers, J.; Bliokh, Yu.P.; Goebel, D.M.

    2003-01-01

    The Pasotron is a high efficiency (∼50%), plasma-assisted microwave generator in which the beam electrons exhibit two-dimensional motion in the slow wave structure. The electron beam propagates in the ion-focusing regime (Bennett pinch regime) because there is no applied magnetic field. Since initially only the neutral gas is present in the vacuum system and the ions in the neutralizing plasma channel are produced only due to the beam impact ionization, the beam dynamics in Pasotrons is inherently a nonstationary process, and important for efficient operation. The present paper contains results of experimental studies of stationary and nonstationary effects in the beam dynamics in Pasotrons and their theoretical interpretation

  12. Study between the semi-classical and the generator-coordinate methods

    International Nuclear Information System (INIS)

    Souza Cruz, F.F. de.

    1979-01-01

    In this work it is performed a comparison between two microscopic theories of the colective movement: semi-classical theory and the quantum theory from the generator -coordinate method. In boths cases, it is used wave packets |p,q> which depend on two canonical conjugate parameters. These wave packets are constructed by the action of displacement unitory operators, which are generated by canonical operators Q-circumflex and P-circumflex on a referencial state. (A.C.A.S.) [pt

  13. Dynamic analysis of electron density in the course of the internal motion of molecular system

    International Nuclear Information System (INIS)

    Tachibana, A.; Hori, K.; Asai, Y.; Yamabe, T.

    1984-01-01

    The general dynamic aspect of electron density of a molecular system is studied on the basis of the general equation of the electron orbital which is formulated for the dynamic study of electronic motion. The newly defined electron orbital incorporates the dynamics of molecular vibration into the electronic structures. In this scheme, the change of electron distribution caused by excitation of vibrational state is defined as the ''dynamic electron transfer.'' The dynamic electron density is found to have the remarkable ''additive'' property. The time-dependent aspect of the dynamic electron redistribution is also analyzed on the basis of the ''coherent state.'' The new method relates the classical vibrational amplitude to the quantum number of the vibrational state. As a preliminary application of the present treatment, the dynamic electron densities of H 2 , HD, HT, HF, and HCl molecules are calculated by use of ab initio molecular orbital method

  14. Dynamics of two-electron excitations in helium

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, C.D.; Menzel, A.; Frigo, S.P. [Univ. of Central Florida, Orlando, FL (United States)] [and others

    1997-04-01

    Excitation of both electrons in helium offers a unique window for studying electron correlation at the most basic level in an atom in which these two electrons and the nucleus form a three-body system. The authors utilized the first light available at the U-8 undulator-SGM monochromator beamline to investigate the dynamic parameters, partial cross sections, differential cross sections, and photoelectron angular distribution parameters ({beta}), with a high resolving power for the photon beam and at the highly differential level afforded by the use of their electron spectrometer. In parallel, they carried out detailed calculations of the relevant properties by a theoretical approach that is based on the hyperspherical close-coupling method. Partial photoionization cross sections {sigma}{sub n}, and photoelectron angular distributions {beta}{sub n} were measured for all possible final ionic states He{sup +}(n) in the region of the double excitations N(K,T){sup A} up to the N=5 threshold. At a photon energy bandpass of 12 meV below the thresholds N=3, 4, and 5, this level of differentiation offers the most critical assessment of the dynamics of the two-electron excitations to date. The experimental data were seen to be very well described by the most advanced theoretical calculations.

  15. The semiclassical limit of W.sub.N./sub. CFTs and Vasiliev theory

    Czech Academy of Sciences Publication Activity Database

    Perlmutter, E.; Procházka, Tomáš; Raeymaekers, Joris

    2013-01-01

    Roč. 2013, č. 5 (2013), s. 1-51 ISSN 1029-8479 R&D Projects: GA ČR(CZ) GAP203/11/1388 Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional support: RVO:68378271 Keywords : field theory * coupling * scalar * matter * spin * semiclassical * gravitation * defect Subject RIV: BE - Theoretical Physics Impact factor: 6.220, year: 2013

  16. A semiclassical model for quark jet fragmentation

    International Nuclear Information System (INIS)

    Andersson, B.; Gustafson, G.; Peterson, C.

    1979-01-01

    A semiclassical model is presented for the way the energy of a fast quark is transformed into observable hadrons. It reproduces the features of 1+1 dimensional QED (the Schwinger model) concerning a flat rapidity distribution in the central region. It also reproduces results from phenomenological considerations, which, based upon scaling, predict that meson formation in the fragmentation region can be described by an iterative scheme, implying a set of coupled integral equations. In particular the model predicts that the probability to find a meson containing the leading quark is independent of the Feynman scaling variable z. The iterative structure corresponds to a Brownian motion with relevance both to the cofinement problems and to the distribution of mass in the quark jet. (orig.) [de

  17. Improvements on Semi-Classical Distorted-Wave model

    Energy Technology Data Exchange (ETDEWEB)

    Sun Weili; Watanabe, Y.; Kuwata, R. [Kyushu Univ., Fukuoka (Japan); Kohno, M.; Ogata, K.; Kawai, M.

    1998-03-01

    A method of improving the Semi-Classical Distorted Wave (SCDW) model in terms of the Wigner transform of the one-body density matrix is presented. Finite size effect of atomic nuclei can be taken into account by using the single particle wave functions for harmonic oscillator or Wood-Saxon potential, instead of those based on the local Fermi-gas model which were incorporated into previous SCDW model. We carried out a preliminary SCDW calculation of 160 MeV (p,p`x) reaction on {sup 90}Zr with the Wigner transform of harmonic oscillator wave functions. It is shown that the present calculation of angular distributions increase remarkably at backward angles than the previous ones and the agreement with the experimental data is improved. (author)

  18. Summary of the electron accelerators session

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1988-10-01

    Since the last High Energy Physics Symposium, there has been considerable progress in the field of polarized electron accelerators. Projects well into construction include the SLC, HERA, and LEP. The status of polarized beams for these projects is discussed in this session. Semiclassical and quantum mechanical calculations of polarizing and depolarizing effects are discussed, for both linear colliders and for storage rings. Substantial progress is continuing in the understanding of depolarizing mechanisms for circular machines. Modelling of these machines is underway. Activities with polarized electron beams at Novosibirsk are described. 8 refs

  19. Particle dynamics during electronic sputtering of solid krypton

    DEFF Research Database (Denmark)

    Dutkiewicz, L.; Pedrys, R.; Schou, Jørgen

    1995-01-01

    We have modeled electronic sputtering of solid krypton by excimer production with molecular dynamics. Both excimer evolution in the solid and deexcitation processes have been incorporated in the simulation. The excimer dynamics in the lattice has been analyzed: the excimers formed near the surface...

  20. Non-Born-Oppenheimer trajectories with self-consistent decay of mixing

    International Nuclear Information System (INIS)

    Zhu Chaoyuan; Jasper, Ahren W.; Truhlar, Donald G.

    2004-01-01

    A semiclassical trajectory method, called the self-consistent decay of mixing (SCDM) method, is presented for the treatment of electronically nonadiabatic dynamics. The SCDM method is a modification of the semiclassical Ehrenfest (SE) method (also called the semiclassical time-dependent self-consistent-field method) that solves the problem of unphysical mixed final states by including decay-of-mixing terms in the equations for the evolution of the electronic state populations. These terms generate a force, called the decoherent force (or dephasing force), that drives the electronic component of each trajectory toward a pure state. Results for several mixed quantum-classical methods, in particular the SCDM, SE, and natural-decay-of-mixing methods and several trajectory surface hopping methods, are compared to the results of accurate quantum mechanical calculations for 12 cases involving five different fully dimensional triatomic model systems. The SCDM method is found to be the most accurate of the methods tested. The method should be useful for the simulation of photochemical reactions

  1. Microscopic theory of dynamical subspace for large amplitude collective motion

    International Nuclear Information System (INIS)

    Sakata, Fumihiko; Marumori, Toshio; Ogura, Masanori.

    1986-01-01

    A full quantum theory appropriate for describing large amplitude collective motion is proposed by exploiting the basic idea of the semi-classical theory so far developed within the time-depedent Hartree-Fock theory. A central problem of the quantum theory is how to determine an optimal representation called a dynamical representation specific for the collective subspace where the large amplitude collective motion is replicated as precisely as possible. As an extension of the semi-classical theory where the concept of an approximate integral surface played an important role, the collective subspace is properly characterized by introducing a concept of an approximate invariant subspace of the Hamiltonian. (author)

  2. Electron-impact-ionization dynamics of S F6

    Science.gov (United States)

    Bull, James N.; Lee, Jason W. L.; Vallance, Claire

    2017-10-01

    A detailed understanding of the dissociative electron ionization dynamics of S F6 is important in the modeling and tuning of dry-etching plasmas used in the semiconductor manufacture industry. This paper reports a crossed-beam electron ionization velocity-map imaging study on the dissociative ionization of cold S F6 molecules, providing complete, unbiased kinetic energy distributions for all significant product ions. Analysis of these distributions suggests that fragmentation following single ionization proceeds via formation of S F5 + or S F3 + ions that then dissociate in a statistical manner through loss of F atoms or F2, until most internal energy has been liberated. Similarly, formation of stable dications is consistent with initial formation of S F4 2 + ions, which then dissociate on a longer time scale. These data allow a comparison between electron ionization and photoionization dynamics, revealing similar dynamical behavior. In parallel with the ion kinetic energy distributions, the velocity-map imaging approach provides a set of partial ionization cross sections for all detected ionic fragments over an electron energy range of 50-100 eV, providing partial cross sections for S2 +, and enables the cross sections for S F4 2 + from S F+ to be resolved.

  3. Chaotic scattering and quantum dynamics

    International Nuclear Information System (INIS)

    Doron, Eyal.

    1992-11-01

    The main concern of this thesis is the application of the semiclassical approximation to quantum chaotic scattering systems. We deal with two separate, although interconnected, subjects. The first subject dealt with is the semiclassical characterization of the fluctuations of the S matrix. A particular important parameter is the magnetic field B, and we show how the correlation length and line shape of S matrix elements under a change of B may be derived. An effect which is present in many physical wave systems is absorption of energy flux. We show how absorption affects both the reflectivity and the scattering phase and time delay of a scattering system. In the second part of the thesis, we show how the formalism and results obtained from chaotic scattering can be applied to the investigation of closed chaotic systems, and in particular to chaotic billiards. The semiclassical expansion for billiards is presented. In the last part of the thesis we deal with the statistics of S matrices of chaotic scattering systems. The main message of this work is that scattering matrix, and its classical counterpart the Poincare Scattering Map can be used to yield a powerful formulation of the quantum mechanical dynamics of bounded systems. (author)

  4. Global hybrids from the semiclassical atom theory satisfying the local density linear response.

    Science.gov (United States)

    Fabiano, Eduardo; Constantin, Lucian A; Cortona, Pietro; Della Sala, Fabio

    2015-01-13

    We propose global hybrid approximations of the exchange-correlation (XC) energy functional which reproduce well the modified fourth-order gradient expansion of the exchange energy in the semiclassical limit of many-electron neutral atoms and recover the full local density approximation (LDA) linear response. These XC functionals represent the hybrid versions of the APBE functional [Phys. Rev. Lett. 2011, 106, 186406] yet employing an additional correlation functional which uses the localization concept of the correlation energy density to improve the compatibility with the Hartree-Fock exchange as well as the coupling-constant-resolved XC potential energy. Broad energetic and structural testing, including thermochemistry and geometry, transition metal complexes, noncovalent interactions, gold clusters and small gold-molecule interfaces, as well as an analysis of the hybrid parameters, show that our construction is quite robust. In particular, our testing shows that the resulting hybrid, including 20% of Hartree-Fock exchange and named hAPBE, performs remarkably well for a broad palette of systems and properties, being generally better than popular hybrids (PBE0 and B3LYP). Semiempirical dispersion corrections are also provided.

  5. Eighteenth annual West Coast theoretical chemistry conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    Abstracts are presented from the eighteenth annual west coast theoretical chemistry conference. Topics include molecular simulations; quasiclassical simulations of reactions; photodissociation reactions; molecular dynamics;interface studies; electronic structure; and semiclassical methods of reactive systems.

  6. Semiclassical statistical mechanics of fluids

    International Nuclear Information System (INIS)

    Singh, Y.; Sinha, S.K.

    1981-01-01

    The problem of calculating the equilibrium properties of fluids in the semiclassical limit when the quantum effects are small is studied. Particle distribution functions and thermodynamic quantities are defined in terms of the Slater sum and methods for evaluating the Slater sum are discussed. It is shown that the expansion method employing the usual Wigner-Kirkwood or Hemmer-Jancovici series is not suitable to treat the properties of the condensed state. Using the grand canonical ensemble and functional differentiation technique we develop cluster expansion series of the Helmholtz free energy and pair correlation functions. Using topological reduction we transform these series to more compact form involving a renormalized potential or a renormalized Mayer function. Then the convergence of the two series is improved by an optimal choice of the renormalized potential or the Mayer function. Integral equation theories are derived and used to devise perturbation methods. An application of these methods to the calculation of the virial coefficients, thermodynamic properties and the pair correlation function for model fluids is discussed. (orig.)

  7. Electron dynamics inside short-coherence systems

    International Nuclear Information System (INIS)

    Ferrari, Giulio; Bordone, Paolo; Jacoboni, Carlo

    2006-01-01

    We present theoretical results on electron dynamics inside nanometric systems, where the coherence of the electron ensemble is maintained in a very short region. The contacts are supposed to spoil such a coherence, therefore the interference processes between the carrier wavefunction and the internal potential profile can be affected by the proximity of the contacts. The problem has been analysed by using the Wigner-function formalism. For very short devices, transport properties, such as tunnelling through potential barriers, are significantly influenced by the distance between the contacts

  8. Semiclassical derivation of a local optical potential for heavy-ion plastic scattering

    International Nuclear Information System (INIS)

    Donangelo, R.; Qanto, L.F.; Hussein, M.S.

    A semiclassical method to determine the contribution to the optical potential in the elastic channel due to the coupling to other processes taking place in heavy-ion collisions is developed. An application is made to the case of coulomb excitation. The lowest order term of our potential is shown to be identical to the quantum mechanical expression of Baltz et al

  9. Inner shell coulomb ionization by light ions: applications of the semiclassical approximation

    International Nuclear Information System (INIS)

    Kocbach, L.

    1976-01-01

    The Semiclassical Approximation (SCA) has been applied to the process of inner shell ionization by Bang and Hansteen (1959). In the process of the present work their formalism has been simplified. Numerical results have been obtained and compared with experimental data for K- and L-shell ionization. Results for M-shell ionization were also obtained. Three effects have been investigated in close collaboration with experimentalists: structure in the distribution of L-shell ionization probabilities; relativistic effects; angular dependence of ionization probability for very small impact parameters. The structure of the mechanism has been discussed, and, for the first time in the SCA framework, realistic electronic wave functions have been used in the calculations of ionization cross sections and probabilities. This work is not thereby completed and many aspects require further study. The review part of the thesis should thus also provide a reference system for further work. Three of the papers contain general discussions and to some extent have the character of review papers. Appendix A of the review paper forms a cross-reference index for the papers included, while a list of papers on SCA by the Bergen Group is given in Appendix B. (Auth.)

  10. Unified semiclassical theory for the two-state system: an analytical solution for general nonadiabatic tunneling.

    Science.gov (United States)

    Zhu, Chaoyuan; Lin, Sheng Hsien

    2006-07-28

    Unified semiclasical solution for general nonadiabatic tunneling between two adiabatic potential energy surfaces is established by employing unified semiclassical solution for pure nonadiabatic transition [C. Zhu, J. Chem. Phys. 105, 4159 (1996)] with the certain symmetry transformation. This symmetry comes from a detailed analysis of the reduced scattering matrix for Landau-Zener type of crossing as a special case of nonadiabatic transition and nonadiabatic tunneling. Traditional classification of crossing and noncrossing types of nonadiabatic transition can be quantitatively defined by the rotation angle of adiabatic-to-diabatic transformation, and this rotational angle enters the analytical solution for general nonadiabatic tunneling. The certain two-state exponential potential models are employed for numerical tests, and the calculations from the present general nonadiabatic tunneling formula are demonstrated in very good agreement with the results from exact quantum mechanical calculations. The present general nonadiabatic tunneling formula can be incorporated with various mixed quantum-classical methods for modeling electronically nonadiabatic processes in photochemistry.

  11. Horizons of semiclassical black holes are cold

    International Nuclear Information System (INIS)

    Brustein, Ram; Medved, A.J.M.

    2014-01-01

    We calculate, using our recently proposed semiclassical framework, the quantum state of the Hawking pairs that are produced during the evaporation of a black hole (BH). Our framework adheres to the standard rules of quantum mechanics and incorporates the quantum fluctuations of the collapsing shell spacetime in Hawking’s original calculation, while accounting for back-reaction effects. We argue that the negative-energy Hawking modes need to be regularly integrated out; and so these are effectively subsumed by the BH and, as a result, the number of coherent negative-energy modes N_c_o_h at any given time is parametrically smaller than the total number of the Hawking particles N_t_o_t_a_l emitted during the lifetime of the BH. We find that N_c_o_h is determined by the width of the BH wavefunction and scales as the square root of the BH entropy. We also find that the coherent negative-energy modes are strongly entangled with their positive-energy partners. Previously, we have found that N_c_o_h is also the number of coherent outgoing particles and that information can be continually transferred to the outgoing radiation at a rate set by N_c_o_h. Our current results show that, while the BH is semiclassical, information can be released without jeopardizing the nearly maximal inside-out entanglement and imply that the state of matter near the horizon is approximately the vacuum. The BH firewall proposal, on the other hand, is that the state of matter near the horizon deviates substantially from the vacuum, starting at the Page time. We find that, under the usual assumptions for justifying the formation of a firewall, one does indeed form at the Page time. However, the possible loophole lies in the implicit assumption that the number of strongly entangled pairs can be of the same order of N_t_o_t_a_l

  12. Freezing hot electrons. Electron transfer and solvation dynamics at D{sub 2}O and NH{sub 3}-metal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Staehler, A.J.

    2007-05-15

    The present work investigates the electron transfer and solvation dynamics at the D{sub 2}O/Cu(111), D{sub 2}O/Ru(001), and NH{sub 3}/Cu(111) interfaces using femtosecond time-resolved two-photon photoelectron spectroscopy. Within this framework, the influence of the substrate, adsorbate structure and morphology, solvation site, coverage, temperature, and solvent on the electron dynamics are studied, yielding microscopic insight into the underlying fundamental processes. Transitions between different regimes of ET, substrate-dominated, barrier-determined, strong, and weak coupling are observed by systematic variation of the interfacial properties and development of empirical model descriptions. It is shown that the fundamental steps of the interfacial electron dynamics are similar for all investigated systems: Metal electrons are photoexcited to unoccupied metal states and transferred into the adlayer via the adsorbate's conduction band. The electrons localize at favorable sites and are stabilized by reorientations of the surrounding polar solvent molecules. Concurrently, they decay back two the metal substrate, as it offers a continuum of unoccupied states. However, the detailed characteristics vary for the different investigated interfaces: For amorphous ice-metal interfaces, the electron transfer is initially, right after photoinjection, dominated by the substrate's electronic surface band structure. With increasing solvation, a transient barrier evolves at the interface that increasingly screens the electrons from the substrate. Tunneling through this barrier becomes the rate-limiting step for ET. The competition of electron decay and solvation leads to lifetimes of the solvated electrons in the order of 100 fs. Furthermore, it is shown that the electrons bind in the bulk of the ice layers, but on the edges of adsorbed D{sub 2}O clusters and that the ice morphology strongly influences the electron dynamics. For the amorphous NH{sub 3}/Cu(111

  13. Semiclassical theory of magnetoresistance in positionally disordered organic semiconductors

    Science.gov (United States)

    Harmon, N. J.; Flatté, M. E.

    2012-02-01

    A recently introduced percolative theory of unipolar organic magnetoresistance is generalized by treating the hyperfine interaction semiclassically for an arbitrary hopping rate. Compact analytic results for the magnetoresistance are achievable when carrier hopping occurs much more frequently than the hyperfine field precession period. In other regimes the magnetoresistance can be straightforwardly evaluated numerically. Slow and fast hopping magnetoresistance are found to be uniquely characterized by their line shapes. We find that the threshold hopping distance is analogous a phenomenological two-site model's branching parameter, and that the distinction between slow and fast hopping is contingent on the threshold hopping distance.

  14. Quadratic Forms and Semiclassical Eigenfunction Hypothesis for Flat Tori

    Science.gov (United States)

    T. Sardari, Naser

    2018-03-01

    Let Q( X) be any integral primitive positive definite quadratic form in k variables, where {k≥4}, and discriminant D. For any integer n, we give an upper bound on the number of integral solutions of Q( X) = n in terms of n, k, and D. As a corollary, we prove a conjecture of Lester and Rudnick on the small scale equidistribution of almost all functions belonging to any orthonormal basis of a given eigenspace of the Laplacian on the flat torus {T^d} for {d≥ 5}. This conjecture is motivated by the work of Berry [2,3] on the semiclassical eigenfunction hypothesis.

  15. Scale-invariant curvature fluctuations from an extended semiclassical gravity

    Energy Technology Data Exchange (ETDEWEB)

    Pinamonti, Nicola, E-mail: pinamont@dima.unige.it, E-mail: siemssen@dima.unige.it [Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genova (Italy); INFN Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Siemssen, Daniel, E-mail: pinamont@dima.unige.it, E-mail: siemssen@dima.unige.it [Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genova (Italy)

    2015-02-15

    We present an extension of the semiclassical Einstein equations which couple n-point correlation functions of a stochastic Einstein tensor to the n-point functions of the quantum stress-energy tensor. We apply this extension to calculate the quantum fluctuations during an inflationary period, where we take as a model a massive conformally coupled scalar field on a perturbed de Sitter space and describe how a renormalization independent, almost-scale-invariant power spectrum of the scalar metric perturbation is produced. Furthermore, we discuss how this model yields a natural basis for the calculation of non-Gaussianities of the considered metric fluctuations.

  16. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode.

    Science.gov (United States)

    Bücker, K; Picher, M; Crégut, O; LaGrange, T; Reed, B W; Park, S T; Masiel, D J; Banhart, F

    2016-12-01

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Classical, Semi-classical and Quantum Noise

    CERN Document Server

    Poor, H; Scully, Marlan

    2012-01-01

    David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide  influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...

  18. Semiclassical statistical mechanics

    International Nuclear Information System (INIS)

    Stratt, R.M.

    1979-04-01

    On the basis of an approach devised by Miller, a formalism is developed which allows the nonperturbative incorporation of quantum effects into equilibrium classical statistical mechanics. The resulting expressions bear a close similarity to classical phase space integrals and, therefore, are easily molded into forms suitable for examining a wide variety of problems. As a demonstration of this, three such problems are briefly considered: the simple harmonic oscillator, the vibrational state distribution of HCl, and the density-independent radial distribution function of He 4 . A more detailed study is then made of two more general applications involving the statistical mechanics of nonanalytic potentials and of fluids. The former, which is a particularly difficult problem for perturbative schemes, is treated with only limited success by restricting phase space and by adding an effective potential. The problem of fluids, however, is readily found to yield to a semiclassical pairwise interaction approximation, which in turn permits any classical many-body model to be expressed in a convenient form. The remainder of the discussion concentrates on some ramifications of having a phase space version of quantum mechanics. To test the breadth of the formulation, the task of constructing quantal ensemble averages of phase space functions is undertaken, and in the process several limitations of the formalism are revealed. A rather different approach is also pursued. The concept of quantum mechanical ergodicity is examined through the use of numerically evaluated eigenstates of the Barbanis potential, and the existence of this quantal ergodicity - normally associated with classical phase space - is verified. 21 figures, 4 tables

  19. Ultrafast Non-Thermal Electron Dynamics in Single Layer Graphene

    Directory of Open Access Journals (Sweden)

    Novoselov K.S.

    2013-03-01

    Full Text Available We study the ultrafast dynamics of non-thermal electron relaxation in graphene upon impulsive excitation. The 10-fs resolution two color pump-probe allows us to unveil the non-equilibrium electron gas decay at early times.

  20. Electron-phonon thermalization in a scalable method for real-time quantum dynamics

    Science.gov (United States)

    Rizzi, Valerio; Todorov, Tchavdar N.; Kohanoff, Jorge J.; Correa, Alfredo A.

    2016-01-01

    We present a quantum simulation method that follows the dynamics of out-of-equilibrium many-body systems of electrons and oscillators in real time. Its cost is linear in the number of oscillators and it can probe time scales from attoseconds to hundreds of picoseconds. Contrary to Ehrenfest dynamics, it can thermalize starting from a variety of initial conditions, including electronic population inversion. While an electronic temperature can be defined in terms of a nonequilibrium entropy, a Fermi-Dirac distribution in general emerges only after thermalization. These results can be used to construct a kinetic model of electron-phonon equilibration based on the explicit quantum dynamics.

  1. Comparison of solvation dynamics of electrons in four polyols

    Energy Technology Data Exchange (ETDEWEB)

    Lampre, I.; Pernot, P.; Bonin, J. [Laboratoire de Chimie Physique/ELYSE, Universite Paris-Sud 11, UMR 8000, Bat. 349, Orsay F-91405 (France); CNRS, Orsay F-91405 (France); Mostafavi, M. [Laboratoire de Chimie Physique/ELYSE, Universite Paris-Sud 11, UMR 8000, Bat. 349, Orsay F-91405 (France); CNRS, Orsay F-91405 (France)], E-mail: mehran.mostafavi@lcp.u-psud.fr

    2008-10-15

    Using pump-probe transient absorption spectroscopy, we studied the solvation dynamics of the electron in liquid polyalcohols: ethane-1,2-diol, propane-1,2-diol, propane-1,3-diol and propane-1,2,3-triol. Time-resolved absorption spectra ranging from 440 to 720 nm were measured. Our study shows that the excess electron in the diols presents an intense and wide absorption band in the visible and near-IR spectral domain at early time after two-photon ionization of the neat solvent. Then, for the first tens of picoseconds, the electron spectrum shifts toward the blue domain and its bandwidth decreases as the red part of the initial spectrum rapidly drops, while the blue part hardly evolves. In contrast, in the triol, the absorption spectrum of the electron is early situated in the visible range after the pump pulse and then solely evolves in the red part. The Bayesian data analysis of the observed picosecond solvation dynamics with different models is in favor of a heterogeneous continuous relaxation. That is corroborated by the analogy between the change in the absorption band with increasing time or decreasing temperature. That tends to indicate a similar organization disorder of the solvent. Moreover, the electron solvation dynamics is very fast in propane-1,2,3-triol despite its high viscosity and highlight the role of the OH-group in that process.

  2. The dynamics of electron and ion holes in a collisionless plasma

    Directory of Open Access Journals (Sweden)

    B. Eliasson

    2005-01-01

    Full Text Available We present a review of recent analytical and numerical studies of the dynamics of electron and ion holes in a collisionless plasma. The new results are based on the class of analytic solutions which were found by Schamel more than three decades ago, and which here work as initial conditions to numerical simulations of the dynamics of ion and electron holes and their interaction with radiation and the background plasma. Our analytic and numerical studies reveal that ion holes in an electron-ion plasma can trap Langmuir waves, due the local electron density depletion associated with the negative ion hole potential. Since the scale-length of the ion holes are on a relatively small Debye scale, the trapped Langmuir waves are Landau damped. We also find that colliding ion holes accelerate electron streams by the negative ion hole potentials, and that these streams of electrons excite Langmuir waves due to a streaming instability. In our Vlasov simulation of two colliding ion holes, the holes survive the collision and after the collision, the electron distribution becomes flat-topped between the two ion holes due to the ion hole potentials which work as potential barriers for low-energy electrons. Our study of the dynamics between electron holes and the ion background reveals that standing electron holes can be accelerated by the self-created ion cavity owing to the positive electron hole potential. Vlasov simulations show that electron holes are repelled by ion density minima and attracted by ion density maxima. We also present an extension of Schamel's theory to relativistically hot plasmas, where the relativistic mass increase of the accelerated electrons have a dramatic effect on the electron hole, with an increase in the electron hole potential and in the width of the electron hole. A study of the interaction between electromagnetic waves with relativistic electron holes shows that electromagnetic waves can be both linearly and nonlinearly

  3. Quantum Mechanics in the Gaussian wave-packet phase space representation: Dynamics

    International Nuclear Information System (INIS)

    Mizrahi, S.S.

    1985-01-01

    The Heisenberg and Liouville dynamical equations are mapped using the Wave-Packet Phase Space Representation. A semiclassical perturbative expansion is introduced - the Quasi-Causal Approximation - for the Green function and an expression for transition probabilities is derived up to the first order. (Author) [pt

  4. Nuclear giant resonances in coordinate space. A semiclassical density functional approach

    International Nuclear Information System (INIS)

    Gleissl, P.; Brack, M.; Meyer, J.; Quentin, P.

    1987-01-01

    We discuss the semiclassical description of nuclear giant resonances (GR) using a realistic Skyrme force (SkM*) and complete ETF density functionals. We present monopole (0 + ) eigenmodes of isoscalar (I=0) and isovector (I=1) type, which are in good agreement with experiment, and the corresponding m 1 and m 3 sum rules. We also present the temperature dependence of some typical GR energies (0 + , I=0,1; 1 - , I=1; 2 + , I=0) in 208 Pb

  5. Electron momentum spectroscopy of aniline taking account of nuclear dynamics in the initial electronic ground state

    International Nuclear Information System (INIS)

    Farasat, M; Golzan, M M; Shojaei, S H R; Morini, F; Deleuze, M S

    2016-01-01

    The electronic structure, electron binding energy spectrum and (e, 2e) momentum distributions of aniline have been theoretically predicted at an electron impact energy of 1.500 keV on the basis of Born–Oppenheimer molecular dynamical simulations, in order to account for thermally induced nuclear motions in the initial electronic ground state. Most computed momentum profiles are rather insensitive to thermally induced alterations of the molecular structure, with the exception of the profiles corresponding to two ionization bands at electron binding energies comprised between ∼10.0 and ∼12.0 eV (band C) and between ∼16.5 and ∼20.0 eV (band G). These profiles are found to be strongly influenced by nuclear dynamics in the electronic ground state, especially in the low momentum region. The obtained results show that thermal averaging smears out most generally the spectral fingerprints that are induced by nitrogen inversion. (paper)

  6. Electron Dynamics by Inelastic X-Ray Scattering

    CERN Document Server

    Schülke, Winfried

    2007-01-01

    The book offers the first comprehensive review of experimental methods, theory, and successful applications of synchrotron radiation based inelastic X-ray scattering (IXS) spectroscopy, which enables the investigation of electron dynamics in condensed matter (correlated motion and excitation).

  7. Hamiltonian structure of isospectral deformation equation and semi-classical approximation to factorized S-matrices

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.; Chudnovsky, G.V.

    1980-01-01

    We consider semi-classical approximation to factorized S-matrices. We show that this new class of matrices, called s-matrices, defines Hamiltonian structures for isospectral deformation equations. Concrete examples of factorized s-matrices are constructed and they are used to define Hamiltonian structure for general two-dimensional isospectral deformation systems. (orig.)

  8. Semiclassical approach to the quantization of the periodic solutions of the sine-Gordon equation

    International Nuclear Information System (INIS)

    Ghika, G.; Visinescu, M.

    1978-01-01

    The periodic solutions of the sine-Gordon equation are proved to be singular. For the semiclassical quantization of the periodic solutions we calculate the fluctuations around them and we use the path integrals in the Gaussian approximation in order to obtain the bound states of the sine-Gordon field equation. (author)

  9. FEL small signal dynamics and electron beam prebunching

    International Nuclear Information System (INIS)

    Dattoli, G.

    1993-01-01

    A seed signal and/or a pre-bunched electron beam may provide the start up of a free electron laser (FEL). Recently, interest has grown around FEL's operating with pre-bunched electron beams; this paper is, therefore, devoted to the analysis of the dynamic features of FEL's operating in such a configuration. It exploits a slightly modified form of the FEL high gain equation to derive quantities of practical interest like the dependence of the system growth rate on the bunching coefficients

  10. Quantum–classical simulations of the electronic stopping force and charge on slow heavy channelling ions in metals

    International Nuclear Information System (INIS)

    Race, C P; Mason, D R; Foo, M H F; Foulkes, W M C; Sutton, A P; Horsfield, A P

    2013-01-01

    By simulating the passage of heavy ions along open channels in a model crystalline metal using semi-classical Ehrenfest dynamics we directly investigate the nature of non-adiabatic electronic effects. Our time-dependent tight-binding approach incorporates both an explicit quantum mechanical electronic system and an explicit representation of a set of classical ions. The coupled evolution of the ions and electrons allows us to explore phenomena that lie beyond the approximations made in classical molecular dynamics simulations and in theories of electronic stopping. We report a velocity-dependent charge-localization phenomenon not predicted by previous theoretical treatments of channelling. This charge localization can be attributed to the excitation of electrons into defect states highly localized on the channelling ion. These modes of excitation only become active when the frequency at which the channelling ion moves from interstitial point to equivalent interstitial point matches the frequency corresponding to excitations from the Fermi level into the localized states. Examining the stopping force exerted on the channelling ion by the electronic system, we find broad agreement with theories of slow ion stopping (a stopping force proportional to velocity) for a low velocity channelling ion (up to about 0.5 nm fs −1 from our calculations), and a reduction in stopping power attributable to the charge localization effect at higher velocities. By exploiting the simplicity of our electronic structure model we are able to illuminate the physics behind the excitation processes that we observe and present an intuitive picture of electronic stopping from a real-space, chemical perspective. (paper)

  11. Mathematical properties of a semi-classical signal analysis method: Noisy signal case

    KAUST Repository

    Liu, Dayan

    2012-08-01

    Recently, a new signal analysis method based on a semi-classical approach has been proposed [1]. The main idea in this method is to interpret a signal as a potential of a Schrodinger operator and then to use the discrete spectrum of this operator to analyze the signal. In this paper, we are interested in a mathematical analysis of this method in discrete case considering noisy signals. © 2012 IEEE.

  12. Mathematical properties of a semi-classical signal analysis method: Noisy signal case

    KAUST Repository

    Liu, Dayan; Laleg-Kirati, Taous-Meriem

    2012-01-01

    Recently, a new signal analysis method based on a semi-classical approach has been proposed [1]. The main idea in this method is to interpret a signal as a potential of a Schrodinger operator and then to use the discrete spectrum of this operator to analyze the signal. In this paper, we are interested in a mathematical analysis of this method in discrete case considering noisy signals. © 2012 IEEE.

  13. Semiclassical expansion of quantum characteristics for many-body potential scattering problem

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.; Fuchs, C.; Faessler, A.

    2007-01-01

    In quantum mechanics, systems can be described in phase space in terms of the Wigner function and the star-product operation. Quantum characteristics, which appear in the Heisenberg picture as the Weyl's symbols of operators of canonical coordinates and momenta, can be used to solve the evolution equations for symbols of other operators acting in the Hilbert space. To any fixed order in the Planck's constant, many-body potential scattering problem simplifies to a statistical-mechanical problem of computing an ensemble of quantum characteristics and their derivatives with respect to the initial canonical coordinates and momenta. The reduction to a system of ordinary differential equations pertains rigorously at any fixed order in ℎ. We present semiclassical expansion of quantum characteristics for many-body scattering problem and provide tools for calculation of average values of time-dependent physical observables and cross sections. The method of quantum characteristics admits the consistent incorporation of specific quantum effects, such as non-locality and coherence in propagation of particles, into the semiclassical transport models. We formulate the principle of stationary action for quantum Hamilton's equations and give quantum-mechanical extensions of the Liouville theorem on conservation of the phase-space volume and the Poincare theorem on conservation of 2p-forms. The lowest order quantum corrections to the Kepler periodic orbits are constructed. These corrections show the resonance behavior. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  14. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bücker, K.; Picher, M.; Crégut, O. [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France); LaGrange, T. [Interdisciplinary Centre for Electron Microscopy, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Reed, B.W.; Park, S.T.; Masiel, D.J. [Integrated Dynamic Electron Solutions, Inc., 5653 Stoneridge Drive 117, Pleasanton, CA 94588 (United States); Banhart, F., E-mail: florian.banhart@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France)

    2016-12-15

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. - Highlights: • A detailed characterization of electron

  15. Dynamics of photoionization from molecular electronic wavepacket states in intense pulse laser fields: A nonadiabatic electron wavepacket study.

    Science.gov (United States)

    Matsuoka, Takahide; Takatsuka, Kazuo

    2017-04-07

    A theory for dynamics of molecular photoionization from nonadiabatic electron wavepackets driven by intense pulse lasers is proposed. Time evolution of photoelectron distribution is evaluated in terms of out-going electron flux (current of the probability density of electrons) that has kinetic energy high enough to recede from the molecular system. The relevant electron flux is in turn evaluated with the complex-valued electronic wavefunctions that are time evolved in nonadiabatic electron wavepacket dynamics in laser fields. To uniquely rebuild such wavefunctions with its electronic population being lost by ionization, we adopt the complex-valued natural orbitals emerging from the electron density as building blocks of the total wavefunction. The method has been implemented into a quantum chemistry code, which is based on configuration state mixing for polyatomic molecules. Some of the practical aspects needed for its application will be presented. As a first illustrative example, we show the results of hydrogen molecule and its isotope substitutes (HD and DD), which are photoionized by a two-cycle pulse laser. Photon emission spectrum associated with above threshold ionization is also shown. Another example is taken from photoionization dynamics from an excited state of a water molecule. Qualitatively significant effects of nonadiabatic interaction on the photoelectron spectrum are demonstrated.

  16. On semi-classical questions related to signal analysis

    KAUST Repository

    Helffer, Bernard

    2011-12-01

    This study explores the reconstruction of a signal using spectral quantities associated with some self-adjoint realization of an h-dependent Schrödinger operator -h2(d2/dx2)-y(x), h>0, when the parameter h tends to 0. Theoretical results in semi-classical analysis are proved. Some numerical results are also presented. We first consider as a toy model the sech2 function. Then we study a real signal given by arterial blood pressure measurements. This approach seems to be very promising in signal analysis. Indeed it provides new spectral quantities that can give relevant information on some signals as it is the case for arterial blood pressure signal. © 2011 - IOS Press and the authors. All rights reserved.

  17. Non-Markovian response of ultrafast coherent electronic ring currents in chiral aromatic molecules in a condensed phase

    International Nuclear Information System (INIS)

    Mineo, H.; Lin, S. H.; Fujimura, Y.; Xu, J.; Xu, R. X.; Yan, Y. J.

    2013-01-01

    Results of a theoretical study on non-Markov response for femtosecond laser-driven coherent ring currents in chiral aromatic molecules embedded in a condensed phase are presented. Coherent ring currents are generated by coherent excitation of a pair of quasi-degenerated π-electronic excited states. The coherent electronic dynamical behaviors are strongly influenced by interactions between the electronic system and phonon bath in a condensed phase. Here, the bath correlation time is not instantaneous but should be taken to be a finite time in ultrashort time-resolved experiments. In such a case, Markov approximation breaks down. A hierarchical master equation approach for an improved semiclassical Drude dissipation model was adopted to examine the non-Markov effects on ultrafast coherent electronic ring currents of (P)-2,2 ′ -biphenol in a condensed phase. Time evolution of the coherent ring current derived in the hierarchical master equation approach was calculated and compared with those in the Drude model in the Markov approximation and in the static limit. The results show how non-Markovian behaviors in quantum beat signals of ring currents depend on the Drude bath damping constant. Effects of temperatures on ultrafast coherent electronic ring currents are also clarified

  18. On the initial conditions and solutions of the semi-classical Einstein equations in a cosmological scenario

    International Nuclear Information System (INIS)

    Pinamonti, Nicola

    2010-01-01

    In this paper we discuss the backreaction of a massive quantum scalar field on the curvature, the latter treated as a classical field. Furthermore, we deal with this problem in the realm of cosmological spacetime by analyzing the Einstein equations in a semiclassical fashion. More precisely, we show that, at least on small intervals of time, solutions for this interacting system exist. This result is achieved furnishing an iteration scheme and showing that it converges in the appropriate Banach space. Moreover, we show that the quantum states with good ultraviolet behavior (Hadamard property) used in order to obtain the backreaction will be completely individuated by their form on the initial surface if chosen to be lightlike. On large intervals of time the situation is more complicated but, if the spacetime is expanding, we show that the end limiting point of the evolution does not depend strongly on the quantum state, because, in this limit, the expectation values of the matter fields responsible for the backreaction do not depend on the particular homogeneous Hadamard state at all. Finally, we comment on the interpretation of the semiclassical Einstein equations for this kind of problems. Although the fluctuations of the expectation values of pointlike fields diverge, if the spacetime and the quantum state have a large spatial symmetry and if we consider the smeared fields on regions of large spatial volume, they tend to vanish. Assuming this point of view the semiclassical Einstein equations become more reliable. (orig.)

  19. On the initial conditions and solutions of the semi-classical Einstein equations in a cosmological scenario

    Energy Technology Data Exchange (ETDEWEB)

    Pinamonti, Nicola [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2010-01-15

    In this paper we discuss the backreaction of a massive quantum scalar field on the curvature, the latter treated as a classical field. Furthermore, we deal with this problem in the realm of cosmological spacetime by analyzing the Einstein equations in a semiclassical fashion. More precisely, we show that, at least on small intervals of time, solutions for this interacting system exist. This result is achieved furnishing an iteration scheme and showing that it converges in the appropriate Banach space. Moreover, we show that the quantum states with good ultraviolet behavior (Hadamard property) used in order to obtain the backreaction will be completely individuated by their form on the initial surface if chosen to be lightlike. On large intervals of time the situation is more complicated but, if the spacetime is expanding, we show that the end limiting point of the evolution does not depend strongly on the quantum state, because, in this limit, the expectation values of the matter fields responsible for the backreaction do not depend on the particular homogeneous Hadamard state at all. Finally, we comment on the interpretation of the semiclassical Einstein equations for this kind of problems. Although the fluctuations of the expectation values of pointlike fields diverge, if the spacetime and the quantum state have a large spatial symmetry and if we consider the smeared fields on regions of large spatial volume, they tend to vanish. Assuming this point of view the semiclassical Einstein equations become more reliable. (orig.)

  20. Semi-classical analysis of scattering of deformed heavy-ions below the Coulomb barrier

    International Nuclear Information System (INIS)

    Johnson, R.C.; Roberts, E.J.; Sukumar, C.V.; Brink, D.M.

    1995-01-01

    Polarization observables for the sub-Coulomb elastic scattering of a quadrupole deformed projectile of spin 3/2 from a spinless spherical target are evaluated using a new semi-classical method based on a path-integral formalism. Analytic expressions are obtained which agree well with coupled channels calculations and which predict definite deviations from the ''shape-effect'' relations for tensor analyzing powers

  1. Calculation of the spin-isospin response functions in an extended semi-classical theory

    International Nuclear Information System (INIS)

    Chanfray, G.

    1987-01-01

    We present a semi-classical calculation of the spin isospin response-functions beyond Thomas-Fermi theory. We show that surface-peaked ℎ 2 corrections reduce the collective effects predicted by Thomas-Fermi calculations. These effects, small for a volume response, become important for surface responses probed by hadrons. This yields a considerable improvement of the agreement with the (p, p') Los Alamos data

  2. Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer

    Science.gov (United States)

    Peters, William K.; Tiwari, Vivek; Jonas, David M.

    2017-11-01

    The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between

  3. Semiclassical neutral atom as a reference system in density functional theory.

    Science.gov (United States)

    Constantin, Lucian A; Fabiano, E; Laricchia, S; Della Sala, F

    2011-05-06

    We use the asymptotic expansions of the semiclassical neutral atom as a reference system in density functional theory to construct accurate generalized gradient approximations (GGAs) for the exchange-correlation and kinetic energies without any empiricism. These asymptotic functionals are among the most accurate GGAs for molecular systems, perform well for solid state, and overcome current GGA state of the art in frozen density embedding calculations. Our results also provide evidence for the conjointness conjecture between exchange and kinetic energies of atomic systems.

  4. The electron beam dynamics simulation in the laser-electron storage ring involving compton and intrabeam scattering

    International Nuclear Information System (INIS)

    Gladkikh, P.I.; Telegin, Yu.N.; Karnaukhov, I.M.

    2002-01-01

    The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented

  5. The electron beam dynamics simulation in the laser-electron storage ring involving compton and intrabeam scattering

    CERN Document Server

    Gladkikh, P I; Karnaukhov, I M

    2002-01-01

    The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented.

  6. Ab Initio molecular dynamics with excited electrons

    NARCIS (Netherlands)

    Alavi, A.; Kohanoff, J.; Parrinello, M.; Frenkel, D.

    1994-01-01

    A method to do ab initio molecular dynamics suitable for metallic and electronically hot systems is described. It is based on a density functional which is costationary with the finite-temperature functional of Mermin, with state being included with possibly fractional occupation numbers.

  7. Probing the longitudinal momentum spread of the electron wave packet at the tunnel exit

    DEFF Research Database (Denmark)

    N. Pfeiffer, Adrian; Cirelli, Claudio; S. Landsman, Alexandra

    2012-01-01

    We present an ellipticity resolved study of momentum distributions arising from strong-field ionization of Helium at constant intensity. The influence of the ion potential on the departing electron is considered within a semi-classical model consisting of an initial tunneling step and subsequent...

  8. Charge dynamics in aluminum oxide thin film studied by ultrafast scanning electron microscopy.

    Science.gov (United States)

    Zani, Maurizio; Sala, Vittorio; Irde, Gabriele; Pietralunga, Silvia Maria; Manzoni, Cristian; Cerullo, Giulio; Lanzani, Guglielmo; Tagliaferri, Alberto

    2018-04-01

    The excitation dynamics of defects in insulators plays a central role in a variety of fields from Electronics and Photonics to Quantum computing. We report here a time-resolved measurement of electron dynamics in 100 nm film of aluminum oxide on silicon by Ultrafast Scanning Electron Microscopy (USEM). In our pump-probe setup, an UV femtosecond laser excitation pulse and a delayed picosecond electron probe pulse are spatially overlapped on the sample, triggering Secondary Electrons (SE) emission to the detector. The zero of the pump-probe delay and the time resolution were determined by measuring the dynamics of laser-induced SE contrast on silicon. We observed fast dynamics with components ranging from tens of picoseconds to few nanoseconds, that fits within the timescales typical of the UV color center evolution. The surface sensitivity of SE detection gives to the USEM the potential of applying pump-probe investigations to charge dynamics at surfaces and interfaces of current nano-devices. The present work demonstrates this approach on large gap insulator surfaces. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Investigation of longitudinal dynamic in laser electron storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukhov, I.; Zelinsky, A. E-mail: zelinsky@kipt.kharkov.ua; Telegin, Yu

    2001-09-01

    Longitudinal dynamic of electron beam due to radiation damping and quantum fluctuations in the storage ring with a laser-electron interaction section (Compton scattering) is investigated. This investigation was carried out by numerical simulations using the Monte Carlo method. The dependence of the steady-state energy spread of electron beam due to the Compton back scattering of photons on the electron beam energy and photon flash density were obtained. Simulation findings are compared with the analytical estimations by Z. Huang.

  10. Investigation of longitudinal dynamic in laser electron storage ring

    CERN Document Server

    Karnaukhov, I; Telegin, Yu P

    2001-01-01

    Longitudinal dynamic of electron beam due to radiation damping and quantum fluctuations in the storage ring with a laser-electron interaction section (Compton scattering) is investigated. This investigation was carried out by numerical simulations using the Monte Carlo method. The dependence of the steady-state energy spread of electron beam due to the Compton back scattering of photons on the electron beam energy and photon flash density were obtained. Simulation findings are compared with the analytical estimations by Z. Huang.

  11. Quantum dynamical phenomena of independent electrons in semiconductor superlattices subject to a uniform electric field

    International Nuclear Information System (INIS)

    Bouchard, A.M.

    1994-01-01

    This report discusses the following topics: Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices; solvable dynamical model of an electron in a one-dimensional aperiodic lattice subject to a uniform electric field; and quantum dynamical phenomena of electrons in aperiodic semiconductor superlattices

  12. Fourier transform methods for calculating action variables and semiclassical eigenvalues for coupled oscillator systems

    International Nuclear Information System (INIS)

    Eaker, C.W.; Schatz, G.C.; De Leon, N.; Heller, E.J.

    1984-01-01

    Two methods for calculating the good action variables and semiclassical eigenvalues for coupled oscillator systems are presented, both of which relate the actions to the coefficients appearing in the Fourier representation of the normal coordinates and momenta. The two methods differ in that one is based on the exact expression for the actions together with the EBK semiclassical quantization condition while the other is derived from the Sorbie--Handy (SH) approximation to the actions. However, they are also very similar in that the actions in both methods are related to the same set of Fourier coefficients and both require determining the perturbed frequencies in calculating actions. These frequencies are also determined from the Fourier representations, which means that the actions in both methods are determined from information entirely contained in the Fourier expansion of the coordinates and momenta. We show how these expansions can very conveniently be obtained from fast Fourier transform (FFT) methods and that numerical filtering methods can be used to remove spurious Fourier components associated with the finite trajectory integration duration. In the case of the SH based method, we find that the use of filtering enables us to relax the usual periodicity requirement on the calculated trajectory. Application to two standard Henon--Heiles models is considered and both are shown to give semiclassical eigenvalues in good agreement with previous calculations for nondegenerate and 1:1 resonant systems. In comparing the two methods, we find that although the exact method is quite general in its ability to be used for systems exhibiting complex resonant behavior, it converges more slowly with increasing trajectory integration duration and is more sensitive to the algorithm for choosing perturbed frequencies than the SH based method

  13. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    Science.gov (United States)

    Saha, Asit; Pal, Nikhil; Chatterjee, Prasanta

    2014-10-01

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  14. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Asit, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Sikkim Manipal Institute of Technology, Majitar, Rangpo, East-Sikkim 737136 (India); Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India); Pal, Nikhil; Chatterjee, Prasanta, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India)

    2014-10-15

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  15. Time dependent semiclassical tunneling through one dimensional barriers using only real valued trajectories

    International Nuclear Information System (INIS)

    Herman, Michael F.

    2015-01-01

    The time independent semiclassical treatment of barrier tunneling has been understood for a very long time. Several semiclassical approaches to time dependent tunneling through barriers have also been presented. These typically involve trajectories for which the position variable is a complex function of time. In this paper, a method is presented that uses only real valued trajectories, thus avoiding the complications that can arise when complex trajectories are employed. This is accomplished by expressing the time dependent wave packet as an integration over momentum. The action function in the exponent in this expression is expanded to second order in the momentum. The expansion is around the momentum, p 0 * , at which the derivative of the real part of the action is zero. The resulting Gaussian integral is then taken. The stationary phase approximation requires that the derivative of the full action is zero at the expansion point, and this leads to a complex initial momentum and complex tunneling trajectories. The “pseudo-stationary phase” approximation employed in this work results in real values for the initial momentum and real valued trajectories. The transmission probabilities obtained are found to be in good agreement with exact quantum results

  16. Time dependent semiclassical tunneling through one dimensional barriers using only real valued trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Herman, Michael F. [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States)

    2015-10-28

    The time independent semiclassical treatment of barrier tunneling has been understood for a very long time. Several semiclassical approaches to time dependent tunneling through barriers have also been presented. These typically involve trajectories for which the position variable is a complex function of time. In this paper, a method is presented that uses only real valued trajectories, thus avoiding the complications that can arise when complex trajectories are employed. This is accomplished by expressing the time dependent wave packet as an integration over momentum. The action function in the exponent in this expression is expanded to second order in the momentum. The expansion is around the momentum, p{sub 0{sup *}}, at which the derivative of the real part of the action is zero. The resulting Gaussian integral is then taken. The stationary phase approximation requires that the derivative of the full action is zero at the expansion point, and this leads to a complex initial momentum and complex tunneling trajectories. The “pseudo-stationary phase” approximation employed in this work results in real values for the initial momentum and real valued trajectories. The transmission probabilities obtained are found to be in good agreement with exact quantum results.

  17. Semiclassical spectral quantization: Application to two and four coupled molecular degrees of freedom

    International Nuclear Information System (INIS)

    De Leon, N.; Heller, E.J.

    1984-01-01

    Semiclassical quantization of the quasiperiodic vibrational motion of molecules is usually based on Einstein--Brillouin--Keller (EBK) conditions for the quantization of the classical actions. Explicit use of the EBK conditions for molecular systems of K degrees of freedom requires K quantization conditions. Therefore, explicit use of the EBK conditions becomes increasingly difficult if not impossible for polyatomic systems of three or more degrees of freedom. In this paper we propose a semiclassical quantization method which makes explicit use of phase coherence of the de Broglie wave associated with the trajectory rather than the EBK conditions. We show that taking advantage of phase coherence reduces the K quantization conditions to a single quantum condition: regardless of the number of degrees of freedom. For reasons that will become obvious we call this method ''spectral quantization.'' Polyatomic vibrational wave functions and energy eigenvalues are generated from quasiperiodic classical trajectories. The spectral method is applied to an ABA linear triatomic molecule with two degrees of freedom and to an anharmonic model of the molecule cyanoacetylene. The usefulness of the technique is demonstrated in this latter calculation since the cyanoacetylene model will have four coupled vibrational degrees of freedom

  18. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G., E-mail: rgg@mit.edu [Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-07

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  19. Semi-classical approaches to the phase space evolutions in intermediate energy heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Remaud, B; Sebille, F; Raffray, Y; Gregoire, C; Vinet, L

    1986-01-06

    The properties of semi-classical phase space evolution equations - as the Vlasov/Boltzmann equations - are discussed in the context of the heavy ion reaction theory at intermediate energies (from 10 to 100 MeV per nucleon). The generalized coherent state set is shown to form a (over) complete basis for the phase space; then every solution of the Vlasov/Boltzmann equations can be defined as a convolution product of the generalized coherent state basis by an appropriate weight function w. The uniform approximation for w is shown to provide an accurate semi-classical description of fermion systems in their ground state: the examples of fermions in a harmonic well and of cold nuclei are discussed. The solution of the Vlasov equation amounts to follow the time evolution of the coherent states which play the role of a moving basis. For the Boltzmann equation, the collision term is taken into account by explicit or implicit variations of the function w. Typical applications are discussed: nuclear response to the giant monopole resonance excitation, fast nucleon emission in heavy-ion reactions. (orig.).

  20. Nuclear excitation via the motion of electrons in a strong laser field

    International Nuclear Information System (INIS)

    Berger, J.F.; Gogny, D.; Weiss, M.S.

    1987-12-01

    A method of switching from a nuclear isomeric state to a lasing state is examined. A semi-classical model of laser-electron-nuclear coupling is developed. In it the electrons are treated as free in the external field of the laser, but with initial conditions corresponding to their atomic orbits. Application is made to testing this model in 235 U and to the design criteria of a gamma-ray laser. 14 refs., 2 tabs

  1. Structural dynamics of electronic and photonic systems

    CERN Document Server

    Suhir, Ephraim; Steinberg, David S

    2011-01-01

    The proposed book will offer comprehensive and versatile methodologies and recommendations on how to determine dynamic characteristics of typical micro- and opto-electronic structural elements (printed circuit boards, solder joints, heavy devices, etc.) and how to design a viable and reliable structure that would be able to withstand high-level dynamic loading. Particular attention will be given to portable devices and systems designed for operation in harsh environments (such as automotive, aerospace, military, etc.)  In-depth discussion from a mechanical engineer's viewpoint will be conducte

  2. Electron Capture in Proton Collisions with CO.

    Science.gov (United States)

    Stancil, P. C.; Schultz, D. R.; Kimura, M.; Gu, J.-P.; Hirsch, G.; Buenker, R. J.; Li, Y.

    1999-10-01

    Electron capture by protons following collisions with carbon monoxide is studied with a variety of theoretical approaches including quantal and semiclassical molecular-orbital close-coupling (MOCC) and classical trajectory Monte Carlo (CTMC) techniques. The MOCC treatments utilize potential surfaces and couplings computed for a range of H^+-CO orientation angles and C-O separations. Results including integral, differential, electronic state-selective, and vibrational state-selective cross sections will be presented for low- to intermediate-energies. Comparison with experiment will be made where possible and the relevance of the reaction in astrophysics and atmospheric physics will be discussed.

  3. Dynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering

    Science.gov (United States)

    Walt, Samuel G.; Bhargava Ram, Niraghatam; Atala, Marcos; Shvetsov-Shilovski, Nikolay I; von Conta, Aaron; Baykusheva, Denitsa; Lein, Manfred; Wörner, Hans Jakob

    2017-01-01

    Strong-field photoelectron holography and laser-induced electron diffraction (LIED) are two powerful emerging methods for probing the ultrafast dynamics of molecules. However, both of them have remained restricted to static systems and to nuclear dynamics induced by strong-field ionization. Here we extend these promising methods to image purely electronic valence-shell dynamics in molecules using photoelectron holography. In the same experiment, we use LIED and photoelectron holography simultaneously, to observe coupled electronic-rotational dynamics taking place on similar timescales. These results offer perspectives for imaging ultrafast dynamics of molecules on femtosecond to attosecond timescales. PMID:28643771

  4. Multiband corrections for the semi-classical simulation of interband tunneling in GaAs tunnel junctions

    Science.gov (United States)

    Louarn, K.; Claveau, Y.; Hapiuk, D.; Fontaine, C.; Arnoult, A.; Taliercio, T.; Licitra, C.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.

    2017-09-01

    The aim of this study is to investigate the impact of multiband corrections on the current density in GaAs tunnel junctions (TJs) calculated with a refined yet simple semi-classical interband tunneling model (SCITM). The non-parabolicity of the considered bands and the spin-orbit effects are considered by using a recently revisited SCITM available in the literature. The model is confronted to experimental results from a series of molecular beam epitaxy grown GaAs TJs and to numerical results obtained with a full quantum model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We emphasize the importance of considering the non-parabolicity of the conduction band by two different measurements of the energy-dependent electron effective mass in N-doped GaAs. We also propose an innovative method to compute the non-uniform electric field in the TJ for the SCITM simulations, which is of prime importance for a successful operation of the model. We demonstrate that, when considering the multiband corrections and this new computation of the non-uniform electric field, the SCITM succeeds in predicting the electrical characteristics of GaAs TJs, and are also in agreement with the quantum model. Besides the fundamental study of the tunneling phenomenon in TJs, the main benefit of this SCITM is that it can be easily embedded into drift-diffusion software, which are the most widely-used simulation tools for electronic and opto-electronic devices such as multi-junction solar cells, tunnel field-effect transistors, or vertical-cavity surface-emitting lasers.

  5. SAM revisited: absorptive uniform semiclassical approximation and application to heavy-ion elastic scattering

    International Nuclear Information System (INIS)

    Pato, M.P.; Hussein, M.S.

    1989-06-01

    The Uniform Semiclassical Approximation is modified to take into account absorption. Symbol calculus and pseudodifferential operators techniques are employed for the purpose. The resulting theory, very similar to the one developed by Frahn and Gross permits the decomposition of the near-side and far-side amplitudes into diffractive and refractive components. Application to several heavy-ion systems at intermediate energies is made. (author) [pt

  6. Focal points and the phase of the semi-classical propagator

    International Nuclear Information System (INIS)

    Levit, S.; Moehring, K.; Smilansky, U.; Dreyfus, T.

    1977-01-01

    The relation between the phase of the semi-classical propagator and the number of times the classical trajectory is reflected from a caustic is discussed. It is shown that the accepted prescription based on Morse's focal point theorem is valid only for a restricted class of problems (coordinate representation and a positive definite mass tensor). A more general method to evaluate the phase is derived. It applies to all problems of physical interest involving the most general representations (mixed coordinate and momentum) and complicated Hamiltonian functions. The result is of particular relevance for the classical S-matrix. (author)

  7. The effect of driven electron-phonon coupling on the electronic conductance of a polar nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Mardaani, Mohammad, E-mail: mohammad-m@sci.sku.ac.ir; Rabani, Hassan, E-mail: rabani-h@sci.sku.ac.ir [Department of Physics, Faculty of Science, Shahrekord University, P. O. Box 115, Shahrekord (Iran, Islamic Republic of); Nanotechnology Research Center, Shahrekord University, 8818634141 Shahrekord (Iran, Islamic Republic of); Esmaili, Esmat; Shariati, Ashrafalsadat [Department of Physics, Faculty of Science, Shahrekord University, P. O. Box 115, Shahrekord (Iran, Islamic Republic of)

    2015-08-07

    A semi-classical model is proposed to explore the effect of electron-phonon coupling on the coherent electronic transport of a polar chain which is confined between two rigid leads in the presence of an external electric field. To this end, we construct the model by means of Green's function technique within the nearest neighbor tight-binding and harmonic approximations. For a time-periodic electric field, the atomic displacements from the equilibrium positions are obtained precisely. The result is then used to compute the electronic transport properties of the chain within the Peierls-type model. The numerical results indicate that the conductance of the system shows interesting behavior in some special frequencies. For each special frequency, there is an electronic quasi-state in which the scattering of electrons by vibrating atoms reaches maximum. The system electronic conductance decreases dramatically at the strong electron-phonon couplings and low electron energies. In the presence of damping forces, the electron-phonon interaction has a less significant effect on the conductance.

  8. The effect of driven electron-phonon coupling on the electronic conductance of a polar nanowire

    International Nuclear Information System (INIS)

    Mardaani, Mohammad; Rabani, Hassan; Esmaili, Esmat; Shariati, Ashrafalsadat

    2015-01-01

    A semi-classical model is proposed to explore the effect of electron-phonon coupling on the coherent electronic transport of a polar chain which is confined between two rigid leads in the presence of an external electric field. To this end, we construct the model by means of Green's function technique within the nearest neighbor tight-binding and harmonic approximations. For a time-periodic electric field, the atomic displacements from the equilibrium positions are obtained precisely. The result is then used to compute the electronic transport properties of the chain within the Peierls-type model. The numerical results indicate that the conductance of the system shows interesting behavior in some special frequencies. For each special frequency, there is an electronic quasi-state in which the scattering of electrons by vibrating atoms reaches maximum. The system electronic conductance decreases dramatically at the strong electron-phonon couplings and low electron energies. In the presence of damping forces, the electron-phonon interaction has a less significant effect on the conductance

  9. Signatures of collective electron dynamics in the angular distributions of electrons ejected during ultrashort laser pulse interactions with C+

    International Nuclear Information System (INIS)

    Lysaght, M A; Hutchinson, S; Van der Hart, H W

    2009-01-01

    We use the time-dependent R-matrix approach to investigate an ultrashort pump-probe scheme to observe collective electron dynamics in C + driven by the repulsion of two equivalent p electrons. By studying the two-dimensional momentum distributions of the ejected electron as a function of the time-delay between an ultrashort pump pulse and an ionizing ultrashort probe pulse it is possible to track the collective dynamics inside the C + ion in the time domain.

  10. Electron cyclotron heating and supra-thermal electron dynamics in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gnesin, S.

    2011-10-15

    This thesis is concerned with the physics of supra-thermal electrons in thermonuclear, magnetically confined plasmas. Under a variety of conditions, in laboratory as well as space plasmas, the electron velocity distribution function is not in thermodynamic equilibrium owing to internal or external drives. Accordingly, the distribution function departs from the equilibrium Maxwellian, and in particular generally develops a high-energy tail. In tokamak plasmas, this occurs especially as a result of injection of high-power electromagnetic waves, used for heating and current drive, as well as a result of internal magnetohydrodynamic (MHD) instabilities. The physics of these phenomena is intimately tied to the properties and dynamics of this supra-thermal electron population. This motivates the development of instrumental apparatus to measure its properties as well as of numerical codes to simulate their dynamics. Both aspects are reflected in this thesis work, which features advanced instrumental development and experimental measurements as well as numerical modeling. The instrumental development consisted of the complete design of a spectroscopic and tomographic system of four multi-detector hard X-ray (HXR) cameras for the TCV tokamak. The goal is to measure bremsstrahlung emission from supra-thermal electrons with energies in the 10-300 keV range, with the ultimate aim of providing the first full tomographic reconstruction at these energies in a noncircular plasma. In particular, supra-thermal electrons are generated in TCV by a high-power electron cyclotron heating (ECH) system and are also observed in the presence of MHD events, such as sawtooth oscillations and disruptive instabilities. This diagnostic employs state-of-the-art solid-state detectors and is optimized for the tight space requirements of the TCV ports. It features a novel collimator concept that combines compactness and flexibility as well as full digital acquisition of the photon pulses, greatly

  11. Electron cyclotron heating and supra-thermal electron dynamics in the TCV Tokamak

    International Nuclear Information System (INIS)

    Gnesin, S.

    2011-10-01

    This thesis is concerned with the physics of supra-thermal electrons in thermonuclear, magnetically confined plasmas. Under a variety of conditions, in laboratory as well as space plasmas, the electron velocity distribution function is not in thermodynamic equilibrium owing to internal or external drives. Accordingly, the distribution function departs from the equilibrium Maxwellian, and in particular generally develops a high-energy tail. In tokamak plasmas, this occurs especially as a result of injection of high-power electromagnetic waves, used for heating and current drive, as well as a result of internal magnetohydrodynamic (MHD) instabilities. The physics of these phenomena is intimately tied to the properties and dynamics of this supra-thermal electron population. This motivates the development of instrumental apparatus to measure its properties as well as of numerical codes to simulate their dynamics. Both aspects are reflected in this thesis work, which features advanced instrumental development and experimental measurements as well as numerical modeling. The instrumental development consisted of the complete design of a spectroscopic and tomographic system of four multi-detector hard X-ray (HXR) cameras for the TCV tokamak. The goal is to measure bremsstrahlung emission from supra-thermal electrons with energies in the 10-300 keV range, with the ultimate aim of providing the first full tomographic reconstruction at these energies in a noncircular plasma. In particular, supra-thermal electrons are generated in TCV by a high-power electron cyclotron heating (ECH) system and are also observed in the presence of MHD events, such as sawtooth oscillations and disruptive instabilities. This diagnostic employs state-of-the-art solid-state detectors and is optimized for the tight space requirements of the TCV ports. It features a novel collimator concept that combines compactness and flexibility as well as full digital acquisition of the photon pulses, greatly

  12. Simulation of the photodynamics of azobenzene on its first excited state: Comparison of full multiple spawning and surface hopping treatments

    International Nuclear Information System (INIS)

    Toniolo, A.; Ciminelli, C.; Persico, M.; Martinez, T.J.

    2005-01-01

    We have studied the cis→trans and trans→cis photoisomerization of azobenzene after n→π* excitation using the full multiple spawning (FMS) method for nonadiabatic wave-packet dynamics with potential-energy surfaces and couplings determined 'on the fly' from a reparametrized multiconfigurational semiempirical method. We compare the FMS results with a previous direct dynamics treatment using the same potential-energy surfaces and couplings, but with the nonadiabatic dynamics modeled using a semiclassical surface hopping (SH) method. We concentrate on the dynamical effects that determine the photoisomerization quantum yields, namely, the rate of radiationless electronic relaxation and the character of motion along the reaction coordinate. The quantal and semiclassical results are in good general agreement, confirming our previous analysis of the photodynamics. The SH method slightly overestimates the rate of excited state decay, leading in this case to lower quantum yields

  13. Simulation of long-term dynamic behavior of runaway electrons

    International Nuclear Information System (INIS)

    Wang Yulei; Liu Jian; Zhang Ruili; He Yang

    2015-01-01

    The secular dynamics of runaway electrons in Tokamak electromagnetic field is studied. The radiation effect is added into a relativistic volume-preserving algorithm to gain long-term stability of calculation. The results shows that the method we used is able to reveal the behavior of a runaway electron in configuration space. (author)

  14. Femtosecond electron diffraction. Next generation electron sources for atomically resolved dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hirscht, Julian

    2015-08-15

    Three instruments for femtosecond electron diffraction (FED) experiments were erected, partially commissioned and used for first diffraction experiments. The Relativistic Electron Gun for Atomic Exploration (REGAE) was completed by beamline elements including supports, a specimen chamber and dark current or electron beam collimating elements such that the commissioning process, including first diffraction experiments in this context, could be started. The temporal resolution of this machine is simulated to be 25 fs (fwhm) short, while a transverse coherence length of 30 nm (fwhm) is feasible to resolve proteins on this scale. Whether this machine is capable of meeting these predictions or whether the dynamics of the electron beam will stay limited by accelerator components, is not finally determined by the end of this work, because commissioning and improvement of accelerator components is ongoing. Simultaneously, a compact DC electron diffraction apparatus, the E-Gun 300, designed for solid and liquid specimens and a target electron energy of 300 keV, was built. Fundamental design issues of the high potential carrying and beam generating components occurred and are limiting the maximum potential and electron energy to 120 keV. Furthermore, this is limiting the range of possible applications and consequently the design and construction of a brand new instrument began. The Femtosecond Electron Diffraction CAmera for Molecular Movies (FED-CAMM) bridges the performance problems of very high electric potentials and provides optimal operational conditions for all applied electron energies up to 300 keV. The variability of gap spacings and optimized manufacturing of the high voltage electrodes lead to the best possible electron pulse durations obtainable with a compact DC setup, that does not comprise of rf-structures. This third apparatus possesses pulse durations just a few tenth femtoseconds apart from the design limit of the highly relativistic REGAE and combines the

  15. Femtosecond electron diffraction. Next generation electron sources for atomically resolved dynamics

    International Nuclear Information System (INIS)

    Hirscht, Julian

    2015-08-01

    Three instruments for femtosecond electron diffraction (FED) experiments were erected, partially commissioned and used for first diffraction experiments. The Relativistic Electron Gun for Atomic Exploration (REGAE) was completed by beamline elements including supports, a specimen chamber and dark current or electron beam collimating elements such that the commissioning process, including first diffraction experiments in this context, could be started. The temporal resolution of this machine is simulated to be 25 fs (fwhm) short, while a transverse coherence length of 30 nm (fwhm) is feasible to resolve proteins on this scale. Whether this machine is capable of meeting these predictions or whether the dynamics of the electron beam will stay limited by accelerator components, is not finally determined by the end of this work, because commissioning and improvement of accelerator components is ongoing. Simultaneously, a compact DC electron diffraction apparatus, the E-Gun 300, designed for solid and liquid specimens and a target electron energy of 300 keV, was built. Fundamental design issues of the high potential carrying and beam generating components occurred and are limiting the maximum potential and electron energy to 120 keV. Furthermore, this is limiting the range of possible applications and consequently the design and construction of a brand new instrument began. The Femtosecond Electron Diffraction CAmera for Molecular Movies (FED-CAMM) bridges the performance problems of very high electric potentials and provides optimal operational conditions for all applied electron energies up to 300 keV. The variability of gap spacings and optimized manufacturing of the high voltage electrodes lead to the best possible electron pulse durations obtainable with a compact DC setup, that does not comprise of rf-structures. This third apparatus possesses pulse durations just a few tenth femtoseconds apart from the design limit of the highly relativistic REGAE and combines the

  16. The quantum dynamics of electronically nonadiabatic chemical reactions

    Science.gov (United States)

    Truhlar, Donald G.

    1993-01-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  17. Coupled electron-phonon transport from molecular dynamics with quantum baths

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Wang, J. S.

    2009-01-01

    Based on generalized quantum Langevin equations for the tight-binding wavefunction amplitudes and lattice displacements, electron and phonon quantum transport are obtained exactly using molecular dynamics (MD) in the ballistic regime. The electron-phonon interactions can be handled with a quasi...

  18. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  19. Monopole and topological electron dynamics in adiabatic spintronic and graphene systems

    International Nuclear Information System (INIS)

    Tan, S.G.; Jalil, M.B.A.; Fujita, T.

    2010-01-01

    A unified theoretical treatment is presented to describe the physics of electron dynamics in semiconductor and graphene systems. Electron spin's fast alignment with the Zeeman magnetic field (physical or effective) is treated as a form of adiabatic spin evolution which necessarily generates a monopole in magnetic space. One could transform this monopole into the physical and intuitive topological magnetic fields in the useful momentum (K) or real spaces (R). The physics of electron dynamics related to spin Hall, torque, oscillations and other technologically useful spinor effects can be inferred from the topological magnetic fields in spintronic, graphene and other SU(2) systems.

  20. Quantum geometry in dynamical Regge calculus

    International Nuclear Information System (INIS)

    Hagura, Hiroyuki

    2002-01-01

    We study geometric properties of dynamical Regge calculus which is a hybridization of dynamical triangulation and quantum Regge calculus. Lattice diffeomorphisms are generated by certain elementary moves on a simplicial lattice in the hybrid model. At the semiclassical level, we discuss a possibility that the lattice diffeomorphisms give a simple explanation for the Bekenstein-Hawking entropy of a black hole. At the quantum level, numerical calculations of 3D pure gravity show that a fractal structure of the hybrid model is the same as that of dynamical triangulation in the strong-coupling phase. In the weak-coupling phase, on the other hand, space-time becomes a spiky configuration, which often occurs in quantum Regge calculus

  1. Geometric constraints in semiclassical initial value representation calculations in Cartesian coordinates: accurate reduction in zero-point energy.

    Science.gov (United States)

    Issack, Bilkiss B; Roy, Pierre-Nicholas

    2005-08-22

    An approach for the inclusion of geometric constraints in semiclassical initial value representation calculations is introduced. An important aspect of the approach is that Cartesian coordinates are used throughout. We devised an algorithm for the constrained sampling of initial conditions through the use of multivariate Gaussian distribution based on a projected Hessian. We also propose an approach for the constrained evaluation of the so-called Herman-Kluk prefactor in its exact log-derivative form. Sample calculations are performed for free and constrained rare-gas trimers. The results show that the proposed approach provides an accurate evaluation of the reduction in zero-point energy. Exact basis set calculations are used to assess the accuracy of the semiclassical results. Since Cartesian coordinates are used, the approach is general and applicable to a variety of molecular and atomic systems.

  2. Coherent and Semiclassical States of a Charged Particle in a Constant Electric Field

    Science.gov (United States)

    Adorno, T. C.; Pereira, A. S.

    2018-05-01

    The method of integrals of motion is used to construct families of generalized coherent states of a nonrelativistic spinless charged particle in a constant electric field. Families of states, differing in the values of their standard deviations at the initial time, are obtained. Depending on the initial values of the standard deviations, and also on the electric field, it turns out to be possible to identify some families with semiclassical states.

  3. A semiclassical method in the theory of light scattering by semiconductor quantum dots

    International Nuclear Information System (INIS)

    Lang, I. G.; Korovin, L. I.; Pavlov, S. T.

    2008-01-01

    A semiclassical method is proposed for the theoretical description of elastic light scattering by arbitrary semiconductor quantum dots under conditions of size quantization. This method involves retarded potentials and allows one to dispense with boundary conditions for electric and magnetic fields. Exact results for the Umov-Poynting vector at large distances from quantum dots in the case of monochromatic and pulsed irradiation and formulas for differential scattering cross sections are obtained

  4. Photodetachment electron flux of H− in combined electric and magnetic fields with arbitrary orientation

    International Nuclear Information System (INIS)

    Wang, De-hua

    2013-01-01

    Highlights: •On the basis of the semiclassical theory, the photodetachment electron flux of H − in combined electric field and magnetic field with arbitrary orientation has been studied for the first time. •Our calculation results suggest that the electron flux distributions on the detector plane is not only related to the angle between the electric and magnetic fields, but also related to the electron energy. •Our studies may guide the future experimental researches in the photodetachment microscopy of some more complex negative ions in the presence of external fields. -- Abstract: On the basis of the semi-classical theory, we calculate the photodetachment electron flux of H − in combined electric field and magnetic field with arbitrary orientation. Our results suggest that the electron flux distributions on the detector plane is not only related to the angle between the electric and magnetic fields, but also related to the electron energy. With the increase of the angle between the electric and magnetic field, the oscillating region in the electron flux distributions becomes smaller. In addition, we find with the increase of the detached electron's energy, the oscillating structure in the flux distributions becomes much more complicated. Therefore, the oscillation in the detached electron flux distributions can be controlled by adjusting the angle between the electric and magnetic field and the detached electron's energy. We hope that our studies may guide the future experimental researches in the photodetachment microscopy of negative ion in the presence of external fields

  5. Classical trajectory perspective of atomic ionization in strong laser fields. Semiclassical modeling

    International Nuclear Information System (INIS)

    Liu, Jie

    2014-01-01

    Dealing with timely and interesting issues in strong laser physics. Illustrates complex strong field atomic ionization with the simple semiclassical model of classical trajectory perspective for the first time. Provides a theoretical model that can be used to account for recent experiments. The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers in the field of laser physics, atom molecule physics and theoretical physics. Dr. Jie Liu is a professor of Institute of Applied Physics and Computational Mathematics, China and Peking University.

  6. Semi-classical description of matter wave interferometers and hybrid quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Mathias

    2015-02-16

    This work considers the semi-classical description of two applications involving cold atoms. This is, on one hand, the behavior of a BOSE-EINSTEIN condensate in hybrid systems, i.e. in contact with a microscopic object (carbon nanotubes, fullerenes, etc.). On the other, the evolution of phase space distributions in matter wave interferometers utilizing ray tracing methods was discussed. For describing condensates in hybrid systems, one can map the GROSS-PITAEVSKII equation, a differential equation in the complex-valued macroscopic wave function, onto a system of two differential equations in density and phase. Neglecting quantum dispersion, one obtains a semiclassical description which is easily modified to incorporate interactions between condensate and microscopical object. In our model, these interactions comprise attractive forces (CASIMIR-POLDER forces) and loss of condensed atoms due to inelastic collisions at the surface of the object. Our model exhibited the excitation of sound waves that are triggered by the object's rapid immersion, and spread across the condensate thereafter. Moreover, local particle loss leads to a shrinking of the bulk condensate. We showed that the total number of condensed particles is decreasing potentially in the beginning (large condensate, strong mean field interaction), while it decays exponentially in the long-time limit (small condensate, mean field inetraction negligible). For representing the physics of matter wave interferometers in phase space, we utilized the WIGNER function. In semi-classical approximation, which again consists in ignoring the quantum dispersion, this representation is subject to the same equation of motion as classical phase space distributions, i.e. the LIOUVILLE equation. This implies that time evolution of theWIGNER function follows a phase space flow that consists of classical trajectories (classical transport). This means, for calculating a time-evolved distribution, one has know the initial

  7. Dynamical effects in electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianqiang Sky, E-mail: jianqiang.zhou@polytechnique.edu; Reshetnyak, Igor; Giorgetti, Christine; Sottile, Francesco; Reining, Lucia [Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA-DSM-IRAMIS, Université Paris-Saclay, F-91128 Palaiseau (France); Kas, J. J.; Rehr, J. J. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States); Sponza, Lorenzo [Department of Physics, King’s College London, London WC2R 2LS (United Kingdom); Guzzo, Matteo [Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, D-12489 Berlin (Germany); Gatti, Matteo [Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA-DSM-IRAMIS, Université Paris-Saclay, F-91128 Palaiseau (France); Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette (France)

    2015-11-14

    One of the big challenges of theoretical condensed-matter physics is the description, understanding, and prediction of the effects of the Coulomb interaction on materials properties. In electronic spectra, the Coulomb interaction causes a renormalization of energies and change of spectral weight. Most importantly, it can lead to new structures, often called satellites. These can be linked to the coupling of excitations, also termed dynamical effects. State-of-the-art methods in the framework of many-body perturbation theory, in particular, the widely used GW approximation, often fail to describe satellite spectra. Instead, approaches based on a picture of electron-boson coupling such as the cumulant expansion are promising for the description of plasmon satellites. In this work, we give a unified derivation of the GW approximation and the cumulant expansion for the one-body Green’s function. Using the example of bulk sodium, we compare the resulting spectral functions both in the valence and in the core region, and we discuss the dispersion of quasi-particles and satellites. We show that self-consistency is crucial to obtain meaningful results, in particular, at large binding energies. Very good agreement with experiment is obtained when the intrinsic spectral function is corrected for extrinsic and interference effects. Finally, we sketch how one can approach the problem in the case of the two-body Green’s function, and we discuss the cancellation of various dynamical effects that occur in that case.

  8. Dynamical effects in electron spectroscopy

    International Nuclear Information System (INIS)

    Zhou, Jianqiang Sky; Reshetnyak, Igor; Giorgetti, Christine; Sottile, Francesco; Reining, Lucia; Kas, J. J.; Rehr, J. J.; Sponza, Lorenzo; Guzzo, Matteo; Gatti, Matteo

    2015-01-01

    One of the big challenges of theoretical condensed-matter physics is the description, understanding, and prediction of the effects of the Coulomb interaction on materials properties. In electronic spectra, the Coulomb interaction causes a renormalization of energies and change of spectral weight. Most importantly, it can lead to new structures, often called satellites. These can be linked to the coupling of excitations, also termed dynamical effects. State-of-the-art methods in the framework of many-body perturbation theory, in particular, the widely used GW approximation, often fail to describe satellite spectra. Instead, approaches based on a picture of electron-boson coupling such as the cumulant expansion are promising for the description of plasmon satellites. In this work, we give a unified derivation of the GW approximation and the cumulant expansion for the one-body Green’s function. Using the example of bulk sodium, we compare the resulting spectral functions both in the valence and in the core region, and we discuss the dispersion of quasi-particles and satellites. We show that self-consistency is crucial to obtain meaningful results, in particular, at large binding energies. Very good agreement with experiment is obtained when the intrinsic spectral function is corrected for extrinsic and interference effects. Finally, we sketch how one can approach the problem in the case of the two-body Green’s function, and we discuss the cancellation of various dynamical effects that occur in that case

  9. Dissipation and energy balance in electronic dynamics of Na clusters

    Science.gov (United States)

    Vincendon, Marc; Suraud, Eric; Reinhard, Paul-Gerhard

    2017-06-01

    We investigate the impact of dissipation on the energy balance in the electron dynamics of metal clusters excited by strong electro-magnetic pulses. The dynamics is described theoretically by Time-Dependent Density-Functional Theory (TDDFT) at the level of Local Density Approximation (LDA) augmented by a self interaction correction term and a quantum collision term in Relaxation-Time Approximation (RTA). We evaluate the separate contributions to the total excitation energy, namely energy exported by electron emission, potential energy due to changing charge state, intrinsic kinetic and potential energy, and collective flow energy. The balance of these energies is studied as function of the laser parameters (frequency, intensity, pulse length) and as function of system size and charge. We also look at collisions with a highly charged ion and here at the dependence on the impact parameter (close versus distant collisions). Dissipation turns out to be small where direct electron emission prevails namely for laser frequencies above any ionization threshold and for slow electron extraction in distant collisions. Dissipation is large for fast collisions and at low laser frequencies, particularly at resonances. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  10. Variational nonadiabatic dynamics in the moving crude adiabatic representation: Further merging of nuclear dynamics and electronic structure

    Science.gov (United States)

    Joubert-Doriol, Loïc; Izmaylov, Artur F.

    2018-03-01

    A new methodology of simulating nonadiabatic dynamics using frozen-width Gaussian wavepackets within the moving crude adiabatic representation with the on-the-fly evaluation of electronic structure is presented. The main feature of the new approach is the elimination of any global or local model representation of electronic potential energy surfaces; instead, the electron-nuclear interaction is treated explicitly using the Gaussian integration. As a result, the new scheme does not introduce any uncontrolled approximations. The employed variational principle ensures the energy conservation and leaves the number of electronic and nuclear basis functions as the only parameter determining the accuracy. To assess performance of the approach, a model with two electronic and two nuclear spacial degrees of freedom containing conical intersections between potential energy surfaces has been considered. Dynamical features associated with nonadiabatic transitions and nontrivial geometric (or Berry) phases were successfully reproduced within a limited basis expansion.

  11. Electron spin polarization in high-energy storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.

    1987-01-01

    In a high energy storage ring, a single photon emission has relatively little effect on the orbital motion, but it can produce a relatively large change in the electron spin state. Hence the unperturbed orbital motion can be satisfactorily described using classical mechanics, but the spin must be treated quantum mechanically. The electron motion is therefore treated semi-classically in this thesis. It is explained how to diagonalize the unperturbed Hamiltonian to the leading order in Planck's constant. The effects of perturbations are then included, and the relevant time-scales and ensemble averages are elucidated. The Derbenev-Kondratenko formula for the equilibrium degree of polarization is rederived. Mathematical details of the rederivation are given. Since the original authors used a different formalism, a proof is offered of the equivalence between their method and the one used in this thesis. An algorithm is also presented to evaluate the equilibrium polarization. It has a number of new features, which enable the polarization to be calculated to a higher degree of approximation than has hitherto been possible. This facilitates the calculation of so-called spin resonances, which are points at which the polarization almost vanishes. A computer program has been written to implement the above algorithm, in the approximation of linear orbital dynamics, and sample results are presented

  12. Dynamic correlation of photo-excited electrons: Anomalous levels induced by light–matter coupling

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiankai [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); Song, Bo, E-mail: bosong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China)

    2014-04-01

    Nonlinear light–matter coupling plays an important role in many aspects of modern physics, such as spectroscopy, photo-induced phase transition, light-based devices, light-harvesting systems, light-directed reactions and bio-detection. However, excited states of electrons are still unclear for nano-structures and molecules in a light field. Our studies unexpectedly present that light can induce anomalous levels in the electronic structure of a donor–acceptor nanostructure with the help of the photo-excited electrons transferring dynamically between the donor and the acceptor. Furthermore, the physics underlying is revealed to be the photo-induced dynamical spin–flip correlation among electrons. These anomalous levels can significantly enhance the electron current through the nanostructure. These findings are expected to contribute greatly to the understanding of the photo-excited electrons with dynamic correlations, which provides a push to the development and application of techniques based on photosensitive molecules and nanostructures, such as light-triggered molecular devices, spectroscopic analysis, bio-molecule detection, and systems for solar energy conversion.

  13. Electronic properites of electron-doped cuprate superconductors probed by high-field magnetotransport

    International Nuclear Information System (INIS)

    Helm, Toni

    2013-01-01

    In the present work the normal-state properties of the electron-doped cuprate superconductor Nd 2-x Ce x CuO 4 (NCCO) are investigated for a broad doping range, covering almost the whole phase diagram of this material. Magnetotransport measurements in the world's highest non-destructive magnetic fields were used as a spectroscopic tool for probing the electronic structure of single-crystalline NCCO as a function of the carrier concentration x. Quantum and semiclassical oscillations in the magnetoresistance provided new insights into various properties of the Fermi surface and the nature of the ground state in the system. The detailed investigations of the field- and temperature-dependent transport and its dependence on the field orientation have revealed a close correlation between symmetry-breaking ordering instabilities and the superconducting state.

  14. Electronic properites of electron-doped cuprate superconductors probed by high-field magnetotransport

    Energy Technology Data Exchange (ETDEWEB)

    Helm, Toni

    2013-09-18

    In the present work the normal-state properties of the electron-doped cuprate superconductor Nd{sub 2-x}Ce{sub x}CuO{sub 4} (NCCO) are investigated for a broad doping range, covering almost the whole phase diagram of this material. Magnetotransport measurements in the world's highest non-destructive magnetic fields were used as a spectroscopic tool for probing the electronic structure of single-crystalline NCCO as a function of the carrier concentration x. Quantum and semiclassical oscillations in the magnetoresistance provided new insights into various properties of the Fermi surface and the nature of the ground state in the system. The detailed investigations of the field- and temperature-dependent transport and its dependence on the field orientation have revealed a close correlation between symmetry-breaking ordering instabilities and the superconducting state.

  15. Electronic properites of electron-doped cuprate superconductors probed by high-field magnetotransport

    Energy Technology Data Exchange (ETDEWEB)

    Helm, Toni

    2013-09-18

    In the present work the normal-state properties of the electron-doped cuprate superconductor Nd{sub 2-x}Ce{sub x}CuO{sub 4} (NCCO) are investigated for a broad doping range, covering almost the whole phase diagram of this material. Magnetotransport measurements in the world's highest non-destructive magnetic fields were used as a spectroscopic tool for probing the electronic structure of single-crystalline NCCO as a function of the carrier concentration x. Quantum and semiclassical oscillations in the magnetoresistance provided new insights into various properties of the Fermi surface and the nature of the ground state in the system. The detailed investigations of the field- and temperature-dependent transport and its dependence on the field orientation have revealed a close correlation between symmetry-breaking ordering instabilities and the superconducting state.

  16. Reflection at a complex potential barrier in the semiclassical theory of scattering

    International Nuclear Information System (INIS)

    Avishai, Y.; Knoll, J.

    1976-01-01

    The reflection of spherical waves at a complex potential barrier is discussed in the semiclassical approximation. We study the complex WKB method and the Uniform Approximation in the special case of weakly absorptive barriers, typical of surface transparent optical potentials used in heavy-ion reactions. It is found that the complex WKB results lead to a very accurate cross-section despite their inaccuracy in the most important phase shifts. Thereby, the amazing stamina of the WKB has been confirmed once more. (orig.) [de

  17. Gauge-invariant area distributions for semiclassical magnetotransport through ballistic nanostructures

    International Nuclear Information System (INIS)

    Wirtz, L.; Yang, Xiazhou; Burgdoerfer, J.E.

    1996-01-01

    Within the semiclassical theory of magnetotransport, conductance fluctuations in ballistic cavities are determined by distribution functions of directed areas enclose by classical paths. The authors calculate gauge invariant areas which can be visualized as closure of areas by adding a virtual path to the real path connecting the leads. Gauge invariance of the resulting area distribution is found to be important for geometry-sensitive non-universal properties of transport. The authors show that in the presence of direct paths both the area distribution and the two-point pair distribution function for areas of trajectories contribute. Comparison with recent data by Marcus et al. for a stadium-shaped nanostructure is made

  18. Principles of laser dynamics

    CERN Document Server

    Khanin, YI

    1995-01-01

    This monograph summarizes major achievements in laser dynamics over the past three decades. The book begins with two introductory Chapters. Chapter 1 offers general considerations on quantum oscillators, formulates the requirements for the laser key elements and shows how these requirements are met in different laser systems. The second Chapter proposes the mathematical models used in semiclassical laser theory, discusses the approximations and simplifications in particular cases, and specifies the range of applicability of these models. In Chapters 3-5 attention is given primarily to the stea

  19. How electronic dynamics with Pauli exclusion produces Fermi-Dirac statistics.

    Science.gov (United States)

    Nguyen, Triet S; Nanguneri, Ravindra; Parkhill, John

    2015-04-07

    It is important that any dynamics method approaches the correct population distribution at long times. In this paper, we derive a one-body reduced density matrix dynamics for electrons in energetic contact with a bath. We obtain a remarkable equation of motion which shows that in order to reach equilibrium properly, rates of electron transitions depend on the density matrix. Even though the bath drives the electrons towards a Boltzmann distribution, hole blocking factors in our equation of motion cause the electronic populations to relax to a Fermi-Dirac distribution. These factors are an old concept, but we show how they can be derived with a combination of time-dependent perturbation theory and the extended normal ordering of Mukherjee and Kutzelnigg for a general electronic state. The resulting non-equilibrium kinetic equations generalize the usual Redfield theory to many-electron systems, while ensuring that the orbital occupations remain between zero and one. In numerical applications of our equations, we show that relaxation rates of molecules are not constant because of the blocking effect. Other applications to model atomic chains are also presented which highlight the importance of treating both dephasing and relaxation. Finally, we show how the bath localizes the electron density matrix.

  20. How electronic dynamics with Pauli exclusion produces Fermi-Dirac statistics

    International Nuclear Information System (INIS)

    Nguyen, Triet S.; Nanguneri, Ravindra; Parkhill, John

    2015-01-01

    It is important that any dynamics method approaches the correct population distribution at long times. In this paper, we derive a one-body reduced density matrix dynamics for electrons in energetic contact with a bath. We obtain a remarkable equation of motion which shows that in order to reach equilibrium properly, rates of electron transitions depend on the density matrix. Even though the bath drives the electrons towards a Boltzmann distribution, hole blocking factors in our equation of motion cause the electronic populations to relax to a Fermi-Dirac distribution. These factors are an old concept, but we show how they can be derived with a combination of time-dependent perturbation theory and the extended normal ordering of Mukherjee and Kutzelnigg for a general electronic state. The resulting non-equilibrium kinetic equations generalize the usual Redfield theory to many-electron systems, while ensuring that the orbital occupations remain between zero and one. In numerical applications of our equations, we show that relaxation rates of molecules are not constant because of the blocking effect. Other applications to model atomic chains are also presented which highlight the importance of treating both dephasing and relaxation. Finally, we show how the bath localizes the electron density matrix

  1. Hydrated Electron Transfer to Nucleobases in Aqueous Solutions Revealed by Ab Initio Molecular Dynamics Simulations.

    Science.gov (United States)

    Zhao, Jing; Wang, Mei; Fu, Aiyun; Yang, Hongfang; Bu, Yuxiang

    2015-08-03

    We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Emulating Molecular Orbitals and Electronic Dynamics with Ultracold Atoms

    Directory of Open Access Journals (Sweden)

    Dirk-Sören Lühmann

    2015-08-01

    Full Text Available In recent years, ultracold atoms in optical lattices have proven their great value as quantum simulators for studying strongly correlated phases and complex phenomena in solid-state systems. Here, we reveal their potential as quantum simulators for molecular physics and propose a technique to image the three-dimensional molecular orbitals with high resolution. The outstanding tunability of ultracold atoms in terms of potential and interaction offer fully adjustable model systems for gaining deep insight into the electronic structure of molecules. We study the orbitals of an artificial benzene molecule and discuss the effect of tunable interactions in its conjugated π electron system with special regard to localization and spin order. The dynamical time scales of ultracold atom simulators are on the order of milliseconds, which allows for the time-resolved monitoring of a broad range of dynamical processes. As an example, we compute the hole dynamics in the conjugated π system of the artificial benzene molecule.

  3. Semi-classical approximation to path integrals - phases and catastrophes

    International Nuclear Information System (INIS)

    Levit, S.

    1977-01-01

    Problems of phases and catastrophes were encountered when trying to apply the classical S-matrix theory to the scattering phenomena in nuclear physics. The path integral formulation provided a suitable basis for the treatment of these and related problems. Within conventional mathematical language it was possible to give practical prescriptions and discuss their limitations. Since the semi-classical (stationary phase) approximation is commonly used in any application of the path integral method, the results are not restricted to the scattering problems and may be of general interest. The derivation of the uniform approximations in the energy representation should use the exact path integral expression as the starting point, rather than performing Fourier transforms on the expressions derived in the present lecture. (B.G.)

  4. Laguerre-Freud Equations for the Recurrence Coefficients of Some Discrete Semi-Classical Orthogonal Polynomials of Class Two

    Science.gov (United States)

    Hounga, C.; Hounkonnou, M. N.; Ronveaux, A.

    2006-10-01

    In this paper, we give Laguerre-Freud equations for the recurrence coefficients of discrete semi-classical orthogonal polynomials of class two, when the polynomials in the Pearson equation are of the same degree. The case of generalized Charlier polynomials is also presented.

  5. Wigner method dynamics in the interaction picture

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Dahl, Jens Peder; Henriksen, Niels Engholm

    1994-01-01

    that the dynamics of the interaction picture Wigner function is solved by running a swarm of trajectories in the classical interaction picture introduced previously in the literature. Solving the Wigner method dynamics of collision processes in the interaction picture ensures that the calculated transition......The possibility of introducing an interaction picture in the semiclassical Wigner method is investigated. This is done with an interaction Picture description of the density operator dynamics as starting point. We show that the dynamics of the density operator dynamics as starting point. We show...... probabilities are unambiguous even when the asymptotic potentials are anharmonic. An application of the interaction picture Wigner method to a Morse oscillator interacting with a laser field is presented. The calculated transition probabilities are in good agreement with results obtained by a numerical...

  6. Toward prethreshold gate-based quantum simulation of chemical dynamics: using potential energy surfaces to simulate few-channel molecular collisions

    Science.gov (United States)

    Sornborger, Andrew T.; Stancil, Phillip; Geller, Michael R.

    2018-05-01

    One of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputed potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born-Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈ 10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3-8 channels and circuit depths < 1000.

  7. The semiclassical approximation for L- and M-shell coulomb ionization by heavy charged particles

    International Nuclear Information System (INIS)

    Kocbach, L.

    1975-08-01

    The semiclassical approximation with straight line trajectories is applied to the Coulomb ionization of K-, L- and M-shells by heavy charged particles. The calculational aspects are discussed in detail. Scaling relations for the experimentally relevant quantities are derived. The theoretical predictions are compared with experimental data. The relation of the present work to earlier SCA results and the PWBA results is discussed in detail. (auth)

  8. Langevin Dynamics with Spatial Correlations as a Model for Electron-Phonon Coupling

    Science.gov (United States)

    Tamm, A.; Caro, M.; Caro, A.; Samolyuk, G.; Klintenberg, M.; Correa, A. A.

    2018-05-01

    Stochastic Langevin dynamics has been traditionally used as a tool to describe nonequilibrium processes. When utilized in systems with collective modes, traditional Langevin dynamics relaxes all modes indiscriminately, regardless of their wavelength. We propose a generalization of Langevin dynamics that can capture a differential coupling between collective modes and the bath, by introducing spatial correlations in the random forces. This allows modeling the electronic subsystem in a metal as a generalized Langevin bath endowed with a concept of locality, greatly improving the capabilities of the two-temperature model. The specific form proposed here for the spatial correlations produces a physical wave-vector and polarization dependency of the relaxation produced by the electron-phonon coupling in a solid. We show that the resulting model can be used for describing the path to equilibration of ions and electrons and also as a thermostat to sample the equilibrium canonical ensemble. By extension, the family of models presented here can be applied in general to any dense system, solids, alloys, and dense plasmas. As an example, we apply the model to study the nonequilibrium dynamics of an electron-ion two-temperature Ni crystal.

  9. Nonadiabatic Dynamics in Single-Electron Tunneling Devices with Time-Dependent Density-Functional Theory

    Science.gov (United States)

    Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole

    2018-04-01

    We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.

  10. Dynamics in electron transfer protein complexes

    OpenAIRE

    Bashir, Qamar

    2010-01-01

    Recent studies have provided experimental evidence for the existence of an encounter complex, a transient intermediate in the formation of protein complexes. We have used paramagnetic relaxation enhancement NMR spectroscopy in combination with Monte Carlo simulations to characterize and visualize the ensemble of encounter orientations in the short-lived electron transfer complex of yeast Cc and CcP. The complete conformational space sampled by the protein molecules during the dynamic part of ...

  11. Electron capture and ionization in collisions of multiply charged ions with H(2s)

    International Nuclear Information System (INIS)

    Errea, L F; Guzman, F; Illescas, Clara; Mendez, L; Pons, B; Riera, A; Suarez, J

    2007-01-01

    We present total cross sections for electron capture and ionization in collisions of B 5+ and Ne 10+ with H(2s), calculated using two methods: the semiclassical close-coupling molecular formalism and the eikonal-CTMC method. We have evaluated partial cross sections for capture into excited n-levels, required in plasma diagnostics

  12. Magnetic electron focusing and tuning of the electron current with a pn-junction

    Energy Technology Data Exchange (ETDEWEB)

    Milovanović, S. P., E-mail: slavisa.milovanovic@uantwerpen.be; Ramezani Masir, M., E-mail: mrmphys@gmail.com; Peeters, F. M., E-mail: francois.peeters@uantwerpen.be [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2014-01-28

    Transverse magnetic focusing properties of graphene using a ballistic four terminal structure are investigated. The electric response is obtained using the semiclassical billiard model. The transmission exhibits pronounced peaks as a consequence of skipping orbits at the edge of the structure. When we add a pn-junction between the two probes, snake states along the pn-interface appear. Injected electrons are guided by the pn-interface to one of the leads depending on the value of the applied magnetic field. Oscillations in the resistance are found depending on the amount of particles that end up in each lead.

  13. Behavior of Poisson Bracket Mapping Equation in Studying Excitation Energy Transfer Dynamics of Cryptophyte Phycocyanin 645 Complex

    International Nuclear Information System (INIS)

    Lee, Weon Gyu; Kelly, Aaron; Rhee, Young Min

    2012-01-01

    Recently, it has been shown that quantum coherence appears in energy transfers of various photosynthetic light harvesting complexes at from cryogenic to even room temperatures. Because the photosynthetic systems are inherently complex, these findings have subsequently interested many researchers in the field of both experiment and theory. From the theoretical part, simplified dynamics or semiclassical approaches have been widely used. In these approaches, the quantum-classical Liouville equation (QCLE) is the fundamental starting point. Toward the semiclassical scheme, approximations are needed to simplify the equations of motion of various degrees of freedom. Here, we have adopted the Poisson bracket mapping equation (PBME) as an approximate form of QCLE and applied it to find the time evolution of the excitation in a photosynthetic complex from marine algae. The benefit of using PBME is its similarity to conventional Hamiltonian dynamics. Through this, we confirmed the coherent population transfer behaviors in short time domain as previously reported with a more accurate but more time-consuming iterative linearized density matrix approach. However, we find that the site populations do not behave according to the Boltzmann law in the long time limit. We also test the effect of adding spurious high frequency vibrations to the spectral density of the bath, and find that their existence does not alter the dynamics to any significant extent as long as the associated reorganization energy is changed not too drastically. This suggests that adopting classical trajectory based ensembles in semiclassical simulations should not influence the coherence dynamics in any practical manner, even though the classical trajectories often yield spurious high frequency vibrational features in the spectral density

  14. Semiclassical transport of particles with dynamical spectral functions

    International Nuclear Information System (INIS)

    Cassing, W.; Juchem, S.

    2000-01-01

    The conventional transport of particles in the on-shell quasiparticle limit is extended to particles of finite life time by means of a spectral function A(X,P,M 2 ) for a particle moving in an area of complex self-energy Σ ret X =Re Σ ret X -iΓ X /2. Starting from the Kadanoff--Baym equations we derive in first-order gradient expansion equations of motion for testparticles with respect to their time evolution in X,P and M 2 . The off-shell propagation is demonstrated for a couple of model cases that simulate hadron-nucleus collisions. In case of nucleus-nucleus collisions the imaginary part of the hadron self-energy Γ X is determined by the local space-time dependent collision rate dynamically. A first application is presented for A+A reactions up to 95 A MeV, where the effects from the off-shell propagation of nucleons are discussed with respect to high energy proton spectra, high energy photon production as well as kaon yields in comparison to the available data from GANIL

  15. Static structure, microscopic dynamics and electronic properties of the liquid Bi–Li alloy. An ab initio molecular dynamics study

    International Nuclear Information System (INIS)

    Souto, J; Alemany, M M G; Gallego, L J; González, L E; González, D J

    2013-01-01

    We report an ab initio molecular dynamics study of the static, dynamic and electronic properties of the liquid Bi x Li 1−x alloy, which is a complex binary system with a marked tendency to heterocoordination. The calculated total static structure factors are in good agreement with the available experimental data. The partial dynamic structure factors exhibit side peaks indicative of propagating density fluctuations, and for some concentrations we have found a density fluctuation mode with phase velocity greater than the hydrodynamic sound velocity. We have also evaluated other dynamical properties such as the diffusion coefficients, the shear viscosity and the adiabatic sound velocity. The electronic density of states show that the liquid Bi x Li 1−x alloy has a metallic character, although with strong deviations from the free-electron parabolic curve. The results reported improve the understanding of binary liquid alloys with both fast and slow propagating collective modes. (paper)

  16. Nuclear dynamics in phase space

    International Nuclear Information System (INIS)

    Di Toro, M.

    1984-07-01

    We present a unified semiclassical picture of nuclear dynamics, from collective states to heavy ion physics, based on a study of the time evolution of the Wigner distribution function. We discuss in particular the mean field dynamics, in this ''quantal'' phase space, which is ruled by the nuclear Vlasov equation. Simple approximate solutions are worked out for rotational and vibrational collective motions. Giant resonances are shown to be quite well described as scaling modes, which are equivalent to a lowest multipole (up to 1sub(max)=2) distortions of the momentum distribution. Applications are shown to heavy ion physics to study giant resonances on high spin states and dynamical collective effects in subthreshold π-production. Several possible extensions and in particular the inclusion of two-body collision terms are finally discussed

  17. On-the-fly ab initio semiclassical dynamics: Emission spectra of oligothiophenes

    Science.gov (United States)

    Wehrle, Marius; Sulc, Miroslav; Vanicek, Jiri

    2014-03-01

    We employ the thawed Gaussian approximation (TGA) [E. J. Heller, J. Chem. Phys. 62, 1544 (1975)] within an on-the-fly ab initio (OTF-AI) scheme to calculate the vibrationally resolved emission spectra of oligothiophenes up to five rings. OTF-AI-TGA is efficient enough to treat all vibrational degrees of freedom on an equal footing even in case of 5-oligothiophene (105 vibrational degrees of freedom), thus obviating the need for the crude global harmonic approximation, popular for large system. The experimental emission spectra have been almost perfectly reproduced. In order to provide a deeper insight into the associated physical and chemical processes, we present a systematic approach to assess the importance and to analyze the mutual coupling of individual vibrational degrees of freedom during the dynamics. This allows us to explain the changes in the vibrational line shapes of the oligothiophenes with increasing number of rings. Furthermore, we observe the dynamical interplay between quinoid and aromatic characters of individual rings in the oligothiophene chain during the dynamics and confirm that the quinoid character prevails in the center of the chain. This research was supported by the Swiss NSF Grant No. 200021_124936/1 and NCCR Molecular Ultrafast Science & Technology (MUST), and by the EPFL.

  18. Linear temperature behavior of thermopower and strong electron-electron scattering in thick F-doped SnO2 films

    Science.gov (United States)

    Lang, Wen-Jing; Li, Zhi-Qing

    2014-07-01

    Both the semi-classical and quantum transport properties of F-doped SnO2 thick films (˜1 μm) were investigated experimentally. We found that the resistivity caused by the thermal phonons obeys Bloch-Grüneisen law from ˜90 to 300 K, while only the diffusive thermopower, which varies linearly with temperature from 300 down to 10 K, can be observed. The phonon-drag thermopower is completely suppressed due to the long electron-phonon relaxation time in the compound. These observations, together with the fact that the carrier concentration has negligible temperature dependence, indicate that the conduction electrons in F-doped SnO2 films possess free-electron-like characteristics. At low temperatures, the electron-electron scattering dominates over the electron-phonon scattering and governs the inelastic scattering process. The theoretical predications of scattering rates of large- and small-energy-transfer electron-electron scattering processes, which are negligibly weak in three-dimensional disordered conventional conductors, are quantitatively tested in this lower carrier concentration and free-electron-like highly degenerate semiconductor.

  19. Linear temperature behavior of thermopower and strong electron-electron scattering in thick F-doped SnO2 films

    International Nuclear Information System (INIS)

    Lang, Wen-Jing; Li, Zhi-Qing

    2014-01-01

    Both the semi-classical and quantum transport properties of F-doped SnO 2 thick films (∼1 μm) were investigated experimentally. We found that the resistivity caused by the thermal phonons obeys Bloch-Grüneisen law from ∼90 to 300 K, while only the diffusive thermopower, which varies linearly with temperature from 300 down to 10 K, can be observed. The phonon-drag thermopower is completely suppressed due to the long electron-phonon relaxation time in the compound. These observations, together with the fact that the carrier concentration has negligible temperature dependence, indicate that the conduction electrons in F-doped SnO 2 films possess free-electron-like characteristics. At low temperatures, the electron-electron scattering dominates over the electron-phonon scattering and governs the inelastic scattering process. The theoretical predications of scattering rates of large- and small-energy-transfer electron-electron scattering processes, which are negligibly weak in three-dimensional disordered conventional conductors, are quantitatively tested in this lower carrier concentration and free-electron-like highly degenerate semiconductor.

  20. Spatiotemporal Observation of Electron-Impact Dynamics in Photovoltaic Materials Using 4D Electron Microscopy

    KAUST Repository

    Shaheen, Basamat; Sun, Jingya; Yang, Ding-Shyue; Mohammed, Omar F.

    2017-01-01

    information can be obtained using the one-of-a-kind methodology of scanning ultrafast electron microscopy (S-UEM). Here, we address the fundamental issue of how the thickness of the absorber layer may significantly affect the charge carrier dynamics