WorldWideScience

Sample records for semiclassical decoupling scheme

  1. Decoupling schemes for the SSC Collider

    International Nuclear Information System (INIS)

    Cai, Y.; Bourianoff, G.; Cole, B.; Meinke, R.; Peterson, J.; Pilat, F.; Stampke, S.; Syphers, M.; Talman, R.

    1993-05-01

    A decoupling system is designed for the SSC Collider. This system can accommodate three decoupling schemes by using 44 skew quadrupoles in the different configurations. Several decoupling schemes are studied and compared in this paper

  2. Robust Power Decoupling Control Scheme for DC Side Split Decoupling Capacitor Circuit with Mismatched Capacitance in Single Phase System

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2016-01-01

    dc capacitor to realize power decoupling, but the conventional power decoupling control scheme for this half-bridge circuit is developed with equal storage capacitances, which may vary in practice and degrade the ac and dc performance. The intention of this paper is to quantify ac and dc...... imperfections when storage mismatch occurs, which may break the standard requirement such as IEEE 1547. As a consequence, a robust control scheme is then proposed for half-bridge circuit, which realized power decoupling by generating second order harmonic voltage on the split dc decoupling capacitor instead...

  3. Decoupled Scheme for Time-Dependent Natural Convection Problem II: Time Semidiscreteness

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2014-01-01

    stability and the corresponding optimal error estimates are presented. Furthermore, a decoupled numerical scheme is proposed by decoupling the nonlinear terms via temporal extrapolation; optimal error estimates are established. Finally, some numerical results are provided to verify the performances of the developed algorithms. Compared with the coupled numerical scheme, the decoupled algorithm not only keeps good accuracy but also saves a lot of computational cost. Both theoretical analysis and numerical experiments show the efficiency and effectiveness of the decoupled method for time-dependent natural convection problem.

  4. Efficient decoupling schemes with bounded controls based on Eulerian orthogonal arrays

    International Nuclear Information System (INIS)

    Wocjan, Pawel

    2006-01-01

    The task of decoupling, i.e., removing unwanted internal couplings of a quantum system and its couplings to an environment, plays an important role in quantum control theory. There are many efficient decoupling schemes based on combinatorial concepts such as orthogonal arrays, difference schemes, and Hadamard matrices. So far these combinatorial decoupling schemes have relied on the ability to effect sequences of instantaneous, arbitrarily strong control Hamiltonians (bang-bang controls). To overcome the shortcomings of bang-bang control, Viola and Knill proposed a method called 'Eulerian decoupling' that allows the use of bounded-strength controls for decoupling. However, their method was not directly designed to take advantage of the local structure of internal couplings and couplings to an environment that typically occur in multipartite quantum systems. In this paper we define a combinatorial structure called Eulerian orthogonal array. It merges the desirable properties of orthogonal arrays and Eulerian cycles in Cayley graphs (that are the basis of Eulerian decoupling). We show that this structure gives rise to decoupling schemes with bounded-strength control Hamiltonians that can be used to remove both internal couplings and couplings to an environment of a multipartite quantum system. Furthermore, we show how to construct Eulerian orthogonal arrays having good parameters in order to obtain efficient decoupling schemes

  5. Decoupling

    NARCIS (Netherlands)

    Fletcher, Robert; Rammelt, Crelis

    2017-01-01

    Central to the United Nations’ post-2015 development agenda grounded in the Sustainable Development Goals is the notion of ‘decoupling’: the need to divorce economic growth from its ecological impact. For proponents, decoupling entails increasing the efficiency with which value is derived from

  6. A Robust DC-Split-Capacitor Power Decoupling Scheme for Single-Phase Converter

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2017-01-01

    Instead of bulky electrolytic capacitors, active power decoupling circuit can be introduced to a single-phase converter for diverting second harmonic ripple away from its dc source or load. One possible circuit consists of a half-bridge and two capacitors in series for forming a dc-split capacitor......, instead of the usual single dc-link capacitor bank. Methods for regulating this power decoupler have earlier been developed, but almost always with equal capacitances assumed for forming the dc-split capacitor, even though it is not realistic in practice. The assumption should, hence, be evaluated more...... thoroughly, especially when it is shown in the paper that even a slight mismatch can render the power decoupling scheme ineffective and the IEEE 1547 standard to be breached. A more robust compensation scheme is, thus, needed for the dc-split capacitor circuit, as proposed and tested experimentally...

  7. Schemes of detecting nuclear spin correlations by dynamical decoupling based quantum sensing

    Science.gov (United States)

    Ma, Wen-Long Ma; Liu, Ren-Bao

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical decoupling (DD) enhanced diamond quantum sensing has enabled NMR of single nuclear spins and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the frequency fingerprints of target nuclear spins. Such schemes, however, cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear spin clusters. Here we show that the first limitation can be overcome by using wavefunction fingerprints of target nuclear spins, which is much more sensitive than the ''frequency fingerprints'' to weak hyperfine interaction between the targets and a sensor, while the second one can be overcome by a new design of two-dimensional DD sequences composed of two sets of periodic DD sequences with different periods, which can be independently set to match two different transition frequencies. Our schemes not only offer an approach to breaking the resolution limit set by ''frequency gradients'' in conventional MRI, but also provide a standard approach to correlation spectroscopy for single-molecule NMR.

  8. Decoupling Scheme for a Cryogenic Rx-Only RF Coil for 13C Imaging at 3T

    DEFF Research Database (Denmark)

    Sanchez, Juan Diego; Søvsø Szocska Hansen, Esben; Laustsen, Christoffer

    In this study we evaluate the different active decoupling schemes that can be used to drive an Rx-only coil, in order to determine the optimal design for 13C MRI at 3T. Three different circuit schemes are studied: two known ones (with regular series and parallel tuning respectively), and a novel...... one which we found to be optimal for this case. The circuits have been cooled to 77K to reduce coil noise. Preliminary tests with the preamplifier cooled to 77K for reduction of noise figure, are also reported....

  9. Application of the decoupling scheme on complex neutron-gamma shielding problems

    Energy Technology Data Exchange (ETDEWEB)

    Feher, S. [Institute of Nuclear Technology, Technical University of Budapest, Budapest (Hungary); Leege, P.F.A. de; Hoogenboom, J.E.; Kloosterman, J.L. [Interfaculty Reactor Institute, Delft University of Technology, Delft (Netherlands)

    2000-03-01

    Coupled neutron-gamma shielding calculations using S{sub n} transport theory can be time consuming, especially for two- and three-dimensional geometries. In general, the CPU time of these calculations increases stronger than linear with increasing number of neutron and gamma energy groups, and depends on the order of Legendre expansion and number of S{sub n} directions used. This fact induced the idea of the decoupling method, which seems applicable to accelerate coupled neutron-gamma shielding calculations. The data included in a combined neutron-gamma library can be readily separated into a library containing neutron data only and another library containing gamma data only. Separate calculations for neutrons and gammas are performed on complex geometries using a different Legendre order expansion for neutrons and gammas. CPU savings of 60 to 85% can be achieved for the two-dimensional DORT and three-dimensional TORT calculations respectively. (author)

  10. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.

    Science.gov (United States)

    Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan

    2016-10-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.

  11. Semiclassical dynamics

    International Nuclear Information System (INIS)

    Balazs, N.L.

    1979-01-01

    It is pointed out that in semiclassical dynamics one is encouraged to study the evolution of those curves in phase space which classically represent ensembles corresponding to wave functions. It is shown that the fixed points generate new time scales so that for times longer than the critical times, quantum dynamics will profoundly differ from classical dynamics. (P.L.)

  12. Semiclassical mechanics with molecular applications

    CERN Document Server

    Child, M S

    2014-01-01

    Semiclassical mechanics, which stems from the old quantum theory, has seen a remarkable revival in recent years as a physically intuitive and computationally accurate scheme for the interpretation of modern experiments. The main text concentrates less on the mathematical foundations than on the global influence of the classical phase space structures on the quantum mechanical observables. Further mathematical detail is contained in the appendices. Worked problem sets are included as an aid to the student.

  13. High-order space-time finite element schemes for acoustic and viscodynamic wave equations with temporal decoupling.

    Science.gov (United States)

    Banks, H T; Birch, Malcolm J; Brewin, Mark P; Greenwald, Stephen E; Hu, Shuhua; Kenz, Zackary R; Kruse, Carola; Maischak, Matthias; Shaw, Simon; Whiteman, John R

    2014-04-13

    We revisit a method originally introduced by Werder et al. (in Comput. Methods Appl. Mech. Engrg., 190:6685-6708, 2001) for temporally discontinuous Galerkin FEMs applied to a parabolic partial differential equation. In that approach, block systems arise because of the coupling of the spatial systems through inner products of the temporal basis functions. If the spatial finite element space is of dimension D and polynomials of degree r are used in time, the block system has dimension ( r + 1) D and is usually regarded as being too large when r > 1. Werder et al. found that the space-time coupling matrices are diagonalizable over [Formula: see text] for r ⩽ 100, and this means that the time-coupled computations within a time step can actually be decoupled. By using either continuous Galerkin or spectral element methods in space, we apply this DG-in-time methodology, for the first time, to second-order wave equations including elastodynamics with and without Kelvin-Voigt and Maxwell-Zener viscoelasticity. An example set of numerical results is given to demonstrate the favourable effect on error and computational work of the moderately high-order (up to degree 7) temporal and spatio-temporal approximations, and we also touch on an application of this method to an ambitious problem related to the diagnosis of coronary artery disease. Copyright © 2014 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.

  14. Numerical design of RNnν symmetry-based RF pulse schemes for recoupling and decoupling of nuclear spin interactions at high MAS frequencies

    International Nuclear Information System (INIS)

    Herbst, Christian; Herbst, Jirada; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    An approach for the efficient implementation of RN n ν symmetry-based pulse schemes that are often employed for recoupling and decoupling of nuclear spin interactions in biological solid state NMR investigations is demonstrated at high magic-angle spinning frequencies. RF pulse sequences belonging to the RN n ν symmetry involve the repeated application of the pulse sandwich {R φ R -φ }, corresponding to a propagator U RF = exp(-i4φI z ), where φ = πν/N and R is typically a pulse that rotates the nuclear spins through 180 o about the x-axis. In this study, broadband, phase-modulated 180 o pulses of constant amplitude were employed as the initial 'R' element and the phase-modulation profile of this 'R' element was numerically optimised for generating RN n ν symmetry-based pulse schemes with satisfactory magnetisation transfer characteristics. At representative MAS frequencies, RF pulse sequences were implemented for achieving 13 C- 13 C double-quantum dipolar recoupling and through bond scalar coupling mediated chemical shift correlation and evaluated via numerical simulations and experimental measurements. The results from these investigations are presented here

  15. Recoupling and decoupling of nuclear spin interactions at high MAS frequencies: numerical design of CNnν symmetry-based RF pulse schemes

    International Nuclear Information System (INIS)

    Herbst, Christian; Herbst, Jirada; Kirschstein, Anika; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    The CN n ν class of RF pulse schemes, commonly employed for recoupling and decoupling of nuclear spin interactions in magic angle spinning solid state NMR studies of biological systems, involves the application of a basic 'C' element corresponding to an RF cycle with unity propagator. In this study, the design of CN n ν symmetry-based RF pulse sequences for achieving 13 C- 13 C double-quantum dipolar recoupling and through bond scalar coupling mediated 13 C- 13 C chemical shift correlation has been examined at high MAS frequencies employing broadband, constant-amplitude, phase-modulated basic 'C' elements. The basic elements were implemented as a sandwich of a small number of short pulses of equal duration with each pulse characterised by an RF phase value. The phase-modulation profile of the 'C' element was optimised numerically so as to generate efficient RF pulse sequences. The performances of the sequences were evaluated via numerical simulations and experimental measurements and are presented here

  16. Semiclassical propagation of Wigner functions.

    Science.gov (United States)

    Dittrich, T; Gómez, E A; Pachón, L A

    2010-06-07

    We present a comprehensive study of semiclassical phase-space propagation in the Wigner representation, emphasizing numerical applications, in particular as an initial-value representation. Two semiclassical approximation schemes are discussed. The propagator of the Wigner function based on van Vleck's approximation replaces the Liouville propagator by a quantum spot with an oscillatory pattern reflecting the interference between pairs of classical trajectories. Employing phase-space path integration instead, caustics in the quantum spot are resolved in terms of Airy functions. We apply both to two benchmark models of nonlinear molecular potentials, the Morse oscillator and the quartic double well, to test them in standard tasks such as computing autocorrelation functions and propagating coherent states. The performance of semiclassical Wigner propagation is very good even in the presence of marked quantum effects, e.g., in coherent tunneling and in propagating Schrodinger cat states, and of classical chaos in four-dimensional phase space. We suggest options for an effective numerical implementation of our method and for integrating it in Monte-Carlo-Metropolis algorithms suitable for high-dimensional systems.

  17. Semiclassical statistical mechanics

    International Nuclear Information System (INIS)

    Stratt, R.M.

    1979-04-01

    On the basis of an approach devised by Miller, a formalism is developed which allows the nonperturbative incorporation of quantum effects into equilibrium classical statistical mechanics. The resulting expressions bear a close similarity to classical phase space integrals and, therefore, are easily molded into forms suitable for examining a wide variety of problems. As a demonstration of this, three such problems are briefly considered: the simple harmonic oscillator, the vibrational state distribution of HCl, and the density-independent radial distribution function of He 4 . A more detailed study is then made of two more general applications involving the statistical mechanics of nonanalytic potentials and of fluids. The former, which is a particularly difficult problem for perturbative schemes, is treated with only limited success by restricting phase space and by adding an effective potential. The problem of fluids, however, is readily found to yield to a semiclassical pairwise interaction approximation, which in turn permits any classical many-body model to be expressed in a convenient form. The remainder of the discussion concentrates on some ramifications of having a phase space version of quantum mechanics. To test the breadth of the formulation, the task of constructing quantal ensemble averages of phase space functions is undertaken, and in the process several limitations of the formalism are revealed. A rather different approach is also pursued. The concept of quantum mechanical ergodicity is examined through the use of numerically evaluated eigenstates of the Barbanis potential, and the existence of this quantal ergodicity - normally associated with classical phase space - is verified. 21 figures, 4 tables

  18. Semiclassical methods in field theories

    International Nuclear Information System (INIS)

    Ventura, I.

    1978-10-01

    A new scheme is proposed for semi-classical quantization in field theory - the expansion about the charge (EAC) - which is developed within the canonical formalism. This method is suitable for quantizing theories that are invariant under global gauge transformations. It is used in the treatment of the non relativistic logarithmic theory that was proposed by Bialynicki-Birula and Mycielski - a theory we can formulate in any number of spatial dimensions. The non linear Schroedinger equation is also quantized by means of the EAC. The classical logarithmic theories - both, the non relativistic and the relativistic one - are studied in detail. It is shown that the Bohr-Sommerfeld quantization rule(BSQR) in field theory is, in many cases, equivalent to charge quantization. This rule is then applied to the massive Thirring Model and the logarithmic theories. The BSQR can be see as a simplified and non local version of the EAC [pt

  19. Semiclassical multicomponent wave function

    NARCIS (Netherlands)

    Mostovoy, M.V.

    A consistent method for obtaining the semiclassical multicomponent wave function for any value of adiabatic parameter is discussed and illustrated by examining the motion of a neutral particle in a nonuniform magnetic field. The method generalizes the Bohr-Sommerfeld quantization rule to

  20. Renormalized semiclassical quantization for rescalable Hamiltonians

    International Nuclear Information System (INIS)

    Takahashi, Satoshi; Takatsuka, Kazuo

    2004-01-01

    A renormalized semiclassical quantization method for rescalable Hamiltonians is proposed. A classical Hamilton system having a potential function that consists of homogeneous polynomials like the Coulombic potential can have a scale invariance in its extended phase space (phase space plus time). Consequently, infinitely many copies of a single trajectory constitute a one-parameter family that is characterized in terms of a scaling factor. This scaling invariance in classical dynamics is lost in quantum mechanics due to the presence of the Planck constant. It is shown that in a system whose classical motions have a self-similarity in the above sense, classical trajectories adopted in the semiclassical scheme interact with infinitely many copies of their own that are reproduced by the relevant scaling procedure, thereby undergoing quantum interference among themselves to produce a quantized spectrum

  1. Semiclassical scattering theory

    International Nuclear Information System (INIS)

    Di Salvo, A.

    1985-01-01

    It is intended to write the semiclassical scattering amplitude as a sum of terms, each of them being associated to trajectory. First of all the classical equations of motion are studied, considering both the analytical (real and complex) solutions and a certain type of singular solutions, which behave similary to the difracted rays in optics; in particular, in the case of a central nuclear potential, classical effects like rainbow and orbiting and also wave effects like diffraction and direct reflection are singled out. Successively, considering the Debye expansion of the scattering amplitude relative to a central nuclear potential, and evaluating asymptotically each term by means of the saddle point technique, the decay exponents and difraction coefficients relative to such a potential are determined

  2. Semiclassical unimodular gravity

    International Nuclear Information System (INIS)

    Fiol, Bartomeu; Garriga, Jaume

    2010-01-01

    Classically, unimodular gravity is known to be equivalent to General Relativity (GR), except for the fact that the effective cosmological constant Λ has the status of an integration constant. Here, we explore various formulations of unimodular gravity beyond the classical limit. We first consider the non-generally covariant action formulation in which the determinant of the metric is held fixed to unity. We argue that the corresponding quantum theory is also equivalent to General Relativity for localized perturbative processes which take place in generic backgrounds of infinite volume (such as asymptotically flat spacetimes). Next, using the same action, we calculate semiclassical non-perturbative quantities, which we expect will be dominated by Euclidean instanton solutions. We derive the entropy/area ratio for cosmological and black hole horizons, finding agreement with GR for solutions in backgrounds of infinite volume, but disagreement for backgrounds with finite volume. In deriving the above results, the path integral is taken over histories with fixed 4-volume. We point out that the results are different if we allow the 4-volume of the different histories to vary over a continuum range. In this ''generalized'' version of unimodular gravity, one recovers the full set of Einstein's equations in the classical limit, including the trace, so Λ is no longer an integration constant. Finally, we consider the generally covariant theory due to Henneaux and Teitelboim, which is classically equivalent to unimodular gravity. In this case, the standard semiclassical GR results are recovered provided that the boundary term in the Euclidean action is chosen appropriately

  3. Equivalence between the semiclassical and effective approaches to gravity

    International Nuclear Information System (INIS)

    Paszko, Ricardo; Accioly, Antonio

    2010-01-01

    Semiclassical and effective theories of gravitation are quite distinct from each other as far as the approximation scheme employed is concerned. In fact, while in the semiclassical approach gravity is a classical field and the particles and/or remaining fields are quantized, in the effective approach everything is quantized, including gravity, but the Feynman amplitude is expanded in terms of the momentum exchanged between the particles and/or fields. In this paper, we show that these approaches, despite being radically different, lead to equivalent results if one of the masses under consideration is much greater than all the other energies involved.

  4. Semiclassical methods for nonseparable systems

    International Nuclear Information System (INIS)

    Garrett, B.C.

    1977-08-01

    Semiclassical techniques have been widely used for describing the dynamics of molecular collisions. The calculation of discrete energy eigenvalue spectra in bound systems has also employed semiclassical methods. Work has been done toward developing semiclassical theories for rate constants in reactive systems and semiclassical eigenvalues in bound systems. Application of these theories have been made to nonseparable multidimensional systems. Transition-state theory has played an important role in chemical kinetics, and is very useful for approximating reaction rate constants for molecular systems. Many shortcomings of transition-state theory can be attributed to the assumption of separability of motion along the reaction coordinate. Semiclassical approximations have been made to the quantum rate expression, and the resulting semiclassical theory has been applied to the reactive H + H 2 system. Comparison of this nonseparable theory with quantum scattering calculations shows agreement which is quite good. Although the quantum condition for one-dimensional bound systems is well-known, generalization of these results to multidimensional nonseparable systems is not obvious. Work has been done toward a semiclassical quantum condition which is closest to the approach of Born. The Hamilton--Jacobi equation for the systems is solved in action--angle variables; in this way the classical Hamiltonian can be expressed as a function of action variables which are constants of motion for the system. Requiring the action variables to be integers provides the semiclassical eigenvalues. Numerical calculations have been performed on a two-dimensional coupled potential well with good agreement with the quantum eigenvalues. 18 figures, 6 tables

  5. Improved multidimensional semiclassical tunneling theory.

    Science.gov (United States)

    Wagner, Albert F

    2013-12-12

    We show that the analytic multidimensional semiclassical tunneling formula of Miller et al. [Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willets, A. Chem. Phys. Lett. 1990, 172, 62] is qualitatively incorrect for deep tunneling at energies well below the top of the barrier. The origin of this deficiency is that the formula uses an effective barrier weakly related to the true energetics but correctly adjusted to reproduce the harmonic description and anharmonic corrections of the reaction path at the saddle point as determined by second order vibrational perturbation theory. We present an analytic improved semiclassical formula that correctly includes energetic information and allows a qualitatively correct representation of deep tunneling. This is done by constructing a three segment composite Eckart potential that is continuous everywhere in both value and derivative. This composite potential has an analytic barrier penetration integral from which the semiclassical action can be derived and then used to define the semiclassical tunneling probability. The middle segment of the composite potential by itself is superior to the original formula of Miller et al. because it incorporates the asymmetry of the reaction barrier produced by the known reaction exoergicity. Comparison of the semiclassical and exact quantum tunneling probability for the pure Eckart potential suggests a simple threshold multiplicative factor to the improved formula to account for quantum effects very near threshold not represented by semiclassical theory. The deep tunneling limitations of the original formula are echoed in semiclassical high-energy descriptions of bound vibrational states perpendicular to the reaction path at the saddle point. However, typically ab initio energetic information is not available to correct it. The Supporting Information contains a Fortran code, test input, and test output that implements the improved semiclassical tunneling formula.

  6. Angular momentum projected semiclassics

    International Nuclear Information System (INIS)

    Hasse, R.W.

    1986-10-01

    By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle- one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space (r, r') the relevant quantities depend on vertical stroker - r 3 vertical stroke instead of vertical stroker - r'vertical stroke and in Wigner space (R, P) they become proportional to the angular momentum constraints δ(vertical strokeRxPvertical stroke/ℎ - l) and δ((RxP) z /ℎ - m). As applications we calculate the single-particle and one particle- one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction. (orig.)

  7. Inventory classification based on decoupling points

    Directory of Open Access Journals (Sweden)

    Joakim Wikner

    2015-01-01

    Full Text Available The ideal state of continuous one-piece flow may never be achieved. Still the logistics manager can improve the flow by carefully positioning inventory to buffer against variations. Strategies such as lean, postponement, mass customization, and outsourcing all rely on strategic positioning of decoupling points to separate forecast-driven from customer-order-driven flows. Planning and scheduling of the flow are also based on classification of decoupling points as master scheduled or not. A comprehensive classification scheme for these types of decoupling points is introduced. The approach rests on identification of flows as being either demand based or supply based. The demand or supply is then combined with exogenous factors, classified as independent, or endogenous factors, classified as dependent. As a result, eight types of strategic as well as tactical decoupling points are identified resulting in a process-based framework for inventory classification that can be used for flow design.

  8. Quantum tunneling beyond semiclassical approximation

    International Nuclear Information System (INIS)

    Banerjee, Rabin; Majhi, Bibhas Ranjan

    2008-01-01

    Hawking radiation as tunneling by Hamilton-Jacobi method beyond semiclassical approximation is analysed. We compute all quantum corrections in the single particle action revealing that these are proportional to the usual semiclassical contribution. We show that a simple choice of the proportionality constants reproduces the one loop back reaction effect in the spacetime, found by conformal field theory methods, which modifies the Hawking temperature of the black hole. Using the law of black hole mechanics we give the corrections to the Bekenstein-Hawking area law following from the modified Hawking temperature. Some examples are explicitly worked out.

  9. Semiclassical theory of plate vibrations

    International Nuclear Information System (INIS)

    Bogomolny, E.; Hugues, E.

    1996-11-01

    The bi-harmonic equation of flexural vibrations of elastic plates is studied by a semiclassical method which can easily be generalized for other models of wave propagation. The surface and perimeter terms of the asymptotic number of levels are derived exactly. The next constant term is also derived. A semiclassical approximation of the quantization condition is obtained. A Berry-Tabor formula and a Gutzwiller trace formula are deduced for the integrable and chaotic cases respectively. From 600 eigenvalues of a clamped stadium plate obtained by a specially developed numerical algorithm, the trace formula is assessed, looking at its Fourier transform compared with the membrane case. (author)

  10. Decoupling structure and metallogenesis

    International Nuclear Information System (INIS)

    Tong Hangshou

    1993-01-01

    The decoupling structure is, at present, a hot spot for the study in geoscience. A study on the decoupling structure is not only of great theoretical significance, but also of more economic importance. The author briefly discusses the study of the decoupling structure in terms of its present status, implication, characteristics, formation mechanism and theoretical significance, in addition, with emphasis on the expounding of the decoupling structure over endogenic metallic deposits such as oil and gas, coal, gold, silver, copper, lead, zinc and iron etc. At last reconsideration is made on the ore control theory of the decoupling structure to the ore control structure in the uranium ore field in South China. The author proposes a superficial idea in order to provide a basis of geological structures for expanding old mining areas, opening up new areas(bases), and prospecting for large and rich uranium deposits

  11. A semiclassical model for quark jet fragmentation

    International Nuclear Information System (INIS)

    Andersson, B.; Gustafson, G.; Peterson, C.

    1979-01-01

    A semiclassical model is presented for the way the energy of a fast quark is transformed into observable hadrons. It reproduces the features of 1+1 dimensional QED (the Schwinger model) concerning a flat rapidity distribution in the central region. It also reproduces results from phenomenological considerations, which, based upon scaling, predict that meson formation in the fragmentation region can be described by an iterative scheme, implying a set of coupled integral equations. In particular the model predicts that the probability to find a meson containing the leading quark is independent of the Feynman scaling variable z. The iterative structure corresponds to a Brownian motion with relevance both to the cofinement problems and to the distribution of mass in the quark jet. (orig.) [de

  12. Superior MR images with electronically tuned and decoupled surface coils

    International Nuclear Information System (INIS)

    Ingwersen, H.; Freisen, L.; Friedrich, A.; Kess, H.; Krause, N.; Meissner, R.; Popp, W.

    1987-01-01

    In order to gain free positioning of surface coils in linearly polarized transmitting coils, it is absolutely necessary to electronically decouple both coils. For circularly polarized transmitting coils, decoupling is necessary in any case. In addition to the decoupling circuit automatic electronic tuning of the surface coils is used to gain the bast ratio of signal to noise. This combination of electronically decoupling and tuning of the surface coils yields intrinsic patient safety concerning local power deposition as well as free positioning and easy handling at the same time. Block diagrams, circuit schemes, and MR images obtained with several different surface coils are shown

  13. Semiclassical geometry of integrable systems

    Science.gov (United States)

    Reshetikhin, Nicolai

    2018-04-01

    The main result of this paper is a formula for the scalar product of semiclassical eigenvectors of two integrable systems on the same symplectic manifold. An important application of this formula is the Ponzano–Regge type of asymptotic of Racah–Wigner coefficients. Dedicated to the memory of P P Kulish.

  14. Semi-classical signal analysis

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Cré peau, Emmanuelle; Sorine, Michel

    2012-01-01

    This study introduces a new signal analysis method, based on a semi-classical approach. The main idea in this method is to interpret a pulse-shaped signal as a potential of a Schrödinger operator and then to use the discrete spectrum

  15. Semiclassical analysis of quasiexact solvability

    International Nuclear Information System (INIS)

    Bender, C.M.; Dunne, G.V.; Moshe, M.

    1997-01-01

    Higher-order WKB methods are used to investigate the border between the solvable and insolvable portions of the spectrum of quasiexactly solvable quantum-mechanical potentials. The analysis reveals scaling and factorization properties that are central to quasiexact solvability. These two properties define a new class of semiclassically quasiexactly solvable potentials. copyright 1997 The American Physical Society

  16. Decoupling Responsible Management Education

    DEFF Research Database (Denmark)

    Rasche, Andreas; Gilbert, Dirk Ulrich

    Business schools increasingly aim to embed corporate responsibility, sustainability, and ethics into their curricular and extracurricular activities. This paper examines under what conditions business schools may decouple the structural effects of their engagement in responsible management educat...

  17. Catalytic Decoupling of Quantum Information

    DEFF Research Database (Denmark)

    Majenz, Christian; Berta, Mario; Dupuis, Frédéric

    2017-01-01

    The decoupling technique is a fundamental tool in quantum information theory with applications ranging from quantum thermodynamics to quantum many body physics to the study of black hole radiation. In this work we introduce the notion of catalytic decoupling, that is, decoupling in the presence...... and quantum state merging, and leads to a resource theory of decoupling....

  18. Stellar Equilibrium in Semiclassical Gravity.

    Science.gov (United States)

    Carballo-Rubio, Raúl

    2018-02-09

    The phenomenon of quantum vacuum polarization in the presence of a gravitational field is well understood and is expected to have a physical reality, but studies of its backreaction on the dynamics of spacetime are practically nonexistent outside of the specific context of homogeneous cosmologies. Building on previous results of quantum field theory in curved spacetimes, in this Letter we first derive the semiclassical equations of stellar equilibrium in the s-wave Polyakov approximation. It is highlighted that incorporating the polarization of the quantum vacuum leads to a generalization of the classical Tolman-Oppenheimer-Volkoff equation. Despite the complexity of the resulting field equations, it is possible to find exact solutions. Aside from being the first known exact solutions that describe relativistic stars including the nonperturbative backreaction of semiclassical effects, these are identified as a nontrivial combination of the black star and gravastar proposals.

  19. Semi-classical signal analysis

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2012-09-30

    This study introduces a new signal analysis method, based on a semi-classical approach. The main idea in this method is to interpret a pulse-shaped signal as a potential of a Schrödinger operator and then to use the discrete spectrum of this operator for the analysis of the signal. We present some numerical examples and the first results obtained with this method on the analysis of arterial blood pressure waveforms. © 2012 Springer-Verlag London Limited.

  20. Semiclassical universe from first principles

    International Nuclear Information System (INIS)

    Ambjorn, J.; Jurkiewicz, J.; Loll, R.

    2005-01-01

    Causal dynamical triangulations in four dimensions provide a background-independent definition of the sum over space-time geometries in non-perturbative quantum gravity. We show that the macroscopic four-dimensional world which emerges in the Euclidean sector of this theory is a bounce which satisfies a semiclassical equation. After integrating out all degrees of freedom except for a global scale factor, we obtain the ground state wave function of the universe as a function of this scale factor

  1. Qutrit squeezing via semiclassical evolution

    International Nuclear Information System (INIS)

    Klimov, Andrei B; Dinani, Hossein Tavakoli; Medendorp, Zachari E D; Guise, Hubert de

    2011-01-01

    We introduce a concept of squeezing in collective qutrit systems through a geometrical picture connected to the deformation of the isotropic fluctuations of su(3) operators when evaluated in a coherent state. This kind of squeezing can be generated by Hamiltonians nonlinear in the generators of su(3) algebra. A simplest model of such a nonlinear evolution is analyzed in terms of semiclassical evolution of the SU(3) Wigner function. (paper)

  2. Semiclassical approach to fidelity amplitude

    International Nuclear Information System (INIS)

    García-Mata, Ignacio; Vallejos, Raúl O; Wisniacki, Diego A

    2011-01-01

    The fidelity amplitude (FA) is a quantity of paramount importance in echo-type experiments. We use semiclassical theory to study the average FA for quantum chaotic systems under external perturbation. We explain analytically two extreme cases: the random dynamics limit - attained approximately by strongly chaotic systems - and the random perturbation limit, which shows a Lyapunov decay. Numerical simulations help us to bridge the gap between both the extreme cases. (paper)

  3. Semiclassical approaches to nuclear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Magner, A. G., E-mail: magner@kinr.kiev.ua; Gorpinchenko, D. V. [Institute for Nuclear Research NASU (Ukraine); Bartel, J. [Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien, CNRS/IN2P3 (France)

    2017-01-15

    The extended Gutzwiller trajectory approach is presented for the semiclassical description of nuclear collective dynamics, in line with the main topics of the fruitful activity of V.G. Solovjov. Within the Fermi-liquid droplet model, the leptodermous effective surface approximation was applied to calculations of energies, sum rules, and transition densities for the neutron–proton asymmetry of the isovector giant-dipole resonance and found to be in good agreement with the experimental data. By using the Strutinsky shell correction method, the semiclassical collective transport coefficients, such as nuclear inertia, friction, stiffness, and moments of inertia, can be derived beyond the quantum perturbation approximation of the response function theory and the cranking model. The averaged particle-number dependences of the low-lying collective vibrational states are described in good agreement with the basic experimental data, mainly due to the enhancement of the collective inertia as compared to its irrotational flow value. Shell components of the moment of inertia are derived in terms of the periodic-orbit free-energy shell corrections. A good agreement between the semiclassical extended Thomas–Fermi moments of inertia with shell corrections and the quantum results is obtained for different nuclear deformations and particle numbers. Shell effects are shown to be exponentially dampted out with increasing temperature in all the transport coefficients.

  4. Semiclassical approaches to nuclear dynamics

    International Nuclear Information System (INIS)

    Magner, A. G.; Gorpinchenko, D. V.; Bartel, J.

    2017-01-01

    The extended Gutzwiller trajectory approach is presented for the semiclassical description of nuclear collective dynamics, in line with the main topics of the fruitful activity of V.G. Solovjov. Within the Fermi-liquid droplet model, the leptodermous effective surface approximation was applied to calculations of energies, sum rules, and transition densities for the neutron–proton asymmetry of the isovector giant-dipole resonance and found to be in good agreement with the experimental data. By using the Strutinsky shell correction method, the semiclassical collective transport coefficients, such as nuclear inertia, friction, stiffness, and moments of inertia, can be derived beyond the quantum perturbation approximation of the response function theory and the cranking model. The averaged particle-number dependences of the low-lying collective vibrational states are described in good agreement with the basic experimental data, mainly due to the enhancement of the collective inertia as compared to its irrotational flow value. Shell components of the moment of inertia are derived in terms of the periodic-orbit free-energy shell corrections. A good agreement between the semiclassical extended Thomas–Fermi moments of inertia with shell corrections and the quantum results is obtained for different nuclear deformations and particle numbers. Shell effects are shown to be exponentially dampted out with increasing temperature in all the transport coefficients.

  5. Semiclassical instability of warp drives

    Energy Technology Data Exchange (ETDEWEB)

    Barcelo, C [Instituto de Astrofisica de Andalucia, IAA-CSIC, Glorieta de la Astronomia s/n, 18008 Granada (Spain); Finazzi, S; Liberati, S, E-mail: carlos@iaa.e, E-mail: finazzi@sissa.i, E-mail: liberati@sissa.i

    2010-05-01

    Warp drives, at least theoretically, provide a way to travel at superluminal speeds. However, even if one succeeded in providing the necessary exotic matter to construct them, it would still be necessary to check whether they would survive to the switching on of quantum effects. In this contribution we will report on the behaviour of the Renormalized Stress-Energy Tensor (RSET) in the spacetimes associated with superluminal warp drives. We find that the RSET will exponentially grow in time close to the front wall of the superluminal bubble, hence strongly supporting the conclusion that the warp-drive geometries are unstable against semiclassical back-reaction.

  6. Quantization ambiguity, ergodicity and semiclassics

    International Nuclear Information System (INIS)

    Kaplan, Lev

    2002-01-01

    It is well known that almost all eigenstates of a classically ergodic system are individually ergodic on coarse-grained scales. This has important implications for the quantization ambiguity in ergodic systems: the difference between alternative quantizations is suppressed compared with the O( h-bar 2 ) ambiguity in the integrable or regular case. For two-dimensional ergodic systems in the high-energy regime, individual eigenstates are independent of the choice of quantization procedure, in contrast with the regular case, where even the ordering of eigenlevels is ambiguous. Surprisingly, semiclassical methods are shown to be much more precise in any dimension for chaotic than for integrable systems

  7. Semiclassical description of resonant tunneling

    International Nuclear Information System (INIS)

    Bogomolny, E.B.; Rouben, D.C.

    1996-01-01

    A semiclassical formula is calculated for the tunneling current of electrons trapped in a potential well which can tunnel into and across a wide quantum well. The tunneling current is measured at the second interface of this well and the calculations idealized an experimental situation where a strong magnetic field tilted with respect to an electric field was used. It is shown that the contribution to the tunneling current, due to trajectories which begin at the first interface and end on the second, is dominant for periodic orbits which hit both walls of the quantum well. (author)

  8. Optimal decoupling controllers revisited

    Czech Academy of Sciences Publication Activity Database

    Kučera, Vladimír

    2013-01-01

    Roč. 42, č. 1 (2013), s. 1-16 ISSN 0324-8569 R&D Projects: GA TA ČR(CZ) TE01020197 Institutional support: RVO:67985556 Keywords : linear systems * fractional representations * decoupling control lers * stabilizing control lers * optimal control lers Subject RIV: BC - Control Systems Theory

  9. Decoupled Modulation Control

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaobu; Huang, Renke; Huang, Zhenyu; Diao, Ruisheng

    2016-06-03

    The objective of this research work is to develop decoupled modulation control methods for damping inter-area oscillations with low frequencies, so the damping control can be more effective and easier to design with less interference among different oscillation modes in the power system. A signal-decoupling algorithm was developed that can enable separation of multiple oscillation frequency contents and extraction of a “pure” oscillation frequency mode that are fed into Power System Stabilizers (PSSs) as the modulation input signals. As a result, instead of introducing interferences between different oscillation modes from the traditional approaches, the output of the new PSS modulation control signal mainly affects only one oscillation mode of interest. The new decoupled modulation damping control algorithm has been successfully developed and tested on the standard IEEE 4-machine 2-area test system and a minniWECC system. The results are compared against traditional modulation controls, which demonstrates the validity and effectiveness of the newly-developed decoupled modulation damping control algorithm.

  10. Decoupling Responsible Management Education

    DEFF Research Database (Denmark)

    Rasche, Andreas; Gilbert, Dirk Ulrich

    2015-01-01

    This article examines under what conditions business schools may decouple the structural effects of their engagement in responsible management education from actual organizational practices. We argue that schools may be unable to match rising institutional pressures to publicly commit to responsi......This article examines under what conditions business schools may decouple the structural effects of their engagement in responsible management education from actual organizational practices. We argue that schools may be unable to match rising institutional pressures to publicly commit...... to responsible management education with their limited internal capacity for change. Our analysis proposes that decoupling is likely if schools (a) are exposed to resource stringency, (b) face overt or covert resistance against change processes, (c) are confronted with competing institutional pressures, and (d......) perceive institutional demands as ambiguous. We discuss two implications of this proposition. On one hand, decoupling can cause dissonant legitimacy perceptions, leading to cynicism around responsible management education within business schools. On the other hand, a temporary inconsistency between talk...

  11. Global Decoupling on the RHIC Ramp

    CERN Document Server

    Luo, Yun; Della Penna, Al; Fischer, Wolfram; Laster, Jonathan S; Marusic, Al; Pilat, Fulvia Caterina; Roser, Thomas; Trbojevic, Dejan

    2005-01-01

    The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC). In the polarized proton run, the betatron tunes are required to keep almost constant on the ramp to avoid spin resonance line crossing and the beam polarization loss. Some possible correction schemes on the ramp, like three-ramp correction, the coupling amplitude modulation and the coupling phase modulaxtion, have been found. The principles of these schemes are shortly reviewed and compared. Operational results of their applications on the RHIC ramps are given.

  12. Semiclassical expansions of the nuclear relativistic Hartree-Fock theory

    International Nuclear Information System (INIS)

    Weigel, M.K.; Haddad, S.

    1991-01-01

    Semiclassical expansions for Green functions, self-energy, phase-space density and density are given and discussed. The many-body problem was treated in the relativistic Hartree-Fock approximation with a Lagrangian with a standard OBE potential structure including the possibility of space-dependent couplings. The expansions are obtained by formulating the many-body problem in the mixed position-momentum (Wigner) representation and application of the (h/2π)-Wigner-Kirkwood expansion scheme. The resulting self-consistency problems for the zeroth and second order are formulated in three versions. (author)

  13. Semiclassical delta self-energy

    International Nuclear Information System (INIS)

    Voutier, E.

    1992-01-01

    We present a semiclassical approach in the Δ self-energy. We show that the in-medium corrections of the Δ width issued from the Pauli blocking and the coupling to the 2N-1h continuum are in good agreement with the previous approaches and particularly with the quantum Δ-h model even for light nuclei. We separate out the different sources of the imaginary part of the self-energy. The predominant corrections come from two antagonistic origins: The Pauli blocking and the contribution to the two-nucleon emission channel, the latter being model dependent. We further show that the non-diagonal spin matrix elements of the self-energy, generated by its tensor component, are mostly due to the Pauli blocking. (orig.)

  14. Geometrical method of decoupling

    Directory of Open Access Journals (Sweden)

    C. Baumgarten

    2012-12-01

    Full Text Available The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries—like midplane symmetry—are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane, and (under certain circumstances the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as, for instance, the method of Teng and Edwards. In a preceding paper, it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately, the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all conceivable cases. Hence, a systematic derivation of a more general treatment seemed advisable. In a second paper, the author suggested the use of real Dirac matrices as basic tools for coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. The decoupling of symplectic matrices which are exponentials of such Hamiltonian matrices can be deduced from this in a few steps. It is shown that this algebraic decoupling is closely related to a geometric “decoupling” by the orthogonalization of the vectors E[over →], B[over →], and P[over →], which were introduced with the so-called “electromechanical equivalence.” A mathematical analysis of the problem can be traced down to the task of finding a structure-preserving block diagonalization of symplectic or Hamiltonian matrices. Structure preservation means in this context that the (sequence of transformations must be symplectic and hence canonical. When

  15. On the semiclassical description of rotating nuclei

    International Nuclear Information System (INIS)

    Durand, M.; Kunz, J.; Schuck, P.

    1983-01-01

    The technique of partial h-resummation is used to obtain semiclassical, i.e. average current distributions in the body fixed system of heavy nuclei. It thereby turns out that this average intrinsic current only flows in the nuclear surface. A Strutinsky smoothing of the current is also performed and gives nice agreement with the semiclassical results. We also show how one can incorporate superfluidity into the semiclassical treatment. To lowest order in h we find that the moment of inertia of superfluid nuclei is zero. The same result is obtained by a quantum mechanical calculation if the gap goes to infinity. The importance of including n-corrections is pointed out

  16. Semiclassical analysis of the kicked Rydberg atom

    International Nuclear Information System (INIS)

    Yoshida, S.; Persson, E.; Burgdoerfer, J.; Grossmann, F.; Reinhold, C.

    2001-01-01

    Full text: The kicked atom is known as the testing ground for the study of quantum chaos and proven to show the quantum localization as the scarred wavefunction while the corresponding classical counterpart shows chaotic behavior. This apparent contradiction between the ubiquitousness of classical chaotic dynamics and the lack thereof in quantum dynamics brings into focus the open problem of a semiclassical description of quantum localization. We analyze the kicked atom using a semiclassical approximation based on Gaussian wave packets (Herman-Kluk Propagator) and examine the semiclassical manifestation of quantum localization. (author)

  17. Modified semiclassical approximation for trapped Bose gases

    International Nuclear Information System (INIS)

    Yukalov, V.I.

    2005-01-01

    A generalization of the semiclassical approximation is suggested allowing for an essential extension of its region of applicability. In particular, it becomes possible to describe Bose-Einstein condensation of a trapped gas in low-dimensional traps and in traps of low confining dimensions, for which the standard semiclassical approximation is not applicable. The result of the modified approach is shown to coincide with purely quantum-mechanical calculations for harmonic traps, including the one-dimensional harmonic trap. The advantage of the semiclassical approximation is in its simplicity and generality. Power-law potentials of arbitrary powers are considered. The effective thermodynamic limit is defined for any confining dimension. The behavior of the specific heat, isothermal compressibility, and density fluctuations is analyzed, with an emphasis on low confining dimensions, where the usual semiclassical method fails. The peculiarities of the thermodynamic characteristics in the effective thermodynamic limit are discussed

  18. Moments of inertia in a semiclassical approach

    International Nuclear Information System (INIS)

    Benchein, K.

    1993-01-01

    Semiclassical calculations have been performed for 31 nuclei. As a result of preliminary non-fully self-consistent calculations, the moments of inertia in investigated nuclei abd spin degrees of freedom are found

  19. Spurious Excitations in Semiclassical Scattering Theory.

    Science.gov (United States)

    Gross, D. H. E.; And Others

    1980-01-01

    Shows how through proper handling of the nonuniform motion of semiclassical coordinates spurious excitation terms are eliminated. An application to the problem of nuclear Coulomb excitation is presented as an example. (HM)

  20. The semiclassical way to dynamics and spectroscopy

    CERN Document Server

    Heller, Eric

    2018-01-01

    Physical systems have been traditionally described in terms of either classical or quantum mechanics. But in recent years, semiclassical methods have developed rapidly, providing deep physical insight and computational tools for quantum dynamics and spectroscopy. In this book, Eric Heller introduces and develops this subject, demonstrating its power with many examples. In the first half of the book, Heller covers relevant aspects of classical mechanics, building from them the semiclassical way through the semiclassical limit of the Feynman path integral. The second half of the book applies this approach to various kinds of spectroscopy, such as molecular spectroscopy and electron imaging and quantum dynamical systems with an emphasis on tunneling. Adopting a distinctly time-dependent viewpoint, Heller argues for semiclassical theories from experimental and theoretical vantage points valuable to research in physics and chemistry. Featuring more than two hundred figures, the book provides a geometric, phase-sp...

  1. Dynamical decoupling of unbounded Hamiltonians

    Science.gov (United States)

    Arenz, Christian; Burgarth, Daniel; Facchi, Paolo; Hillier, Robin

    2018-03-01

    We investigate the possibility to suppress interactions between a finite dimensional system and an infinite dimensional environment through a fast sequence of unitary kicks on the finite dimensional system. This method, called dynamical decoupling, is known to work for bounded interactions, but physical environments such as bosonic heat baths are usually modeled with unbounded interactions; hence, here, we initiate a systematic study of dynamical decoupling for unbounded operators. We develop a sufficient decoupling criterion for arbitrary Hamiltonians and a necessary decoupling criterion for semibounded Hamiltonians. We give examples for unbounded Hamiltonians where decoupling works and the limiting evolution as well as the convergence speed can be explicitly computed. We show that decoupling does not always work for unbounded interactions and we provide both physically and mathematically motivated examples.

  2. Signatures of unstable semiclassical trajectories in tunneling

    International Nuclear Information System (INIS)

    Levkov, D G; Panin, A G; Sibiryakov, S M

    2009-01-01

    It was found recently that processes of multidimensional tunneling are generally described at high energies by unstable semiclassical trajectories. We study two observational signatures related to the instability of trajectories. First, we find an additional power-law dependence of the tunneling probability on the semiclassical parameter as compared to the standard case of potential tunneling. The second signature is a substantial widening of the probability distribution over final-state quantum numbers. These effects are studied using a modified semiclassical technique which incorporates stabilization of the tunneling trajectories. The technique is derived from first principles. We obtain expressions for the inclusive and exclusive tunneling probabilities in the case of unstable semiclassical trajectories. We also investigate the 'phase transition' between the cases of stable and unstable trajectories across certain 'critical' values of energy. Finally, we derive the relation between the semiclassical probabilities of tunneling from the low-lying and highly excited initial states. This puts on firm ground a conjecture made previously in the semiclassical description of collision-induced tunneling in field theory

  3. Coherent semiclassical states for loop quantum cosmology

    International Nuclear Information System (INIS)

    Corichi, Alejandro; Montoya, Edison

    2011-01-01

    The spatially flat Friedmann-Robertson-Walker cosmological model with a massless scalar field in loop quantum cosmology admits a description in terms of a completely solvable model. This has been used to prove that: (i) the quantum bounce that replaces the big bang singularity is generic; (ii) there is an upper bound on the energy density for all states, and (iii) semiclassical states at late times had to be semiclassical before the bounce. Here we consider a family of exact solutions to the theory, corresponding to generalized coherent Gaussian and squeezed states. We analyze the behavior of basic physical observables and impose restrictions on the states based on physical considerations. These turn out to be enough to select, from all the generalized coherent states, those that behave semiclassical at late times. We study then the properties of such states near the bounce where the most 'quantum behavior' is expected. As it turns out, the states remain sharply peaked and semiclassical at the bounce and the dynamics is very well approximated by the ''effective theory'' throughout the time evolution. We compare the semiclassicality properties of squeezed states to those of the Gaussian semiclassical states and conclude that the Gaussians are better behaved. In particular, the asymmetry in the relative fluctuations before and after the bounce are negligible, thus ruling out claims of so-called 'cosmic forgetfulness'.

  4. Semiclassical statistical mechanics of fluids

    International Nuclear Information System (INIS)

    Singh, Y.; Sinha, S.K.

    1981-01-01

    The problem of calculating the equilibrium properties of fluids in the semiclassical limit when the quantum effects are small is studied. Particle distribution functions and thermodynamic quantities are defined in terms of the Slater sum and methods for evaluating the Slater sum are discussed. It is shown that the expansion method employing the usual Wigner-Kirkwood or Hemmer-Jancovici series is not suitable to treat the properties of the condensed state. Using the grand canonical ensemble and functional differentiation technique we develop cluster expansion series of the Helmholtz free energy and pair correlation functions. Using topological reduction we transform these series to more compact form involving a renormalized potential or a renormalized Mayer function. Then the convergence of the two series is improved by an optimal choice of the renormalized potential or the Mayer function. Integral equation theories are derived and used to devise perturbation methods. An application of these methods to the calculation of the virial coefficients, thermodynamic properties and the pair correlation function for model fluids is discussed. (orig.)

  5. Effects of stochastic noise on dynamical decoupling procedures

    Energy Technology Data Exchange (ETDEWEB)

    Bernad, Jozsef Zsolt; Frydrych, Holger; Alber, Gernot [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)

    2013-07-01

    Dynamical decoupling is a well-established technique to protect quantum systems from unwanted influences of their environment by exercising active control. It has been used experimentally to drastically increase the lifetime of qubit states in various implementations. The efficiency of different dynamical decoupling schemes defines the lifetime. However, errors in control operations always limit this efficiency. We propose a stochastic model as a possible description of imperfect control pulses and discuss the impact of this kind of error on different decoupling schemes. In the limit of continuous control, i.e. if the number of pulses N → ∞, we derive a stochastic differential equation for the evolution of the density operator of the controlled system and its environment. In the context of this modified time evolution we discuss possibilities of protecting qubit states against environmental noise.

  6. Gauge symmetry from decoupling

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-02-01

    Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  7. Decoupling, re-engaging

    DEFF Research Database (Denmark)

    Rose, Jeremy; Schlichter, Bjarne Rerup

    2013-01-01

    the life of a major project and the complex demands of managing those fluctuations. We investigate evolving trust relationships in a longitudinal case analysis of a large integrated hospital system implementation for the Faroe Islands. Trust relationships suffered various breakdowns, but the project...... was able to recover and eventually meet its goals. Based on concepts from Giddens’ later work on modernity, we develop two approaches for managing dynamic trust relationships in implementation projects: decoupling and re-engaging....... in the project is contingent upon many factors, is likely to vary over time and should not be taken for granted. Previous studies have identified the relationship between trust and project outcomes and suggested trust-building strategies but have largely ignored the dynamic quality of trust relations through...

  8. Decoupling theorem in supersymmetric theories

    Energy Technology Data Exchange (ETDEWEB)

    Leon, J; Perez-Mercader, J; Sanchez, M F

    1988-07-21

    We introduce a superfield extension of Weisberger's method for decoupling calculations in multiscale field theories and generalize our previous method which does not require the computation of any Feynman diagram. We illustrate this for the two-scale Wess-Zumino model, showing explicitly how the decoupling takes place.

  9. One-Shot Decoupling and Page Curves from a Dynamical Model for Black Hole Evaporation.

    Science.gov (United States)

    Brádler, Kamil; Adami, Christoph

    2016-03-11

    One-shot decoupling is a powerful primitive in quantum information theory and was hypothesized to play a role in the black hole information paradox. We study black hole dynamics modeled by a trilinear Hamiltonian whose semiclassical limit gives rise to Hawking radiation. An explicit numerical calculation of the discretized path integral of the S matrix shows that decoupling is exact in the continuous limit, implying that quantum information is perfectly transferred from the black hole to radiation. A striking consequence of decoupling is the emergence of an output radiation entropy profile that follows Page's prediction. We argue that information transfer and the emergence of Page curves is a robust feature of any multilinear interaction Hamiltonian with a bounded spectrum.

  10. Selective Regulator Decoupling and Organizations' Strategic Responses

    NARCIS (Netherlands)

    Heese, Jonas; Krishnan, Ranjani; Moers, Frank

    2016-01-01

    Organizations often respond to institutional pressures by symbolically adopting policies and procedures but decoupling them from actual practice. Literature has examined why organizations decouple from regulatory pressures. In this study, we argue that decoupling occurs within regulatory agencies

  11. Semiclassical dynamics and magnetic Weyl calculus

    International Nuclear Information System (INIS)

    Lein, Maximilian Stefan

    2011-01-01

    Weyl quantization and related semiclassical techniques can be used to study conduction properties of crystalline solids subjected to slowly-varying, external electromagnetic fields. The case where the external magnetic field is constant, is not covered by existing theory as proofs involving usual Weyl calculus break down. This is the regime of the so-called quantum Hall effect where quantization of transverse conductance is observed. To rigorously derive semiclassical equations of motion, one needs to systematically develop a magnetic Weyl calculus which contains a semiclassical parameter. Mathematically, the operators involved in the analysis are magnetic pseudodifferential operators, a topic which by itself is of interest for the mathematics and mathematical physics community alike. Hence, we will devote two additional chapters to further understanding of properties of those operators. (orig.)

  12. Semi-classical quantization of chaotic billiards

    International Nuclear Information System (INIS)

    Smilansky, U.

    1992-02-01

    The semi-classical quantization of chaotic billiards will be developed using scattering theory approach. This will be used to introduce and explain the inherent difficulties in the semi-classical quantization of chaos, and to show some of the modern tools which were developed recently to overcome these difficulties. To this end, we shall first obtain a semi-classical secular equation which is based on a finite number of classical periodic orbits. We shall use it to derive some spectral properties, and in particular to investigate the relationship between spectral statistics of quantum chaotic systems and the predictions of random-matrix theory. We shall finally discuss an important family of chaotic billiard, whose statistics does not follow any of the canonical ensembles, (GOE,GUE,...) but rather, corresponds to a new universality class. (author)

  13. Semiclassical shell structure in rotating Fermi systems

    International Nuclear Information System (INIS)

    Magner, A. G.; Sitdikov, A. S.; Khamzin, A. A.; Bartel, J.

    2010-01-01

    The collective moment of inertia is derived analytically within the cranking model for any rotational frequency of the harmonic-oscillator potential well and at a finite temperature. Semiclassical shell-structure components of the collective moment of inertia are obtained for any potential by using the periodic-orbit theory. We found semiclassically their relation to the free-energy shell corrections through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. The shell effects in the moment of inertia exponentially disappear with increasing temperature. For the case of the harmonic-oscillator potential, one observes a perfect agreement of the semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures.

  14. Semiclassical dynamics and magnetic Weyl calculus

    Energy Technology Data Exchange (ETDEWEB)

    Lein, Maximilian Stefan

    2011-01-19

    Weyl quantization and related semiclassical techniques can be used to study conduction properties of crystalline solids subjected to slowly-varying, external electromagnetic fields. The case where the external magnetic field is constant, is not covered by existing theory as proofs involving usual Weyl calculus break down. This is the regime of the so-called quantum Hall effect where quantization of transverse conductance is observed. To rigorously derive semiclassical equations of motion, one needs to systematically develop a magnetic Weyl calculus which contains a semiclassical parameter. Mathematically, the operators involved in the analysis are magnetic pseudodifferential operators, a topic which by itself is of interest for the mathematics and mathematical physics community alike. Hence, we will devote two additional chapters to further understanding of properties of those operators. (orig.)

  15. Semiclassical theory for the nuclear response function

    International Nuclear Information System (INIS)

    Stroth, U.

    1986-01-01

    In the first part of this thesis it was demonstrated how on a semiclassical base a RPA theory is developed and applied to electron scattering. It was shown in which fields of nuclear physics this semiclassical theory can be applied and how it is to be understood. In this connection we dedicated an extensive discussion to the Fermi gas model. From the free response function we calculated the RPA response with a finite-range residual interaction which we completely antisymmetrize. In the second part of this thesis we studied with our theory (e,e') data for the separated response functions. (orig./HSI) [de

  16. Semiclassical propagator of the Wigner function.

    Science.gov (United States)

    Dittrich, Thomas; Viviescas, Carlos; Sandoval, Luis

    2006-02-24

    Propagation of the Wigner function is studied on two levels of semiclassical propagation: one based on the Van Vleck propagator, the other on phase-space path integration. Leading quantum corrections to the classical Liouville propagator take the form of a time-dependent quantum spot. Its oscillatory structure depends on whether the underlying classical flow is elliptic or hyperbolic. It can be interpreted as the result of interference of a pair of classical trajectories, indicating how quantum coherences are to be propagated semiclassically in phase space. The phase-space path-integral approach allows for a finer resolution of the quantum spot in terms of Airy functions.

  17. A Fracture Decoupling Experiment

    Science.gov (United States)

    Stroujkova, A. F.; Bonner, J. L.; Leidig, M.; Ferris, A. N.; Kim, W.; Carnevale, M.; Rath, T.; Lewkowicz, J.

    2012-12-01

    Multiple observations made at the Semipalatinsk Test Site suggest that conducting nuclear tests in the fracture zones left by previous explosions results in decreased seismic amplitudes for the second nuclear tests (or "repeat shots"). Decreased seismic amplitudes reduce both the probability of detection and the seismically estimated yield of a "repeat shot". In order to define the physical mechanism responsible for the amplitude reduction and to quantify the degree of the amplitude reduction in fractured rocks, Weston Geophysical Corp., in collaboration with Columbia University's Lamont Doherty Earth Observatory, conducted a multi-phase Fracture Decoupling Experiment (FDE) in central New Hampshire. The FDE involved conducting explosions of various yields in the damage/fracture zones of previously detonated explosions. In order to quantify rock damage after the blasts we performed well logging and seismic cross-hole tomography studies of the source region. Significant seismic velocity reduction was observed around the source regions after the initial explosions. Seismic waves produced by the explosions were recorded at near-source and local seismic networks, as well as several regional stations throughout northern New England. Our analysis confirms frequency dependent seismic amplitude reduction for the repeat shots compared to the explosions in un-fractured rocks. The amplitude reduction is caused by pore closing and/or by frictional losses within the fractured media.

  18. Coupling and decoupling

    International Nuclear Information System (INIS)

    Ravenal, E.C.

    1988-01-01

    This paper reports on the prospects of coupling and decoupling for extended deterrence. Thirty-eight years after the foundation of NATO, the defence of Western Europe still rests on the proposition that an American president will invite the destruction of US cities and the incineration of 100 million of its citizens to repel a Soviet incursion or resist a Soviet ultimatum in Western Europe. On its face, America's war plan---never denied by any president from Truman to Reagan, or by any Secretary of State from George Marshall to George Shultz---is the first use of nuclear weapons, if necessary, to defend Europe. Thus America threatens to turn local defeat into global holocaust. But under the surface, America's nuclear commitment to Europe is not so sure. The word that encapsulates this problem is coupling. Not the title of an Updike novel or an anthropological treatise by Margaret Mead, coupling is a term of art used by strategic analysts to connote the integrity of the chain of escalation, from conventional war in Europe, to theatre nuclear weapons, to the final use of America's ultimate strategic weapon

  19. Emergent semiclassical time in quantum gravity: II. Full geometrodynamics and minisuperspace examples

    International Nuclear Information System (INIS)

    Anderson, Edward

    2007-01-01

    I apply the preceding paper's emergent semiclassical time approach to geometrodynamics. The analogy between the two papers is useful at the level of the quadratic constraints, while I document the differences between the two due to the underlying differences in their linear constraints. I find that the emergent time-dependent wave equation for the universe in general not a time-dependent Schroedinger equation but rather a more general equation containing second time derivatives, and estimate in which regime this becomes significant. I provide a specific minisuperspace example for my emergent semiclassical time scheme and compare it with the hidden York time scheme. Overall, interesting connections are shown between Newtonian, Leibniz-Mach-Barbour, Wentzel-Kramers-Brillouin (WKB) and cosmic times, while the Euler and York hidden dilational times are argued to be somewhat different from these

  20. Protected quantum computing: interleaving gate operations with dynamical decoupling sequences.

    Science.gov (United States)

    Zhang, Jingfu; Souza, Alexandre M; Brandao, Frederico Dias; Suter, Dieter

    2014-02-07

    Implementing precise operations on quantum systems is one of the biggest challenges for building quantum devices in a noisy environment. Dynamical decoupling attenuates the destructive effect of the environmental noise, but so far, it has been used primarily in the context of quantum memories. Here, we experimentally demonstrate a general scheme for combining dynamical decoupling with quantum logical gate operations using the example of an electron-spin qubit of a single nitrogen-vacancy center in diamond. We achieve process fidelities >98% for gate times that are 2 orders of magnitude longer than the unprotected dephasing time T2.

  1. Fast Automated Decoupling at RHIC

    CERN Document Server

    Beebe-Wang, Joanne

    2005-01-01

    Coupling correction is essential for the operational performance of RHIC. The independence of the transverse degrees of freedom makes diagnostics and tune control easier, and it is advantageous to operate an accelerator close to the coupling resonance to minimize nearby nonlinear sidebands. An automated decoupling application has been developed at RHIC for coupling correction during routine operations. The application decouples RHIC globally by minimizing the tune separation through finding the optimal settings of two orthogonal skew quadrupole families. The program provides options of automatic, semi-automatic and manual decoupling operations. It accesses tune information from all RHIC tune measurement systems: the PLL (Phase Lock Loop), the high frequency Schottky system, and the tune meter. It also supplies tune and skew quadrupole scans, finding the minimum tune separation, display the real time results and interface with the RHIC control system. We summarize the capabilities of the decoupling application...

  2. Dispersions in Semi-Classical Dynamics

    International Nuclear Information System (INIS)

    Zielinska-Pfabe, M.; Gregoire, C.

    1987-01-01

    Dispersions around mean values of one-body observables are obtained by restoring classical many-body correlations in Vlasov and Landau-Vlasov dynamics. The method is applied to the calculation of fluctuations in mass, charge and linear momentum in heavy-ion collisions. Results are compared to those obtained by the Balian-Veneroni variational principle in semi-classical approximation

  3. Semiclassical analysis of loop quantum gravity

    International Nuclear Information System (INIS)

    Conrady, F.

    2005-01-01

    In this Ph.D. thesis, we explore and develop new methods that should help in determining an effective semiclassical description of canonical loop quantum gravity and spin foam gravity. A brief introduction to loop quantum gravity is followed by three research papers that present the results of the Ph.D. project. In the first article, we deal with the problem of time and a new proposal for implementing proper time as boundary conditions in a sum over histories: we investigate a concrete realization of this formalism for free scalar field theory. In the second article, we translate semiclassical states of linearized gravity into states of loop quantum gravity. The properties of the latter indicate how semiclassicality manifests itself in the loop framework, and how this may be exploited for doing semiclassical expansions. In the third part, we propose a new formulation of spin foam models that is fully triangulation- and background-independent: by means of a symmetry condition, we identify spin foam models whose triangulation-dependence can be naturally removed. (orig.)

  4. Semiclassical analysis of loop quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Conrady, F.

    2005-10-17

    In this Ph.D. thesis, we explore and develop new methods that should help in determining an effective semiclassical description of canonical loop quantum gravity and spin foam gravity. A brief introduction to loop quantum gravity is followed by three research papers that present the results of the Ph.D. project. In the first article, we deal with the problem of time and a new proposal for implementing proper time as boundary conditions in a sum over histories: we investigate a concrete realization of this formalism for free scalar field theory. In the second article, we translate semiclassical states of linearized gravity into states of loop quantum gravity. The properties of the latter indicate how semiclassicality manifests itself in the loop framework, and how this may be exploited for doing semiclassical expansions. In the third part, we propose a new formulation of spin foam models that is fully triangulation- and background-independent: by means of a symmetry condition, we identify spin foam models whose triangulation-dependence can be naturally removed. (orig.)

  5. Semiclassical description of hot nuclear systems

    International Nuclear Information System (INIS)

    Brack, M.

    1984-01-01

    We present semiclassical density variational calculations for highly excited nuclear systems. We employ the newly derived functionals tau[rho] and sigma[rho] of the extended Thomas-Fermi (ETF) model, generalized to finite temperatures. Excellent agreement is reached with Hartree-Fock (HF) results. We also calculated the fission barrier of 240 Pu as a function of the nuclear temperature

  6. Lasing in nanowires: Ab initio semiclassical model

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2013-01-01

    The semiclassical equations which describe lasing in nanowires are derived from first principles. Both the lasing threshold condition and the steady-state regime of operation are discussed. It is shown that the lasing is governed by the Fourier coefficients of the field susceptibility averaged ov...

  7. Semiclassical scattering in Yang-Mills theory

    International Nuclear Information System (INIS)

    Gould, T.M.; Poppitz, E.R.

    1994-01-01

    A classical solution to the Yang-Mills theory is given a semiclassical interpretation. The boundary value problem on a complex time contour which arises from the semiclassical approximation to multiparticle scattering amplitudes is reviewed and applied to the case of Yang-Mills theory. The solution describes a classically forbidden transition between states with a large average number of particles in the limit g→0. It dominates a transition probability with a semiclassical suppression factor equal to twice the action of the well-known BPST instanton. Hence, it is relevant to the problem of high-energy tunnelling. It describes transitions of unit topological charge for an appropriate time contour. Therefore, it may have a direct interpretation in terms of fermion-number violating processes in electroweak theory. The solution describes a transition between an initial state with parametrically fewer particles than the final state. Thus, it may be relevant to the study of semiclassical initial-state corrections in the limit of a small number of initial particles. The implications of these results for multiparticle production in electroweak theory are also discussed. (orig.)

  8. Uniform semiclassical approximation for absorptive scattering systems

    International Nuclear Information System (INIS)

    Hussein, M.S.; Pato, M.P.

    1987-07-01

    The uniform semiclassical approximation of the elastic scattering amplitude is generalized to absorptive systems. An integral equation is derived which connects the absorption modified amplitude to the absorption free one. Division of the amplitude into a diffractive and refractive components is then made possible. (Author) [pt

  9. FRF decoupling of nonlinear systems

    Science.gov (United States)

    Kalaycıoğlu, Taner; Özgüven, H. Nevzat

    2018-03-01

    Structural decoupling problem, i.e. predicting dynamic behavior of a particular substructure from the knowledge of the dynamics of the coupled structure and the other substructure, has been well investigated for three decades and led to several decoupling methods. In spite of the inherent nonlinearities in a structural system in various forms such as clearances, friction and nonlinear stiffness, all decoupling studies are for linear systems. In this study, decoupling problem for nonlinear systems is addressed for the first time. A method, named as FRF Decoupling Method for Nonlinear Systems (FDM-NS), is proposed for calculating FRFs of a substructure decoupled from a coupled nonlinear structure where nonlinearity can be modeled as a single nonlinear element. Depending on where nonlinear element is, i.e., either in the known or unknown subsystem, or at the connection point, the formulation differs. The method requires relative displacement information between two end points of the nonlinear element, in addition to point and transfer FRFs at some points of the known subsystem. However, it is not necessary to excite the system from the unknown subsystem even when the nonlinear element is in that subsystem. The validation of FDM-NS is demonstrated with two different case studies using nonlinear lumped parameter systems. Finally, a nonlinear experimental test structure is used in order to show the real-life application and accuracy of FDM-NS.

  10. Semiclassical methods in chemical reaction dynamics

    International Nuclear Information System (INIS)

    Keshavamurthy, S.

    1994-12-01

    Semiclassical approximations, simple as well as rigorous, are formulated in order to be able to describe gas phase chemical reactions in large systems. We formulate a simple but accurate semiclassical model for incorporating multidimensional tunneling in classical trajectory simulations. This model is based on the existence of locally conserved actions around the saddle point region on a multidimensional potential energy surface. Using classical perturbation theory and monitoring the imaginary action as a function of time along a classical trajectory we calculate state-specific unimolecular decay rates for a model two dimensional potential with coupling. Results are in good comparison with exact quantum results for the potential over a wide range of coupling constants. We propose a new semiclassical hybrid method to calculate state-to-state S-matrix elements for bimolecular reactive scattering. The accuracy of the Van Vleck-Gutzwiller propagator and the short time dynamics of the system make this method self-consistent and accurate. We also go beyond the stationary phase approximation by doing the resulting integrals exactly (numerically). As a result, classically forbidden probabilties are calculated with purely real time classical trajectories within this approach. Application to the one dimensional Eckart barrier demonstrates the accuracy of this approach. Successful application of the semiclassical hybrid approach to collinear reactive scattering is prevented by the phenomenon of chaotic scattering. The modified Filinov approach to evaluating the integrals is discussed, but application to collinear systems requires a more careful analysis. In three and higher dimensional scattering systems, chaotic scattering is suppressed and hence the accuracy and usefulness of the semiclassical method should be tested for such systems

  11. Semiclassical methods in chemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Keshavamurthy, Srihari [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Semiclassical approximations, simple as well as rigorous, are formulated in order to be able to describe gas phase chemical reactions in large systems. We formulate a simple but accurate semiclassical model for incorporating multidimensional tunneling in classical trajectory simulations. This model is based on the existence of locally conserved actions around the saddle point region on a multidimensional potential energy surface. Using classical perturbation theory and monitoring the imaginary action as a function of time along a classical trajectory we calculate state-specific unimolecular decay rates for a model two dimensional potential with coupling. Results are in good comparison with exact quantum results for the potential over a wide range of coupling constants. We propose a new semiclassical hybrid method to calculate state-to-state S-matrix elements for bimolecular reactive scattering. The accuracy of the Van Vleck-Gutzwiller propagator and the short time dynamics of the system make this method self-consistent and accurate. We also go beyond the stationary phase approximation by doing the resulting integrals exactly (numerically). As a result, classically forbidden probabilties are calculated with purely real time classical trajectories within this approach. Application to the one dimensional Eckart barrier demonstrates the accuracy of this approach. Successful application of the semiclassical hybrid approach to collinear reactive scattering is prevented by the phenomenon of chaotic scattering. The modified Filinov approach to evaluating the integrals is discussed, but application to collinear systems requires a more careful analysis. In three and higher dimensional scattering systems, chaotic scattering is suppressed and hence the accuracy and usefulness of the semiclassical method should be tested for such systems.

  12. Decoupling of heavy quarks in quantum chromodynamics

    International Nuclear Information System (INIS)

    Bernreuther, W.

    1983-01-01

    Decoupling of heavy quarks in quantum chromodynamics (QCD) defined by mass-independent renormalization is investigated. The structure of the relations between the parameters of f flavour QCD below a heavy-quark threshold is discussed to all orders in the loop expansion, and the relations are computed to two-loop approximation for the minimal subtraction schemes (MS) and to one-loop approximation for some Weinberg schemes. These matching relations can be used to systematically determine the renormalization group (RG)-invariant parameters of the effective theory in terms of the RG-invariant parameters of the theory which includes the heavy quark, or vice versa. For MS scheme the connection between Λ/sub f/-1 and Λ/sub f/ to two and three loops is given as well as the two-loop connection between the RG-invariant mass parameters of the f-1 and f flavour theory. The effect of heavy quarks on the evolution of the QCQ coupling is of significance for present QCD phenomenology based on next-to-leading-order perturbation theory. This is illustrated with a few examples within the MS scheme

  13. Optimally combining dynamical decoupling and quantum error correction.

    Science.gov (United States)

    Paz-Silva, Gerardo A; Lidar, D A

    2013-01-01

    Quantum control and fault-tolerant quantum computing (FTQC) are two of the cornerstones on which the hope of realizing a large-scale quantum computer is pinned, yet only preliminary steps have been taken towards formalizing the interplay between them. Here we explore this interplay using the powerful strategy of dynamical decoupling (DD), and show how it can be seamlessly and optimally integrated with FTQC. To this end we show how to find the optimal decoupling generator set (DGS) for various subspaces relevant to FTQC, and how to simultaneously decouple them. We focus on stabilizer codes, which represent the largest contribution to the size of the DGS, showing that the intuitive choice comprising the stabilizers and logical operators of the code is in fact optimal, i.e., minimizes a natural cost function associated with the length of DD sequences. Our work brings hybrid DD-FTQC schemes, and their potentially considerable advantages, closer to realization.

  14. Calculation studies of a multi-layer decoupler system for a decoupled hydrogen moderator

    International Nuclear Information System (INIS)

    Ooi, M.; Kiyanagi, Y.

    2001-01-01

    We proposed a multi-layer decoupler as a method to improve pulse characteristics of emitted neutrons from a decoupled hydrogen moderator. Pulse shapes from a moderator with the multi layer-decoupler were compared with those with a traditional single layer decoupler. It was found that the multi-layer decoupler system gave better pulse characteristic with less decrease of peak intensity. (author)

  15. Decoupling Revenue from Energy Sales

    International Nuclear Information System (INIS)

    Potocnik, V.

    2011-01-01

    Energy sector based on the fossil fuels combustion has the largest greenhouse gases emissions, causing the actual climate change with numerous negative impacts. Therefore, different measures for the climate change mitigation are performed, mostly by increasing ENEF-energy efficiency (saving), and by substituting fossil fuels with renewable energy (RE), mainly with limited results. One of the most serious obstacles for implementation of these measures is an opposition of the energy utilities (power and natural gas), whose energy sales, revenue and profit are thus reduced. Consequently, new solutions are asked to decouple utilities revenues from energy sales. Decoupling has started in the US, where most states have at least one utility with some decoupling experience. California has pioneering role since 1982., with impressive results. (author)

  16. Semiclassical propagation: Hilbert space vs. Wigner representation

    Science.gov (United States)

    Gottwald, Fabian; Ivanov, Sergei D.

    2018-03-01

    A unified viewpoint on the van Vleck and Herman-Kluk propagators in Hilbert space and their recently developed counterparts in Wigner representation is presented. Based on this viewpoint, the Wigner Herman-Kluk propagator is conceptually the most general one. Nonetheless, the respective semiclassical expressions for expectation values in terms of the density matrix and the Wigner function are mathematically proven here to coincide. The only remaining difference is a mere technical flexibility of the Wigner version in choosing the Gaussians' width for the underlying coherent states beyond minimal uncertainty. This flexibility is investigated numerically on prototypical potentials and it turns out to provide neither qualitative nor quantitative improvements. Given the aforementioned generality, utilizing the Wigner representation for semiclassical propagation thus leads to the same performance as employing the respective most-developed (Hilbert-space) methods for the density matrix.

  17. Wave packets, Maslov indices, and semiclassical quantization

    International Nuclear Information System (INIS)

    Littlejohn, R.G.

    1989-01-01

    The Bohr-Sommerfeld quantization condition, as refined by Keller and Maslov, reads I=(n+m/4)h, where I is the classical action, n is the quantum number, and where m is the Maslov index, an even integer. The occurrence of the integers n and m in this formula is a reflection of underlying topological features of semiclassical quantization. In particular, the work of Arnold and others has shown that m/2 is a winding number of closed curves on the classical symplectic group manifold, Sp(2N). Wave packets provide a simple and elegant means of establishing the connection between semiclassical quantization and the homotopy classes of Sp(2N), as well as a practical way of calculating Maslov indices in complex problems. Topological methods can also be used to derive general formulas for the Maslov indices of invariant tori in the classical phase space corresponding to resonant motion. (orig.)

  18. Semiclassical quantization of the nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nohl, C.R.

    1976-01-01

    Using the functional integral technique of Dashen, Hasslacher, and Neveu, we perform a semiclassical quantization of the nonlinear Schrodinger equation (NLSE), which reproduces McGuire's exact result for the energy levels of the bound states of the theory. We show that the stability angle formalism leads to the one-loop normal ordering and self-energy renormalization expected from perturbation theory, and demonstrate that taking into account center-of-mass motion gives the correct nonrelativistic energy--momentum relation. We interpret the classical solution in the context of the quantum theory, relating it to the matrix element of the field operator between adjacent bound states in the limit of large quantum numbers. Finally, we quantize the NLSE as a theory of N component fermion fields and show that the semiclassical method yields the exact energy levels and correct degeneracies

  19. Semiclassical expansions for confined N fermion systems

    International Nuclear Information System (INIS)

    Krivine, H.; Martorell, J.; Casas, M.

    1989-01-01

    A new derivation of the Wigner Kirkwood expansion for N-fermion systems is presented, showing explicitly the connection to the WKB approximation for a single level. This allows to study separately the two ansatz required to obtain the semiclassical expansions: the asymptotic expansions in powers of ℎ and the smoothing of quantal effects. We discuss the one dimensional and three dimensional, with spherical symmetry, cases. Applications for standard potentials used in nuclear physics are described in detail

  20. Semiclassical limit of the FZZT Liouville theory

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Jaskolski, Zbigniew

    2006-01-01

    The semiclassical limit of the FZZT Liouville theory on the upper half plane with bulk operators of arbitrary type and with elliptic boundary operators is analyzed. We prove the Polyakov conjecture for an appropriate classical Liouville action. This action is calculated in a number of cases: One bulk operator of arbitrary type, one bulk and one boundary, and two boundary elliptic operators. The results are in agreement with the classical limits of the corresponding quantum correlators

  1. Semiclassical limit of the FZZT Liouville theory

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew

    2006-11-01

    The semiclassical limit of the FZZT Liouville theory on the upper half plane with bulk operators of arbitrary type and with elliptic boundary operators is analyzed. We prove the Polyakov conjecture for an appropriate classical Liouville action. This action is calculated in a number of cases: One bulk operator of arbitrary type, one bulk and one boundary, and two boundary elliptic operators. The results are in agreement with the classical limits of the corresponding quantum correlators.

  2. Semiclassical limit of the FZZT Liouville theory

    OpenAIRE

    Hadasz, Leszek; Jaskolski, Zbigniew

    2006-01-01

    The semiclassical limit of the FZZT Liouville theory on the upper half plane with bulk operators of arbitrary type and with elliptic boundary operators is analyzed. We prove the Polyakov conjecture for an appropriate classical Liouville action. This action is calculated in a number of cases: one bulk operator of arbitrary type, one bulk and one boundary, and two boundary elliptic operators. The results are in agreement with the classical limits of the corresponding quantum correlators.

  3. Semiclassical limit of the FZZT Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek [Physikalisches Institut, Rheinische Friedrich-Wilhelms-Universitaet, Nussallee 12, 53115 Bonn (Germany); M. Smoluchowski Institute of Physics, Jagiellonian University, W. Reymonta 4, 30-059 Cracow (Poland)]. E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew [Institute of Theoretical Physics, University of Wroclaw, pl. M. Borna 9, 50-204 Wroclaw (Poland)]. E-mail: jask@ift.uni.wroc.pl

    2006-11-27

    The semiclassical limit of the FZZT Liouville theory on the upper half plane with bulk operators of arbitrary type and with elliptic boundary operators is analyzed. We prove the Polyakov conjecture for an appropriate classical Liouville action. This action is calculated in a number of cases: One bulk operator of arbitrary type, one bulk and one boundary, and two boundary elliptic operators. The results are in agreement with the classical limits of the corresponding quantum correlators.

  4. Semiclassical approximation in Batalin-Vilkovisky formalism

    International Nuclear Information System (INIS)

    Schwarz, A.

    1993-01-01

    The geometry of supermanifolds provided with a Q-structure (i.e. with an odd vector field Q satisfying {Q, Q}=0), a P-structure (odd symplectic structure) and an S-structure (volume element) or with various combinations of these structures is studied. The results are applied to the analysis of the Batalin-Vilkovisky approach to the quantization of gauge theories. In particular the semiclassical approximation in this approach is expressed in terms of Reidemeister torsion. (orig.)

  5. Dynamic decoupling of secondary systems

    International Nuclear Information System (INIS)

    Gupta, A.K.; Tembulkar, J.M.

    1984-01-01

    The dynamic analysis of primary systems must often be performed decoupled from the secondary system. In doing so, one should assure that the decoupling does not significantly affect the frequencies and the response of the primary systems. The practice consists of heuristic algorithms intended to limit changes in the frequencies. The change in response is not considered. In this paper, changes in both the frequencies and the response are considered. Rational, but simple algorithms are derived to make accurate predictions. Material up to MDOF primary-SDOF secondary system is presented in this paper. MDOF-MDOF systems are treated in a companion paper. (orig.)

  6. Semiclassical initial value treatment of wave functions

    International Nuclear Information System (INIS)

    Kay, Kenneth G.

    2010-01-01

    A semiclassical initial value approximation for time-independent wave functions, previously derived for integrable systems, is rederived in a form which allows it to be applied to more general systems. The wave function is expressed as an integral over a Lagrangian manifold that is constructed by propagating trajectories from an initial manifold formed on a Poincare surface. Even in the case of bound, integrable systems, it is unnecessary to identify action-angle variables or construct quantizing tori. The approximation is numerically tested for separable and highly chaotic two-dimensional quartic oscillator systems. For the separable (but highly anharmonic) system, the accuracy of the approximation is found to be excellent: overlaps of the semiclassical wave functions with the corresponding quantum wave functions exceed 0.999. For the chaotic system, semiclassical-quantum overlaps are found to range from 0.989 to 0.994, indicating accuracy that is still very good, despite the short classical trajectories used in the calculations.

  7. The Circuit-Level Decoupling Modulation Strategy for Three-Level Neutral-Point-Clamped (TL-NPC) Inverter

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2011-01-01

    In this paper, a circuit-level decoupling modulation strategy is proposed for the three-level (TL) neutral-point-clamped (NPC) inverters. With the proposed modulation scheme, the TL-NPC inverter can be decoupled into two three-level Buck converters in each defined operating section, which makes...

  8. Decoupling Subtraction Conserving Full Gauge Symmetries : Particles and Fields

    OpenAIRE

    Noriyasu, OHTSUBO; Hideo, MIYATA; Department of Phycics, Kanazawa Technical College; Department of Information Science, Kanazawa Institute of Technolgy

    1984-01-01

    A new subtraction scheme (^^^) which realizes the decoupling and conserves the symmetries of full gauge group simultaneously, is proposed. One particle irreducible Green's functions subtracted by ^^^ reveal the effective low energy symmetries at -p^2≪M^2 and the full symmetries at -p^2≫M^2, where M denotes a heavy mass. Also discussed are conditions in order to carry out ^^^ under two-loop approximation.

  9. 'Glocalization' versus Notions of Decoupling

    DEFF Research Database (Denmark)

    Jakobsen, Michael

    2011-01-01

    Discussing modes of political and/or economic decoupling in an era of economic globalization seems almost contradictory as the dominating keywords in the latter are increasing integration, interdependency and harmonization. For example, when looking towards the political realm it seems problemati...

  10. Semiclassical description of scattering with internal degrees of freedom

    International Nuclear Information System (INIS)

    Cruz-Barrios, S.; Gomez-Camacho, J.

    1998-01-01

    The scattering of systems with internal degrees of freedom is studied in the semi-classical approximation. It is found that a special set of states, named coherent internal states, are specially relevant for the semi-classical treatment. A classical trajectory is defined for each coherent internal state. The semi-classical expressions obtained satisfy the superposition principle and are valid for arbitrary coupling strength. (orig.)

  11. Calculation of the level density parameter using semi-classical approach

    International Nuclear Information System (INIS)

    Canbula, B.; Babacan, H.

    2011-01-01

    The level density parameters (level density parameter a and energy shift δ) for back-shifted Fermi gas model have been determined for 1136 nuclei for which complete level scheme is available. Level density parameter is calculated by using the semi-classical single particle level density, which can be obtained analytically through spherical harmonic oscillator potential. This method also enables us to analyze the Coulomb potential's effect on the level density parameter. The dependence of this parameter on energy has been also investigated. Another parameter, δ, is determined by fitting of the experimental level scheme and the average resonance spacings for 289 nuclei. Only level scheme is used for optimization procedure for remaining 847 nuclei. Level densities for some nuclei have been calculated by using these parameter values. Obtained results have been compared with the experimental level scheme and the resonance spacing data.

  12. Fermions Tunneling from Higher-Dimensional Reissner-Nordström Black Hole: Semiclassical and Beyond Semiclassical Approximation

    Directory of Open Access Journals (Sweden)

    ShuZheng Yang

    2016-01-01

    Full Text Available Based on semiclassical tunneling method, we focus on charged fermions tunneling from higher-dimensional Reissner-Nordström black hole. We first simplify the Dirac equation by semiclassical approximation, and then a semiclassical Hamilton-Jacobi equation is obtained. Using the Hamilton-Jacobi equation, we study the Hawking temperature and fermions tunneling rate at the event horizon of the higher-dimensional Reissner-Nordström black hole space-time. Finally, the correct entropy is calculation by the method beyond semiclassical approximation.

  13. Semiclassical analysis, Witten Laplacians, and statistical mechanis

    CERN Document Server

    Helffer, Bernard

    2002-01-01

    This important book explains how the technique of Witten Laplacians may be useful in statistical mechanics. It considers the problem of analyzing the decay of correlations, after presenting its origin in statistical mechanics. In addition, it compares the Witten Laplacian approach with other techniques, such as the transfer matrix approach and its semiclassical analysis. The author concludes by providing a complete proof of the uniform Log-Sobolev inequality. Contents: Witten Laplacians Approach; Problems in Statistical Mechanics with Discrete Spins; Laplace Integrals and Transfer Operators; S

  14. SAM revisited: uniform semiclassical approximation with absorption

    International Nuclear Information System (INIS)

    Hussein, M.S.; Pato, M.P.

    1986-01-01

    The uniform semiclassical approximation is modified to take into account strong absorption. The resulting theory, very similar to the one developed by Frahn and Gross is used to discuss heavy-ion elastic scattering at intermediate energies. The theory permits a reasonably unambiguos separation of refractive and diffractive effects. The systems 12 C+ 12 C and 12 C+ 16 O, which seem to exhibit a remnant of a nuclear rainbow at E=20 Mev/N, are analysed with theory which is built directly on a model for the S-matrix. Simple relations between the fit S-matrix and the underlying complex potential are derived. (Author) [pt

  15. Various semiclassical limits of torus conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Alkalaev, Konstantin [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky ave. 53, Moscow, 119991 (Russian Federation); Department of General and Applied Physics, Moscow Institute of Physics and Technology,Institutskiy per. 7, Dolgoprudnyi, Moscow region, 141700 (Russian Federation); Geiko, Roman [Mathematics Department, National Research University Higher School of Economics,Usacheva str. 6, Moscow, 119048 (Russian Federation); Rappoport, Vladimir [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky ave. 53, Moscow, 119991 (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, Moscow, 127994 (Russian Federation)

    2017-04-12

    We study four types of one-point torus blocks arising in the large central charge regime. There are the global block, the light block, the heavy-light block, and the linearized classical block, according to different regimes of conformal dimensions. It is shown that the blocks are not independent being connected to each other by various links. We find that the global, light, and heavy-light blocks correspond to three different contractions of the Virasoro algebra. Also, we formulate the c-recursive representation of the one-point torus blocks which is relevant in the semiclassical approximation.

  16. Semiclassical expansions on and near caustics

    International Nuclear Information System (INIS)

    Meetz, K.

    1984-09-01

    We show that the standard WKB expansion can be generalized so that it reproduces the behavior of the wave function on and near a caustic in two-dimensional space time. The expansion is related to the unfolding polynomials of the elementary catastrophes occurring in two dimensions: the fold and the cusp catastrophe. The method determines control parameters and transport coefficients in a self-consistent way from differential equations and does not refer to the asymptotic expansion of Feynman path integrals. The lowest order equations are solved explicitly in terms of the multivalued classical action. The result is a generalized semiclassical approximation on and beyond a caustic. (orig.)

  17. Semiclassical approach to black hole evaporation

    International Nuclear Information System (INIS)

    Lowe, D.A.

    1993-01-01

    Black hole evaporation may lead to massive or massless remnants, or naked singularities. This paper investigates this process in the context of two quite different two-dimensional black hole models. The first is the original Callan-Giddings-Harvey-Strominger (CGHS) model, the second is another two-dimensional dilaton-gravity model, but with properties much closer to physics in the real, four-dimensional, world. Numerical simulations are performed of the formation and subsequent evaporation of black holes and the results are found to agree qualitatively with the exactly solved modified CGHS models, namely, that the semiclassical approximation breaks down just before a naked singularity appears

  18. Semiclassical analysis spectral correlations in mesoscopic systems

    International Nuclear Information System (INIS)

    Argaman, N.; Imry, Y.; Smilansky, U.

    1991-07-01

    We consider the recently developed semiclassical analysis of the quantum mechanical spectral form factor, which may be expressed in terms of classically defiable properties. When applied to electrons whose classical behaviour is diffusive, the results of earlier quantum mechanical perturbative derivations, which were developed under a different set of assumptions, are reproduced. The comparison between the two derivations shows that the results depends not on their specific details, but to a large extent on the principle of quantum coherent superposition, and on the generality of the notion of diffusion. The connection with classical properties facilitates application to many physical situations. (author)

  19. Semiclassical versus exact quantization of the Sinh-Gordon model

    Energy Technology Data Exchange (ETDEWEB)

    Grossehelweg, Juliane

    2009-12-15

    In this work we investigate the semiclassics of the Sinh-Gordon model. The Sinh-Gordon model is integrable, its explicit solutions of the classical and the quantum model are well known. This allows for a comprehensive investigation of the semiclassical quantization of the classical model as well as of the semiclassical limit of the exact quantum solution. Semiclassical means in this case that the key objects of quantum theory are constructed as formal power series. A quantity playing an important role in the quantum theory is the Q-function. The purpose of this work is to investigate to what extend the classical integrability of the model admits of a construction of the semiclassical expansion of the Q-function. Therefore we used two conceptual independent approaches. In the one approach we start from the exact nonperturbative solution of the quantum model and calculate the semiclassical limit up to the next to leading order. Thereby we found the spectral curve, as well as the semiclassical expansion of the Q-function and of the eigenvalue of the monodromy matrix. In the other approach we constructed the first two orders of the semiclassical expansion of the Q-function, starting from the classical solution theory. The results of both approaches coincide. (orig.)

  20. Interparticle interaction and transport processes in dense semiclassical plasmas

    International Nuclear Information System (INIS)

    Baimbetov, F.B.; Giniyatova, Sh.G.

    2005-01-01

    On the basis of the density response formalism an expression for the pseudopotential of dense semiclassical plasma, which takes account of quantum-mechanical effects, local field corrections, and electronic screening effects is obtained. The static structure factors taking into account both local fields and quantum-mechanical effects are calculated. An electrical conductivity, thermal conductivity, and viscosity of dense semiclassical plasma are studied

  1. Nonadiabatic semiclassical dynamics in the mixed quantum-classical initial value representation

    Science.gov (United States)

    Church, Matthew S.; Hele, Timothy J. H.; Ezra, Gregory S.; Ananth, Nandini

    2018-03-01

    We extend the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), a semiclassical method for computing real-time correlation functions, to electronically nonadiabatic systems using the Meyer-Miller-Stock-Thoss (MMST) Hamiltonian in order to treat electronic and nuclear degrees of freedom (dofs) within a consistent dynamic framework. We introduce an efficient symplectic integration scheme, the MInt algorithm, for numerical time evolution of the phase space variables and monodromy matrix under the non-separable MMST Hamiltonian. We then calculate the probability of transmission through a curve crossing in model two-level systems and show that MQC-IVR reproduces quantum-limit semiclassical results in good agreement with exact quantum methods in one limit, and in the other limit yields results that are in keeping with classical limit semiclassical methods like linearized IVR. Finally, exploiting the ability of the MQC-IVR to quantize different dofs to different extents, we present a detailed study of the extents to which quantizing the nuclear and electronic dofs improves numerical convergence properties without significant loss of accuracy.

  2. Superluminal warp drives are semiclassically unstable

    Energy Technology Data Exchange (ETDEWEB)

    Finazzi, S; Liberati, S [SISSA, via Beirut 2-4, Trieste 34151, Italy and INFN sezione di Trieste (Italy); Barcelo, C, E-mail: finazzi@sissa.i, E-mail: liberati@sissa.i, E-mail: carlos@iaa.e [Instituto de Astrofisica de AndalucIa, CSIC, Camino Bajo de Huetor 50, 18008 Granada (Spain)

    2010-04-01

    Warp drives are very interesting configurations of General Relativity: they provide a way to travel at superluminal speeds, albeit at the cost of requiring exotic matter to build them. Even if one succeeded in providing the necessary exotic matter, it would still be necessary to check whether they would survive to the switching on of quantum effects. Semiclassical corrections to warp-drive geometries created out of an initially flat spacetime have been analyzed in a previous work by the present authors in special locations, close to the wall of the bubble and in its center. Here, we present an exact numerical analysis of the renormalized stress-energy tensor (RSET) in the whole bubble. We find that the the RSET will exponentially grow in time close to the front wall of the superluminal bubble, after some transient terms have disappeared, hence strongly supporting our previous conclusion that the warp-drive geometries are unstable against semiclassical back-reaction. This result seems to implement the chronology protection conjecture, forbiddig the set up of a structure potentially dangerous for causality.

  3. Semiclassical initial value approximation for Green's function.

    Science.gov (United States)

    Kay, Kenneth G

    2010-06-28

    A semiclassical initial value approximation is obtained for the energy-dependent Green's function. For a system with f degrees of freedom the Green's function expression has the form of a (2f-1)-dimensional integral over points on the energy surface and an integral over time along classical trajectories initiated from these points. This approximation is derived by requiring an integral ansatz for Green's function to reduce to Gutzwiller's semiclassical formula when the integrations are performed by the stationary phase method. A simpler approximation is also derived involving only an (f-1)-dimensional integral over momentum variables on a Poincare surface and an integral over time. The relationship between the present expressions and an earlier initial value approximation for energy eigenfunctions is explored. Numerical tests for two-dimensional systems indicate that good accuracy can be obtained from the initial value Green's function for calculations of autocorrelation spectra and time-independent wave functions. The relative advantages of initial value approximations for the energy-dependent Green's function and the time-dependent propagator are discussed.

  4. Semiclassical S-matrix for black holes

    CERN Document Server

    Bezrukov, Fedor; Sibiryakov, Sergey

    2015-01-01

    We propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(-B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states. The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordstrom black hole. Our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.

  5. Semiclassical evolution of dissipative Markovian systems

    International Nuclear Information System (INIS)

    Ozorio de Almeida, A M; Rios, P de M; Brodier, O

    2009-01-01

    A semiclassical approximation for an evolving density operator, driven by a 'closed' Hamiltonian operator and 'open' Markovian Lindblad operators, is obtained. The theory is based on the chord function, i.e. the Fourier transform of the Wigner function. It reduces to an exact solution of the Lindblad master equation if the Hamiltonian operator is a quadratic function and the Lindblad operators are linear functions of positions and momenta. Initially, the semiclassical formulae for the case of Hermitian Lindblad operators are reinterpreted in terms of a (real) double phase space, generated by an appropriate classical double Hamiltonian. An extra 'open' term is added to the double Hamiltonian by the non-Hermitian part of the Lindblad operators in the general case of dissipative Markovian evolution. The particular case of generic Hamiltonian operators, but linear dissipative Lindblad operators, is studied in more detail. A Liouville-type equivariance still holds for the corresponding classical evolution in double phase space, but the centre subspace, which supports the Wigner function, is compressed, along with expansion of its conjugate subspace, which supports the chord function. Decoherence narrows the relevant region of double phase space to the neighbourhood of a caustic for both the Wigner function and the chord function. This difficulty is avoided by a propagator in a mixed representation, so that a further 'small-chord' approximation leads to a simple generalization of the quadratic theory for evolving Wigner functions

  6. Principle of Global Decoupling with Coupling Angle Modulation

    CERN Document Server

    Luo, Yun; Pilat, Fulvia Caterina; Roser, Thomas; Trbojevic, Dejan

    2005-01-01

    The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC). A new scheme coupling phase modulation is found. It introduces a rotating extra coupling into the coupled machine to detect the residual coupling. The eigentune responses are measured with a high resolution phase lock loop (PLL) system. From the minimum and maximum tune splits, the correction strengths are given. The time period occupied by one coupling phase modulation is less than 10 seconds. So it is a very promising solution for the global decoupling on the ramp. In this article the principle of the coupling phase modulation is given. The simulation with the smooth accelerator model is also done. The practical issues concerning its applications are discussed.

  7. General solution to inhomogeneous dephasing and smooth pulse dynamical decoupling

    Science.gov (United States)

    Zeng, Junkai; Deng, Xiu-Hao; Russo, Antonio; Barnes, Edwin

    2018-03-01

    In order to achieve the high-fidelity quantum control needed for a broad range of quantum information technologies, reducing the effects of noise and system inhomogeneities is an essential task. It is well known that a system can be decoupled from noise or made insensitive to inhomogeneous dephasing dynamically by using carefully designed pulse sequences based on square or delta-function waveforms such as Hahn spin echo or CPMG. However, such ideal pulses are often challenging to implement experimentally with high fidelity. Here, we uncover a new geometrical framework for visualizing all possible driving fields, which enables one to generate an unlimited number of smooth, experimentally feasible pulses that perform dynamical decoupling or dynamically corrected gates to arbitrarily high order. We demonstrate that this scheme can significantly enhance the fidelity of single-qubit operations in the presence of noise and when realistic limitations on pulse rise times and amplitudes are taken into account.

  8. Quadratic Zeeman spectra for the hydrogen atom by means of semiclassical quantization

    International Nuclear Information System (INIS)

    Hasegawa, Hiroshi; Adachi, Satoshi

    1988-01-01

    The elliptic cylindrical coordinates of type I adapted to the Fock hypersphere in momentum space of the Kepler motion and their canonical momenta are used to construct an analytic form of the classical action integrals which yield an adequate parametrization of the KAM (Kolmogorov-Arnold-Moser) tori of the Kepler trajectories weakly perturbed by a uniform magnetic field. The semiclassical quantization formula so provided presents a prototype of the exact EBK (Einstein-Brillouin-Keller) quantization scheme, and the resulting quantized energies vs the magnetic field strength correspond to the quadratic Zeeman spectra of each Rydberg multiplet lifted by the perturbation. (author)

  9. Error of semiclassical eigenvalues in the semiclassical limit - an asymptotic analysis of the Sinai billiard

    Science.gov (United States)

    Dahlqvist, Per

    1999-10-01

    We estimate the error in the semiclassical trace formula for the Sinai billiard under the assumption that the largest source of error is due to penumbra diffraction: namely, diffraction effects for trajectories passing within a distance Ricons/Journals/Common/cdot" ALT="cdot" ALIGN="TOP"/>O((kR)-2/3) to the disc and trajectories being scattered in very forward directions. Here k is the momentum and R the radius of the scatterer. The semiclassical error is estimated by perturbing the Berry-Keating formula. The analysis necessitates an asymptotic analysis of very long periodic orbits. This is obtained within an approximation originally due to Baladi, Eckmann and Ruelle. We find that the average error, for sufficiently large values of kR, will exceed the mean level spacing.

  10. Anisotropic solutions by gravitational decoupling

    Science.gov (United States)

    Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.

    2018-02-01

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.

  11. Anisotropic solutions by gravitational decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)

    2018-02-15

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)

  12. Semiclassical scar functions in phase space

    International Nuclear Information System (INIS)

    Rivas, Alejandro M F

    2007-01-01

    We develop a semiclassical approximation for the scar function in the Weyl-Wigner representation in the neighborhood of a classically unstable periodic orbit of chaotic two-dimensional systems. The prediction of hyperbolic fringes, asymptotic to the stable and unstable manifolds, is verified computationally for a (linear) cat map, after the theory is adapted to a discrete phase space appropriate to a quantized torus. Characteristic fringe patterns can be distinguished even for quasi-energies where the fixed point is not Bohr-quantized. Also the patterns are highly localized in the neighborhood of the periodic orbit and along its stable and unstable manifolds without any long distance patterns that appear for the case of the spectral Wigner function

  13. Horizons of semiclassical black holes are cold

    International Nuclear Information System (INIS)

    Brustein, Ram; Medved, A.J.M.

    2014-01-01

    We calculate, using our recently proposed semiclassical framework, the quantum state of the Hawking pairs that are produced during the evaporation of a black hole (BH). Our framework adheres to the standard rules of quantum mechanics and incorporates the quantum fluctuations of the collapsing shell spacetime in Hawking’s original calculation, while accounting for back-reaction effects. We argue that the negative-energy Hawking modes need to be regularly integrated out; and so these are effectively subsumed by the BH and, as a result, the number of coherent negative-energy modes N_c_o_h at any given time is parametrically smaller than the total number of the Hawking particles N_t_o_t_a_l emitted during the lifetime of the BH. We find that N_c_o_h is determined by the width of the BH wavefunction and scales as the square root of the BH entropy. We also find that the coherent negative-energy modes are strongly entangled with their positive-energy partners. Previously, we have found that N_c_o_h is also the number of coherent outgoing particles and that information can be continually transferred to the outgoing radiation at a rate set by N_c_o_h. Our current results show that, while the BH is semiclassical, information can be released without jeopardizing the nearly maximal inside-out entanglement and imply that the state of matter near the horizon is approximately the vacuum. The BH firewall proposal, on the other hand, is that the state of matter near the horizon deviates substantially from the vacuum, starting at the Page time. We find that, under the usual assumptions for justifying the formation of a firewall, one does indeed form at the Page time. However, the possible loophole lies in the implicit assumption that the number of strongly entangled pairs can be of the same order of N_t_o_t_a_l

  14. Horizons of semiclassical black holes are cold

    Energy Technology Data Exchange (ETDEWEB)

    Brustein, Ram [Department of Physics, Ben-Gurion University,Beer-Sheva 84105 (Israel); CAS, Ludwig-Maximilians-Universität München,80333 München (Germany); Medved, A.J.M. [Department of Physics & Electronics, Rhodes University,Grahamstown 6140 (South Africa)

    2014-06-10

    We calculate, using our recently proposed semiclassical framework, the quantum state of the Hawking pairs that are produced during the evaporation of a black hole (BH). Our framework adheres to the standard rules of quantum mechanics and incorporates the quantum fluctuations of the collapsing shell spacetime in Hawking’s original calculation, while accounting for back-reaction effects. We argue that the negative-energy Hawking modes need to be regularly integrated out; and so these are effectively subsumed by the BH and, as a result, the number of coherent negative-energy modes N{sub coh} at any given time is parametrically smaller than the total number of the Hawking particles N{sub total} emitted during the lifetime of the BH. We find that N{sub coh} is determined by the width of the BH wavefunction and scales as the square root of the BH entropy. We also find that the coherent negative-energy modes are strongly entangled with their positive-energy partners. Previously, we have found that N{sub coh} is also the number of coherent outgoing particles and that information can be continually transferred to the outgoing radiation at a rate set by N{sub coh}. Our current results show that, while the BH is semiclassical, information can be released without jeopardizing the nearly maximal inside-out entanglement and imply that the state of matter near the horizon is approximately the vacuum. The BH firewall proposal, on the other hand, is that the state of matter near the horizon deviates substantially from the vacuum, starting at the Page time. We find that, under the usual assumptions for justifying the formation of a firewall, one does indeed form at the Page time. However, the possible loophole lies in the implicit assumption that the number of strongly entangled pairs can be of the same order of N{sub total}.

  15. Classical and semiclassical aspects of chemical dynamics

    International Nuclear Information System (INIS)

    Gray, S.K.

    1982-08-01

    Tunneling in the unimolecular reactions H 2 C 2 → HC 2 H, HNC → HCN, and H 2 CO → H 2 + CO is studied with a classical Hamiltonian that allows the reaction coordinate and transverse vibrational modes to be considered directly. A combination of classical perturbation theory and the semiclassical WKB method allows tunneling probabilities to be obtained, and a statistical theory (RRKM) is used to construct rate constants for these reactions in the tunneling regime. In this fashion, it is found that tunneling may be important, particularly for low excitation energies. Nonadiabatic charge transfer in the reaction Na + I → Na + + I - is treated with classical trajectories based on a classical Hamiltonian that is the analogue of a quantum matrix representation. The charge transfer cross section obtained is found to agree reasonably well with the exact quantum results. An approximate semiclassical formula, valid at high energies, is also obtained. The interaction of radiation and matter is treated from a classical viewpoint. The excitation of an HF molecule in a strong laser is described with classical trajectories. Quantum mechanical results are also obtained and compared to the classical results. Although the detailed structure of the pulse time averaged energy absorption cannot be reproduced classically, classical mechanics does predict the correct magnitude of energy absorption, as well as certain other qualitative features. The classical behavior of a nonrotating diatomic molecule in a strong laser field is considered further, by generating a period advance map that allows the solution over many periods of oscillation of the laser to be obtained with relative ease. Classical states are found to form beautiful spirals in phase space as time progresses. A simple pendulum model is found to describe the major qualitative features

  16. Decoupling, situated cognition and immersion in art.

    Science.gov (United States)

    Reboul, Anne

    2015-09-01

    Situated cognition seems incompatible with strong decoupling, where representations are deployed in the absence of their targets and are not oriented toward physical action. Yet, in art consumption, the epitome of a strongly decoupled cognitive process, the artwork is a physical part of the environment and partly controls the perception of its target by the audience, leading to immersion. Hence, art consumption combines strong decoupling with situated cognition.

  17. FAST AUTOMATED DECOUPLING AT RHIC

    International Nuclear Information System (INIS)

    BEEBE-WANG, J.J.

    2005-01-01

    Coupling correction is essential for the operational performance of RHIC. The independence of the transverse degrees of freedom makes diagnostics and tune control easier, and it is advantageous to operate an accelerator close to the coupling resonance to minimize nearby nonlinear sidebands. An automated coupling correction application iDQmini has been developed for RHIC routine operations. The application decouples RHIC globally by minimizing the tune separation through finding the optimal settings of two orthogonal skew quadrupole families. The program iDQmini provides options of automatic, semi-automatic and manual decoupling operations. It accesses tune information from all RHIC tune measurement systems: the PLL (phase lock loop), the high frequency Schottky system and the tune meter. It also supplies tune and skew quadrupole scans, finding the minimum tune separation, display the real time results and interface with the RHIC control system. We summarize the capabilities of the coupling correction application iDQmini, and discuss the operational protections incorporated in the program

  18. Second order semiclassics with self-generated magnetic fields

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    $ effectively determines the strength of the field. We consider the weak field regime with $\\beta h^{2}\\ge {const}>0$, where $h$ is the semiclassical parameter. For smooth potentials we prove that the semiclassical asymptotics of the total energy is given by the non-magnetic Weyl term to leading order...... with an error bound that is smaller by a factor $h^{1+\\e}$, i.e. the subleading term vanishes. However, for potentials with a Coulomb singularity the subleading term does not vanish due to the non-semiclassical effect of the singularity. Combined with a multiscale technique, this refined estimate is used...

  19. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits

    International Nuclear Information System (INIS)

    Fujii, Mikiya; Yamashita, Koichi

    2015-01-01

    We present a semiclassical quantization condition, i.e., quantum–classical correspondence, for steady states of nonadiabatic systems consisting of fast and slow degrees of freedom (DOFs) by extending Gutzwiller’s trace formula to a nonadiabatic form. The quantum–classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow DOF, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels. In addition to the semiclassical quantization condition, we also discuss chaotic dynamics involved in the classical limit of nonadiabatic dynamics

  20. A decoupled power flow algorithm using particle swarm optimization technique

    International Nuclear Information System (INIS)

    Acharjee, P.; Goswami, S.K.

    2009-01-01

    A robust, nondivergent power flow method has been developed using the particle swarm optimization (PSO) technique. The decoupling properties between the power system quantities have been exploited in developing the power flow algorithm. The speed of the power flow algorithm has been improved using a simple perturbation technique. The basic power flow algorithm and the improvement scheme have been designed to retain the simplicity of the evolutionary approach. The power flow is rugged, can determine the critical loading conditions and also can handle the flexible alternating current transmission system (FACTS) devices efficiently. Test results on standard test systems show that the proposed method can find the solution when the standard power flows fail.

  1. Curvature perturbations from dimensional decoupling

    CERN Document Server

    Giovannini, Massimo

    2005-01-01

    The scalar modes of the geometry induced by dimensional decoupling are investigated. In the context of the low energy string effective action, solutions can be found where the spatial part of the background geometry is the direct product of two maximally symmetric Euclidean manifolds whose related scale factors evolve at a dual rate so that the expanding dimensions first accelerate and then decelerate while the internal dimensions always contract. After introducing the perturbative treatment of the inhomogeneities, a class of five-dimensional geometries is discussed in detail. Quasi-normal modes of the system are derived and the numerical solution for the evolution of the metric inhomogeneities shows that the fluctuations of the internal dimensions provide a term that can be interpreted, in analogy with the well-known four-dimensional situation, as a non-adiabatic pressure density variation. Implications of this result are discussed with particular attention to string cosmological scenarios.

  2. Numerical indications on the semiclassical limit of the flipped vertex

    Energy Technology Data Exchange (ETDEWEB)

    Magliaro, Elena; Perini, Claudio; Rovelli, Carlo [Centre de Physique Theorique de Luminy , Case 907, F-13288 Marseille (France)

    2008-05-07

    We introduce a technique for testing the semiclassical limit of a quantum gravity vertex amplitude. The technique is based on the propagation of a semiclassical wave packet. We apply this technique to the newly introduced 'flipped' vertex in loop quantum gravity, in order to test the intertwiner dependence of the vertex. Under some drastic simplifications, we find very preliminary, but surprisingly good numerical evidence for the correct classical limit.

  3. A zeta function approach to the semiclassical quantization of maps

    International Nuclear Information System (INIS)

    Smilansky, Uzi.

    1993-11-01

    The quantum analogue of an area preserving map on a compact phase space is a unitary (evolution) operator which can be represented by a matrix of dimension L∝ℎ -1 . The semiclassical theory for spectrum of the evolution operator will be reviewed with special emphasize on developing a dynamical zeta function approach, similar to the one introduced recently for a semiclassical quantization of hamiltonian systems. (author)

  4. Hedge Funds and Risk-Decoupling

    DEFF Research Database (Denmark)

    Ringe, Wolf-Georg

    Negative risk-decoupling, otherwise known as empty voting, is a popular strategy amongst hedge funds and other activist investors. In short, it is the attempt to decouple the economic risk from the share’s ownership position, retaining in particular the voting right without risk. This paper uses ...

  5. Disturbance Decoupling of Switched Linear Systems

    NARCIS (Netherlands)

    Yurtseven, E.; Heemels, W.P.M.H.; Camlibel, M.K.

    2010-01-01

    In this paper we consider disturbance decoupling problems for switched linear systems. We will provide necessary and sufficient conditions for three different versions of disturbance decoupling, which differ based on which signals are considered to be the disturbance. In the first version the

  6. Kinematically Decoupled Cores in Dwarf (Elliptical) Galaxies

    NARCIS (Netherlands)

    Toloba, E.; Peletier, R. F.; Guhathakurta, P.; van de Ven, G.; Boissier, S.; Boselli, A.; Brok, M. d.; Falcón-Barroso, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Lisker, T.; Paudel, S.; Ryś, A.; Salo, H.

    An overview is given of what we know about the frequency of kinematically decoupled cores in dwarf elliptical galaxies. New observations show that kinematically decoupled cores happen just as often in dwarf elliptical as in ordinary early-type galaxies. This has important consequences for the

  7. Nonlinear Decoupling of Torque and Field Amplitude in an Induction Motor

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1997-01-01

    A novel approach to control of induction motors, based on nonlinear state feedback, is presented. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the field amplitude and the motor...... torque. The method is tested both by simulation and by experiments on a motor drive....

  8. Lamb shift in quantum electrodynamics (semiclassical theory)

    International Nuclear Information System (INIS)

    Blaive, B.; Boudet, R.

    1989-01-01

    This paper aims to bring some arguments to the proof of the Barut and Van Huele formula, which gives the Lamb shift in the semi-classical theory model: by shortening the calculation owing to the use of a decomposition of the self-potential of the electron; by eliminating the appeal to a divergent series; by bringing justifications and clarifications on some important points of the proof. The effective calculation of the coefficients of the formula is achieved for some of them, and the general analytical form of these coefficients is explicited. It is also proved that the B. and V.H. formula must give results at least as close to the experiment as those of the Bethe formula, which is obtained in Quantum Theory of Fields. Finally one shows that the B. and V.H. formula provides a justification de facto for the cut-off which is used for associating finite numbers to the divergent integrals of the Bethe formula [fr

  9. Classical, Semi-classical and Quantum Noise

    CERN Document Server

    Poor, H; Scully, Marlan

    2012-01-01

    David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide  influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...

  10. Discontinuous PWM Modulation Strategy with Circuit-Level Decoupling Concept of Three-Level Neutral-Point Clamped (NPC) Inverter

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2013-01-01

    inverters, but also reduces the switching loss of the inverter along with an inherent neutral point (NP) voltage control. Based on a circuit-level decoupling concept, the NPC inverter can be decoupled into two three-level Buck converters in every defined operating section, and thereby the controller design...... can be reduced by one third. In order to explain the operation of this topology properly, the decoupling principle including the driving signal synthesis and the NP potential variation are analyzed in detail in this paper. Finally the viability and performance of the proposed modulation scheme...

  11. Structural Decoupling and Disturbance Rejection in a Distillation Column

    DEFF Research Database (Denmark)

    Bahar, Mehrdad; Jantzen, Jan; Commault, C.

    1996-01-01

    Introduction, distillation column model, input-output decoupling, disturbance rejection, concluding remarks, references.......Introduction, distillation column model, input-output decoupling, disturbance rejection, concluding remarks, references....

  12. Quantum Dynamical Behaviour in Complex Systems - A Semiclassical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ananth, Nandini [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    One of the biggest challenges in Chemical Dynamics is describing the behavior of complex systems accurately. Classical MD simulations have evolved to a point where calculations involving thousands of atoms are routinely carried out. Capturing coherence, tunneling and other such quantum effects for these systems, however, has proven considerably harder. Semiclassical methods such as the Initial Value Representation (SC-IVR) provide a practical way to include quantum effects while still utilizing only classical trajectory information. For smaller systems, this method has been proven to be most effective, encouraging the hope that it can be extended to deal with a large number of degrees of freedom. Several variations upon the original idea of the SCIVR have been developed to help make these larger calculations more tractable; these range from the simplest, classical limit form, the Linearized IVR (LSC-IVR) to the quantum limit form, the Exact Forward-Backward version (EFB-IVR). In this thesis a method to tune between these limits is described which allows us to choose exactly which degrees of freedom we wish to treat in a more quantum mechanical fashion and to what extent. This formulation is called the Tuning IVR (TIVR). We further describe methodology being developed to evaluate the prefactor term that appears in the IVR formalism. The regular prefactor is composed of the Monodromy matrices (jacobians of the transformation from initial to finial coordinates and momenta) which are time evolved using the Hessian. Standard MD simulations require the potential surfaces and their gradients, but very rarely is there any information on the second derivative. We would like to be able to carry out the SC-IVR calculation without this information too. With this in mind a finite difference scheme to obtain the Hessian on-the-fly is proposed. Wealso apply the IVR formalism to a few problems of current interest. A method to obtain energy eigenvalues accurately for complex

  13. Li-air batteries: Decouple to stabilize

    Science.gov (United States)

    Xu, Ji-Jing; Zhang, Xin-Bo

    2017-09-01

    The utilization of porous carbon cathodes in lithium-air batteries is hindered by their severe decomposition during battery cycling. Now, dual redox mediators are shown to decouple the complex electrochemical reactions at the cathode, avoiding cathode passivation and decomposition.

  14. Are CAP Decoupling Policies Really Production Neutral?

    OpenAIRE

    Katranidis, Stelios D.; Kotakou, Christina A.

    2008-01-01

    This paper examines the effects of decoupling policies on Greek cotton production. We estimate a system of cotton supply and input derived demand functions under the hypothesis that producers face uncertainty about prices. Using our estimation results we simulate the effects on cotton production under four alternative policy scenarios: the ‘Old’ CAP regime (i.e. the policy practiced until 2005), the Mid Term Review regime, a fully decoupled policy regime and a free trade-no policy scenario. O...

  15. Semiclassical regime of Regge calculus and spin foams

    International Nuclear Information System (INIS)

    Bianchi, Eugenio; Satz, Alejandro

    2009-01-01

    Recent attempts to recover the graviton propagator from spin foam models involve the use of a boundary quantum state peaked on a classical geometry. The question arises whether beyond the case of a single simplex this suffices for peaking the interior geometry in a semiclassical configuration. In this paper we explore this issue in the context of quantum Regge calculus with a general triangulation. Via a stationary phase approximation, we show that the boundary state succeeds in peaking the interior in the appropriate configuration, and that boundary correlations can be computed order by order in an asymptotic expansion. Further, we show that if we replace at each simplex the exponential of the Regge action by its cosine-as expected from the semiclassical limit of spin foam models-then the contribution from the sign-reversed terms is suppressed in the semiclassical regime and the results match those of conventional Regge calculus

  16. Graphics processing units accelerated semiclassical initial value representation molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tamascelli, Dario; Dambrosio, Francesco Saverio [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Conte, Riccardo [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States); Ceotto, Michele, E-mail: michele.ceotto@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano (Italy)

    2014-05-07

    This paper presents a Graphics Processing Units (GPUs) implementation of the Semiclassical Initial Value Representation (SC-IVR) propagator for vibrational molecular spectroscopy calculations. The time-averaging formulation of the SC-IVR for power spectrum calculations is employed. Details about the GPU implementation of the semiclassical code are provided. Four molecules with an increasing number of atoms are considered and the GPU-calculated vibrational frequencies perfectly match the benchmark values. The computational time scaling of two GPUs (NVIDIA Tesla C2075 and Kepler K20), respectively, versus two CPUs (Intel Core i5 and Intel Xeon E5-2687W) and the critical issues related to the GPU implementation are discussed. The resulting reduction in computational time and power consumption is significant and semiclassical GPU calculations are shown to be environment friendly.

  17. Microscopic and semi-classical treatments of octupole deformation in the light actinides

    International Nuclear Information System (INIS)

    Chasman, R.R.

    1984-01-01

    Microscopic and semi-classical descriptions of octupole deformation are compared. New semi-classical results, obtained with the use of a Woods-Saxon potential are presented. Comparisons with experiment are made. 21 references

  18. Semiclassical strings and non-Abelian T-duality

    Directory of Open Access Journals (Sweden)

    S. Zacarías

    2014-10-01

    Full Text Available We study semiclassical strings in the Klebanov–Witten and in the non-Abelian T-dual Klebanov–Witten backgrounds. We show that both backgrounds share a subsector of equivalent states up to conditions on the T-dual coordinates. We also analyse string configurations where the strings are stretched along the T-dual coordinates. This semiclassical analysis predicts the existence of (almost chiral primary operators for the dual superconformal field theory whose (anomalous bare dimensions depend on the T-dual coordinates. We briefly discuss the Penrose limit of the dualised background.

  19. Recent developments in semiclassical mechanics: eigenvalues and reaction rate constants

    International Nuclear Information System (INIS)

    Miller, W.H.

    1976-04-01

    A semiclassical treatment of eigenvalues for a multidimensional non-separable potential function and of the rate constant for a chemical reaction with an activation barrier is presented. Both phenomena are seen to be described by essentially the same semiclassical formalism, which is based on a construction of the total Hamiltonian in terms of the complete set of ''good'' action variables (or adiabatic invariants) associated with the minimum in the potential energy surface for the eigenvalue case, or the saddle point in the potential energy surface for the case of chemical reaction

  20. On the initial conditions and solutions of the semi-classical Einstein equations in a cosmological scenario

    Energy Technology Data Exchange (ETDEWEB)

    Pinamonti, Nicola [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2010-01-15

    In this paper we discuss the backreaction of a massive quantum scalar field on the curvature, the latter treated as a classical field. Furthermore, we deal with this problem in the realm of cosmological spacetime by analyzing the Einstein equations in a semiclassical fashion. More precisely, we show that, at least on small intervals of time, solutions for this interacting system exist. This result is achieved furnishing an iteration scheme and showing that it converges in the appropriate Banach space. Moreover, we show that the quantum states with good ultraviolet behavior (Hadamard property) used in order to obtain the backreaction will be completely individuated by their form on the initial surface if chosen to be lightlike. On large intervals of time the situation is more complicated but, if the spacetime is expanding, we show that the end limiting point of the evolution does not depend strongly on the quantum state, because, in this limit, the expectation values of the matter fields responsible for the backreaction do not depend on the particular homogeneous Hadamard state at all. Finally, we comment on the interpretation of the semiclassical Einstein equations for this kind of problems. Although the fluctuations of the expectation values of pointlike fields diverge, if the spacetime and the quantum state have a large spatial symmetry and if we consider the smeared fields on regions of large spatial volume, they tend to vanish. Assuming this point of view the semiclassical Einstein equations become more reliable. (orig.)

  1. On the initial conditions and solutions of the semi-classical Einstein equations in a cosmological scenario

    International Nuclear Information System (INIS)

    Pinamonti, Nicola

    2010-01-01

    In this paper we discuss the backreaction of a massive quantum scalar field on the curvature, the latter treated as a classical field. Furthermore, we deal with this problem in the realm of cosmological spacetime by analyzing the Einstein equations in a semiclassical fashion. More precisely, we show that, at least on small intervals of time, solutions for this interacting system exist. This result is achieved furnishing an iteration scheme and showing that it converges in the appropriate Banach space. Moreover, we show that the quantum states with good ultraviolet behavior (Hadamard property) used in order to obtain the backreaction will be completely individuated by their form on the initial surface if chosen to be lightlike. On large intervals of time the situation is more complicated but, if the spacetime is expanding, we show that the end limiting point of the evolution does not depend strongly on the quantum state, because, in this limit, the expectation values of the matter fields responsible for the backreaction do not depend on the particular homogeneous Hadamard state at all. Finally, we comment on the interpretation of the semiclassical Einstein equations for this kind of problems. Although the fluctuations of the expectation values of pointlike fields diverge, if the spacetime and the quantum state have a large spatial symmetry and if we consider the smeared fields on regions of large spatial volume, they tend to vanish. Assuming this point of view the semiclassical Einstein equations become more reliable. (orig.)

  2. New mixed quantum/semiclassical propagation method

    International Nuclear Information System (INIS)

    Antoniou, Dimitri; Gelman, David; Schwartz, Steven D.

    2007-01-01

    The authors developed a new method for calculating the quantum evolution of multidimensional systems, for cases in which the system can be assumed to consist of a quantum subsystem and a bath subsystem of heavier atoms. The method combines two ideas: starting from a simple frozen Gaussian description of the bath subsystem, then calculate quantum corrections to the propagation of the quantum subsystem. This follows from recent work by one of them, showing how one can calculate corrections to approximate evolution schemes, even when the Hamiltonian that corresponds to these approximate schemes is unknown. Then, they take the limit in which the width of the frozen Gaussians approaches zero, which makes the corrections to the evolution of the quantum subsystem depend only on classical bath coordinates. The test calculations they present use low-dimensional systems, in which comparison to exact quantum dynamics is feasible

  3. Method for decoupling error correction from privacy amplification

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Hoi-Kwong [Department of Electrical and Computer Engineering and Department of Physics, University of Toronto, 10 King' s College Road, Toronto, Ontario, Canada, M5S 3G4 (Canada)

    2003-04-01

    In a standard quantum key distribution (QKD) scheme such as BB84, two procedures, error correction and privacy amplification, are applied to extract a final secure key from a raw key generated from quantum transmission. To simplify the study of protocols, it is commonly assumed that the two procedures can be decoupled from each other. While such a decoupling assumption may be valid for individual attacks, it is actually unproven in the context of ultimate or unconditional security, which is the Holy Grail of quantum cryptography. In particular, this means that the application of standard efficient two-way error-correction protocols like Cascade is not proven to be unconditionally secure. Here, I provide the first proof of such a decoupling principle in the context of unconditional security. The method requires Alice and Bob to share some initial secret string and use it to encrypt their communications in the error correction stage using one-time-pad encryption. Consequently, I prove the unconditional security of the interactive Cascade protocol proposed by Brassard and Salvail for error correction and modified by one-time-pad encryption of the error syndrome, followed by the random matrix protocol for privacy amplification. This is an efficient protocol in terms of both computational power and key generation rate. My proof uses the entanglement purification approach to security proofs of QKD. The proof applies to all adaptive symmetric methods for error correction, which cover all existing methods proposed for BB84. In terms of the net key generation rate, the new method is as efficient as the standard Shor-Preskill proof.

  4. Method for decoupling error correction from privacy amplification

    International Nuclear Information System (INIS)

    Lo, Hoi-Kwong

    2003-01-01

    In a standard quantum key distribution (QKD) scheme such as BB84, two procedures, error correction and privacy amplification, are applied to extract a final secure key from a raw key generated from quantum transmission. To simplify the study of protocols, it is commonly assumed that the two procedures can be decoupled from each other. While such a decoupling assumption may be valid for individual attacks, it is actually unproven in the context of ultimate or unconditional security, which is the Holy Grail of quantum cryptography. In particular, this means that the application of standard efficient two-way error-correction protocols like Cascade is not proven to be unconditionally secure. Here, I provide the first proof of such a decoupling principle in the context of unconditional security. The method requires Alice and Bob to share some initial secret string and use it to encrypt their communications in the error correction stage using one-time-pad encryption. Consequently, I prove the unconditional security of the interactive Cascade protocol proposed by Brassard and Salvail for error correction and modified by one-time-pad encryption of the error syndrome, followed by the random matrix protocol for privacy amplification. This is an efficient protocol in terms of both computational power and key generation rate. My proof uses the entanglement purification approach to security proofs of QKD. The proof applies to all adaptive symmetric methods for error correction, which cover all existing methods proposed for BB84. In terms of the net key generation rate, the new method is as efficient as the standard Shor-Preskill proof

  5. A qualitative semi-classical treatment of an isolated semi-polar quantum dot

    International Nuclear Information System (INIS)

    Young, Toby D

    2011-01-01

    To qualitatively determine the behaviour of micro-macro properties of a quantum dot grown in a non-polar direction, we propose a simple semi-classical model based on well established ideas. We take into account the following empirical phenomena: (i) The displacement and induced strain at heterojunctions; (ii) The electrostatic potential arising from piezoelectric and spontaneous polarisation; and (iii) The localisation of excitons (particle-hole pairs) arising from quantum confinement. After some algebraic manipulation used to cast the formalism into an arbitrarily rotated frame, a numerical model is developed for the case of a semi-polar wurtzite GaN quantum dot buried in a wurtzite AlN matrix. This scheme is found to provide a satisfying qualitative description of an isolated semi-polar quantum dot in a way that is accessible to further physical interpretation and quantification.

  6. Communication: importance sampling including path correlation in semiclassical initial value representation calculations for time correlation functions.

    Science.gov (United States)

    Pan, Feng; Tao, Guohua

    2013-03-07

    Full semiclassical (SC) initial value representation (IVR) for time correlation functions involves a double phase space average over a set of two phase points, each of which evolves along a classical path. Conventionally, the two initial phase points are sampled independently for all degrees of freedom (DOF) in the Monte Carlo procedure. Here, we present an efficient importance sampling scheme by including the path correlation between the two initial phase points for the bath DOF, which greatly improves the performance of the SC-IVR calculations for large molecular systems. Satisfactory convergence in the study of quantum coherence in vibrational relaxation has been achieved for a benchmark system-bath model with up to 21 DOF.

  7. On the evaluation of semiclassical nuclear many-particle many-hole level densities

    International Nuclear Information System (INIS)

    Blin, A.H.; Hiller, B.; Schuck, P.; Yannouleas, C.

    1985-10-01

    An exact general scheme is described to calculate the m-particle n-hole fermion level densities for an arbitrary single particle Hamiltonian taking into account the Pauli exclusion principle. This technique is applied to obtain level densities of the three dimensional isotropic harmonic oscillator semiclassically in the Thomas-Fermi approach. In addition, we study the l-particle l-hole level density of the Woods-Saxon potential. For the harmonic oscillator we analyze the temperature dependence of the linear response function and the influence of pairing correlations on the l-particle l-hole level density. Finally, a Taylor expansion method of the m-particle n-hole level densities is discussed

  8. Photo double-ionization of helium: a new approach combining R matrix and semiclassical techniques in an hyperspherical framework

    International Nuclear Information System (INIS)

    Malegat, L.; Kazansky, A.; Selles, P.

    1999-01-01

    We introduce a new method for computing photo double ionization (PDI) cross sections for two electron atoms. It is formulated in terms of the hyperspherical radius R and relies upon a combination of R matrix techniques in the inner region R≤R 0 with a semiclassical approximation for the R motion in the outer region. We present a first application of this method to the PDI of He within a model of reduced dimensionality where r 1 =r 2 . It demonstrates the validity of our numerical scheme and provides a first quantitative estimate of the energy domain of validity of the Wannier mechanism. (orig.)

  9. Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents

    KAUST Repository

    Athanassoulis, Agissilaos; Katsaounis, Theodoros; Kyza, Irene

    2016-01-01

    Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.

  10. Semi-classical limit of relativistic quantum mechanics

    Indian Academy of Sciences (India)

    It is shown that the semi-classical limit of solutions to the Klein–Gordon equation gives the particle probability density that is in direct proportion to the inverse of the particle velocity. It is also shown that in the case of the Dirac equation a different result is obtained.

  11. Semiclassical model of cross section for fast neutrons

    International Nuclear Information System (INIS)

    Rosato, A.; D'Oliveira, A.A.

    1977-01-01

    A study for main aspects of fast neutron scattering is presented and, a semiclassical approximation applying to several pratic cases is described. The obtained results are compared with experimental data for deformed nuclei, and, with theoretical data based on optical model without treatment of deformations. (M.C.K.) [pt

  12. Semiclassical treatment of nuclear effects in Coulomb excitation

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F; Donangelo, R [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Rasmussen, J O; Ring, P; Stoyer, M A [Lawrence Berkeley Lab., CA (USA). Nuclear Science Div.

    1990-09-27

    We introduce the effects of the nuclear potential in the semiclassical Alder-Winther-de Boer method, both in the coupling matrix elements and as corrections to the Rutherford orbit. We compare our results to those of pure Coulomb excitation and to coupled-channel calculations. (orig.).

  13. Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents

    KAUST Repository

    Athanassoulis, Agissilaos

    2016-08-30

    Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.

  14. Structures in semiclassical spectra: a question of scale

    International Nuclear Information System (INIS)

    Berry, M.V.

    1984-01-01

    Theories of semiclassical bound state spectra for systems with N freedoms are reviewed, emphasizing the different features occurring on successively finer scales of energy E, measured in terms of h/2π, and attempting to correlate these with whether the underlying classical motion is regular or irregular. (Auth.)

  15. A semiclassical study of optical potentials - potential resonances -

    International Nuclear Information System (INIS)

    Lee, S.Y.; Takigawa, N.; Marty, C.

    1977-01-01

    A semiclassical method is used to analyze resonances produced by complex potentials. The absorption plays a central role: when it is not too great, resonances manifest themselves by enhancement of cross sections near π. The reverse is not necessarily true, for instance the anomalous large angle scattering for α-Ca is due to a coherent superposition of many partial waves

  16. A scheme for the hadron spectrum

    International Nuclear Information System (INIS)

    Hoyer, P.

    1978-03-01

    A theoretically self-consistent dual scheme is proposed for the hadron spectrum, which follows naturally from basic requirements and phenomenology. All resonance properties and couplings are calculable in terms of a limited number of input parameters. A first application to ππ→ππ explains the linear trajectory and small daughter couplings. The Zweig rule and the decoupling of baryonium from mesons are expected to be consequences of the scheme. (Auth.)

  17. Premoderator optimization of decoupled hydrogen moderator

    International Nuclear Information System (INIS)

    Harada, Masahide; Teshigawara, Makoto; Kai, Tetsuya; Sakata, Hideaki; Watanabe, Noboru; Ikeda, Yujiro

    2001-03-01

    An optimization study on the premoderator, the reflector material choice and a length of the linear is carried out for the design of high performance decoupled hydrogen moderator. NMTC/JAM and MCNP-4C are used for the neutronics calculation. The result indicates that, assuming premoderator dimensions and decoupling energy is controlled, the decoupled hydrogen moderator with a premoderator can provide better pulse characteristics than that without the premoderator for a Be reflector. On the selection of the reflector material, it is clearly shown that Pb and Hg reflectors give merits in using the premoderator for higher intensity and reduction of energy deposition in moderator. It is also shown that a H 2 O premoderator provides a short tail while a D 2 O premoderator provides the high peak intensity. Minimum liner length is evaluated to be 20 cm from the viewpoint of neutronics. (author)

  18. DECOUPLER DESIGN FOR AN INTERACTING TANKS SYSTEM

    Directory of Open Access Journals (Sweden)

    Duraid F. Ahmed

    2013-05-01

    Full Text Available The mathematical model forthe two interacting tanks system was derived and the dynamic behavior of thissystem was studied by introducing a step change in inlet flow rate. In thispaper, the analysis of the interaction loops between the controlled variable(liquid level and manipulated variable (inlet flow rate was carried out usingthe relative gain array. Also decoupling technique is applied to eliminate theeffect this interaction by design suitable decouplers for the system. Theresults show that the gain of each loop is cut in half when the opposite loopis closed and the gain of other loop changes sign when the opposite loop isclosed. The decoupling method show that the liquid level of tank one isconstant when the second inlet flow changes and to keep the liquid level oftank two constant the first inlet flow must be changed.

  19. Nonlinear decoupling of torque and field amplitude in an induction motor

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, H. [Aalborg University, Aalborg (Denmark); Vadstrup, P.; Boersting, H. [Grundfos A/S, Bjerringbro (Denmark)

    1997-12-31

    A novel approach to control of induction motors, based on nonlinear state feedback, is presented. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the field amplitude and the motor torque. The method is tested both by simulation and by experiments on a motor drive. (orig.) 12 refs.

  20. Computing Decoupled Residuals for Compact Disc Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2006-01-01

    a pair of residuals generated by Compact Disc Player. However, these residuals depend on the performance of position servos in the Compact Disc Player. In other publications of the same authors a pair of decoupled residuals is derived. However, the computation of these alternative residuals has been...

  1. Shear Wave Generation by Decoupled and Partially Coupled Explosions

    National Research Council Canada - National Science Library

    Stevens, Jeffry L; Xu, Heming; Baker, G. E

    2008-01-01

    The objective of this project is to investigate the sources of shear wave generation by decoupled and partially coupled explosions, and the differences in shear wave generation between tamped and decoupled explosions...

  2. Semiclassical modelling of finite-pulse effects on non-adiabatic photodynamics via initial condition filtering: The predissociation of NaI as a test case

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Mesa, Aliezer [Departmento de Física Teórica, Universidad de la Habana, San Lázaro y L, La Habana 10400 (Cuba); Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm (Germany); Saalfrank, Peter [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm (Germany)

    2015-05-21

    Femtosecond-laser pulse driven non-adiabatic spectroscopy and dynamics in molecular and condensed phase systems continue to be a challenge for theoretical modelling. One of the main obstacles is the “curse of dimensionality” encountered in non-adiabatic, exact wavepacket propagation. A possible route towards treating complex molecular systems is via semiclassical surface-hopping schemes, in particular if they account not only for non-adiabatic post-excitation dynamics but also for the initial optical excitation. One such approach, based on initial condition filtering, will be put forward in what follows. As a simple test case which can be compared with exact wavepacket dynamics, we investigate the influence of the different parameters determining the shape of a laser pulse (e.g., its finite width and a possible chirp) on the predissociation dynamics of a NaI molecule, upon photoexcitation of the A(0{sup +}) state. The finite-pulse effects are mapped into the initial conditions for semiclassical surface-hopping simulations. The simulated surface-hopping diabatic populations are in qualitative agreement with the quantum mechanical results, especially concerning the subpicosend photoinduced dynamics, the main deviations being the relative delay of the non-adiabatic transitions in the semiclassical picture. Likewise, these differences in the time-dependent electronic populations calculated via the semiclassical and the quantum methods are found to have a mild influence on the overall probability density distribution. As a result, the branching ratios between the bound and the dissociative reaction channels and the time-evolution of the molecular wavepacket predicted by the semiclassical method agree with those computed using quantum wavepacket propagation. Implications for more challenging molecular systems are given.

  3. Semiclassical approximation to time-dependent Hartree--Fock theory

    International Nuclear Information System (INIS)

    Dworzecka, M.; Poggioli, R.

    1976-01-01

    Working within a time-dependent Hartree-Fock framework, one develops a semiclassical approximation appropriate for large systems. It is demonstrated that the standard semiclassical approach, the Thomas-Fermi approximation, is inconsistent with Hartree-Fock theory when the basic two-body interaction is short-ranged (as in nuclear systems, for example). However, by introducing a simple extension of the Thomas-Fermi approximation, one overcomes this problem. One also discusses the infinite nuclear matter problem and point out that time-dependent Hartree-Fock theory yields collective modes of the zero sound variety instead of ordinary hydrodynamic (first) sound. One thus emphasizes that one should be extremely circumspect when attempting to cast the equations of motion of time-dependent Hartree-Fock theory into a hydrodynamic-like form

  4. Semiclassical scalar propagators in curved backgrounds: Formalism and ambiguities

    International Nuclear Information System (INIS)

    Grain, J.; Barrau, A.

    2007-01-01

    The phenomenology of quantum systems in curved space-times is among the most fascinating fields of physics, allowing--often at the gedankenexperiment level--constraints on tentative theories of quantum gravity. Determining the dynamics of fields in curved backgrounds remains, however, a complicated task because of the highly intricate partial differential equations involved, especially when the space metric exhibits no symmetry. In this article, we provide--in a pedagogical way--a general formalism to determine this dynamics at the semiclassical order. To this purpose, a generic expression for the semiclassical propagator is computed and the equation of motion for the probability four-current is derived. Those results underline a direct analogy between the computation of the propagator in general relativistic quantum mechanics and the computation of the propagator for stationary systems in nonrelativistic quantum mechanics. A possible application of this formalism to curvature-induced quantum interferences is also discussed

  5. Semiclassical approximations for gravity and the issue of backreaction

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    1989-01-01

    Semiclassical approximations, which are useful in the study of a quantum system interacting with a classical system, are studied and compared. In particular, we consider the Born-Oppenheimer approximation (BOA) (corresponding to G → O at fixed ℎ), the effective action approach (ℎ → O at fixed G) and their combinations. We show that in the strict BOA limit there is no backreaction on gravity. In the effective action approach one can obtain a semi-classical description of gravity, if certain stringent requirements are satisfied. In most situations of interest these conditions will not be met and the O(ℎ) contribution from gravitons will be comparable to that from quantum fields. (author)

  6. Semiclassical theory of resonance inelastic electron-molecule collisions

    International Nuclear Information System (INIS)

    Kazanskij, A.K.

    1986-01-01

    Semiclassical approach to the theory of resonance electron-molecule collisions, unlocal with respect to interatomic distance was developed. Two problems were considered: modified adiabatic approach for sigle-pole approximation of R-matrix and Fano-Feshbach-Bardsley theory. It is shown that these problems are similar in semiclassical approximation. A simple equation system with coefficients expressed in quadratures was obtained. It enables to determine amplitudes of all processes (including dissociation adhesion, association ejection, free-free and free-bound transitions) in energetic representation with respect to nucleus vibrations in molecule with allowance for both descrete and continuous spectra of nucleus motion in molecule. Quantitative investigation of the system results to the notion of dynamic energy curve of intermediate state, generalizing the motion of such curve in boomerang theory

  7. Resolution of potential ambiguities through farside angular structure: Semiclassical analysis

    International Nuclear Information System (INIS)

    Fricke, S.H.; Brandan, M.E.; McVoy, K.W.

    1988-01-01

    The optical potential fits summarized in the preceding paper are subjected to a semiclassical analysis of the Ford-Wheeler--Knoll-Schaeffer type. The important broad dips in their farside cross sections, which are essential in greatly reducing potential ambiguities, are found (in partial agreement with a suggestion of Goldberg's) to be mainly weak ''Airy'' or rainbow minima, that serve to identify deeply penetrating trajectories. The semiclassical analysis also permits the identification and understanding of a new category of discrete and continuous potential ambiguities, and suggests the manner in which specific features of the angular distributions (such as spacings and depths of various angular minima) determine the Woods-Saxon parameters found by a chi-squared search

  8. Strong semiclassical approximation of Wigner functions for the Hartree dynamics

    KAUST Repository

    Athanassoulis, Agissilaos; Paul, Thierry; Pezzotti, Federica; Pulvirenti, Mario

    2011-01-01

    We consider the Wigner equation corresponding to a nonlinear Schrödinger evolution of the Hartree type in the semiclassical limit h → 0. Under appropriate assumptions on the initial data and the interaction potential, we show that the Wigner function is close in L 2 to its weak limit, the solution of the corresponding Vlasov equation. The strong approximation allows the construction of semiclassical operator-valued observables, approximating their quantum counterparts in Hilbert-Schmidt topology. The proof makes use of a pointwise-positivity manipulation, which seems necessary in working with the L 2 norm and the precise form of the nonlinearity. We employ the Husimi function as a pivot between the classical probability density and the Wigner function, which - as it is well known - is not pointwise positive in general.

  9. Nonlinear dynamics of semiclassical coherent states in periodic potentials

    International Nuclear Information System (INIS)

    Carles, Rémi; Sparber, Christof

    2012-01-01

    We consider nonlinear Schrödinger equations with either local or nonlocal nonlinearities. In addition, we include periodic potentials as used, for example, in matter wave experiments in optical lattices. By considering the corresponding semiclassical scaling regime, we construct asymptotic solutions, which are concentrated both in space and in frequency around the effective semiclassical phase-space flow induced by Bloch’s spectral problem. The dynamics of these generalized coherent states is governed by a nonlinear Schrödinger model with effective mass. In the case of nonlocal nonlinearities, we establish a novel averaging-type result in the critical case. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  10. Stability and semiclassics in self-generated fields

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2013-01-01

    We consider non-interacting particles subject to a fixed external potential V and a self-generated magnetic field B. The total energy includes the field energy β∫B^2 and we minimize over all particle states and magnetic fields. In the case of spin-1/2 particles this minimization leads...... measuring the field strength in the semiclassical limit is κ=βh. We are not able to give the exact leading order semiclassical asymptotics uniformly in κ or even for fixed κ. We do however give upper and lower bounds on E with almost matching dependence on κ. In the simultaneous limit h→0 and κ→∞ we show...

  11. Semiclassical methods in curved spacetime and black hole thermodynamics

    International Nuclear Information System (INIS)

    Camblong, Horacio E.; Ordonez, Carlos R.

    2005-01-01

    Improved semiclassical techniques are developed and applied to a treatment of a real scalar field in a D-dimensional gravitational background. This analysis, leading to a derivation of the thermodynamics of black holes, is based on the simultaneous use of (i) a near-horizon description of the scalar field in terms of conformal quantum mechanics; (ii) a novel generalized WKB framework; and (iii) curved-spacetime phase-space methods. In addition, this improved semiclassical approach is shown to be asymptotically exact in the presence of hierarchical expansions of a near-horizon type. Most importantly, this analysis further supports the claim that the thermodynamics of black holes is induced by their near-horizon conformal invariance

  12. Quantum versus semiclassical description of selftrapping: anharmonic effects

    International Nuclear Information System (INIS)

    Raghavan, S.; Bishop, A.R.; Kenkre, V.M.

    1998-09-01

    Selftrapping has been traditionally studied on the assumption that quasiparticles interact with harmonic phonons and that this interaction is linear in the displacement of the phonon. To complement recent semiclassical studies of anharmonicity and nonlinearity in this context, we present below a fully quantum mechanical analysis of a two-site system, where the oscillator is described by a tunably anharmonic potential, with a square well with infinite walls and the harmonic potential as its extreme limits, and wherein the interaction is nonlinear in the oscillator displacement. We find that even highly anharmonic polarons behave similar to their harmonic counterparts in that selftrapping is preserved for long times in the limit of strong coupling, and that the polaronic tunneling time scale depends exponentially on the polaron binding energy. Further, in agreement with earlier results related to harmonic polarons, the semiclassical approximation agrees with the full quantum result in the massive oscillator limit of small oscillator frequency and strong quasiparticle-oscillator coupling. (author)

  13. A semiclassical treatment of correlation energy for nuclear systems

    International Nuclear Information System (INIS)

    Nielsen, M.

    1988-01-01

    Starting with the separation of the many-body density operator in two parts, one describing the one-body aspects of the full density and the other containing all dynamic correlations information, the semiclassical approximation for the system correlation energy, was calculated. It is showm that, in this case, the Gaussian Wave Packets Phase Space Representation is more convenient than the Wely-Wigner Rrepresentation for the analysis of the semiclassical correlation energy. Using a phenomenological interaction, the correlation energy to the nuclear matter and some simmetric finite nucleus was calculated. The Fermi Surface Diffusivity, was also calculated. Finally, from the relation between this theory and the pertubation theory, we have done some considerations about the viability on the local densities expansion for energy functionals. (author) [pt

  14. Semiclassical shell structure and nuclear double-humped fission barriers

    Directory of Open Access Journals (Sweden)

    A. G. Magner

    2010-09-01

    Full Text Available We derived the semiclassical trace formulas for the level density as sums over periodic-orbit families and isolated orbits within the improved stationary phase method. Averaged level-density shell corrections and shell-structure energies are continuous through all symmetry-breaking (bifurcation points with the correct asymptotics of the standard stationary phase approach accounting for continuous symmetries. We found enhancement of the nuclear shell structure near bifurcations in the superdeformed region. Our semiclassical results for the averaged level densities with the gross-shell and more thin-shell structures and the energy shell corrections for critical deformations are in good agreement with the quantum calculations for several single-particle Hamiltonians, in particular for the potentials with a sharp spheroidal shape. Enhancement of the shell structure owing to bifurcations of the shortest 3-dimensional orbits from equatorial orbits is responsible for the second well of fission barrier in a superdeformation region.

  15. Semiclassical force for electroweak baryogenesis three-dimensional derivation

    CERN Document Server

    Kainulainen, K; Schmidt, M G; Weinstock, S; Kainulainen, Kimmo; Prokopec, Tomislav; Schmidt, Michael G.; Weinstock, Steffen

    2002-01-01

    We derive a semiclassical transport equation for fermions propagating in the presence of a CP-violating planar bubble wall at a first order electroweak phase transition. Starting from the Kadanoff-Baym (KB) equation for the two-point (Wightman) function we perform an expansion in gradients, or equivalently in the Planck constant h-bar. We show that to first order in h-bar the KB equations have a spectral solution, which allows for an on-shell description of the plasma excitations. The CP-violating force acting on these excitations is found to be enhanced by a boost factor in comparison with the 1+1-dimensional case studied in a former paper. We find that an identical semiclassical force can be obtained by the WKB method. Applications to the MSSM are also mentioned.

  16. Classical properties and semiclassical quantization of a spherical nuclear potential

    International Nuclear Information System (INIS)

    Carbonell, J.; Brut, F.; Arvieu, R.; Touchard, J.

    1984-03-01

    The geometrical properties of the classical energy-action surface are studied for a nuclear Woods-Saxon-like spherical potential, in connection with the E.B.K. semiclassical method of quantization. Comparisons are made with other well known cases: the spherical harmonic oscillator and the spherical billiard. The shift of single particle energies from A = 208 to A = 16 is calculated by a simple method inspired by the Erhenfest adiabatic invariants. Semiclassical results are then compared with exact Schroedinger energies. It is seen that the most significant features of the single particle spectrum are explained by local properties of the energy action surface (curvature, slope) and by their evolution with the particle number

  17. Semiclassical and quantum motions on the non-commutative plane

    International Nuclear Information System (INIS)

    Baldiotti, M.C.; Gazeau, J.P.; Gitman, D.M.

    2009-01-01

    We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a θ-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man'ko states and circular squeezed states. The relation between these states and the 'classical' trajectories is investigated, and we present numerical explorations of some semiclassical quantities.

  18. Semiclassical and quantum motions on the non-commutative plane

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M.C., E-mail: baldiott@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Gazeau, J.P., E-mail: gazeau@apc.univ-paris7.f [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Gitman, D.M., E-mail: gitman@dfn.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)

    2009-10-19

    We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a theta-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man'ko states and circular squeezed states. The relation between these states and the 'classical' trajectories is investigated, and we present numerical explorations of some semiclassical quantities.

  19. Quasinormal modes of semiclassical electrically charged black holes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Piedra, Owen Pavel [Departamento de Fisica y Quimica, Facultad de Mecanica, Universidad de Cienfuegos, Carretera a Rodas, km 4, Cuatro Caminos, Cienfuegos (Cuba); De Oliveira, Jeferson, E-mail: opavel@ucf.edu.cu, E-mail: jeferson@fma.if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, CP 66318, 05315-970, Sao Paulo (Brazil)

    2011-04-21

    We report the results concerning the influence of vacuum polarization due to quantum massive vector, scalar and spinor fields on the scalar sector of quasinormal modes in spherically symmetric charged black holes. The vacuum polarization from quantized fields produces a shift in the values of the quasinormal frequencies, and correspondingly the semiclassical system becomes a better oscillator with respect to the classical Reissner-Nordstroem black hole.

  20. Domain shape dependence of semiclassical corrections to energy

    International Nuclear Information System (INIS)

    Kwiatkowski, Grzegorz

    2017-01-01

    Stationary solution of a one-dimensional sine-Gordon system is embedded in a multidimensional theory with an explicitly finite domain in the added spatial dimensions. Semiclassical corrections to energy are calculated for a static kink solution with emphasis on the impact of the scale of the domain as well as the choice of boundary conditions on the results for a rectangular cross-section. (paper)

  1. Semiclassical eigenenergies in the wake of fast ions in solids

    International Nuclear Information System (INIS)

    Mueller, J.; Burgdoerfer, J.; Noid, D.W.

    1990-01-01

    We compare the semiclassical and quantum mechanical eigenenergies of an electron in the wake of a fast, highly charged ion traversing a solid. The classical dynamics of this system shows a transition from regular to chaotic motion as a function of the binding energy. The transition can also be seen in the quantal spectra. We find evidence for a connection between bifurcation of tori and disorder in the energy level sequences. 21 refs., 4 figs

  2. The Wigner transform and the semi-classical approximations

    International Nuclear Information System (INIS)

    Shlomo, S.

    1985-01-01

    The Wigner transform provides a reformulation of quantum mechanics in terms of classical concepts. Some properties of the Wigner transform of the density matrix which justify its interpretation as the quantum-mechanical analog of the classical phase-space distribution function are presented. Considering some applications, it is demonstrated that the Wigner distribution function serves as a good starting point for semi-classical approximations to properties of the (nuclear) many-body system

  3. Semiclassical interpretation of the Aharonov-Bohm effect

    International Nuclear Information System (INIS)

    Weisz, J.F.

    1990-10-01

    A semiclassical calculation gives the exact answer for the Aharonov-Bohm phase shift due to a magnetic field; either in free space or in metallic or semiconducting rings. The magnetic vector potential is not required. The effect is interpretable as a special case of energy conservation involving the Lorentz force. The effect is nonlocal because conservation of energy is nonlocal. (author). 11 refs, 2 figs

  4. Spectral statistics in semiclassical random-matrix ensembles

    International Nuclear Information System (INIS)

    Feingold, M.; Leitner, D.M.; Wilkinson, M.

    1991-01-01

    A novel random-matrix ensemble is introduced which mimics the global structure inherent in the Hamiltonian matrices of autonomous, ergodic systems. Changes in its parameters induce a transition between a Poisson and a Wigner distribution for the level spacings, P(s). The intermediate distributions are uniquely determined by a single scaling variable. Semiclassical constraints force the ensemble to be in a regime with Wigner P(s) for systems with more than two freedoms

  5. Some applications of semiclassical methods to quantum chaos

    International Nuclear Information System (INIS)

    Mouchet, A.

    1996-01-01

    This thesis is made of four chapters. The first chapter is devoted to the description of the band structure, using the semiclassical periodic orbit theory, for a one electron system in a two-dimensional crystal with a high magnetic field perpendicular to the crystal plane. Complex orbits turn out to be fundamental for a proper description of the band structure since they incorporate conduction processes through tunneling mechanisms. In the second part, the author focuses on the role played in semiclassical expansions by complex orbits. They give exponentially small contribution when h is small only in a precise situation. In all other cases, complex orbits give birth to corrections in powers in h but unlike the extreme case they are hidden in the shadow of usual Gutzwiller contributions of real orbits. In the third chapter, a semiclassical expansion of the Berry two-form in terms of finite number of periodic orbits for a discrete chaotic map defined on a compact phase space and governed by external parameters is given. Besides, when dealing with a toroidal geometry, the author gives a similar expansion for the Chern index of any Bloch band of the quasi-energy spectrum and is thus led to a semiclassical interpretation of the Hall effect. In the last chapter, the author sets out a mechanism to explain how symmetries can create Berry phase shifts higher than 2π in a 3D-adiabatic transport. He shows how one can understand in a topological point of view why these shifts are necessarily integer multiple of 2π. An explicit construction of such arbitrary large phase shifts is finally proposed. (N.T.)

  6. Quantum Bound to Chaos and the Semiclassical Limit

    Science.gov (United States)

    Kurchan, Jorge

    2018-06-01

    We discuss the quantum bound on chaos in the context of the free propagation of a particle in an arbitrarily curved surface at low temperatures. The semiclassical calculation of the Lyapunov exponent can be performed in much the same way as the corresponding one for the `Loschmidt echo'. The bound appears here as the impossibility to scatter a wave, by effect of the curvature, over characteristic lengths smaller than the deBroglie wavelength.

  7. A wave propagation matrix method in semiclassical theory

    International Nuclear Information System (INIS)

    Lee, S.Y.; Takigawa, N.

    1977-05-01

    A wave propagation matrix method is used to derive the semiclassical formulae of the multiturning point problem. A phase shift matrix and a barrier transformation matrix are introduced to describe the processes of a particle travelling through a potential well and crossing a potential barrier respectively. The wave propagation matrix is given by the products of phase shift matrices and barrier transformation matrices. The method to study scattering by surface transparent potentials and the Bloch wave in solids is then applied

  8. Chaos in the Dicke model: quantum and semiclassical analysis

    International Nuclear Information System (INIS)

    Bastarrachea-Magnani, Miguel Angel; Hirsch, Jorge G; López-del-Carpio, Baldemar; Lerma-Hernández, Sergio

    2015-01-01

    The emergence of chaos in an atom-field system is studied employing both semiclassical and numerical quantum techniques, taking advantage of the algebraic character of the Hamiltonian. A semiclassical Hamiltonian is obtained by considering the expectation value of the quantum Hamiltonian in Glauber (for the field) and Bloch (for the atoms) coherent states. Regular and chaotic regions are identified by looking at the Poincaré sections for different energies and parameter values. An analytical expression for the semiclassical energy density of states is obtained by integrating the available phase space, which provides an exact unfolding to extract the fluctuations in the level statistics. Quantum chaos is recognized in these fluctuations, as a function of the coupling strength, for different regions in the energy spectrum, evaluating the Anderson–Darling (A–D) parameter, which distinguishes the Wigner- or Poisson-like distributions. Peres lattices play a role similar to the Poincaré section for quantum states. They are calculated employing efficient numerical solutions and are a powerful visual tool to identify individual states belonging to a regular or chaotic region, classified by utilizing the Poincaré sections and the A–D parameter. Finally, the quantum Husimi function for selected excited states is shown to have a noticeable similitude with the Poincaré sections at the same energy. (invited comment)

  9. Reverse-time Migration in Tilted Transversely Isotropic Media with Decoupled Equations

    KAUST Repository

    Zhan, Ge

    2012-12-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, I extend these decoupled equations for modeling and reverse-time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral (PS) method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled P-wave equation remain numerically stable even for models with strong anisotropy and sharp contrasts. The most desirable feature of the TTI decoupled P-wave equation is that it is absolutely free of shear-wave artifacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield extrapolation at each time step, the computational cost is also high, and thereby hampers its prevalence. I hereby propose to use a hybrid pseudospectral and finite-difference (FD) scheme to solve the TTI decoupled P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the

  10. Particle on a torus knot: Constrained dynamics and semi-classical quantization in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Das, Praloy, E-mail: praloydasdurgapur@gmail.com; Pramanik, Souvik, E-mail: souvick.in@gmail.com; Ghosh, Subir, E-mail: subirghosh20@gmail.com

    2016-11-15

    Kinematics and dynamics of a particle moving on a torus knot poses an interesting problem as a constrained system. In the first part of the paper we have derived the modified symplectic structure or Dirac brackets of the above model in Dirac’s Hamiltonian framework, both in toroidal and Cartesian coordinate systems. This algebra has been used to study the dynamics, in particular small fluctuations in motion around a specific torus. The spatial symmetries of the system have also been studied. In the second part of the paper we have considered the quantum theory of a charge moving in a torus knot in the presence of a uniform magnetic field along the axis of the torus in a semiclassical quantization framework. We exploit the Einstein–Brillouin–Keller (EBK) scheme of quantization that is appropriate for multidimensional systems. Embedding of the knot on a specific torus is inherently two dimensional that gives rise to two quantization conditions. This shows that although the system, after imposing the knot condition reduces to a one dimensional system, even then it has manifested non-planar features which shows up again in the study of fractional angular momentum. Finally we compare the results obtained from EBK (multi-dimensional) and Bohr–Sommerfeld (single dimensional) schemes. The energy levels and fractional spin depend on the torus knot parameters that specifies its non-planar features. Interestingly, we show that there can be non-planar corrections to the planar anyon-like fractional spin.

  11. Multiple Antenna Systems with Inherently Decoupled Radiators

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Knudsen, Mikael B.; Pedersen, Gert Frølund

    2012-01-01

    In multiple antenna systems mutual coupling needs to be minimized. We propose an alternative novel decoupling technique, investigating several multiple antenna configurations for small handsets through measurements and numerical simulations. The influence of different novel designs on performance...... metrics such as total loss, antenna isolation and envelope correlation coefficient are investigated. By varying antenna impedance bandwidth and antenna location with respect to the handset, both Planar Inverted F Antenna (PIFA) and Inverted F Antennas (IFA) were investigated in different UMTS frequency...

  12. Decoupling of charm beyond leading order

    OpenAIRE

    Knechtli, Francesco; Korzec, Tomasz; Leder, Björn; Moir, Graham

    2017-01-01

    We study the effective theory of decoupling of a charm quark at low energies. We do this by simulating a model, QCD with two mass-degenerate charm quarks. At leading order the effective theory is a pure gauge theory. By computing ratios of hadronic scales we have direct access to the power corrections in the effective theory. We show that these corrections follow the expected leading behavior, which is quadratic in the inverse charm quark mass.

  13. Delayed Antiwindup Control Using a Decoupling Structure

    Directory of Open Access Journals (Sweden)

    Huawei Zhu

    2013-01-01

    Full Text Available This paper investigates the antiwindup (AW control problem for plants with input saturation. The AW compensator is not activated as soon as input saturation occurs as usual. A delayed decoupling structure is first proposed. Then, appropriate linear matrix inequalities (LMIs are developed to determine a plant-order AW compensator. Effectiveness of the presented AW technique is illustrated by a fighter aircraft model.

  14. Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow

    KAUST Repository

    Kou, Jisheng

    2017-12-06

    In this paper, for the first time we propose two linear, decoupled, energy-stable numerical schemes for multi-component two-phase compressible flow with a realistic equation of state (e.g. Peng-Robinson equation of state). The methods are constructed based on the scalar auxiliary variable (SAV) approaches for Helmholtz free energy and the intermediate velocities that are designed to decouple the tight relationship between velocity and molar densities. The intermediate velocities are also involved in the discrete momentum equation to ensure a consistency relationship with the mass balance equations. Moreover, we propose a component-wise SAV approach for a multi-component fluid, which requires solving a sequence of linear, separate mass balance equations. We prove that the methods have the unconditional energy-dissipation feature. Numerical results are presented to verify the effectiveness of the proposed methods.

  15. The MSSM with large tan(beta) beyond the decoupling limit

    International Nuclear Information System (INIS)

    Hofer, L.; Scherer, D.; Nierste, U.

    2009-01-01

    If the parameter tan(beta) of the MSSM is large, enhanced loop corrections must be resumed to all orders in perturbation theory. We perform this resummation for flavour-diagonal and flavour-violating tan-beta-enhanced corrections without resorting to the decoupling limit, in which the MSSM is reduced to an effective 2HDM. Our results enable us to clarify the dependence of the resumed expressions on the renormalization scheme and to cover two new classes of processes with supersymmetric particles, which are both intractable with the conventional effective-2HDM method: The first class are collider processes with external supersymmetric particles; the second class are loop processes which vanish in the decoupling limit of supersymmetry. Applying the resummation formulae to FCNC processes in B physics, we find an interesting new effect in observables in which the chromomagnetic effective operator is important. (author)

  16. Scale-invariant curvature fluctuations from an extended semiclassical gravity

    Energy Technology Data Exchange (ETDEWEB)

    Pinamonti, Nicola, E-mail: pinamont@dima.unige.it, E-mail: siemssen@dima.unige.it [Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genova (Italy); INFN Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Siemssen, Daniel, E-mail: pinamont@dima.unige.it, E-mail: siemssen@dima.unige.it [Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genova (Italy)

    2015-02-15

    We present an extension of the semiclassical Einstein equations which couple n-point correlation functions of a stochastic Einstein tensor to the n-point functions of the quantum stress-energy tensor. We apply this extension to calculate the quantum fluctuations during an inflationary period, where we take as a model a massive conformally coupled scalar field on a perturbed de Sitter space and describe how a renormalization independent, almost-scale-invariant power spectrum of the scalar metric perturbation is produced. Furthermore, we discuss how this model yields a natural basis for the calculation of non-Gaussianities of the considered metric fluctuations.

  17. Semiclassical theory of magnetoresistance in positionally disordered organic semiconductors

    Science.gov (United States)

    Harmon, N. J.; Flatté, M. E.

    2012-02-01

    A recently introduced percolative theory of unipolar organic magnetoresistance is generalized by treating the hyperfine interaction semiclassically for an arbitrary hopping rate. Compact analytic results for the magnetoresistance are achievable when carrier hopping occurs much more frequently than the hyperfine field precession period. In other regimes the magnetoresistance can be straightforwardly evaluated numerically. Slow and fast hopping magnetoresistance are found to be uniquely characterized by their line shapes. We find that the threshold hopping distance is analogous a phenomenological two-site model's branching parameter, and that the distinction between slow and fast hopping is contingent on the threshold hopping distance.

  18. Electron self-mass in the semiclassical limit

    International Nuclear Information System (INIS)

    Pradham, T.; Khare, A.

    1978-01-01

    The semiclassical limit of the electron self-mass, which is the first order term in an expansion of the exact Dyson self-mass in powers of h/2π, is calculated. The result is quadratically divergent in the limit of the cut-off radius tending to zero. It is noted that the present result is quantum mechanical in the same sense as any WKB result and is exact to all orders in e 2 , in contrast to the logarithmically divergent self-mass given by other resuls. (U.K.)

  19. Quadratic Forms and Semiclassical Eigenfunction Hypothesis for Flat Tori

    Science.gov (United States)

    T. Sardari, Naser

    2018-03-01

    Let Q( X) be any integral primitive positive definite quadratic form in k variables, where {k≥4}, and discriminant D. For any integer n, we give an upper bound on the number of integral solutions of Q( X) = n in terms of n, k, and D. As a corollary, we prove a conjecture of Lester and Rudnick on the small scale equidistribution of almost all functions belonging to any orthonormal basis of a given eigenspace of the Laplacian on the flat torus {T^d} for {d≥ 5}. This conjecture is motivated by the work of Berry [2,3] on the semiclassical eigenfunction hypothesis.

  20. Semiclassical electronic transport in MnAs thin films

    International Nuclear Information System (INIS)

    Helman, C.; Milano, J.; Steren, L.; Llois, A.M.

    2008-01-01

    Magneto-transport experiments have been recently performed on MnAs thin films. Hall effect and transverse magnetoresistance measurements have shown interesting and, until now, unknown results. For instance, the transverse magnetoresistance shows no saturation in the presence of very high magnetic fields. In order to understand the contribution of the electronic band structure to the non-saturating magnetoresistance, we perform ab initio calculations, using the Wien2K code and analyze the magneto-transport properties within the semiclassical approximation. We show that non-saturation may be due to the presence of open orbits on the majority Fermi surface

  1. Semiclassical electronic transport in MnAs thin films

    Energy Technology Data Exchange (ETDEWEB)

    Helman, C. [Dpto de Fisica, ' Juan Jose Giambiagi' , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Unidad de Actividad Fisica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Buenos Aires (Argentina)], E-mail: helman@tandar.cnea.gov.ar; Milano, J.; Steren, L. [Departamento de Fisica, Centro Atomico Bariloche, Comision Nacional de Energia Atomica, S.C. Bariloche (Argentina); Llois, A.M. [Dpto de Fisica, ' Juan Jose Giambiagi' , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Unidad de Actividad Fisica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    2008-07-15

    Magneto-transport experiments have been recently performed on MnAs thin films. Hall effect and transverse magnetoresistance measurements have shown interesting and, until now, unknown results. For instance, the transverse magnetoresistance shows no saturation in the presence of very high magnetic fields. In order to understand the contribution of the electronic band structure to the non-saturating magnetoresistance, we perform ab initio calculations, using the Wien2K code and analyze the magneto-transport properties within the semiclassical approximation. We show that non-saturation may be due to the presence of open orbits on the majority Fermi surface.

  2. Semiclassical Loop Quantum Gravity and Black Hole Thermodynamics

    Directory of Open Access Journals (Sweden)

    Arundhati Dasgupta

    2013-02-01

    Full Text Available In this article we explore the origin of black hole thermodynamics using semiclassical states in loop quantum gravity. We re-examine the case of entropy using a density matrix for a coherent state and describe correlations across the horizon due to SU(2 intertwiners. We further show that Hawking radiation is a consequence of a non-Hermitian term in the evolution operator, which is necessary for entropy production or depletion at the horizon. This non-unitary evolution is also rooted in formulations of irreversible physics.

  3. Experimental studies by complementary terahertz techniques and semi-classical calculations of N2- broadening coefficients of CH335Cl

    International Nuclear Information System (INIS)

    Guinet, M.; Rohart, F.; Buldyreva, J.; Gupta, V.; Eliet, S.; Motiyenko, R.A.; Margulès, L.; Cuisset, A.; Hindle, F.; Mouret, G.

    2012-01-01

    Room-temperature N 2 -broadening coefficients of methyl chloride rotational lines are measured over a large interval of quantum numbers (6≤J≤50, 0≤K≤18) by a submillimeter frequency-multiplication chain (J≤31) and a terahertz photomixing continuous-wave spectrometer (J≥31). In order to check the accuracy of both techniques, the measurements of identical lines are compared for J=31. The pressure broadening coefficients are deduced from line fits using mainly a Voigt profile model. The excellent signal-to-noise ratio of the frequency-multiplication scheme highlights some speed dependence effect on the line shape. Theoretical values of these coefficients are calculated by a semi-classical approach with exact trajectories. An intermolecular potential including atom-atom interactions is used for the first time. It is shown that, contrary to the previous theoretical predictions, the contributions of short-range forces are important for all values of the rotational quantum numbers. Additional testing of modifications required in the semi-classical formalism for a correct application of the cumulant expansion is also performed. It is stated that the use of the cumulant average on the rotational states of the perturbing molecule leads, for high J and small K values, to slightly higher line-broadening coefficients, as expected for the relatively strong interacting CH 3 Cl-N 2 system. The excellent agreement between the theoretical and the experimental results ensures the reliability of these data.

  4. Experimental studies by complementary terahertz techniques and semi-classical calculations of N2- broadening coefficients of CH335Cl

    Science.gov (United States)

    Guinet, M.; Rohart, F.; Buldyreva, J.; Gupta, V.; Eliet, S.; Motiyenko, R. A.; Margulès, L.; Cuisset, A.; Hindle, F.; Mouret, G.

    2012-07-01

    Room-temperature N2-broadening coefficients of methyl chloride rotational lines are measured over a large interval of quantum numbers (6≤J≤50, 0≤K≤18) by a submillimeter frequency-multiplication chain (J≤31) and a terahertz photomixing continuous-wave spectrometer (J≥31). In order to check the accuracy of both techniques, the measurements of identical lines are compared for J=31. The pressure broadening coefficients are deduced from line fits using mainly a Voigt profile model. The excellent signal-to-noise ratio of the frequency-multiplication scheme highlights some speed dependence effect on the line shape. Theoretical values of these coefficients are calculated by a semi-classical approach with exact trajectories. An intermolecular potential including atom-atom interactions is used for the first time. It is shown that, contrary to the previous theoretical predictions, the contributions of short-range forces are important for all values of the rotational quantum numbers. Additional testing of modifications required in the semi-classical formalism for a correct application of the cumulant expansion is also performed. It is stated that the use of the cumulant average on the rotational states of the perturbing molecule leads, for high J and small K values, to slightly higher line-broadening coefficients, as expected for the relatively strong interacting CH3Cl-N2 system. The excellent agreement between the theoretical and the experimental results ensures the reliability of these data.

  5. Decoupling mechanisms-paying for conservation

    Energy Technology Data Exchange (ETDEWEB)

    Cross, P.S.

    1993-07-15

    In 1988, the National Association of Regulatory Utility Commissioners issued a policy statement that said [open quotes]ratemaking practices should align utilities' pursuit of profit with least-cost planning.[close quotes] This policy coincided with then-current thinkingg at a number of state commissions about the much-touted goal of encouraging utilities to invest in conservation, or demand-side management (DSM) programs, rather than in generating resources to meet system load requirements. Besides utility concerns about recovering conservation program investments, regulators also notices a built-in [open quotes]disincentive[close quotes] to investment in the traditional ratemaking format: If profit is tied to sales, then utilities will always shy away from aggressively promoting conservation. Or so the thinkin went. [open quotes]Decoupling mechanisms[close quotes] were born to remove this disincentive. A number of states have implemented these mechanisms, while several others are investigating the issue. One chief drawback of the mechanisms is that if sales go down, rates go up to cover the shortfall. (Of course, rates go down if sales exceed forecasted levels.) A major problem has been that rate increases have occurred at exactly the wrong time, during economic slowdowns when utilities are struggling to retain price-sensitive customers and residential ratepayers are least likely to bear with quiet stoicism the burden placed on family budgets. Decoupling is seen by some as a step backwards in the move to competitive regulatory reforms that seek to encourage utilities to behave like free-market companies. Indeed, the newest decoupling mechanisms face serious challenge.

  6. Open string decoupling and tachyon condensation

    International Nuclear Information System (INIS)

    Chalmers, G.

    2001-01-01

    The amplitudes in perturbative open string theory are examined as functions of the tachyon condensate parameter. The boundary state formalism demonstrates the decoupling of the open string modes at the non-perturbative minima of the tachyon potential via a degeneration of open world-sheets and identifies an independence of the coupling constants g s and g YM at general values of the tachyon condensate. The closed sector is generated at the quantum level; it is also generated at the classical level through the condensation of the propagating open string modes on the D-brane degrees of freedom.

  7. Decoupling from international food safety standards

    DEFF Research Database (Denmark)

    Mercado, Geovana; Hjortsø, Carsten Nico; Honig, Benson

    2018-01-01

    rural producers who, grounded in culturally-embedded food safety conceptions, face difficulties in complying. We address this gap here through a multiple case study involving four public school feeding programs that source meals from local rural providers in the Bolivian Altiplan. Institutional logics...... in the market. These include: (1) partial adoption of formal rules; (2) selective adoption of convenient rules; and (3) ceremonial adoption to avoid compliance. Decoupling strategies allow local actors to largely disregard the formal food safety regulations while accommodating traditional cultural practices...

  8. A self-consistent semiclassical sum rule approach to the average properties of giant resonances

    International Nuclear Information System (INIS)

    Li Guoqiang; Xu Gongou

    1990-01-01

    The average energies of isovector giant resonances and the widths of isoscalar giant resonances are evaluated with the help of a self-consistent semiclassical Sum rule approach. The comparison of the present results with the experimental ones justifies the self-consistent semiclassical sum rule approach to the average properties of giant resonances

  9. Semiclassical relations and IR effects in de Sitter and slow-roll space-times

    DEFF Research Database (Denmark)

    B. Giddings, Steven; Sloth, Martin Snoager

    2010-01-01

    We calculate IR divergent graviton one-loop corrections to scalar correlators in de Sitter space, and show that the leading IR contribution may be reproduced via simple semiclassical consistency relations. One can likewise use such semiclassical relations to calculate leading IR corrections to co...... with a sharp perturbative calculation of "missing information" in Hawking radiation....

  10. Quantum versus semiclassical description of self-trapping: Anharmonic effects

    International Nuclear Information System (INIS)

    Raghavan, S.; Bishop, A.R.; Kenkre, V.M.

    1999-01-01

    Self-trapping has been traditionally studied on the assumption that quasiparticles interact with harmonic phonons and that this interaction is linear in the displacement of the phonon. To complement recent semiclassical studies of anharmonicity and nonlinearity in this context, we present below a fully quantum-mechanical analysis of a two-site system, where the oscillator is described by a tunably anharmonic potential, with a square well with infinite walls and the harmonic potential as its extreme limits, and wherein the interaction is nonlinear in the oscillator displacement. We find that even highly anharmonic polarons behave similar to their harmonic counterparts in that self-trapping is preserved for long times in the limit of strong coupling, and that the polaronic tunneling time scale depends exponentially on the polaron binding energy. Further, in agreement, with earlier results related to harmonic polarons, the semiclassical approximation agrees with the full quantum result in the massive oscillator limit of small oscillator frequency and strong quasiparticle-oscillator coupling. copyright 1999 The American Physical Society

  11. Gaussian and 1/N approximations in semiclassical cosmology

    International Nuclear Information System (INIS)

    Mazzitelli, F.D.; Paz, J.P.

    1989-01-01

    We study the λphi 4 theory and the interacting O(N) model in a curved background using the Gaussian approximation for the former and the large-N approximation for the latter. We obtain the renormalized version of the semiclassical Einstein equations having in mind a future application of these models to investigate the physics of the very early Universe. We show that, while the Gaussian approximation has two different phases, in the large-N limit only one is present. The different features of the two phases are analyzed at the level of the effective field equations. We discuss the initial-value problem and find the initial conditions that make the theory renormalizable. As an example, we study the de Sitter self-consistent solutions of the semiclassical Einstein equations. Finally, for an identically zero mean value of the field we find the evolution equations for the classical field Ω(x) = (λ 2 >)/sup 1/2/ and the spacetime metric. They are very similar to the ones obtained by replacing the classical potential by the one-loop effective potential in the classical equations but do not have the drawbacks of the one-loop approximation

  12. Semiclassical perturbation theory for diffraction in heavy atom surface scattering.

    Science.gov (United States)

    Miret-Artés, Salvador; Daon, Shauli; Pollak, Eli

    2012-05-28

    The semiclassical perturbation theory formalism of Hubbard and Miller [J. Chem. Phys. 78, 1801 (1983)] for atom surface scattering is used to explore the possibility of observation of heavy atom diffractive scattering. In the limit of vanishing ℏ the semiclassical theory is shown to reduce to the classical perturbation theory. The quantum diffraction pattern is sensitive to the characteristics of the beam of incoming particles. Necessary conditions for observation of quantum diffraction are derived for the angular width of the incoming beam. An analytic expression for the angular distribution as a function of the angular and momentum variance of the incoming beam is obtained. We show both analytically and through some numerical results that increasing the angular width of the incident beam leads to decoherence of the quantum diffraction peaks and one approaches the classical limit. However, the incoherence of the beam in the parallel direction does not destroy the diffraction pattern. We consider the specific example of Ar atoms scattered from a rigid LiF(100) surface.

  13. Semiclassical quantum gravity: statistics of combinatorial Riemannian geometries

    International Nuclear Information System (INIS)

    Bombelli, L.; Corichi, A.; Winkler, O.

    2005-01-01

    This paper is a contribution to the development of a framework, to be used in the context of semiclassical canonical quantum gravity, in which to frame questions about the correspondence between discrete spacetime structures at ''quantum scales'' and continuum, classical geometries at large scales. Such a correspondence can be meaningfully established when one has a ''semiclassical'' state in the underlying quantum gravity theory, and the uncertainties in the correspondence arise both from quantum fluctuations in this state and from the kinematical procedure of matching a smooth geometry to a discrete one. We focus on the latter type of uncertainty, and suggest the use of statistical geometry as a way to quantify it. With a cell complex as an example of discrete structure, we discuss how to construct quantities that define a smooth geometry, and how to estimate the associated uncertainties. We also comment briefly on how to combine our results with uncertainties in the underlying quantum state, and on their use when considering phenomenological aspects of quantum gravity. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  14. Sign and other aspects of semiclassical Casimir energies

    International Nuclear Information System (INIS)

    Schaden, Martin

    2006-01-01

    The Casimir energy of a massless scalar field is semiclassically given by contributions due to classical periodic rays. The required subtractions in the spectral density are determined explicitly. The semiclassical Casimir energies so defined coincide with those of zeta function regularization in the cases studied. Poles in the analytic continuation of zeta function regularization are related to nonuniversal subtractions in the spectral density. The sign of the Casimir energy of a scalar field on a smooth manifold is estimated by the sign of the contribution due to the shortest periodic rays only. Demanding continuity of the Casimir energy under small deformations of the manifold, the method is extended to integrable systems. The Casimir energy of a massless scalar field on a manifold with boundaries includes contributions due to periodic rays that lie entirely within the boundaries. These contributions in general depend on the boundary conditions. Although the Casimir energy due to a massless scalar field may be sensitive to the physical dimensions of manifolds with boundary. In favorable cases its sign can, contrary to conventional wisdom, be inferred without calculation of the Casimir energy

  15. Semiclassical calculation for collision induced dissociation. II. Morse oscillator model

    International Nuclear Information System (INIS)

    Rusinek, I.; Roberts, R.E.

    1978-01-01

    A recently developed semiclassical procedure for calculating collision induced dissociation probabilities P/sup diss/ is applied to the collinear collision between a particle and a Morse oscillator diatomic. The particle--diatom interaction is described with a repulsive exponential potential function. P/sup diss/ is reported for a system of three identical particles, as a function of collision energy E/sub t/ and initial vibrational state of the diatomic n 1 . The results are compared with the previously reported values for the collision between a particle and a truncated harmonic oscillator. The two studies show similar features, namely: (a) there is an oscillatory structure in the P/sup diss/ energy profiles, which is directly related to n 1 ; (b) P/sup diss/ becomes noticeable (> or approx. =10 -3 ) for E/sub t/ values appreciably higher than the energetic threshold; (c) vibrational enhancement (inhibition) of collision induced dissociation persists at low (high) energies; and (d) good agreement between the classical and semiclassical results is found above the classical dynamic threshold. Finally, the convergence of P/sup diss/ for increasing box length is shown to be rapid and satisfactory

  16. Diffraction and angular momentum effects in semiclassical atomic scattering theory

    International Nuclear Information System (INIS)

    Russek, A.

    1979-01-01

    The semiclassical scattering theory of Mott and Massey and Ford and Wheeler is here extended to multichannel scattering as occurs at a crossing or pseudocrossing of the transient molecule formed by the colliding atoms. The generalized theory incorporates both interference and diffraction phenomena, but the emphasis in this work is on diffraction. For small-angle scattering, diffraction effects become broader, not narrower, as the collision energy increases: ΔbΔtau > or = h[E/sub inc//(2m)]/sup 1/2/ relates the uncertainties in impact parameter b and reduced scattering angle tau = E/sub inc/theta, and determines the range in b required to resolve a structure in the deflection function of height Δtau. In the kilovolt range of collision energies, the effects of local maxima and minima in the deflection function are washed out, and the Airy-function approximation of Ford and Wheeler is inappropriate to describe the differential cross section. More generally, it is shown that at keV collision energies the stationary-phase approximation, heretofore essential in the reduction to the semiclassical limit, breaks down in the vicinity of a level crossing. An approximate theorem is proposed which remains valid in this region and elsewhere reduces to the standard stationary-phase approximation. Several illustrative examples are considered. A separate development treats the effect on the differential scattering cross section of a change in electronic angular momentum when electronic excitation occurs

  17. Cross-modal decoupling in temporal attention.

    Science.gov (United States)

    Mühlberg, Stefanie; Oriolo, Giovanni; Soto-Faraco, Salvador

    2014-06-01

    Prior studies have repeatedly reported behavioural benefits to events occurring at attended, compared to unattended, points in time. It has been suggested that, as for spatial orienting, temporal orienting of attention spreads across sensory modalities in a synergistic fashion. However, the consequences of cross-modal temporal orienting of attention remain poorly understood. One challenge is that the passage of time leads to an increase in event predictability throughout a trial, thus making it difficult to interpret possible effects (or lack thereof). Here we used a design that avoids complete temporal predictability to investigate whether attending to a sensory modality (vision or touch) at a point in time confers beneficial access to events in the other, non-attended, sensory modality (touch or vision, respectively). In contrast to previous studies and to what happens with spatial attention, we found that events in one (unattended) modality do not automatically benefit from happening at the time point when another modality is expected. Instead, it seems that attention can be deployed in time with relative independence for different sensory modalities. Based on these findings, we argue that temporal orienting of attention can be cross-modally decoupled in order to flexibly react according to the environmental demands, and that the efficiency of this selective decoupling unfolds in time. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Decoupled Multicamera Sensing for Flexible View Generation

    Directory of Open Access Journals (Sweden)

    Vivek K. Singh

    2016-01-01

    Full Text Available Any sensing paradigm has three important components, namely, the actor, the sensor, and the environment. Traditionally, the sensors have been attached to either the actor or the environment. This restricts the kind of sensing that can be undertaken. We study a newer decoupled sensing paradigm, which separates the sensors from both the actor and the environment and tremendously increases the flexibility with which the scenes can be viewed. For example, instead of showing just one view, “how the environment sees the actor” or “how the actor sees the environment,” a viewer can choose to see either one or both of these views and even choose to see the scene from any desired position in any desired direction. We describe a methodology using mobile autonomous sensors to undertake such decoupled sensing and study the feasible number as well as the placement of such sensors. Also, we describe how the sensors can coordinate their movements around a moving actor so as to continue capturing the required views with minimum overall cost. The practical results obtained demonstrate the viability of the proposed approach.

  19. Decoupling of Solid 4He Layers under the Superfluid Overlayer

    Science.gov (United States)

    Ishibashi, Kenji; Hiraide, Jo; Taniguchi, Junko; Suzuki, Masaru

    2018-03-01

    It has been reported that in a large oscillation amplitude, the mass decoupling of multilayer 4He films adsorbed on graphite results from the depinning of the second solid atomic layer. This decoupling suddenly vanishes below a certain low temperature TD due to the cancellation of mass decoupling by the superfluid counterflow of the the overylayer. We studied the relaxation of the depinned state at various temperatures, after reduction of oscillation amplitude below TD . It was found that above the superfluid transition temperature the mass decoupling revives with a relaxation time of several 100 s. It strongly supports that the depinned state of the second solid atomic layer remains underneath the superfluid overlayer.

  20. Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics

    International Nuclear Information System (INIS)

    White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry

    2014-01-01

    Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement

  1. Comparative role of potential structure in classical, semiclassical, and quantum mechanics

    International Nuclear Information System (INIS)

    Judson, R.S.; Shi, S.; Rabitz, H.

    1989-01-01

    The corresponding effects of features in the potential on classical, semiclassical, and quantum mechanics are probed using the technique of functional sensitivity analysis. It is shown that the classical and quantum functional sensitivities are equivalent in the classical (small (h/2π)) and harmonic limits. Classical and quantum mechanics are known to react in qualitatively similar ways provided that features on the potential are smooth on the length scale of oscillations in the quantum wave function. By using functional sensitivity analysis, we are able to show in detail how the classical and quantum dynamics differ in the way that they sense the potential. Two examples are given, the first of which is the harmonic oscillator. This problem is well understood by other means but is useful to examine because it illustrates the detailed information about the interaction of the potential and the dynamics which can be provided by functional sensitivity analysis, simplifying the analysis of more complex systems. The second example is the collinear H+H 2 reaction. In that case there are a number of detailed and striking differences between the ways that classical and quantum mechanics react to features on the potential. For features which are broad compared to oscillations in the wave function, the two react in qualitatively the same way. The sensitivities are oscillatory, however, and there are phasing differences between the classical and quantum sensitivity functions. This means that using classical mechanics plus experimental data in an inversion scheme intended to find the ''true'' potential will necessarily introduce sizeable errors

  2. Quantum and semiclassical spin networks: from atomic and molecular physics to quantum computing and gravity

    Science.gov (United States)

    Aquilanti, Vincenzo; Bitencourt, Ana Carla P.; Ferreira, Cristiane da S.; Marzuoli, Annalisa; Ragni, Mirco

    2008-11-01

    The mathematical apparatus of quantum-mechanical angular momentum (re)coupling, developed originally to describe spectroscopic phenomena in atomic, molecular, optical and nuclear physics, is embedded in modern algebraic settings which emphasize the underlying combinatorial aspects. SU(2) recoupling theory, involving Wigner's 3nj symbols, as well as the related problems of their calculations, general properties, asymptotic limits for large entries, nowadays plays a prominent role also in quantum gravity and quantum computing applications. We refer to the ingredients of this theory—and of its extension to other Lie and quantum groups—by using the collective term of 'spin networks'. Recent progress is recorded about the already established connections with the mathematical theory of discrete orthogonal polynomials (the so-called Askey scheme), providing powerful tools based on asymptotic expansions, which correspond on the physical side to various levels of semi-classical limits. These results are useful not only in theoretical molecular physics but also in motivating algorithms for the computationally demanding problems of molecular dynamics and chemical reaction theory, where large angular momenta are typically involved. As for quantum chemistry, applications of these techniques include selection and classification of complete orthogonal basis sets in atomic and molecular problems, either in configuration space (Sturmian orbitals) or in momentum space. In this paper, we list and discuss some aspects of these developments—such as for instance the hyperquantization algorithm—as well as a few applications to quantum gravity and topology, thus providing evidence of a unifying background structure.

  3. Reconciling semiclassical and Bohmian mechanics. II. Scattering states for discontinuous potentials

    International Nuclear Information System (INIS)

    Trahan, Corey; Poirier, Bill

    2006-01-01

    In a previous paper [B. Poirier, J. Chem. Phys. 121, 4501 (2004)] a unique bipolar decomposition, Ψ=Ψ 1 +Ψ 2 , was presented for stationary bound states Ψ of the one-dimensional Schroedinger equation, such that the components Ψ 1 and Ψ 2 approach their semiclassical WKB analogs in the large action limit. Moreover, by applying the Madelung-Bohm ansatz to the components rather than to Ψ itself, the resultant bipolar Bohmian mechanical formulation satisfies the correspondence principle. As a result, the bipolar quantum trajectories are classical-like and well behaved, even when Ψ has many nodes or is wildly oscillatory. In this paper, the previous decomposition scheme is modified in order to achieve the same desirable properties for stationary scattering states. Discontinuous potential systems are considered (hard wall, step potential, and square barrier/well), for which the bipolar quantum potential is found to be zero everywhere, except at the discontinuities. This approach leads to an exact numerical method for computing stationary scattering states of any desired boundary conditions, and reflection and transmission probabilities. The continuous potential case will be considered in a companion paper [C. Trahan and B. Poirier, J. Chem. Phys. 124, 034116 (2006), following paper

  4. Colour schemes

    DEFF Research Database (Denmark)

    van Leeuwen, Theo

    2013-01-01

    This chapter presents a framework for analysing colour schemes based on a parametric approach that includes not only hue, value and saturation, but also purity, transparency, luminosity, luminescence, lustre, modulation and differentiation.......This chapter presents a framework for analysing colour schemes based on a parametric approach that includes not only hue, value and saturation, but also purity, transparency, luminosity, luminescence, lustre, modulation and differentiation....

  5. Numerical approaches to complex quantum, semiclassical and classical systems

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Gerald

    2008-11-03

    In this work we analyse the capabilities of several numerical techniques for the description of different physical systems. Thereby, the considered systems range from quantum over semiclassical to classical and from few- to many-particle systems. In chapter 1 we investigate the behaviour of a single quantum particle in the presence of an external disordered background (static potentials). Starting from the quantum percolation problem, we address the fundamental question of a disorder induced (Anderson-) transition from extended to localised single-particle eigenstates. Distinguishing isolating from conducting states by applying a local distribution approach for the local density of states (LDOS), we detect the quantum percolation threshold in two- and three-dimensions. Extending the quantum percolation model to a quantum random resistor model, we comment on the possible relevance of our results to the influence of disorder on the conductivity in graphene sheets. For the calculation of the LDOS as well as for the Chebyshev expansion of the time evolution operator, the kernel polynomial method (KPM) is the key numerical technique. In chapter 2 we examine how a single quantum particle is influenced by retarded bosonic fields that are inherent to the system. Within the Holstein model, these bosonic degrees of freedom (phonons) give rise to an infinite dimensional Hilbert space, posing a true many-particle problem. Constituting a minimal model for polaron formation, the Holstein model allows us to study the optical absorption and activated transport in polaronic systems. Using a two-dimensional variant of the KPM, we calculate for the first time quasi-exactly the optical absorption and dc-conductivity as a function of temperature. In chapter 3 we come back to the time evolution of a quantum particle in an external, static potential and investigate the capability of semiclassical approximations to it. We address basic quantum effects as tunneling, interference and

  6. Numerical approaches to complex quantum, semiclassical and classical systems

    International Nuclear Information System (INIS)

    Schubert, Gerald

    2008-01-01

    In this work we analyse the capabilities of several numerical techniques for the description of different physical systems. Thereby, the considered systems range from quantum over semiclassical to classical and from few- to many-particle systems. In chapter 1 we investigate the behaviour of a single quantum particle in the presence of an external disordered background (static potentials). Starting from the quantum percolation problem, we address the fundamental question of a disorder induced (Anderson-) transition from extended to localised single-particle eigenstates. Distinguishing isolating from conducting states by applying a local distribution approach for the local density of states (LDOS), we detect the quantum percolation threshold in two- and three-dimensions. Extending the quantum percolation model to a quantum random resistor model, we comment on the possible relevance of our results to the influence of disorder on the conductivity in graphene sheets. For the calculation of the LDOS as well as for the Chebyshev expansion of the time evolution operator, the kernel polynomial method (KPM) is the key numerical technique. In chapter 2 we examine how a single quantum particle is influenced by retarded bosonic fields that are inherent to the system. Within the Holstein model, these bosonic degrees of freedom (phonons) give rise to an infinite dimensional Hilbert space, posing a true many-particle problem. Constituting a minimal model for polaron formation, the Holstein model allows us to study the optical absorption and activated transport in polaronic systems. Using a two-dimensional variant of the KPM, we calculate for the first time quasi-exactly the optical absorption and dc-conductivity as a function of temperature. In chapter 3 we come back to the time evolution of a quantum particle in an external, static potential and investigate the capability of semiclassical approximations to it. We address basic quantum effects as tunneling, interference and

  7. Decoupling of CO2 emissions and GDP

    Directory of Open Access Journals (Sweden)

    Yves Rocha de Salles Lima

    2016-12-01

    Full Text Available The objetive of this work is to analyze the variation of CO2 emissions and GDP per capita throughout the years and identify the possible interaction between them. For this purpose, data from the International Energy Agency was collected on two countries, Brazil and the one with the highest GDP worldwide, the United States. Thus, the results showed that CO2 emissions have been following the country’s economic growth for many years. However, these two indicators have started to decouple in the US in 2007 while in Brazil the same happened in 2011. Furthermore, projections for CO2 emissions are made until 2040, considering 6 probable scenarios. These projections showed that even if the oil price decreases, the emissions will not be significantly affected as long as the economic growth does not decelerate.

  8. Gauge hierarchy, decoupling, and heavy particle effects

    International Nuclear Information System (INIS)

    Yao, York-Peng

    1981-01-01

    This chapter examines the problems of a large gauge hierarchy and decoupling in theories with spontaneously broken symmetry. Attempts to show, with regard to all orders in the loop expansion, that: once a proper identification is made of the light particles and of the heavy particles at the tree level, then such a division will be maintained order by order in the loop expansion without the necessity of fine tuning; there is a local renormalizable effective Lagrangian, composed of light fields only, which can be used to reproduce all the one light particle irreducible Green's functions; and a set of renormalization group equations can be written down, wherein one stays in the lower energy region to correlate the two sets of parameters in the full and the effective light theories. The appendix gives an algebraic rearrangement method which can be efficiently used to calculate the muon effects on the electron anomalous magnetic moment

  9. Development and test of decoupler for ICRF antenna in EAST

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gen, E-mail: chengen@ipp.ac.cn; Mao, Yuzhou; Zhao, Yanping; Yuan, Shuai; Zhang, Xinjun; Qing, Chengming

    2016-06-15

    Highlights: • The mechanism of decoupler for ICRF antenna is proposed. • Three candidate assembly positions for the decouper can be used. • The performance relies on the ohmic dissipation and the assembly position of decoupler. - Abstract: Ion Cyclotron Range of Frequency (ICRF) heating has been adopted in EAST tokamak as one of main auxiliary heating methods. The ICRF antenna usually consists of multiple launching elements because of limited port and space of tokamak device. Mutual coupling between straps has been observed in previous EAST ICRF current drive experiments. Due to adverse effects of such mutual coupling, many issues induced by cross power cannot be ignored, such as power imbalance in feed lines, high voltage standing wave ratio (VSWR), and etc. To restrain such mutual coupling, A device named decoupler was developed and tested in EAST ICRF system. According to the admittance matrix of load, three assembly positions (oscillation position, optimum position, and smooth position) along transmission line for the decoupler were taken into account and tested. The test results showed that ohmic dissipation in decoupler could not be neglected, which partly influenced the decoupling performance. The oscillation position and optimum position could restrain such adverse effects of ohmic dissipation and showed good decoupling performance. However, they cannot ensure the steady operation during H-mod due to the load variation. Finally, the smooth position has been adopted for EAST I port antenna because of steady decoupling performance comprised with engineering error and load resilience, which sincerely enhance the capability of system operation.

  10. Adaptive decoupled power control method for inverter connected DG

    DEFF Research Database (Denmark)

    Sun, Xiaofeng; Tian, Yanjun; Chen, Zhe

    2014-01-01

    an adaptive droop control method based on online evaluation of power decouple matrix for inverter connected distributed generations in distribution system. Traditional decoupled power control is simply based on line impedance parameter, but the load characteristics also cause the power coupling, and alter...

  11. Optimal Temporal Decoupling in Task Scheduling with Preferences

    NARCIS (Netherlands)

    Endhoven, L.; Klos, T.B.; Witteveen, C.

    2011-01-01

    Multi-agent planning and scheduling concerns finding a joint plan to achieve some set of common goals with several independent agents each aiming to find a plan or schedule for their part of the goals. To avoid conflicts in these individual plans or schedules decoupling is used. Such a decoupling

  12. Pure state condition for the semi-classical Wigner function

    International Nuclear Information System (INIS)

    Ozorio de Almeida, A.M.

    1982-01-01

    The Wigner function W(p,q) is a symmetrized Fourier transform of the density matrix e(q 1 ,q 2 ), representing quantum-mechanical states or their statistical mixture in phase space. Identification of these two alternatives in the case of density matrices depends on the projection identity e 2 = e; its Wigner correspondence is the pure state condition. This criterion is applied to the Wigner functions botained from standard semiclassical wave functions, determining as pure states those whose classical invariant tori satisfy the generalized Bohr-Sommerfeld conditions. Superpositions of eigenstates are then examined and it is found that the Wigner function corresponding to Gaussian random wave functions are smoothed out in the manner of mixedstate Wigner functions. Attention is also given to the pure-state condition in the case where an angular coordinate is used. (orig.)

  13. On semi-classical questions related to signal analysis

    KAUST Repository

    Helffer, Bernard

    2011-12-01

    This study explores the reconstruction of a signal using spectral quantities associated with some self-adjoint realization of an h-dependent Schrödinger operator -h2(d2/dx2)-y(x), h>0, when the parameter h tends to 0. Theoretical results in semi-classical analysis are proved. Some numerical results are also presented. We first consider as a toy model the sech2 function. Then we study a real signal given by arterial blood pressure measurements. This approach seems to be very promising in signal analysis. Indeed it provides new spectral quantities that can give relevant information on some signals as it is the case for arterial blood pressure signal. © 2011 - IOS Press and the authors. All rights reserved.

  14. Semi-classical approximation to path integrals - phases and catastrophes

    International Nuclear Information System (INIS)

    Levit, S.

    1977-01-01

    Problems of phases and catastrophes were encountered when trying to apply the classical S-matrix theory to the scattering phenomena in nuclear physics. The path integral formulation provided a suitable basis for the treatment of these and related problems. Within conventional mathematical language it was possible to give practical prescriptions and discuss their limitations. Since the semi-classical (stationary phase) approximation is commonly used in any application of the path integral method, the results are not restricted to the scattering problems and may be of general interest. The derivation of the uniform approximations in the energy representation should use the exact path integral expression as the starting point, rather than performing Fourier transforms on the expressions derived in the present lecture. (B.G.)

  15. The semiclassical density of states for the quantum asymmetric top

    International Nuclear Information System (INIS)

    Agnew, Alfonso; Bourget, Alain

    2008-01-01

    In the quantization of a rotating rigid body, a top, one is concerned with the Hamiltonian operator L α = α 2 0 L 2 x + α 2 1 L 2 y + α 2 2 L 2 z , where α 0 ≤ α 1 ≤ α 2 . An explicit formula is known for the eigenvalues of L α in the case of the spherical top (α 1 = α 2 = α 3 ) and symmetrical top (α 1 = α 2 ≠ α 3 ) (Landau and Lifshitz 1981 Quantum Mechanics: Non-Relativistic Theory 3rd edn (Portsmouth, NH: Butterworth-Heinemann)). However, for the asymmetrical top, no such explicit expression exists, and the study of the spectrum is much more complex. In this paper, we compute the semiclassical density of states for the eigenvalues of the family of operators L α = α 2 0 L 2 x + α 2 1 L 2 y + α 2 2 L 2 z for any α 0 1 2

  16. Semiclassical approximations for a momentum dependent one-body potential

    International Nuclear Information System (INIS)

    Dworzecka, M.; Moszkowski, S.A.

    1976-08-01

    Recently a semiclassical approximation was applied by Jennings, et al., for a system of noninteracting fermions in a local one-body potential. This is a way to calculate shell corrections alternative to Strutinsky's method. This method was generalized to a spherical but a momentum dependent potential of the form, V(r) + 1 / 2 (p 2 W(r) + W(r)p 2 ). Explicit expressions are developed for the number of particles and the smooth sum of single particle energies in terms of the Fermi energy and the one-body potential and its first two derivatives. They are calculated for selected values of the parameters and compared with the sum of single particle energies obtained by numerical solution of the Schroedinger equation. The difference between the two is evidently the shell correction

  17. Semiclassical solution to the BFKL equation with massive gluons

    International Nuclear Information System (INIS)

    Levin, Eugene; Lipatov, Lev; Siddikov, Marat

    2015-01-01

    In this paper we proceed to study the high energy behavior of scattering amplitudes in a simple field model, with the Higgs mechanism for the gauge boson mass. The spectrum of the j-plane singularities of the t-channel partial waves and the corresponding eigenfunctions of the BFKL equation in leading log(1/x) approximation were previously calculated numerically. Here we develop a semiclassical approach to investigate the influence of the exponential decrease of the impact parameter dependence existing in this model, on the high energy asymptotic behavior of the scattering amplitude. This approach is much simpler than our earlier numerical calculations, and it reproduces those results. The analytical (semi-analytical) solutions which have been found in the approximation can be used to incorporate correctly the large impact parameter behavior in the framework of CGC/saturation approach. This behavior is interesting as it provides the high energy amplitude for the electroweak theory, which can be measured experimentally. (orig.)

  18. Semiclassical asymptotic behavior and the rearrangement mechanisms for Coulomb particles

    International Nuclear Information System (INIS)

    Bogdanov, A.V.; Gevorkyan, A.S.; Dubrovskii, G.V.

    1986-01-01

    The semiclassical asymptotic behavior of the eikonal amplitude of the resonance rearrangement in a system of three Coulomb particles is studied. It is shown that the general formula for the amplitude correctly describes two classical mechanisms (pickup and knockout) and one nonclassical mechanism (stripping). The classical mechanisms predominate at high energies, while the stripping mechanism predominates at lower energies. In the region of medium energies the dominant mechanism is the pickup (or Thomas) mechanism, which is realized by nonclassical means. For such transitions the classical cross section diverges, and the amplitude must be computed on a complex trajectory. The physical reasons for introducing the approximate complex trajectories are discussed. The contributions of all the mechanisms to the rearrangement cross section are found in their analytic forms

  19. The semiclassical coherent state propagator in the Weyl representation

    International Nuclear Information System (INIS)

    Braun, Carol; Li, Feifei; Garg, Anupam; Stone, Michael

    2015-01-01

    It is shown that the semiclassical coherent state propagator takes its simplest form when the quantum mechanical Hamiltonian is replaced by its Weyl symbol in defining the classical action, in that there is then no need for a Solari-Kochetov correction. It is also shown that such a correction exists if a symbol other than the Weyl symbol is chosen and that its form is different depending on the symbol chosen. The various forms of the propagator based on different symbols are shown to be equivalent provided the correspondingly correct Solari-Kochetov correction is included. All these results are shown for both particle and spin coherent state propagators. The global anomaly in the fluctuation determinant is further elucidated by a study of the connection between the discrete fluctuation determinant and the discrete Jacobi equation

  20. From quantum to semiclassical kinetic equations: Nuclear matter estimates

    International Nuclear Information System (INIS)

    Galetti, D.; Mizrahi, S.S.; Nemes, M.C.; Toledo Piza, A.F.R. de

    1985-01-01

    Starting from the exact microscopic time evolution of the quantum one body density associated with a many fermion system semiclassical approximations are derived to it. In the limit where small momentum transfer two body collisions are dominant we get a Fokker-Planck equation and work out friction and diffusion tensors explicitly for nuclear matter. If arbitrary momentum transfers are considered a Boltzmann equation is derived and used to calculate the viscosity coefficient of nuclear matter. A derivation is given of the collision term used by Landau to describe the damping of zero sound waves at low temperature in Plasmas. Memory effects are essential for this. The damping of zero sound waves in nuclear matter is also calculated and the value so obtained associated with the bulk value of the damping of giant resonances in finite nuclei. The bulk value is estimated to be quite small indicating the importance of the nuclear surface for the damping. (Author) [pt

  1. Thermal spin pumping mediated by magnons in the semiclassical regime

    International Nuclear Information System (INIS)

    Nakata, Kouki

    2012-01-01

    We microscopically analyze thermal spin pumping mediated by magnons, at the interface between a ferromagnetic insulator and a non-magnetic metal, in the semiclassical regime. The generation of a spin current is discussed by calculating the thermal spin transfer torque, which breaks the spin conservation law for conduction electrons and operates the coherent magnon state. Inhomogeneous thermal fluctuations between conduction electrons and magnons induce a net spin current, which is pumped into the adjacent non-magnetic metal. The pumped spin current is proportional to the temperature difference. When the effective temperature of magnons is lower than that of conduction electrons, localized spins lose spin angular momentum by emitting magnons and conduction electrons flip from down to up by absorbing all the emitted momentum, and vice versa. Magnons at the zero mode cannot contribute to thermal spin pumping because they are eliminated by the spin-flip condition. Consequently thermal spin pumping does not cost any kind of applied magnetic fields

  2. Reconciling semiclassical and Bohmian mechanics. V. Wavepacket dynamics

    International Nuclear Information System (INIS)

    Poirier, Bill

    2008-01-01

    In previous articles [B. Poirier J. Chem. Phys. 121, 4501 (2004); C. Trahan and B. Poirier, ibid. 124, 034115 (2006); 124, 034116 (2006); B. Poirier and G. Parlant, J. Phys. Chem. A 111, 10400 (2007)] a bipolar counterpropagating wave decomposition, ψ=ψ + +ψ - , was presented for stationary states ψ of the one-dimensional Schroedinger equation, such that the components ψ ± approach their semiclassical Wentzel-Kramers-Brillouin analogs in the large action limit. The corresponding bipolar quantum trajectories are classical-like and well behaved, even when ψ has many nodes, or is wildly oscillatory. In this paper, the method is generalized for time-dependent wavepacket dynamics applications and applied to several benchmark problems, including multisurface systems with nonadiabatic coupling

  3. Improvements on Semi-Classical Distorted-Wave model

    Energy Technology Data Exchange (ETDEWEB)

    Sun Weili; Watanabe, Y.; Kuwata, R. [Kyushu Univ., Fukuoka (Japan); Kohno, M.; Ogata, K.; Kawai, M.

    1998-03-01

    A method of improving the Semi-Classical Distorted Wave (SCDW) model in terms of the Wigner transform of the one-body density matrix is presented. Finite size effect of atomic nuclei can be taken into account by using the single particle wave functions for harmonic oscillator or Wood-Saxon potential, instead of those based on the local Fermi-gas model which were incorporated into previous SCDW model. We carried out a preliminary SCDW calculation of 160 MeV (p,p`x) reaction on {sup 90}Zr with the Wigner transform of harmonic oscillator wave functions. It is shown that the present calculation of angular distributions increase remarkably at backward angles than the previous ones and the agreement with the experimental data is improved. (author)

  4. Is Decoupling GDP Growth from Environmental Impact Possible?

    Science.gov (United States)

    Ward, James D; Sutton, Paul C; Werner, Adrian D; Costanza, Robert; Mohr, Steve H; Simmons, Craig T

    2016-01-01

    The argument that human society can decouple economic growth-defined as growth in Gross Domestic Product (GDP)-from growth in environmental impacts is appealing. If such decoupling is possible, it means that GDP growth is a sustainable societal goal. Here we show that the decoupling concept can be interpreted using an easily understood model of economic growth and environmental impact. The simple model is compared to historical data and modelled projections to demonstrate that growth in GDP ultimately cannot be decoupled from growth in material and energy use. It is therefore misleading to develop growth-oriented policy around the expectation that decoupling is possible. We also note that GDP is increasingly seen as a poor proxy for societal wellbeing. GDP growth is therefore a questionable societal goal. Society can sustainably improve wellbeing, including the wellbeing of its natural assets, but only by discarding GDP growth as the goal in favor of more comprehensive measures of societal wellbeing.

  5. Wigner measure and semiclassical limits of nonlinear Schrödinger equations

    CERN Document Server

    Zhang, Ping

    2008-01-01

    This book is based on a course entitled "Wigner measures and semiclassical limits of nonlinear Schrödinger equations," which the author taught at the Courant Institute of Mathematical Sciences at New York University in the spring of 2007. The author's main purpose is to apply the theory of semiclassical pseudodifferential operators to the study of various high-frequency limits of equations from quantum mechanics. In particular, the focus of attention is on Wigner measure and recent progress on how to use it as a tool to study various problems arising from semiclassical limits of Schrödinger-ty

  6. Tradable schemes

    NARCIS (Netherlands)

    J.K. Hoogland (Jiri); C.D.D. Neumann

    2000-01-01

    textabstractIn this article we present a new approach to the numerical valuation of derivative securities. The method is based on our previous work where we formulated the theory of pricing in terms of tradables. The basic idea is to fit a finite difference scheme to exact solutions of the pricing

  7. On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach

    Directory of Open Access Journals (Sweden)

    Milan S. Dimitrijević

    2014-08-01

    Full Text Available The significance of Stark broadening data for problems in astrophysics, physics, as well as for technological plasmas is discussed and applications of Stark broadening parameters calculated using a semiclassical perturbation method are analyzed.

  8. Semiclassical approximations in a mean-field theory with collision terms

    International Nuclear Information System (INIS)

    Galetti, D.

    1986-01-01

    Semiclassical approximations in a mean-field theory with collision terms are discussed taking the time dependent Hartree-Fock method as framework in the obtainment of the relevant parameters.(L.C.) [pt

  9. Semiclassical approach to mesoscopic systems classical trajectory correlations and wave interference

    CERN Document Server

    Waltner, Daniel

    2012-01-01

    This volume describes mesoscopic systems with classically chaotic dynamics using semiclassical methods which combine elements of classical dynamics and quantum interference effects. Experiments and numerical studies show that Random Matrix Theory (RMT) explains physical properties of these systems well. This was conjectured more than 25 years ago by Bohigas, Giannoni and Schmit for the spectral properties. Since then, it has been a challenge to understand this connection analytically.  The author offers his readers a clearly-written and up-to-date treatment of the topics covered. He extends previous semiclassical approaches that treated spectral and conductance properties. He shows that RMT results can in general only be obtained semiclassically when taking into account classical configurations not considered previously, for example those containing multiply traversed periodic orbits. Furthermore, semiclassics is capable of describing effects beyond RMT. In this context he studies the effect of a non-zero Eh...

  10. A semi-classical analysis of Dirac fermions in 2+1 dimensions

    International Nuclear Information System (INIS)

    Maiti, Moitri; Shankar, R

    2012-01-01

    We investigate the semi-classical dynamics of massless Dirac fermions in 2+1 dimensions in the presence of external electromagnetic fields. By generalizing the α matrices by two generators of the SU(2) group in the (2S + 1)-dimensional representation and doing a certain scaling, we formulate an S → ∞ limit where the orbital and the spinor degrees become classical. We solve for the classical trajectories for a free particle on a cylinder and a particle in a constant magnetic field. We compare the semi-classical spectrum, obtained by Bohr–Sommerfeld quantization with the exact quantum spectrum for low values of S. For the free particle, the semi-classical spectrum is exact. For the particle in a constant magnetic field, the semi-classical spectrum reproduces all the qualitative features of the exact quantum spectrum at all S. The quantitative fit for S = 1/2 is reasonably good. (paper)

  11. Semiclassical analysis of quantum localization of the periodically kicked Rydberg atom

    International Nuclear Information System (INIS)

    Yoshida, S.; Persson, E.; Burgdoerfer, J.; Grossmann, F.

    2004-01-01

    The periodically kicked Rydberg atom displays quantum localization, features of which depend on the orientation and strength of the unidirectional kicks. They include scarring of the wave function, localization by cantori, and exponential localization in the regime of strong perturbation resembling dynamical localization. Using the semiclassical Herman-Kluk propagator we investigate the degree to which semiclassical dynamics can mimic quantum localization. While the semiclassical approximation has difficulties to reproduce the scarred wave functions, the exponential tail which is a typical signature of the dynamical localization is well represented in the case of strong classical diffusion. Also the localization by broken tori is observed in the semiclassical recurrence probability for short times but the deviation from the corresponding quantum dynamics becomes more pronounced for the long-time evolution

  12. Semiclassical use of action-angle variables in the presence of tunnelling

    International Nuclear Information System (INIS)

    Carvalho, R.E. de; Almeida, A.M.O. de

    1988-01-01

    Semiclassical approximations of quantum mechanics are known to be invariant with respect to classical cannonical transformations even though these are not in general isomorphic to unitary transformations in quantum mechanics. It is verified computationally that the energy eigenlevels of a resonant system computed in a harmonic oscillator basis are in good agreement with the semiclassical values obtained with the use of action-angle variables. (A.C.A.S.) [pt

  13. Relative criterion for validity of a semiclassical approach to the dynamics near quantum critical points.

    Science.gov (United States)

    Wang, Qian; Qin, Pinquan; Wang, Wen-ge

    2015-10-01

    Based on an analysis of Feynman's path integral formulation of the propagator, a relative criterion is proposed for validity of a semiclassical approach to the dynamics near critical points in a class of systems undergoing quantum phase transitions. It is given by an effective Planck constant, in the relative sense that a smaller effective Planck constant implies better performance of the semiclassical approach. Numerical tests of this relative criterion are given in the XY model and in the Dicke model.

  14. Semiclassical limit and well-posedness of nonlinear Schrodinger-Poisson systems

    Directory of Open Access Journals (Sweden)

    Hailiang Li

    2003-09-01

    Full Text Available This paper concerns the well-posedness and semiclassical limit of nonlinear Schrodinger-Poisson systems. We show the local well-posedness and the existence of semiclassical limit of the two models for initial data with Sobolev regularity, before shocks appear in the limit system. We establish the existence of a global solution and show the time-asymptotic behavior of a classical solutions of Schrodinger-Poisson system for a fixed re-scaled Planck constant.

  15. Closed almost-periodic orbits in semiclassical quantization of generic polygons

    Science.gov (United States)

    Biswas

    2000-05-01

    Periodic orbits are the central ingredients of modern semiclassical theories and corrections to these are generally nonclassical in origin. We show here that, for the class of generic polygonal billiards, the corrections are predominantly classical in origin owing to the contributions from closed almost-periodic (CAP) orbit families. Furthermore, CAP orbit families outnumber periodic families but have comparable weights. They are hence indispensable for semiclassical quantization.

  16. Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation

    CERN Document Server

    Kamvissis, Spyridon; Miller, Peter D

    2003-01-01

    This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important applications in the telecommunications industry. The authors exploit complete integrability to establish pointwise asymptotics for this problem's solution in the semiclassical regime and explicit integration for the underlying nonlinear, elliptic, partial differential equations suspected of governing

  17. Hedge Funds and Risk-Decoupling

    DEFF Research Database (Denmark)

    Ringe, Georg

    2013-01-01

    The law must remain adaptive and responsive to the constantly changing challenges of our society and our business life. One of the most pressing challenges of the past years is the emergence of alternative investment funds, in particular hedge funds, which masterfully exploit the traditional cate...... to the traditional market expectations of shareholders. Based on the insight developed from these policy perspectives, this article develops regulatory reform proposals, particularly with regard to the EU context.......The law must remain adaptive and responsive to the constantly changing challenges of our society and our business life. One of the most pressing challenges of the past years is the emergence of alternative investment funds, in particular hedge funds, which masterfully exploit the traditional...... theoretical perspectives are used as an analytical framework to examine the vast challenges of risk-decoupling: (1) a classical agency costs approach; (2) an information costs perspective; and (3) a view from corporate finance. This Article argues that shareholders with hedged risk exposure do not correspond...

  18. Entropy localization and extensivity in the semiclassical black hole evaporation

    International Nuclear Information System (INIS)

    Casini, H.

    2009-01-01

    I aim to quantify the distribution of information in the Hawking radiation and inside the black hole in the semiclassical evaporation process. The structure of relativistic quantum field theory does not allow one to define a localized entropy unambiguously, but rather forces one to consider the shared information (mutual information) between two different regions of space-time. Using this tool, I first show that the entropy of a thermal gas at the Unruh temperature underestimates the actual amount of (shared) information present in a region of the Rindler space. Then, I analyze the mutual information between the black hole and the late time radiation region. A well-known property of the entropy implies that this is monotonically increasing with time. This means that in the semiclassical picture it is not possible to recover the eventual purity of the initial state in the final Hawking radiation through subtle correlations established during the whole evaporation period, no matter the interactions present in the theory. I find extensivity of the entropy as a consequence of a reduction to a two dimensional conformal problem in a simple approximation. However, the extensivity of information in the radiation region in a full four dimensional calculation seems not to be guaranteed on general grounds. I also analyze the localization of shared information inside the black hole finding that a large amount of it is contained in a small, approximately flat region of space-time near the point where the horizon begins. This gives place to large violations of the entropy bounds. I show that this problem is not eased by backscattering effects and argue that a breaking of conformal invariance is necessary to delocalize the entropy. Finally, I indicate that the mutual information could lead to a way to understand the Bekenstein-Hawking black hole entropy which does not require a drastic reduction in degrees of freedom in order to regulate the entanglement entropy. On the contrary

  19. Supercritical water gasification with decoupled pressure and heat transfer modules

    KAUST Repository

    Dibble, Robert W.; Ng, Kim Choon; Sarathy, Mani

    2017-01-01

    decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed

  20. Studies of spatial decoupling in heterogeneous LMFBR critical assemblies

    International Nuclear Information System (INIS)

    Brumbach, S.B.; Goin, R.W.; Carpenter, S.G.

    1984-01-01

    Recent measurements at the Zero Power Plutonium Reactor have studied the spatial decoupling in large, heterogeneous assemblies. These assemblies exhibited a significantly greater degree of decoupling than previous homogeneous assemblies of similar size. The flux distributions in these heterogeneous assemblies were very sensitive reactivity perturbations, and perturbed flux distributions were achieved relatively slowly. Decoupling was investigated using rod-drop, boron-oscillator and noise-coherence techniques which emphasized different times following the perturbations. Reactivity changes could be measured by analyzing the power history from a single detector using inverse kinetics methods with the assumption of an instantaneous efficiency change for the detector. For assemblies more decoupled than ZPPR-13, the instantaneous efficiency change assumption begins to be invalid

  1. Strongly coupled semiclassical plasma: interaction model and some properties

    International Nuclear Information System (INIS)

    Baimbetov, N.F.; Bekenov, N.A.

    1999-01-01

    In the report a fully ionized strongly coupled hydrogen plasma is considered. The density number is considered within range n=n e =n i ≅(10 21 -2·10 25 )sm -3 , and the temperature domian is T≅(5·10 4 -10 6 ) K. The coupling parameter Γ is defined by Γ=e 2 /αk B T, where k B is the Boltzmann constant and e is electrical charge, α=(3/4πn) 1/3 is the average distance between the particles (Wigner-Seitz radius). The dimensionless density parameter r s =α/α B is given in terms of the Bohr radius α B =ℎ 2 /me 2 ∼0.529·10 - 8 sm. The degeneracy parameter for the electron was defined by the ratio between the thermal energy k B T and the Fermi energy E F :Θ=k B T/E F ∼0.54·r s /Γ. The intermediate temperature-density region, where Γ≥1; Θ≅1; T>13.6 eV is examined. A semiclassical effective potential which account for the short-range, quantum diffraction and symmetry effects of charge carriers screening

  2. Semiclassical methods in solid state physics : two examples

    Science.gov (United States)

    Bellissard, Jean; Barelli, Armelle

    1993-02-01

    We present here a review of two problems motivated by 2D models for high T, superconductivity. The first part concerns the energy spectrum of 2D Bloch electrons in a uniform magnetic field. A semiclassical analysis provides a qualitative as well as a quantitative understanding of this spectrum. In the second part we make the case for the application of “Quantum Chaos" to strongly correlated fermion systems. It is illustrated by the level spacing distribution for the t - J model in two dimensions. Ce travail est une revue de deux problèmes motivés par l'étude des modèles bidimensionnels pour la supraconductivité à haute température critique. La première partie concerne l'étude du spectre d'énergie pour des électrons de Bloch bidimensionnels soumis à un champ magnétique uniforme. Une analyse semi-classique permet d'en comprendre les propriétés qualitatives et quantitatives. La deuxième partie est un plaidoyer pour l'utilisation des méthodes du “Chaos Quantique" dans l'étude des systèmes de fermions fortement corrélés. La distribution des écarts de niveaux d'un modèle t - J en deux dimensions, en fournit une illustration.

  3. Semiclassical Path Integral Calculation of Nonlinear Optical Spectroscopy.

    Science.gov (United States)

    Provazza, Justin; Segatta, Francesco; Garavelli, Marco; Coker, David F

    2018-02-13

    Computation of nonlinear optical response functions allows for an in-depth connection between theory and experiment. Experimentally recorded spectra provide a high density of information, but to objectively disentangle overlapping signals and to reach a detailed and reliable understanding of the system dynamics, measurements must be integrated with theoretical approaches. Here, we present a new, highly accurate and efficient trajectory-based semiclassical path integral method for computing higher order nonlinear optical response functions for non-Markovian open quantum systems. The approach is, in principle, applicable to general Hamiltonians and does not require any restrictions on the form of the intrasystem or system-bath couplings. This method is systematically improvable and is shown to be valid in parameter regimes where perturbation theory-based methods qualitatively breakdown. As a test of the methodology presented here, we study a system-bath model for a coupled dimer for which we compare against numerically exact results and standard approximate perturbation theory-based calculations. Additionally, we study a monomer with discrete vibronic states that serves as the starting point for future investigation of vibronic signatures in nonlinear electronic spectroscopy.

  4. Semi-classical theory of fluctuations in nuclear matter

    International Nuclear Information System (INIS)

    Benhassine, B.

    1994-01-01

    At intermediate energies the heavy ion collisions can be studied within the framework of a semi-classical approach based on the Vlasov-Uehling-Uhlenbeck (VUU) equation. Such an approach reduces the N-body problem to its description in terms of the one-body distribution function and constitutes the basis of several successful simulation models. Our aim in this work is to extend these average approaches to treat fluctuations. Within the framework of a linear approximation, we derived a Fokker-Planck transport equation in the one-body phase space. When it is reduced to its first moments, one recovers the VUU equation for the average dynamics together with the time evolution equation for the correlations. The collective transport coefficients are then obtained by projection on the one-body collective space. Independently, using a projection method introduced by Van Kampen, based on the constants of motion, we deduce the stationary expressions for the covariance matrix in phase space. We extract then, the equilibrium dispersions of one-body observables in a homogeneous case and in a spherical symmetric one. These results are compared with two types of simulation models in a relaxation time approximation. In the first one which is of Lagrangian type, the collective transport coefficients are directly extracted from the simulation and consequently the numerical fluctuations are washed out. The second model, due to its Eulerian character, allows us to make a microscopical comparison. (author)

  5. On the semiclassical description of nuclear Fermi liquid drops

    International Nuclear Information System (INIS)

    Schuck, P.

    1983-11-01

    In this series of lectures we aimed at presenting a self-contained semiclassical theory entirely based on the extended Thomas-Fermi or Wigner-Kirkwood h expansion in phase space. We saw that not only the Wigner transform of the single particle density matrix can be understood and very accurately represented in this way but that also generalisations to correlation functions are straightforward. First, we demonstrated a generalisation to superfluid nuclei and to superfluid nuclei in slow rotation. The latter involves already the (static) particle-hole correlation function and we saw how e.g. the reduction of the moment of inertia by roughly a factor of two could be explained very easily in an analytic way. We very clearly pointed out the necessity to treat particles (holes) individually in Thomas Fermi approximation. A further very promising result is that the linear response function for transferred momenta q>0.6 fm -1 can be very accurately represented in our p-h-Thomas Fermi approach. In the last paragraph we give somewhat speculative arguments that say the 2 + states of quasi macroscopic Fermi Liquid Drops could be well calculated in expanding the time dependent density matrix on a set of coherent states and a simple example for nearly harmonic potentials is given

  6. Efficiency of Decoupled Farm Programs under Distortionary Taxation

    OpenAIRE

    GianCarlo Moschini; Paolo Sckokai

    1994-01-01

    When lump-sum taxation is not feasible, decoupled transfers to farmers (which require raising government revenue) will entail welfare loss somewhere in the economy. Assuming the government's objective is to assure a given welfare level for farmers, we show that when decoupling is possible, free trade is always superior to some tariff protection for a small country, even under Distortionary taxation. As expected, for a large country there is scope for an optimal tariff policy that improves the...

  7. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order

    International Nuclear Information System (INIS)

    Reiher, Markus; Wolf, Alexander

    2004-01-01

    In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exact decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented

  8. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order.

    Science.gov (United States)

    Reiher, Markus; Wolf, Alexander

    2004-12-08

    In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exact decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented. (c) 2004 American Institute of Physics.

  9. Decoupling - past trends and prospects for the future[Decoupling of economic growth and environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Azar, Christian; Holmberg, John; Karlsson, Sten [Chalmers Univ. of Tech., Goeteborg (SE). Physical Resource Theory] [and others

    2002-05-01

    There are widespread demands in society for a dematerialization or decoupling of economic growth from environmental impact. Calls are being made for eco-efficiency and/or an improvement of resource efficiency by a factor of 10. At the same time, some analysts claim there is an environmental Kuznet's curve that supposedly implies a fall in environmental pressure, as we get richer. An improvement in the environmental situation has already been observed in many cases, but there are also many areas where the situation is deteriorating. The purpose of this report is to summarize some key trends of energy and material use over time in both developing and developed countries. We have focused on Sweden, the EU, Japan and the USA as well as China, India and Brazil. The main findings in this paper can be summarized as follows: Absolute emissions of CO{sub 2} have been increasing in most countries and periods studied. Some countries have experienced periods with constant or even falling emissions, but this is the exception rather than the rule, and it has been triggered by oil crises or economic recessions. In order to stabilize atmospheric CO{sub 2} concentrations, CO{sub 2} emissions have to be decoupled much more rapidly than has been the case in the past, and it is extremely unlikely that this will happen by itself. There was some decoupling of CO{sub 2} emissions from GDP in the major economies of the world from 1970 to 1998 in the EU, Japan and the US as well as in some major developing countries such as China, although India actually increased its emissions over GDP by 1.4 per cent/yr over this period. The drop in CO{sub 2} intensity has been prompted by some decoupling of energy from GDP and CO{sub 2} from energy, the latter being a consequence of an increased use of natural gas and nuclear power. In the South, fossil CO 2 per energy tends to increase from rather low levels. With industrialization, the proportion of biomass drops and the proportion of fossil

  10. Energy Stability Analysis of Some Fully Discrete Numerical Schemes for Incompressible Navier–Stokes Equations on Staggered Grids

    KAUST Repository

    Chen, Huangxin

    2017-09-01

    In this paper we consider the energy stability estimates for some fully discrete schemes which both consider time and spatial discretizations for the incompressible Navier–Stokes equations. We focus on three kinds of fully discrete schemes, i.e., the linear implicit scheme for time discretization with the finite difference method (FDM) on staggered grids for spatial discretization, pressure-correction schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations, and pressure-stabilization schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations. The energy stability estimates are obtained for the above each fully discrete scheme. The upwind scheme is used in the discretization of the convection term which plays an important role in the design of unconditionally stable discrete schemes. Numerical results are given to verify the theoretical analysis.

  11. Coupled vs. decoupled boundary layers in VOCALS-REx

    Directory of Open Access Journals (Sweden)

    C. R. Jones

    2011-07-01

    Full Text Available We analyze the extent of subtropical stratocumulus-capped boundary layer decoupling and its relation to other boundary-layer characteristics and forcings using aircraft observations from VOCALS-REx along a swath of the subtropical southeast Pacific Ocean running west 1600 km from the coast of Northern Chile. We develop two complementary and consistent measures of decoupling. The first is based on boundary layer moisture and temperature stratification in flight profiles from near the surface to above the capping inversion, and the second is based the difference between the lifted condensation level (LCL and a mean lidar-derived cloud base measured on flight legs at 150 m altitude. Most flights took place during early-mid morning, well before the peak in insolation-induced decoupling.

    We find that the boundary layer is typically shallower, drier, and well mixed near the shore, and tends to deepen, decouple, and produce more drizzle further offshore to the west. Decoupling is strongly correlated to the "mixed layer cloud thickness", defined as the difference between the capping inversion height and the LCL; other factors such as wind speed, cloud droplet concentration, and inversion thermodynamic jumps have little additional explanatory power. The results are broadly consistent with the deepening-warming theory of decoupling.

    In the deeper boundary layers observed well offshore, there was frequently nearly 100 % boundary-layer cloud cover despite pronounced decoupling. The cloud cover was more strongly correlated to a κ parameter related to the inversion jumps of humidity and temperature, though the exact functional relation is slightly different than found in prior large-eddy simulation studies.

  12. A new approach to the semi-classical relativistic two-body problem for charged fermions

    International Nuclear Information System (INIS)

    Leiter, D.

    1978-01-01

    Generalizing from a recently developed hybrid formulation of classical electrodynamics with ''direct (charge-field) action'' structure an analogous semi-classical Dirac formulation of the theory is constructed, which is capable of describing the semi-classical quantum mechanics of two identical spin-1/2 particles. This semi-classical formulation is to be used as a heuristic aid in searching for the theoretical structure of a fully ''second quantized'' theory. The Pauli exclusion principle is incorporated by making the interaction fields (in the action principle) antisymmetric with respect to ''charge-field'' labeling. In this manner, ''position correlation'' effects associated with ''configuration interaction'' can also be accounted for. By studying the nature of the stationary-state solutions, the formalism is compared with the conventional quantum-mechanical one (to understand the similarities and the differences between this approach and the usual correlated Hartree-Fock approximation of ordinary relativistic quantum theory). The stationary-state solutions to the semi-classical formalism are shown to closely approximate the usual quantum-mechanical solutions when the wave functions are represented as a superposition of Slater determinants of Dirac-Coulombic-type wave functions with radial parts having a form which extremizes the total Breit energy. The manner in which this semi-classical theory might be extended to a fully ''second quantized'' formalism is sketched. (author)

  13. Evaluating Decoupling Process in OECD Countries: Case Study of Turkey

    Science.gov (United States)

    An, Nazan; Şengün Ucal, Meltem; Kurnaz, M. Levent

    2017-04-01

    Climate change is at the top of the present and future problems facing humanity. Climate change is now largely attributed to human activities and economic activities are the source of human activities that cause climate change by creating pressure on the environment. Providing the sustainability of resources for the future seems possible by reducing the pressure of these economic activities on the environment. Given the increasing population pressure and growth-focused economies, it is possible to say that achieving decoupling is not so easy on a global basis. It is known that there are some problems in developing countries especially in terms of accessing reliable data in transition and implementation process of decoupling. Developed countries' decoupling practices and proper calculation methods can also be a guide for developing countries. In this study, we tried to calculate the comparative decoupling index for OECD countries and Turkey in terms of data suitability, and we showed the differences between them. We tried to indicate the level of decoupling (weak, stable, strong) for each country. We think that the comparison of Turkey can be an example in terms of developing countries. Acknowledgement: This research has been supported by Bogazici University Research Fund Grant Number 12220.

  14. Are Human and Natural Systems Decoupling?

    Science.gov (United States)

    Ehrlich, P. R.; Ehrlich, A. H.

    2012-12-01

    trivial financial problems currently facing rich nations. Financial coverage in the media is massive compared to, say, the news that Earth's coral reefs are now beyond saving. Or consider the utter failure of most social scientists to come to grips with the inability of civilization to develop mechanisms to deal with global environmental problems, or of the persistence of an economic system based on unrealistic academic models and the preposterous notion that growth can continue forever. Whether mutually beneficial human-nature coupling can be restored in time is an open question. Doubtless grassroots action would be required, as well as new institutions/mechanisms for coordinating bottom-up and top-down efforts. There are many hopeful small-scale recoupling efforts such as the Natural Capital Project (http://www.naturalcapitalproject.org/) to protect biodiversity and ecosystem services, deployment of renewable energy systems in many countries, and work to unite academics and civil society in developing the necessary foresight intelligence, as in the Millennium Alliance for Humanity and the Biosphere (MAHB - http://mahb.stanford.edu/). Bottom-up efforts such as Occupy Wall Street (http://occupywallst.org/), the Movement to Solve the Climate Crisis (http://www.350.org/), and many other civil society groups are gaining some traction. But time is short, and in our view decoupling is winning.

  15. The shell effects in s-wave neutron resonance level densities ρ according to combinatorial calculations and on the basis of the semi-classical approach

    International Nuclear Information System (INIS)

    Kaczmarczyk, Maria

    2005-01-01

    The results of calculations of level densities ρ, in the vicinity of the neutron binding energy S n , are presented. These results were obtained using the Boehning combinatorial method for the calculation of particle-hole state densities dependent on the number of decompositions of the nucleus excitation energy to energies of independent fermions. The calculation was based on the semi-classical model description in the computation of particle-hole state densities and then of the level densities ρ, and takes into account the existence of energy gaps Δ, located near the Fermi level, in a single particle level scheme. This procedure considerably improved and extended the Boehning calculation method. The results, which were obtained in this way for ρ, for 220 nuclei, reproduce the regularities observed in the experimental values of ρ, which are dependent on the neutron number N, and they agree with the experimental data within two orders of magnitude. In addition, the neutron resonance densities ρ were calculated on the basis of the particle-hole state densities obtained using the analytical formula from Boehning's paper. To make the calculations possible, the values of 'complexity' k, as given in the semi-classical model, and the spin factors R(J), according to the paper by Ryckbosch, were used

  16. How decoupled is the SFP in GTAP

    DEFF Research Database (Denmark)

    Urban, Kirsten; Jensen, Hans Grinsted; Brockmeier, Martina

    WTO negotiations are a common topic in the general equilibrium modeler's community. In contrast to the well-established analysis tools for market access, the detailed implementation of domestic support has yet received too little attention. For a sophisticated WTO analysis it is therefore...... worthwhile not only to correctly single out the WTO boxes but as well to calculate domestic support indicators to simulate the WTO reduction requirements and to evaluate the domestic support development over time. In this paper the domestic support in the version 8 GTAP data base, adapted from the OECD PSE...... the results of the GTAP model. Additionaly the Mercantilist Trade Restrictiveness Index (MTRI) is implemented in the GTAP model to calculate a trade equivalent uniform tariff for domestic support over time. This extended GTAP framework enables the comparison of OECD and WTO measurement schemes of domestic...

  17. Interior design of a two-dimensional semiclassical black hole: Quantum transition across the singularity

    International Nuclear Information System (INIS)

    Levanony, Dana; Ori, Amos

    2010-01-01

    We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.

  18. Interior design of a two-dimensional semiclassical black hole: Quantum transition across the singularity

    Science.gov (United States)

    Levanony, Dana; Ori, Amos

    2010-05-01

    We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.

  19. Semiclassical quantization of integrable systems of few interacting anyons in a strong magnetic field

    International Nuclear Information System (INIS)

    Sivan, N.; Levit, S.

    1992-01-01

    We present a semiclassical theory of charged interacting anyons in a strong magnetic field. We derive the appropriate generalization of the WKB quantization conditions and determine the corresponding wave functions for non separable integrable anyonic systems. This theory is applies to a system of two interacting anyons, two interacting anyons in the presence of an impurity and three interacting anyons. We calculate the dependence of the semiclassical energy levels on the statistical parameter and find regions in which dependence follows very different patterns. The semiclassical treatment allows to find the correlation between these patterns and the change in the character of the classical motion of the system. We also test the accuracy of the mean field approximation for low and high energy states of the three anyons. (author)

  20. Comparative study of quantal and semiclassical treatments of charge transfer between O+ and He

    Science.gov (United States)

    Zhao, L. B.; Joseph, D. C.; Saha, B. C.; Liebermann, H. P.; Funke, P.; Buenker, R. J.

    2009-03-01

    A comparative study for the electron capture process O+(S40,D20,P20)+He→O(P3)+He+ is reported. The cross sections are calculated using fully quantal and semiclassical molecular-orbital close-coupling (MOCC) approaches in the adiabatic representation. Detailed comparison of transition probabilities and cross sections is made from both MOCC approaches and displays close agreement above ˜125eV/u . The remarkable discrepancies between the earlier semiclassical and quantal MOCC approaches may be attributed to the insufficient step-size resolution in their semiclassical calculation [M. Kimura , Phys. Rev. A 50, 4854 (1994)]. Our results have also been compared with experiment and found to be in good agreement.

  1. Hydrogen atom in a magnetic field: Ghost orbits, catastrophes, and uniform semiclassical approximations

    International Nuclear Information System (INIS)

    Main, J.; Wunner, G.

    1997-01-01

    Applying closed-orbit theory to the recurrence spectra of the hydrogen atom in a magnetic field, one can interpret most, but not all, structures semiclassically in terms of closed classical orbits. In particular, conventional closed-orbit theory fails near bifurcations of orbits where semiclassical amplitudes exhibit unphysical divergences. Here we analyze the role of ghost orbits living in complex phase space. The ghosts can explain resonance structures in the spectra of the hydrogen atom in a magnetic field at positions where no real orbits exist. For three different types of catastrophes, viz. fold, cusp, and butterfly catastrophes, we construct uniform semiclassical approximations and demonstrate that these solutions are completely determined by classical parameters of the real orbits and complex ghosts. copyright 1997 The American Physical Society

  2. Newtonian semiclassical gravity in the Ghirardi–Rimini–Weber theory with matter density ontology

    International Nuclear Information System (INIS)

    Derakhshani, Maaneli

    2014-01-01

    We propose a Newtonian semiclassical gravity theory based on the GRW collapse theory with matter density ontology (GRWm), which we term GRWmN. The theory is proposed because, as we show from previous arguments in the literature, the standard Newtonian semiclassical gravity theory based on the Schroedinger–Newton equations does not have a consistent Born rule probability interpretation for gravitationally self-interacting particles and implies gravitational cat states for macroscopic mass superpositions. By contrast, we show that GRWmN has a consistent statistical description of gravitationally self-interacting particles and adequately suppresses the cat states for macroscopic superpositions. Two possible routes to experimentally testing GRWmN are also considered. We conclude with a discussion of possible variants of GRWmN, what a general relativistic extension would involve, and various objections that might be raised against semiclassical gravity theories like GRWmN.

  3. Newtonian semiclassical gravity in the Ghirardi–Rimini–Weber theory with matter density ontology

    Energy Technology Data Exchange (ETDEWEB)

    Derakhshani, Maaneli, E-mail: maanelid@yahoo.com

    2014-03-01

    We propose a Newtonian semiclassical gravity theory based on the GRW collapse theory with matter density ontology (GRWm), which we term GRWmN. The theory is proposed because, as we show from previous arguments in the literature, the standard Newtonian semiclassical gravity theory based on the Schroedinger–Newton equations does not have a consistent Born rule probability interpretation for gravitationally self-interacting particles and implies gravitational cat states for macroscopic mass superpositions. By contrast, we show that GRWmN has a consistent statistical description of gravitationally self-interacting particles and adequately suppresses the cat states for macroscopic superpositions. Two possible routes to experimentally testing GRWmN are also considered. We conclude with a discussion of possible variants of GRWmN, what a general relativistic extension would involve, and various objections that might be raised against semiclassical gravity theories like GRWmN.

  4. Modified method of perturbed stationary states. II. Semiclassical and low-velocity quantal approximations

    International Nuclear Information System (INIS)

    Green, T.A.

    1978-10-01

    For one-electron heteropolar systems, the wave-theoretic Lagrangian of Paper I 2 is simplified in two distinct approximations. The first is semiclassical; the second is quantal, for velocities below those for which the semiclassical treatment is reliable. For each approximation, unitarity and detailed balancing are discussed. Then, the variational method as described by Demkov is used to determine the coupled equations for the radial functions and the Euler-Lagrange equations for the translational factors which are part of the theory. Specific semiclassical formulae for the translational factors are given in a many-state approximation. Low-velocity quantal formulae are obtained in a one-state approximation. The one-state results of both approximations agree with an earlier determination by Riley. 14 references

  5. A semiclassical approach to many-body interference in Fock-space

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Thomas

    2015-11-01

    Many-body systems draw ever more physicists' attention. Such an increase of interest often comes along with the development of new theoretical methods. In this thesis, a non-perturbative semiclassical approach is developed, which allows to analytically study many-body interference effects both in bosonic and fermionic Fock space and is expected to be applicable to many research areas in physics ranging from Quantum Optics and Ultracold Atoms to Solid State Theory and maybe even High Energy Physics. After the derivation of the semiclassical approximation, which is valid in the limit of large total number of particles, first applications manifesting the presence of many-body interference effects are shown. Some of them are confirmed numerically thus verifying the semiclassical predictions. Among these results are coherent back-/forward-scattering in bosonic and fermionic Fock space as well as a many-body spin echo, to name only the two most important ones.

  6. Quantum flesh on classical bones: Semiclassical bridges across the quantum-classical divide

    Energy Technology Data Exchange (ETDEWEB)

    Bokulich, Alisa [Center for Philosophy and History of Science, Boston University, Boston, MA (United States)

    2014-07-01

    Traditionally quantum mechanics is viewed as having made a sharp break from classical mechanics, and the concepts and methods of these two theories are viewed as incommensurable with one another. A closer examination of the history of quantum mechanics, however, reveals that there is a strong sense in which quantum mechanics was built on the backbone of classical mechanics. As a result, there is a considerable structural continuity between these two theories, despite their important differences. These structural continuities provide a ground for semiclassical methods in which classical structures, such as trajectories, are used to investigate and model quantum phenomena. After briefly tracing the history of semiclassical approaches, I show how current research in semiclassical mechanics is revealing new bridges across the quantum-classical divide.

  7. Decoherence and back reaction: The origin of the semiclassical Einstein equations

    International Nuclear Information System (INIS)

    Paz, J.P.; Sinha, S.

    1991-01-01

    Two basic properties defining classical behavior are ''decoherence'' and ''correlations between coordinates and momenta.'' We study how the correlations that define the semiclassical decohering histories of the relevant cosmological variables are affected by the interaction with an environment formed by unobserved (''irrelevant'') degrees of freedom. For some quantum cosmological models we analyze under what conditions the semiclassical coarse-grained histories obey the so-called semiclassical Einstein's equations (i.e., G μν =κ left-angle T μν right-angle). These equations are shown to be valid only as a description of adiabatic regions of histories for which the interference effects have been suppressed. We also discuss the problem related to the existence of divergences in the decoherence factor of various quantum cosmological models

  8. Semiclassical shell structure of moments of inertia in deformed Fermi systems

    International Nuclear Information System (INIS)

    Magner, A.G.; Gzhebinsky, A.M.; Sitdikov, A.S.; Khamzin, A.A.; Bartel, J.

    2010-01-01

    The collective moment of inertia is derived analytically within the cranking model in the adiabatic mean-field approximation at finite temperature. Using the nonperturbative periodic-orbit theory the semiclassical shell-structure components of the collective moment of inertia are obtained for any potential well. Their relation to the free-energy shell corrections are found semiclassically as being given through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. Shell effects in the moment of inertia disappear exponentially with increasing temperature. For the case of the harmonic-oscillator potential one observes a perfect agreement between semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures. (author)

  9. Decoupled Closed-Form Solution for Humanoid Lower Limb Kinematics

    Directory of Open Access Journals (Sweden)

    Alejandro Said

    2015-01-01

    Full Text Available This paper presents an explicit, omnidirectional, analytical, and decoupled closed-form solution for the lower limb kinematics of the humanoid robot NAO. The paper starts by decoupling the position and orientation analysis from the overall Denavit-Hartenberg (DH transformation matrices. Here, the joint activation sequence for the DH matrices is based on the geometry of a triangle. Furthermore, the implementation of a forward and a reversed kinematic analysis for the support and swing phase equations is developed to avoid matrix inversion. The allocation of constant transformations allows the position and orientation end-coordinate systems to be aligned with each other. Also, the redefinition of the DH transformations and the use of constraints allow decoupling the shared DOF between the legs and the torso. Finally, a geometric approach to avoid the singularities during the walking process is indicated. Numerical data is presented along with an experimental implementation to prove the validity of the analytical results.

  10. Introduction to geometric nonlinear control; Linearization, observability, decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Respondek, W [Laboratoire de Mathematiques, INSA de Rouen (France)

    2002-07-15

    These notes are devoted to the problems of linearization, observability, and decoupling of nonlinear control systems. Together with notes of Bronislaw Jakubczyk in the same volume, they form an introduction to geometric methods in nonlinear control theory. In the first part we discuss equivalence of control systems. We consider various aspects of the problem: state-space and feedback equivalence, local and global equivalence, equivalence to linear and partially linear systems. In the second part we present the notion of observability and give a geometric rank condition for local observability and an algebraic characterization of local observability. We discuss unm observability, decompositions of non-observable systems, and properties of generic observable systems. In the third part we introduce the notion of invariant distributions and discuss disturbance decoupling and input-output decoupling. Many concepts and results are illustrated with examples. (author)

  11. Semiclassics for matrix Hamiltonians: The Gutzwiller trace formula with applications to graphene-type systems

    Science.gov (United States)

    Vogl, M.; Pankratov, O.; Shallcross, S.

    2017-07-01

    We present a tractable and physically transparent semiclassical theory of matrix-valued Hamiltonians, i.e., those that describe quantum systems with internal degrees of freedoms, based on a generalization of the Gutzwiller trace formula for a n ×n dimensional Hamiltonian H (p ̂,q ̂) . The classical dynamics is governed by n Hamilton-Jacobi (HJ) equations that act in a phase space endowed with a classical Berry curvature encoding anholonomy in the parallel transport of the eigenvectors of H (p ,q ) ; these vectors describe the internal structure of the semiclassical particles. At the O (ℏ1) level and for nondegenerate HJ systems, this curvature results in an additional semiclassical phase composed of (i) a Berry phase and (ii) a dynamical phase resulting from the classical particles "moving through the Berry curvature". We show that the dynamical part of this semiclassical phase will, generally, be zero only for the case in which the Berry phase is topological (i.e., depends only on the winding number). We illustrate the method by calculating the Landau spectrum for monolayer graphene, the four-band model of AB bilayer graphene, and for a more complicated matrix Hamiltonian describing the silicene band structure. Finally, we apply our method to an inhomogeneous system consisting of a strain engineered one-dimensional moiré in bilayer graphene, finding localized states near the Dirac point that arise from electron trapping in a semiclassical moiré potential. The semiclassical density of states of these localized states we show to be in perfect agreement with an exact quantum mechanical calculation of the density of states.

  12. Additive operator-difference schemes splitting schemes

    CERN Document Server

    Vabishchevich, Petr N

    2013-01-01

    Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy

  13. Dynamical decoupling assisted acceleration of two-spin evolution in XY spin-chain environment

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yong-Bo; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wang, Zhao-Ming [Department of Physics, Ocean University of China, Qingdao 266100 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Li, Hai [School of Information and Electronic Engineering, Shandong Institute of Business and Technology, Yantai 264000 (China)

    2016-01-28

    We study the speed-up role of dynamical decoupling in an open system, which is modeled as two central spins coupled to their own XY spin-chain environment. We show that the fast bang–bang pulses can suppress the system evolution, which manifests the quantum Zeno effect. In contrast, with the increasing of the pulse interval time, the bang–bang pulses can enhance the decay of the quantum speed limit time and induce the speed-up process, which displays the quantum anti-Zeno effect. In addition, we show that the random pulses can also induce the speed-up of quantum evolution. - Highlights: • We propose a scheme to accelerate the dynamical evolution of central spins in an open system. • The quantum speed limit of central spins can be modulated by changing pulse frequency. • The random pulses can play the same role as the regular pulses do for small perturbation.

  14. A time-dependent semiclassical wavepacket method using a fast Fourier transform (FFT) algorithm

    International Nuclear Information System (INIS)

    Gauss, J.; Heller, E.J.

    1991-01-01

    A new semiclassical propagator based on a local expansion of the potential up to second order around the moving center of the wavepackt is proposed. Formulas for the propagator are derived and the implementation using grid and fast Fourier transform (FFT) methods is discussed. The semiclassical propagator can be improved up to the exact quantum mechanical limit by including anharmonic corrections using a split operator approach. Preliminary applications to the CH 3 I photodissociation problem show the applicability and accuracy of the proposed method. (orig.)D

  15. Symplectic and semiclassical aspects of the Schläfli identity

    Science.gov (United States)

    Hedeman, Austin; Kur, Eugene; Littlejohn, Robert G.; Haggard, Hal M.

    2015-03-01

    The Schläfli identity, which is important in Regge calculus and loop quantum gravity, is examined from a symplectic and semiclassical standpoint in the special case of flat, three-dimensional space. In this case a proof is given, based on symplectic geometry. A series of symplectic and Lagrangian manifolds related to the Schläfli identity, including several versions of a Lagrangian manifold of tetrahedra, are discussed. Semiclassical interpretations of the various steps are provided. Possible generalizations to three-dimensional spaces of constant (nonzero) curvature, involving Poisson-Lie groups and q-deformed spin networks, are discussed.

  16. Foundation of the semiclassical approximation by means of path integral methods

    International Nuclear Information System (INIS)

    Krisztinkovics, F.

    1984-01-01

    The aim of our study is to find a technically unique semiclassical treatment to describe the collision processes between heavy ions. Thereby it shall be started from a complete quantum mechanical formulation of the collision process. This aim requires: 1. A completely quantum mechanical initial formulation for the whole system, 2. a unique and conceptually clear transition to semiclassics. In order to fulfil the requirements a method is offered which is in closest connection with the Feynman propagator respectively influence functional. (orig./HSI) [de

  17. Semiclassical description of resonant tunnel effect: bifurcations and periodic orbits in the resonant current

    International Nuclear Information System (INIS)

    Rouben, D.C.

    1997-01-01

    A semiclassical method for resonant tunneling in a quantum well in the presence of a magnetic field tilted with regard to an electric field is developed. In particular a semiclassical formula is derived for the total current of electrons after the second barrier of the quantum well. The contribution of the stable and unstable orbits is studied. It appears that the parameters which describe the classical chaos in the quantum well have an important effect on the tunneling current. A numerical experiment is led, the contributions to the current of some particular orbits are evaluated and the results are compared with those given by the quantum theory. (A.C.)

  18. Remnants of semiclassical bistability in the few-photon regime of cavity QED.

    Science.gov (United States)

    Kerckhoff, Joseph; Armen, Michael A; Mabuchi, Hideo

    2011-11-21

    Broadband homodyne detection of the light transmitted by a Fabry-Perot cavity containing a strongly-coupled (133)Cs atom is used to probe the dynamic optical response in a regime where semiclassical theory predicts bistability but strong quantum corrections should apply. While quantum fluctuations destabilize true equilibrium bistability, our observations confirm the existence of metastable states with finite lifetimes and a hysteretic response is apparent when the optical drive is modulated on comparable timescales. Our experiment elucidates remnant semiclassical behavior in the attojoule (~10 photon) regime of single-atom cavity QED, of potential significance for ultra-low power photonic signal processing. © 2011 Optical Society of America

  19. Combinatorial theory of the semiclassical evaluation of transport moments II: Algorithmic approach for moment generating functions

    Energy Technology Data Exchange (ETDEWEB)

    Berkolaiko, G. [Department of Mathematics, Texas A and M University, College Station, Texas 77843-3368 (United States); Kuipers, J. [Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg (Germany)

    2013-12-15

    Electronic transport through chaotic quantum dots exhibits universal behaviour which can be understood through the semiclassical approximation. Within the approximation, calculation of transport moments reduces to codifying classical correlations between scattering trajectories. These can be represented as ribbon graphs and we develop an algorithmic combinatorial method to generate all such graphs with a given genus. This provides an expansion of the linear transport moments for systems both with and without time reversal symmetry. The computational implementation is then able to progress several orders further than previous semiclassical formulae as well as those derived from an asymptotic expansion of random matrix results. The patterns observed also suggest a general form for the higher orders.

  20. Non-trapping condition for semiclassical Schr dinger operators with matrix-valued potentials.

    CERN Document Server

    Jecko, T

    2004-01-01

    We consider semiclassical Schr dinger operators with matrix-valued, long-range, smooth potential, for which different eigenvalues may cross on a codimension one submanifold. We denote by h the semiclassical parameter and we consider energies above the bottom of the essential spectrum. Under some invariance condition on the matricial structure of the potential near the eigenvalues crossing and some structure condition at infinity, we prove that the boundary values of the resolvent at energy lambda, as bounded operators on suitable weighted spaces, are O(1/h) if and only if lambda is a non-trapping energy for all the Hamilton flows generated by the eigenvalues of the operator's symbol.

  1. Semiclassical description of soliton-antisoliton pair production in particle collisions

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, S.V.; Levkov, D.G. [Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation)

    2015-11-10

    We develop a consistent semiclassical method to calculate the probability of topological soliton-antisoliton pair production in collisions of elementary particles. In our method one adds an auxiliary external field pulling the soliton and antisoliton in the opposite directions. This transforms the original scattering process into a Schwinger pair creation of the solitons induced by the particle collision. One describes the Schwinger process semiclassically and recovers the original scattering probability in the limit of vanishing external field. We illustrate the method in (1+1)-dimensional scalar field model where the suppression exponents of soliton-antisoliton production in the multiparticle and two-particle collisions are computed numerically.

  2. A closer look at non-decoupling D-Terms

    CERN Document Server

    Staub, Florian

    2016-01-01

    Non-Decoupling D-Terms are an attractive possibility to enhance the tree-level mass of the standard model like Higgs boson in supersymmetric models. We discuss here for the case of a new Abelian gauge group two effects usually neglected in literature: (i) the size of the additional radiative corrections to the Higgs mass due to the presence of the new gauge coupling, and (ii) the impact of gauge kinetic mixing. It is shown that both effects reduce to some extent the positive effect of the non-decoupling D-terms on the Higgs mass.

  3. Robust dynamical decoupling for quantum computing and quantum memory.

    Science.gov (United States)

    Souza, Alexandre M; Alvarez, Gonzalo A; Suter, Dieter

    2011-06-17

    Dynamical decoupling (DD) is a popular technique for protecting qubits from the environment. However, unless special care is taken, experimental errors in the control pulses used in this technique can destroy the quantum information instead of preserving it. Here, we investigate techniques for making DD sequences robust against different types of experimental errors while retaining good decoupling efficiency in a fluctuating environment. We present experimental data from solid-state nuclear spin qubits and introduce a new DD sequence that is suitable for quantum computing and quantum memory.

  4. A closer look at non-decoupling D-terms

    Directory of Open Access Journals (Sweden)

    Florian Staub

    2016-07-01

    Full Text Available Non-decoupling D-terms are an attractive possibility to enhance the tree-level mass of the standard model like Higgs boson in supersymmetric models. We discuss here for the case of a new Abelian gauge group two effects usually neglected in literature: (i the size of the additional radiative corrections to the Higgs mass due to the presence of the new gauge coupling, and (ii the impact of gauge kinetic mixing. It is shown that both effects reduce to some extent the positive effect of the non-decoupling D-terms on the Higgs mass.

  5. Late kinetic decoupling of light magnetic dipole dark matter

    International Nuclear Information System (INIS)

    Gondolo, Paolo; Kadota, Kenji

    2016-01-01

    We study the kinetic decoupling of light (≲10 GeV) magnetic dipole dark matter (DM). We find that present bounds from collider, direct DM searches, and structure formation allow magnetic dipole DM to remain in thermal equilibrium with the early universe plasma until as late as the electron-positron annihilation epoch. This late kinetic decoupling leads to a minimal mass for the earliest dark protohalos of thousands of solar masses, in contrast to the conventional weak scale DM scenario where they are of order 10 −6 solar masses.

  6. Dynamically Decoupled 13C Spins in Hyperpolarized Nanodiamond

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David; Reilly, David

    The spin-spin relaxation time, T2, which determines how long a quantum state remains coherent, is an important factor for many applications ranging from MRI to quantum computing. A common technique used in quantum information technology to extend the T2, involves averaging out certain noise spectra via dynamical decoupling sequences. Depending on the nature of the noise in the system, specific sequences, such as CPMG, UDD or KDD, can be tailored to optimize T2. Here we combine hyperpolarization techniques and dynamical decoupling sequences to extend the T2 of 13C nuclear spins in nanodiamond by three orders of magnitude.

  7. Discontinuous Galerkin Time-Domain Analysis of Power-Ground Planes Taking Into Account Decoupling Capacitors

    KAUST Repository

    Li, Ping

    2017-03-22

    In this paper, a discontinuous Galerkin time-domain (DGTD) method is developed to analyze the power-ground planes taking into account the decoupling capacitors. In the presence of decoupling capacitors, the whole physical system can be split into two subsystems: 1) the field subsystem that is governed by Maxwell\\'s equations that will be solved by the DGTD method, and 2) the circuit subsystem including the capacitor and its parasitic inductor and resistor, which is going to be characterized by the modified nodal analysis algorithm constructed circuit equations. With the aim to couple the two subsystems together, a lumped port is defined over a coaxial surface between the via barrel and the ground plane. To reach the coupling from the field to the circuit subsystem, a lumped voltage source calculated by the integration of electric field along the radial direction is introduced. On the other hand, to facilitate the coupling from the circuit to field subsystem, a lumped port current source calculated from the circuit equation is introduced, which serves as an impressed current source for the field subsystem. With these two auxiliary terms, a hybrid field-circuit matrix equation is established, which enables the field and circuit subsystems are solved in a synchronous scheme. Furthermore, the arbitrarily shaped antipads are considered by enforcing the proper wave port excitation using the magnetic surface current source derived from the antipads supported electric eigenmodes. In this way, the S-parameters corresponding to different modes can be conveniently extracted. To further improve the efficiency of the proposed algorithm in handling multiscale meshes, the local time-stepping marching scheme is applied. The proposed algorithm is verified by several representative examples.

  8. Natural relations and Appelquist-Carazzone decoupling theorem

    International Nuclear Information System (INIS)

    Grzadkowski, B.; Krawczyk, P.; Pokorski, S.

    1984-01-01

    It is pointed out that in some cases violation of the Appelquist-Carazzone decoupling theorem in spontaneously broken gauge theories is related to the presence in such theories of the so-called natural zeroth-order relations. In this context heavy-fermion effects in the Glashow-Salam-Weinberg model are discussed

  9. Decoupled systems on trial: Eliminating bottlenecks to improve aquaponic processes.

    Directory of Open Access Journals (Sweden)

    Hendrik Monsees

    Full Text Available In classical aquaponics (coupled aquaponic systems, 1-loop systems the production of fish in recirculating aquaculture systems (RAS and plants in hydroponics are combined in a single loop, entailing systemic compromises on the optimal production parameters (e.g. pH. Recently presented decoupled aquaponics (2-loop systems have been awarded for eliminating major bottlenecks. In a pilot study, production in an innovative decoupled aquaponic system was compared with a coupled system and, as a control, a conventional RAS, assessing growth parameters of fish (FCR, SGR and plants over an experimental period of 5 months. Soluble nutrients (NO3--N, NO2--N, NH4+-N, PO43-, K+, Ca2+, Mg2+, SO42-, Cl2- and Fe2+, elemental composition of plants, fish and sludge (N, P, K, Ca, Mg, Na, C, abiotic factors (temperature, pH, oxygen, and conductivity, fertilizer and water consumption were determined. Fruit yield was 36% higher in decoupled aquaponics and pH and fertilizer management was more effective, whereas fish production was comparable in both systems. The results of this pilot study clearly illustrate the main advantages of decoupled, two-loop aquaponics and demonstrate how bottlenecks commonly encountered in coupled aquaponics can be managed to promote application in aquaculture.

  10. Decoupled systems on trial: Eliminating bottlenecks to improve aquaponic processes.

    Science.gov (United States)

    Monsees, Hendrik; Kloas, Werner; Wuertz, Sven

    2017-01-01

    In classical aquaponics (coupled aquaponic systems, 1-loop systems) the production of fish in recirculating aquaculture systems (RAS) and plants in hydroponics are combined in a single loop, entailing systemic compromises on the optimal production parameters (e.g. pH). Recently presented decoupled aquaponics (2-loop systems) have been awarded for eliminating major bottlenecks. In a pilot study, production in an innovative decoupled aquaponic system was compared with a coupled system and, as a control, a conventional RAS, assessing growth parameters of fish (FCR, SGR) and plants over an experimental period of 5 months. Soluble nutrients (NO3--N, NO2--N, NH4+-N, PO43-, K+, Ca2+, Mg2+, SO42-, Cl2- and Fe2+), elemental composition of plants, fish and sludge (N, P, K, Ca, Mg, Na, C), abiotic factors (temperature, pH, oxygen, and conductivity), fertilizer and water consumption were determined. Fruit yield was 36% higher in decoupled aquaponics and pH and fertilizer management was more effective, whereas fish production was comparable in both systems. The results of this pilot study clearly illustrate the main advantages of decoupled, two-loop aquaponics and demonstrate how bottlenecks commonly encountered in coupled aquaponics can be managed to promote application in aquaculture.

  11. Non-decoupling of heavy scalars in cosmology

    NARCIS (Netherlands)

    Hardeman, Sjoerd Reimer

    2012-01-01

    The theory describing physics at the highest energy scales likely contains extra dimensions, whose internal degrees of freedom result in many massive field and particles. At accelerator experiments these fields and particles generally decouple from the low energy physics. However, in cosmology

  12. Do 'green' taxes work? Decoupling environmental pressures and economic growth

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou

    2005-01-01

    This essay intends to shed light on whether environmental taxation can help to decouple environmental pressures from economic growth, a policy outcome widely desired and particularly pressing in the context of climate change where radical measures are needed to curb CO2 build up....

  13. Decoupling among CSR policies, programs, and impacts : An empirical study

    NARCIS (Netherlands)

    Graafland, Johan; Smid, Hugo

    2016-01-01

    There are relatively few empirical studies on the impacts of corporate social responsibility (CSR) policies and programs. This article addresses the research gap by analyzing the incidence of, and the conditions that affect, decoupling (defined as divergence) among CSR policies, implementation of

  14. Active power decoupling with reduced converter stress for single ...

    Indian Academy of Sciences (India)

    SUJATA BHOWMICK

    Department of Electronic Systems Engineering, Indian Institute of Science, ... Single phase; double-frequency ripple; active power decoupling; reduced stress; ... sation of renewable energy sources (e.g., PV), potential ... In standard grid connected DC/AC H-bridge configuration, ..... solar inverter with reduced-size dc link.

  15. A decoupling approach to classical data transmission over quantum channels

    DEFF Research Database (Denmark)

    Dupont-Dupuis, Fréderic; Szehr, Oleg; Tomamichel, Marco

    2014-01-01

    be solved this way, one of the most basic coding problems remains impervious to a direct application of this method, sending classical information through a quantum channel. We will show that this problem can, in fact, be solved using decoupling ideas, specifically by proving a dequantizing theorem, which...

  16. State policy change: Revenue decoupling in the electricity market

    Science.gov (United States)

    McNeil, Kytson L.

    The study seeks to answer the question, why are states adopting revenue decoupling in the electricity market, by investigating the relationship between policy adoption and attributes of the electricity market, the structure of the state utility commissions, and the political climate of the state. The study examines the period 1978-2008. Two econometric models, the marginal risk set model and the conditional risk set model, are estimated to predict the influence of covariates on the probability of the state adopting revenue decoupling in the electricity market. The models are both variants of the Cox proportional hazard model and use different underlying assumptions about the nature of adoption of revenue decoupling and when the states are considered to be at risk of adoption. Results suggest that market attributes, such as the source of electricity generation in the state, state energy intensity, and the distribution of non-public and public utilities, significantly influence the adoption of the policy. Also, the method of selecting commissioners and the party affiliation of elected officials in the state are important factors. The study concludes by suggestions to improve the implementation and evaluation of revenue decoupling in the electricity markets.

  17. Semiclassical derivation of a local optical potential for heavy-ion plastic scattering

    International Nuclear Information System (INIS)

    Donangelo, R.; Qanto, L.F.; Hussein, M.S.

    A semiclassical method to determine the contribution to the optical potential in the elastic channel due to the coupling to other processes taking place in heavy-ion collisions is developed. An application is made to the case of coulomb excitation. The lowest order term of our potential is shown to be identical to the quantum mechanical expression of Baltz et al

  18. The semiclassical approximation in the local theory of resonance inelastic interaction of slow electrons with molecules

    International Nuclear Information System (INIS)

    Kazansky, A.K.

    1984-01-01

    The semiclassical approach is developed to calculate the cross sections of vibrational excitation and dissociative attachment for diatomic molecules within the framework of the 'boomerang model'. The formulae obtained reveal the energy dependence of the cross sections on the parameters of the system. Numerical calculations for N 2 , CO, H 2 , HD and D 2 confirm the high accuracy of the method. (author)

  19. Classical and semi-classical solutions of the Yang--Mills theory

    International Nuclear Information System (INIS)

    Jackiw, R.; Nohl, C.; Rebbi, C.

    1977-12-01

    This review summarizes what is known at present about classical solutions to Yang-Mills theory both in Euclidean and Minkowski space. The quantal meaning of these solutions is also discussed. Solutions in Euclidean space expose multiple vacua and tunnelling of the quantum theory. Those in Minkowski space-time provide a semi-classical spectrum for a conformal generator

  20. On a semiclassical analysis of high energy electron diffraction by imperfect crystals: the stacking fault

    International Nuclear Information System (INIS)

    Smith, A.E.; Chadderton, L.T.; Johnson, E.

    1978-01-01

    Electron diffraction amplitudes at the lower surface of a displaced sandwich crystal are obtained for the high energy limit in the real space formulation. Using semiclassical methods analytical approximations to a resulting overlap integral - central to the problem - are derived. (Auth.)

  1. Hamiltonian structure of isospectral deformation equation and semi-classical approximation to factorized S-matrices

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.; Chudnovsky, G.V.

    1980-01-01

    We consider semi-classical approximation to factorized S-matrices. We show that this new class of matrices, called s-matrices, defines Hamiltonian structures for isospectral deformation equations. Concrete examples of factorized s-matrices are constructed and they are used to define Hamiltonian structure for general two-dimensional isospectral deformation systems. (orig.)

  2. Instanton and noninstanton tunneling in periodically perturbed barriers: semiclassical and quantum interpretations.

    Science.gov (United States)

    Takahashi, Kin'ya; Ikeda, Kensuke S

    2012-11-01

    In multidimensional barrier tunneling, there exist two different types of tunneling mechanisms, instanton-type tunneling and noninstanton tunneling. In this paper we investigate transitions between the two tunneling mechanisms from the semiclassical and quantum viewpoints taking two simple models: a periodically perturbed Eckart barrier for the semiclassical analysis and a periodically perturbed rectangular barrier for the quantum analysis. As a result, similar transitions are observed with change of the perturbation frequency ω for both systems, and we obtain a comprehensive scenario from both semiclassical and quantum viewpoints for them. In the middle range of ω, in which the plateau spectrum is observed, noninstanton tunneling dominates the tunneling process, and the tunneling amplitude takes the maximum value. Noninstanton tunneling explained by stable-unstable manifold guided tunneling (SUMGT) from the semiclassical viewpoint is interpreted as multiphoton-assisted tunneling from the quantum viewpoint. However, in the limit ω→0, instanton-type tunneling takes the place of noninstanton tunneling, and the tunneling amplitude converges on a constant value depending on the perturbation strength. The spectrum localized around the input energy is observed, and there is a scaling law with respect to the width of the spectrum envelope, i.e., the width ∝ℏω. In the limit ω→∞, the tunneling amplitude converges on that of the unperturbed system, i.e., the instanton of the unperturbed system.

  3. The symmetric = ω -semi-classical orthogonal polynomials of class one

    Science.gov (United States)

    Maroni, P.; Mejri, M.

    2008-12-01

    We give the system of Laguerre-Freud equations associated with the = ω -semi-classical functionals of class one, where = ω is the divided difference operator. This system is solved in the symmetric case. There are essentially two canonical cases. The corresponding integral representations are given.

  4. A derivation of the Derbenev-Kondratenko formula using semi-classical electrodynamics

    International Nuclear Information System (INIS)

    Mane, S.R.

    1985-11-01

    We present a detailed exposition of the mechanism for the build-up of polarization in electron storage rings. A semi-classical approach is used to derive the rate of growth and asymptotic degree of polarization in an electron storage ring (the Derbenev-Kondratenko formula). Statistical mechanical concepts used to obtain as classical an understanding as possible of this phenomenon. (orig.)

  5. Semiclassical approach to the quantization of the periodic solutions of the sine-Gordon equation

    International Nuclear Information System (INIS)

    Ghika, G.; Visinescu, M.

    1978-01-01

    The periodic solutions of the sine-Gordon equation are proved to be singular. For the semiclassical quantization of the periodic solutions we calculate the fluctuations around them and we use the path integrals in the Gaussian approximation in order to obtain the bound states of the sine-Gordon field equation. (author)

  6. Semi-classical quantization non-manifestly using the method of harmonic balance

    International Nuclear Information System (INIS)

    Stepanov, S.S.; Tutik, R.S.; Yaroshenko, A.P.; Schlippe, W. von.

    1990-01-01

    Based on the ideas of the harmonic balance method and h-expansion a semi-classical procedure for deriving approximations to the energy levels of one-dimensional quantum systems is developed. The procedure is applied to treat the perturbed oscillator potentials. 12 refs.; 2 tabs

  7. Semiclassical Weyl Formula for a Class of Weakly Regular Elliptic Operators

    Energy Technology Data Exchange (ETDEWEB)

    Zielinski, Lech [Universite du Littoral, LMPA, Centre Mi-Voix (France)], E-mail: Lech.Zielinski@lmpa.univ-littoral.fr

    2006-02-15

    We investigate the semiclassical Weyl formula describing the asymptotic behaviour of the counting function for the number of eigenvalues in the case of self-adjoint elliptic differential operators satisfying weak regularity hypotheses. We consider symbols with possible critical points and with coefficients which have Hoelder continuous derivatives of first order.

  8. Semiclassical Weyl Formula for a Class of Weakly Regular Elliptic Operators

    International Nuclear Information System (INIS)

    Zielinski, Lech

    2006-01-01

    We investigate the semiclassical Weyl formula describing the asymptotic behaviour of the counting function for the number of eigenvalues in the case of self-adjoint elliptic differential operators satisfying weak regularity hypotheses. We consider symbols with possible critical points and with coefficients which have Hoelder continuous derivatives of first order

  9. Semi-classical calculation of the spin-isospin response functions

    International Nuclear Information System (INIS)

    Chanfray, G.

    1987-03-01

    We present a semi-classical calculation of the nuclear response functions beyond the Thomas-Fermi approximation. We apply our formalism to the spin-isospin responses and show that the surface peaked h/2π corrections considerably decrease the ratio longitudinal/transverse as obtained through hadronic probes

  10. Semiclassical Hybrid Approach to Condensed Phase Molecular Dynamics: Application to the I2Kr17 Cluster

    Czech Academy of Sciences Publication Activity Database

    Buchholz, M.; Goletz, Ch. M.; Grossman, F.; Schmidt, B.; Heyda, J.; Jungwirth, Pavel

    2012-01-01

    Roč. 116, č. 46 (2012), s. 11199-11210 ISSN 1089-5639 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : semiclassical molecular dynamics * cluster * wavepacket * coherence * spectra Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.771, year: 2012

  11. Classical properties and semiclassical calculations in a spherical nuclear average potential

    International Nuclear Information System (INIS)

    Carbonell, J.; Brut, F.; Arvieu, R.; Touchard, J.

    1984-03-01

    We study the relation between the classical properties or an average nuclear potential and its spectral properties. We have drawn the energy-action surface of this potential and related its properties to the spectral ones in the framework of the EBK semiclassical method. We also describe a method allowing us to get the evolution of the spectrum with the mass number

  12. Unmasking decoupling: Redefining the Resource Intensity of the Economy.

    Science.gov (United States)

    Bithas, Kostas; Kalimeris, Panos

    2018-04-01

    Interest in investigating the complex link between resources and developments has revived recently following studies which support striking "dematerialized" growth over the last hundred years or so. This so-called decoupling effect is defined as the declining quantity of resources required for producing one unit of GDP. Decoupling studies adopt aggregate GDP as the measure of the outcome of the economy. However, this outcome is contributed by the total population which differs over time and between countries. A valid comparison should use a comparable, standardized indicator that adjusts for population size. GDP per capita, the income index, defines in monetary terms the ultimate outcome of the economy and is adopted by international organizations as the standard index for comparing economies. The income index approximates, in monetary terms, the welfare produced by the economic system and enjoyed by individuals. Recently developed alternative indexes of welfare lack broad data coverage and have limited empirical application as yet. For this reason and for ensuring direct comparison with the standard decoupling estimates, our study remains within the monetary context. The present paper re-evaluates the resources-economy link from the perspective of "the resources required for the production of one unit of GDP per capita (Income)" and hence evaluates the efficiency of turning resources into the actual outcome of the economic system. Our estimates suggest that the dependence of global economic growth on natural resources has increased by over 60% in the last 110years (1900-2009), contrasting with the prevailing decoupling estimates which suggest a reduction by 63%. We find that the actual decoupling, which began in the mid-1970s in post-industrial economies, is counterbalanced by the intensified resource intensity of several developing economies. Accordingly, in the pursuit of sustainability, the dematerialization target needs to be more clearly incorporated into

  13. Discontinuous Galerkin Time-Domain Analysis of Power-Ground Planes Taking Into Account Decoupling Capacitors

    KAUST Repository

    Li, Ping; Jiang, Li Jun; Bagci, Hakan

    2017-01-01

    In this paper, a discontinuous Galerkin time-domain (DGTD) method is developed to analyze the power-ground planes taking into account the decoupling capacitors. In the presence of decoupling capacitors, the whole physical system can be split

  14. Unconditionally energy stable numerical schemes for phase-field vesicle membrane model

    Science.gov (United States)

    Guillén-González, F.; Tierra, G.

    2018-02-01

    Numerical schemes to simulate the deformation of vesicles membranes via minimizing the bending energy have been widely studied in recent times due to its connection with many biological motivated problems. In this work we propose a new unconditionally energy stable numerical scheme for a vesicle membrane model that satisfies exactly the conservation of volume constraint and penalizes the surface area constraint. Moreover, we extend these ideas to present an unconditionally energy stable splitting scheme decoupling the interaction of the vesicle with a surrounding fluid. Finally, the well behavior of the proposed schemes are illustrated through several computational experiments.

  15. New advection schemes for free surface flows

    International Nuclear Information System (INIS)

    Pavan, Sara

    2016-01-01

    The purpose of this thesis is to build higher order and less diffusive schemes for pollutant transport in shallow water flows or 3D free surface flows. We want robust schemes which respect the main mathematical properties of the advection equation with relatively low numerical diffusion and apply them to environmental industrial applications. Two techniques are tested in this work: a classical finite volume method and a residual distribution technique combined with a finite element method. For both methods we propose a decoupled approach since it is the most advantageous in terms of accuracy and CPU time. Concerning the first technique, a vertex-centred finite volume method is used to solve the augmented shallow water system where the numerical flux is computed through an Harten-Lax-Van Leer-Contact Riemann solver. Starting from this solution, a decoupled approach is formulated and is preferred since it allows to compute with a larger time step the advection of a tracer. This idea was inspired by Audusse, E. and Bristeau, M.O. [13]. The Monotonic Upwind Scheme for Conservation Law, combined with the decoupled approach, is then used for the second order extension in space. The wetting and drying problem is also analysed and a possible solution is presented. In the second case, the shallow water system is entirely solved using the finite element technique and the residual distribution method is applied to the solution of the tracer equation, focusing on the case of time-dependent problems. However, for consistency reasons the resolution of the continuity equation must be considered in the numerical discretization of the tracer. In order to get second order schemes for unsteady cases a predictor-corrector scheme is used in this work. A first order but less diffusive version of the predictor-corrector scheme is also introduced. Moreover, we also present a new locally semi-implicit version of the residual distribution method which, in addition to good properties in

  16. Study of some approximation schemes in the spin-boson problem

    International Nuclear Information System (INIS)

    Kenkre, V.M.; Giuggioli, L.

    2004-01-01

    Some approximation schemes used in the description of the evolution of the spin-boson system are studied through numerical and analytic methods. Among the procedures investigated are semiclassical approximations and the memory function approach. An infinitely large number of semiclassical approximations are discussed. Their two extreme limits are shown to be characterized, respectively, by effective energy mismatch and effective intersite transfer. The validity of the two limits is explored by explicit numerical calculations for important regions in parameter space, and it is shown that they can provide good descriptions in the so-called adiabatic and anti-adiabatic regimes, respectively. The memory function approach, which provides an excellent approximation scheme for a certain range of parameters, is shown to be connected to other approaches such as the non-interacting blip approximation. New results are derived from the memory approach in semiclassical contexts. Comments are made on thermal effects in the spin-boson problem, the discrete non-linear Schroedinger equation, and connections to the areas of dynamic localization, and quantum control

  17. Reliability-based optimal structural design by the decoupling approach

    International Nuclear Information System (INIS)

    Royset, J.O.; Der Kiureghian, A.; Polak, E.

    2001-01-01

    A decoupling approach for solving optimal structural design problems involving reliability terms in the objective function, the constraint set or both is discussed and extended. The approach employs a reformulation of each problem, in which reliability terms are replaced by deterministic functions. The reformulated problems can be solved by existing semi-infinite optimization algorithms and computational reliability methods. It is shown that the reformulated problems produce solutions that are identical to those of the original problems when the limit-state functions defining the reliability problem are affine. For nonaffine limit-state functions, approximate solutions are obtained by solving series of reformulated problems. An important advantage of the approach is that the required reliability and optimization calculations are completely decoupled, thus allowing flexibility in the choice of the optimization algorithm and the reliability computation method

  18. Decoupling Suspension Controller Based on Magnetic Flux Feedback

    Directory of Open Access Journals (Sweden)

    Wenqing Zhang

    2013-01-01

    Full Text Available The suspension module control system model has been established based on MIMO (multiple input and multiple output state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module’s antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  19. Power decoupling method for single phase differential buck converter

    DEFF Research Database (Denmark)

    Yao, Wenli; Tang, Yi; Zhang, Xiaobin

    2015-01-01

    inverter to improve the dc link power quality, and an improved active power decoupling method is proposed to achieve ripple power reduction for both AC-DC and DC-AC conversions. The ripple energy storage is realized by the filter capacitors, which are connected between the output terminal and the negative...... generation technique is proposed to provide accurate ripple power compensation, and closed-loop controllers are also designed based on small signal models. The effectiveness of this power decoupling method is verified by detailed simulation studies as well as laboratory prototype experimental results....... dc bus. By properly controlling the differential mode voltage of the capacitors, it is possible to transfer desired energy between the DC port and AC port. The common mode voltage is controlled in such a way that the ripple power on the dc side will be reduced. Furthermore, an autonomous reference...

  20. Maximizing biodiversity co-benefits under REDD+: a decoupled approach

    International Nuclear Information System (INIS)

    Potts, Matthew D; Kelley, Lisa C; Doll, Hannah M

    2013-01-01

    Current debates on biodiversity co-benefits under REDD+ are marked by considerable ambiguity and contention. Nevertheless, REDD+ continues to represent one of the most important opportunities for global biodiversity conservation, and the question of how best to achieve biodiversity co-benefits remains an important one. Thus far, most biodiversity conservation in the context of REDD+ is predicated on the notion that services are co-located on a landscape. In contrast, this letter argues that decoupling biodiversity and carbon services on a landscape through national-level planning is a better approach to biodiversity conservation under REDD+. We discuss the fundamental ecological differences between the two services and use principles of resource economics to demonstrate that a decoupled approach will be more efficient, more flexible, and better able to mobilize sufficient finance for biodiversity conservation than a coupled approach. (letter)

  1. Decoupling suspension controller based on magnetic flux feedback.

    Science.gov (United States)

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  2. A Fully Symmetric and Completely Decoupled MEMS-SOI Gyroscope

    Directory of Open Access Journals (Sweden)

    Abdelhameed SHARAF

    2011-04-01

    Full Text Available This paper introduces a novel MEMS gyroscope that is capable of exciting the drive mode differentially. The structure also decouples the drive and sense modes via an intermediate mass and decoupling beams. Both drive and sense modes are fully differential enabling control over the zero-rate-output for the former and maximizing output sensitivity using a bridge circuit for the latter. Further, the structure is fully symmetric about the x- and y- axes which results in minimizing the temperature sensitivity problem. Complete analytical analysis based on the equations of motion was performed and verified using two commercially available finite element software packages. Results from both methods are in good agreement. The analysis of the sensor shows an electrical sensitivity of 1.14 (mV/(º/s. The gyroscope was fabricated using single mask and deep reactive ion etching. The measurement of the resonance frequency performed showing a good agreement with the analytical and numerical analysis.

  3. Power corrections from decoupling of the charm quark

    Science.gov (United States)

    Knechtli, Francesco; Korzec, Tomasz; Leder, Björn; Moir, Graham; Alpha Collaboration

    2017-11-01

    Decoupling of heavy quarks at low energies can be described by means of an effective theory as shown by S. Weinberg in Ref. [1]. We study the decoupling of the charm quark by lattice simulations. We simulate a model, QCD with two degenerate charm quarks. In this case the leading order term in the effective theory is a pure gauge theory. The higher order terms are proportional to inverse powers of the charm quark mass M starting at M-2. Ratios of hadronic scales are equal to their value in the pure gauge theory up to power corrections. We show, by precise measurements of ratios of scales defined from the Wilson flow, that these corrections are very small and that they can be described by a term proportional to M-2 down to masses in the region of the charm quark mass.

  4. Maximizing biodiversity co-benefits under REDD+: a decoupled approach

    Science.gov (United States)

    Potts, Matthew D.; Kelley, Lisa C.; Doll, Hannah M.

    2013-06-01

    Current debates on biodiversity co-benefits under REDD+ are marked by considerable ambiguity and contention. Nevertheless, REDD+ continues to represent one of the most important opportunities for global biodiversity conservation, and the question of how best to achieve biodiversity co-benefits remains an important one. Thus far, most biodiversity conservation in the context of REDD+ is predicated on the notion that services are co-located on a landscape. In contrast, this letter argues that decoupling biodiversity and carbon services on a landscape through national-level planning is a better approach to biodiversity conservation under REDD+. We discuss the fundamental ecological differences between the two services and use principles of resource economics to demonstrate that a decoupled approach will be more efficient, more flexible, and better able to mobilize sufficient finance for biodiversity conservation than a coupled approach.

  5. Input saturation in nonlinear multivariable processes resolved by nonlinear decoupling

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1995-04-01

    Full Text Available A new method is presented for the resolution of the problem of input saturation in nonlinear multivariable process control by means of elementary nonlinear decoupling (END. Input saturation can have serious consequences particularly in multivariable control because it may lead to very undesirable system behaviour and quite often system instability. Many authors have searched for systematic techniques for designing multivariable control systems in which saturation may occur in any of the control variables (inputs, manipulated variables. No generally accepted method seems to have been presented so far which gives a solution in closed form. The method of elementary nonlinear decoupling (END can be applied directly to the case of saturation control variables by deriving as many control strategies as there are combinations of saturating control variables. The method is demonstrated by the multivariable control of a simulated Fluidized Catalytic Cracker (FCC with very convincing results.

  6. Cladding technique for development of Ag-In-Cd decoupler

    International Nuclear Information System (INIS)

    Teshigawara, M.; Harada, M.; Saito, S.; Kikuchi, K.; Kogawa, H.; Ikeda, Y.; Kawai, M.; Kurishita, H.; Konashi, K.

    2005-01-01

    To develop a Ag (silver)-In (indium)-Cd (cadmium) alloy decoupler, a method is needed to bond the decoupler between two plates of the Al alloy (A6061-T6). We found that a better HIP condition was temperature, pressure and holding time at 803 K, 100 MPa and 1 h, respectively, for small test pieces (φ 22 mm in diam. x 5 mm in height). Especially, a sandwich case (a Ag-In plate with thickness of 0.5 mm between two Ag-Cd plates with thickness of 1.25 mm) gave easier (or better) bonding results. Though a hardened layer is found in the bonding layer, the rupture strength of the bonding layer is more than 30 MPa, which is higher than the design stress in our application

  7. Decoupled Access-Execute on ARM big.LITTLE

    OpenAIRE

    Weber, Anton

    2016-01-01

    Decoupled Access-Execute (DAE) presents a novel approach to improve power efficiency with a combination of compile-time transformations and Dynamic Voltage Frequency Scaling (DVFS). DAE splits regions of the program into two distinct phases: a memory-bound access phase and a compute-bound execute phase. DVFS is used to run the phases at different frequencies, thus conserving energy while caching data from main memory and performing computations at maximum performance. This project analyses th...

  8. Asia’s decoupling: fact, forecast or fiction?

    OpenAIRE

    Lillie Lam; James Yetman

    2013-01-01

    Standard measures of real economic co-movement between Asia-Pacific economies and those elsewhere had been observed to follow a downward trend, leading some commentators to suggest that the region was decoupling. However, this process reversed in response to the International Financial Crisis, and co-movement increased to historically high levels for some economies. We examine co-movement patterns and show that these are very sensitive to changes in macroeconomic volatility over time. Control...

  9. A model partitioning method based on dynamic decoupling for the efficient simulation of multibody systems

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, Alessandro Vittorio, E-mail: alessandro.papadopoulos@control.lth.se [Lund University, Department of Automatic Control (Sweden); Leva, Alberto, E-mail: alberto.leva@polimi.it [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria (Italy)

    2015-06-15

    The presence of different time scales in a dynamic model significantly hampers the efficiency of its simulation. In multibody systems the fact is particularly relevant, as the mentioned time scales may be very different, due, for example, to the coexistence of mechanical components controled by electronic drive units, and may also appear in conjunction with significant nonlinearities. This paper proposes a systematic technique, based on the principles of dynamic decoupling, to partition a model based on the time scales that are relevant for the particular simulation studies to be performed and as transparently as possible for the user. In accordance with said purpose, peculiar to the technique is its neat separation into two parts: a structural analysis of the model, which is general with respect to any possible simulation scenario, and a subsequent decoupled integration, which can conversely be (easily) tailored to the study at hand. Also, since the technique does not aim at reducing but rather at partitioning the model, the state space and the physical interpretation of the dynamic variables are inherently preserved. Moreover, the proposed analysis allows us to define some novel indices relative to the separability of the system, thereby extending the idea of “stiffness” in a way that is particularly keen to its use for the improvement of simulation efficiency, be the envisaged integration scheme monolithic, parallel, or even based on cosimulation. Finally, thanks to the way the analysis phase is conceived, the technique is naturally applicable to both linear and nonlinear models. The paper contains a methodological presentation of the proposed technique, which is related to alternatives available in the literature so as to evidence the peculiarities just sketched, and some application examples illustrating the achieved advantages and motivating the major design choice from an operational viewpoint.

  10. Decoupled numerical simulation of a solid fuel fired retort boiler

    International Nuclear Information System (INIS)

    Ryfa, Arkadiusz; Buczynski, Rafal; Chabinski, Michal; Szlek, Andrzej; Bialecki, Ryszard A.

    2014-01-01

    The paper deals with numerical simulation of the retort boiler fired with solid fuel. Such constructions are very popular for heating systems and their development is mostly based on the designer experience. The simulations have been done in ANSYS/Fluent package and involved two numerical models. The former deals with a fixed-bed combustion of the solid fuel and free-board gas combustion. Solid fuel combustion is based on the coal kinetic parameters. This model encompasses chemical reactions, radiative heat transfer and turbulence. Coal properties have been defined with user defined functions. The latter model describes flow of water inside a water jacked that surrounds the combustion chamber and flue gas ducts. The novelty of the proposed approach is separating of the combustion simulation from the water flow. Such approach allows for reducing the number of degrees of freedom and thus lowering the necessary numerical effort. Decoupling combustion from water flow requires defining interface boundary condition. As this boundary condition is unknown it is adjusted iteratively. The results of the numerical simulation have been successfully validated against measurement data. - Highlights: • New decoupled modelling of small scale boiler is proposed. • Fixed-bed combustion model based on kinetic parameters is introduced. • Decoupling reduced the complexity of the model and computational time. • Simple and computationally inexpensive coupling algorithm is proposed. • Model is successfully validated against measurements

  11. Quantifying the ice-albedo feedback through decoupling

    Science.gov (United States)

    Kravitz, B.; Rasch, P. J.

    2017-12-01

    The ice-albedo feedback involves numerous individual components, whereby warming induces sea ice melt, inducing reduced surface albedo, inducing increased surface shortwave absorption, causing further warming. Here we attempt to quantify the sea ice albedo feedback using an analogue of the "partial radiative perturbation" method, but where the governing mechanisms are directly decoupled in a climate model. As an example, we can isolate the insulating effects of sea ice on surface energy and moisture fluxes by allowing sea ice thickness to change but fixing Arctic surface albedo, or vice versa. Here we present results from such idealized simulations using the Community Earth System Model in which individual components are successively fixed, effectively decoupling the ice-albedo feedback loop. We isolate the different components of this feedback, including temperature change, sea ice extent/thickness, and air-sea exchange of heat and moisture. We explore the interactions between these different components, as well as the strengths of the total feedback in the decoupled feedback loop, to quantify contributions from individual pieces. We also quantify the non-additivity of the effects of the components as a means of investigating the dominant sources of nonlinearity in the ice-albedo feedback.

  12. On the semiclassical description of shell effects in finite fermion systems; Zur semiklassischen Beschreibung von Schaleneffekten in endlichen Fermionensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Peter Johann

    2009-09-19

    An extension of Gutzwiller's semiclassical ''Periodic Orbit Theory'' for systems with continous symmetries is used to predict the ground state deformations of simple metal clusters which are described in the framework of the shell model. Restrictions of the theory caused by the semiclassical approximations are discussed and possible generalizations are demonstrated. The results are compared with corresponding quantum mechanical calculations. (orig.)

  13. On semiclassical analysis of pure spinor superstring in an AdS{sub 5} x S{sup 5} background

    Energy Technology Data Exchange (ETDEWEB)

    Aisaka, Yuri [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Sao Paulo State Univ. (Brazil). Inst. de Fisica Teorica; Ibiapina Bevilaqua, L. [Univ. Federal do Rio Grande do Norte, Natal (Brazil). Esola de Ciencias e Tecnologia; Vallilo, Brenno C. [Santiago Univ. (Chile). Dept. de Ciencias Fisicas

    2012-06-15

    Relation between semiclassical analyses of Green-Schwarz and pure spinor formalisms in an AdS{sub 5} x S{sup 5} background is clarified. It is shown that the two formalisms have identical semiclassical partition functions for a simple family of classical solutions. It is also shown that, when the classical string is furthermore rigid, this in turn implies that the two formalisms predict the same one-loop corrections to spacetime energies.

  14. Applications of the semiclassical spectral method to nuclear, atomic, molecular, and polymeric dynamics

    International Nuclear Information System (INIS)

    Koszykowski, M.L.; Pfeffer, G.A.; Noid, D.W.

    1987-01-01

    Nonlinear dynamics plays a dominant role in a variety of important problems in chemical physics. Examples are unimolecular reactions, infrared multiphoton decomposition of molecules, the pumping process of the gamma ray laser, dissociation of vibrationally excited state-selected van der Waals's complexes, and many other chemical and atomic processes. The present article discusses recent theoretical studies on the quasi-periodic and chaotic dynamic aspects of vibrational-rotational states of atomic, nuclear, and molecular systems using the semiclassical spectral method (SSM). The authors note that the coordinates, momenta, and so on, are found using classical mechanics in the studies included in this review. They outline the semiclassical spectral method and a wide variety of applications. Although this technique was first developed ten years ago, it has proved to be tremendously successful as a tool used in dynamics problems. Applications include problems in nonlinear dynamics, molecular and atomic spectra, surface science, astronomy and stellar dynamics, nuclear physics, and polymer physics

  15. Semiclassical magnetotransport in strongly spin-orbit coupled Rashba two-dimensional electron systems

    Science.gov (United States)

    Xiao, Cong; Li, Dingping

    2016-06-01

    Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin-orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e. While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems.

  16. Semiclassical magnetotransport in strongly spin–orbit coupled Rashba two-dimensional electron systems

    International Nuclear Information System (INIS)

    Xiao, Cong; Li, Dingping

    2016-01-01

    Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin–orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e . While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems. (paper)

  17. Evasive levels in quantisation through wavepacket coupling: a semi-classical investigation

    International Nuclear Information System (INIS)

    Amiot, P.; Giraud, B.

    1984-01-01

    A new method is presented to introduce classical mechanics elements into the problem of obtaining the spectrum of an operator H-circumflex(p-circumflex, q-circumflex). A finite-rank functional space is created by centering complex wavepackets on a discrete number of points on an equi-energy of the classical H(p,q) and by placing real wavepackets in the classically forbidden region. The latter span the active subspace, P, and the former the inactive subspace, Q, for an application of the method of Bloch-Horowitz. A semi-classical study of the Green function in the inactive subspace Q, classically allowed, gives a clear explanation of this phenomenon and sheds new light on the significance of this semi-classical approximation for the propagator. An extension to the problem of barrier penetration is proposed. (author)

  18. Semi-classical scalar propagators in curved backgrounds: formalism and ambiguities

    Energy Technology Data Exchange (ETDEWEB)

    Grain, J. [Laboratory for Subatomic Physics and Cosmology, Grenoble Universites, CNRS, IN2P3, 53, avenue de Martyrs, 38026 Grenoble cedex (France)]|[AstroParticle and Cosmology, Universite Paris 7, CNRS, IN2P3, 10, rue Alice Domon et Leonie Duquet, 75205 Paris cedex 13 (France); Barrau, A. [Laboratory for Subatomic Physics and Cosmology, Grenoble Universites, CNRS, IN2P3, 53, avenue de Martyrs, 38026 Grenoble cedex (France)

    2007-05-15

    The phenomenology of quantum systems in curved space-times is among the most fascinating fields of physics, allowing - often at the Gedanken experiment level - constraints on tentative theories of quantum gravity. Determining the dynamics of fields in curved backgrounds remains however a complicated task because of the highly intricate partial differential equations involved, especially when the space metric exhibits no symmetry. In this article, we provide - in a pedagogical way - a general formalism to determine this dynamics at the semi-classical order. To this purpose, a generic expression for the semi-classical propagator is computed and the equation of motion for the probability four-current is derived. Those results underline a direct analogy between the computation of the propagator in general relativistic quantum mechanics and the computation of the propagator for stationary systems in non-relativistic quantum mechanics. (authors)

  19. Influence of semiclassical plasma on the energy levels and radiative transitions in highly charged ions★

    Science.gov (United States)

    Hu, Hong-Wei; Chen, Zhan-Bin; Chen, Wen-Cong; Liu, Xiao-Bin; Fu, Nian; Wang, Kai

    2017-11-01

    Considering the quantum effects of diffraction and the collective screening effects, the potential of test charge in semiclassical plasmas is derived. It is generalized exponential screened Coulomb potential. Using the Ritz variational method incorporating this potential, the effects of semiclassical plasma on the energy levels and radiative transitions are investigated systematically, taking highly charged H-like ion as an example. The Debye plasma model is also employed for comparison purposes. Comparisons and analysis are made between these two sets of results and the differences are discussed. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  20. Nonadiabatic dynamics in the semiclassical Liouville representation: Locality, transformation theory, and the energy budget

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Craig C., E-mail: cmartens@uci.edu

    2016-12-20

    In this paper, we revisit the semiclassical Liouville approach to describing molecular dynamics with electronic transitions using classical trajectories. Key features of the formalism are highlighted. The locality in phase space and presence of nonclassical terms in the generalized Liouville equations are emphasized and discussed in light of trajectory surface hopping methodology. The representation dependence of the coupled semiclassical Liouville equations in the diabatic and adiabatic bases are discussed and new results for the transformation theory of the Wigner functions representing the corresponding density matrix elements given. We show that the diagonal energies of the state populations are not conserved during electronic transitions, as energy is stored in the electronic coherence. We discuss the implications of this observation for the validity of imposing strict energy conservation in trajectory based methods for simulating nonadiabatic processes.

  1. Semi-classical scalar propagators in curved backgrounds: formalism and ambiguities

    International Nuclear Information System (INIS)

    Grain, J.; Barrau, A.

    2007-05-01

    The phenomenology of quantum systems in curved space-times is among the most fascinating fields of physics, allowing - often at the Gedanken experiment level - constraints on tentative theories of quantum gravity. Determining the dynamics of fields in curved backgrounds remains however a complicated task because of the highly intricate partial differential equations involved, especially when the space metric exhibits no symmetry. In this article, we provide - in a pedagogical way - a general formalism to determine this dynamics at the semi-classical order. To this purpose, a generic expression for the semi-classical propagator is computed and the equation of motion for the probability four-current is derived. Those results underline a direct analogy between the computation of the propagator in general relativistic quantum mechanics and the computation of the propagator for stationary systems in non-relativistic quantum mechanics. (authors)

  2. Semiclassical relations and IR effects in de Sitter and slow-roll space-times

    Energy Technology Data Exchange (ETDEWEB)

    Giddings, Steven B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Sloth, Martin S., E-mail: giddings@physics.ucsb.edu, E-mail: sloth@cern.ch [CERN, Physics Department, Theory Unit, CH-1211 Geneva 23 (Switzerland)

    2011-01-01

    We calculate IR divergent graviton one-loop corrections to scalar correlators in de Sitter space, and show that the leading IR contribution may be reproduced via simple semiclassical consistency relations. One can likewise use such semiclassical relations to calculate leading IR corrections to correlators in slow-roll inflation. The regulated corrections shift the tensor/scalar ratio and consistency relation of single field inflation, and non-gaussianity parameters averaged over very large distances. For inflation of sufficient duration, for example arising from a chaotic inflationary scenario, these corrections become of order unity. First-order corrections of this size indicate a breakdown of the perturbative expansion, and suggest the need for a non-perturbative description of the corresponding regime. This is analogous to a situation argued to arise in black hole evolution, and to interfere with a sharp perturbative calculation of ''missing information'' in Hawking radiation.

  3. Semiclassical relations and IR effects in de Sitter and slow-roll space-times

    International Nuclear Information System (INIS)

    Giddings, Steven B.; Sloth, Martin S.

    2011-01-01

    We calculate IR divergent graviton one-loop corrections to scalar correlators in de Sitter space, and show that the leading IR contribution may be reproduced via simple semiclassical consistency relations. One can likewise use such semiclassical relations to calculate leading IR corrections to correlators in slow-roll inflation. The regulated corrections shift the tensor/scalar ratio and consistency relation of single field inflation, and non-gaussianity parameters averaged over very large distances. For inflation of sufficient duration, for example arising from a chaotic inflationary scenario, these corrections become of order unity. First-order corrections of this size indicate a breakdown of the perturbative expansion, and suggest the need for a non-perturbative description of the corresponding regime. This is analogous to a situation argued to arise in black hole evolution, and to interfere with a sharp perturbative calculation of ''missing information'' in Hawking radiation

  4. The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation

    Science.gov (United States)

    Filipuk, Galina; Van Assche, Walter; Zhang, Lun

    2012-05-01

    We show that the coefficients of the three-term recurrence relation for orthogonal polynomials with respect to a semi-classical extension of the Laguerre weight satisfy the fourth Painlevé equation when viewed as functions of one of the parameters in the weight. We compare different approaches to derive this result, namely, the ladder operators approach, the isomonodromy deformations approach and combining the Toda system for the recurrence coefficients with a discrete equation. We also discuss a relation between the recurrence coefficients for the Freud weight and the semi-classical Laguerre weight and show how it arises from the Bäcklund transformation of the fourth Painlevé equation.

  5. The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation

    International Nuclear Information System (INIS)

    Filipuk, Galina; Van Assche, Walter; Zhang Lun

    2012-01-01

    We show that the coefficients of the three-term recurrence relation for orthogonal polynomials with respect to a semi-classical extension of the Laguerre weight satisfy the fourth Painlevé equation when viewed as functions of one of the parameters in the weight. We compare different approaches to derive this result, namely, the ladder operators approach, the isomonodromy deformations approach and combining the Toda system for the recurrence coefficients with a discrete equation. We also discuss a relation between the recurrence coefficients for the Freud weight and the semi-classical Laguerre weight and show how it arises from the Bäcklund transformation of the fourth Painlevé equation. (paper)

  6. Instanton calculus without equations of motion: semiclassics from monodromies of a Riemann surface

    Science.gov (United States)

    Gulden, Tobias; Janas, Michael; Kamenev, Alex

    2015-02-01

    Instanton calculations in semiclassical quantum mechanics rely on integration along trajectories which solve classical equations of motion. However in systems with higher dimensionality or complexified phase space these are rarely attainable. A prime example are spin-coherent states which are used e.g. to describe single molecule magnets (SMM). We use this example to develop instanton calculus which does not rely on explicit solutions of the classical equations of motion. Energy conservation restricts the complex phase space to a Riemann surface of complex dimension one, allowing to deform integration paths according to Cauchy’s integral theorem. As a result, the semiclassical actions can be evaluated without knowing actual classical paths. Furthermore we show that in many cases such actions may be solely derived from monodromy properties of the corresponding Riemann surface and residue values at its singular points. As an example, we consider quenching of tunneling processes in SMM by an applied magnetic field.

  7. Semiclassical moment of inertia shell-structure within the phase-space approach

    International Nuclear Information System (INIS)

    Gorpinchenko, D V; Magner, A G; Bartel, J; Blocki, J P

    2015-01-01

    The moment of inertia for nuclear collective rotations is derived within a semiclassical approach based on the cranking model and the Strutinsky shell-correction method by using the non-perturbative periodic-orbit theory in the phase-space variables. This moment of inertia for adiabatic (statistical-equilibrium) rotations can be approximated by the generalized rigid-body moment of inertia accounting for the shell corrections of the particle density. A semiclassical phase-space trace formula allows us to express the shell components of the moment of inertia quite accurately in terms of the free-energy shell corrections for integrable and partially chaotic Fermi systems, which is in good agreement with the corresponding quantum calculations. (paper)

  8. Mathematical and computational methods for semiclassical Schrödinger equations

    KAUST Repository

    Jin, Shi

    2011-04-28

    We consider time-dependent (linear and nonlinear) Schrödinger equations in a semiclassical scaling. These equations form a canonical class of (nonlinear) dispersive models whose solutions exhibit high-frequency oscillations. The design of efficient numerical methods which produce an accurate approximation of the solutions, or at least of the associated physical observables, is a formidable mathematical challenge. In this article we shall review the basic analytical methods for dealing with such equations, including WKB asymptotics, Wigner measure techniques and Gaussian beams. Moreover, we shall give an overview of the current state of the art of numerical methods (most of which are based on the described analytical techniques) for the Schrödinger equation in the semiclassical regime. © 2011 Cambridge University Press.

  9. Semiclassical calculation for collision induced dissociation. III. Restricted two dimensional Morse oscillator model

    International Nuclear Information System (INIS)

    Rusinek, I.

    1980-01-01

    A semiclassical procedure previously used for collinear CID calculations is applied to the perpendicular collisions (2D, no rotation, zero impact parameter) of a Morse homonuclear diatomic molecule and an atom, interacting via an exponential repulsive potential. Values of the dissociation probability (P/sup diss/) are given as a function of total energy (E/sub t/) and initial vibrational state (n 1 =0,1,3,5) for a system with three identical masses. The results are compared with the P/sup diss/ previously reported for an identical one dimensional system. We find: (a) quasiclassical P/sup diss/ that are a good approximation to the semiclassical ones, if CID is classically allowed, (b) vibrational enhancement of CID, and (c) energetic thresholds for dissociation similar to the ones found in the collinear case

  10. A study of the relationship between the semi-classical and the generator coordinate methods

    International Nuclear Information System (INIS)

    Passos, E.J.V. de; Souza Cruz, F.F. de.

    Using a very simple type of wave-packet which is obtained by letting unitary displacement operators having as generators canonical operators Q and P in the many-body Hilbert space act on a reference state, the relatinship between the semi-classical and the generator coordinate methods is investigated. The semi-classical method is based on the time-dependent variational principle whereas in the generator coordinate method the wave-packets are taken as generator states. To establish the equivalence of the two-methods, the concept of redundancy of the wave-packet and the importance of the zero-point energy effects are examined in detail, using tools developed in previous works. A numerical application to the case of the Goldhaber-Teller mode in 4 He is made. (Author) [pt

  11. Stark broadening of the Hα line of hydrogen at low densities: quantal and semiclassical results

    International Nuclear Information System (INIS)

    Stehle, C.; Feautrier, N.

    1984-01-01

    Stark profiles of the Hα lines of hydrogen are computed at low densities in the 'impact' theory. By a comparison with quantal results, it is shown that a simple semiclassical perturbational approach with appropriate cutoffs is sufficient to give accurate profiles in the line centre. Neglecting the natural broadening and the fine-structure effects, the authors prove that the electronic broadening is negligible and that the profile has a Lorentzian shape. An analytical expression of the half width is given. (author)

  12. Some applications of semiclassical methods to quantum chaos; Quelques applications des methodes semiclassiques en chaos quantique

    Energy Technology Data Exchange (ETDEWEB)

    Mouchet, A

    1996-11-29

    This thesis is made of four chapters. The first chapter is devoted to the description of the band structure, using the semiclassical periodic orbit theory, for a one electron system in a two-dimensional crystal with a high magnetic field perpendicular to the crystal plane. Complex orbits turn out to be fundamental for a proper description of the band structure since they incorporate conduction processes through tunneling mechanisms. In the second part, the author focuses on the role played in semiclassical expansions by complex orbits. They give exponentially small contribution when h is small only in a precise situation. In all other cases, complex orbits give birth to corrections in powers in h but unlike the extreme case they are hidden in the shadow of usual Gutzwiller contributions of real orbits. In the third chapter, a semiclassical expansion of the Berry two-form in terms of finite number of periodic orbits for a discrete chaotic map defined on a compact phase space and governed by external parameters is given. Besides, when dealing with a toroidal geometry, the author gives a similar expansion for the Chern index of any Bloch band of the quasi-energy spectrum and is thus led to a semiclassical interpretation of the Hall effect. In the last chapter, the author sets out a mechanism to explain how symmetries can create Berry phase shifts higher than 2{pi} in a 3D-adiabatic transport. He shows how one can understand in a topological point of view why these shifts are necessarily integer multiple of 2{pi}. An explicit construction of such arbitrary large phase shifts is finally proposed. (N.T.).

  13. Study between the semi-classical and the generator-coordinate methods

    International Nuclear Information System (INIS)

    Souza Cruz, F.F. de.

    1979-01-01

    In this work it is performed a comparison between two microscopic theories of the colective movement: semi-classical theory and the quantum theory from the generator -coordinate method. In boths cases, it is used wave packets |p,q> which depend on two canonical conjugate parameters. These wave packets are constructed by the action of displacement unitory operators, which are generated by canonical operators Q-circumflex and P-circumflex on a referencial state. (A.C.A.S.) [pt

  14. Damping in nuclear collective modes in a semiclassical fluid-dynamical approximation

    International Nuclear Information System (INIS)

    Vignolo, C.E.; Hernandez, Susana

    1989-01-01

    A semiclassical fluiddynamical model based on an usual scaling approximation (SCA) was extended to investigate the role of one and two-body dissipation in the widths of nuclear collective modes. The competition between one and two-body viscosity in: i) the collisionless (elastic) limit; ii) the hydrodynamical case and iii) the general viscoelastic regime is examined over the whole range of nuclear collision time scales. Numerical solutions are investigated for the first magnetic 2 - twist mode in 208 Pb. (Author) [es

  15. Nuclear giant resonances in coordinate space. A semiclassical density functional approach

    International Nuclear Information System (INIS)

    Gleissl, P.; Brack, M.; Meyer, J.; Quentin, P.

    1987-01-01

    We discuss the semiclassical description of nuclear giant resonances (GR) using a realistic Skyrme force (SkM*) and complete ETF density functionals. We present monopole (0 + ) eigenmodes of isoscalar (I=0) and isovector (I=1) type, which are in good agreement with experiment, and the corresponding m 1 and m 3 sum rules. We also present the temperature dependence of some typical GR energies (0 + , I=0,1; 1 - , I=1; 2 + , I=0) in 208 Pb

  16. Coherent and Semiclassical States of a Charged Particle in a Constant Electric Field

    Science.gov (United States)

    Adorno, T. C.; Pereira, A. S.

    2018-05-01

    The method of integrals of motion is used to construct families of generalized coherent states of a nonrelativistic spinless charged particle in a constant electric field. Families of states, differing in the values of their standard deviations at the initial time, are obtained. Depending on the initial values of the standard deviations, and also on the electric field, it turns out to be possible to identify some families with semiclassical states.

  17. Stochastic semi-classical description of sub-barrier fusion reactions

    Directory of Open Access Journals (Sweden)

    Ayik Sakir

    2011-10-01

    Full Text Available A semi-classical method that incorporates the quantum effects of the low-lying vibrational modes is applied to fusion reactions. The quantum effect is simulated by stochastic sampling of initial zero-point fluctuations of the surface modes. In this model, dissipation of the relative energy into non-collective excitations of nuclei can be included straightforwardly. The inclusion of dissipation is shown to increase the agreement with the fusion cross section data of Ni isotopes.

  18. A semiclassical method in the theory of light scattering by semiconductor quantum dots

    International Nuclear Information System (INIS)

    Lang, I. G.; Korovin, L. I.; Pavlov, S. T.

    2008-01-01

    A semiclassical method is proposed for the theoretical description of elastic light scattering by arbitrary semiconductor quantum dots under conditions of size quantization. This method involves retarded potentials and allows one to dispense with boundary conditions for electric and magnetic fields. Exact results for the Umov-Poynting vector at large distances from quantum dots in the case of monochromatic and pulsed irradiation and formulas for differential scattering cross sections are obtained

  19. The semiclassical limit of W.sub.N./sub. CFTs and Vasiliev theory

    Czech Academy of Sciences Publication Activity Database

    Perlmutter, E.; Procházka, Tomáš; Raeymaekers, Joris

    2013-01-01

    Roč. 2013, č. 5 (2013), s. 1-51 ISSN 1029-8479 R&D Projects: GA ČR(CZ) GAP203/11/1388 Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional support: RVO:68378271 Keywords : field theory * coupling * scalar * matter * spin * semiclassical * gravitation * defect Subject RIV: BE - Theoretical Physics Impact factor: 6.220, year: 2013

  20. Mathematical properties of a semi-classical signal analysis method: Noisy signal case

    KAUST Repository

    Liu, Dayan

    2012-08-01

    Recently, a new signal analysis method based on a semi-classical approach has been proposed [1]. The main idea in this method is to interpret a signal as a potential of a Schrodinger operator and then to use the discrete spectrum of this operator to analyze the signal. In this paper, we are interested in a mathematical analysis of this method in discrete case considering noisy signals. © 2012 IEEE.

  1. Semiclassical neutral atom as a reference system in density functional theory.

    Science.gov (United States)

    Constantin, Lucian A; Fabiano, E; Laricchia, S; Della Sala, F

    2011-05-06

    We use the asymptotic expansions of the semiclassical neutral atom as a reference system in density functional theory to construct accurate generalized gradient approximations (GGAs) for the exchange-correlation and kinetic energies without any empiricism. These asymptotic functionals are among the most accurate GGAs for molecular systems, perform well for solid state, and overcome current GGA state of the art in frozen density embedding calculations. Our results also provide evidence for the conjointness conjecture between exchange and kinetic energies of atomic systems.

  2. The semiclassical approximation for L- and M-shell coulomb ionization by heavy charged particles

    International Nuclear Information System (INIS)

    Kocbach, L.

    1975-08-01

    The semiclassical approximation with straight line trajectories is applied to the Coulomb ionization of K-, L- and M-shells by heavy charged particles. The calculational aspects are discussed in detail. Scaling relations for the experimentally relevant quantities are derived. The theoretical predictions are compared with experimental data. The relation of the present work to earlier SCA results and the PWBA results is discussed in detail. (auth)

  3. Mathematical properties of a semi-classical signal analysis method: Noisy signal case

    KAUST Repository

    Liu, Dayan; Laleg-Kirati, Taous-Meriem

    2012-01-01

    Recently, a new signal analysis method based on a semi-classical approach has been proposed [1]. The main idea in this method is to interpret a signal as a potential of a Schrodinger operator and then to use the discrete spectrum of this operator to analyze the signal. In this paper, we are interested in a mathematical analysis of this method in discrete case considering noisy signals. © 2012 IEEE.

  4. Semi-classical analysis of scattering of deformed heavy-ions below the Coulomb barrier

    International Nuclear Information System (INIS)

    Johnson, R.C.; Roberts, E.J.; Sukumar, C.V.; Brink, D.M.

    1995-01-01

    Polarization observables for the sub-Coulomb elastic scattering of a quadrupole deformed projectile of spin 3/2 from a spinless spherical target are evaluated using a new semi-classical method based on a path-integral formalism. Analytic expressions are obtained which agree well with coupled channels calculations and which predict definite deviations from the ''shape-effect'' relations for tensor analyzing powers

  5. Semiclassical model of deuteron dissociation in the Coulomb-Nuclear field

    International Nuclear Information System (INIS)

    Aleshin, V.P.; Sidorenko, B.I.

    1995-01-01

    We consider the survival probability of a deuteron which moves in the field of a heavy nucleus. This quantity was calculated within a semiclassical approach to the intrinsic motion within a deuteron and in the framework of an approach which makes use of the imaginary part of the phenomenological deuteron optical potential. A close agreement is obtained between these approaches in a broad range of deuteron energies and orbital momenta

  6. Application of semiclassical and geometrical optics theories to resonant modes of a coated sphere.

    Science.gov (United States)

    Bambino, Túlio M; Breitschaft, Ana Maria S; Barbosa, Valmar C; Guimarães, Luiz G

    2003-03-01

    This work deals with some aspects of the resonant scattering of electromagnetic waves by a metallic sphere covered by a dielectric layer, in the weak-absorption approximation. We carry out a geometrical optics treatment of the scattering and develop semiclassical formulas to determine the positions and widths of the system resonances. In addition, we show that the mean lifetime of broad resonances is strongly dependent on the polarization of the incident light.

  7. SAM revisited: absorptive uniform semiclassical approximation and application to heavy-ion elastic scattering

    International Nuclear Information System (INIS)

    Pato, M.P.; Hussein, M.S.

    1989-06-01

    The Uniform Semiclassical Approximation is modified to take into account absorption. Symbol calculus and pseudodifferential operators techniques are employed for the purpose. The resulting theory, very similar to the one developed by Frahn and Gross permits the decomposition of the near-side and far-side amplitudes into diffractive and refractive components. Application to several heavy-ion systems at intermediate energies is made. (author) [pt

  8. A uniform semi-classical approach to the Coulomb fission problem

    International Nuclear Information System (INIS)

    Levit, S.; Smilansky, U.

    1978-01-01

    A semi-classical theory based on the path integral formalism is applied to the description of Coulomb fission. Complex classical trajectories are used to compute the classically forbidden transitions from the target's ground state to fission. In a simple model the energy spectrum and angular distributions of the fragments are calculated for the Coulomb fission in the Xe + U collision. Theoretical predictions are made which may be checked experimentally. (author)

  9. Calculation of the spin-isospin response functions in an extended semi-classical theory

    International Nuclear Information System (INIS)

    Chanfray, G.

    1987-01-01

    We present a semi-classical calculation of the spin isospin response-functions beyond Thomas-Fermi theory. We show that surface-peaked ℎ 2 corrections reduce the collective effects predicted by Thomas-Fermi calculations. These effects, small for a volume response, become important for surface responses probed by hadrons. This yields a considerable improvement of the agreement with the (p, p') Los Alamos data

  10. On the late-time behavior of Virasoro blocks and a classification of semiclassical saddles

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, A. Liam [Department of Physics, Boston University,Commonwealth Avenue, Boston, MA 02215 (United States); Kaplan, Jared [Department of Physics and Astronomy, Johns Hopkins University,Charles Street, Baltimore, MD 21218 (United States)

    2017-04-12

    Recent work has demonstrated that black hole thermodynamics and information loss/restoration in AdS{sub 3}/CFT{sub 2} can be derived almost entirely from the behavior of the Virasoro conformal blocks at large central charge, with relatively little dependence on the precise details of the CFT spectrum or OPE coefficients. Here, we elaborate on the non-perturbative behavior of Virasoro blocks by classifying all ‘saddles’ that can contribute for arbitrary values of external and internal operator dimensions in the semiclassical large central charge limit. The leading saddles, which determine the naive semiclassical behavior of the Virasoro blocks, all decay exponentially at late times, and at a rate that is independent of internal operator dimensions. Consequently, the semiclassical contribution of a finite number of high-energy states cannot resolve a well-known version of the information loss problem in AdS{sub 3}. However, we identify two infinite classes of sub-leading saddles, and one of these classes does not decay at late times.

  11. Quantum complex rotation and uniform semiclassical calculations of complex energy eigenvalues

    International Nuclear Information System (INIS)

    Connor, J.N.L.; Smith, A.D.

    1983-01-01

    Quantum and semiclassical calculations of complex energy eigenvalues have been carried out for an exponential potential of the form V 0 r 2 exp(-r) and Lennard-Jones (12,6) potential. A straightforward method, based on the complex coordinate rotation technique, is described for the quantum calculation of complex eigenenergies. For singular potentials, the method involves an inward and outward integration of the radial Schroedinger equation, followed by matching of the logarithmic derivatives of the wave functions at an intermediate point. For regular potentials, the method is simpler, as only an inward integration is required. Attention is drawn to the World War II researches of Hartree and co-workers who anticipated later quantum mechanical work on the complex rotation method. Complex eigenenergies are also calculated from a uniform semiclassical three turning point quantization formula, which allows for the proximity of the outer pair of complex turning points. Limiting cases of this formula, which are valid for very narrow or very broad widths, are also used in the calculations. We obtain good agreement between the semiclassical and quantum results. For the Lennard-Jones (12,6) potential, we compare resonance energies and widths from the complex energy definition of a resonance with those obtained from the time delay definition

  12. "Divide-and-conquer" semiclassical molecular dynamics: An application to water clusters

    Science.gov (United States)

    Di Liberto, Giovanni; Conte, Riccardo; Ceotto, Michele

    2018-03-01

    We present an investigation of vibrational features in water clusters performed by means of our recently established divide-and-conquer semiclassical approach [M. Ceotto, G. Di Liberto, and R. Conte, Phys. Rev. Lett. 119, 010401 (2017)]. This technique allows us to simulate quantum vibrational spectra of high-dimensional systems starting from full-dimensional classical trajectories and projection of the semiclassical propagator onto a set of lower dimensional subspaces. The potential energy surface employed is a many-body representation up to three-body terms, in which monomers and two-body interactions are described by the high level Wang-Huang-Braams-Bowman (WHBB) water potential, while, for three-body interactions, calculations adopt a fast permutationally invariant ab initio surface at the same level of theory of the WHBB 3-body potential. Applications range from the water dimer up to the water decamer, a system made of 84 vibrational degrees of freedom. Results are generally in agreement with previous variational estimates in the literature. This is particularly true for the bending and the high-frequency stretching motions, while estimates of modes strongly influenced by hydrogen bonding are red shifted, in a few instances even substantially, as a consequence of the dynamical and global picture provided by the semiclassical approach.

  13. Relativeness in quantum gravity: limitations and frame dependence of semiclassical descriptions

    International Nuclear Information System (INIS)

    Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J.

    2015-01-01

    Consistency between quantum mechanical and general relativistic views of the world is a longstanding problem, which becomes particularly prominent in black hole physics. We develop a coherent picture addressing this issue by studying the quantum mechanics of an evolving black hole. After interpreting the Bekenstein-Hawking entropy as the entropy representing the degrees of freedom that are coarse-grained to obtain a semiclassical description from the microscopic theory of quantum gravity, we discuss the properties these degrees of freedom exhibit when viewed from the semiclassical standpoint. We are led to the conclusion that they show features which we call extreme relativeness and spacetime-matter duality — a nontrivial reference frame dependence of their spacetime distribution and the dual roles they play as the “constituents” of spacetime and as thermal radiation. We describe black hole formation and evaporation processes in distant and infalling reference frames, showing that these two properties allow us to avoid the arguments for firewalls and to make the existence of the black hole interior consistent with unitary evolution in the sense of complementarity. Our analysis provides a concrete answer to how information can be preserved at the quantum level throughout the evolution of a black hole, and gives a basic picture of how general coordinate transformations may work at the level of full quantum gravity beyond the approximation of semiclassical theory.

  14. Combinatorial theory of the semiclassical evaluation of transport moments. I. Equivalence with the random matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Berkolaiko, G., E-mail: berko@math.tamu.edu [Department of Mathematics, Texas A and M University, College Station, Texas 77843-3368 (United States); Kuipers, J., E-mail: Jack.Kuipers@physik.uni-regensburg.de [Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg (Germany)

    2013-11-15

    To study electronic transport through chaotic quantum dots, there are two main theoretical approaches. One involves substituting the quantum system with a random scattering matrix and performing appropriate ensemble averaging. The other treats the transport in the semiclassical approximation and studies correlations among sets of classical trajectories. There are established evaluation procedures within the semiclassical evaluation that, for several linear and nonlinear transport moments to which they were applied, have always resulted in the agreement with random matrix predictions. We prove that this agreement is universal: any semiclassical evaluation within the accepted procedures is equivalent to the evaluation within random matrix theory. The equivalence is shown by developing a combinatorial interpretation of the trajectory sets as ribbon graphs (maps) with certain properties and exhibiting systematic cancellations among their contributions. Remaining trajectory sets can be identified with primitive (palindromic) factorisations whose number gives the coefficients in the corresponding expansion of the moments of random matrices. The equivalence is proved for systems with and without time reversal symmetry.

  15. Automated smoother for the numerical decoupling of dynamics models.

    Science.gov (United States)

    Vilela, Marco; Borges, Carlos C H; Vinga, Susana; Vasconcelos, Ana Tereza R; Santos, Helena; Voit, Eberhard O; Almeida, Jonas S

    2007-08-21

    Structure identification of dynamic models for complex biological systems is the cornerstone of their reverse engineering. Biochemical Systems Theory (BST) offers a particularly convenient solution because its parameters are kinetic-order coefficients which directly identify the topology of the underlying network of processes. We have previously proposed a numerical decoupling procedure that allows the identification of multivariate dynamic models of complex biological processes. While described here within the context of BST, this procedure has a general applicability to signal extraction. Our original implementation relied on artificial neural networks (ANN), which caused slight, undesirable bias during the smoothing of the time courses. As an alternative, we propose here an adaptation of the Whittaker's smoother and demonstrate its role within a robust, fully automated structure identification procedure. In this report we propose a robust, fully automated solution for signal extraction from time series, which is the prerequisite for the efficient reverse engineering of biological systems models. The Whittaker's smoother is reformulated within the context of information theory and extended by the development of adaptive signal segmentation to account for heterogeneous noise structures. The resulting procedure can be used on arbitrary time series with a nonstationary noise process; it is illustrated here with metabolic profiles obtained from in-vivo NMR experiments. The smoothed solution that is free of parametric bias permits differentiation, which is crucial for the numerical decoupling of systems of differential equations. The method is applicable in signal extraction from time series with nonstationary noise structure and can be applied in the numerical decoupling of system of differential equations into algebraic equations, and thus constitutes a rather general tool for the reverse engineering of mechanistic model descriptions from multivariate experimental

  16. Simple-decoupling treatment of high-Tc superconductors

    International Nuclear Information System (INIS)

    Misawa, S.

    1992-01-01

    The t-J model is examined within the framework of the Hubbard-I-type decoupling method of the Green's functions and by using the Fukuyama's expression for Hall coefficient R H . The superconducting transition temperature T c and the normal-state R H at finite temperature are calculated as functions of doping-fraction δ. The obtained results are symmetrical with respect to hole- and electron-doping. In the small hole-doping case, the extended s-wave state is favorable, and the behaviors of T c and R H as functions of δ are qualitatively in agreement with the experimental results. (orig.)

  17. Decoupling interrelated parameters for designing high performance thermoelectric materials.

    Science.gov (United States)

    Xiao, Chong; Li, Zhou; Li, Kun; Huang, Pengcheng; Xie, Yi

    2014-04-15

    The world's supply of fossil fuels is quickly being exhausted, and the impact of their overuse is contributing to both climate change and global political unrest. In order to help solve these escalating problems, scientists must find a way to either replace combustion engines or reduce their use. Thermoelectric materials have attracted widespread research interest because of their potential applications as clean and renewable energy sources. They are reliable, lightweight, robust, and environmentally friendly and can reversibly convert between heat and electricity. However, after decades of development, the energy conversion efficiency of thermoelectric devices has been hovering around 10%. This is far below the theoretical predictions, mainly due to the interdependence and coupling between electrical and thermal parameters, which are strongly interrelated through the electronic structure of the materials. Therefore, any strategy that balances or decouples these parameters, in addition to optimizing the materials' intrinsic electronic structure, should be critical to the development of thermoelectric technology. In this Account, we discuss our recently developed strategies to decouple thermoelectric parameters for the synergistic optimization of electrical and thermal transport. We first highlight the phase transition, which is accompanied by an abrupt change of electrical transport, such as with a metal-insulator and semiconductor-superionic conductor transition. This should be a universal and effective strategy to optimize the thermoelectric performance, which takes advantage of modulated electronic structure and critical scattering across phase transitions to decouple the power factor and thermal conductivity. We propose that solid-solution homojunction nanoplates with disordered lattices are promising thermoelectric materials to meet the "phonon glass electron crystal" approach. The formation of a solid solution, coupled with homojunctions, allows for

  18. Electric field-decoupled electroosmotic pump for microfluidic devices.

    Science.gov (United States)

    Liu, Shaorong; Pu, Qiaosheng; Lu, Joann J

    2003-09-26

    An electric field-free electroosmotic pump has been constructed and its pumping rate has been measured under various experimental conditions. The key component of the pump is an ion-exchange membrane grounding joint that serves two major functions: (i) to maintain fluid continuity between pump channels and microfluidic conduit and (ii) to ground the solution in the microfluidic channel at the joint through an external electrode, and hence to decouple the electric field applied to the pump channels from the rest of the microfluidic system. A theoretical model has been developed to calculate the pumping rates and its validity has been demonstrated.

  19. Equicontrollability and its application to model-following and decoupling.

    Science.gov (United States)

    Curran, R. T.

    1971-01-01

    Discussion of 'model following,' a term used to describe a class of problems characterized by having two dynamic systems, generically known as the 'plant' and the 'model,' it being required to find a controller to attach to the plant so as to make the resultant compensated system behave, in an input/output sense, in the same way as the model. The approach presented to the problem takes a structural point of view. The result is a complex but informative definition which solves the problem as posed. The application of both the algorithm and its basis, equicontrollability, to the decoupling problem is considered.

  20. Supercritical water gasification with decoupled pressure and heat transfer modules

    KAUST Repository

    Dibble, Robert

    2017-09-14

    The present invention discloses a system and method for supercritical water gasification (SCWG) of biomass materials wherein the system includes a SCWG reactor and a plurality of heat exchangers located within a shared pressurized vessel, which decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed and fabricated in manner that would support commercial scaled-up SCWG operations. By using heat exchangers coupled to the reactor in a series configuration, significant efficiencies are achieved by the present invention SCWG system over prior known SCWG systems.

  1. Finite Boltzmann schemes

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2006-01-01

    In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the

  2. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Kong Ooi; Meier, Beat H., E-mail: beme@ethz.ch, E-mail: maer@ethz.ch; Ernst, Matthias, E-mail: beme@ethz.ch, E-mail: maer@ethz.ch [Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); Agarwal, Vipin [Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsinghi, Hyderabad 500 075 (India)

    2016-09-07

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  3. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance.

    Science.gov (United States)

    Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias

    2016-09-07

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  4. COMPARATIVE STUDY OF THREE LINEAR SYSTEM SOLVER APPLIED TO FAST DECOUPLED LOAD FLOW METHOD FOR CONTINGENCY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Syafii

    2017-03-01

    Full Text Available This paper presents the assessment of fast decoupled load flow computation using three linear system solver scheme. The full matrix version of the fast decoupled load flow based on XB methods used in this study. The numerical investigations are carried out on the small and large test systems. The execution time of small system such as IEEE 14, 30, and 57 are very fast, therefore the computation time can not be compared for these cases. Another cases IEEE 118, 300 and TNB 664 produced significant execution speedup. The superLU factorization sparse matrix solver has best performance and speedup of load flow solution as well as in contigency analysis. The invers full matrix solver can solved only for IEEE 118 bus test system in 3.715 second and for another cases take too long time. However for superLU factorization linear solver can solved all of test system in 7.832 second for a largest of test system. Therefore the superLU factorization linear solver can be a viable alternative applied in contingency analysis.

  5. Private quantum decoupling and secure disposal of information

    International Nuclear Information System (INIS)

    Buscemi, Francesco

    2009-01-01

    Given a bipartite system, correlations between its subsystems can be understood as the information that each one carries about the other. In order to give a model-independent description of secure information disposal, we propose the paradigm of private quantum decoupling, corresponding to locally reducing correlations in a given bipartite quantum state without transferring them to the environment. In this framework, the concept of private local randomness naturally arises as a resource, and total correlations are divided into eliminable and ineliminable ones. We prove upper and lower bounds on the quantity of ineliminable correlations present in an arbitrary bipartite state, and show that, in tripartite pure states, ineliminable correlations satisfy a monogamy constraint, making apparent their quantum nature. A relation with entanglement theory is provided by showing that ineliminable correlations constitute an entanglement parameter. In the limit of infinitely many copies of the initial state provided, we compute the regularized ineliminable correlations to be measured by the coherent information, which is thus equipped with a new operational interpretation. In particular, our results imply that two subsystems can be privately decoupled if their joint state is separable.

  6. Decoupling - past trends and prospects for the future

    International Nuclear Information System (INIS)

    Azar, Christian; Holmberg, John; Karlsson, Sten

    2002-05-01

    There are widespread demands in society for a de materialization or decoupling of economic growth from environmental impact. Calls are being made for eco-efficiency and/or an improvement of resource efficiency by a factor of 10. At the same time, some analysts claim there is an environmental Kuznet's curve that supposedly implies a fall in environmental pressure, as we get richer. An improvement in the environmental situation has already been observed in many cases, but there are also many areas where the situation is deteriorating. The purpose of this report is to summarize some key trends of energy and material use over time in both developing and developed countries. We have focused on Sweden, the EU, Japan and the USA as well as China, India and Brazil. The main findings in this paper can be summarized as follows: Absolute emissions of CO 2 have been increasing in most countries and periods studied. Some countries have experienced periods with constant or even falling emissions, but this is the exception rather than the rule, and it has been triggered by oil crises or economic recessions. In order to stabilize atmospheric CO 2 concentrations, CO 2 emissions have to be decoupled much more rapidly than has been the case in the past, and it is extremely unlikely that this will happen by itself. There was some decoupling of CO 2 emissions from GDP in the major economies of the world from 1970 to 1998 in the EU, Japan and the US as well as in some major developing countries such as China, although India actually increased its emissions over GDP by 1.4 per cent/yr over this period. The drop in CO 2 intensity has been prompted by some decoupling of energy from GDP and CO 2 from energy, the latter being a consequence of an increased use of natural gas and nuclear power. In the South, fossil CO 2 per energy tends to increase from rather low levels. With industrialization, the proportion of biomass drops and the proportion of fossil energy rises in the energy supply mix

  7. Accuracy of dynamical-decoupling-based spectroscopy of Gaussian noise

    Science.gov (United States)

    Szańkowski, Piotr; Cywiński, Łukasz

    2018-03-01

    The fundamental assumption of dynamical-decoupling-based noise spectroscopy is that the coherence decay rate of qubit (or qubits) driven with a sequence of many pulses, is well approximated by the environmental noise spectrum spanned on frequency comb defined by the sequence. Here we investigate the precise conditions under which this commonly used spectroscopic approach is quantitatively correct. To this end we focus on two representative examples of spectral densities: the long-tailed Lorentzian, and finite-ranged Gaussian—both expected to be encountered when using the qubit for nanoscale nuclear resonance imaging. We have found that, in contrast to Lorentz spectrum, for which the corrections to the standard spectroscopic formulas can easily be made negligible, the spectra with finite range are more challenging to reconstruct accurately. For Gaussian line shape of environmental spectral density, direct application of the standard dynamical-decoupling-based spectroscopy leads to erroneous attribution of long-tail behavior to the reconstructed spectrum. Fortunately, artifacts such as this, can be completely avoided with the simple extension to standard reconstruction method.

  8. SKATE: a docking program that decouples systematic sampling from scoring.

    Science.gov (United States)

    Feng, Jianwen A; Marshall, Garland R

    2010-11-15

    SKATE is a docking prototype that decouples systematic sampling from scoring. This novel approach removes any interdependence between sampling and scoring functions to achieve better sampling and, thus, improves docking accuracy. SKATE systematically samples a ligand's conformational, rotational and translational degrees of freedom, as constrained by a receptor pocket, to find sterically allowed poses. Efficient systematic sampling is achieved by pruning the combinatorial tree using aggregate assembly, discriminant analysis, adaptive sampling, radial sampling, and clustering. Because systematic sampling is decoupled from scoring, the poses generated by SKATE can be ranked by any published, or in-house, scoring function. To test the performance of SKATE, ligands from the Asetex/CDCC set, the Surflex set, and the Vertex set, a total of 266 complexes, were redocked to their respective receptors. The results show that SKATE was able to sample poses within 2 A RMSD of the native structure for 98, 95, and 98% of the cases in the Astex/CDCC, Surflex, and Vertex sets, respectively. Cross-docking accuracy of SKATE was also assessed by docking 10 ligands to thymidine kinase and 73 ligands to cyclin-dependent kinase. 2010 Wiley Periodicals, Inc.

  9. Visualizing decoupling in nanocrystalline alloys: A FORC-temperature analysis

    Science.gov (United States)

    Rivas, M.; Martínez-García, J. C.; Gorria, P.

    2016-02-01

    Devitrifying ferromagnetic amorphous precursors in the adequate conditions may give rise to disordered assemblies of densely packed nanocrystals with extraordinary magnetic softness well explained by the exchange coupling among multiple crystallites. Whether the magnetic exchange interaction is produced by direct contact or mediated by the intergranular amorphous matrix has a strong influence on the behaviour of the system above room temperature. Multi-phase amorphous-nanocrystalline systems dramatically harden when approaching the amorphous Curie temperature (TC) due to the hard grains decoupling. The study of the thermally induced decoupling of nanosized crystallites embedded in an amorphous matrix has been performed in this work by the first-order reversal curves (FORCs) analysis. We selected a Fe-rich amorphous alloy with TC = 330 K, in order to follow the evolution of the FORC diagrams obtained below and above such temperature in samples with different percentages of nanocrystalline phase. The existence of up to four regions exhibiting unlike magnetic behaviours is unambiguously determined from the temperature evolution of the FORC.

  10. Anthropocene Dialogues: Decoupling Economic Prosperity from Carbon Emissions

    Science.gov (United States)

    Tewksbury, J.; Kohm, K.

    2017-12-01

    Anthropocene magazine is a new science magazine produced by Future Earth. Its mission is to bring together the world's leading scientists, technologists, and creatives to explore on-the-ground stories of sustainability science in action. For AGU 2017, Anthropocene magazine will stage an "Anthropocene Dialogue" based on its July 2017 issue. Anthropocene Dialogues are panel discussions about the successes and challenges of transformative science-policy collaborations by leading science journalists, researchers, and practitioners. The focus of this dialogue is: What are the scientific and technological innovations that drive the decarbonization of economies—from plugging artificial intelligence into electrical grids to new experiments in solar geoengineering. Panelist include: Robert Jackson of the Global Carbon Project discussing the historic decoupling of carbon emissions from GDP, Oliver Morton of The Economist speaking on how geoengineering can be a key element of a decoupling process; Robinson Meyer of The Atlantic outlining a coal "retirement plan" based on supply side economics; Wayt Gibbs of Scientific American tackling the quintessential question, How much energy will the world need? and Mark Harris of IEEE Spectrum looking at new experiments in artificial intelligence that could pull fossil fuels out of electrical grids, factories, data centers, and transit systems. For more information on these stories, visit: anthropocenemagazine.org/in-print/. Free sample copies of the magazine will be available at the session.

  11. Effects of decoupling of carbon dioxide emission by Chinese nonferrous metals industry

    International Nuclear Information System (INIS)

    Ren Shenggang; Hu Zhen

    2012-01-01

    We adopted the refined Laspeyres index approach to explore the impacts of industry scale, energy mix, energy intensity and utility mix on the total carbon dioxide emissions from the Chinese nonferrous metals industry for the period 1996–2008. In addition, we calculated the trend of decoupling effects in nonferrous metals industry in China by presenting a theoretical framework for decoupling. As the results suggest, Chinese nonferrous metals industry has gone through four decoupling stages: strong negative decoupling stage (1996–1998), weak decoupling stage (1999–2000), expensive negative decoupling stage (2001–2003) and weak decoupling stage (2004–2008). We have analyzed the reasons for each phase. Generally speaking, the rapid growth of the industry is the most important factor responsible for the increase of CO 2 emissions, and the change in energy mix was mainly due to the increased proportion of electric energy consumption that has contributed to the increase of CO 2 emissions. Reduction of energy intensity has contributed significantly to emissions decrease, and the utility mix effect has also contributed to the emission decrease to some extent. - Highlights: ► We calculate the decoupling effects of CO 2 from Chinese nonferrous metals industry. ► Results demonstrate that the industry has gone through four decoupling stages. ► The output effect is most important for the increase of CO 2 emissions. ► Reduction of energy intensity has contributed significantly to emissions decrease.

  12. DQ reference frame modeling and control of single-phase active power decoupling circuits

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2015-01-01

    . This paper presents the dq synchronous reference frame modeling of single-phase power decoupling circuits and a complete model describing the dynamics of dc-link ripple voltage is presented. The proposed model is universal and valid for both inductive and capacitive decoupling circuits, and the input...... of decoupling circuits can be either dependent or independent of its front-end converters. Based on this model, a dq synchronous reference frame controller is designed which allows the decoupling circuit to operate in two different modes because of the circuit symmetry. Simulation and experimental results...... are presented to verify the effectiveness of the proposed modeling and control method....

  13. Cluster synchronization for directed community networks via pinning partial schemes

    International Nuclear Information System (INIS)

    Hu Cheng; Jiang Haijun

    2012-01-01

    Highlights: ► Cluster synchronization for directed community networks is proposed by pinning partial schemes. ► Each community is considered as a whole. ► Several novel pinning criteria are derived based on the information of communities. ► A numerical example with simulation is provided. - Abstract: In this paper, we focus on driving a class of directed networks to achieve cluster synchronization by pinning schemes. The desired cluster synchronization states are no longer decoupled orbits but a set of un-decoupled trajectories. Each community is considered as a whole and the synchronization criteria are derived based on the information of communities. Several pinning schemes including feedback control and adaptive strategy are proposed to select controlled communities by analyzing the information of each community such as indegrees and outdegrees. In all, this paper answers several challenging problems in pinning control of directed community networks: (1) What communities should be chosen as controlled candidates? (2) How many communities are needed to be controlled? (3) How large should the control gains be used in a given community network to achieve cluster synchronization? Finally, an example with numerical simulations is given to demonstrate the effectiveness of the theoretical results.

  14. Decoupling local mechanics from large-scale structure in modular metamaterials

    Science.gov (United States)

    Yang, Nan; Silverberg, Jesse L.

    2017-04-01

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

  15. Decoupled Speed and Torque Control of IPMSM Drives Using a Novel Load Torque Estimator

    Directory of Open Access Journals (Sweden)

    ZAKY, M.

    2017-08-01

    Full Text Available This paper proposes decoupled speed and torque control of interior permanent magnet synchronous motor (IPMSM drives using a novel load torque estimator (LTE. The proposed LTE is applied for computing a load torque and yielding a feed-forward value in the speed controller to separate the torque control from the speed control. Indirect flux weakening using direct current component is obtained for high speed operation of the IPMSM drive, and its value for maximum torque per ampere (MTPA control in constant torque region is also used. LTE uses values of direct and quadrature currents to improve the behavior of the speed controller under the reference tracking and torque disturbances. The complete IPMSM drive by Matlab/Simulink is built. The effectiveness of the proposed control scheme using an experimental setup of the complete drive system implemented on a DSP-DS1102 control board is confirmed. Extensive results over a wide speed range are verified. The efficacy of the proposed method is confirmed in comparison to a conventional PI controller under both the reference speed tracking and load torque disturbance.

  16. Revisiting the decoupling effects in the running of the Cosmological Constant

    International Nuclear Information System (INIS)

    Antipin, Oleg; Melic, Blazenka

    2017-01-01

    We revisit the decoupling effects associated with heavy particles in the renormalization group running of the vacuum energy in a mass-dependent renormalization scheme. We find the running of the vacuum energy stemming from the Higgs condensate in the entire energy range and show that it behaves as expected from the simple dimensional arguments meaning that it exhibits the quadratic sensitivity to the mass of the heavy particles in the infrared regime. The consequence of such a running to the fine-tuning problem with the measured value of the Cosmological Constant is analyzed and the constraint on the mass spectrum of a given model is derived. We show that in the Standard Model (SM) this fine-tuning constraint is not satisfied while in the massless theories this constraint formally coincides with the well known Veltman condition. We also provide a remarkably simple extension of the SM where saturation of this constraint enables us to predict the radiative Higgs mass correctly. Generalization to constant curvature spaces is also given. (orig.)

  17. Resource Allocation and Cluster Formation for Imperfect NOMA in DL/UL Decoupled HetNets

    KAUST Repository

    Celik, Abdulkadir; Radaydeh, Redha; Al-Qahtani, Fawaz; Abd El-Malek, Ahmed H.; Alouini, Mohamed-Slim

    2017-01-01

    Being capable of serving multiple users with the same radio resource, non-orthogonal multiple access (NOMA) can provide desirable performance enhancements in a fair and spectral efficient manner. In this paper, we investigate the resource allocation (RA) and cluster formation (CF) aspects of NOMA for downlink (DL) uplink (UL) decoupled (DUDe) heterogeneous networks (HetNets). A non-ideal NOMA scheme is considered with power disparity and sensitivity constraints (PDSCs), delay tolerance, and residual interference after cancellation. Taking the PDSCs into account, we analytically show that using the DL decoding order limits UL-NOMA performance by that of OMA, while employing an inverse order result in a performance gain that is mainly determined by the channel gain disparity of users. Thereafter, a generic CF method is proposed for any type of user graph, which iteratively forms clusters using Blossom algorithm. Finally, highly non-convex RA problem is converted into a convex form by employing geometric programming (GP) where power and bandwidth are optimized to maximize network sumrate and max-min fairness objectives.

  18. A Study on Magnetic Decoupling of Compound-Structure Permanent-Magnet Motor for HEVs Application

    Directory of Open Access Journals (Sweden)

    Qiwei Xu

    2016-10-01

    Full Text Available The compound-structure permanent-magnet (CSPM motor is used for an electrical continuously-variable transmission (E-CVT in a hybrid electric vehicle (HEV. It can make the internal combustion engine (ICE independent of the road loads and run in the high efficiency area to improve the fuel economy and reduce the emissions. This paper studies the magnetic coupling of a new type of CSPM motor used in HEVs. Firstly, through the analysis of the parameter matching with CSPM in the HEV, we receive the same dynamic properties’ design parameters between the CSPM motor and the THS (Toyota Hybrid System of the Toyota Prius. Next, we establish the equivalent magnetic circuit model of the overall and the secondary model considering the tangential and radial flux distribution in the outer rotor of the CSPM motor. Based on these two models, we explore the internal magnetic coupling rule of the CSPM motor. Finally, finite element method analysis in 2D-ansoft is used to analyze the magnetic field distribution of the CSPM motor in different operation modes. By the result of the finite element method analysis, the internal magnetic decoupling scheme is put forward, laying the theoretical foundation for the further application of the CSPM motor in HEVs.

  19. Resource Allocation and Cluster Formation for Imperfect NOMA in DL/UL Decoupled HetNets

    KAUST Repository

    Celik, Abdulkadir

    2017-04-15

    Being capable of serving multiple users with the same radio resource, non-orthogonal multiple access (NOMA) can provide desirable performance enhancements in a fair and spectral efficient manner. In this paper, we investigate the resource allocation (RA) and cluster formation (CF) aspects of NOMA for downlink (DL) uplink (UL) decoupled (DUDe) heterogeneous networks (HetNets). A non-ideal NOMA scheme is considered with power disparity and sensitivity constraints (PDSCs), delay tolerance, and residual interference after cancellation. Taking the PDSCs into account, we analytically show that using the DL decoding order limits UL-NOMA performance by that of OMA, while employing an inverse order result in a performance gain that is mainly determined by the channel gain disparity of users. Thereafter, a generic CF method is proposed for any type of user graph, which iteratively forms clusters using Blossom algorithm. Finally, highly non-convex RA problem is converted into a convex form by employing geometric programming (GP) where power and bandwidth are optimized to maximize network sumrate and max-min fairness objectives.

  20. Revisiting the decoupling effects in the running of the Cosmological Constant

    Energy Technology Data Exchange (ETDEWEB)

    Antipin, Oleg; Melic, Blazenka [Rudjer Boskovic Institute, Division of Theoretical Physics, Zagreb (Croatia)

    2017-09-15

    We revisit the decoupling effects associated with heavy particles in the renormalization group running of the vacuum energy in a mass-dependent renormalization scheme. We find the running of the vacuum energy stemming from the Higgs condensate in the entire energy range and show that it behaves as expected from the simple dimensional arguments meaning that it exhibits the quadratic sensitivity to the mass of the heavy particles in the infrared regime. The consequence of such a running to the fine-tuning problem with the measured value of the Cosmological Constant is analyzed and the constraint on the mass spectrum of a given model is derived. We show that in the Standard Model (SM) this fine-tuning constraint is not satisfied while in the massless theories this constraint formally coincides with the well known Veltman condition. We also provide a remarkably simple extension of the SM where saturation of this constraint enables us to predict the radiative Higgs mass correctly. Generalization to constant curvature spaces is also given. (orig.)

  1. A Synchronization Scheme for Single-Phase Grid-Tied Inverters Under Harmonic Distortion and Grid Disturbances

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Yang, Yongheng

    2016-01-01

    Synchronization is a crucial aspect in grid-tied systems, including single-phase photovoltaic inverters, and it can affect the overall performance of the system. Among prior-art synchronization schemes, the Multi Harmonic Decoupling Cell Phase-Locked Loop (MHDC-PLL) presents a fast response under...

  2. Decoupled Power Solution for Dual-input Isolated DC-DC Converters Using Four Quadrants Integrated Transformers (FQIT)

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.; Thomsen, Ole Cornelius

    2012-01-01

    ) space orthogonal flux is proposed in this paper. And thus a new geometry core and relative winding arrangements are proposed in accordance with the rthogonal flux decoupling technology. Due to the four secondary windings are arranged in a quadratic pattern at the base core plate with the two...... perpendicular primary windings, a name of “four quadrants integrated transformers” (FQIT) is therefore given to the proposed construction. Since the two primary windings are uncoupled, the FQIT allows the two input power stages to transfer the energy into the output load simultaneously or at any...... timemultiplexing scheme, which can optimize the utilization of diversified power energy sources, simplify the system structure, improve the flexibility and reduce the overall cost, so they are attractive for the hybrid renewable power system. Section IV initiates a discussion for the advantages of the FQIT...

  3. Few-body semiclassical approach to nucleon transfer and emission reactions

    Directory of Open Access Journals (Sweden)

    Sultanov Renat A.

    2014-04-01

    Full Text Available A three-body semiclassical model is proposed to describe the nucleon transfer and emission reactions in a heavy-ion collision. In this model the two heavy particles, i.e. nuclear cores A1(ZA1, MA1 and A2(ZA2, MA2, move along classical trajectories R→1(t${{\\vec R}_1}\\left( t \\right$ and R→2(t${{\\vec R}_2}\\left( t \\right$ respectively, while the dynamics of the lighter neutron (n is considered from a quantum mechanical point of view. Here, Mi are the nucleon masses and Zi are the Coulomb charges of the heavy nuclei (i = 1, 2. A Faddeev-type semiclassical formulation using realistic paired nuclear-nuclear potentials is applied so that all three channels (elastic, rearrangement and break-up are described in a unified manner. In order to solve the time-dependent equations the Faddeev components of the total three-body wave-function are expanded in terms of the input and output channel target eigenfunctions. In the special case, when the nuclear cores are identical (A1 ≡ A2 and also the two-level approximation in the expansion over the target (subsystem functions is used, the time-dependent semiclassical Faddeev equations are resolved in an explicit way. To determine the realistic R→1(t${{\\vec R}_1}\\left( t \\right$ and R→2(t${{\\vec R}_2}\\left( t \\right$ trajectories of the nuclear cores, a self-consistent approach based on the Feynman path integral theory is applied.

  4. Fourier transform methods for calculating action variables and semiclassical eigenvalues for coupled oscillator systems

    International Nuclear Information System (INIS)

    Eaker, C.W.; Schatz, G.C.; De Leon, N.; Heller, E.J.

    1984-01-01

    Two methods for calculating the good action variables and semiclassical eigenvalues for coupled oscillator systems are presented, both of which relate the actions to the coefficients appearing in the Fourier representation of the normal coordinates and momenta. The two methods differ in that one is based on the exact expression for the actions together with the EBK semiclassical quantization condition while the other is derived from the Sorbie--Handy (SH) approximation to the actions. However, they are also very similar in that the actions in both methods are related to the same set of Fourier coefficients and both require determining the perturbed frequencies in calculating actions. These frequencies are also determined from the Fourier representations, which means that the actions in both methods are determined from information entirely contained in the Fourier expansion of the coordinates and momenta. We show how these expansions can very conveniently be obtained from fast Fourier transform (FFT) methods and that numerical filtering methods can be used to remove spurious Fourier components associated with the finite trajectory integration duration. In the case of the SH based method, we find that the use of filtering enables us to relax the usual periodicity requirement on the calculated trajectory. Application to two standard Henon--Heiles models is considered and both are shown to give semiclassical eigenvalues in good agreement with previous calculations for nondegenerate and 1:1 resonant systems. In comparing the two methods, we find that although the exact method is quite general in its ability to be used for systems exhibiting complex resonant behavior, it converges more slowly with increasing trajectory integration duration and is more sensitive to the algorithm for choosing perturbed frequencies than the SH based method

  5. Regular black holes from semi-classical down to Planckian size

    Science.gov (United States)

    Spallucci, Euro; Smailagic, Anais

    In this paper, we review various models of curvature singularity free black holes (BHs). In the first part of the review, we describe semi-classical solutions of the Einstein equations which, however, contains a “quantum” input through the matter source. We start by reviewing the early model by Bardeen where the metric is regularized by-hand through a short-distance cutoff, which is justified in terms of nonlinear electro-dynamical effects. This toy-model is useful to point-out the common features shared by all regular semi-classical black holes. Then, we solve Einstein equations with a Gaussian source encoding the quantum spread of an elementary particle. We identify, the a priori arbitrary, Gaussian width with the Compton wavelength of the quantum particle. This Compton-Gauss model leads to the estimate of a terminal density that a gravitationally collapsed object can achieve. We identify this density to be the Planck density, and reformulate the Gaussian model assuming this as its peak density. All these models, are physically reliable as long as the BH mass is big enough with respect to the Planck mass. In the truly Planckian regime, the semi-classical approximation breaks down. In this case, a fully quantum BH description is needed. In the last part of this paper, we propose a nongeometrical quantum model of Planckian BHs implementing the Holographic Principle and realizing the “classicalization” scenario recently introduced by Dvali and collaborators. The classical relation between the mass and radius of the BH emerges only in the classical limit, far away from the Planck scale.

  6. The quantum N-body problem in the mean-field and semiclassical regime.

    Science.gov (United States)

    Golse, François

    2018-04-28

    The present work discusses the mean-field limit for the quantum N -body problem in the semiclassical regime. More precisely, we establish a convergence rate for the mean-field limit which is uniform as the ratio of Planck constant to the action of the typical single particle tends to zero. This convergence rate is formulated in terms of a quantum analogue of the quadratic Monge-Kantorovich or Wasserstein distance. This paper is an account of some recent collaboration with C. Mouhot, T. Paul and M. Pulvirenti.This article is part of the themed issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  7. Dirac particle in a plane wave field and the semi-classical approximation

    Energy Technology Data Exchange (ETDEWEB)

    Bourouaine, S. [Department of Physics, Faculty of Sciences, Mentouri University, Constantine (Algeria)

    2005-04-01

    In this paper we investigate the influence of photon represented by plane wave field on Dirac particle in the context of path integral approach given by Fradkin and Gitman formalism. In our case, although the action relative to Dirac particle in plane wave field seems to be non quadratic, the result obtained by semi-classical approach is the same as that found by an exact calculation. Hence; when we add the plane wave field to any quadratic actions related to Fradkin and Gitman approach, the total action behaves like quadratic. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  8. Semiclassical corrections to the interaction energy of a hard-sphere Boltzmann gas

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, R K [Department of Physics and Astronomy, McMaster University, Hamilton, L8S 4M1 (Canada); Dijk, W van [Department of Physics and Astronomy, McMaster University, Hamilton, L8S 4M1 (Canada); Srivastava, M K [Institute Instrumentation Center, IIT, Roorkee 247 667 (India)

    2006-11-01

    Quantum effects in statistical mechanics are important when the thermal wavelength is of the order of, or greater than, the mean interatomic spacing. This is examined in depth taking the example of a hard-sphere Boltzmann gas. Using the virial expansion for the equation of state, it is shown that the interaction energy of a classical hard-sphere gas is exactly zero. When the (second) virial coefficient of such a gas is obtained quantum mechanically, however, the quantum contribution to the interaction energy is shown to be substantial. The importance of the semiclassical corrections to the interaction energy shows up dramatically in such a system.

  9. Semiclassical corrections to the interaction energy of a hard-sphere Boltzmann gas

    International Nuclear Information System (INIS)

    Bhaduri, R K; Dijk, W van; Srivastava, M K

    2006-01-01

    Quantum effects in statistical mechanics are important when the thermal wavelength is of the order of, or greater than, the mean interatomic spacing. This is examined in depth taking the example of a hard-sphere Boltzmann gas. Using the virial expansion for the equation of state, it is shown that the interaction energy of a classical hard-sphere gas is exactly zero. When the (second) virial coefficient of such a gas is obtained quantum mechanically, however, the quantum contribution to the interaction energy is shown to be substantial. The importance of the semiclassical corrections to the interaction energy shows up dramatically in such a system

  10. Semiclassical series solution of the generalized phase shift atom--diatom scattering equations

    International Nuclear Information System (INIS)

    Squire, K.R.; Curtiss, C.F.

    1980-01-01

    A semiclassical series solution of the previously developed operator form of the generalized phase shift equations describing atom--diatom scattering is presented. This development is based on earlier work which led to a double series in powers of Planck's constant and a scaling parameter of the anisotropic portion of the intermolecular potential. The present solution is similar in that it is a double power series in Planck's constant and in the difference between the spherical radial momentum and a first order approximation. The present series solution avoids difficulties of the previous series associated with the classical turning point

  11. On the semi-classical limit of scalar products of the XXZ spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunfeng; Brunekreef, Joren [Institut für Theoretische Physik, ETH Zürich,Wolfgang Pauli Strasse 27, CH-8093 Zürich (Switzerland)

    2017-03-03

    We study the scalar products between Bethe states in the XXZ spin chain with anisotropy |Δ|>1 in the semi-classical limit where the length of the spin chain and the number of magnons tend to infinity with their ratio kept finite and fixed. Our method is a natural yet non-trivial generalization of similar methods developed for the XXX spin chain. The final result can be written in a compact form as a contour integral in terms of Faddeev’s quantum dilogarithm function, which in the isotropic limit reduces to the classical dilogarithm function.

  12. Focal points and the phase of the semi-classical propagator

    International Nuclear Information System (INIS)

    Levit, S.; Moehring, K.; Smilansky, U.; Dreyfus, T.

    1977-01-01

    The relation between the phase of the semi-classical propagator and the number of times the classical trajectory is reflected from a caustic is discussed. It is shown that the accepted prescription based on Morse's focal point theorem is valid only for a restricted class of problems (coordinate representation and a positive definite mass tensor). A more general method to evaluate the phase is derived. It applies to all problems of physical interest involving the most general representations (mixed coordinate and momentum) and complicated Hamiltonian functions. The result is of particular relevance for the classical S-matrix. (author)

  13. Reflection at a complex potential barrier in the semiclassical theory of scattering

    International Nuclear Information System (INIS)

    Avishai, Y.; Knoll, J.

    1976-01-01

    The reflection of spherical waves at a complex potential barrier is discussed in the semiclassical approximation. We study the complex WKB method and the Uniform Approximation in the special case of weakly absorptive barriers, typical of surface transparent optical potentials used in heavy-ion reactions. It is found that the complex WKB results lead to a very accurate cross-section despite their inaccuracy in the most important phase shifts. Thereby, the amazing stamina of the WKB has been confirmed once more. (orig.) [de

  14. On the semi-classical limit of scalar products of the XXZ spin chain

    International Nuclear Information System (INIS)

    Jiang, Yunfeng; Brunekreef, Joren

    2017-01-01

    We study the scalar products between Bethe states in the XXZ spin chain with anisotropy |Δ|>1 in the semi-classical limit where the length of the spin chain and the number of magnons tend to infinity with their ratio kept finite and fixed. Our method is a natural yet non-trivial generalization of similar methods developed for the XXX spin chain. The final result can be written in a compact form as a contour integral in terms of Faddeev’s quantum dilogarithm function, which in the isotropic limit reduces to the classical dilogarithm function.

  15. Studies on a one-dimensional model for the spontaneous emission in the semiclassical approximation

    International Nuclear Information System (INIS)

    Crestana, S.

    1983-01-01

    Some generalization are made on the spontaneous emission by a plane of excited atoms, described by two level atom-model, in the Δ1=1, Δm=1, transition and using the semiclassical radiation approximation -both discussed in the text. Initially, the radiation rate of an infinite plane of excited atoms is investigated, using Δ1=0, Δm=0, transition. It is shown that we can observe a limit solution depending on the coupling between field and matter. (author)

  16. Semiclassical approach to Regge poles trajectories calculations for nonsingular potentials: Thomas-Fermi type

    International Nuclear Information System (INIS)

    Belov, S M; Avdonina, N B; Felfli, Z; Marletta, M; Msezane, A Z; Naboko, S N

    2004-01-01

    A simple semiclassical approach, based on the investigation of anti-Stokes line topology, is presented for calculating Regge poles for nonsingular (Thomas-Fermi type) potentials, namely potentials with singularities at the origin weaker than order -2. The anti-Stokes lines for Thomas-Fermi potentials have a more complicated structure than those of singular potentials and require careful application of complex analysis. The explicit solution of the Bohr-Sommerfeld quantization condition is used to obtain approximate Regge poles. We introduce and employ three hypotheses to obtain several terms of the Regge pole approximation

  17. Dirac particle in a plane wave field and the semi-classical approximation

    International Nuclear Information System (INIS)

    Bourouaine, S.

    2005-01-01

    In this paper we investigate the influence of photon represented by plane wave field on Dirac particle in the context of path integral approach given by Fradkin and Gitman formalism. In our case, although the action relative to Dirac particle in plane wave field seems to be non quadratic, the result obtained by semi-classical approach is the same as that found by an exact calculation. Hence; when we add the plane wave field to any quadratic actions related to Fradkin and Gitman approach, the total action behaves like quadratic. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  18. Kuang's Semi-Classical Formalism for Calculating Electron Capture Cross Sections: A Space- Physics Application

    Science.gov (United States)

    Barghouty, A. F.

    2014-01-01

    Accurate estimates of electroncapture cross sections at energies relevant to the modeling of the transport, acceleration, and interaction of energetic neutral atoms (ENA) in space (approximately few MeV per nucleon) and especially for multi-electron ions must rely on detailed, but computationally expensive, quantum-mechanical description of the collision process. Kuang's semi-classical approach is an elegant and efficient way to arrive at these estimates. Motivated by ENA modeling efforts for apace applications, we shall briefly present this approach along with sample applications and report on current progress.

  19. Self-consistent collective-coordinate method for ''maximally-decoupled'' collective subspace and its boson mapping: Quantum theory of ''maximally-decoupled'' collective motion

    International Nuclear Information System (INIS)

    Marumori, T.; Sakata, F.; Maskawa, T.; Une, T.; Hashimoto, Y.

    1983-01-01

    The main purpose of this paper is to develop a full quantum theory, which is capable by itself of determining a ''maximally-decoupled'' collective motion. The paper is divided into two parts. In the first part, the motivation and basic idea of the theory are explained, and the ''maximal-decoupling condition'' on the collective motion is formulated within the framework of the time-dependent Hartree-Fock theory, in a general form called the invariance principle of the (time-dependent) Schrodinger equation. In the second part, it is shown that when the author positively utilize the invariance principle, we can construct a full quantum theory of the ''maximally-decoupled'' collective motion. This quantum theory is shown to be a generalization of the kinematical boson-mapping theories so far developed, in such a way that the dynamical ''maximal-decoupling condition'' on the collective motion is automatically satisfied

  20. The Geometry of the Semiclassical Wave Front Set for Schrödinger Eigenfunctions on the Torus

    Energy Technology Data Exchange (ETDEWEB)

    Cardin, Franco, E-mail: cardin@math.unipd.it; Zanelli, Lorenzo, E-mail: lzanelli@math.unipd.it [University of Padova, Department of Mathematics “Tullio Levi Civita” (Italy)

    2017-06-15

    This paper deals with the phase space analysis for a family of Schrödinger eigenfunctions ψ{sub ℏ} on the flat torus #Mathematical Double-Struck Capital T#{sup n} = (ℝ/2πℤ){sup n} by the semiclassical Wave Front Set. We study those ψ{sub ℏ} such that WF{sub ℏ}(ψ{sub ℏ}) is contained in the graph of the gradient of some viscosity solutions of the Hamilton-Jacobi equation. It turns out that the semiclassical Wave Front Set of such Schrödinger eigenfunctions is stable under viscous perturbations of Mean Field Game kind. These results provide a further viewpoint, and in a wider setting, of the link between the smooth invariant tori of Liouville integrable Hamiltonian systems and the semiclassical localization of Schrödinger eigenfunctions on the torus.

  1. Scheme Program Documentation Tools

    DEFF Research Database (Denmark)

    Nørmark, Kurt

    2004-01-01

    are separate and intended for different documentation purposes they are related to each other in several ways. Both tools are based on XML languages for tool setup and for documentation authoring. In addition, both tools rely on the LAML framework which---in a systematic way---makes an XML language available...... as named functions in Scheme. Finally, the Scheme Elucidator is able to integrate SchemeDoc resources as part of an internal documentation resource....

  2. Decoupled Implementation of New-Wave Land Reforms

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Hundsbæk

    2012-01-01

    Decentralisation is a key element in the new wave of land reforms that have been introduced in sub-Saharan Africa. However, not much research has been carried out into their implementation at the local level. Consequently, reforms are described in old-fashioned terms. Through comparative case stu...... the local level as a part of the land administration structure.......Decentralisation is a key element in the new wave of land reforms that have been introduced in sub-Saharan Africa. However, not much research has been carried out into their implementation at the local level. Consequently, reforms are described in old-fashioned terms. Through comparative case...... studies in Tanzania, this article unpacks implementation as a process consisting of multiple administrative layers and potential actors. It concludes that implementation is slow and uneven due to the decoupling of layers within the formal land administration. Greater attention should be directed towards...

  3. TALE proteins search DNA using a rotationally decoupled mechanism.

    Science.gov (United States)

    Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M

    2016-10-01

    Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins used extensively for gene editing. Despite recent progress, however, little is known about their sequence search mechanism. Here, we use single-molecule experiments to study TALE search along DNA. Our results show that TALEs utilize a rotationally decoupled mechanism for nonspecific search, despite remaining associated with DNA templates during the search process. Our results suggest that the protein helical structure enables TALEs to adopt a loosely wrapped conformation around DNA templates during nonspecific search, facilitating rapid one-dimensional (1D) diffusion under a range of solution conditions. Furthermore, this model is consistent with a previously reported two-state mechanism for TALE search that allows these proteins to overcome the search speed-stability paradox. Taken together, our results suggest that TALE search is unique among the broad class of sequence-specific DNA-binding proteins and supports efficient 1D search along DNA.

  4. Magnetic decoupling of ferromagnetic metals through a graphene spacer

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, I.; Papagno, M. [Dipartimento di Fisica, Universitá della Calabria, Arcavacata di Rende (CS), 87036 (Italy); Ferrari, L. [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Roma I-00133 (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Trieste (Italy); Sheverdyaeva, P.M.; Mahatha, S.K. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Trieste (Italy); Pacilé, D., E-mail: daniela.pacile@fis.unical.it [Dipartimento di Fisica, Universitá della Calabria, Arcavacata di Rende (CS), 87036 (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Trieste (Italy); Carbone, C. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Trieste (Italy)

    2017-03-15

    We study the magnetic coupling between different ferromagnetic metals (FMs) across a graphene (G) layer, and the role of graphene as a thin covalent spacer. Starting with G grown on a FM substrate (Ni or Co), we deposited on top at room temperature several FM metals (Fe, Ni, Co). By measuring the dichroic effect of 3p photoemission lines we detect the magnetization of the substrate and the sign of the exchange coupling in FM overlayer at room temperature. We show that the G layer magnetically decouples the FM metals. - Highlights: • The magnetic coupling between ferromagnets mediated by graphene is studied. • To this end, the linear dichroic effect in 3p photoemission lines is employed. • For selected junctions no magnetic coupling is attained through graphene. • Graphene inhibits the magnetic alignment that normally occurs between ferromagnets.

  5. Decoupling, re-Engaging: managing trust relationships in implementation projects

    DEFF Research Database (Denmark)

    Rose, Jeremy; Schlichter, Bjarne Rerup

    2012-01-01

    , and the complex demands of managing those fluctuations. We investigate evolving trust relationships in a longitudinal case analysis of a large Integrated Hospital System implementation for the Faroe Islands. Trust relationships suffered various breakdowns, but the project was able to recover and eventually meet...... its goals. Based on concepts from Giddens’ later work on modernity, we develop two approaches for managing dynamic trust relationships in implementation projects: decoupling and re-engaging.......An important aspect of the successful implementation of large information systems (such as ERP systems) is trust. These implementations impact the legitimate interests of many groups of stakeholders, and trust is a critical factor for success. Trust in the project is contingent upon many factors...

  6. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction.

    Science.gov (United States)

    Scheller, Silvan; Yu, Hang; Chadwick, Grayson L; McGlynn, Shawn E; Orphan, Victoria J

    2016-02-12

    The oxidation of methane with sulfate is an important microbial metabolism in the global carbon cycle. In marine methane seeps, this process is mediated by consortia of anaerobic methanotrophic archaea (ANME) that live in syntrophy with sulfate-reducing bacteria (SRB). The underlying interdependencies within this uncultured symbiotic partnership are poorly understood. We used a combination of rate measurements and single-cell stable isotope probing to demonstrate that ANME in deep-sea sediments can be catabolically and anabolically decoupled from their syntrophic SRB partners using soluble artificial oxidants. The ANME still sustain high rates of methane oxidation in the absence of sulfate as the terminal oxidant, lending support to the hypothesis that interspecies extracellular electron transfer is the syntrophic mechanism for the anaerobic oxidation of methane. Copyright © 2016, American Association for the Advancement of Science.

  7. Combining dynamical decoupling with fault-tolerant quantum computation

    International Nuclear Information System (INIS)

    Ng, Hui Khoon; Preskill, John; Lidar, Daniel A.

    2011-01-01

    We study how dynamical decoupling (DD) pulse sequences can improve the reliability of quantum computers. We prove upper bounds on the accuracy of DD-protected quantum gates and derive sufficient conditions for DD-protected gates to outperform unprotected gates. Under suitable conditions, fault-tolerant quantum circuits constructed from DD-protected gates can tolerate stronger noise and have a lower overhead cost than fault-tolerant circuits constructed from unprotected gates. Our accuracy estimates depend on the dynamics of the bath that couples to the quantum computer and can be expressed either in terms of the operator norm of the bath's Hamiltonian or in terms of the power spectrum of bath correlations; we explain in particular how the performance of recursively generated concatenated pulse sequences can be analyzed from either viewpoint. Our results apply to Hamiltonian noise models with limited spatial correlations.

  8. Decoupled Simulation Method For Incremental Sheet Metal Forming

    International Nuclear Information System (INIS)

    Sebastiani, G.; Brosius, A.; Tekkaya, A. E.; Homberg, W.; Kleiner, M.

    2007-01-01

    Within the scope of this article a decoupling algorithm to reduce computing time in Finite Element Analyses of incremental forming processes will be investigated. Based on the given position of the small forming zone, the presented algorithm aims at separating a Finite Element Model in an elastic and an elasto-plastic deformation zone. Including the elastic response of the structure by means of model simplifications, the costly iteration in the elasto-plastic zone can be restricted to the small forming zone and to few supporting elements in order to reduce computation time. Since the forming zone moves along the specimen, an update of both, forming zone with elastic boundary and supporting structure, is needed after several increments.The presented paper discusses the algorithmic implementation of the approach and introduces several strategies to implement the denoted elastic boundary condition at the boundary of the plastic forming zone

  9. ECONOMIC GROWTH AND AIR POLLUTION IN THECZECHREPUBLIC: DECOUPLING CURVES

    Directory of Open Access Journals (Sweden)

    Petr Šauer

    2012-07-01

    Full Text Available The decoupling curve, together with the Environmental Kuznets Curve, has beenrecognized as one of the important indicators showing relations betweeneconomic growth and environmental degradation/pollution. Many boththeoreticaland empirical studies have been published on it. Our paper brings models whichinvestigate relations between the economic growth per capita and selectedindicators of air pollution in theCzechRepublic. The analysis tried to go beforethe year 1990, despite the difficulties when dealing with different macroeconomicindicators published during the socialist period and those introduced after thetransition to a market economy. The results might be somehow surprising forthose dealing only with data generated after the year 1990: it is possible todiscover the turning points for some of the airborne pollutants already in the1980s.

  10. The effective gravitational decoupling between dark matter and the CMB

    CERN Document Server

    Voruz, Luc; Tram, Thomas

    2014-01-01

    We present a detailed and self-contained analytical derivation of the evolution of sub-horizon cosmological perturbations before decoupling, based on previous work by S. Weinberg. These solutions are valid in the minimal LCDM scenario, to first order in perturbation theory, in the tight-coupling limit and neglecting neutrino shear stress. We compare them to exact numerical solutions computed by a Boltzmann code, and we find the two to be in very good agreement. The analytic solutions show explicitly that CDM and the baryon-photon fluid effectively behave as separate self-gravitating fluids until the epoch of baryon drag. This in turn leads to the surprising conclusion that the CMB is much less sensitive to the clustering properties of minimally coupled Dark Matter models than what would be naively expected.

  11. Global coupling and decoupling of the APS storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Y.C.; Liu, J.; Teng, L.C.

    1993-07-01

    This paper describes a study of controlling the coupling between the horizontal and the vertical betatron oscillations in the 7-GeV Advanced Photon Source (APS) storage ring. First, we investigate the strengthening of coupling using two families of skew quadrupoles. Twenty skew quadrupoles are arranged in the 40 sectors of the storage ring and powered in such a way so as to generate both quadrature components of the required 21st harmonic. The numerical results from tracking a single particle are presented for the various configurations of skew quadrupoles. Second, we describe the global decoupling procedure to minimize the unwanted coupling effects. These are mainly due to the random roll errors of normal quadruples. It is shown that even with the rather large rms roll error of 2 mrad, the coupling effects can be compensated for with 20 skew quadrupoles each having maximum strength one order of magnitude lower than the typical normal quadrupole strength.

  12. Power-optimal force decoupling in a hybrid linear reluctance motor

    NARCIS (Netherlands)

    Overboom, T.T.; Smeets, J.P.C.; Jansen, J.W.; Lomonova, E.A.; Mavrudieva, D.

    2015-01-01

    This paper concerns the power-optimal decoupling of the propulsion and normal force created by a hybrid linear reluctance motor. The intrinsic limitations to the decoupling is addressed by the visualizing each force component with a quadric surface in the Euclidean space which is spanned by the

  13. Improved Decoupling for 13C coil Arrays Using Non-Conventional Matching and Preamplifier Impedance

    DEFF Research Database (Denmark)

    Sanchez, Juan Diego; Johansen, Daniel Højrup; Hansen, Rie Beck

    In this study, we describe a method to obtain improved preamplifier decoupling for receive-only coils. The method relies on the better decoupling obtained when coils are matched to an impedance higher than 50 . Preamplifiers with inductive imaginary impedance and low real impedance, increase...

  14. The comparative roles of connected and disconnected trajectories in the evaluation of the semiclassical coherent-state propagator

    International Nuclear Information System (INIS)

    Rubin, A.; Klauder, J.R.

    1995-01-01

    The semiclassical approximation of the coherent-state propagator developed by Klauder and subsequently modified by Adachi is applied to the quartic oscillator. This approximation involves classical trajectories which must satisfy complex boundary conditions. It is found that these complex classical trajectories fall into two broad categories basically characterized by the descriptive titles ''continuously connected'' and ''disconnected'' given to the two different types. The continuously connected type is found to always contribute in the evaluation of the semiclassical propagator while the disconnected type will only contribute under specific conditions. copyright 1995 Academic Press, Inc

  15. Semi-classical propagation of wavepackets for the phase space Schroedinger equation: interpretation in terms of the Feichtinger algebra

    International Nuclear Information System (INIS)

    Gosson, Maurice A de

    2008-01-01

    The nearby orbit method is a powerful tool for constructing semi-classical solutions of Schroedinger's equation when the initial datum is a coherent state. In this paper, we first extend this method to arbitrary squeezed states and thereafter apply our results to the Schroedinger equation in phase space. This adaptation requires the phase-space Weyl calculus developed in previous work of ours. We also study the regularity of the semi-classical solutions from the point of view of the Feichtinger algebra familiar from the theory of modulation spaces

  16. Semiclassical model of atomic collisions: stopping and capture of the heavy charged particles and exotic atom formation

    International Nuclear Information System (INIS)

    Beck, W.A.

    2000-01-01

    The semiclassical model of atomic collisions, especially in different areas of the maximum stopping, when proton collides at the velocity of the boron order velocity, providing as the result for interactions of many bodies with an electron target, enabling application of the model with high degree of confidence to a clearly expressed experimental problem, such the antiproton capture on helium, is presented. The semiclassical collision model and stopping energy are considered. The stopping and capture of negatively-charged particles are investigated. The capture and angular moments of antiprotons, captures at the end of the collision cascade, are presented [ru

  17. Semiclassical regularization of Vlasov equations and wavepackets for nonlinear Schrödinger equations

    Science.gov (United States)

    Athanassoulis, Agissilaos

    2018-03-01

    We consider the semiclassical limit of nonlinear Schrödinger equations with initial data that are well localized in both position and momentum (non-parametric wavepackets). We recover the Wigner measure (WM) of the problem, a macroscopic phase-space density which controls the propagation of the physical observables such as mass, energy and momentum. WMs have been used to create effective models for wave propagation in: random media, quantum molecular dynamics, mean field limits, and the propagation of electrons in graphene. In nonlinear settings, the Vlasov-type equations obtained for the WM are often ill-posed on the physically interesting spaces of initial data. In this paper we are able to select the measure-valued solution of the 1  +  1 dimensional Vlasov-Poisson equation which correctly captures the semiclassical limit, thus finally resolving the non-uniqueness in the seminal result of Zhang et al (2012 Comm. Pure Appl. Math. 55 582-632). The same approach is also applied to the Vlasov-Dirac-Benney equation with small wavepacket initial data, extending several known results.

  18. Semiclassical expansion of quantum characteristics for many-body potential scattering problem

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.; Fuchs, C.; Faessler, A.

    2007-01-01

    In quantum mechanics, systems can be described in phase space in terms of the Wigner function and the star-product operation. Quantum characteristics, which appear in the Heisenberg picture as the Weyl's symbols of operators of canonical coordinates and momenta, can be used to solve the evolution equations for symbols of other operators acting in the Hilbert space. To any fixed order in the Planck's constant, many-body potential scattering problem simplifies to a statistical-mechanical problem of computing an ensemble of quantum characteristics and their derivatives with respect to the initial canonical coordinates and momenta. The reduction to a system of ordinary differential equations pertains rigorously at any fixed order in ℎ. We present semiclassical expansion of quantum characteristics for many-body scattering problem and provide tools for calculation of average values of time-dependent physical observables and cross sections. The method of quantum characteristics admits the consistent incorporation of specific quantum effects, such as non-locality and coherence in propagation of particles, into the semiclassical transport models. We formulate the principle of stationary action for quantum Hamilton's equations and give quantum-mechanical extensions of the Liouville theorem on conservation of the phase-space volume and the Poincare theorem on conservation of 2p-forms. The lowest order quantum corrections to the Kepler periodic orbits are constructed. These corrections show the resonance behavior. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  19. Semiclassical treatment of inelastic collisions between electrons and highly ionized atoms

    International Nuclear Information System (INIS)

    Frasier, S.M.

    1984-01-01

    The thesis is concerned with the calculation of excitation cross sections of ions by electron impact at intermediate energies in the limit of Z >> N/sub b/, where Z is the atomic number and N/sub b/ is the number of bound electrons. A semiclassical procedure is developed for calculating total cross sections using analytic bound states and averaged free electron wave functions derived in the second eikonal approximation. The analytic bound states are derived assuming a screened Coulomb potential and using orbital energies obtained from Hartree-Fock calculations. The functional form of the bound states reduces naturally to the hydrogen atom functions in the limit Z → infinity. The free electron functions used are semiclassical solutions to the free electron Schroedinger equation with a screened Coulomb potential. An exact solution is obtained in the second eikonal approximation, including all classical path contributions. This solution is averaged to extract the focusing and acceleration effects resulting from the long range Coulomb potential of the ion. The results are presented in the form of Born-like cross section formulae and demonstrate the appropriate correction of the Born cross section which arises from the acceleration and focusing of the free electrons by the long range Coulomb potential. Comparison is made with the Coulomb-Born results; the results agree to within 10% in most cases

  20. Semiclassical spectral quantization: Application to two and four coupled molecular degrees of freedom

    International Nuclear Information System (INIS)

    De Leon, N.; Heller, E.J.

    1984-01-01

    Semiclassical quantization of the quasiperiodic vibrational motion of molecules is usually based on Einstein--Brillouin--Keller (EBK) conditions for the quantization of the classical actions. Explicit use of the EBK conditions for molecular systems of K degrees of freedom requires K quantization conditions. Therefore, explicit use of the EBK conditions becomes increasingly difficult if not impossible for polyatomic systems of three or more degrees of freedom. In this paper we propose a semiclassical quantization method which makes explicit use of phase coherence of the de Broglie wave associated with the trajectory rather than the EBK conditions. We show that taking advantage of phase coherence reduces the K quantization conditions to a single quantum condition: regardless of the number of degrees of freedom. For reasons that will become obvious we call this method ''spectral quantization.'' Polyatomic vibrational wave functions and energy eigenvalues are generated from quasiperiodic classical trajectories. The spectral method is applied to an ABA linear triatomic molecule with two degrees of freedom and to an anharmonic model of the molecule cyanoacetylene. The usefulness of the technique is demonstrated in this latter calculation since the cyanoacetylene model will have four coupled vibrational degrees of freedom

  1. Semiclassical and phase space approaches to dynamic and collisional problems of nuclei

    International Nuclear Information System (INIS)

    Hasse, R.W.; Gregoire, C.; Remaud, B.; Jaenicke, J.; Schuck, P.

    1988-09-01

    This article summarises recent work on the semiclassical (Thomas-Fermi like) treatment of nuclear correlations and dynamical problems. After a short outline of hte general technique the nucleon-nucleus optical potential in the doorway approximation (2p-1h and 2h-1p intermediate states) is treated. The imaginary part serves to calculate the energy dependent correction to the real part. The level density parameter, occupation numbers, and the mean free path are discussed. The semiclassical treatment of the nuclear response function is given in detail. Applications to inelastic electron scattering in the quasi-elastic peak region are presented. Analogously, inelastic proton scattering is calculated. Because of the surface absorption this reaction excites the surface response. The imaginary part of the single-particle (hole) potential in the evaluation of the response function introduces a 2p-2h spreading. The missing charge in the longitudinal response is reduced but not all experimental puzzles can be explained. The experience gained in the description of phenomena close to equilibrium serves to construct solutions of the Landau-Vlasov (alias Vlasov-Uehling-Uhlenbeck) equation for the description of non-equilibrium processes encountered in heavy ion reactions

  2. Dynamic plasma screening effects on semiclassical inelastic electron endash ion collisions in dense plasmas

    International Nuclear Information System (INIS)

    Jung, Y.

    1997-01-01

    In dense plasmas, dynamic plasma screening effects are investigated on 1s→2p dipole transition probabilities for electron-impact excitation of hydrogenic ions. The electron endash ion interaction potential is considered by introduction of the plasma dielectric function. A semiclassical straight-line trajectory method is applied to the path of the projectile electron in order to visualize the semiclassical transition probability as a function of the impact parameter, projectile energy, and plasma parameters. The transition probability including the dynamic plasma screening effect is always greater than that including the static plasma screening effect. When the projectile velocity is smaller than the electron thermal velocity, the dynamic polarization screening effect becomes the static plasma screening effect. When the projectile velocity is greater than the electron thermal velocity, then the interaction potential is almost unshielded. The difference between the dynamic and static plasma screening effects is more significant for low-energy projectiles. It is also found that the static plasma screening formula obtained by the Debye endash Hueckel model overestimates the plasma screening effects on the atomic excitation processes in dense plasmas. copyright 1997 American Institute of Physics

  3. Time dependent semiclassical tunneling through one dimensional barriers using only real valued trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Herman, Michael F. [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States)

    2015-10-28

    The time independent semiclassical treatment of barrier tunneling has been understood for a very long time. Several semiclassical approaches to time dependent tunneling through barriers have also been presented. These typically involve trajectories for which the position variable is a complex function of time. In this paper, a method is presented that uses only real valued trajectories, thus avoiding the complications that can arise when complex trajectories are employed. This is accomplished by expressing the time dependent wave packet as an integration over momentum. The action function in the exponent in this expression is expanded to second order in the momentum. The expansion is around the momentum, p{sub 0{sup *}}, at which the derivative of the real part of the action is zero. The resulting Gaussian integral is then taken. The stationary phase approximation requires that the derivative of the full action is zero at the expansion point, and this leads to a complex initial momentum and complex tunneling trajectories. The “pseudo-stationary phase” approximation employed in this work results in real values for the initial momentum and real valued trajectories. The transmission probabilities obtained are found to be in good agreement with exact quantum results.

  4. Time dependent semiclassical tunneling through one dimensional barriers using only real valued trajectories

    International Nuclear Information System (INIS)

    Herman, Michael F.

    2015-01-01

    The time independent semiclassical treatment of barrier tunneling has been understood for a very long time. Several semiclassical approaches to time dependent tunneling through barriers have also been presented. These typically involve trajectories for which the position variable is a complex function of time. In this paper, a method is presented that uses only real valued trajectories, thus avoiding the complications that can arise when complex trajectories are employed. This is accomplished by expressing the time dependent wave packet as an integration over momentum. The action function in the exponent in this expression is expanded to second order in the momentum. The expansion is around the momentum, p 0 * , at which the derivative of the real part of the action is zero. The resulting Gaussian integral is then taken. The stationary phase approximation requires that the derivative of the full action is zero at the expansion point, and this leads to a complex initial momentum and complex tunneling trajectories. The “pseudo-stationary phase” approximation employed in this work results in real values for the initial momentum and real valued trajectories. The transmission probabilities obtained are found to be in good agreement with exact quantum results

  5. Linearized semiclassical initial value time correlation functions with maximum entropy analytic continuation.

    Science.gov (United States)

    Liu, Jian; Miller, William H

    2008-09-28

    The maximum entropy analytic continuation (MEAC) method is used to extend the range of accuracy of the linearized semiclassical initial value representation (LSC-IVR)/classical Wigner approximation for real time correlation functions. LSC-IVR provides a very effective "prior" for the MEAC procedure since it is very good for short times, exact for all time and temperature for harmonic potentials (even for correlation functions of nonlinear operators), and becomes exact in the classical high temperature limit. This combined MEAC+LSC/IVR approach is applied here to two highly nonlinear dynamical systems, a pure quartic potential in one dimensional and liquid para-hydrogen at two thermal state points (25 and 14 K under nearly zero external pressure). The former example shows the MEAC procedure to be a very significant enhancement of the LSC-IVR for correlation functions of both linear and nonlinear operators, and especially at low temperature where semiclassical approximations are least accurate. For liquid para-hydrogen, the LSC-IVR is seen already to be excellent at T=25 K, but the MEAC procedure produces a significant correction at the lower temperature (T=14 K). Comparisons are also made as to how the MEAC procedure is able to provide corrections for other trajectory-based dynamical approximations when used as priors.

  6. Hyperspherical time-dependent method with semiclassical outgoing waves for double photoionization of helium

    International Nuclear Information System (INIS)

    Kazansky, A.K.; Selles, P.; Malegat, L.

    2003-01-01

    The hyperspherical time-dependent method with semiclassical outgoing waves for study of double photoionization of helium is presented. It is closely related to the hyperspherical R-matrix method with semiclassical outgoing waves [Phys. Rev. A 65, 032711 (2002)]: both split configuration space into two regions to solve the stationary inhomogeneous Schroedinger equation associated with the one-photon ionization problem, and both apply the same treatment to the outer region. However, the two methods differ radically in their treatments of the problem in the inner region: the most recent one applies a time-dependent approach for calculating the stationary wave function, while the previous one uses a R-matrix treatment. The excellent agreement observed between the triple differential cross sections obtained from these two basically different methods provides very strong support for both of them. Importantly, the very different numerical structures of both methods might make the most recent one a better candidate for investigating the near-threshold region

  7. Semi-classical approaches to the phase space evolutions in intermediate energy heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Remaud, B; Sebille, F; Raffray, Y; Gregoire, C; Vinet, L

    1986-01-06

    The properties of semi-classical phase space evolution equations - as the Vlasov/Boltzmann equations - are discussed in the context of the heavy ion reaction theory at intermediate energies (from 10 to 100 MeV per nucleon). The generalized coherent state set is shown to form a (over) complete basis for the phase space; then every solution of the Vlasov/Boltzmann equations can be defined as a convolution product of the generalized coherent state basis by an appropriate weight function w. The uniform approximation for w is shown to provide an accurate semi-classical description of fermion systems in their ground state: the examples of fermions in a harmonic well and of cold nuclei are discussed. The solution of the Vlasov equation amounts to follow the time evolution of the coherent states which play the role of a moving basis. For the Boltzmann equation, the collision term is taken into account by explicit or implicit variations of the function w. Typical applications are discussed: nuclear response to the giant monopole resonance excitation, fast nucleon emission in heavy-ion reactions. (orig.).

  8. Classical trajectory perspective of atomic ionization in strong laser fields. Semiclassical modeling

    International Nuclear Information System (INIS)

    Liu, Jie

    2014-01-01

    Dealing with timely and interesting issues in strong laser physics. Illustrates complex strong field atomic ionization with the simple semiclassical model of classical trajectory perspective for the first time. Provides a theoretical model that can be used to account for recent experiments. The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers in the field of laser physics, atom molecule physics and theoretical physics. Dr. Jie Liu is a professor of Institute of Applied Physics and Computational Mathematics, China and Peking University.

  9. Dynamical cluster approximation plus semiclassical approximation study for a Mott insulator and d-wave pairing

    Science.gov (United States)

    Kim, SungKun; Lee, Hunpyo

    2017-06-01

    Via a dynamical cluster approximation with N c = 4 in combination with a semiclassical approximation (DCA+SCA), we study the doped two-dimensional Hubbard model. We obtain a plaquette antiferromagnetic (AF) Mott insulator, a plaquette AF ordered metal, a pseudogap (or d-wave superconductor) and a paramagnetic metal by tuning the doping concentration. These features are similar to the behaviors observed in copper-oxide superconductors and are in qualitative agreement with the results calculated by the cluster dynamical mean field theory with the continuous-time quantum Monte Carlo (CDMFT+CTQMC) approach. The results of our DCA+SCA differ from those of the CDMFT+CTQMC approach in that the d-wave superconducting order parameters are shown even in the high doped region, unlike the results of the CDMFT+CTQMC approach. We think that the strong plaquette AF orderings in the dynamical cluster approximation (DCA) with N c = 4 suppress superconducting states with increasing doping up to strongly doped region, because frozen dynamical fluctuations in a semiclassical approximation (SCA) approach are unable to destroy those orderings. Our calculation with short-range spatial fluctuations is initial research, because the SCA can manage long-range spatial fluctuations in feasible computational times beyond the CDMFT+CTQMC tool. We believe that our future DCA+SCA calculations should supply information on the fully momentum-resolved physical properties, which could be compared with the results measured by angle-resolved photoemission spectroscopy experiments.

  10. Semiclassical investigation of the revival phenomena in a one-dimensional system

    International Nuclear Information System (INIS)

    Wang Zhexian; Heller, Eric J

    2009-01-01

    In a quantum revival, a localized wave packet re-forms or 'revives' into a compact reincarnation of itself long after it has spread in an unruly fashion over a region restricted only by the potential energy. This is a purely quantum phenomenon, which has no classical analog. Quantum revival and Anderson localization are members of a small class of subtle interference effects resulting in a quantum distribution radically different from the classical after long time evolution under classically nonlinear evolution. However, it is not clear that semiclassical methods, which start with the classical density and add interference effects, are in fact capable of capturing the revival phenomenon. Here we investigate two different one-dimensional systems, the infinite square well and Morse potential. In both the cases, after a long time the underlying classical manifolds are spread rather uniformly over phase space and are correspondingly spread in coordinate space, yet the semiclassical amplitudes are able to destructively interfere over most of coordinate space and constructively interfere in a small region, correctly reproducing a quantum revival. Further implications of this ability are discussed

  11. Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation

    Science.gov (United States)

    Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui

    2014-01-01

    Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904

  12. Semiclassical investigation of the revival phenomena in a one-dimensional system

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhexian [Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Heller, Eric J [Department of Physics and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 (United States)

    2009-07-17

    In a quantum revival, a localized wave packet re-forms or 'revives' into a compact reincarnation of itself long after it has spread in an unruly fashion over a region restricted only by the potential energy. This is a purely quantum phenomenon, which has no classical analog. Quantum revival and Anderson localization are members of a small class of subtle interference effects resulting in a quantum distribution radically different from the classical after long time evolution under classically nonlinear evolution. However, it is not clear that semiclassical methods, which start with the classical density and add interference effects, are in fact capable of capturing the revival phenomenon. Here we investigate two different one-dimensional systems, the infinite square well and Morse potential. In both the cases, after a long time the underlying classical manifolds are spread rather uniformly over phase space and are correspondingly spread in coordinate space, yet the semiclassical amplitudes are able to destructively interfere over most of coordinate space and constructively interfere in a small region, correctly reproducing a quantum revival. Further implications of this ability are discussed.

  13. Semiclassical investigation of the revival phenomena in a one-dimensional system

    Science.gov (United States)

    Wang, Zhe-xian; Heller, Eric J.

    2009-07-01

    In a quantum revival, a localized wave packet re-forms or 'revives' into a compact reincarnation of itself long after it has spread in an unruly fashion over a region restricted only by the potential energy. This is a purely quantum phenomenon, which has no classical analog. Quantum revival and Anderson localization are members of a small class of subtle interference effects resulting in a quantum distribution radically different from the classical after long time evolution under classically nonlinear evolution. However, it is not clear that semiclassical methods, which start with the classical density and add interference effects, are in fact capable of capturing the revival phenomenon. Here we investigate two different one-dimensional systems, the infinite square well and Morse potential. In both the cases, after a long time the underlying classical manifolds are spread rather uniformly over phase space and are correspondingly spread in coordinate space, yet the semiclassical amplitudes are able to destructively interfere over most of coordinate space and constructively interfere in a small region, correctly reproducing a quantum revival. Further implications of this ability are discussed.

  14. Semiclassical analysis of jm → j'm' transitions in rotationally inelastic collisions in cell experiments

    Science.gov (United States)

    Price, T. J.; Hickman, A. P.

    2018-02-01

    Recent quantum calculations of rotationally inelastic collisions of NaK (A1Σ+) with He or Ar in a cell experiment are analyzed using semiclassical approximations valid for large quantum numbers. The results suggest a physical interpretation of jm → j'm' transitions based on the vector model and lead to expressions that explicitly involve the initial and final polar angles of the angular momentum of the target molecule. The relation between the polar angle θ and the azimuthal quantum number m links the semiclassical results for the change in polar angle (θ → θ') to quantum results for an m → m' transition. Analytic formulas are derived that relate the location and width of peaks in the final polar angle distribution (PAD) to the K-dependence of the coefficients dK(j, j'), which are proportional to tensor cross sections σK(j → j'). Several special cases are treated that lead to final PADs that are approximately Lorentzian or sinc functions centered at θ' = θ. Another interesting case, "angular momentum reversal," was observed in the calculations for He. This phenomenon, which involves a reversal of the direction of the target's angular momentum, is shown to be associated with oscillatory behavior of the dK for certain transitions. Finally, several strategies for obtaining the dK coefficients from experimental data are discussed.

  15. Strong-coupling constant at three loops in momentum subtraction scheme

    International Nuclear Information System (INIS)

    Chetyrkin, K.G.; Russian Academy of Sciences, Moscow; Kniehl, B.A.; Steinhauser, M.

    2008-12-01

    In this paper we compute the three-loop corrections to the β function in a momentum subtraction (MOM) scheme with a massive quark. The calculation is performed in the background field formalism applying asymptotic expansions for small and large momenta. Special emphasis is devoted to the relation between the coupling constant in the MOM and MS schemes as well as their ability to describe the phenomenon of decoupling. It is demonstrated by an explicit comparison that the MS scheme can be consistently used to relate the values of the MOM-scheme strong-coupling constant in the energy regions higher and lower than the massive-quark production threshold. This procedure obviates the necessity to know the full mass dependence of the MOM β function and clearly demonstrates the equivalence of both schemes for the description of physics outside the threshold region. (orig.)

  16. Strong-coupling constant at three loops in momentum subtraction scheme

    Energy Technology Data Exchange (ETDEWEB)

    Chetyrkin, K.G. [Karlsruhe Univ. (T.H.), Karlsruhe Inst. of Technology (KIT) (Germany). Inst. fuer Theoretische Teilchenphysik]|[Russian Academy of Sciences, Moscow (Russian Federation). Inst. for Nuclear Research; Kniehl, B.A. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Steinhauser, M. [Karlsruhe Univ. (T.H.), Karlsruhe Inst. of Technology (KIT) (Germany). Inst. fuer Theoretische Teilchenphysik

    2008-12-15

    In this paper we compute the three-loop corrections to the {beta} function in a momentum subtraction (MOM) scheme with a massive quark. The calculation is performed in the background field formalism applying asymptotic expansions for small and large momenta. Special emphasis is devoted to the relation between the coupling constant in the MOM and MS schemes as well as their ability to describe the phenomenon of decoupling. It is demonstrated by an explicit comparison that the MS scheme can be consistently used to relate the values of the MOM-scheme strong-coupling constant in the energy regions higher and lower than the massive-quark production threshold. This procedure obviates the necessity to know the full mass dependence of the MOM {beta} function and clearly demonstrates the equivalence of both schemes for the description of physics outside the threshold region. (orig.)

  17. Multiresolution signal decomposition schemes

    NARCIS (Netherlands)

    J. Goutsias (John); H.J.A.M. Heijmans (Henk)

    1998-01-01

    textabstract[PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis

  18. Adaptive protection scheme

    Directory of Open Access Journals (Sweden)

    R. Sitharthan

    2016-09-01

    Full Text Available This paper aims at modelling an electronically coupled distributed energy resource with an adaptive protection scheme. The electronically coupled distributed energy resource is a microgrid framework formed by coupling the renewable energy source electronically. Further, the proposed adaptive protection scheme provides a suitable protection to the microgrid for various fault conditions irrespective of the operating mode of the microgrid: namely, grid connected mode and islanded mode. The outstanding aspect of the developed adaptive protection scheme is that it monitors the microgrid and instantly updates relay fault current according to the variations that occur in the system. The proposed adaptive protection scheme also employs auto reclosures, through which the proposed adaptive protection scheme recovers faster from the fault and thereby increases the consistency of the microgrid. The effectiveness of the proposed adaptive protection is studied through the time domain simulations carried out in the PSCAD⧹EMTDC software environment.

  19. Coherent and semiclassical states in a magnetic field in the presence of the Aharonov-Bohm solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G [Department of Physics, Tomsk State University, 634050 Tomsk (Russian Federation); Gavrilov, S P; Gitman, D M; Filho, D P Meira, E-mail: bagrov@phys.tsu.ru, E-mail: gavrilovsergeyp@yahoo.com, E-mail: gitman@dfn.if.usp.br, E-mail: dmeira@dfn.if.usp.br [Institute of Physics, University of Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo, SP (Brazil)

    2011-02-04

    A new approach to constructing coherent states (CS) and semiclassical states (SS) in a magnetic-solenoid field is proposed. The main idea is based on the fact that the AB solenoid breaks the translational symmetry in the xy-plane; this has a topological effect such that there appear two types of trajectories which embrace and do not embrace the solenoid. Due to this fact, one has to construct two different kinds of CS/SS which correspond to such trajectories in the semiclassical limit. Following this idea, we construct CS in two steps, first the instantaneous CS (ICS) and then the time-dependent CS/SS as an evolution of the ICS. The construction is realized for nonrelativistic and relativistic spinning particles both in (2 + 1) and (3 + 1) dimensions and gives a non-trivial example of SS/CS for systems with a nonquadratic Hamiltonian. It is stressed that CS depending on their parameters (quantum numbers) describe both pure quantum and semiclassical states. An analysis is represented that classifies parameters of the CS in such respect. Such a classification is used for the semiclassical decompositions of various physical quantities.

  20. Coherent and semiclassical states in a magnetic field in the presence of the Aharonov-Bohm solenoid

    International Nuclear Information System (INIS)

    Bagrov, V G; Gavrilov, S P; Gitman, D M; Filho, D P Meira

    2011-01-01

    A new approach to constructing coherent states (CS) and semiclassical states (SS) in a magnetic-solenoid field is proposed. The main idea is based on the fact that the AB solenoid breaks the translational symmetry in the xy-plane; this has a topological effect such that there appear two types of trajectories which embrace and do not embrace the solenoid. Due to this fact, one has to construct two different kinds of CS/SS which correspond to such trajectories in the semiclassical limit. Following this idea, we construct CS in two steps, first the instantaneous CS (ICS) and then the time-dependent CS/SS as an evolution of the ICS. The construction is realized for nonrelativistic and relativistic spinning particles both in (2 + 1) and (3 + 1) dimensions and gives a non-trivial example of SS/CS for systems with a nonquadratic Hamiltonian. It is stressed that CS depending on their parameters (quantum numbers) describe both pure quantum and semiclassical states. An analysis is represented that classifies parameters of the CS in such respect. Such a classification is used for the semiclassical decompositions of various physical quantities.