WorldWideScience

Sample records for semaphorin 3a sema3a

  1. DRG axon elongation and growth cone collapse rate induced by Sema3A are differently dependent on NGF concentration.

    Science.gov (United States)

    Kaselis, Andrius; Treinys, Rimantas; Vosyliūtė, Rūta; Šatkauskas, Saulius

    2014-03-01

    Regeneration of embryonic and adult dorsal root ganglion (DRG) sensory axons is highly impeded when they encounter neuronal growth cone-collapsing factor semaphorin3A (Sema3A). On the other hand, increasing evidence shows that DRG axon's regeneration can be stimulated by nerve growth factor (NGF). In this study, we aimed to evaluate whether increased NGF concentrations can counterweight Sema3A-induced inhibitory responses in 15-day-old mouse embryo (E15) DRG axons. The DRG explants were grown in Neurobasal-based medium with different NGF concentrations ranging from 0 to 100 ng/mL and then treated with Sema3A at constant 10 ng/mL concentration. To evaluate interplay between NGF and Sema3A number of DRG axons, axon outgrowth distance and collapse rate were measured. We found that the increased NGF concentrations abolish Sema3A-induced inhibitory effect on axon outgrowth, while they have no effect on Sema3A-induced collapse rate.

  2. SEMA3A, a gene involved in axonal pathfinding, is mutated in patients with Kallmann syndrome.

    Science.gov (United States)

    Hanchate, Naresh Kumar; Giacobini, Paolo; Lhuillier, Pierre; Parkash, Jyoti; Espy, Cécile; Fouveaut, Corinne; Leroy, Chrystel; Baron, Stéphanie; Campagne, Céline; Vanacker, Charlotte; Collier, Francis; Cruaud, Corinne; Meyer, Vincent; García-Piñero, Alfons; Dewailly, Didier; Cortet-Rudelli, Christine; Gersak, Ksenija; Metz, Chantal; Chabrier, Gérard; Pugeat, Michel; Young, Jacques; Hardelin, Jean-Pierre; Prevot, Vincent; Dodé, Catherine

    2012-08-01

    Kallmann syndrome (KS) associates congenital hypogonadism due to gonadotropin-releasing hormone (GnRH) deficiency and anosmia. The genetics of KS involves various modes of transmission, including oligogenic inheritance. Here, we report that Nrp1(sema/sema) mutant mice that lack a functional semaphorin-binding domain in neuropilin-1, an obligatory coreceptor of semaphorin-3A, have a KS-like phenotype. Pathohistological analysis of these mice indeed showed abnormal development of the peripheral olfactory system and defective embryonic migration of the neuroendocrine GnRH cells to the basal forebrain, which results in increased mortality of newborn mice and reduced fertility in adults. We thus screened 386 KS patients for the presence of mutations in SEMA3A (by Sanger sequencing of all 17 coding exons and flanking splice sites) and identified nonsynonymous mutations in 24 patients, specifically, a frameshifting small deletion (D538fsX31) and seven different missense mutations (R66W, N153S, I400V, V435I, T688A, R730Q, R733H). All the mutations were found in heterozygous state. Seven mutations resulted in impaired secretion of semaphorin-3A by transfected COS-7 cells (D538fsX31, R66W, V435I) or reduced signaling activity of the secreted protein in the GN11 cell line derived from embryonic GnRH cells (N153S, I400V, T688A, R733H), which strongly suggests that these mutations have a pathogenic effect. Notably, mutations in other KS genes had already been identified, in heterozygous state, in five of these patients. Our findings indicate that semaphorin-3A signaling insufficiency contributes to the pathogenesis of KS and further substantiate the oligogenic pattern of inheritance in this developmental disorder.

  3. SEMA3A, a gene involved in axonal pathfinding, is mutated in patients with Kallmann syndrome.

    Directory of Open Access Journals (Sweden)

    Naresh Kumar Hanchate

    2012-08-01

    Full Text Available Kallmann syndrome (KS associates congenital hypogonadism due to gonadotropin-releasing hormone (GnRH deficiency and anosmia. The genetics of KS involves various modes of transmission, including oligogenic inheritance. Here, we report that Nrp1(sema/sema mutant mice that lack a functional semaphorin-binding domain in neuropilin-1, an obligatory coreceptor of semaphorin-3A, have a KS-like phenotype. Pathohistological analysis of these mice indeed showed abnormal development of the peripheral olfactory system and defective embryonic migration of the neuroendocrine GnRH cells to the basal forebrain, which results in increased mortality of newborn mice and reduced fertility in adults. We thus screened 386 KS patients for the presence of mutations in SEMA3A (by Sanger sequencing of all 17 coding exons and flanking splice sites and identified nonsynonymous mutations in 24 patients, specifically, a frameshifting small deletion (D538fsX31 and seven different missense mutations (R66W, N153S, I400V, V435I, T688A, R730Q, R733H. All the mutations were found in heterozygous state. Seven mutations resulted in impaired secretion of semaphorin-3A by transfected COS-7 cells (D538fsX31, R66W, V435I or reduced signaling activity of the secreted protein in the GN11 cell line derived from embryonic GnRH cells (N153S, I400V, T688A, R733H, which strongly suggests that these mutations have a pathogenic effect. Notably, mutations in other KS genes had already been identified, in heterozygous state, in five of these patients. Our findings indicate that semaphorin-3A signaling insufficiency contributes to the pathogenesis of KS and further substantiate the oligogenic pattern of inheritance in this developmental disorder.

  4. Anti-SEMA3A Antibody: A Novel Therapeutic Agent to Suppress GBM Tumor Growth.

    Science.gov (United States)

    Lee, Jaehyun; Shin, Yong Jae; Lee, Kyoungmin; Cho, Hee Jin; Sa, Jason K; Lee, Sang-Yun; Kim, Seok-Hyung; Lee, Jeongwu; Yoon, Yeup; Nam, Do-Hyun

    2017-11-10

    Glioblastoma (GBM) is classified as one of the most aggressive and lethal brain tumor. Great strides have been made in understanding the genomic and molecular underpinnings of GBM, which translated into development of new therapeutic approaches to combat such deadly disease. However, there are only few therapeutic agents that can effectively inhibit GBM invasion in a clinical framework. In an effort to address such challenges, we have generated anti-SEMA3A monoclonal antibody as a potential therapeutic antibody against GBM progression. We employed public glioma datasets, Repository of Molecular Brain Neoplasia Data and The Cancer Genome Atlas, to analyze SEMA3A mRNA expression in human GBM specimens. We also evaluated for protein expression level of SEMA3A via tissue microarray (TMA) analysis. Cell migration and proliferation kinetics were assessed in various GBM patient-derived cells (PDCs) and U87-MG cell-line for SEMA3A antibody efficacy. GBM patient-derived xenograft (PDX) models were generated to evaluate tumor inhibitory effect of anti-SEMA3A antibody in vivo. By combining bioinformatics and TMA analysis, we discovered that SEMA3A is highly expressed in human GBM specimens compared to non-neoplastic tissues. We developed three different anti-SEMA3A antibodies, in fully human IgG form, through screening phage-displayed synthetic antibody library using a classical panning method. Neutralization of SEMA3A significantly reduced migration and proliferation capabilities of PDCs and U87-MG cell-line in vitro. In PDX models, treatment with anti-SEMA3A antibody exhibited notable tumor inhibitory effect through down-regulation of cellular proliferative kinetics and tumor-associated macrophages recruitment. In present study, we demonstrated tumor inhibitory effect of SEMA3A antibody in GBM progression and present its potential relevance as a therapeutic agent in a clinical framework.

  5. Vesicular trafficking of semaphorin 3A is activity-dependent and differs between axons and dendrites

    NARCIS (Netherlands)

    de Wit, Joris; Toonen, Ruud F; Verhaagen, J.; Verhage, Matthijs

    Secreted semaphorins act as guidance cues in the developing nervous system and may have additional functions in mature neurons. How semaphorins are transported and secreted by neurons is poorly understood. We find that endogenous semaphorin 3A (Sema3A) displays a punctate distribution in axons and

  6. Prostate cancer cells induce osteoblastic differentiation via semaphorin 3A.

    Science.gov (United States)

    Liu, Fuzhou; Shen, Weiwei; Qiu, Hao; Hu, Xu; Zhang, Chao; Chu, Tongwei

    2015-03-01

    Prostate cancer metastasis to bone is the second most commonly diagnosed malignant disease among men worldwide. Such metastatic disease is characterized by the presence of osteoblastic bone lesions, and is associated with high rates of mortality. However, the various mechanisms involved in prostate cancer-induced osteoblastic differentiation have not been fully explored. Semaphorin 3A (Sema 3A) is a newly identified regulator of bone metabolism which stimulates differentiation of pre-osteoblastic cells under physiological conditions. We investigated in this study whether prostate cancer cells can mediate osteoblastic activity through Sema 3A. We cultured osteoprogenitor MC3T3-E1 cells in prostate cancer-conditioned medium, and analyzed levels of Sema 3A protein in diverse prostate cancer cell lines to identify cell lines in which Sema 3A production showed a positive correlation with osteo-stimulation. C4-2 cells were stably transfected with Sema 3A short hairpin RNA to further determine whether Sema 3A contributes to the ability of C4-2 cells to induce osteoblastic differentiation. Down-regulation of Sema 3A expression decreased indicators of C4-2 CM-induced osteoblastic differentiation, including alkaline phosphatase production and mineralization. Additionally, silencing or neutralizing Sema 3A in C4-2 cells resulted in diminished β-catenin expression in osteogenitor MC3T3-E1 cells. Our results suggest that prostate cancer-induced osteoblastic differentiation is at least partially mediated by Sema 3A, and may be regulated by the β-catenin signalling pathway. Sema 3A may represent a novel target for treatment of prostate cancer-induced osteoblastic lesions. © 2014 Wiley Periodicals, Inc.

  7. The Role Of Semaphorin 3A In The Skeletal System.

    Science.gov (United States)

    Tang, Peifu; Yin, Pengbin; Lv, Houchen; Zhang, Licheng; Zhang, Lihai

    2015-01-01

    Semaphorin 3A (Sema3A), characterized by a conserved N-terminal "Sema" domain, was originally described as an axon guidance molecule. Recent research indicates that it performs a critical function in the skeletal system. This review highlights recent advances in understanding of the role of Sema3A in the skeletal system as a regulator of bone metabolism and as a potential drug target for bone disease therapy. We summarize Sema3A functions in osteoblastogenesis and osteoclastogenesis, as well as in innervation, and we discuss its multifunctional role in various bone diseases such as osteoporosis and low back pain. Despite limited research in this field, our aim is to promote further understanding of the function of Sema3A in the skeletal system.

  8. mTORC1 is a critical mediator of oncogenic Semaphorin3A signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Daisuke; Kawahara, Kohichi; Maeda, Takehiko, E-mail: maeda@nupals.ac.jp

    2016-08-05

    Aberration of signaling pathways by genetic mutations or alterations in the surrounding tissue environments can result in tumor development or metastasis. However, signaling molecules responsible for these processes have not been completely elucidated. Here, we used mouse Lewis lung carcinoma cells (LLC) to explore the mechanism by which the oncogenic activity of Semaphorin3A (Sema3A) signaling is regulated. Sema3A knockdown by shRNA did not affect apoptosis, but decreased cell proliferation in LLCs; both the mammalian target of rapamycin complex 1 (mTORC1) level and glycolytic activity were also decreased. In addition, Sema3A knockdown sensitized cells to inhibition of oxidative phosphorylation by oligomycin, but conferred resistance to decreased cell viability induced by glucose starvation. Furthermore, recombinant SEMA3A rescued the attenuation of cell proliferation and glycolytic activity in LLCs after Sema3A knockdown, whereas mTORC1 inhibition by rapamycin completely counteracted this effect. These results demonstrate that Sema3A signaling exerts its oncogenic effect by promoting an mTORC1-mediated metabolic shift from oxidative phosphorylation to aerobic glycolysis. -- Highlights: •Sema3A knockdown decreased proliferation of Lewis lung carcinoma cells (LLCs). •Sema3A knockdown decreased mTORC1 levels and glycolytic activity in LLCs. •Sema3A knockdown sensitized cells to inhibition of oxidative phosphorylation. •Sema3A promotes shift from oxidative phosphorylation to aerobic glycolysis via mTORC1.

  9. Urinary semaphorin 3A correlates with diabetic proteinuria and mediates diabetic nephropathy and associated inflammation in mice

    NARCIS (Netherlands)

    Mohamed, Riyaz; Ranganathan, Punithavathi; Jayakumar, Calpurnia; Nauta, Ferdau L.; Gansevoort, Ron T.; Weintraub, Neal L.; Brands, Michael; Ramesh, Ganesan

    2014-01-01

    Semaphorin 3A (sema3A) was recently identified as an early diagnostic biomarker of acute kidney injury. However, its role as a biomarker and/or mediator of chronic kidney disease (CKD) related to diabetic nephropathy is unknown. We examined the expression of sema3A in diabetic animal models and in

  10. Decreased Expression of Semaphorin3A/Neuropilin-1 Signaling Axis in Apical Periodontitis

    Directory of Open Access Journals (Sweden)

    Ying Lin

    2017-01-01

    Full Text Available Apical periodontitis (AP is a chronic infection of endodontic origin accompanied with bone destruction around the apical region. Semaphorin3A (Sema3A and neuropilin-1 (Nrp1 are regarded as a pair of immune regulators in bone metabolism. In this study, we firstly investigated the expression pattern of Sema3A/Nrp1 in apical periodontitis and its correlation with bone destruction. Using rat animal model, we analysed the level of mandibular bone destruction and the expression of Sema3A/Nrp1 on days 0, 7, 14, 21, 28, and 35 after pulp exposure. In addition, clinical samples from apical periodontitis patients were obtained to analyse the expression of Sema3A/Nrp1. These results indicated that the bone destruction level expanded from days 7 to 35. The number of positive cells and level of mRNA expression of Sema3A/Nrp1 were significantly decreased from days 7 to 35, with a negative correlation with bone destruction. Moreover, expression of Sema3A/Nrp1 in the AP group was reduced compared to the control group of clinical samples. In conclusion, decreased expression of Sema3A/Nrp1 was observed in periapical lesions and is potentially involved in the bone resorption of the periapical area, suggesting that Sema3A/Nrp1 may contribute to the pathological development of apical periodontitis.

  11. Semaphorin3A, Neuropilin-1, and PlexinA1 are required for lymphatic valve formation.

    Science.gov (United States)

    Bouvrée, Karine; Brunet, Isabelle; Del Toro, Raquel; Gordon, Emma; Prahst, Claudia; Cristofaro, Brunella; Mathivet, Thomas; Xu, Yunling; Soueid, Jihane; Fortuna, Vitor; Miura, Nayoki; Aigrot, Marie-Stéphane; Maden, Charlotte H; Ruhrberg, Christiana; Thomas, Jean Léon; Eichmann, Anne

    2012-08-03

    The lymphatic vasculature plays a major role in fluid homeostasis, absorption of dietary lipids, and immune surveillance. Fluid transport depends on the presence of intraluminal valves within lymphatic collectors. Defective formation of lymphatic valves leads to lymphedema, a progressive and debilitating condition for which curative treatments are currently unavailable. How lymphatic valve formation is regulated remains largely unknown. We investigated if the repulsive axon guidance molecule Semaphorin3A (Sema3A) plays a role in lymphatic valve formation. We show that Sema3A mRNA is expressed in lymphatic vessels and that Sema3A protein binds to lymphatic valves expressing the Neuropilin-1 (Nrp1) and PlexinA1 receptors. Using mouse knockout models, we show that Sema3A is selectively required for lymphatic valve formation, via interaction with Nrp1 and PlexinA1. Sema3a(-/-) mice exhibit defects in lymphatic valve formation, which are not due to abnormal lymphatic patterning or sprouting, and mice carrying a mutation in the Sema3A binding site of Nrp1, or deficient for Plxna1, develop lymphatic valve defects similar to those seen in Sema3a(-/-) mice. Our data demonstrate an essential direct function of Sema3A-Nrp1-PlexinA1 signaling in lymphatic valve formation.

  12. Expression of semaphorin 3A in the rat corneal epithelium during wound healing

    International Nuclear Information System (INIS)

    Morishige, Naoyuki; Ko, Ji-Ae; Morita, Yukiko; Nishida, Teruo

    2010-01-01

    The neural guidance protein semaphorin 3A (Sema3A) is expressed in corneal epithelial cells of the adult rat. We have now further investigated the localization of Sema3A in the normal rat corneal epithelium as well as changes in its expression pattern during wound healing after central corneal epithelial debridement. The expression pattern of Sema3A was compared with that of the tight-junction protein zonula occludens-1 (ZO-1), the gap-junction protein connexin43 (Cx43), or the cell proliferation marker Ki67. Immunofluorescence analysis revealed that Sema3A was present predominantly in the membrane of basal and wing cells of the intact corneal epithelium. The expression of Sema3A at the basal side of basal cells was increased in the peripheral epithelium compared with that in the central region. Sema3A was detected in all layers at the leading edge of the migrating corneal epithelium at 6 h after central epithelial debridement. The expression of Sema3A was markedly up-regulated in the basal and lateral membranes of columnar basal cells apparent in the thickened, newly healed epithelium at 1 day after debridement, but it had largely returned to the normal pattern at 3 days after debridement. The expression of ZO-1 was restricted to superficial epithelial cells and remained mostly unchanged during the wound healing process. The expression of Cx43 in basal cells was down-regulated at the leading edge of the migrating epithelium but was stable in the remaining portion of the epithelium. Ki67 was not detected in basal cells of the central epithelium at 1 day after epithelial debridement, when Sema3A was prominently expressed. Immunoblot analysis showed that the abundance of Sema3A in the central cornea was increased 1 day after epithelial debridement, whereas that of ZO-1 or Cx43 remained largely unchanged. This increase in Sema3A expression was accompanied by up-regulation of the Sema3A coreceptor neuropilin-1. Our observations have thus shown that the expression of

  13. Autocrine Semaphorin3A signaling is essential for the maintenance of stem-like cells in lung cancer

    International Nuclear Information System (INIS)

    Yamada, Daisuke; Takahashi, Kensuke; Kawahara, Kohichi; Maeda, Takehiko

    2016-01-01

    Cancer stem-like cells (CSCs) exist in tumor tissues composed of heterogeneous cell population and are characterized by their self-renewal capacity and tumorigenicity. Many studies demonstrate that eradication of CSCs prevents development and recurrences of tumor; yet, molecules critical for the maintenance of CSCs have not been completely understood. We previously reported that Semaphorin3A (Sema3a) knockdown suppressed the tumorigenicity and proliferative capacity of Lewis lung carcinoma (LLC) cells. Therefore, we identified Sema3a as an essential factor for the establishment or maintenance of CSCs derived from LLC (LLC-stem cell). shRNA against Sema3a was introduced into LLC cells to establish a LLC-stem cell line and its effects on tumorigenesis, sphere formation, and mTORC1 activity were tested. Sema3a knockdown completely abolished tumorigenicity and the sphere-formation and self-renewal ability of LLC-stem cells. The Sema3a knockdown was also associated with decreased expression of mRNA for stem cell markers. The self-renewal ability abolished by Sema3a knockdown could not be recovered by exogenous addition of recombinant SEMA3A. In addition, the activity of mammalian target of rapamycin complex 1 (mTORC1) and the expression of its substrate p70S6K1 were also decreased. These results demonstrate that Sema3a is a potential therapeutic target in eradication of CSCs. - Highlights: • Sema3a enhances tumorigenic capacity of cancer stem-like cells. • Sema3a is essential for the maintenance of cancer stem-like cells. • Sema3a can be a therapeutic target to eradicate cancer stem-like cells.

  14. Semaphorin 3A controls allergic and inflammatory responses in experimental allergic conjunctivitis

    Directory of Open Access Journals (Sweden)

    Junmi Tanaka

    2015-02-01

    Full Text Available AIM: To assess the efficacy of topical Semaphorin-3A (SEMA3A in the treatment of allergic conjunctivitis. METHODS: Experimental allergic conjunctivitis (EAC mice model induced by short ragweed pollen (SRW in 4-week-old of BALB/c mice, mice were evaluated using haematoxylin and eosin (H&E staining, immunofluorescence and light microscope photographs. Early phase took the samples in 24h after instillation and late phase took the samples between 4 to 14d after the start of treatment. The study use of topical SEMA3A (10 U, 100 U, 1000 U eye drops and subconjunctival injection of SEMA3A with same concentration. For comparison, five types of allergy eyedrops were quantified using clinical characteristics. RESULTS: Clinical score of composite ocular symptoms of the mice treated with SEMA3A were significantly decreased both in the immediate phase and the late phase compared to those treated with commercial ophthalmic formulations and non-treatment mice. SEMA3A treatment attenuates infiltration of eosinophils entering into conjunctiva in EAC mice. The score of eosinophil infiltration in the conjunctiva of SEMA3A 1000 U-treated group were significantly lower than low-concentration of SEMA3A treated groups and non-treated group. SEMA3A treatment also suppressed T-cell proliferation in vitro and decreased serum total IgE levels in EAC mice. Moreover, Treatment of SEMA3A suppressed Th2-related cytokines (IL-5, IL-13 and IL-4 and pro-inflammatory cytokines (IFN-γ, IL-17 and TNF-α release, but increased regulatory cytokine IL-10 concentration in the conjunctiva of EAC mice. CONCLUSIONS: SEMA3A as a biological agent, showed the beneficial activity in ocular allergic processes with the less damage to the intraocular tissue. It is expected that SEMA3A may be contributed in patients with a more severe spectrum of refractory ocular allergic diseases including allergic conjunctivitis in the near future.

  15. Semaphorin 3A Induces Odontoblastic Phenotype in Dental Pulp Stem Cells.

    Science.gov (United States)

    Yoshida, S; Wada, N; Hasegawa, D; Miyaji, H; Mitarai, H; Tomokiyo, A; Hamano, S; Maeda, H

    2016-10-01

    In cases of pulp exposure due to deep dental caries or severe traumatic injuries, existing pulp-capping materials have a limited ability to reconstruct dentin-pulp complexes and can result in pulpectomy because of their low potentials to accelerate dental pulp cell activities, such as migration, proliferation, and differentiation. Therefore, the development of more effective therapeutic agents has been anticipated for direct pulp capping. Dental pulp tissues are enriched with dental pulp stem cells (DPSCs). Here, the authors investigated the effects of semaphorin 3A (Sema3A) on various functions of human DPSCs in vitro and reparative dentin formation in vivo in a rat dental pulp exposure model. Immunofluorescence staining revealed expression of Sema3A and its receptor Nrp1 (neuropilin 1) in rat dental pulp tissue and human DPSC clones. Sema3A induced cell migration, chemotaxis, proliferation, and odontoblastic differentiation of DPSC clones. In addition, Sema3A treatment of DPSC clones increased β-catenin nuclear accumulation, upregulated expression of the FARP2 gene (FERM, RhoGEF, and pleckstrin domain protein 2), and activated Rac1 in DPSC clones. Furthermore, in the rat dental pulp exposure model, Sema3A promoted reparative dentin formation with dentin tubules and a well-aligned odontoblast-like cell layer at the dental pulp exposure site and with novel reparative dentin almost completely covering pulp tissue at 4 wk after direct pulp capping. These findings suggest that Sema3A could play an important role in dentin regeneration via canonical Wnt/β-catenin signaling. Sema3A might be an alternative agent for direct pulp capping, which requires further study. © International & American Associations for Dental Research 2016.

  16. Pharmacokinetics, Biodistribution, and Toxicity Evaluation of Anti-SEMA3A (F11) in In Vivo Models.

    Science.gov (United States)

    Lee, Jaehyun; Kim, Donggeon; Son, Eunju; Yoo, Su-Ji; Sa, Jason K; Shin, Yong Jae; Yoon, Yeup; Nam, DO-Hyun

    2018-05-01

    The aim of our study was to investigate the pharmacokinetics (PK), tissue distribution and toxicity of F11 antibody to semaphorin 3A in mouse models and explore its anti-angiogenic and tumor-inhibitory effect. Patient-derived xenograft (PDX) models were established via subcutaneous implantation of glioblastoma multiforme (GBM) cells and treated with F11. F11 significantly attenuated tumor growth and angiogenesis in the GBM PDX model. Within the range of administered doses, the PK of F11 in serum demonstrated a linear fashion, consistent with general PK profiles of soluble antigen-targeting antibodies. Additionally, the clearance level was detected at between 4.63 and 7.12 ml/d/kg, while the biological half-life was measured at 6.9 and 9.4 days. Tissue distribution of F11 in kidney, liver and heart was consistent with previously reported antibody patterns. However, the presence of F11 in the brain was an interesting finding. Collectively, our results revealed angiogenic and tumor-inhibitory effect of F11 antibody and its potential therapeutic use within a clinical framework based on PK, biodistribution and toxicity evaluation in mouse models. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Co-immobilization of semaphorin3A and nerve growth factor to guide and pattern axons.

    Science.gov (United States)

    McCormick, Aleesha M; Jarmusik, Natalie A; Leipzig, Nic D

    2015-12-01

    Immobilization of axon guidance cues offers a powerful tissue regenerative strategy to control the presentation and spatial location of these biomolecules. We use our previously developed immobilization strategy to specifically tether recombinant biotinylated nerve growth factor (bNGF) and biotinylated semaphorin3A (bSema3A) to chitosan films as an outgrowth and guidance platform. DRG neurite length and number for a range of single cues of immobilized bNGF or bSema3A were examined to determine a concentration response. Next single and dual cues of bNGF and bSema3A were immobilized and DRG guidance was assessed in response to a step concentration change from zero. Overall, immobilized groups caused axon extension, retraction and turning depending on the ratio of bNGF and bSema3A immobilized in the encountered region. This response indicated the exquisite sensitivity of DRG axons to both attractive and repulsive tethered cues. bSema3A concentrations of 0.10 and 0.49 ng/mm(2), when co-immobilized with bNGF (at 0.86 and 0.43 ng/mm(2) respectively), caused axons to turn away from the co-immobilized region. Immunocytochemical analysis showed that at these bSema3A concentrations, axons inside the co-immobilized region display microtubule degradation and breakdown of actin filaments. At the lowest bSema3A concentration (0.01 ng/mm(2)) co-immobilized with a higher bNGF concentration (2.16 ng/mm(2)), neurite lengths are shorter in the immobilized area, but bNGF dominates the guidance mechanism as neurites are directed toward the immobilized region. Future applications can pattern these cues in various geometries and gradients in order to better modulate axon guidance in terms of polarity, extension and branching. Nervous system formation and regeneration requires key molecules for guiding the growth cone and nervous system patterning. In vivo these molecules work in conjunction with one another to modulate axon guidance, and often they are tethered to limit spatial

  18. A PKC-dependent recruitment of MMP-2 controls semaphorin-3A growth-promoting effect in cortical dendrites.

    Directory of Open Access Journals (Sweden)

    Bertrand Gonthier

    Full Text Available There is increasing evidence for a crucial role of proteases and metalloproteinases during axon growth and guidance. In this context, we recently described a functional link between the chemoattractive Sema3C and Matrix metalloproteinase 3 (MMP3. Here, we provide data demonstrating the involvement of MMP-2 to trigger the growth-promoting effect of Sema3A in cortical dendrites. The in situ analysis of MMP-2 expression and activity is consistent with a functional growth assay demonstrating in vitro that the pharmacological inhibition of MMP-2 reduces the growth of cortical dendrites in response to Sema3A. Hence, our results suggest that the selective recruitment and activation of MMP-2 in response to Sema3A requires a PKC alpha dependent mechanism. Altogether, we provide a second set of data supporting MMPs as effectors of the growth-promoting effects of semaphorins, and we identify the potential signalling pathway involved.

  19. The association between semaphorin 3A levels and gluten-free diet in patients with celiac disease.

    Science.gov (United States)

    Kessel, Aharon; Lin, Chen; Vadasz, Zahava; Peri, Regina; Eiza, Nasren; Berkowitz, Drora

    2017-11-01

    Celiac disease (CD) is an inflammatory disease affecting the small intestine. We aim to assess serum level and expression of semaphorin 3A (Sema3A) on T regulatory (Treg) cells in CD patients. Twenty-six newly diagnosed celiac patients, 13 celiac patients on a gluten-free diet and 16 healthy controls included in the study. Sema3A protein level in the serum of celiac patients was significantly higher compared to healthy group (7.17±1.8ng/ml vs. 5.67±1.5ng/ml, p=0.012). Sema3A expression on Treg cells was statistically lower in celiac patients compared to healthy subjects (p=0.009) and significantly lower in celiac patients compared to celiac patients on gluten free diet (p=0.04). Negative correlation was found between Sema3A on Teg cells and the level of IgA anti-tTG antibodies (r=-0.346, p<0.01) and anti-DGP (r=-0.448, p<0.01). This study suggests involvement of the Sema3A in the pathogenesis of CD. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Chemoenzymatically prepared konjac ceramide inhibits NGF-induced neurite outgrowth by a semaphorin 3A-like action

    Directory of Open Access Journals (Sweden)

    Seigo Usuki

    2016-03-01

    Full Text Available Dietary sphingolipids such as glucosylceramide (GlcCer are potential nutritional factors associated with prevention of metabolic syndrome. Our current understanding is that dietary GlcCer is degraded to ceramide and further metabolized to sphingoid bases in the intestine. However, ceramide is only found in trace amounts in food plants and thus is frequently taken as GlcCer in a health supplement. In the present study, we successfully prepared konjac ceramide (kCer using endoglycoceramidase I (EGCase I. Konjac, a plant tuber, is an enriched source of GlcCer (kGlcCer, and has been commercialized as a dietary supplement to improve dry skin and itching that are caused by a deficiency of epidermal ceramide. Nerve growth factor (NGF produced by skin cells is one of the itch factors in the stratum corneum of the skin. Semaphorin 3A (Sema 3A has been known to inhibit NGF-induced neurite outgrowth of epidermal nerve fibers. It is well known that the itch sensation is regulated by the balance between NGF and Sema 3A. In the present study, while kGlcCer did not show an in vitro inhibitory effect on NGF-induced neurite outgrowth of PC12 cells, kCer was demonstrated to inhibit a remarkable neurite outgrowth. In addition, the effect of kCer was similar to that of Sema 3A in cell morphological changes and neurite retractions, but different from C2-Ceramide. kCer showed a Sema 3A-like action, causing CRMP2 phosphorylation, which results in a collapse of neurite growth cones. Thus, it is expected that kCer is an advanced konjac ceramide material that may have neurite outgrowth-specific action to relieve uncontrolled and serious itching, in particular, from atopic eczema.

  1. Cdc42 and RhoA reveal different spatio-temporal dynamics upon local stimulation with Semaphorin-3A

    Directory of Open Access Journals (Sweden)

    Federico eIseppon

    2015-08-01

    Full Text Available Small RhoGTPases, such as Cdc42 and RhoA, are key players in integrating external cues and intracellular signaling pathways that regulate growth cone (GC motility. Indeed, Cdc42 is involved in actin polymerization and filopodia formation, whereas RhoA induces GC collapse and neurite retraction through actomyosin contraction. In this study we employed Förster Resonance Energy Transfer (FRET microscopy to study the spatio-temporal dynamics of Cdc42 and RhoA in GCs in response to local Semaphorin-3A stimulation obtained with lipid vesicles filled with Semaphorin-3A and positioned near the selected GC using optical tweezers. We found that Cdc42 and RhoA were activated at the leading edge of NG108-15 neuroblastoma cells during spontaneous cycles of protrusion and retraction, respectively. The release of Semaphorin-3A brought to a progressive activation of RhoA within 30 seconds from the stimulus in the central region of the GC that collapsed and retracted. In contrast, the same stimulation evoked waves of Cdc42 activation propagating away from the stimulated region. A more localized stimulation obtained with Sema3A coated beads placed on the GC, led to Cdc42 active waves that propagated in a retrograde manner with a mean period of 70 seconds, and followed by GC retraction. Therefore, Semaphorin-3A activates both Cdc42 and RhoA with a complex and different spatial-temporal dynamics.

  2. Increased urine semaphorin-3A is associated with renal damage in hypertensive patients with chronic kidney disease: a nested case-control study.

    Science.gov (United States)

    Viazzi, Francesca; Ramesh, Ganesan; Jayakumar, Calpurnia; Leoncini, Giovanna; Garneri, Debora; Pontremoli, Roberto

    2015-06-01

    Semaphorins are guidance proteins implicated in several processes such as angiogenesis, organogenesis, cell migration, and cytokine release. Experimental studies showed that semaphorin-3a (SEMA3A) administration induces transient massive proteinuria, podocyte foot process effacement and endothelial cell damage in healthy animals. While SEMA3A signaling has been demonstrated to be mechanistically involved in experimental diabetic glomerulopathy and in acute kidney injury, to date its role in human chronic kidney disease (CKD) has not been investigated. To test the hypothesis that SEMA3A may play a role in human CKD, we performed a cross-sectional, nested, case-control study on 151 matched hypertensive patients with and without CKD. SEMA3A was quantified in the urine (USEMA) by ELISA. Glomerular filtration rate was estimated (eGFR) by the CKD-EPI formula and albuminuria was measured as albumin-to-creatinine ratio (ACR). USEMA levels were positively correlated with urine ACR (p = 0.001) and serum creatinine (p < 0.001). USEMA was higher in patients with both components of renal damage as compared to those with only one and those with normal renal function (p < 0.007 and <0.001, respectively). The presence of increased USEMA levels (i.e. top quartile) entailed a fourfold higher risk of combined renal damage (p < 0.001) and an almost twofold higher risk of macroalbuminuria (p = 0.005) or of reduced eGFR, even adjusting for confounding factors (p = 0.002). USEMA is independently associated with CKD in both diabetic and non diabetic hypertensive patients. Further studies may help clarify the mechanisms underlying this association and possibly the pathogenic changes leading to the development of CKD.

  3. Brain Endothelial Cells Control Fertility through Ovarian-Steroid–Dependent Release of Semaphorin 3A

    Science.gov (United States)

    Messina, Andrea; Casoni, Filippo; Vanacker, Charlotte; Langlet, Fanny; Hobo, Barbara; Cagnoni, Gabriella; Gallet, Sarah; Hanchate, Naresh Kumar; Mazur, Danièle; Taniguchi, Masahiko; Mazzone, Massimiliano; Verhaagen, Joost; Ciofi, Philippe; Bouret, Sébastien G.; Tamagnone, Luca; Prevot, Vincent

    2014-01-01

    Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3a loxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction. PMID:24618750

  4. Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A.

    Science.gov (United States)

    Giacobini, Paolo; Parkash, Jyoti; Campagne, Céline; Messina, Andrea; Casoni, Filippo; Vanacker, Charlotte; Langlet, Fanny; Hobo, Barbara; Cagnoni, Gabriella; Gallet, Sarah; Hanchate, Naresh Kumar; Mazur, Danièle; Taniguchi, Masahiko; Mazzone, Massimiliano; Verhaagen, Joost; Ciofi, Philippe; Bouret, Sébastien G; Tamagnone, Luca; Prevot, Vincent

    2014-03-01

    Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.

  5. Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A.

    Directory of Open Access Journals (Sweden)

    Paolo Giacobini

    2014-03-01

    Full Text Available Neuropilin-1 (Nrp1 guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH, the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.

  6. Semaphorin 3A: A Potential Target for Low Back Pain.

    Science.gov (United States)

    Yin, Pengbin; Lv, Houchen; Zhang, Lihai; Zhang, Licheng; Tang, Peifu

    2015-01-01

    Low back pain is a common disorder. Pathological innervation and intervertebral disc degeneration are two major factors associated with this disease. Semaphorin 3A, originally known for its potent inhibiting effect on axonal outgrowth, is recently found to correlate with disease activity and histological features in some skeletal disorders. Based on its effects on innervation and vascularization, as well as enzyme secretion, we presume that semaphorin 3A may act as a potential target for low back pain.

  7. Semaphorin 3A, A Potential Target for Low Back Pain.

    Directory of Open Access Journals (Sweden)

    Pengbin eYin

    2015-11-01

    Full Text Available Low back pain is a common disorder. Pathological innervation and intervertebral disc degeneration are two major factors associated with this disease. Semaphorin 3A, originally known for its potent inhibiting effect on axonal outgrowth, is recently found to correlate with disease activity and histological features in some skeletal disorders. Based on its effects on innervation and vascularization, as well as enzyme secretion, we presume that semaphorin 3A may act as a potential target for low back pain.

  8. Synapsin III Acts Downstream of Semaphorin 3A/CDK5 Signaling to Regulate Radial Migration and Orientation of Pyramidal Neurons In Vivo

    Directory of Open Access Journals (Sweden)

    Laura E. Perlini

    2015-04-01

    Full Text Available Synapsin III (SynIII is a phosphoprotein that is highly expressed at early stages of neuronal development. Whereas in vitro evidence suggests a role for SynIII in neuronal differentiation, in vivo evidence is lacking. Here, we demonstrate that in vivo downregulation of SynIII expression affects neuronal migration and orientation. By contrast, SynIII overexpression affects neuronal migration, but not orientation. We identify a cyclin-dependent kinase-5 (CDK5 phosphorylation site on SynIII and use phosphomutant rescue experiments to demonstrate its role in SynIII function. Finally, we show that SynIII phosphorylation at the CDK5 site is induced by activation of the semaphorin-3A (Sema3A pathway, which is implicated in migration and orientation of cortical pyramidal neurons (PNs and is known to activate CDK5. Thus, fine-tuning of SynIII expression and phosphorylation by CDK5 activation through Sema3A activity is essential for proper neuronal migration and orientation.

  9. Immobilization of chitosan film containing semaphorin 3A onto a microarc oxidized titanium implant surface via silane reaction to improve MG63 osteogenic differentiation

    Directory of Open Access Journals (Sweden)

    Fang K

    2014-10-01

    Full Text Available Kaixiu Fang,1,* Wen Song,2,* Lifeng Wang,1 Sen Jia,3 Hongbo Wei,1 Shuai Ren,1 Xiaoru Xu,1 Yingliang Song1 1State Key Laboratory of Military Stomatology, Department of Implant Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China; 2State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China; 3State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China *These authors contributed equally to this work Abstract: Improving osseointegration of extensively used titanium (Ti implants still remains a main theme in implantology. Recently, grafting biomolecules onto a Ti surface has attracted more attention due to their direct participation in the osseointegration process around the implant. Semaphorin 3A (Sema3A is a new proven osteoprotection molecule and is considered to be a promising therapeutic agent in bone diseases, but how to immobilize the protein onto a Ti surface to acquire a long-term effect is poorly defined. In our study, we tried to use chitosan to wrap Sema3A (CS/Sema and connect to the microarc oxidized Ti surface via silane glutaraldehyde coupling. The microarc oxidization could formulate porous topography on a Ti surface, and the covalently bonded coating was homogeneously covered on the ridges between the pores without significant influence on the original topography. A burst release of Sema3A was observed in the first few days in phosphate-buffered saline and could be maintained for >2 weeks. Coating in phosphate-buffered saline containing lysozyme was similar, but the release rate was much more rapid. The coating did not significantly affect cellular adhesion, viability, or cytoskeleton arrangement, but the osteogenic-related gene

  10. Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A

    NARCIS (Netherlands)

    Giacobini, Paolo; Parkash, Jyoti; Campagne, Céline; Messina, Andrea; Casoni, Filippo; Vanacker, Charlotte; Langlet, Fanny; Hobo, Barbara; Cagnoni, Gabriella; Gallet, Sarah; Hanchate, Naresh Kumar; Mazur, Danièle; Taniguchi, Masahiko; Mazzone, Massimiliano; Verhaagen, J.; Ciofi, Philippe; Bouret, Sébastien G; Tamagnone, Luca; Prevot, Vincent

    Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle

  11. Potential Role of Semaphorin 3A and Its Receptors in Regulating Aberrant Sympathetic Innervation in Peritoneal and Deep Infiltrating Endometriosis.

    Science.gov (United States)

    Liang, Yanchun; Wang, Wei; Huang, Jiaming; Tan, Hao; Liu, Tianyu; Shang, Chunliang; Liu, Duo; Guo, Luyan; Yao, Shuzhong

    2015-01-01

    Previous studies have demonstrated the involvement of nerve repellent factors in regulation of the imbalanced innervation of endometriosis. This prospective study aims to explore the role of Sema 3A in regulating aberrant sympathetic innervation in peritoneal and deep infiltrating endometriosis. Ectopic endometriotic lesion were collected from patients with peritoneal endometriosis (n = 24) and deep infiltrating endometriosis of uterosacral ligament (n = 20) undergoing surgery for endometriosis. Eutopic endometrial samples were collected from patients with endometriosis (n = 22) or without endometriosis (n = 26). Healthy peritoneum (n = 13) from the lateral pelvic wall and healthy uterosacral ligament (n = 13) were obtained from patients who had no surgical and histological proof of endometriosis during hysterectomy for uterine fibroids. Firstly, we studied the immunostaining of Sema 3A, Plexin A1 and NRP-1 in all the tissues described above. Then we studied the nerve fiber density (NFD) of endometriosis-associated (sympathetic) nerve and para-endometriotic (sympathetic) nerve by double immunofluorescence staining. Finally we analyzed the relationship between expression of Sema 3A in stromal cells of endometriotic lesion and the aberrant innervation of endometriosis. Semi-quantitative immunostaining demonstrated that (1) Higher immunostaining of Sema 3A were found in the eutopic endometrial glandular epithelial cells from patients with endometriosis (p = 0.041) than those without endometriosis; (2) Sema 3A immunostaining was higher in glandular epithelial cells of peritoneal endometriosis (Pendometriosis, while its expression in ectopic stormal cells in both groups were significantly lower than that from eutopic endometrium of women without endometirosis (Pendometriosis-associated sympathetic nerve of peritoneal endometriosis (pendometriosis of uterosacral ligament (pperitoneal and deep infiltrating endometriosis.

  12. Potential Role of Semaphorin 3A and Its Receptors in Regulating Aberrant Sympathetic Innervation in Peritoneal and Deep Infiltrating Endometriosis

    Science.gov (United States)

    Liang, Yanchun; Wang, Wei; Huang, Jiaming; Tan, Hao; Liu, Tianyu; Shang, Chunliang; Liu, Duo; Guo, Luyan; Yao, Shuzhong

    2015-01-01

    Previous studies have demonstrated the involvement of nerve repellent factors in regulation of the imbalanced innervation of endometriosis. This prospective study aims to explore the role of Sema 3A in regulating aberrant sympathetic innervation in peritoneal and deep infiltrating endometriosis. Ectopic endometriotic lesion were collected from patients with peritoneal endometriosis (n = 24) and deep infiltrating endometriosis of uterosacral ligament (n = 20) undergoing surgery for endometriosis. Eutopic endometrial samples were collected from patients with endometriosis (n = 22) or without endometriosis (n = 26). Healthy peritoneum (n = 13) from the lateral pelvic wall and healthy uterosacral ligament (n = 13) were obtained from patients who had no surgical and histological proof of endometriosis during hysterectomy for uterine fibroids. Firstly, we studied the immunostaining of Sema 3A, Plexin A1 and NRP-1 in all the tissues described above. Then we studied the nerve fiber density (NFD) of endometriosis-associated (sympathetic) nerve and para-endometriotic (sympathetic) nerve by double immunofluorescence staining. Finally we analyzed the relationship between expression of Sema 3A in stromal cells of endometriotic lesion and the aberrant innervation of endometriosis. Semi-quantitative immunostaining demonstrated that (1) Higher immunostaining of Sema 3A were found in the eutopic endometrial glandular epithelial cells from patients with endometriosis (p = 0.041) than those without endometriosis; (2) Sema 3A immunostaining was higher in glandular epithelial cells of peritoneal endometriosis (Pendometriosis, while its expression in ectopic stormal cells in both groups were significantly lower than that from eutopic endometrium of women without endometirosis (Pendometriosis-associated sympathetic nerve of peritoneal endometriosis (pendometriosis of uterosacral ligament (pendometriosis. PMID:26720585

  13. Axon guidance in the developing ocular motor system and Duane retraction syndrome depends on Semaphorin signaling via alpha2-chimaerin

    Science.gov (United States)

    Ferrario, Juan E.; Baskaran, Pranetha; Clark, Christopher; Hendry, Aenea; Lerner, Oleg; Hintze, Mark; Allen, James; Chilton, John K.; Guthrie, Sarah

    2012-01-01

    Eye movements depend on correct patterns of connectivity between cranial motor axons and the extraocular muscles. Despite the clinical importance of the ocular motor system, little is known of the molecular mechanisms underlying its development. We have recently shown that mutations in the Chimaerin-1 gene encoding the signaling protein α2-chimaerin (α2-chn) perturb axon guidance in the ocular motor system and lead to the human eye movement disorder, Duane retraction syndrome (DRS). The axon guidance cues that lie upstream of α2-chn are unknown; here we identify candidates to be the Semaphorins (Sema) 3A and 3C, acting via the PlexinA receptors. Sema3A/C are expressed in and around the developing extraocular muscles and cause growth cone collapse of oculomotor neurons in vitro. Furthermore, RNAi knockdown of α2-chn or PlexinAs in oculomotor neurons abrogates Sema3A/C-dependent growth cone collapse. In vivo knockdown of endogenous PlexinAs or α2-chn function results in stereotypical oculomotor axon guidance defects, which are reminiscent of DRS, whereas expression of α2-chn gain-of-function constructs can rescue PlexinA loss of function. These data suggest that α2-chn mediates Sema3–PlexinA repellent signaling. We further show that α2-chn is required for oculomotor neurons to respond to CXCL12 and hepatocyte growth factor (HGF), which are growth promoting and chemoattractant during oculomotor axon guidance. α2-chn is therefore a potential integrator of different types of guidance information to orchestrate ocular motor pathfinding. DRS phenotypes can result from incorrect regulation of this signaling pathway. PMID:22912401

  14. Netrin-1 and semaphorin 3A predict the development of acute kidney injury in liver transplant patients.

    Directory of Open Access Journals (Sweden)

    Lidia Lewandowska

    Full Text Available Acute kidney injury (AKI is a serious complication after liver transplantation. Currently there are no validated biomarkers available for early diagnosis of AKI. The current study was carried out to determine the usefulness of the recently identified biomarkers netrin-1 and semaphorin 3A in predicting AKI in liver transplant patients. A total of 63 patients' samples were collected and analyzed. AKI was detected at 48 hours after liver transplantation using serum creatinine as a marker. In contrast, urine netrin-1 (897.8 ± 112.4 pg/mg creatinine, semaphorin 3A (847.9 ± 93.3 pg/mg creatinine and NGAL (2172.2 ± 378.1 ng/mg creatinine levels were increased significantly and peaked at 2 hours after liver transplantation but were no longer significantly elevated at 6 hours after transplantation. The predictive power of netrin-1, as demonstrated by the area under the receiver-operating characteristic curve for diagnosis of AKI at 2, 6, and 24 hours after liver transplantation was 0.66, 0.57 and 0.59, respectively. The area under the curve for diagnosis of AKI was 0.63 and 0.65 for semaphorin 3A and NGAL at 2 hr respectively. Combined analysis of two or more biomarkers for simultaneous occurrence in urine did not improve the AUC for the prediction of AKI whereas the AUC was improved significantly (0.732 only when at least 1 of the 3 biomarkers in urine was positive for predicting AKI. Adjusting for BMI, all three biomarkers at 2 hours remained independent predictors of AKI with an odds ratio of 1.003 (95% confidence interval: 1.000 to 1.006; P = 0.0364. These studies demonstrate that semaphorin 3A and netrin-1 can be useful early diagnostic biomarkers of AKI after liver transplantation.

  15. Frequent deletion of 3p21.1 region carrying semaphorin 3G and aberrant expression of the genes participating in semaphorin signaling in the epithelioid type of malignant mesothelioma cells.

    Science.gov (United States)

    Yoshikawa, Yoshie; Sato, Ayuko; Tsujimura, Tohru; Morinaga, Tomonori; Fukuoka, Kazuya; Yamada, Shusai; Murakami, Aki; Kondo, Nobuyuki; Matsumoto, Seiji; Okumura, Yoshitomo; Tanaka, Fumihiro; Hasegawa, Seiki; Hashimoto-Tamaoki, Tomoko; Nakano, Takashi

    2011-12-01

    Array-based comparative genomic hybridization analysis was performed on 21 malignant mesothelioma (MM) samples (16 primary cell cultures and 5 cell lines) and two reactive mesothelial hyperplasia (RM) primary cell cultures. The RM samples did not have any genomic losses or gains. In MM samples, deletions in 1p, 3p21, 4q, 9p21, 16p13 and 22q were detected frequently. We focused on 3p21 because this deletion was specific to the epithelioid type. Especially, a deletion in 3p21.1 region carrying seven genes including SEMA3G was found in 52% of MM samples (11 of 14 epithelioid samples). The allele loss of 3p21.1 might be a good marker for the epithelioid MM. A homozygous deletion in this region was detected in two MM primary cell cultures. A heterozygous deletion detected in nine samples contained the 3p21.1 region and 3p21.31 one carrying the candidate tumor suppressor genes such as semaphorin 3F (SEMA3F), SEMA3B and Ras association (RalGDS/AF-6) domain family member 1 (RASSF1A). SEMA3B, 3F and 3G are class 3 semaphorins and inhibit growth by competing with vascular endothelial growth factor (VEGF) through binding to neuropilin. All MM samples downregulated the expression of more than one gene for SEMA3B, 3F and 3G when compared with Met5a, a normal pleura-derived cell line. Moreover, in 12 of 14 epithelioid MM samples the expression level of SEMA3A was lower than that in Met5a and the two RM samples. An augmented expression of VEGFA was detected in half of the MM samples. The expression ratio of VEGFA/SEMA3A was significantly higher in the epithelioid MMs than in Met5a, RMs and the non-epithelioid MMs. Our data suggest that the downregulated expression of SEMA3A and several SEMA3s results in a loss of inhibitory activities in tumor angiogenesis and tumor growth of VEGFA; therefore, it may play an important role on the pathogenesis of the epithelioid type of MM.

  16. Role of Neuropilin-1/Semaphorin-3A signaling in the functional and morphological integrity of the cochlea.

    Directory of Open Access Journals (Sweden)

    Pezhman Salehi

    2017-10-01

    Full Text Available Neuropilin-1 (Nrp1 encodes the transmembrane cellular receptor neuropilin-1, which is associated with cardiovascular and neuronal development and was within the peak SNP interval on chromosome 8 in our prior GWAS study on age-related hearing loss (ARHL in mice. In this study, we generated and characterized an inner ear-specific Nrp1 conditional knockout (CKO mouse line because Nrp1 constitutive knockouts are embryonic lethal. In situ hybridization demonstrated weak Nrp1 mRNA expression late in embryonic cochlear development, but increased expression in early postnatal stages when cochlear hair cell innervation patterns have been shown to mature. At postnatal day 5, Nrp1 CKO mice showed disorganized outer spiral bundles and enlarged microvessels of the stria vascularis (SV but normal spiral ganglion cell (SGN density and presynaptic ribbon body counts; however, we observed enlarged SV microvessels, reduced SGN density, and a reduction of presynaptic ribbons in the outer hair cell region of 4-month-old Nrp1 CKO mice. In addition, we demonstrated elevated hearing thresholds of the 2-month-old and 4-month-old Nrp1 CKO mice at frequencies ranging from 4 to 32kHz when compared to 2-month-old mice. These data suggest that conditional loss of Nrp1 in the inner ear leads to progressive hearing loss in mice. We also demonstrated that mice with a truncated variant of Nrp1 show cochlear axon guidance defects and that exogenous semaphorin-3A, a known neuropilin-1 receptor agonist, repels SGN axons in vitro. These data suggest that Neuropilin-1/Semaphorin-3A signaling may also serve a role in neuronal pathfinding in the developing cochlea. In summary, our results here support a model whereby Neuropilin-1/Semaphorin-3A signaling is critical for the functional and morphological integrity of the cochlea and that Nrp1 may play a role in ARHL.

  17. Peripheral nerve injury fails to induce growth of lesioned ascending dorsal column axons into spinal cord scar tissue expressing the axon repellent Semaphorin3A

    NARCIS (Netherlands)

    Pasterkamp, R Jeroen; Anderson, Patrick N; Verhaagen, J

    We have investigated the hypothesis that the chemorepellent Semaphorin3A may be involved in the failure of axonal regeneration after injury to the ascending dorsal columns of adult rats. Following transection of the thoracic dorsal columns, fibroblasts in the dorsolateral parts of the lesion site

  18. Repulsive guidance cue semaphorin 3A in urine predicts the progression of acute kidney injury in adult patients from a mixed intensive care unit.

    Science.gov (United States)

    Doi, Kent; Noiri, Eisei; Nangaku, Masaomi; Yahagi, Naoki; Jayakumar, Calpurnia; Ramesh, Ganesan

    2014-01-01

    Predicting the development of acute kidney injury (AKI) in the critical care setting is challenging. Although several biomarkers showed somewhat satisfactory performance for detecting established AKI even in a heterogeneous disease-oriented population, identification of new biomarkers that predict the development of AKI accurately is urgently required. A single-center prospective observational cohort study was undertaken to evaluate for the first time the reliability of the newly identified biomarker semaphorin 3A for AKI diagnosis in heterogeneous intensive care unit populations. In addition to five urinary biomarkers of L-type fatty acid-binding protein (L-FABP), neutrophil gelatinase-associated lipocalin (NGAL), IL-18, albumin and N-acetyl-β-d-glucosaminidase (NAG), urinary semaphorin 3A was measured at intensive care unit (ICU) admission. Three hundred thirty-nine critically ill adult patients were recruited for this study. Among them, 131 patients (39%) were diagnosed with AKI by the RIFLE criteria and 66 patients were diagnosed as AKI at post-ICU admission (later-onset AKI). Eighty-four AKI patients showed worsening severity during 1 week observation (AKI progression). Although L-FABP, NGAL and IL-18 showed significantly higher area under the curve (AUC)-receiver operating characteristic (ROC) values than semaphorin 3A in detecting established AKI, semaphorin 3A was able to detect later-onset AKI and AKI progression with similar AUC-ROC values compared with the other five biomarkers [AUC-ROC (95% CI) for established AKI 0.64 (0.56-0.71), later-onset AKI 0.71 (0.64-0.78), AKI progression 0.71 (0.64-0.77)]. Urinary semaphorin 3A was not increased in non-progressive established AKI, while the other biomarkers were elevated regardless of further progression. Finally, sepsis did not have any impact on semaphorin 3A while the other urinary biomarkers were increased with sepsis. Semaphorin 3A is a new biomarker of AKI which may have a distinct predictive use for

  19. Changes in expression of Class 3 Semaphorins and their receptors during development of the rat retina and superior colliculus.

    Science.gov (United States)

    Sharma, Anil; LeVaillant, Chrisna J; Plant, Giles W; Harvey, Alan R

    2014-07-26

    Members of the Semaphorin 3 family (Sema3s) influence the development of the central nervous system, and some are implicated in regulating aspects of visual system development. However, we lack information about the timing of expression of the Sema3s with respect to different developmental epochs in the mammalian visual system. In this time-course study in the rat, we document for the first time changes in the expression of RNAs for the majority of Class 3 Semaphorins (Sema3s) and their receptor components during the development of the rat retina and superior colliculus (SC). During retinal development, transcript levels changed for all of the Sema3s examined, as well as Nrp2, Plxna2, Plxna3, and Plxna4a. In the SC there were also changes in transcript levels for all Sema3s tested, as well as Nrp1, Nrp2, Plxna1, Plxna2, Plxna3, and Plxna4a. These changes correlate with well-established epochs, and our data suggest that the Sema3s could influence retinal ganglion cell (RGC) apoptosis, patterning and connectivity in the maturing retina and SC, and perhaps guidance of RGC and cortical axons in the SC. Functionally we found that SEMA3A, SEMA3C, SEMA3E, and SEMA3F proteins collapsed purified postnatal day 1 RGC growth cones in vitro. Significantly this is a developmental stage when RGCs are growing into and within the SC and are exposed to Sema3 ligands. These new data describing the overall temporal regulation of Sema3 expression in the rat retina and SC provide a platform for further work characterising the functional impact of these proteins on the development and maturation of mammalian visual pathways.

  20. Transient downregulation of Sema3A mRNA in a rat model for temporal lobe epilepsy. A novel molecular event potentially contributing to mossy fiber sprouting

    NARCIS (Netherlands)

    Holtmaat, Anthony J D G; Gorter, Jan A; de Wit, Joris; Tolner, Else A; Spijker, Sabine; Giger, Roman J; Lopes da Silva, Fernando H; Verhaagen, J.

    Mossy fiber sprouting (MFS) in the hippocampal dentate gyrus is thought to play a critical role in the hyperexcitability of the hippocampus in temporal lobe epilepsy patients. The composition of molecular signals that is needed to direct this sprouting response has not yet been elucidated to a great

  1. Differential endothelial transcriptomics identifies semaphorin 3G as a vascular class 3 semaphorin.

    Science.gov (United States)

    Kutschera, Simone; Weber, Holger; Weick, Anja; De Smet, Frederik; Genove, Guillem; Takemoto, Minoru; Prahst, Claudia; Riedel, Maria; Mikelis, Constantinos; Baulande, Sylvain; Champseix, Catherine; Kummerer, Petra; Conseiller, Emmanuel; Multon, Marie-Christine; Heroult, Melanie; Bicknell, Roy; Carmeliet, Peter; Betsholtz, Christer; Augustin, Hellmut G

    2011-01-01

    To characterize the role of a vascular-expressed class 3 semaphorin (semaphorin 3G [Sema3G]). Semaphorins have been identified as axon guidance molecules. Yet, they have more recently also been characterized as attractive and repulsive regulators of angiogenesis. Through a transcriptomic screen, we identified Sema3G as a molecule of angiogenic endothelial cells. Sema3G-deficient mice are viable and exhibit no overt vascular phenotype. Yet, LacZ expression in the Sema3G locus revealed intense arterial vascular staining in the angiogenic vasculature, starting at E9.5, which was detectable throughout adolescence and downregulated in adult vasculature. Sema3G is expressed as a full-length 100-kDa secreted molecule that is processed by furin proteases to yield 95- and a 65-kDa Sema domain-containing subunits. Full-length Sema3G binds to NP2, whereas processed Sema3G binds to NP1 and NP2. Expression profiling and cellular experiments identified autocrine effects of Sema3G on endothelial cells and paracrine effects on smooth muscle cells. Although the mouse knockout phenotype suggests compensatory mechanisms, the experiments identify Sema3G as a primarily endothelial cell-expressed class 3 semaphorin that controls endothelial and smooth muscle cell functions in autocrine and paracrine manners, respectively.

  2. Effects of mechanical repetitive load on bone quality around implants in rat maxillae.

    Directory of Open Access Journals (Sweden)

    Yusuke Uto

    Full Text Available Greater understanding and acceptance of the new concept "bone quality", which was proposed by the National Institutes of Health and is based on bone cells and collagen fibers, are required. The novel protein Semaphorin3A (Sema3A is associated with osteoprotection by regulating bone cells. The aims of this study were to investigate the effects of mechanical loads on Sema3A production and bone quality based on bone cells and collagen fibers around implants in rat maxillae. Grade IV-titanium threaded implants were placed at 4 weeks post-extraction in maxillary first molars. Implants received mechanical loads (10 N, 3 Hz for 1800 cycles, 2 days/week for 5 weeks from 3 weeks post-implant placement to minimize the effects of wound healing processes by implant placement. Bone structures, bone mineral density (BMD, Sema3A production and bone quality based on bone cells and collagen fibers were analyzed using microcomputed tomography, histomorphometry, immunohistomorphometry, polarized light microscopy and birefringence measurement system inside of the first and second thread (designated as thread A and B, respectively, as mechanical stresses are concentrated and differently distributed on the first two threads from the implant neck. Mechanical load significantly increased BMD, but not bone volume around implants. Inside thread B, but not thread A, mechanical load significantly accelerated Sema3A production with increased number of osteoblasts and osteocytes, and enhanced production of both type I and III collagen. Moreover, mechanical load also significantly induced preferential alignment of collagen fibers in the lower flank of thread B. These data demonstrate that mechanical load has different effects on Sema3A production and bone quality based on bone cells and collagen fibers between the inside threads of A and B. Mechanical load-induced Sema3A production may be differentially regulated by the type of bone structure or distinct stress distribution

  3. Reduced Sympathetic Innervation in Endometriosis is Associated to Semaphorin 3C and 3F Expression.

    Science.gov (United States)

    Scheerer, Claudia; Frangini, Sergio; Chiantera, Vito; Mechsner, Sylvia

    2017-09-01

    Endometriosis is a chronic inflammatory disease and one of the most common causes of pelvic pain. The mechanisms underlying pain emergence or chronic inflammation during endometriosis remain unknown. Several chronic inflammatory diseases including endometriosis show reduced amounts of noradrenergic nerve fibers. The source of the affected innervation is still unclear. Semaphorins represent potential elicitors, due to their known role as axonal guidance cues, and are suggested as nerve repellent factors in different chronic inflammatory diseases. Therefore, semaphorins might influence the progress of neuroinflammatory mechanisms during endometriosis. Here, we analyzed the noradrenergic innervation and the expression of the specific semaphorins and receptors possibly involved in the neuroimmunomodulation in endometriosis. Our studies revealed an affected innervation and a significant increase of semaphorins and their receptors in peritoneal endometriotic tissue. Thereby, the expression of the receptors was identified on the membrane of noradrenergic nerve fibers and vessels. Macrophages and activated fibroblasts were found in higher density levels and additionally express semaphorins in peritoneal endometriotic tissue. Inflammation leads to an increased release of immune cells, which secrete a variety of inflammatory factors capable of affecting innervation. Therefore, our data suggests that the chronic inflammatory condition in endometriosis might contribute to the increase of semaphorins, which could possibly affect the innervation in peritoneal endometriosis.

  4. Semaphorin-Plexin Signaling Controls Mitotic Spindle Orientation during Epithelial Morphogenesis and Repair

    DEFF Research Database (Denmark)

    Xia, Jingjing; Swiercz, Jakub M.; Bañón-Rodríguez, Inmaculada

    2015-01-01

    Morphogenesis, homeostasis, and regeneration of epithelial tissues rely on the accurate orientation of cell divisions, which is specified by the mitotic spindle axis. To remain in the epithelial plane, symmetrically dividing epithelial cells align their mitotic spindle axis with the plane. Here, we...... show that this alignment depends on epithelial cell-cell communication via semaphorin-plexin signaling. During kidney morphogenesis and repair, renal tubular epithelial cells lacking the transmembrane receptor Plexin-B2 or its semaphorin ligands fail to correctly orient the mitotic spindle, leading...... to severe defects in epithelial architecture and function. Analyses of a series of transgenic and knockout mice indicate that Plexin-B2 controls the cell division axis by signaling through its GTPase-activating protein (GAP) domain and Cdc42. Our data uncover semaphorin-plexin signaling as a central...

  5. Structural Basis of Semaphorin-Plexin Recognition and Viral Mimicry from Sema7A and A39R Complexes with PlexinC1

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Heli; Juo, Z. Sean; Shim, Ann Hye-Ryong; Focia, Pamela J.; Chen, Xiaoyan; Garcia, K. Christopher; He, Xiaolin (Stanford-MED); (NWU)

    2010-10-18

    Repulsive signaling by Semaphorins and Plexins is crucial for the development and homeostasis of the nervous, immune, and cardiovascular systems. Sema7A acts as both an immune and a neural Semaphorin through PlexinC1, and A39R is a Sema7A mimic secreted by smallpox virus. We report the structures of Sema7A and A39R complexed with the Semaphorin-binding module of PlexinC1. Both structures show two PlexinC1 molecules symmetrically bridged by Semaphorin dimers, in which the Semaphorin and PlexinC1 {beta} propellers interact in an edge-on, orthogonal orientation. Both binding interfaces are dominated by the insertion of the Semaphorin's 4c-4d loop into a deep groove in blade 3 of the PlexinC1 propeller. A39R appears to achieve Sema7A mimicry by preserving key Plexin-binding determinants seen in the mammalian Sema7A complex that have evolved to achieve higher affinity binding to the host-derived PlexinC1. The complex structures support a conserved Semaphorin-Plexin recognition mode and suggest that Plexins are activated by dimerization.

  6. Anatomy of rat semaphorin III/collapsin-1 mRNA expression and relationship to developing nerve tracts during neuroembryogenesis

    NARCIS (Netherlands)

    Giger, Roman J; Wolfer, D P; De Wit, G M; Verhaagen, J

    1996-01-01

    Semaphorin III/collapsin-1 (semaIII/coll-1) is a chemorepellent that exhibits a repulsive effect on growth cones of dorsal root ganglion neurons. To identify structures that express semaIII/coll-1 in developing mammals, we cloned the rat homologue and performed in situ hybridization on embryonic,

  7. Semaphorin 3 C drives epithelial-to-mesenchymal transition, invasiveness, and stem-like characteristics in prostate cells.

    Science.gov (United States)

    Tam, Kevin J; Hui, Daniel H F; Lee, Wilson W; Dong, Mingshu; Tombe, Tabitha; Jiao, Ivy Z F; Khosravi, Shahram; Takeuchi, Ario; Peacock, James W; Ivanova, Larissa; Moskalev, Igor; Gleave, Martin E; Buttyan, Ralph; Cox, Michael E; Ong, Christopher J

    2017-09-13

    Prostate cancer (PCa) is among the most commonly-occurring cancers worldwide and a leader in cancer-related deaths. Local non-invasive PCa is highly treatable but limited treatment options exist for those with locally-advanced and metastatic forms of the disease underscoring the need to identify mechanisms mediating PCa progression. The semaphorins are a large grouping of membrane-associated or secreted signalling proteins whose normal roles reside in embryogenesis and neuronal development. In this context, semaphorins help establish chemotactic gradients and direct cell movement. Various semaphorin family members have been found to be up- and down-regulated in a number of cancers. One family member, Semaphorin 3 C (SEMA3C), has been implicated in prostate, breast, ovarian, gastric, lung, and pancreatic cancer as well as glioblastoma. Given SEMA3C's roles in development and its augmented expression in PCa, we hypothesized that SEMA3C promotes epithelial-to-mesenchymal transition (EMT) and stem-like phenotypes in prostate cells. In the present study we show that ectopic expression of SEMA3C in RWPE-1 promotes the upregulation of EMT and stem markers, heightened sphere-formation, and cell plasticity. In addition, we show that SEMA3C promotes migration and invasion in vitro and cell dissemination in vivo.

  8. A novel podocyte gene, semaphorin 3G, protects glomerular podocyte from lipopolysaccharide-induced inflammation.

    Science.gov (United States)

    Ishibashi, Ryoichi; Takemoto, Minoru; Akimoto, Yoshihiro; Ishikawa, Takahiro; He, Peng; Maezawa, Yoshiro; Sakamoto, Kenichi; Tsurutani, Yuya; Ide, Shintaro; Ide, Kana; Kawamura, Harukiyo; Kobayashi, Kazuki; Tokuyama, Hirotake; Tryggvason, Karl; Betsholtz, Christer; Yokote, Koutaro

    2016-05-16

    Kidney diseases including diabetic nephropathy have become huge medical problems, although its precise mechanisms are still far from understood. In order to increase our knowledge about the patho-physiology of kidney, we have previously identified >300 kidney glomerulus-enriched transcripts through large-scale sequencing and microarray profiling of the mouse glomerular transcriptome. One of the glomerulus-specific transcripts identified was semaphorin 3G (Sema3G) which belongs to the semaphorin family. The aim of this study was to analyze both the in vivo and in vitro functions of Sema3G in the kidney. Sema3G was expressed in glomerular podocytes. Although Sema3G knockout mice did not show obvious glomerular defects, ultrastructural analyses revealed partially aberrant podocyte foot processes structures. When these mice were injected with lipopolysaccharide to induce acute inflammation or streptozotocin to induce diabetes, the lack of Sema3G resulted in increased albuminuria. The lack of Sema3G in podocytes also enhanced the expression of inflammatory cytokines including chemokine ligand 2 and interleukin 6. On the other hand, the presence of Sema3G attenuated their expression through the inhibition of lipopolysaccharide-induced Toll like receptor 4 signaling. Taken together, our results surmise that the Sema3G protein is secreted by podocytes and protects podocytes from inflammatory kidney diseases and diabetic nephropathy.

  9. Varicose and cheerio collaborate with pebble to mediate semaphorin-1a reverse signaling in Drosophila.

    Science.gov (United States)

    Jeong, Sangyun; Yang, Da-Som; Hong, Young Gi; Mitchell, Sarah P; Brown, Matthew P; Kolodkin, Alex L

    2017-09-26

    The transmembrane semaphorin Sema-1a acts as both a ligand and a receptor to regulate axon-axon repulsion during neural development. Pebble (Pbl), a Rho guanine nucleotide exchange factor, mediates Sema-1a reverse signaling through association with the N-terminal region of the Sema-1a intracellular domain (ICD), resulting in cytoskeletal reorganization. Here, we uncover two additional Sema-1a interacting proteins, varicose (Vari) and cheerio (Cher), each with neuronal functions required for motor axon pathfinding. Vari is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins, members of which can serve as scaffolds to organize signaling complexes. Cher is related to actin filament cross-linking proteins that regulate actin cytoskeleton dynamics. The PDZ domain binding motif found in the most C-terminal region of the Sema-1a ICD is necessary for interaction with Vari, but not Cher, indicative of distinct binding modalities. Pbl/Sema-1a-mediated repulsive guidance is potentiated by both vari and cher Genetic analyses further suggest that scaffolding functions of Vari and Cher play an important role in Pbl-mediated Sema-1a reverse signaling. These results define intracellular components critical for signal transduction from the Sema-1a receptor to the cytoskeleton and provide insight into mechanisms underlying semaphorin-induced localized changes in cytoskeletal organization.

  10. The axonal guidance cue semaphorin 3C contributes to alveolar growth and repair.

    Directory of Open Access Journals (Sweden)

    Arul Vadivel

    Full Text Available Lung diseases characterized by alveolar damage such as bronchopulmonary dysplasia (BPD in premature infants and emphysema lack efficient treatments. Understanding the mechanisms contributing to normal and impaired alveolar growth and repair may identify new therapeutic targets for these lung diseases. Axonal guidance cues are molecules that guide the outgrowth of axons. Amongst these axonal guidance cues, members of the Semaphorin family, in particular Semaphorin 3C (Sema3C, contribute to early lung branching morphogenesis. The role of Sema3C during alveolar growth and repair is unknown. We hypothesized that Sema3C promotes alveolar development and repair. In vivo Sema3C knock down using intranasal siRNA during the postnatal stage of alveolar development in rats caused significant air space enlargement reminiscent of BPD. Sema3C knock down was associated with increased TLR3 expression and lung inflammatory cells influx. In a model of O2-induced arrested alveolar growth in newborn rats mimicking BPD, air space enlargement was associated with decreased lung Sema3C mRNA expression. In vitro, Sema3C treatment preserved alveolar epithelial cell viability in hyperoxia and accelerated alveolar epithelial cell wound healing. Sema3C preserved lung microvascular endothelial cell vascular network formation in vitro under hyperoxic conditions. In vivo, Sema3C treatment of hyperoxic rats decreased lung neutrophil influx and preserved alveolar and lung vascular growth. Sema3C also preserved lung plexinA2 and Sema3C expression, alveolar epithelial cell proliferation and decreased lung apoptosis. In conclusion, the axonal guidance cue Sema3C promotes normal alveolar growth and may be worthwhile further investigating as a potential therapeutic target for lung repair.

  11. Semaphorin6A acts as a gate keeper between the central and the peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Sadhu Rejina

    2007-12-01

    Full Text Available Abstract Background During spinal cord development, expression of chicken SEMAPHORIN6A (SEMA6A is almost exclusively found in the boundary caps at the ventral motor axon exit point and at the dorsal root entry site. The boundary cap cells are derived from a population of late migrating neural crest cells. They form a transient structure at the transition zone between the peripheral nervous system (PNS and the central nervous system (CNS. Ablation of the boundary cap resulted in emigration of motoneurons from the ventral spinal cord along the ventral roots. Based on its very restricted expression in boundary cap cells, we tested for a role of Sema6A as a gate keeper between the CNS and the PNS. Results Downregulation of Sema6A in boundary cap cells by in ovo RNA interference resulted in motoneurons streaming out of the spinal cord along the ventral roots, and in the failure of dorsal roots to form and segregate properly. PlexinAs interact with class 6 semaphorins and are expressed by both motoneurons and sensory neurons. Knockdown of PlexinA1 reproduced the phenotype seen after loss of Sema6A function both at the ventral motor exit point and at the dorsal root entry site of the lumbosacral spinal cord. Loss of either PlexinA4 or Sema6D function had an effect only at the dorsal root entry site but not at the ventral motor axon exit point. Conclusion Sema6A acts as a gate keeper between the PNS and the CNS both ventrally and dorsally. It is required for the clustering of boundary cap cells at the PNS/CNS interface and, thus, prevents motoneurons from streaming out of the ventral spinal cord. At the dorsal root entry site it organizes the segregation of dorsal roots.

  12. Semaphorin7A and its receptors: pleiotropic regulators of immune cell function, bone homeostasis, and neural development.

    Science.gov (United States)

    Jongbloets, Bart C; Ramakers, Geert M J; Pasterkamp, R Jeroen

    2013-03-01

    Semaphorins form a large, evolutionary conserved family of cellular guidance signals. The semaphorin family contains several secreted and transmembrane proteins, but only one GPI-anchored member, Semaphorin7A (Sema7A). Although originally identified in immune cells, as CDw108, Sema7A displays widespread expression outside the immune system. It is therefore not surprising that accumulating evidence supports roles for this protein in a wide variety of biological processes in different organ systems and in disease. Well-characterized biological effects of Sema7A include those during bone and immune cell regulation, neuron migration and neurite growth. These effects are mediated by two receptors, plexinC1 and integrins. However, most of what is known today about Sema7A signaling concerns Sema7A-integrin interactions. Here, we review our current knowledge of Sema7A function and signaling in different organ systems, highlighting commonalities between the cellular effects and signaling pathways activated by Sema7A in different cell types. Furthermore, we discuss a potential role for Sema7A in disease and provide directions for further research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Oxycodone Self-Administration Induces Alterations in Expression of Integrin, Semaphorin and Ephrin Genes in the Mouse Striatum

    Directory of Open Access Journals (Sweden)

    Vadim Yuferov

    2018-06-01

    Full Text Available Oxycodone is one a commonly used medication for pain, and is also a widely abused prescription opioid, like other short-acting MOPr agonists. Neurochemical and structural adaptations in brain following chronic MOPr-agonist administration are thought to underlie pathogenesis and persistence of opiate addiction. Many axon guidance molecules, such as integrins, semaphorins, and ephrins may contribute to oxycodone-induced neuroadaptations through alterations in axon-target connections and synaptogenesis, that may be implicated in the behaviors associated with opiate addiction. However, little is known about this important area. The aim of this study is to investigate alterations in expression of selected integrin, semaphorin, ephrins, netrin, and slit genes in the nucleus accumbens (NAc and caudate putamen (CPu of mice following extended 14-day oxycodone self-administration (SA, using RNAseq.Methods: Total RNA from the NAc and CPu were isolated from adult male C57BL/6J mice within 1 h after the last session of oxycodone in a 14-day self-administration paradigm (4h/day, 0.25 mg/kg/infusion, FR1 or from yoked saline controls. Gene expressions were examined using RNA sequencing (RNA-Seq technology. RNA-Seq libraries were prepared using Illumina's TruSeq® Stranded Total RNA LT kit. The reads were aligned to the mouse reference genome (version mm10 using STAR. DESeq2 was applied to the counts of protein coding genes to estimate the fold change between the treatment groups. False Discovery Rate (FDR q < 0.1 were used to select genes that have a significant expression change. For selection of a subset of genes related to axon guidance pathway, REACTOME was used.Results: Among 38 known genes of the integrin, semaphorin, and ephrin gene families, RNA-seq data revealed up-regulation of six genes in the NAc: heterodimer receptor, integrins Itgal, Itgb2, and Itgam, and its ligand semaphorin Sema7a, two semaphorin receptors, plexins Plxnd1 and Plxdc1. There was

  14. The role of semaphorin 4D as a potential biomarker for antiangiogenic therapy in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Ding X

    2016-03-01

    Full Text Available Xiaojie Ding,1,2,* Lijuan Qiu,1,2,* Lijuan Zhang,3 Juemin Xi,1,2 Duo Li,1,2 Xinwei Huang,1,2 Yujiao Zhao,1,2 Xiaodang Wang,1,2 Qiangming Sun1,2 1Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 2Molecular Epidemiology Joint Laboratory, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, 3Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Provincial Tumor Hospital, Kunming, People’s Republic of China*These authors contributed equally to this workBackground: Semaphorin 4D (Sema4D belongs to the class IV semaphorins, and accumulating evidence has indicated that its elevated level may be one strategy by which tumors evade current antiangiogenic therapies. The biological roles of Sema4D in colorectal cancer (CRC, however, remain largely undefined. This study was designed to investigate the effects of Sema4D on tumor angiogenesis and growth in CRC, especially in different vascular endothelial growth factor (VEGF backgrounds.Methods: The expression of Sema4D in human CRC was evaluated by immunohistochemical analysis of tumors and their matching normal control tissues. The expression level of Sema4D and VEGF was investigated in different CRC cell lines. To evaluate the contributions of Sema4D to tumor-induced angiogenesis, two CRC cell lines with opposite VEGF backgrounds were infected with lentiviruses expressing Sema4D or Sema4D short hairpin RNA, followed by in vitro migration and in vivo tumor angiogenic assays.Results: Immunohistochemical analysis of human CRC revealed high levels of Sema4D in a cell surface pattern. In all, 84.85% of CRC samples analyzed exhibited moderate to strong Sema4D expression. The positive ratios of Sema4D staining for well, moderately, and poorly differentiated cancers were 71.43%, 96.67%, and 77.27%, respectively. Sema4D is highly expressed in five different CRC cell lines, while VEGF

  15. Semaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling

    Science.gov (United States)

    ITO, TAKUJI; BAI, TAO; TANAKA, TETSUJI; YOSHIDA, KENJI; UEYAMA, TAKASHI; MIYAJIMA, MASAYASU; NEGISHI, TAKAYUKI; KAWASAKI, TAKAHIKO; TAKAMATSU, HYOTA; KIKUTANI, HITOSHI; KUMANOGOH, ATSUSHI; YUKAWA, KAZUNORI

    2015-01-01

    The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild-type (WT) mice. Administration of β-estradiol to infant Sema4D-deficient (Sema4D−/−) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same β-estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin-B1, was examined as well as the level of apoptosis in the vaginal epithelia of five-week-old WT and Sema4D−/− mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin-B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase-3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five-week-old Sema4D−/− mice compared with WT mice. The addition of recombinant Sema4D to Sema4D−/− vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis-inducing activity of Sema4D. The experimental reduction of

  16. Semaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling.

    Science.gov (United States)

    Ito, Takuji; Bai, Tao; Tanaka, Tetsuji; Yoshida, Kenji; Ueyama, Takashi; Miyajima, Masayasu; Negishi, Takayuki; Kawasaki, Takahiko; Takamatsu, Hyota; Kikutani, Hitoshi; Kumanogoh, Atsushi; Yukawa, Kazunori

    2015-02-01

    The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild‑type (WT) mice. Administration of β‑estradiol to infant Sema4D‑deficient (Sema4D‑/‑) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same β‑estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin‑B1, was examined as well as the level of apoptosis in the vaginal epithelia of five‑week‑old WT and Sema4D‑/‑ mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin‑B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase‑3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five‑week‑old Sema4D‑/‑ mice compared with WT mice. The addition of recombinant Sema4D to Sema4D‑/‑ vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis‑inducing activity of Sema4D. The

  17. Mutation of Semaphorin-6A disrupts limbic and cortical connectivity and models neurodevelopmental psychopathology.

    LENUS (Irish Health Repository)

    2011-01-01

    Psychiatric disorders such as schizophrenia and autism are characterised by cellular disorganisation and dysconnectivity across the brain and can be caused by mutations in genes that control neurodevelopmental processes. To examine how neurodevelopmental defects can affect brain function and behaviour, we have comprehensively investigated the consequences of mutation of one such gene, Semaphorin-6A, on cellular organisation, axonal projection patterns, behaviour and physiology in mice. These analyses reveal a spectrum of widespread but subtle anatomical defects in Sema6A mutants, notably in limbic and cortical cellular organisation, lamination and connectivity. These mutants display concomitant alterations in the electroencephalogram and hyper-exploratory behaviour, which are characteristic of models of psychosis and reversible by the antipsychotic clozapine. They also show altered social interaction and deficits in object recognition and working memory. Mice with mutations in Sema6A or the interacting genes may thus represent a highly informative model for how neurodevelopmental defects can lead to anatomical dysconnectivity, resulting, either directly or through reactive mechanisms, in dysfunction at the level of neuronal networks with associated behavioural phenotypes of relevance to psychiatric disorders. The biological data presented here also make these genes plausible candidates to explain human linkage findings for schizophrenia and autism.

  18. Semaphorin-1a is required for Aedes aegypti embryonic nerve cord development.

    Directory of Open Access Journals (Sweden)

    Morgan Haugen

    Full Text Available Although mosquito genome projects have uncovered orthologues of many known developmental regulatory genes, extremely little is known about mosquito development. In this study, the role of semaphorin-1a (sema1a was investigated during vector mosquito embryonic ventral nerve cord development. Expression of sema1a and the plexin A (plexA receptor are detected in the embryonic ventral nerve cords of Aedes aegypti (dengue vector and Anopheles gambiae (malaria vector, suggesting that Sema1a signaling may regulate mosquito nervous system development. Analysis of sema1a function was investigated through siRNA-mediated knockdown in A. aegypti embryos. Knockdown of sema1a during A. aegypti development results in a number of nerve cord phenotypes, including thinning, breakage, and occasional fusion of the longitudinal connectives, thin or absent commissures, and general distortion of the nerve cord. Although analysis of Drosophila melanogaster sema1a loss-of-function mutants uncovered many similar phenotypes, aspects of the longitudinal phenotypes differed between D. melanogaster and A. aegypti. The results of this investigation suggest that Sema1a is required for development of the insect ventral nerve cord, but that the developmental roles of this guidance molecule have diverged in dipteran insects.

  19. Anti-proliferative effects of gold nanoparticles functionalized with Semaphorin 3F

    Science.gov (United States)

    Tan, Gamze; Onur, Mehmet Ali

    2017-08-01

    The new vessel formations play a vital role in growth and spread of cancer. Current anti-angiogenic therapies, predominantly based on vascular endothelial growth factor (VEGF) inhibition, can inhibit vascular development; however, they are usually ineffective against the primary tumor occurrence. The aim of this study was to assess anti-angiogenic effects of gold nanoparticles (AuNPs) functionalized with Semaphorin (Sema) 3F protein. The polyethylene glycol (PEG)-coated AuNPs were covalently functionalized with Sema 3F and labeled with the TAMRA fluorescent dye. The effect of the NPs on human umbilical vein endothelial cells (HUVECs) is probed in the way of internalization and viability assays. AuNP-Sema 3F bioconjugates showed great endothelial cell uptake. AuNP-Sema 3F bioconjugates reduced VEGF165-induced endothelial cell proliferation more effectively than Sema 3F alone, suggesting that the therapeutic effects of Sema 3F can be improved by conjugation to AuNPs. Also, no significant toxicity effect was induced by bioconjugates. This is the first study that reports a covalent binding of full length Sema 3F to NPs. The exogenously administration of Sema 3F, which has both anti-angiogenic and anti-tumoral activity, to tumor vasculature via a carrying platform may not only lead to more effective anti-angiogenic treatment but also may make current approach more applicable in clinical use like drug delivery system. [Figure not available: see fulltext.

  20. Endothelial Semaphorin 7A promotes inflammation in seawater aspiration-induced acute lung injury.

    Science.gov (United States)

    Zhang, Minlong; Wang, Li; Dong, Mingqing; Li, Zhichao; Jin, Faguang

    2014-10-28

    Inflammation is involved in the pathogenesis of seawater aspiration-induced acute lung injury (ALI). Although several studies have shown that Semaphorin 7A (SEMA7A) promotes inflammation, there are limited reports regarding immunological function of SEMA7A in seawater aspiration-induced ALI. Therefore, we investigated the role of SEMA7A during seawater aspiration-induced ALI. Male Sprague-Dawley rats were underwent seawater instillation. Then, lung samples were collected at an indicated time for analysis. In addition, rat pulmonary microvascular endothelial cells (RPMVECs) were cultured and then stimulated with 25% seawater for indicated time point. After these treatments, cells samples were collected for analysis. In vivo, seawater instillation induced lung histopathologic changes, pro-inflammation cytokines release and increased expression of SEMA7A. In vitro, seawater stimulation led to pro-inflammation cytokine release, cytoskeleton remodeling and increased monolayer permeability in pulmonary microvascular endothelial cells. In addition, knockdown of hypoxia-inducible factor (HIF)-1α inhibited the seawater induced increase expression of SEMA7A. Meanwhile, knockdown of SEMA7A by specific siRNA inhibited the seawater induced aberrant inflammation, endothelial cytoskeleton remodeling and endothelial permeability. These results suggest that SEMA7A is critical in the development of lung inflammation and pulmonary edema in seawater aspiration-induced ALI, and may be a therapeutic target for this disease.

  1. Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells.

    Science.gov (United States)

    Duan, Yuntao; Wang, Shih-Hsiu; Song, Juan; Mironova, Yevgeniya; Ming, Guo-li; Kolodkin, Alex L; Giger, Roman J

    2014-10-14

    Human SEMAPHORIN 5A (SEMA5A) is an autism susceptibility gene; however, its function in brain development is unknown. In this study, we show that mouse Sema5A negatively regulates synaptogenesis in early, developmentally born, hippocampal dentate granule cells (GCs). Sema5A is strongly expressed by GCs and regulates dendritic spine density in a cell-autonomous manner. In the adult mouse brain, newly born Sema5A-/- GCs show an increase in dendritic spine density and increased AMPA-type synaptic responses. Sema5A signals through PlexinA2 co-expressed by GCs, and the PlexinA2-RasGAP activity is necessary to suppress spinogenesis. Like Sema5A-/- mutants, PlexinA2-/- mice show an increase in GC glutamatergic synapses, and we show that Sema5A and PlexinA2 genetically interact with respect to GC spine phenotypes. Sema5A-/- mice display deficits in social interaction, a hallmark of autism-spectrum-disorders. These experiments identify novel intra-dendritic Sema5A/PlexinA2 interactions that inhibit excitatory synapse formation in developmentally born and adult-born GCs, and they provide support for SEMA5A contributions to autism-spectrum-disorders.

  2. Expression of neuroimmune semaphorins 4A and 4D and their receptors in the lung is enhanced by allergen and vascular endothelial growth factor

    Directory of Open Access Journals (Sweden)

    Keegan Achsah D

    2011-05-01

    Full Text Available Abstract Background Semaphorins were originally identified as molecules regulating a functional activity of axons in the nervous system. Sema4A and Sema4D were the first semaphorins found to be expressed on immune cells and were termed "immune semaphorins". It is known that Sema4A and Sema4D bind Tim-2 and CD72 expressed on leukocytes and PlexinD1 and B1 present on non-immune cells. These neuroimmune semaphorins and their receptors have been shown to play critical roles in many physiological and pathological processes including neuronal development, immune response regulation, cancer, autoimmune, cardiovascular, renal, and infectious diseases. However, the expression and regulation of Sema4A, Sema4D, and their receptors in normal and allergic lungs is undefined. Results Allergen treatment and lung-specific vascular endothelial growth factor (VEGF expression induced asthma-like pathologies in the murine lungs. These experimental models of allergic airway inflammation were used for the expression analysis of immune semaphorins and their receptors employing immunohistochemistry and flow cytometry techniques. We found that besides accessory-like cells, Sema4A was also detected on bronchial epithelial and smooth muscle cells, whereas Sema4D expression was high on immune cells such as T and B lymphocytes. Surprisingly, under inflammation various cell types including macrophages, lymphocytes, and granulocytes in the lung expressed Tim-2, a previously defined marker for Th2 cells. CD72 was found on lung immune, inflammatory, and epithelial cells. Bronchial epithelial cells were positive for both plexins, whereas some endothelial cells selectively expressed Plexin D1. Plexin B1 expression was also detected on lung DC. Both allergen and VEGF upregulated the expression of neuroimmune semaphorins and their receptors in the lung tissue. However, the lung tissue Sema4A-Tim2 expression was rather weak, whereas Sema4D-CD72 ligand-receptor pair was vastly

  3. Grb2 mediates semaphorin-4D-dependent RhoA inactivation.

    Science.gov (United States)

    Sun, Tianliang; Krishnan, Rameshkumar; Swiercz, Jakub M

    2012-08-01

    Signaling through the semaphorin 4D (Sema4D) receptor plexin-B1 is modulated by its interaction with tyrosine kinases ErbB-2 and Met. In cells expressing the plexin-B1-ErbB-2 receptor complex, ligand stimulation results in the activation of small GTPase RhoA and stimulation of cellular migration. By contrast, in cells expressing plexin-B1 and Met, ligand stimulation results in an association with the RhoGTPase-activating protein p190 RhoGAP and subsequent RhoA inactivation--a process that involves the tyrosine phosphorylation of plexin-B1 by Met. Inactivation of RhoA is necessary for Sema4D-mediated inhibition of cellular migration. It is, however, unknown how plexin-B1 phosphorylation regulates RhoGAP interaction and activity. Here we show that the activation of plexin-B1 by Sema4D and its subsequent tyrosine phosphorylation by Met creates a docking site for the SH2 domain of growth factor receptor bound-2 (Grb2). Grb2 is thereby recruited into the plexin-B1 receptor complex and, through its SH3 domain, interacts with p190 RhoGAP and mediates RhoA deactivation. Phosphorylation of plexin-B1 by Met and the recruitment of Grb2 have no effect on the R-RasGAP activity of plexin-B1, but are required for Sema4D-induced, RhoA-dependent antimigratory effects of Sema4D on breast cancer cells. These data show Grb2 as a direct link between plexin and p190-RhoGAP-mediated downstream signaling.

  4. Regulation of semaphorin 4D expression and cell proliferation of ovarian cancer by ERalpha and ERbeta

    Directory of Open Access Journals (Sweden)

    Y. Liu

    Full Text Available Ovarian cancer is one of the most common malignancies in women. Semaphorin 4D (sema 4D is involved in the progress of multiple cancers. In the presence of estrogen-like ligands, estrogen receptors (ERα and ERβ participate in the progress of breast and ovarian cancers by transcriptional regulation. The aim of the study was to investigate the role of sema 4D and elucidate the regulatory pattern of ERα and ERβ on sema 4D expression in ovarian cancers. Sema 4D levels were up-regulated in ovarian cancer SKOV-3 cells. Patients with malignant ovarian cancers had significantly higher sema 4D levels than controls, suggesting an oncogene role of sema 4D in ovarian cancer. ERα expressions were up-regulated in SKOV-3 cells compared with normal ovarian IOSE80 epithelial cells. Conversely, down-regulation of ERβ was observed in SKOV-3 cells. Forced over-expression of ERα and ERβ in SKOV-3 cells was manipulated to establish ERα+ and ERβ+ SKOV-3 cell lines. Incubation of ERα+ SKOV-3 cells with ERs agonist 17β-estradiol (E2 significantly enhanced sema 4D expression and rate of cell proliferation. Incubated with E2, ERβ+ SKOV-3 cells showed lower sema 4D expression and cell proliferation. Blocking ERα and ERβ activities with ICI182-780 inhibitor, sema 4D expressions and cell proliferation of ERα+ and ERβ+ SKOV-3 cells were recovered to control levels. Taken together, the data showed that sema 4D expression was positively correlated with the progress of ovarian cancer. ERα positively regulated sema 4D expression and accelerated cell proliferation. ERβ negatively regulated sema 4D expression and inhibited cell multiplication.

  5. Semaphorin 4C Protects against Allergic Inflammation: Requirement of Regulatory CD138+ Plasma Cells.

    Science.gov (United States)

    Xue, Di; Kaufman, Gabriel N; Dembele, Marieme; Beland, Marianne; Massoud, Amir H; Mindt, Barbara C; Fiter, Ryan; Fixman, Elizabeth D; Martin, James G; Friedel, Roland H; Divangahi, Maziar; Fritz, Jörg H; Mazer, Bruce D

    2017-01-01

    The regulatory properties of B cells have been studied in autoimmune diseases; however, their role in allergic diseases is poorly understood. We demonstrate that Semaphorin 4C (Sema4C), an axonal guidance molecule, plays a crucial role in B cell regulatory function. Mice deficient in Sema4C exhibited increased airway inflammation after allergen exposure, with massive eosinophilic lung infiltrates and increased Th2 cytokines. This phenotype was reproduced by mixed bone marrow chimeric mice with Sema4C deficient only in B cells, indicating that B lymphocytes were the key cells affected by the absence of Sema4C expression in allergic inflammation. We determined that Sema4C-deficient CD19 + CD138 + cells exhibited decreased IL-10 and increased IL-4 expression in vivo and in vitro. Adoptive transfer of Sema4c -/- CD19 + CD138 + cells induced marked pulmonary inflammation, eosinophilia, and increased bronchoalveolar lavage fluid IL-4 and IL-5, whereas adoptive transfer of wild-type CD19 + CD138 + IL-10 + cells dramatically decreased allergic airway inflammation in wild-type and Sema4c -/- mice. This study identifies a novel pathway by which Th2-mediated immune responses are regulated. It highlights the importance of plasma cells as regulatory cells in allergic inflammation and suggests that CD138 + B cells contribute to cytokine balance and are important for maintenance of immune homeostasis in allergic airways disease. Furthermore, we demonstrate that Sema4C is critical for optimal regulatory cytokine production in CD138 + B cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. Transcription of a novel mouse semaphorin gene, M-semaH, correlates with the metastatic ability of mouse tumor cell lines

    DEFF Research Database (Denmark)

    Christensen, C R; Klingelhöfer, Jörg; Tarabykina, S

    1998-01-01

    identified a novel member of the semaphorin/collapsin family in the two metastatic cell lines. We have named it M-semaH. Northern hybridization to a panel of tumor cell lines revealed transcripts in 12 of 12 metastatic cell lines but in only 2 of 6 nonmetastatic cells and none in immortalized mouse...

  7. A new impedance based approach to test the activity of recombinant protein--Semaphorins as a test case.

    Science.gov (United States)

    Birger, Anastasya; Besser, Elazar; Reubinoff, Benjamin; Behar, Oded

    2015-10-01

    The biological activity of a recombinant protein is routinely measured using a bioassay such as an enzyme assay. However, many proteins have no enzymatic activity and in many cases it is difficult to devise a simple and reliable approach to test their activity. Semaphorins, Ephrins, Slits, Netrins or amylin-assisted proteins have numerous activities affecting many systems and cell types in the human body. Most of them are also able to induce rapid cytoskeleton changes at least in some cell types. We assumed therefore, that such proteins might be tested based on their ability to modulate the cytoskeleton. Here we tested a number of semaphorins in an impedance based label-free platform that allows for dynamic monitoring of subtle morphological and adhesive changes. This system has proved to be a very fast, sensitive and effective way to monitor and determine the activity of such proteins. Furthermore we showed that it is possible to customize a cell-protein system by transfecting the cells with specific receptors and test the cell response following the addition of the recombinant ligand protein. Since other protein families such as Ephrins and Netrins can also influence the cytoskeleton of some cells, this approach may be applicable to a large number of proteins. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Infantile hemangioma-derived stem cells and endothelial cells are inhibited by class 3 semaphorins

    International Nuclear Information System (INIS)

    Nakayama, Hironao; Huang, Lan; Kelly, Ryan P.; Oudenaarden, Clara R.L.; Dagher, Adelle; Hofmann, Nicole A.; Moses, Marsha A.; Bischoff, Joyce; Klagsbrun, Michael

    2015-01-01

    Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1 + ) endothelial cells (designated as GLUT1 sel cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis. We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH. - Highlights: • SEMA3E&F reduce actin stress fibers and induce cytoskeletal collapse in HemEC. • SEMA3E&F inhibit angiogenic activities of HemEC. • SEMA3E&F can interrupt the VEGF-A-VEGFR2-ERK signaling pathway in HemEC. • Plexin D1 and NRP2 are induced during HemSC/GLUT1 sel -to-EC differentiation

  9. Infantile hemangioma-derived stem cells and endothelial cells are inhibited by class 3 semaphorins

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Hironao [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295 (Japan); Huang, Lan [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Kelly, Ryan P.; Oudenaarden, Clara R.L. [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Dagher, Adelle; Hofmann, Nicole A.; Moses, Marsha A. [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Bischoff, Joyce, E-mail: joyce.bischoff@childrens.harvard.edu [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Klagsbrun, Michael, E-mail: michael.klagsbrun@childrens.harvard.edu [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Pathology, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States)

    2015-08-14

    Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1{sup +}) endothelial cells (designated as GLUT1{sup sel} cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis. We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH. - Highlights: • SEMA3E&F reduce actin stress fibers and induce cytoskeletal collapse in HemEC. • SEMA3E&F inhibit angiogenic activities of HemEC. • SEMA3E&F can interrupt the VEGF-A-VEGFR2-ERK signaling pathway in HemEC. • Plexin D1 and NRP2 are induced during HemSC/GLUT1{sup sel}-to-EC differentiation.

  10. Upregulation of Long Noncoding RNA Small Nucleolar RNA Host Gene 18 Promotes Radioresistance of Glioma by Repressing Semaphorin 5A

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Rong [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong (China); Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian (China); Yao, Qiwei [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong (China); Department of Radiation Oncology, Teaching Hospital of Fujian Medical University, Fujian Provincial Cancer Hospital, Fuzhou, Fujian (China); Ren, Chen; Liu, Ying; Yang, Hongli; Xie, Guozhu; Du, Shasha [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong (China); Yang, Kaijun [Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong (China); Yuan, Yawei, E-mail: yuanyawei2015@outlook.com [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong (China); Department of Radiation Oncology, Cancer Hospital Center of Guangzhou Medical University, Guangzhou, Guangdong (China)

    2016-11-15

    Purpose: Although increasing evidence has shown that long noncoding RNAs play an important regulatory role in carcinogenesis and tumor progression, little is known about the role of small nucleolar RNA host gene 18 (SNHG18) in cancer. The goal of this study was to investigate the expression of SNHG18 and its clinical significance in glioma. Methods and Materials: Differences in the lncRNA expression profile between M059K and M059J cells were assessed by lncRNA expression microarray analysis. The expression and localization of SNHG18 in glioma cells or tissues was evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH), respectively. the clinical associations of SNHG18 in glioma was evaluated by qRT-PCR, ISH and immunohistochemistry. The role of SNHG18 in glioma radiosensitivity was evaluated by colony formation assays, immunofluorescence, Western blot and tumor growth inhibition study. Results: The present study investigated the clinical associations of SNHG18 and its role in glioma. Our results showed that the expression of SNHG18 was remarkably upregulated in clinical glioma tissues compared with normal brain tissues. SNHG18 expression was associated with the clinical tumor grade and correlated negatively with isocitrate dehydrogenase 1 mutation. In addition, knockdown of SNHG18 with short hairpin RNA suppressed the radioresistance of glioma cells, and transgenic expression of SNHG18 had the opposite effect. Furthermore, xenograft tumors grown from cells with SNHG18 deletion were more radiosensitive than tumors grown from control cells. Further studies revealed that SNHG18 promotes radioresistance by inhibiting semaphorin 5A and that inhibition of semaphorin 5A expression abrogated the radiosensitizing effect caused by SNHG18 deletion. Conclusions: Our findings provide new insights into the role of SNHG18 in glioma and suggest its potential as a target for glioma therapy.

  11. Upregulation of Long Noncoding RNA Small Nucleolar RNA Host Gene 18 Promotes Radioresistance of Glioma by Repressing Semaphorin 5A

    International Nuclear Information System (INIS)

    Zheng, Rong; Yao, Qiwei; Ren, Chen; Liu, Ying; Yang, Hongli; Xie, Guozhu; Du, Shasha; Yang, Kaijun; Yuan, Yawei

    2016-01-01

    Purpose: Although increasing evidence has shown that long noncoding RNAs play an important regulatory role in carcinogenesis and tumor progression, little is known about the role of small nucleolar RNA host gene 18 (SNHG18) in cancer. The goal of this study was to investigate the expression of SNHG18 and its clinical significance in glioma. Methods and Materials: Differences in the lncRNA expression profile between M059K and M059J cells were assessed by lncRNA expression microarray analysis. The expression and localization of SNHG18 in glioma cells or tissues was evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH), respectively. the clinical associations of SNHG18 in glioma was evaluated by qRT-PCR, ISH and immunohistochemistry. The role of SNHG18 in glioma radiosensitivity was evaluated by colony formation assays, immunofluorescence, Western blot and tumor growth inhibition study. Results: The present study investigated the clinical associations of SNHG18 and its role in glioma. Our results showed that the expression of SNHG18 was remarkably upregulated in clinical glioma tissues compared with normal brain tissues. SNHG18 expression was associated with the clinical tumor grade and correlated negatively with isocitrate dehydrogenase 1 mutation. In addition, knockdown of SNHG18 with short hairpin RNA suppressed the radioresistance of glioma cells, and transgenic expression of SNHG18 had the opposite effect. Furthermore, xenograft tumors grown from cells with SNHG18 deletion were more radiosensitive than tumors grown from control cells. Further studies revealed that SNHG18 promotes radioresistance by inhibiting semaphorin 5A and that inhibition of semaphorin 5A expression abrogated the radiosensitizing effect caused by SNHG18 deletion. Conclusions: Our findings provide new insights into the role of SNHG18 in glioma and suggest its potential as a target for glioma therapy.

  12. The neurovascular relation in oxygen-induced retinopathy.

    Science.gov (United States)

    Akula, James D; Mocko, Julie A; Benador, Ilan Y; Hansen, Ronald M; Favazza, Tara L; Vyhovsky, Tanya C; Fulton, Anne B

    2008-01-01

    Longitudinal studies in rat models of retinopathy of prematurity (ROP) have demonstrated that abnormalities of retinal vasculature and function change hand-in-hand. In the developing retina, vascular and neural structures are under cooperative molecular control. In this study of rats with oxygen-induced retinopathy (OIR) models of ROP, mRNA expression of vascular endothelial growth factor (VEGF), semaphorin (Sema), and their neuropilin receptor (NRP) were examined during the course of retinopathy to evaluate their roles in the observed neurovascular congruency. Oxygen exposures designed to induce retinopathy were delivered to Sprague-Dawley rat pups (n=36) from postnatal day (P) 0 to P14 or from P7 to P14. Room-air-reared controls (n=18) were also studied. Sensitivities of the rod photoreceptors (S(rod)) and the postreceptor cells (Sm) were derived from electroretinographic (ERG) records. Arteriolar tortuosity, T(A), was derived from digital fundus images using Retinal Image multi-Scale Analysis (RISA) image analysis software. mRNA expression of VEGF(164), semaphorin IIIA (Sema3A), and neuropilin-1 (NRP-1) was evaluated by RT-PCR of retinal extracts. Tests were performed at P15-P16, P18-P19, and P25-P26. Relations among ERG, RISA, and PCR parameters were evaluated using linear regression on log transformed data. Sm was low and T(A) was high at young ages, then both resolved by P25-P26. VEGF(164) and Sema3A mRNA expression were also elevated early and decreased with age. Low Sm was significantly associated with high VEGF(164) and Sema3A expression. Low S(rod) was also significantly associated with high VEGF(164). S(rod) and Sm were both correlated with T(A). NRP-1 expression was little affected by OIR. The postreceptor retina appears to mediate the vascular abnormalities that characterize OIR. Because of the relationships revealed by these data, early treatment that targets the neural retina may mitigate the effects of ROP.

  13. Semaphorin 3G Provides a Repulsive Guidance Cue to Lymphatic Endothelial Cells via Neuropilin-2/PlexinD1.

    Science.gov (United States)

    Liu, Xinyi; Uemura, Akiyoshi; Fukushima, Yoko; Yoshida, Yutaka; Hirashima, Masanori

    2016-11-22

    The vertebrate circulatory system is composed of closely related blood and lymphatic vessels. It has been shown that lymphatic vascular patterning is regulated by blood vessels during development, but its molecular mechanisms have not been fully elucidated. Here, we show that the artery-derived ligand semaphorin 3G (Sema3G) and the endothelial cell receptor PlexinD1 play a role in lymphatic vascular patterning. In mouse embryonic back skin, genetic inactivation of Sema3G or PlexinD1 results in abnormal artery-lymph alignment and reduced lymphatic vascular branching. Conditional ablation in mice demonstrates that PlexinD1 is primarily required in lymphatic endothelial cells (LECs). In vitro analyses show that Sema3G binds to neuropilin-2 (Nrp2), which forms a receptor complex with PlexinD1. Sema3G induces cell collapse in an Nrp2/PlexinD1-dependent manner. Our findings shed light on a molecular mechanism by which LECs are distributed away from arteries and form a branching network during lymphatic vascular development. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. The axon guidance molecule semaphorin 3F is a negative regulator of tumor progression and proliferation in ileal neuroendocrine tumors

    Science.gov (United States)

    Vercherat, Cécile; Blanc, Martine; Lepinasse, Florian; Gadot, Nicolas; Couderc, Christophe; Poncet, Gilles; Walter, Thomas; Joly, Marie-Odile; Hervieu, Valérie; Scoazec, Jean-Yves; Roche, Colette

    2015-01-01

    Gastro-intestinal neuroendocrine tumors (GI-NETs) are rare neoplasms, frequently metastatic, raising difficult clinical and therapeutic challenges due to a poor knowledge of their biology. As neuroendocrine cells express both epithelial and neural cell markers, we studied the possible involvement in GI-NETs of axon guidance molecules, which have been shown to decrease tumor cell proliferation and metastatic dissemination in several tumor types. We focused on the role of Semaphorin 3F (SEMA3F) in ileal NETs, one of the most frequent subtypes of GI-NETs. SEMA3F expression was detected in normal neuroendocrine cells but was lost in most of human primary tumors and all their metastases. SEMA3F loss of expression was associated with promoter gene methylation. After increasing endogenous SEMA3F levels through stable transfection, enteroendocrine cell lines STC-1 and GluTag showed a reduced proliferation rate in vitro. In two different xenograft mouse models, SEMA3F-overexpressing cells exhibited a reduced ability to form tumors and a hampered liver dissemination potential in vivo. This resulted, at least in part, from the inhibition of mTOR and MAPK signaling pathways. This study demonstrates an anti-tumoral role of SEMA3F in ileal NETs. We thus suggest that SEMA3F and/or its cellular signaling pathway could represent a target for ileal NET therapy. PMID:26447612

  15. Disruption of Aedes aegypti olfactory system development through chitosan/siRNA nanoparticle targeting of semaphorin-1a.

    Directory of Open Access Journals (Sweden)

    Keshava Mysore

    Full Text Available Despite the devastating impact of mosquito-borne illnesses on human health, surprisingly little is known about mosquito developmental biology, including development of the olfactory system, a tissue of vector importance. Analysis of mosquito olfactory developmental genetics has been hindered by a lack of means to target specific genes during the development of this sensory system. In this investigation, chitosan/siRNA nanoparticles were used to target semaphorin-1a (sema1a during olfactory system development in the dengue and yellow fever vector mosquito Aedes aegypti. Immunohistochemical analyses and anterograde tracing of antennal sensory neurons, which were used to track the progression of olfactory development in this species, revealed antennal lobe defects in sema1a knockdown fourth instar larvae. These findings, which correlated with a larval odorant tracking behavioral phenotype, identified previously unreported roles for Sema1a in the developing insect larval olfactory system. Analysis of sema1a knockdown pupae also revealed a number of olfactory phenotypes, including olfactory receptor neuron targeting and projection neuron defects coincident with a collapse in the structure and shape of the antennal lobe and individual glomeruli. This study, which is to our knowledge the first functional genetic analysis of insect olfactory development outside of D. melanogaster, identified critical roles for Sema1a during Ae. aegypti larval and pupal olfactory development and advocates the use of chitosan/siRNA nanoparticles as an effective means of targeting genes during post-embryonic Ae. aegypti development. Use of siRNA nanoparticle methodology to understand sensory developmental genetics in mosquitoes will provide insight into the evolutionary conservation and divergence of key developmental genes which could be exploited in the development of both common and species-specific means for intervention.

  16. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II

    Directory of Open Access Journals (Sweden)

    Drescher Uwe

    2010-06-01

    Full Text Available Abstract Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A. It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK and myosin light chain kinase (MLCK, which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.

  17. Semaphorin7A promotes tumor growth and exerts a pro-angiogenic effect in macrophages of mammary tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Ramon eGarcia-Areas

    2014-02-01

    Full Text Available Semaphorins, a large family of molecules involved in the axonal guidance and development of the nervous system, have been recently shown to have both angiogenic and anti-angiogenic properties. Specifically, semaphorin 7A (SEMA7A has been reported to have a chemotactic activity in neurogenesis, and to be an immune modulator via it binding to α1β1integrins. Additionally, SEMA7A has been shown to promote chemotaxis of monocytes, inducing them to produce proinflammatory mediators. In this study we explored the role of SEMA7A in the tumoral context. We show that SEMA7A is highly expressed by DA-3 murine mammary tumor cells in comparison to normal mammary cells (EpH4, and that peritoneal macrophages from mammary tumor-bearing mice also express SEMA7A at higher levels compared to peritoneal macrophages derived from normal control mice. We also show that murine macrophages treated with recombinant murine SEMA7A significantly increased their expression of proangiogenic molecules, such as CXCL2/MIP-2. Gene silencing of SEMA7A in peritoneal elicited macrophages from DA-3 tumor-bearing mice resulted in decreased CXCL2 expression. Mice implanted with SEMA7A silenced tumor cells showed decreased angiogenesis in the tumors compared to the wild type tumors. Furthermore, peritoneal elicited macrophages from mice bearing SEMA7A-silenced tumors produce significantly (p< 0.01 lower levels of angiogenic proteins, such as MIP-2, CXCL1 and MMP-9, compared to macrophages from control DA-3 mammary tumors. We postulate that SEMA7A derived from mammary carcinomas may serve as a monocyte chemoattractant and skew monocytes into a pro-tumorigenic phenotype. A putative relationship between tumor-derived SEMA7A and monocytes could prove valuable in establishing new research avenues towards unraveling important tumor-host immune interactions in breast cancer patients.

  18. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua; Yang, Ying-Hua [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Binmadi, Nada O. [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Oral Basic and Clinical Sciences, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Proia, Patrizia [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Sports Science (DISMOT), University of Palermo, Via Eleonora Duse 2 90146, Palermo (Italy); Basile, John R., E-mail: jbasile@umaryland.edu [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Greenebaum Cancer Center, 22S. Greene Street, Baltimore, MD 21201 (United States)

    2012-08-15

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: Black-Right-Pointing-Pointer Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. Black-Right-Pointing-Pointer Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. Black-Right-Pointing-Pointer These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. Black-Right-Pointing-Pointer Anti-SEMA4D

  19. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Zhou, Hua; Yang, Ying-Hua; Binmadi, Nada O.; Proia, Patrizia; Basile, John R.

    2012-01-01

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: ► Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. ► Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. ► These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. ► Anti-SEMA4D blocking antibody inhibits Plexin-B1 activation. ► SEMA4D is a valid anti-angiogenic target in the

  20. Tax and Semaphorin 4D Released from Lymphocytes Infected with Human Lymphotropic Virus Type 1 and Their Effect on Neurite Growth.

    Science.gov (United States)

    Quintremil, Sebastián; Alberti, Carolina; Rivera, Matías; Medina, Fernando; Puente, Javier; Cartier, Luis; Ramírez, Eugenio; Tanaka, Yuetsu; Valenzuela, M Antonieta

    2016-01-01

    Human lymphotropic virus type 1 (HTLV-1) is a retrovirus causing HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a neurodegenerative central nervous system (CNS) axonopathy. This virus mainly infects CD4(+) T lymphocytes without evidence of neuronal infection. Viral Tax, secreted from infected lymphocytes infiltrated in the CNS, is proposed to alter intracellular pathways related to axonal cytoskeleton dynamics, producing neurological damage. Previous reports showed a higher proteolytic release of soluble Semaphorin 4D (sSEMA-4D) from CD4(+) T cells infected with HTLV-1. Soluble SEMA-4D binds to its receptor Plexin-B1, activating axonal growth collapse pathways in the CNS. In the current study, an increase was found in both SEMA-4D in CD4(+) T cells and sSEMA-4D released to the culture medium of peripheral blood mononuclear cells (PBMCs) from HAM/TSP patients compared to asymptomatic carriers and healthy donors. After a 16-h culture, infected PBMCs showed significantly higher levels of CRMP-2 phosphorylated at Ser(522). The effect was blocked either with anti-Tax or anti-SEMA-4D antibodies. The interaction of Tax and sSEMA-4D was found in secreted medium of PBMCs in patients, which might be associated with a leading role of Tax with the SEMA-4D-Plexin-B1 signaling pathway. In infected PBMCs, the migratory response after transwell assay showed that sSEMA-4D responding cells were CD4(+)Tax(+) T cells with a high CRMP-2 pSer(522) content. In the present study, the participation of Tax-sSEMA-4D in the reduction in neurite growth in PC12 cells produced by MT2 (HTLV-1-infected cell line) culture medium was observed. These results lead to the participation of plexins in the reported effects of infected lymphocytes on neuronal cells.

  1. Semaphorin4D Drives CD8+ T-Cell Lesional Trafficking in Oral Lichen Planus via CXCL9/CXCL10 Upregulations in Oral Keratinocytes.

    Science.gov (United States)

    Ke, Yao; Dang, Erle; Shen, Shengxian; Zhang, Tongmei; Qiao, Hongjiang; Chang, Yuqian; Liu, Qing; Wang, Gang

    2017-11-01

    Chemokine-mediated CD8 + T-cell recruitment is an essential but not well-established event for the persistence of oral lichen planus (OLP). Semaphorin 4D (Sema4D)/CD100 is implicated in immune dysfunction, chemokine modulation, and cell migration, which are critical aspects for OLP progression, but its implication in OLP pathogenesis has not been determined. In this study, we sought to explicate the effect of Sema4D on human oral keratinocytes and its capacity to drive CD8 + T-cell lesional trafficking via chemokine modulation. We found that upregulations of sSema4D in OLP tissues and blood were positively correlated with disease severity and activity. In vitro observation revealed that Sema4D induced C-X-C motif chemokine ligand 9/C-X-C motif chemokine ligand 10 production by binding to plexin-B1 via protein kinase B-NF-κB cascade in human oral keratinocytes, which elicited OLP CD8 + T-cell migration. We also confirmed using clinical samples that elevated C-X-C motif chemokine ligand 9/C-X-C motif chemokine ligand 10 levels were positively correlated with sSema4D levels in OLP lesions and serum. Notably, we determined matrix metalloproteinase-9 as a new proteolytic enzyme for the cleavage of sSema4D from the T-cell surface, which may contribute to the high levels of sSema4D in OLP lesions and serum. Our findings conclusively revealed an amplification feedback loop involving T cells, chemokines, and Sema4D-dependent signal that promotes OLP progression. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. The human cumulus--oocyte complex gene-expression profile

    Science.gov (United States)

    Assou, Said; Anahory, Tal; Pantesco, Véronique; Le Carrour, Tanguy; Pellestor, Franck; Klein, Bernard; Reyftmann, Lionel; Dechaud, Hervé; De Vos, John; Hamamah, Samir

    2006-01-01

    BACKGROUND The understanding of the mechanisms regulating human oocyte maturation is still rudimentary. We have identified transcripts differentially expressed between immature and mature oocytes, and cumulus cells. METHODS Using oligonucleotides microarrays, genome wide gene expression was studied in pooled immature and mature oocytes or cumulus cells from patients who underwent IVF. RESULTS In addition to known genes such as DAZL, BMP15 or GDF9, oocytes upregulated 1514 genes. We show that PTTG3 and AURKC are respectively the securin and the Aurora kinase preferentially expressed during oocyte meiosis. Strikingly, oocytes overexpressed previously unreported growth factors such as TNFSF13/APRIL, FGF9, FGF14, and IL4, and transcription factors including OTX2, SOX15 and SOX30. Conversely, cumulus cells, in addition to known genes such as LHCGR or BMPR2, overexpressed cell-tocell signaling genes including TNFSF11/RANKL, numerous complement components, semaphorins (SEMA3A, SEMA6A, SEMA6D) and CD genes such as CD200. We also identified 52 genes progressively increasing during oocyte maturation, comprising CDC25A and SOCS7. CONCLUSION The identification of genes up and down regulated during oocyte maturation greatly improves our understanding of oocyte biology and will provide new markers that signal viable and competent oocytes. Furthermore, genes found expressed in cumulus cells are potential markers of granulosa cell tumors. PMID:16571642

  3. Ovariectomy and subsequent treatment with estrogen receptor agonists tune the innate immune system of the hippocampus in middle-aged female rats.

    Directory of Open Access Journals (Sweden)

    Miklós Sárvári

    Full Text Available The innate immune system including microglia has a major contribution to maintenance of the physiological functions of the hippocampus by permanent monitoring of the neural milieu and elimination of tissue-damaging threats. The hippocampus is vulnerable to age-related changes ranging from gene expression to network connectivity. The risk of hippocampal deterioration increases with the decline of gonadal hormone supply. To explore the impact of hormone milieu on the function of the innate immune system in middle-aged female rats, we compared mRNA expression in the hippocampus after gonadal hormone withdrawal, with or without subsequent estrogen replacement using estradiol and isotype-selective estrogen receptor (ER agonists. Targeted profiling assessed the status of the innate immune system (macrophage-associated receptors, complement, inhibitory neuronal ligands, local estradiol synthesis (P450 aromatase and estrogen reception (ER. Results established upregulation of macrophage-associated (Cd45, Iba1, Cd68, Cd11b, Cd18, Fcgr1a, Fcgr2b and complement (C3, factor B, properdin genes in response to ovariectomy. Ovariectomy upregulated Cd22 and downregulated semaphorin3A (Sema3a expression, indicating altered neuronal regulation of microglia. Ovariectomy also led to downregulation of aromatase and upregulation of ERα gene. Of note, analogous changes were observed in the hippocampus of postmenopausal women. In ovariectomized rats, estradiol replacement attenuated Iba1, Cd11b, Fcgr1a, C3, increased mannose receptor Mrc1, Cd163 and reversed Sema3a expression. In contrast, reduced expression of aromatase was not reversed by estradiol. While the effects of ERα agonist closely resembled those of estradiol, ERβ agonist was also capable of attenuating the expression of several macrophage-associated and complement genes. These data together indicate that the innate immune system of the aging hippocampus is highly responsive to the gonadal hormone milieu

  4. Toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the peripheral nervous system of developing red seabream (Pagrus major)

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Midori [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan); Kim, Eun-Young [Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Murakami, Yasunori [Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Shima, Yasuhiro [National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Imabari 794-2305 (Japan); Iwata, Hisato, E-mail: iwatah@agr.ehime-u.ac.jp [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan)

    2013-03-15

    We investigated 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced effects on the morphology of peripheral nervous system (PNS) in the developing red seabream (Pagrus major) embryos. The embryos at 10 h post-fertilization (hpf) were treated with 0, 0.1, 0.4 or 1.7 μg/L of TCDD in seawater for 80 min. The morphology of PNS was microscopically observed with florescence staining using an anti-acetylated tubulin antibody at 48, 78, 120 and 136 hpf. Axon length of facial nerve (VII) was found to be shortened by TCDD exposure. Axon guidance in the glossopharyngeal nerve (IX) and vagus nerve (X) was altered at 120 and 136 hpf in a TCDD dose-dependent manner. Lowest observable effect level of TCDD (0.1 μg/L) that induced the morphological alteration of PNS was lower than those of other endpoints on morphological deformities so far reported. Given that the growth cone at the tip of growing nerve axons advances under the influence of its surrounding tissues, we hypothesized that TCDD exposure would affect (1) the nerve cell proliferation/differentiation, (2) the structure of muscle as an axon target and (3) the nerve guidance factor in the embryos. By the immunostaining of embryos with an antibody against the neuronal specific RNA-binding protein, HuD, and an antibody against the sarcomeric myosin, no morphological effects were observed on the neural proliferation/differentiation and the structure of facial muscles of TCDD-treated embryos. In contrast, whole mount in situ hybridization of semaphorin 3A (Sema3A), a secretory axon repulsion factor, revealed the altered expression pattern of its transcripts in TCDD-treated embryos. Our findings suggest that TCDD treatment affects the projection of PNS in the developing red seabream embryos through the effects on the axonal growth cone guidance molecule such as Sema3A, but not on the neuronal differentiation/proliferation and axon target. The PNS in developing embryos may be one of the most sensitive biomarkers to the exposure

  5. Neuropilin 1 Receptor Is Up-Regulated in Dysplastic Epithelium and Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Shahrabi-Farahani, Shokoufeh; Gallottini, Marina; Martins, Fabiana; Li, Erik; Mudge, Dayna R; Nakayama, Hironao; Hida, Kyoko; Panigrahy, Dipak; D'Amore, Patricia A; Bielenberg, Diane R

    2016-04-01

    Neuropilins are receptors for disparate ligands, including proangiogenic factors such as vascular endothelial growth factor and inhibitory class 3 semaphorin (SEMA3) family members. Differentiated cells in skin epithelium and cutaneous squamous cell carcinoma highly express the neuropilin-1 (NRP1) receptor. We examined the expression of NRP1 in human and mouse oral mucosa. NRP1 was significantly up-regulated in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC). NRP1 receptor localized to the outer suprabasal epithelial layers in normal tongue, an expression pattern similar to the normal skin epidermis. However, dysplastic tongue epithelium and OSCC up-regulated NRP1 in basal and proliferating epithelial layers, a profile unseen in cutaneous squamous cell carcinoma. NRP1 up-regulation is observed in a mouse carcinogen-induced OSCC model and in human tongue OSCC biopsies. Human OSCC cell lines express NRP1 protein in vitro and in mouse tongue xenografts. Sites of capillary infiltration into orthotopic OSCC tumors correlate with high NRP1 expression. HSC3 xenografts, which express the highest NRP1 levels of the cell lines examined, showed massive intratumoral lymphangiogenesis. SEMA3A inhibited OSCC cell migration, suggesting that the NRP1 receptor was bioactive in OSCC. In conclusion, NRP1 is regulated in the oral epithelium and is selectively up-regulated during epithelial dysplasia. NRP1 may function as a reservoir to sequester proangiogenic ligands within the neoplastic compartment, thereby recruiting neovessels toward tumor cells. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. miR126-5p down-regulation facilitates axon degeneration and NMJ disruption via a non-cell-autonomous mechanism in ALS.

    Science.gov (United States)

    Maimon, Roy; Ionescu, Ariel; Bonnie, Avichai; Sweetat, Sahar; Wald-Altman, Shane; Inbar, Shani; Gradus, Tal; Trotti, Davide; Weil, Miguel; Behar, Oded; Perlson, Eran

    2018-05-17

    Axon degeneration and disruption of neuromuscular junctions (NMJs) are key events in Amyotrophic Lateral Sclerosis (ALS) pathology. Although the disease's etiology is not fully understood, it is thought to involve a non-cell-autonomous mechanism and alterations in RNA metabolism. Here, we identified reduced levels of miR-126-5p in pre-symptomatic ALS male mice models, and an increase in its targets: axon destabilizing type-3 Semaphorins and their co-receptor Neuropilins. Utilizing compartmentalized in vitro co-cultures, we demonstrated that myocytes expressing diverse ALS-causing mutations promote axon degeneration and NMJ dysfunction, which were inhibited by applying Neuropilin1 (NRP1) blocking antibody. Finally, overexpressing miR126-5p is sufficient to transiently rescue axon degeneration and NMJ disruption both in vitro and in vivo Thus, we demonstrate a novel mechanism underlying ALS pathology, in which alterations in miR126-5p facilitate a non-cell-autonomous mechanism of motor neuron degeneration in ALS. SIGNIFICANCE STATEMENT In spite of some progress, currently no effective treatment is available for ALS. We suggest a novel regulatory role for miR126-5p in ALS and demonstrate for the first time a mechanism by which alterations in miR126-5p contribute to axon degeneration and NMJ disruption observed in ALS. We show that miR126-5p is altered in ALS models and that it can modulate Sema3 and NRP protein expression. Furthermore, NRP1 elevations in motor neurons and muscle secretion of Sema3A contribute to axon degeneration and NMJ disruption in ALS. Finally, overexpressing miR126-5p is sufficient to transiently rescue NMJ disruption and axon degeneration both in vitro and in vivo. Copyright © 2018 Maimon et al.

  7. Protein: MPB4 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB4 Sema3A signaling molecules DPYSL2 CRMP2, ULIP2 DPYSL2 Dihydropyrimidinase-related pr...otein 2 Collapsin response mediator protein 2, N2A3, Unc-33-like phosphoprotein 2 9606 Homo sapiens Q16555 1808 2VM8, 2GSE 1808 Q16555 ...

  8. PREFRE-3A, Kalpakkam

    International Nuclear Information System (INIS)

    Rahaman, K.S.; Ravi, K.V.; Roy, Amitava

    2017-01-01

    PREFRE-3A (P3A) is presently the largest reprocessing plant in India. The purpose of this plant is to recover important elements in the spent fuel as a part of delivering clean energy. Spent fuel from various PHWRs is received at spent fuel storage facility at Kalpakkam where it is stored till the short lived radioactive isotopes decay off and then sent for reprocessing

  9. MATLAB 3A

    DEFF Research Database (Denmark)

    Freil, Ole; Kristiansen, Heidi; Kaas, Thomas

    MATLAB 3a – Matematiklaboratoriet er en elevbog til første halvdel af 3. klasse. Bogen indeholder fire kapitler: 'Store tal og regnemåder', 'Kan du tegne det?', 'Gange og division', 'Undersøg data og chance'.......MATLAB 3a – Matematiklaboratoriet er en elevbog til første halvdel af 3. klasse. Bogen indeholder fire kapitler: 'Store tal og regnemåder', 'Kan du tegne det?', 'Gange og division', 'Undersøg data og chance'....

  10. 18 CFR 3a.2 - Authority.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Authority. 3a.2 Section 3a.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION General § 3a.2 Authority. Official information or...

  11. Role of semaphorins in the adult nervous system

    NARCIS (Netherlands)

    de Wit, Joris; Verhaagen, J.

    2003-01-01

    In the developing nervous system, extending axons are directed towards their appropriate targets by a myriad of attractive and repulsive guidance cues. Work in the past decade has significantly advanced our understanding of these molecules and has made it increasingly clear that their function is

  12. C3a Enhances the Formation of Intestinal Organoids through C3aR1

    Directory of Open Access Journals (Sweden)

    Naoya Matsumoto

    2017-09-01

    Full Text Available C3a is important in the regulation of the immune response as well as in the development of organ inflammation and injury. Furthermore, C3a contributes to liver regeneration but its role in intestinal stem cell function has not been studied. We hypothesized that C3a is important for intestinal repair and regeneration. Intestinal organoid formation, a measure of stem cell capacity, was significantly limited in C3-deficient and C3a receptor (C3aR 1-deficient mice while C3a promoted the growth of organoids from normal mice by supporting Wnt-signaling but not from C3aR1-deficient mice. Similarly, the presence of C3a in media enhanced the expression of the intestinal stem cell marker leucine-rich repeat G-protein-coupled receptor 5 (Lgr5 and of the cell proliferation marker Ki67 in organoids formed from C3-deficient but not from C3aR1-deficient mice. Using Lgr5.egfp mice we showed significant expression of C3 in Lgr5+ intestinal stem cells whereas C3aR1 was expressed on the surface of various intestinal cells. C3 and C3aR1 expression was induced in intestinal crypts in response to ischemia/reperfusion injury. Finally, C3aR1-deficient mice displayed ischemia/reperfusion injury comparable to control mice. These data suggest that C3a through interaction with C3aR1 enhances stem cell expansion and organoid formation and as such may have a role in intestinal regeneration.

  13. P3a from white noise.

    Science.gov (United States)

    Frank, David W; Yee, Ryan B; Polich, John

    2012-08-01

    P3a and P3b event-related brain potentials (ERPs) were elicited with an auditory three-stimulus (target, distracter, and standard) discrimination task in which subjects responded only to the target. Distracter stimuli consisted of white noise or novel sounds with stimulus characteristics perceptually matched. Target/standard discrimination difficulty was manipulated by varying target/standard pitch differences to produce relatively easy, medium, and hard tasks. Error rate and response time increased with increases in task difficulty. P3a was larger for the white noise compared to novel sounds, maximum over the central/parietal recording sites, and did not differ in size across difficulty levels. P3b was unaffected by distracter type, decreased as task difficulty increased, and maximum over the parietal recording sites. The findings indicate that P3a from white noise is robust and should be useful for applied studies as it removes stimulus novelty variability. Theoretical perspectives are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Association of CYP3A4 and CYP3A5 polymorphisms with Iranian ...

    African Journals Online (AJOL)

    Background: Polymorphisms of different gene have been reported to be associated with cancer including breast cancer. Hospitalization rate for breast cancer has increased over the years in Iran. Aim: The aim of this study was to examine whether polymorphisms in the CYP3A4 and. CYP3A5 genes affect the risk of ...

  15. Association of CYP3A4 and CYP3A5 polymorphisms with Iranian ...

    African Journals Online (AJOL)

    Elham Badavi

    2015-04-20

    Apr 20, 2015 ... cancer, CYP3A5 (P-value = 0.561) and CYP3A4 allele distribution. У 2015 The Authors. ... other hand, causes alternative splicing and blocks protein pro- ... Homozygote individuals for A/A genotype present only one peak.

  16. 17 CFR 210.3A-01 - Application of § 210.3A-01 to § 210.3A-05.

    Science.gov (United States)

    2010-04-01

    ... Financial Statements § 210.3A-01 Application of § 210.3A-01 to § 210.3A-05. Sections 210.3A-01 to 210.3A-05 shall govern the presentation of consolidated and combined financial statements. [44 FR 19386, Apr. 3... COMMISSION FORM AND CONTENT OF AND REQUIREMENTS FOR FINANCIAL STATEMENTS, SECURITIES ACT OF 1933, SECURITIES...

  17. Rewiring the taste system.

    Science.gov (United States)

    Lee, Hojoon; Macpherson, Lindsey J; Parada, Camilo A; Zuker, Charles S; Ryba, Nicholas J P

    2017-08-17

    In mammals, taste buds typically contain 50-100 tightly packed taste-receptor cells (TRCs), representing all five basic qualities: sweet, sour, bitter, salty and umami. Notably, mature taste cells have life spans of only 5-20 days and, consequently, are constantly replenished by differentiation of taste stem cells. Given the importance of establishing and maintaining appropriate connectivity between TRCs and their partner ganglion neurons (that is, ensuring that a labelled line from sweet TRCs connects to sweet neurons, bitter TRCs to bitter neurons, sour to sour, and so on), we examined how new connections are specified to retain fidelity of signal transmission. Here we show that bitter and sweet TRCs provide instructive signals to bitter and sweet target neurons via different guidance molecules (SEMA3A and SEMA7A). We demonstrate that targeted expression of SEMA3A or SEMA7A in different classes of TRCs produces peripheral taste systems with miswired sweet or bitter cells. Indeed, we engineered mice with bitter neurons that now responded to sweet tastants, sweet neurons that responded to bitter or sweet neurons responding to sour stimuli. Together, these results uncover the basic logic of the wiring of the taste system at the periphery, and illustrate how a labelled-line sensory circuit preserves signalling integrity despite rapid and stochastic turnover of receptor cells.

  18. Porcine foetal and neonatal CYP3A liver expression

    DEFF Research Database (Denmark)

    Hermann-Bank, Marie Louise; Skaanild, Mette Tingleff

    2011-01-01

    enzyme in the foetal liver, whereas the expression of CYP3A4 is low. After parturition there is a shift in the expression, thus CYP3A7 is down regulated, while the level of CYP3A4 gradually increases and becomes the dominant metabolising CYP3A enzyme in the adult. The minipig is increasingly being used......3A4) in minipigs. This was elucidated by examining the hepatic mRNA expression of CYP3A7 and CYP3A29 in 39 foetuses and newborn Göttingen minipigs using quantitative real time polymerase chain reaction (qPCR). Furthermore the immunochemical level of CYP3A7-LE and CYP3A29 was measured in liver...

  19. Porcine foetal and neonatal CYP3A liver expression

    Directory of Open Access Journals (Sweden)

    Marie Louise Hiort Hermann

    2011-05-01

    Full Text Available Human cytochrome P450 3A7 (CYP3A7 and cytochrome P450 3A4 (CYP3A4 are hepatic metabolising enzymes which participates in the biotransformation of endo- and exogenous substances in foetuses and neonates respectively. These CYP3A enzymes display an inverse relationship: CYP3A7 is the dominant enzyme in the foetal liver, whereas the expression of CYP3A4 is low. After parturition there is a shift in the expression, thus CYP3A7 is down regulated, while the level of CYP3A4 gradually increases and becomes the dominant metabolising CYP3A enzyme in the adult. The minipig is increasingly being used as a model for humans in biomedical studies, because of its many similarities with the human physiology and anatomy. The aim of this study was to examine whether, as in humans, a shift is seen in the hepatic expression of a CYP3A7- like enzyme to cytochrome P450 3A29 (CYP3A29 (an orthologue to the human CYP3A4 in minipigs. This was elucidated by examining the hepatic mRNA expression of CYP3A7 and CYP3A29 in 39 foetuses and newborn Göttingen minipigs using quantitative real time polymerase chain reaction (qPCR. Furthermore the immunochemical level of CYP3A7-LE and CYP3A29 was measured in liver microsomes using western blotting. The expression of CYP3A29 was approximately 9- fold greater in neonates compared to foetuses, and a similar difference was reflected on the immunochemical level. It was not possible to detect a significant level of foetal CYP3A7 mRNA, but immunoblotting showed a visible difference depending on age. This study demonstrates an increase in the expression of CYP3A29, the CYP3A4 orthologue in perinatal minipigs as in humans, which suggests that the minipig could be a good model when testing for human foetal toxicity towards CYP3A4 substrates.

  20. Cytochrome P450 CYP3A in marsupials: cloning and characterisation of the second identified CYP3A subfamily member, isoform 3A78 from koala (Phascolarctos cinereus).

    Science.gov (United States)

    El-Merhibi, Adaweyah; Ngo, Suong N T; Crittenden, Tamara A; Marchant, Ceilidh L; Stupans, Ieva; McKinnon, Ross A

    2011-11-01

    Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of xenobiotics and endogenous substrates. Previously, we cloned and characterised the CYP2C, CYP4A, and CYP4B gene subfamilies from marsupials and demonstrated important species-differences in both activity and tissue expression of these CYP enzymes. Recently, we isolated the Eastern grey kangaroo CYP3A70. Here we have cloned and characterised the second identified member of marsupial CYP3A gene subfamily, CYP3A78 from the koala (Phascolarctos cinereus). In addition, we have examined the gender-differences in microsomal erythromycin N-demethylation activity (a CYP3A marker) and CYP3A protein expression across test marsupial species. Significant differences in hepatic erythromycin N-demethylation activity were observed between male and female koalas, with the activity detected in female koalas being 2.5-fold higher compared to that in male koalas (p<0.01). No gender-differences were observed in tammar wallaby or Eastern grey kangaroo. Immunoblot analysis utilising anti-human CYP3A4 antibody detected immunoreactive proteins in liver microsomes from all test male and female marsupials including the koala, tammar wallaby, and Eastern grey kangaroo, with no gender-differences detected across test marsupials. A 1610 bp koala hepatic CYP3A complete cDNA, designated CYP3A78, was cloned by reverse transcription-polymerase chain reaction approaches. It displays 64% nucleotide and 57% amino acid sequence identity to the Eastern grey kangaroo CYP3A70. The CYP3A78 cDNA encodes a protein of 515 amino acids, shares approximately 68% nucleotide and 56% amino acid sequence identity to human CYP3A4, and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Collectively, this study provides primary molecular data regarding koala hepatic CYP3A78 gene and enables further functional analyses of CYP

  1. CAR/PXR provide directives for Cyp3a41 gene regulation differently from Cyp3a11.

    Science.gov (United States)

    Anakk, S; Kalsotra, A; Kikuta, Y; Huang, W; Zhang, J; Staudinger, J L; Moore, D D; Strobel, H W

    2004-01-01

    This study reports that Cyp3a41 gene contains 13 exons and is localized on the chromosome 5. CYP3A41 is a female-specific isoform that is predominantly expressed in the liver. Estrogen signaling is not responsible for its female specificity. CYP3A41 expression in kidney and brain is observed only in 50% of mice examined. PXR mediates dexamethasone-dependent suppression of CYP3A41. In contrast to CYP3A11, CYP3A41 expression is not induced by pregnenolone-16alpha-carbonitrile (PCN) in wild-type mice, but is significantly suppressed by PCN in PXR(-/-) mice. Phenobarbital and TCPOBOP induce CYP3A11 expression only in the presence of CAR, but have no effect on CYP3A41 expression. Immunoblot and erythromycin demethylase activity analysis reveal robust CYP3A induction after PCN treatment, which is poorly correlated to CYP3A41. These findings suggest a differential role for CAR/PXR in regulating individual CYP3A isoforms by previously characterized CYP3A inducers.

  2. Anaphylatoxin C3a induced mediator release from mast cells

    International Nuclear Information System (INIS)

    Herrscher, R.; Hugli, T.E.; Sullivan, T.J.

    1986-01-01

    The authors investigated the biochemical and functional consequences of the binding of highly purified human C3a to isolated rat serosal mast cells. C3a caused a dose-dependent (1-30 μM), noncytotoxic release of up to 64% (+/- 7 SEM) of the mast cell histamine content. C3a (10μM) increased 45 Ca ++ uptake 8.2- fold (+/- 2.2 SEM) above unstimulated control values within 10 minutes. Arachidonyl-diacylglycerol and arachidonyl-monoacylglycerol levels increased significantly within 2 minutes after C3a (10 μM) stimulation. Turnover of phosphatidylinositol, phosphatidic acid, and phosphatidylcholine were increased within 15 minutes. In contrast to antigen, C3a stimulation (10 μM) was not enhanced by exogenous phosphatidylserine, and was not inhibited by ethanol (100 μmM). C3a suppressed arachidonic acid (AA) release to 38% (+/- 9 SEM) below baseline, and did not cause PGD 2 formation. C3a and the desarginine form of C3a caused identical responses in all experiments. These studies indicate that C3a stimulation activates mast cell preformed mediator release in a manner very similar to antigen-IgE stimulation, but C3a suppresses free AA levels and does not stimulate PGD 2 synthesis

  3. Analysis list: ARID3A [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ARID3A Blood,Liver + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ARID3A.1.tsv http:...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ARID3A.5.tsv http://dbarchive.biosciencedb...c.jp/kyushu-u/hg19/target/ARID3A.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/ARID3A.Blood.tsv,http:...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/ARID3A.Liver.tsv http://db...archive.biosciencedbc.jp/kyushu-u/hg19/colo/Blood.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Liver.gml ...

  4. Novel mutations of CYP3A4 in Chinese.

    Science.gov (United States)

    Hsieh, K P; Lin, Y Y; Cheng, C L; Lai, M L; Lin, M S; Siest, J P; Huang, J D

    2001-03-01

    Human cytochrome P450 3A4 is a major P450 enzyme in the liver and gastrointestinal tract. It plays important roles in the metabolism of a wide variety of drugs, some endogenous steroids, and harmful environmental contaminants. CYP3A4 exhibits a remarkable interindividual activity variation as high as 20-fold. To investigate whether the interindividual variation in CYP3A4 levels can be partly explained by genetic polymorphism, we analyzed DNA samples from 102 Chinese subjects by polymerase chain reaction (PCR)-single-strand conformation polymorphism analysis for novel point mutation in the CYP3A4 coding sequence and promoter region. Using PCR and directed sequencing method to establish the complete intron sequence of CYP3A4 from leukocytes, the complete genomic sequence from exon 1 through 13 of CYP3A4 was determined and published in the GenBank database (accession no. AF209389). CYP3A4-specific primers were designed accordingly. After PCR-single-strand conformation polymorphism and restriction fragment length polymorphism screening, we found three novel mutations; two are point mutations and one is insertion. The first variant allele (CYP3A4*4), an Ile118Val change, was found in 3 of 102 Chinese subjects. The next allele (CYP3A4*5), which causes a Pro218Arg amino acid change, was found in 2 of 102 subjects. We found an insertion in A(17776), designated as CYP3A4*6, which causes frame shift and an early stop codon in exon 9, in one heterozygous subject. We also investigated the CYP3A4 activity in these mutant subjects by measuring the morning spot urinary 6beta-hydroxycortisol to free cortisol ratio with the enzyme-linked immunosorbent assay method. When compared with healthy Chinese population data, the 6beta-hydroxycortisol to free cortisol ratio data suggested that these alleles (CYP3A4*4, CYP3A4*5, and CYP3A4*6) may decrease the CYP3A4 activity. Incidences of these mutations in Chinese subjects are rare. The prevalence of these point mutations in other ethnic

  5. From UBE3A to Angelman syndrome: a substrate perspective

    Directory of Open Access Journals (Sweden)

    Gabrielle L Sell

    2015-09-01

    Full Text Available Angelman syndrome (AS is a debilitating neurodevelopmental disorder that is characterized by motor dysfunction, intellectual disability, speech impairment, seizures and common features of autism spectrum disorders (ASDs. Some of these AS related phenotypes can be seen in other neurodevelopmental disorders (Williams, 2011;Tan et al., 2014. AS patients commonly carry mutations that render the maternally inherited UBE3A gene nonfunctional. Duplication of the chromosomal region containing the UBE3A gene is associated with ASDs. Although the causative role for UBE3A gene mutations in AS is well established, a long-standing challenge in AS research has been to identify neural substrates of UBE3A, an E3 ubiquitin ligase. A prevailing hypothesis is that changes in UBE3A protein levels would alter the levels of a collection of protein substrates, giving rise to the unique phenotypic aspects of AS and possibly UBE3A associated ASDs. Interestingly, proteins altered in AS are linked to additional ASDs that are not previously associated with changes in UBE3A, indicating a possible molecular overlap underlying the broad-spectrum phenotypes of these neurogenetic disorders. This idea raises the possibility that there may exist a one-size-fits-all approach to the treatment of neurogenetic disorders with phenotypes overlapping AS. Furthermore, while a comprehensive list of UBE3A substrates and downstream affected pathways should be developed, this is only part of the story. The timing of when UBE3A protein functions, through either changes in UBE3A or possibly substrate expression patterns, appears to be critical for AS phenotype development. These data call for further investigation of UBE3A substrates and their timing of action relevant to AS phenotypes.

  6. 17 CFR 270.3a-2 - Transient investment companies.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Transient investment companies... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.3a-2 Transient investment companies... which an issuer owns or proposes to acquire investment securities (as defined in section 3(a) of the Act...

  7. 22 CFR 3a.4 - Procedure for requesting approval.

    Science.gov (United States)

    2010-04-01

    ... is also required by law for the applicant's acceptance of civil employment from a foreign government... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Procedure for requesting approval. 3a.4 Section 3a.4 Foreign Relations DEPARTMENT OF STATE GENERAL ACCEPTANCE OF EMPLOYMENT FROM FOREIGN GOVERNMENTS...

  8. 18 CFR 3a.91 - Data index system.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Data index system. 3a..., DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Data Index System § 3a.91 Data index system. A data index system shall be established for Top Secret, Secret, and Confidential information in...

  9. Regeneración axonal posterior a lesiones traumáticas de médula espinal: Papel crítico de galectina-1

    Directory of Open Access Journals (Sweden)

    Héctor R Quintá

    2014-08-01

    Full Text Available Al producirse una lesión de médula espinal (LME, un sinnúmero de proteínas inhibidoras de la regeneración axonal ocupan el sitio de lesión en forma secuencial. La primer proteína en llegar al mismo se conoce como semaforina 3A (Sema3A, siendo además una de las más potentes por su acción de inhibir la regeneración axonal. A nivel mecanístico la unión de esta proteína al complejo-receptor neuronal neuropilin-1 (NRP-1/PlexinA4 evita que se produzca regeneración axonal. En este trabajo de revisión se discutirá la acción de galectin-1 (Gal-1, una proteína endógena de unión a glicanos, que selectivamente se une al complejo-receptor NRP-1/PlexinA4 de las neuronas lesionadas a través de un mecanismo dependiente de interacciones lectina-glicano, interrumpiendo la señalización generada por Sema3A y permitiendo de esta manera la regeneración axonal y recuperación locomotora luego de producirse la LME. Mientras ambas formas de Gal-1 (monomérica y dimérica contribuyen a la inactivación de la microglia, solo la forma dimérica de Gal-1 es capaz de unirse al complejo-receptor NRP-1/PlexinA4 y promover regeneración axonal. Por lo tanto, Gal-1 dimérica produce recuperación de las lesiones espinales interfiriendo en la señalización de Sema3A a través de la unión al complejo-receptor NRP-1/PlexinA4, sugiriendo el uso de esta lectina en su forma dimérica para el tratamiento de pacientes con LME.

  10. Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population.

    Science.gov (United States)

    Fukushima-Uesaka, Hiromi; Saito, Yoshiro; Watanabe, Hidemi; Shiseki, Kisho; Saeki, Mayumi; Nakamura, Takahiro; Kurose, Kouichi; Sai, Kimie; Komamura, Kazuo; Ueno, Kazuyuki; Kamakura, Shiro; Kitakaze, Masafumi; Hanai, Sotaro; Nakajima, Toshiharu; Matsumoto, Kenji; Saito, Hirohisa; Goto, Yu-ichi; Kimura, Hideo; Katoh, Masaaki; Sugai, Kenji; Minami, Narihiro; Shirao, Kuniaki; Tamura, Tomohide; Yamamoto, Noboru; Minami, Hironobu; Ohtsu, Atsushi; Yoshida, Teruhiko; Saijo, Nagahiro; Kitamura, Yutaka; Kamatani, Naoyuki; Ozawa, Shogo; Sawada, Jun-ichi

    2004-01-01

    In order to identify single nucleotide polymorphisms (SNPs) and haplotype frequencies of CYP3A4 in a Japanese population, the distal enhancer and proximal promoter regions, all exons, and the surrounding introns were sequenced from genomic DNA of 416 Japanese subjects. We found 24 SNPs, including 17 novel ones: two in the distal enhancer, four in the proximal promoter, one in the 5'-untranslated region (UTR), seven in the introns, and three in the 3'-UTR. The most common SNP was c.1026+12G>A (IVS10+12G>A), with a 0.249 frequency. Four non-synonymous SNPs, c.554C>G (p.T185S, CYP3A4(*)16), c.830_831insA (p.E277fsX8, (*)6), c.878T>C (p.L293P, (*)18), and c.1088 C>T (p.T363M, (*)11) were found with frequencies of 0.014, 0.001, 0.028, and 0.002, respectively. No SNP was found in the known nuclear transcriptional factor-binding sites in the enhancer and promoter regions. Using these 24 SNPs, 16 haplotypes were unambiguously identified, and nine haplotypes were inferred by aid of an expectation-maximization-based program. In addition, using data from 186 subjects enabled a close linkage to be found between CYP3A4 and CYP3A5 SNPs, especially among the SNPs at c.1026+12 in CYP3A4 and c.219-237 (IVS3-237, a key SNP site for CYP3A5(*)3), c.865+77 (IVS9+77) and c.1523 in CYP3A5. This result suggested that CYP3A4 and CYP3A5 are within the same gene block. Haplotype analysis between CYP3A4 and CYP3A5 revealed several major haplotype combinations in the CYP3A4-CYP3A5 block. Our findings provide fundamental and useful information for genotyping CYP3A4 (and CYP3A5) in the Japanese, and probably Asian populations. Copyright 2003 Wiley-Liss, Inc.

  11. SIN3A mutations are rare in men with azoospermia.

    Science.gov (United States)

    Miyamoto, T; Koh, E; Tsujimura, A; Miyagawa, Y; Minase, G; Ueda, Y; Namiki, M; Sengoku, K

    2015-11-01

    A loss of function of the murine Sin3A gene resulted in male infertility with Sertoli cell-only syndrome (SCOS) phenotype in mice. Here, we investigated the relevance of this gene to human male infertility with azoospermia caused by SCOS. Mutation analysis of SIN3A in the coding region was performed on 80 Japanese patients. However, no variants could be detected. This study suggests a lack of association of SIN3A gene sequence variants with azoospermia caused by SCOS in humans. © 2014 Blackwell Verlag GmbH.

  12. Interactions between CYP3A4 and Dietary Polyphenols

    Directory of Open Access Journals (Sweden)

    Loai Basheer

    2015-01-01

    Full Text Available The human cytochrome P450 enzymes (P450s catalyze oxidative reactions of a broad spectrum of substrates and play a critical role in the metabolism of xenobiotics, such as drugs and dietary compounds. CYP3A4 is known to be the main enzyme involved in the metabolism of drugs and most other xenobiotics. Dietary compounds, of which polyphenolics are the most studied, have been shown to interact with CYP3A4 and alter its expression and activity. Traditionally, the liver was considered the prime site of CYP3A-mediated first-pass metabolic extraction, but in vitro and in vivo studies now suggest that the small intestine can be of equal or even greater importance for the metabolism of polyphenolics and drugs. Recent studies have pointed to the role of gut microbiota in the metabolic fate of polyphenolics in human, suggesting their involvement in the complex interactions between dietary polyphenols and CYP3A4. Last but not least, all the above suggests that coadministration of drugs and foods that are rich in polyphenols is expected to stimulate undesirable clinical consequences. This review focuses on interactions between dietary polyphenols and CYP3A4 as they relate to structural considerations, food-drug interactions, and potential negative consequences of interactions between CYP3A4 and polyphenols.

  13. Selective role for DNMT3a in learning and memory.

    Science.gov (United States)

    Morris, Michael J; Adachi, Megumi; Na, Elisa S; Monteggia, Lisa M

    2014-11-01

    Methylation of cytosine nucleotides is governed by DNA methyltransferases (DNMTs) that establish de novo DNA methylation patterns in early embryonic development (e.g., DNMT3a and DNMT3b) or maintain those patterns on hemimethylated DNA in dividing cells (e.g., DNMT1). DNMTs continue to be expressed at high levels in mature neurons, however their impact on neuronal function and behavior are unclear. To address this issue we examined DNMT1 and DNMT3a expression following associative learning. We also generated forebrain specific conditional Dnmt1 or Dnmt3a knockout mice and characterized them in learning and memory paradigms as well as for alterations in long-term potentiation (LTP) and synaptic plasticity. Here, we report that experience in an associative learning task impacts expression of Dnmt3a, but not Dnmt1, in brain areas that mediate learning of this task. We also found that Dnmt3a knockout mice, and not Dnmt1 knockouts have synaptic alterations as well as learning deficits on several associative and episodic memory tasks. These findings indicate that the de novo DNA methylating enzyme DNMT3a in postmitotic neurons is necessary for normal memory formation and its function cannot be substituted by the maintenance DNA methylating enzyme DNMT1. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Influence of Lithium Carbonate on C3A Hydration

    Directory of Open Access Journals (Sweden)

    Weiwei Han

    2018-01-01

    Full Text Available Lithium salts, known to ameliorate the effects of alkali-silica reaction, can make significant effects on cement setting. However, the mechanism of effects on cement hydration, especially the hydration of C3A which is critical for initial setting time of cement, is rarely reported. In this study, the development of pH value of pore solution, conductivity, thermodynamics, and mineralogical composition during hydration of C3A with or without Li2CO3 are investigated. The results demonstrate that Li2CO3 promotes C3A hydration through high alkalinity, due to higher activity of lithium ion than that of calcium ion in the solution and carbonation of C3A hydration products resulted from Li2CO3. Li2CO3 favors the C3A hydration in C3A-CaSO4·2H2O-Ca(OH2-H2O hydration system and affects the mineralogical variation of the ettringite phase(s.

  15. Nutlin-3a decreases male fertility via UQCRC2.

    Directory of Open Access Journals (Sweden)

    Kamla Kant Shukla

    Full Text Available Ubiquinol-cytochrome-c reductase core protein 2 (UQCRC2 is a component of ubiquinol-cytochrome c reductase complex that is known to correlate with male fertility via spermatogenesis. Simultaneously, nutlin-3a is a small molecule antagonist of mouse double minute 2 repressor (MDM2, activate p53 and induce apoptosis responsible for spermatogenesis. To date, however there are no known effects of nutlin-3a on reproduction. Therefore, present study was designed to investigate the effect of nutlin-3a on male fertility via UQCRC2. In this in vitro trial with mice spermatozoa, we utilized CASA, CTC staining, ATP assay, western blotting, and IVF to measure the main study outcome. The short-term exposure of spermatozoa in nutlin-3a decreases sperm motion kinematics, intracellular ATP production, capacitation, the acrosome reaction, UQCRC2, and tyrosine phosphorylation (TYP of sperm proteins in a dose-dependent manner. Notably, the decreased UQCRC2 and TYP were associated with reduced sperm kinematics, ATP production, and capacitation, which ultimately led to adverse effects on male fertility such as poor fertilization rates and embryo development. Thus, nutlin-3a may be considered as a potential male contraceptive agent due to its ability to decrease fertility secondary to changes in overall sperm physiology and embryonic development. However, the results of this preliminary study have to be confirmed by additional independent trial.

  16. Peptides Interfering 3A Protein Dimerization Decrease FMDV Multiplication.

    Directory of Open Access Journals (Sweden)

    Mónica González-Magaldi

    Full Text Available Nonstructural protein 3A is involved in relevant functions in foot-and-mouth disease virus (FMDV replication. FMDV 3A can form homodimers and preservation of the two hydrophobic α-helices (α1 and α2 that stabilize the dimer interface is essential for virus replication. In this work, small peptides mimicking residues involved in the dimer interface were used to interfere with dimerization and thus gain insight on its biological function. The dimer interface peptides α1, α2 and that spanning the two hydrophobic α-helices, α12, impaired in vitro dimer formation of a peptide containing the two α-helices, this effect being higher with peptide α12. To assess the effect of dimer inhibition in cultured cells, the interfering peptides were N-terminally fused to a heptaarginine (R7 sequence to favor their intracellular translocation. Thus, when fused to R7, interference peptides (100 μM were able to inhibit dimerization of transiently expressed 3A, the higher inhibitions being found with peptides α1 and α12. The 3A dimerization impairment exerted by the peptides correlated with significant, specific reductions in the viral yield recovered from peptide-treated FMDV infected cells. In this case, α2 was the only peptide producing significant reductions at concentrations lower than 100 μM. Thus, dimer interface peptides constitute a tool to understand the structure-function relationship of this viral protein and point to 3A dimerization as a potential antiviral target.

  17. DNA methylation and gene expression of HIF3A

    DEFF Research Database (Denmark)

    Main, Ailsa Maria; Gillberg, Linn; Jacobsen, Anna Louisa

    2016-01-01

    from 48 families, from whom we had SAT and muscle biopsies. DNA methylation of four CpG sites in the HIF3A promoter was analyzed in the blood and SAT by pyrosequencing, and HIF3A gene expression was analyzed in SAT and muscle by qPCR. An index of whole-body insulin sensitivity was estimated from oral...... individuals, and whether HIF3A gene expression in SAT and skeletal muscle biopsies showed associations with BMI and insulin resistance. Furthermore, we aimed to investigate gender specificity and heritability of these traits. METHODS: We studied 137 first-degree relatives of type 2 diabetes (T2D) patients...... glucose tolerance tests. RESULTS: BMI was associated with HIF3A methylation at one CpG site in the blood, and there was a positive association between the blood and SAT methylation levels at a different CpG site within the individuals. The SAT methylation level did not correlate with HIF3A gene expression...

  18. Application of probabilistic approach to UP3-A reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, J P; Bonneval, F; Weber, M [Institut de Protection et de Surete Nucleaire, Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires, Fontenay-aux-Roses (France)

    1992-02-01

    In the UP3-A design studies, three complementary approaches were used: - observance of regulations, and good practice; - review of experience feedback; - the correlation of probabilities and consequences making use of an acceptability graph. The latter approach was considered by the safety authorities to be an acceptable practice where the probability calculations were sufficiently accurate. Examples of its application are presented. (author)

  19. Safety assessment of UP3-A reprocessing plant

    International Nuclear Information System (INIS)

    Mercier, J.P.; Guezenec, J.Y.; Poirier, M.C.

    1992-02-01

    This presentation describes how the safety assessment was made of UP3-A plant of the La Hague establishment for the building permit and operating license within the context of French nuclear regulations and the national debate on the need for reprocessing. Other factors discussed are how the public was involved, how the regulations were improved in the process and what the different stages of commissioning consisted of. (author)

  20. CYP1A1, CYP3A5 and CYP3A7 polymorphisms and testicular cancer susceptibility.

    Science.gov (United States)

    Kristiansen, W; Haugen, T B; Witczak, O; Andersen, J M; Fosså, S D; Aschim, E L

    2011-02-01

    Testicular cancer (TC) incidence is increasing worldwide, but the aetiology remains largely unknown. An unbalanced level of oestrogens and androgens in utero is hypothesized to influence TC risk. Polymorphisms in genes encoding cytochrome P450 (CYP) enzymes involved in metabolism of reproductive hormones, such as CYP1A1, CYP3A5 and CYP3A7, may contribute to variability of an individual's susceptibility to TC. The aim of this case-control study was to investigate possible associations between different CYP genotypes and TC, as well as histological type of TC. The study comprised 652 TC cases and 199 controls of Norwegian Caucasian origin. Genotyping of the CYP1A1*2A (MspI), CYP1A1*2C (I462V), CYP1A1*4 (T461N), CYP3A5*3C (A6986G) and CYP3A7*2 (T409R) polymorphisms was performed using TaqMan allelic discrimination or sequencing. The CYP1A1*2A allele was associated with 44% reduced risk of TC with each polymorphic allele [odds ratio (OR) = 0.56, 95% confidence interval (CI) = 0.40-0.78, p(trend) = 0.001], whereas the CYP1A1*2C allele was associated with 56% reduced risk of TC with each polymorphic allele (OR = 0.44, 95% CI = 0.25-0.75, p(trend) = 0.003). The decreased risk per allele was significant for seminomas (OR = 0.46, 95% CI, 0.31-0.70, p(trend) < 0.001 and OR = 0.31, 95% CI = 0.14-0.66, p(trend) = 0.002, respectively), but only borderline significant for non-seminomas (OR = 0.65, 95% CI = 0.45-0.95, p(trend) = 0.027 and OR = 0.55, 95% CI = 0.30-1.01, p(trend) = 0.052, respectively). There were no statistically significant differences in the distribution of the CYP3A5*3C and CYP3A7*2 polymorphic alleles between TC cases and controls. This study suggests that polymorphisms in the CYP1A1 gene may contribute to variability of individual susceptibility to TC. © 2010 The Authors. International Journal of Andrology © 2010 European Academy of Andrology.

  1. Semaphorin 4A enhances lung fibrosis through activation of Akt via ...

    Indian Academy of Sciences (India)

    2015-11-28

    Nov 28, 2015 ... In the present study, we show that treatment of Sema4A on normal lung fibroblasts ... of patients with the fibrotic disease Systemic Sclerosis (SSc) showed ... modulated at multiple levels: transcription, translation, and post-.

  2. The Role of Semaphorin 3B (SEMA3B) in the Pathogenesis of Breast Cancer

    Science.gov (United States)

    2006-04-01

    apoptotic and anti-proliferative effect on cancer lines it is in part by the inhibition of Akt pathway. In conclusion, we hypothesize that VEGF165...autocrine activity and by inhibiting the Akt pathway. 15. SUBJECT TERMS tumor suppressor gene, breast cancer and apoptosis 16. SECURITY...TGFβ TGFR2 Smad4 M D A M B A 54 9 H 12 99 H el a H 46 0 M C F7 ZR -7 5 H 15 7 2 31 GAPDH TGFR1 B. C 2H 24H 48H 72H SEMA3B SEMA3B

  3. Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells

    OpenAIRE

    Duan, Yuntao; Wang, Shih-Hsiu; Song, Juan; Mironova, Yevgeniya; Ming, Guo-li; Kolodkin, Alex L; Giger, Roman J

    2014-01-01

    eLife digest Neurons communicate with one another at specialized junctions called synapses. There are two types of synapses, called excitatory synapses and inhibitory synapses, and the density and strength of both are tightly regulated because small deviations from the normal density and/or strength may lead to illness. For example, an excess of excitatory synapses has been observed in patients who have autism spectrum disorders and exhibit difficulties in social interaction. The gene that co...

  4. Semaphorin SEMA3F and VEGF Have Opposing Effects on Cell Attachment and Spreading

    Directory of Open Access Journals (Sweden)

    Patrick Nasarre

    2003-01-01

    Full Text Available SEMA3F, isolated from a 3p21.3 deletion, has antitumor activity in transfected cells, and protein expression correlates with tumor stage and histology. In primary tumors, SEMA3F and VEGF surface staining is inversely correlated. Coupled with SEMA3F at the leading edge of motile cells, we previously suggested that both proteins competitively regulate cell motility and adhesion. We have investigated this using the breast cancer cell line, MCF7. SEMA3F inhibited cell attachment and spreading as evidenced by loss of lamellipodia extensions, membrane ruffling, and cell-cell contacts, with cells eventually rounding-up and detaching. In contrast, VEGF had opposite effects. Although SEMA3F binds NRP2 with 10-fold greater affinity than NRP1, the effects in MCF7 were mediated by NRP1. This was determined by receptor expression and blocking of anti-NRP1 antibodies. Similar effects, but through NRP2, were observed in the C100 breast cancer cell line. Although we were unable to demonstrate changes in total GTPbound Rac1 or RhoA, we did observe changes in the localization of Rac1-GFP using time lapse microscopy. Following SEMA3F, Rac1 moved to the base of lamellipodia and — with their collapse — to the membrane. These results support the concept that SEMA3F and VEGF have antagonistic actions affecting motility in primary tumor cell.

  5. Regulation of semaphorin III/collapsin-1 gene expression during peripheral nerve regeneration

    NARCIS (Netherlands)

    Pasterkamp, R Jeroen; Giger, Roman J; Verhaagen, J

    1998-01-01

    The competence of neurons to regenerate depends on their ability to initiate a program of gene expression supporting growth and on the growth-permissive properties of glial cells in the distal stump of the injured nerve. Most studies on intrinsic molecular mechanisms governing peripheral nerve

  6. Robust hepatitis C genotype 3a cell culture releasing adapted intergenotypic 3a/2a (S52/JFH1) viruses

    DEFF Research Database (Denmark)

    Gottwein, J.M.; Scheel, Troels Kasper Høyer; Hoegh, A.M.

    2007-01-01

    BACKGROUND & AIMS: Recently, full viral life cycle hepatitis C virus (HCV) cell culture systems were developed for strain JFH1 (genotype 2a) and an intragenotypic 2a/2a genome (J6/JFH). We aimed at exploiting the unique JFH1 replication characteristics to develop culture systems for genotype 3a......, which has a high prevalence worldwide. METHODS: Huh7.5 cells were transfected with RNA transcripts of an intergenotypic 3a/JFH1 recombinant with core, E1, E2, p7, and NS2 of the 3a reference strain S52, and released viruses were passaged. Cultures were examined for HCV core and/or NS5A expression...... (immunostaining), HCV RNA titers (real-time PCR), and infectivity titers (50% tissue culture infectious dose). The role of mutations identified by sequencing of recovered S52/JFH1 viruses was analyzed by reverse genetics studies. RESULTS: S52/JFH1 and J6/JFH viruses passaged in Huh7.5 cells showed comparable...

  7. Pulsed Accretion in the T Tauri Binary TWA 3A

    Energy Technology Data Exchange (ETDEWEB)

    Tofflemire, Benjamin M.; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706 (United States); Herczeg, Gregory J. [The Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Akeson, Rachel L.; Ciardi, David R. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States)

    2017-06-20

    TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3A’s time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (∼20 observations per orbit) for ∼15 orbital periods. From U -band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolve over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ∼4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3A’s average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.

  8. Epilepsia en menores de 3 años

    Directory of Open Access Journals (Sweden)

    Nadia Gutiérrez

    1996-08-01

    Full Text Available Se estudiaron 96 pacientes menores de 3 años, ingresados en el Servicio de Neurología Pediátrica de nuestro Centro, con diagnóstico de epilepsia, con el objetivo de evaluar la aplicación de la clasificación de los ataques, la de Epilepsia y Síndromes Epilépticos aceptados actualmente por la Liga Internacional Contra la Epilepsia (ILAE. En ellos se observó con mayor frecuencia la presentación de ataques parciales (58,3 %, seguido de los generalizados (36,5 % e indeterminados (5 %; no se presentaron diferencias significativas respecto a la distribución de éstos entre menores de 1 año y los comprendidos en edades entre 1 y 3 años. En 28 pacientes se encontraron dificultades para clasificarlos acorde con la de Epilepsia y Síndromes Epilépticos, y se analizaron su distribución y características. Se comentan brevemente los resultados del electroencefalograma (EEG en relación con la actividad paroxística y se presentan los síndromes más frecuentemente observados.96 patients under 3 years old admitted at the Pediatric Neurologic Department of our Center with an epilepsy diagnosis were studied to evaluate the application of the seizure classification into Epilepsy and Epileptic Syndromes, accepted at present by the International League Against Epilepsy (ILAE. Partial seizures (58,3 % were more frequent among them, followed by generalized seizures (36,5 % and undetermined seizures (5 %. No significant differences were found in connection with their distribution among children under one year old and those between 1 and 3 years old. Difficulties were observed to classify 28 patients according to Epilepsy and Epileptic Syndromes, where as their distribution and characteristics were analyzed. EEG results in relation to the paroxyntic activity are briefly commented and the most observed syndromes are presented.

  9. Does area V3A predict positions of moving objects?

    Directory of Open Access Journals (Sweden)

    Gerrit W Maus

    2010-11-01

    Full Text Available A gradually fading moving object is perceived to disappear at positions beyond its luminance detection threshold, whereas abrupt offsets are usually localised accurately. What role does retinotopic activity in visual cortex play in this motion-induced mislocalization of the endpoint of fading objects? Using functional magnetic resonance imaging (fMRI, we localised regions of interest (ROIs in retinotopic maps abutting the trajectory endpoint of a bar moving either towards or away from this position while gradually decreasing or increasing in luminance. Area V3A showed predictive activity, with stronger fMRI responses for motion towards versus away from the ROI. This effect was independent of the change in luminance. In Area V1 we found higher activity for high-contrast onsets and offsets near the ROI, but no significant differences between motion directions. We suggest that perceived final positions of moving objects are based on an interplay of predictive position representations in higher motion-sensitive retinotopic areas and offset transients in primary visual cortex.

  10. Technical structure of Complaint Poetry Until 3 A.H

    Directory of Open Access Journals (Sweden)

    2010-12-01

    Full Text Available Technical structure of Complaint Poetry Until 3 A.H       * Gholam Abbas Rezai   * * Sherafat Karimi     Abstract   Complaint refers to the poetic works in which the poet talks about the Vehemence of his/her painful feeling. It is the description of pains, personal and social problems and in a way is confiding whatever has annoyed his/her soul and body. Complaint can be categorized into social and personal ones. The personal complaints composed at the time of Islam were generally complaining about the Time, death, aging and separation from the beloved. This was due to the poets' shallow viewpoint on life and their nihilistic inclinations. These subjects were still present in first three centuries and were added by new subjects such as complaining about sensual desires.   The general characteristic, style, structure and elements of meaning were simplicity in word and meaning , sincere and ample feeling, using many words with denotative meanings, utilizing maxims, proverbs and wise sayings, rhetorical statements, rich cadence (musical tones, as well as uniformity and simple imagination. Complaint is an independent poetic technique which as a result of the close relation to other sorts of poetic subjects is threaded through various sorts of elegy and sometimes is composed as an independent elegy.     Key words : Complaint Poetry Structure Style Poetic Subject       * Associate Professor, Department of Arabic Language and Literature, university of Tehran . E-mail: GHREZAEE@UT.AC.IR .   ** PhD .candidate university of Tehran .E-mail: KARIMI.SHARAFAT@yahoo.com

  11. Progression of itching intensity and expression of growth factor proteins in skin of people suffering from atopic dermatitis under the influence of ultraviolet phototherapy

    Directory of Open Access Journals (Sweden)

    A. A. Kubanova

    2015-01-01

    Full Text Available Study of progression of itching intensity and expression of growth factor proteins in skin of people suffering from atopic dermatitis under the influence of narrowband (311Nm phototherapy. Material and methods. 30 patients with atopic dermatitis were treated by using narrowband (311Nm phototherapy. SCORAD index was used to assess the severity of the clinical responses. Itching intensity was assessed using visual analogue scale. Expression of growth factor of nerves, semaphorine-3A, amphiregulin, and PGP9.5, a protein marker for nerve fibers, was investigated by means of indirect immunofluorescence. Results. Increased expression level of nerves growth factor, decreased expression level of semaphorine-3A, and increase in the number, average length and luminous intensity of PGP9.5+ -nerve fibers were found in the patients’ epidermis. Course of narrowband (311 Nm phototherapy resulted in a decrease of the severity of the disease and itching intensity, and semaphorine-3A expression increase, reduction of number and average length of nerve fibers in the epidermis. A direct correlation relationship between the itching intensity and expression level of nerve growth factor, number and average length of PGP9.5+ -nerve fibers in the epidermis as well as an inverse correlation relationship between itching intensity and expression level of semaphorine-3A in the epidermis were found. Conclusion. Treating patients suffering from atopic dermatitis with narrowband (311 Nm phototherapy leads to a decrease of the itching intensity associated with a decreased intensity of innervation of the epidermis. This decrease in course of phototherapy is facilitated by decrease of nerve growth factor expression level and increase of semaphorine-3A expression.

  12. Assessing the itching intensity using visual analogue scales in atopic dermatitis patients against the background of a therapy with calcineurin inhibitors

    Directory of Open Access Journals (Sweden)

    V. V. Chikin

    2016-01-01

    Full Text Available Goal. To assess the effect of topical treatment of atopic dermatitis patients with the 0.1% tacrolimus ointment on the itching intensity and skin expression level of growth factor proteins affecting the intensity of cutaneous innervation. Materials and methods. Fifteen patients suffering from atopic dermatitis underwent treatment with the 0.1% tacrolimus ointment. The SCORAD index was calculated to assess the severity of clinical manifestations. The itching intensity was assessed using a visual analogue scale. The skin expression of nerve growth factors, amphiregulin, semaphorin 3A and PGP9.5 protein (a nerve fiber marker was assessed by the indirect immunofluorescence method. Results. An increased expression of the nerve growth factor and reduced semaphorin 3A expression levels were noted in the patients’ epidermis; there was an increase in the quantity, mean length and fluorescence intensity of PGP9.5+ nerve fibers. As a result of the treatment, the disease severity and itching intensity were reduced, the nerve growth factor expression level was reduced while semaphorin 3A expression level increased in the epidermis, and the mean length and fluorescence intensity of PGP9.5+ nerve fibers was also reduced. A positive correlation among the itching intensity and nerve growth factor expression level, quantity and mean length of PGP9.5+ nerve fibers in the epidermis was revealed, and negative correlation between the itching intensity and semaphorin 3A expression level in the epidermis was established. Conclusion. Topical treatment with the 0.1% Tacrolimus ointment reduces the itching intensity in atopic dermatitis patients, which is related to the therapy-mediated reduction in the epidermis innervation level, decreased expression of epidermal nerve growth factor and increased semaphorin 3A expression level.

  13. The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons.

    Science.gov (United States)

    Finta, C; Zaphiropoulos, P G

    2000-12-30

    Using a bacterial artificial chromosome (BAC) clone, we have mapped the human cytochrome P450 3A (CYP3A) locus containing the genes encoding for CYP3A4, CYP3A5 and CYP3A7. The genes lie in a head-to-tail orientation in the order of 3A4, 3A7 and 3A5. In both intergenic regions (3A4-3A7 and 3A7-3A5), we have detected several additional cytochrome P450 3A exons, forming two CYP3A pseudogenes. These pseudogenes have the same orientation as the CYP3A genes. To our surprise, a 3A7 mRNA species has been detected in which the exons 2 and 13 of one of the pseudogenes (the one that is downstream of 3A7) are spliced after the 3A7 terminal exon. This results in an mRNA molecule that consists of the 13 3A7 exons and two additional exons at the 3' end. The additional two exons originating from the pseudogene are in an altered reading frame and consequently have the capability to code a completely different amino acid sequence than the canonical CYP3A exons 2 and 13. These findings may represent a generalized evolutionary process with genes having the potential to capture neighboring sequences and use them as functional exons.

  14. Phenotype-genotype variability in the human CYP3A locus as assessed by the probe drug quinine and analyses of variant CYP3A4 alleles

    International Nuclear Information System (INIS)

    Rodriguez-Antona, Cristina; Sayi, Jane G.; Gustafsson, Lars L.; Bertilsson, Leif; Ingelman-Sundberg, Magnus

    2005-01-01

    The human cytochrome P450 3A (CYP3A) enzymes, which metabolize 50% of currently used therapeutic drugs, exhibit great interindividual differences in activity that have a major impact on drug treatment outcome, but hitherto no genetic background importantly contributing to this variation has been identified. In this study we show that CYP3A4 mRNA and hnRNA contents with a few exceptions vary in parallel in human liver, suggesting that mechanisms affecting CYP3A4 transcription, such as promoter polymorphisms, are relevant for interindividual differences in CYP3A4 expression. Tanzanian (n = 143) healthy volunteers were phenotyped using quinine as a CYP3A probe and the results were used for association studies with CYP3A4 genotypes. Carriers of CYP3A4*1B had a significantly lower activity than those with CYP3A4*1 whereas no differences were seen for five other SNPs investigated. Nuclear proteins from the B16A2 hepatoma cells were found to bind with less affinity to the CYP3A4*1B element around -392 bp as compared to CYP3A4*1. The data indicate the existence of a genetic CYP3A4 polymorphism with functional importance for interindividual differences in enzyme expression

  15. Rab3a-Bound CD63 Is Degraded and Rab3a-Free CD63 Is Incorporated into HIV-1 Particles

    Directory of Open Access Journals (Sweden)

    Yoshinao Kubo

    2017-08-01

    Full Text Available CD63, a member of the tetraspanin family, is involved in virion production by human immunodeficiency virus type 1 (HIV-1, but its mechanism is unknown. In this study, we showed that a small GTP-binding protein, Rab3a, interacts with CD63. When Rab3a was exogenously expressed, the amounts of CD63 decreased in cells. The Rab3a-mediated reduction of CD63 was suppressed by lysosomal and proteasomal inhibitors. The amount of CD63 was increased by reducing the endogenous Rab3a level using a specific shRNA. These results indicate that Rab3a binds to CD63 to induce the degradation of CD63. Rab3a is thought to be involved in exocytosis, but we found that another function of Rab3a affects the fate of CD63 in lysosomes. CD63 interacted with Rab3a and was incorporated into HIV-1 particles. However, Rab3a was not detected in HIV-1 virions, thereby indicating that Rab3a-free CD63, but not Rab3a-bound CD63, is incorporated into HIV-1 particles. Overexpression or silencing of Rab3a moderately reduced HIV-1 virion formation. Overexpression of Rab3a decreased CD63 levels, but did not affect the incorporation of CD63 into HIV-1 particles. This study showed that Rab3a binds to CD63 to induce the degradation of CD63, and only Rab3a-free CD63 is incorporated into HIV-1 particles.

  16. Characterization of a C3a receptor in rainbow trout and Xenopus: the first identification of C3a receptors in nonmammalian species

    Science.gov (United States)

    Boshra, Hani; Wang, Tiehui; Hove-Madsen, Leif; Hansen, John D.; Li, Jun; Matlapudi, Anjun; Secombes, Christopher J.; Tort, Lluis; Sunyer, J. Oriol

    2005-01-01

    Virtually nothing is known about the structure, function, and evolutionary origins of the C3aR in nonmammalian species. Because C3aR and C5aR are thought to have arisen from the same common ancestor, the recent characterization of a C5aR in teleost fish implied the presence of a C3aR in this animal group. In this study we report the cloning of a trout cDNA encoding a 364-aa molecule (TC3aR) that shows a high degree of sequence homology and a strong phylogenetic relationship with mammalian C3aRs. Northern blotting demonstrated that TC3aR was expressed primarily in blood leukocytes. Flow cytometric analysis and immunofluorescence microscopy showed that Abs raised against TC3aR stained to a high degree all blood B lymphocytes and, to a lesser extent, all granulocytes. More importantly, these Abs inhibited trout C3a-mediated intracellular calcium mobilization in trout leukocytes. A fascinating structural feature of TC3aR is the lack of a significant portion of the second extracellular loop (ECL2). In all C3aR molecules characterized to date, the ECL2 is exceptionally large when compared with the same region of C5aR. However, the exact function of the extra portion of ECL2 is unknown. The lack of this segment in TC3aR suggests that the extra piece of ECL2 was not necessary for the interaction of the ancestral C3aR with its ligand. Our findings represent the first C3aR characterized in nonmammalian species and support the hypothesis that if C3aR and C5aR diverged from a common ancestor, this event occurred before the emergence of teleost fish.

  17. Cytochrome P450 CYP3A in marsupials: cloning and identification of the first CYP3A subfamily member, isoform 3A70 from Eastern gray kangaroo (Macropus giganteus).

    Science.gov (United States)

    El-Merhibi, Adaweyah; Ngo, Suong N T; Marchant, Ceilidh L; Height, Tamara A; Stupans, Ieva; McKinnon, Ross A

    2012-09-15

    Australian marsupials are unique fauna that have evolved and adapted to unique environments and thus it is likely that their detoxification systems differ considerably from those of well-studied eutherian mammals. Knowledge of these processes in marsupials is therefore vital to understanding the consequences of exposure to xenobiotics. Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of both xenobiotics and endogenous substrates. In this study we have cloned and characterized CYP3A70, the first identified member of the CYP3A gene subfamily from Eastern gray kangaroo (Macropus giganteus). A 1665 base pair kangaroo hepatic CYP3A complete cDNA, designated CYP3A70, was cloned by reverse transcription-polymerase chain reaction approaches, which encodes a protein of 506 amino acids. The CYP3A70 cDNA shares approximately 71% nucleotide and 65% amino acid sequence homology to human CYP3A4 and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Transfection of the CYP3A70 cDNAs into 293T cells resulted in stable cell lines expressing a CYP3A immuno-reactive protein that was recognized by a goat anti-human CYP3A4 polyclonal antibody. The anti-human CYP3A4 antibody also detected immunoreactive proteins in liver microsomes from all test marsupials, including the kangaroo, koala, wallaby, and wombat, with multiple CYP3A immunoreactive bands observed in kangaroo and wallaby tissues. Relatively, very low CYP catalytic activity was detected for the kangaroo CYP3A70 cDNA-expressed proteins (19.6 relative luminescent units/μg protein), which may be due to low protein expression levels. Collectively, this study provides primary molecular data regarding the Eastern kangaroo hepatic CYP3A70 gene and enables further functional analyses of CYP3A enzymes in marsupials. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Characterization of simvastatin acid uptake by organic anion transporting polypeptide 3A1 (OATP3A1) and influence of drug-drug interaction.

    Science.gov (United States)

    Atilano-Roque, Amandla; Joy, Melanie S

    2017-12-01

    Human organic anion transporting polypeptide 3A1 (OATP3A1) is predominately expressed in the heart. The ability of OATP3A1 to transport statins into cardiomyocytes is unknown, although other OATPs are known to mediate the uptake of statin drugs in liver. The pleiotropic effects and uptake of simvastatin acid were analyzed in primary human cardiomyocytes and HEK293 cells transfected with the OATP3A1 gene. Treatment with simvastatin acid reduced indoxyl sulfate-mediated reactive oxygen species and modulated OATP3A1 expression in cardiomyocytes and HEK293 cells transfected with the OATP3A1 gene. We observed a pH-dependent effect on OATP3A1 uptake, with more efficient simvastatin acid uptake at pH5.5 in HEK293 cells transfected with the OATP3A1 gene. The Michaelis-Menten constant (K m ) for simvastatin acid uptake by OATP3A1 was 0.017±0.002μM and the V max was 0.995±0.027fmol/min/10 5 cells. Uptake of simvastatin acid was significantly increased by known (benzylpenicillin and estrone-3-sulfate) and potential (indoxyl sulfate and cyclosporine) substrates of OATP3A1. In conclusion, the presence of OATP3A1 in cardiomyocytes suggests that this transporter may modulate the exposure of cardiac tissue to simvastatin acid due to its enrichment in cardiomyocytes. Increases in uptake of simvastatin acid by OATP3A1 when combined with OATP substrates suggest the potential for drug-drug interactions that could influence clinical outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Foetal and adult human CYP3A isoforms in the bioactivation of organophosphorothionate insecticides.

    Science.gov (United States)

    Buratti, Franca M; Leoni, Claudia; Testai, Emanuela

    2006-12-15

    In humans organophosphorothionate pesticides (OPT) prenatal exposure has been demonstrated. Since OPT-induced neurodevelopmental effects may be due to in situ bioactivation by foetal enzymes, the catalytic activity of the foetal CYP3A7 toward chlorpyrifos (CPF), parathion (PAR), malathion (MAL) and fenthion (FEN) has been assessed by using recombinant enzymes. A comparison with the adult isoforms CYP3A4 and CYP3A5 has been also carried out. CYP3A7 was able to produce significant levels of oxon or sulfoxide from the four OPTs in the range of tested concentrations (0.05-200 microM). When the efficiencies of CYP3A isoforms were compared, the ranking, expressed as CLi values, were: CPF=3A4>3A5>3A7; PAR=3A4>3A7>3A5; MAL=3A4>3A7>3A5; FEN (sulfoxide formation)=3A4>3A5>3A7. The CYP3A5 efficiency appeared to be more dependent on the single insecticide than its related isozyme CYP3A4. Our results indicate that the levels of toxic metabolite formed in situ by CYP3A7 from CPF, MAL and PAR but not from FEN have the chance to inhibit acetylcholinesterase, following prenatal exposure to OPTs. However, due to the smaller weight of foetal liver, the contribution to total OPT biotransformation is relatively low. On the other hand, our results clearly indicate that at low CPF concentrations, the formation of the non-toxic metabolites is highly favoured in the foetus.

  20. Inhibitory Effects of Juices Prepared from Individual Vegetables on CYP3A4 Activity in Recombinant CYP3A4 and LS180 Cells.

    Science.gov (United States)

    Tsujimoto, Masayuki; Agawa, Chie; Ueda, Shinya; Yamane, Takayoshi; Kitayama, Haruna; Terao, Aya; Fukuda, Tomoya; Minegaki, Tetsuya; Nishiguchi, Kohshi

    2017-01-01

    Human intestinal absorption and drug metabolism vary to a large extent among individuals. For example, CYP3A4 activity has large individual variation that cannot be attributed to only genetic differences. Various flavonoids in vegetables, such as kaempferol and quercetin, possess inhibitory effects, and some vegetable and fruit juices have also been found to inhibit CYP3A4 activity. Therefore, differences in daily intake of flavonoid-containing vegetables may induce individual variation in intestinal bioavailability. To identify a vegetable that strongly inhibits CYP3A4, we investigated the effects of juices, prepared from individual vegetables, on CYP3A4 activity using recombinant CYP3A4 and LS180 cells in this study. Nine vegetable juices (cabbage, Japanese radish, onion, tomato, eggplant, carrot, Chinese cabbage, green pepper, and lettuce), were prepared and recombinant CYP3A4 and LS180 cells were used for evaluation of CYP3A4 activity. Metabolism to 6β-hydroxytestosterone by recombinant CYP3A4 was strongly inhibited by cabbage, onion, and green pepper juices, and cabbage and green pepper juices significantly inhibited CYP3A4 activity in a preincubation time-dependent manner. In addition, CYP3A4 activity in LS180 cells was significantly inhibited by cabbage and onion juices. In conclusion, this study showed that juices prepared from some individual vegetables could significantly inhibit CYP3A4 activity. Therefore, variation in the daily intake of vegetables such as cabbage and onion may be one of the factors responsible for individual differences in intestinal bioavailability.

  1. The Complement C3a-C3aR Axis Promotes Development of Thoracic Aortic Dissection via Regulation of MMP2 Expression.

    Science.gov (United States)

    Ren, Weihong; Liu, Yan; Wang, Xuerui; Piao, Chunmei; Ma, Youcai; Qiu, Shulan; Jia, Lixin; Chen, Boya; Wang, Yuan; Jiang, Wenjian; Zheng, Shuai; Liu, Chang; Dai, Nan; Lan, Feng; Zhang, Hongjia; Song, Wen-Chao; Du, Jie

    2018-03-01

    Thoracic aortic dissection (TAD), once ruptured, is devastating to patients, and no effective pharmaceutical therapy is available. Anaphylatoxins released by complement activation are involved in a variety of diseases. However, the role of the complement system in TAD is unknown. We found that plasma levels of C3a, C4a, and C5a were significantly increased in patients with TAD. Elevated circulating C3a levels were also detected in the developmental process of mouse TAD, which was induced by β-aminopropionitrile monofumarate (BAPN) treatment, with enhanced expression of C1q and properdin in mouse dissected aortas. These findings indicated activation of classical and alternative complement pathways. Further, expression of C3aR was obviously increased in smooth muscle cells of human and mouse dissected aortas, and knockout of C3aR notably inhibited BAPN-induced formation and rupture of TAD in mice. C3aR antagonist administered pre- and post-BAPN treatment attenuated the development of TAD. We found that C3aR knockout decreased matrix metalloproteinase 2 (MMP2) expression in BAPN-treated mice. Additionally, recombinant C3a stimulation enhanced MMP2 expression and activation in smooth muscle cells that were subjected to mechanical stretch. Finally, we generated MMP2-knockdown mice by in vivo MMP2 short hairpin RNA delivery using recombinant adeno-associated virus and found that MMP2 deficiency significantly reduced the formation of TAD. Therefore, our study suggests that the C3a - C3aR axis contributes to the development of TAD via regulation of MMP2 expression. Targeting the C3a-C3aR axis may represent a strategy for inhibiting the formation of TAD. Copyright © 2018 by The American Association of Immunologists, Inc.

  2. Tiamulin inhibits human CYP3A4 activity in an NIH/3T3 cell line stably expressing CYP3A4 cDNA.

    Science.gov (United States)

    De Groene, E M; Nijmeijer, S M; Horbach, G J; Witkamp, R F

    1995-09-07

    Tiamulin is an antibiotic frequently used in veterinary medicine. The drug has been shown to produce clinically important interactions with other compounds that are administered simultaneously. An NIH/3T3 cell line, stably expressing human cytochrome P450 (EC 1.14.14.1) cDNA (CYP3A4), was used to study the effect of tiamulin on CYP3A4 activity. The 6 beta-hydroxylation activity of testosterone, which is increased in CYP3A4-expressing cells compared to vector-transfected cells, showed reduced activity after incubation with 1 microM tiamulin and was completely reduced to background level after incubation with 2, 5 and 10 microM tiamulin. The CYP3A4-expressing cell line was used in combination with a shuttle vector containing the bacterial lacZ' gene to study the effect of tiamulin on CYP3A4-mediated mutagenicity of aflatoxin B1. The mutation frequency of aflatoxin B1 could be completely inhibited by tiamulin in CYP3A4-expressing cells, but no effect was observed on the mutation frequency of the direct mutagen ethylmethanesulphonate. Western blotting of homogenates of the CYP3A4-expressing cell line showed stabilization of CYP3A4 protein after incubation with tiamulin, supporting the hypothesis that the mechanism of inhibition is by binding of tiamulin to the cytochrome.

  3. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of a tolerance. 174.505 Section 174.505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS...

  4. Biologico-clinical significance of DNMT3A variants expression in acute myeloid leukemia.

    Science.gov (United States)

    Lin, Na; Fu, Wei; Zhao, Chen; Li, Bixin; Yan, Xiaojing; Li, Yan

    2017-12-09

    DNA methyltransferase 3A (DNMT3A) catalyzes de novo DNA methylation and plays important roles in the pathogenesis of acute myeloid leukemia. However, the expression status of DNMT3A variants in acute myeloid leukemia remains obscure. This study aimed to assess the expression levels of alternative splicing of DNMT3A variants and explore their roles in acute myeloid leukemia (AML). DNMT3A variants gene expression were assessed, measuring their effects on cell proliferation. In addition, the expression of DNMT3A variants were evaluated in acute myeloid leukemia patients. Four DNMT3A variants were identified, with DNMT3A1 and DNMT3A2V found to be dominant in acute myeloid leukemia cell lines. Moreover, DNMT3A2V overexpression delayed cell proliferation; while, DNMT3A2V R882H mutation promoted cell proliferation. Further, DNMT3A1 and DNMT3A2V were detected in newly diagnosed acute myeloid leukemia (AML) patients and controls with non-malignant hematological disease, with DNMT3A2V significantly up-regulated in AML patients. The main transcript switched from DNMT3A1 to DNMT3A2V in some patients, especially the low risk group based on the NCCN 2016 guidelines. These findings suggest that DNMT3A1 and DNMT3A2V are the main variants in acute myeloid leukemia with different clinical association, and might play important roles in the pathophysiology of acute myeloid leukemia. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Lentiviral transgenic microRNA-based shRNA suppressed mouse cytochromosome P450 3A (CYP3A expression in a dose-dependent and inheritable manner.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available Cytochomosome P450 enzymes (CYP are heme-containing monooxygenases responsible for oxidative metabolism of many exogenous and endogenous compounds including drugs. The species difference of CYP limits the extent to which data obtained from animals can be translated to humans in pharmacodynamics or pharmacokinetics studies. Transgenic expression of human CYP in animals lacking or with largely reduced endogenous CYP counterparts is recognized as an ideal strategy to correct CYP species difference. CYP3A is the most abundant CYP subfamily both in human and mammals. In this study, we designed a microRNA-based shRNA (miR-shRNA simultaneously targeting four members of mouse CYP3A subfamily (CYP3A11, CYP3A16, CYP3A41 and CYP3A44, and transgenic mice expressing the designed miR-shRNA were generated by lentiviral transgenesis. Results showed that the CYP3A expression level in transgenic mice was markedly reduced compared to that in wild type or unrelated miR-shRNA transgenic mice, and was inversely correlated to the miR-shRNA expression level. The CYP3A expression levels in transgenic offspring of different generations were also remarkably lower compared to those of controls, and moreover the inhibition rate of CYP3A expression remained comparable over generations. The ratio of the targeted CYP3A transcriptional levels was comparable between knockdown and control mice of the same gender as detected by RT-PCR DGGE analysis. These data suggested that transgenic miR-shRNA suppressed CYP3A expression in a dose-dependent and inheritable manner, and transcriptional levels of the targeted CYP3As were suppressed to a similar extent. The observed knockdown efficacy was further confirmed by enzymatic activity analysis, and data showed that CYP3A activities in transgenic mice were markedly reduced compared to those in wild-type or unrelated miR-shRNA transgenic controls (1.11±0.71 vs 5.85±1.74, 5.9±2.4; P<0.01. This work laid down a foundation to further knock

  6. SCP4 Promotes gluconeogenesis through Fox01/3a dephosphorylation

    Science.gov (United States)

    FoxO1 and FoxO3a (collectively FoxO1/3a) proteins regulate a wide array of cellular processes, including hepatic gluconeogenesis. Phosphorylation of FoxO1/3a is a key event that determines its subcellular location and transcriptional activity. During glucose synthesis, the activity of FoxO1/3a is ne...

  7. Subcellular localization of Bombyx mori ribosomal protein S3a and ...

    African Journals Online (AJOL)

    USER

    2010-04-05

    Apr 5, 2010 ... In the present study, using a BV/PH-Bms3a-EGFP, we found that Bombyx mori ribosomal protein S3a. (BmS3a) with EGFP fused to its C-terminal, was predominantly localized in the cytoplasm of B. mori cells. Subsequently, to investigate the effect of BmS3a over-expression on BmNPV infection both at the.

  8. 17 CFR 270.3a-1 - Certain prima facie investment companies.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Certain prima facie investment companies. 270.3a-1 Section 270.3a-1 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.3a-1 Certain prima facie investment...

  9. 19 CFR 24.3a - CBP bills; interest assessment; delinquency; notice to principal and surety.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false CBP bills; interest assessment; delinquency; notice to principal and surety. 24.3a Section 24.3a Customs Duties U.S. CUSTOMS AND BORDER PROTECTION....3a CBP bills; interest assessment; delinquency; notice to principal and surety. (a) Due date of CBP...

  10. Human Cytochrome P450 3A4 as a Biocatalyst: Effects of the Engineered Linker in Modulation of Coupling Efficiency in 3A4-BMR Chimeras.

    Science.gov (United States)

    Degregorio, Danilo; D'Avino, Serena; Castrignanò, Silvia; Di Nardo, Giovanna; Sadeghi, Sheila J; Catucci, Gianluca; Gilardi, Gianfranco

    2017-01-01

    Human liver cytochrome P450 3A4 is the main enzyme involved in drug metabolism. This makes it an attractive target for biocatalytic applications, such as the synthesis of pharmaceuticals and drug metabolites. However, its poor solubility, stability and low coupling have limited its application in the biotechnological context. We previously demonstrated that the solubility of P450 3A4 can be increased by creating fusion proteins between the reductase from Bacillus megaterium BM3 (BMR) and the N-terminally modified P450 3A4 (3A4-BMR). In this work, we aim at increasing stability and coupling efficiency by varying the length of the loop connecting the two domains to allow higher inter-domain flexibility, optimizing the interaction between the domains. Starting from the construct 3A4-BMR containing the short linker Pro-Ser-Arg, two constructs were generated by introducing a 3 and 5 glycine hinge (3A4-3GLY-BMR and 3A4-5GLY-BMR). The three fusion proteins show the typical absorbance at 450 nm of the reduced heme-CO adduct as well as the correct incorporation of the FAD and FMN cofactors. Each of the three chimeric proteins were more stable than P450 3A4 alone. Moreover, the 3A4-BMR-3-GLY enzyme showed the highest NADPH oxidation rate in line with the most positive reduction potential. On the other hand, the 3A4-BMR-5-GLY fusion protein showed a V max increased by 2-fold as well as a higher coupling efficiency when compared to 3A4-BMR in the hydroxylation of the marker substrate testosterone. This protein also showed the highest rate value of cytochrome c reduction when this external electron acceptor is used to intercept electrons from BMR to P450. The data suggest that the flexibility and the interaction between domains in the chimeric proteins is a key parameter to improve turnover and coupling efficiency. These findings provide important guidelines in engineering catalytically self-sufficient human P450 for applications in biocatalysis.

  11. Genomic variation in CYP3A4: type, frequencies and potential implications for pharmacogenetic understanding.

    OpenAIRE

    Creemer, O.

    2012-01-01

    The human cytochrome P450 3A subfamily metabolises endogenous substances and approximately half of all currently available drugs. There is marked inter-individual variation in hepatic expression of the major adult isoform, CYP3A4; the genetic component of this variability is estimated at 60-90% and, as yet, remains largely uncharacterised. Elucidation of genetic factors determining CYP3A4 activity would permit personalised dose-adjustment in therapies with CYP3A4 drug substrates. CYP3A4 genom...

  12. The Drosophila melanogaster homolog of UBE3A is not imprinted in neurons.

    Science.gov (United States)

    Hope, Kevin A; LeDoux, Mark S; Reiter, Lawrence T

    2016-09-01

    In mammals, expression of UBE3A is epigenetically regulated in neurons and expression is restricted to the maternal copy of UBE3A. A recent report claimed that Drosophila melanogaster UBE3A homolog (Dube3a) is preferentially expressed from the maternal allele in fly brain, inferring an imprinting mechanism. However, complex epigenetic regulatory features of the mammalian imprinting center are not present in Drosophila, and allele specific expression of Dube3a has not been documented. We used behavioral and electrophysiological analysis of the Dube3a loss-of-function allele (Dube3a 15b ) to investigate Dube3a imprinting in fly neurons. We found that motor impairment (climbing ability) and a newly-characterized defect in synaptic transmission are independent of parental inheritance of the Dube3a 15b allele. Furthermore, expression analysis of coding single nucleotide polymorphisms (SNPs) in Dube3a did not reveal allele specific expression differences among reciprocal crosses. These data indicate that Dube3a is neither imprinted nor preferentially expressed from the maternal allele in fly neurons.

  13. Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population

    Directory of Open Access Journals (Sweden)

    Jun Hyun Han

    2015-04-01

    Full Text Available In this study, we evaluated genetic variants of the androgen metabolism genes CYP17A1, CYP3A4, and CYP3A43 to determine whether they play a role in the development of prostate cancer (PCa in Korean men. The study population included 240 pathologically diagnosed cases of PCa and 223 age-matched controls. Among the 789 single-nucleotide polymorphism (SNP database variants detected, 129 were reported in two Asian groups (Han Chinese and Japanese in the HapMap database. Only 21 polymorphisms of CYP17A1, CYP3A4, and CYP3A43 were selected based on linkage disequilibrium in Asians (r2 = 1, locations (SNPs in exons were preferred, and amino acid changes and were assessed. In addition, we performed haplotype analysis for the 21 SNPs in CYP17A1, CYP3A4, and CYP3A43 genes. To determine the association between genotype and haplotype distributions of patients and controls, logistic analyses were carried out, controlling for age. Twelve sequence variants and five major haplotypes were identified in CYP17A1. Five sequence variants and two major haplotypes were identified in CYP3A4. Four sequence variants and four major haplotypes were observed in CYP3A43. CYP17A1 haplotype-2 (Ht-2 (odds ratio [OR], 1.51; 95% confidence interval [CI], 1.04-2.18 was associated with PCa susceptibility. CYP3A4 Ht-2 (OR: 1.87; 95% CI: 1.02-3.43 was associated with PCa metastatic potential according to tumor stage. rs17115149 (OR: 1.96; 95% CI: 1.04-3.68 and CYP17A1 Ht-4 (OR: 2.01; 95% CI: 1.07-4.11 showed a significant association with histologic aggressiveness according to Gleason score. Genetic variants of CYP17A1 and CYP3A4 may play a role in the development of PCa in Korean men.

  14. Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population.

    Science.gov (United States)

    Han, Jun Hyun; Lee, Yong Seong; Kim, Hae Jong; Lee, Shin Young; Myung, Soon Chul

    2015-01-01

    In this study, we evaluated genetic variants of the androgen metabolism genes CYP17A1, CYP3A4, and CYP3A43 to determine whether they play a role in the development of prostate cancer (PCa) in Korean men. The study population included 240 pathologically diagnosed cases of PCa and 223 age-matched controls. Among the 789 single-nucleotide polymorphism (SNP) database variants detected, 129 were reported in two Asian groups (Han Chinese and Japanese) in the HapMap database. Only 21 polymorphisms of CYP17A1, CYP3A4, and CYP3A43 were selected based on linkage disequilibrium in Asians (r2 = 1), locations (SNPs in exons were preferred), and amino acid changes and were assessed. In addition, we performed haplotype analysis for the 21 SNPs in CYP17A1, CYP3A4, and CYP3A43 genes. To determine the association between genotype and haplotype distributions of patients and controls, logistic analyses were carried out, controlling for age. Twelve sequence variants and five major haplotypes were identified in CYP17A1. Five sequence variants and two major haplotypes were identified in CYP3A4. Four sequence variants and four major haplotypes were observed in CYP3A43. CYP17A1 haplotype-2 (Ht-2) (odds ratio [OR], 1.51; 95% confidence interval [CI], 1.04-2.18) was associated with PCa susceptibility. CYP3A4 Ht-2 (OR: 1.87; 95% CI: 1.02-3.43) was associated with PCa metastatic potential according to tumor stage. rs17115149 (OR: 1.96; 95% CI: 1.04-3.68) and CYP17A1 Ht-4 (OR: 2.01; 95% CI: 1.07-4.11) showed a significant association with histologic aggressiveness according to Gleason score. Genetic variants of CYP17A1 and CYP3A4 may play a role in the development of PCa in Korean men.

  15. Arsenite and its metabolites, MMAIII and DMAIII, modify CYP3A4, PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice

    International Nuclear Information System (INIS)

    Medina-Diaz, I.M.; Estrada-Muniz, E.; Reyes-Hernandez, O.D.; Ramirez, P.; Vega, L.; Elizondo, G.

    2009-01-01

    Arsenic is an environmental pollutant that has been associated with an increased risk for the development of cancer and several other diseases through alterations of cellular homeostasis and hepatic function. Cytochrome P450 (P450) modification may be one of the factors contributing to these disorders. Several reports have established that exposure to arsenite modifies P450 expression by decreasing or increasing mRNA and protein levels. Cytochrome P450 3A4 (CYP3A4), the predominant P450 expressed in the human liver and intestines, which is regulated mainly by the Pregnane X Receptor-Retinoid X Receptor alpha (PXR-RXR alpha) heterodimer, contributes to the metabolism of approximately half the drugs in clinical use today. The present study investigates the effect of sodium arsenite and its metabolites monomethylarsonous acid (MMA III ) and dimethylarsinous acid (DMA III ) on CYP3A4, PXR, and RXR alpha expression in the small intestine of CYP3A4 transgenic mice. Sodium arsenite treatment increases mRNA, protein and CYP3A4 activity in a dose-dependent manner. However, the increase in protein expression was not as marked as compared to the increase in mRNA levels. Arsenite treatment induces the accumulation of Ub-protein conjugates, indicating that the activation of this mechanism may explain the differences observed between the mRNA and protein expression of CYP3A4 induction. Treatment with 0.05 mg/kg of DMA III induces CYP3A4 in a similar way, while treatment with 0.05 mg/kg of MMA III increases mostly mRNA, and to a lesser degree, CYP3A4 activity. Sodium arsenite and both its metabolites increase PXR mRNA, while only DMA III induces RXR alpha expression. Overall, these results suggest that sodium arsenite and its metabolites induce CYP3A4 expression by increasing PXR expression in the small intestine of CYP3A4 transgenic mice.

  16. Targeting APOBEC3A to the viral nucleoprotein complex confers antiviral activity

    Directory of Open Access Journals (Sweden)

    Strebel Klaus

    2007-08-01

    Full Text Available Abstract Background APOBEC3 (A3 proteins constitute a family of cytidine deaminases that provide intracellular resistance to retrovirus replication and to transposition of endogenous retroelements. A3A has significant homology to the C-terminus of A3G but has only a single cytidine deaminase active site (CDA, unlike A3G, which has a second N-terminal CDA previously found to be important for Vif sensitivity and virus encapsidation. A3A is packaged into HIV-1 virions but, unlike A3G, does not have antiviral properties. Here, we investigated the reason for the lack of A3A antiviral activity. Results Sequence alignment of A3G and A3A revealed significant homology of A3A to the C-terminal region of A3G. However, while A3G co-purified with detergent-resistant viral nucleoprotein complexes (NPC, virus-associated A3A was highly detergent-sensitive leading us to speculate that the ability to assemble into NPC may be a property conveyed by the A3G N-terminus. To test this model, we constructed an A3G-3A chimeric protein, in which the N-terminal half of A3G was fused to A3A. Interestingly, the A3G-3A chimera was packaged into HIV-1 particles and, unlike A3A, associated with the viral NPC. Furthermore, the A3G-3A chimera displayed strong antiviral activity against HIV-1 and was sensitive to inhibition by HIV-1 Vif. Conclusion Our results suggest that the A3G N-terminal domain carries determinants important for targeting the protein to viral NPCs. Transfer of this domain to A3A results in A3A targeting to viral NPCs and confers antiviral activity.

  17. Microsomal cytochrome P450-3A4 (CYP3A4) nanobiosensor for the determination of 2,4-dichlorophenol-An endocrine disruptor compound

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Nicolette R.; Waryo, Tesfaye T.; Arotiba, Omotayo; Jahed, Nazeem; Baker, Priscilla G.L. [SensorLab, Department of Chemistry, University of Western Cape, Moderddam Road, Bellville, Cape Town 7535 (South Africa); Iwuoha, Emmanuel I. [SensorLab, Department of Chemistry, University of Western Cape, Moderddam Road, Bellville, Cape Town 7535 (South Africa)], E-mail: eiwuoha@uwc.ac.za

    2009-02-28

    Cytochrome P450-3A4 (CYP3A4) is a monooxygenase enzyme that plays a major role in the detoxification of bioactive compounds and hydrophobic xenobiotics (e.g. medicines, drugs, environmental pollutants, food supplements and steroids). Physiologically the monooxygenation reactions of this class II, microsomal, b-type heme enzyme, usually requires cytochrome P450 reductase, NADPH. A novel CYP3A4 biosensor system that essentially simplified the enzymatic redox processes by allowing electron transfer between the electrode and the enzyme redox centre to occur, without any need for the physiological redox partners, was developed for the detection of 2,4-dichlorophenol (2,4-DCP), a priority environmental pollutant and an endocrine disruptor. The biosensor, GC/Naf-Co(Sep){sup 3+}/CYP3A4/Naf, was constructed by encapsulating CYP3A4 in a Nafion-cobalt (III) sepulchrate (Naf-Co(Sep){sup 3+}) composite film on a glassy carbon (GC) electrode. The responses of the biosensor to 2,4-dichlorophenol, erythromycin (CYP3A4 native substrate) and ketoconazole (CYP 3A4 natural inhibitor) were studied by cyclic and square wave voltammetric techniques. The detection limit (DL) of the biosensor for 2,4-dichlorophenol was 0.043 {mu}g L{sup -1}, which is by an order of magnitude lower than the EU limit (0.3 {mu}g L{sup -1}) for any pesticide compound in ground water. The biosensor's DL is lower than the U.S. Environmental Protection Agency's drinking water equivalent level (DWEL) value for 2,4-DCP, which is 2 {mu}g L{sup -1}.

  18. Microsomal cytochrome P450-3A4 (CYP3A4) nanobiosensor for the determination of 2,4-dichlorophenol-An endocrine disruptor compound

    International Nuclear Information System (INIS)

    Hendricks, Nicolette R.; Waryo, Tesfaye T.; Arotiba, Omotayo; Jahed, Nazeem; Baker, Priscilla G.L.; Iwuoha, Emmanuel I.

    2009-01-01

    Cytochrome P450-3A4 (CYP3A4) is a monooxygenase enzyme that plays a major role in the detoxification of bioactive compounds and hydrophobic xenobiotics (e.g. medicines, drugs, environmental pollutants, food supplements and steroids). Physiologically the monooxygenation reactions of this class II, microsomal, b-type heme enzyme, usually requires cytochrome P450 reductase, NADPH. A novel CYP3A4 biosensor system that essentially simplified the enzymatic redox processes by allowing electron transfer between the electrode and the enzyme redox centre to occur, without any need for the physiological redox partners, was developed for the detection of 2,4-dichlorophenol (2,4-DCP), a priority environmental pollutant and an endocrine disruptor. The biosensor, GC/Naf-Co(Sep) 3+ /CYP3A4/Naf, was constructed by encapsulating CYP3A4 in a Nafion-cobalt (III) sepulchrate (Naf-Co(Sep) 3+ ) composite film on a glassy carbon (GC) electrode. The responses of the biosensor to 2,4-dichlorophenol, erythromycin (CYP3A4 native substrate) and ketoconazole (CYP 3A4 natural inhibitor) were studied by cyclic and square wave voltammetric techniques. The detection limit (DL) of the biosensor for 2,4-dichlorophenol was 0.043 μg L -1 , which is by an order of magnitude lower than the EU limit (0.3 μg L -1 ) for any pesticide compound in ground water. The biosensor's DL is lower than the U.S. Environmental Protection Agency's drinking water equivalent level (DWEL) value for 2,4-DCP, which is 2 μg L -1

  19. Substrate sequence selectivity of APOBEC3A implicates intra-DNA interactions.

    Science.gov (United States)

    Silvas, Tania V; Hou, Shurong; Myint, Wazo; Nalivaika, Ellen; Somasundaran, Mohan; Kelch, Brian A; Matsuo, Hiroshi; Kurt Yilmaz, Nese; Schiffer, Celia A

    2018-05-14

    The APOBEC3 (A3) family of human cytidine deaminases is renowned for providing a first line of defense against many exogenous and endogenous retroviruses. However, the ability of these proteins to deaminate deoxycytidines in ssDNA makes A3s a double-edged sword. When overexpressed, A3s can mutate endogenous genomic DNA resulting in a variety of cancers. Although the sequence context for mutating DNA varies among A3s, the mechanism for substrate sequence specificity is not well understood. To characterize substrate specificity of A3A, a systematic approach was used to quantify the affinity for substrate as a function of sequence context, length, secondary structure, and solution pH. We identified the A3A ssDNA binding motif as (T/C)TC(A/G), which correlated with enzymatic activity. We also validated that A3A binds RNA in a sequence specific manner. A3A bound tighter to substrate binding motif within a hairpin loop compared to linear oligonucleotide, suggesting A3A affinity is modulated by substrate structure. Based on these findings and previously published A3A-ssDNA co-crystal structures, we propose a new model with intra-DNA interactions for the molecular mechanism underlying A3A sequence preference. Overall, the sequence and structural preferences identified for A3A leads to a new paradigm for identifying A3A's involvement in mutation of endogenous or exogenous DNA.

  20. Inactivation of Cytochrome P450 (P450) 3A4 but not P450 3A5 by OSI-930, a Thiophene-Containing Anticancer DrugS⃞

    Science.gov (United States)

    Lin, Hsia-lien; Zhang, Haoming; Medower, Christine; Johnson, William W.

    2011-01-01

    An investigational anticancer agent that contains a thiophene moiety, 3-[(quinolin-4-ylmethyl)-amino]-N-[4-trifluoromethox)phenyl] thiophene-2-carboxamide (OSI-930), was tested to investigate its ability to modulate the activities of several cytochrome P450 enzymes. Results showed that OSI-930 inactivated purified, recombinant cytochrome P450 (P450) 3A4 in the reconstituted system in a mechanism-based manner. The inactivation was dependent on cytochrome b5 and required NADPH. Catalase did not protect against the inactivation. No inactivation was observed in studies with human 2B6, 2D6, or 3A5 either in the presence or in the absence of b5. The inactivation of 3A4 by OSI-930 was time- and concentration-dependent. The inactivation of the 7-benzyloxy-4-(trifluoromethyl)coumarin catalytic activity of 3A4 was characterized by a KI of 24 μM and a kinact of 0.04 min−1. This KI is significantly greater than the clinical OSI-930 Cmax of 1.7 μM at the maximum tolerated dose, indicating that clinical drug interactions of OSI-930 via this pathway are not likely. Spectral analysis of the inactivated protein indicated that the decrease in the reduced CO spectrum at 450 nm was comparable to the amount of inactivation, thereby suggesting that the inactivation was primarily due to modification of the heme. High-pressure liquid chromatography (HPLC) analysis with detection at 400 nm showed a loss of heme comparable to the activity loss, but a modified heme was not detected. This result suggests either that the heme must have been modified enough so as not to be observed in a HPLC chromatograph or, possibly, that it was destroyed. The partition ratio for the inactivation of P450 3A4 was approximately 23, suggesting that this P450 3A4-mediated pathway occurs with approximately 4% frequency during the metabolism of OSI-930. Modeling studies on the binding of OSI-930 to the active site of the P450 3A4 indicated that OSI-930 would be oriented properly in the active site for oxidation

  1. CYP3A5 mRNA degradation by nonsense-mediated mRNA decay.

    Science.gov (United States)

    Busi, Florent; Cresteil, Thierry

    2005-09-01

    The total CYP3A5 mRNA level is significantly greater in carriers of the CYP3A5*1 allele than in CYP3A5*3 homozygotes. Most of the CYP3A5*3 mRNA includes an intronic sequence (exon 3B) containing premature termination codons (PTCs) between exons 3 and 4. Two models were used to investigate the degradation of CYP3A5 mRNA: a CYP3A5 minigene consisting of CYP3A5 exons and introns 3 to 6 transfected into MCF7 cells, and the endogenous CYP3A5 gene expressed in HepG2 cells. The 3'-untranslated region g.31611C>T mutation has no effect on CYP3A5 mRNA decay. Splice variants containing exon 3B were more unstable than wild-type (wt) CYP3A5 mRNA. Cycloheximide prevents the recognition of PTCs by ribosomes: in transfected MCF7 and HepG2 cells, cycloheximide slowed down the degradation of exon 3B-containing splice variants, suggesting the participation of nonsense-mediated decay (NMD). When PTCs were removed from pseudoexon 3B or when UPF1 small interfering RNA was used to impair the NMD mechanism, the decay of the splice variant was reduced, confirming the involvement of NMD in the degradation of CYP3A5 splice variants. Induction could represent a source of variability for CYP3A5 expression and could modify the proportion of splice variants. The extent of CYP3A5 induction was investigated after exposure to barbiturates or steroids: CYP3A4 was markedly induced in a pediatric population compared with untreated neonates. However, no effect could be detected in either the total CYP3A5 RNA, the proportion of splice variant RNA, or the protein level. Therefore, in these carriers, induction is unlikely to switch on the phenotypic CYP3A5 expression in carriers of CYP3A5*3/*3.

  2. Demonstration of a specific C3a receptor on guinea pig platelets

    International Nuclear Information System (INIS)

    Fukuoka, Y.; Hugli, T.E.

    1988-01-01

    Guinea pig platelets reportedly contain receptors specific for the anaphylatoxin C3a based on both ligand-binding studies and functional responses. A portion of the human 125I-C3a that binds to guinea pig platelets is competitively displaced by excess unlabeled C3a; however, the majority of ligand uptake was nonspecific. Uptake of 125I-C3a by guinea pig platelets is maximal in 1 min, and stimulation of guinea pig platelets by thrombin, ADP, or the Ca2+ ionophore A23187 showed little influence on binding of the ligand. Scatchard analysis indicated that approximately 1200 binding sites for C3a exist per cell with an estimated Kd of 8 x 10(-10) M. Human C3a des Arg also binds to guinea pig platelets, but Scatchard analysis indicated that no specific binding occurred. Because the ligand-binding studies were complicated by high levels of nonspecific uptake, we attempted to chemically cross-link the C3a molecule to a specific component on the platelet surface. Cross-linkage of 125I-C3a to guinea pig platelets with bis(sulfosuccinimidyl)suberate revealed radioactive complexes at 105,000 and 115,000 m.w. on SDS-PAGE gels by autoradiographic analysis. In the presence of excess unlabeled C3a, complex formation was inhibited. No cross-linkage could be demonstrated between the inactive 125I-C3a des Arg and the putative C3a-R on guinea pig platelets. Human C3a, but not C3a des Arg induces serotonin release and aggregation of the guinea pig platelets. Human C3a was unable to induce either serotonin release or promote aggregation of human platelets. Uptake of human 125I-C3a by human platelets was not saturable, and Scatchard analysis was inconclusive. Attempts to cross-link 125I-C3a to components on the surface of human platelets also failed to reveal a ligand-receptor complex. Therefore, we conclude that guinea pig platelets have specific surface receptors to C3a and that human platelets appear devoid of receptors to the anaphylatoxin

  3. Nonsense mutations in ADTB3A cause complete deficiency of the beta3A subunit of adaptor complex-3 and severe Hermansky-Pudlak syndrome type 2.

    Science.gov (United States)

    Huizing, Marjan; Scher, Charles D; Strovel, Erin; Fitzpatrick, Diana L; Hartnell, Lisa M; Anikster, Yair; Gahl, William A

    2002-02-01

    Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disease consisting of oculocutaneous albinism and a storage pool deficiency resulting from absent platelet dense bodies. The disorder is genetically heterogeneous. The majority of patients, including members of a large genetic isolate in northwest Puerto Rico, have mutations in HPS1. Another gene, ADTB3A, was shown to cause HPS-2 in two brothers having compound heterozygous mutations that allowed for residual production of the gene product, the beta3A subunit of adaptor complex-3 (AP-3). This heterotetrameric complex serves as a coat protein-mediating formation of intracellular vesicles, e.g. the melanosome and platelet dense body, from membranes of the trans-Golgi network. We determined the genomic organization of the human ADTB3A gene, with intron/exon boundaries, and describe a third patient with beta3A deficiency. This 5-y-old boy has two nonsense mutations, C1578T (R-->X) and G2028T (E-->X), which produce no ADTB3A mRNA and no beta3A protein. The associated mu3 subunit of AP-3 is also entirely absent. In fibroblasts, the cell biologic concomitant of this deficiency is robust and aberrant trafficking through the plasma membrane of LAMP-3, an integral lysosomal membrane protein normally carried directly to the lysosome. The clinical concomitant is a severe, G-CSF-responsive neutropenia in addition to oculocutaneous albinism and platelet storage pool deficiency. Our findings expand the molecular, cellular, and clinical spectrum of HPS-2 and call for an increased index of suspicion for this diagnosis among patients with features of albinism, bleeding, and neutropenia.

  4. Regulation of LH/FSH expression by secretoglobin 3A2 in the mouse pituitary gland.

    Science.gov (United States)

    Miyano, Yuki; Tahara, Shigeyuki; Sakata, Ichiro; Sakai, Takafumi; Abe, Hiroyuki; Kimura, Shioko; Kurotani, Reiko

    2014-04-01

    Secretoglobin (SCGB) 3A2 was originally identified as a downstream target for the homeodomain transcription factor NKX2-1 in the lung. NKX2-1 plays a role in the genesis and expression of genes in the thyroid, lung and ventral forebrain; Nkx2-1-null mice have no thyroid and pituitary and severely hypoplastic lungs and hypothalamus. To demonstrate whether SCGB3A2 plays any role in pituitary hormone production, NKX2-1 and SCGB3A2 expression in the mouse pituitary gland was examined by immunohistochemical analysis and RT-PCR. NKX2-1 was localized in the posterior pituitary lobe, whereas SCGB3A2 was observed in both anterior and posterior lobes as shown by immunohistochemistry and RT-PCR. Expression of CCAAT-enhancer binding proteins (C/EBPs), which regulate mouse Scgb3a2 transcription, was also examined by RT-PCR. C/EBPβ, γ, δ and ζ were expressed in the adult mouse pituitary gland. SCGB3A2 was expressed in the anterior and posterior lobes from postnatal days 1 and 5, respectively and the areas where SCGB3A2 expression was found coincided with the area where FSH-secreting cells were found. Double-staining for SCGB3A2 and pituitary hormones revealed that SCGB3A2 was mainly localized in gonadotrophs in 49 % of FSH-secreting cells and 47 % of LH-secreting cells. In addition, SCGB3A2 dramatically inhibited LH and FSH mRNA expression in rat pituitary primary cell cultures. These results suggest that SCGB3A2 regulates FSH/LH production in the anterior pituitary lobe and that transcription factors other than NKX2-1 may regulate SCGB3A2 expression.

  5. FOXO3a Provides a Quickstep from Autophagy Inhibition to Apoptosis in Cancer Therapy.

    Science.gov (United States)

    Codogno, Patrice; Morel, Etienne

    2018-03-12

    FOXO3a, a member of the Forkhead transcription factor family, has roles in apoptosis and autophagy. In this issue of Developmental Cell, Fitzwalter et al. (2018) describe how the blockade of FOXO3a turnover, which normally occurs through autophagy, sensitizes cancer cells to apoptosis through FOXO3a-mediated stimulation of pro-apoptotic PUMA/BBC3 expression. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Association between FOXO3A gene polymorphisms and human longevity: a meta-analysis

    OpenAIRE

    Bao, Ji-Ming; Song, Xian-Lu; Hong, Ying-Qia; Zhu, Hai-Li; Li, Cui; Zhang, Tao; Chen, Wei; Zhao, Shan-Chao; Chen, Qing

    2014-01-01

    Numerous studies have shown associations between the FOXO3A gene, encoding the forkhead box O3 transcription factor, and human or specifically male longevity. However, the associations of specific FOXO3A polymorphisms with longevity remain inconclusive. We performed a meta-analysis of existing studies to clarify these potential associations. A comprehensive search was conducted to identify studies of FOXO3A gene polymorphisms and longevity. Pooled odds ratios (ORs) and 95% confidence interval...

  7. Characterisation of the human NMDA receptor subunit NR3A glycine binding site

    DEFF Research Database (Denmark)

    Nilsson, A; Duan, J; Mo-Boquist, L-L

    2007-01-01

    In this study, we characterise the binding site of the human N-methyl-d-aspartate (NMDA) receptor subunit NR3A. Saturation radioligand binding of the NMDA receptor agonists [(3)H]-glycine and [(3)H]-glutamate showed that only glycine binds to human NR3A (hNR3A) with high affinity (K(d)=535nM (277...

  8. Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population

    OpenAIRE

    Han, Jun Hyun; Lee, Yong Seong; Kim, Hae Jong; Lee, Shin Young; Myung, Soon Chul

    2014-01-01

    In this study, we evaluated genetic variants of the androgen metabolism genes CYP17A1, CYP3A4, and CYP3A43 to determine whether they play a role in the development of prostate cancer (PCa) in Korean men. The study population included 240 pathologically diagnosed cases of PCa and 223 age-matched controls. Among the 789 single-nucleotide polymorphism (SNP) database variants detected, 129 were reported in two Asian groups (Han Chinese and Japanese) in the HapMap database. Only 21 polymorphisms o...

  9. Regulation of zebrafish CYP3A65 transcription by AHR2

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chin-Teng; Chung, Hsin-Yu; Su, Hsiao-Ting; Tseng, Hua-Pin [Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China); Tzou, Wen-Shyong [Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China); Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China); Hu, Chin-Hwa, E-mail: chhu@mail.ntou.edu.tw [Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China); Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China)

    2013-07-15

    CYP3A proteins are the most abundant CYPs in the liver and intestines, and they play a pivotal role in drug metabolism. In mammals, CYP3A genes are induced by various xenobiotics through processes mediated by PXR. We previously identified zebrafish CYP3A65 as a CYP3A ortholog that is constitutively expressed in gastrointestinal tissues, and is upregulated by treatment with dexamethasone, rifampicin or tetrachlorodibenzo-p-dioxin (TCDD). However, the underlying mechanism of TCDD-mediated CYP3A65 transcription is unclear. Here we generated two transgenic zebrafish, Tg(CYP3A65S:EGFP) and Tg(CYP3A65L:EGFP), which contain 2.1 and 5.4 kb 5′ flanking sequences, respectively, of the CYP3A65 gene upstream of EGFP. Both transgenic lines express EGFP in larval gastrointestinal tissues in a pattern similar to that of the endogenous CYP3A65 gene. Moreover, EGFP expression can be significantly induced by TCDD exposure during the larval stage. In addition, EGFP expression can be stimulated by kynurenine, a putative AHR ligand produced during tryptophan metabolism. AHRE elements in the upstream regulatory region of the CYP3A65 gene are indispensible for basal and TCDD-induced transcription. Furthermore, the AHR2 DNA and ligand-binding domains are required to mediate effective CYP3A65 transcription. AHRE sequences are present in the promoters of many teleost CYP3 genes, but not of mammalian CYP3 genes, suggesting that AHR/AHR2-mediated transcription is likely a common regulatory mechanism for teleost CYP3 genes. It may also reflect the different environments that terrestrial and aquatic organisms encounter. - Highlights: • Tg(CYP3A65:EGFP) and CYP3A65 exhibits identical expression pattern. • CYP3A65 can be significantly induced by TCDD or kynurenine. • The AHRE elements are required to mediate CYP3A65 transcription. • The AHR2 DNA and ligand-binding domains are required for CYP3A65 transcription. • AHRE elements are present in many teleost CYP3 genes, but not in

  10. Identification of cancer cytotoxic modulators of PDE3A by predictive chemogenomics

    Science.gov (United States)

    de Waal, Luc; Lewis, Timothy A.; Rees, Matthew G.; Tsherniak, Aviad; Wu, Xiaoyun; Choi, Peter S.; Gechijian, Lara; Hartigan, Christina; Faloon, Patrick W.; Hickey, Mark J.; Tolliday, Nicola; Carr, Steven A.; Clemons, Paul A.; Munoz, Benito; Wagner, Bridget K.; Shamji, Alykhan F.; Koehler, Angela N.; Schenone, Monica; Burgin, Alex B.; Schreiber, Stuart L.; Greulich, Heidi; Meyerson, Matthew

    2015-01-01

    High cancer death rates indicate the need for new anti-cancer therapeutic agents. Approaches to discover new cancer drugs include target-based drug discovery and phenotypic screening. Here, we identified phosphodiesterase 3A modulators as cell-selective cancer cytotoxic compounds by phenotypic compound library screening and target deconvolution by predictive chemogenomics. We found that sensitivity to 6-(4-(diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one, or DNMDP, across 766 cancer cell lines correlates with expression of the phosphodiesterase 3A gene, PDE3A. Like DNMDP, a subset of known PDE3A inhibitors kill selected cancer cells while others do not. Furthermore, PDE3A depletion leads to DNMDP resistance. We demonstrated that DNMDP binding to PDE3A promotes an interaction between PDE3A and Schlafen 12 (SLFN12), suggesting a neomorphic activity. Co-expression of SLFN12 with PDE3A correlates with DNMDP sensitivity, while depletion of SLFN12 results in decreased DNMDP sensitivity. Our results implicate PDE3A modulators as candidate cancer therapeutic agents and demonstrate the power of predictive chemogenomics in small-molecule discovery. PMID:26656089

  11. Global pharmacogenomics: distribution of CYP3A5 polymorphisms and phenotypes in the Brazilian population.

    Directory of Open Access Journals (Sweden)

    Guilherme Suarez-Kurtz

    Full Text Available The influence of self-reported "race/color", geographical origin and genetic ancestry on the distribution of three functional CYP3A5 polymorphisms, their imputed haplotypes and inferred phenotypes was examined in 909 healthy, adult Brazilians, self-identified as White, Brown or Black ("race/color" categories of the Brazilian census. The cohort was genotyped for CYP3A5*3 (rs776746, CYP3A5*6 (rs10264272 and CYP3A5*7 (rs41303343, CYP3A5 haplotypes were imputed and CYP3A5 metabolizer phenotypes were inferred according to the number of defective CYP3A5 alleles. Estimates of the individual proportions of Amerindian, African and European ancestry were available for the entire cohort. Multinomial log-linear regression models were applied to infer the statistical association between the distribution of CYP3A5 alleles, haplotypes and phenotypes (response variables, and self-reported Color, geographical region and ancestry (explanatory variables. We found that Color per se or in combination with geographical region associates significantly with the distribution of CYP3A5 variant alleles and CYP3A5 metabolizer phenotypes, whereas geographical region per se influences the frequency distribution of CYP3A5 variant alleles. The odds of having the default CYP3A5*3 allele and the poor metabolizer phenotype increases continuously with the increase of European ancestry and decrease of African ancestry. The opposite trend is observed in relation to CYP3A5*6, CYP3A5*7, the default CYP3A5*1 allele, and both the extensive and intermediate phenotypes. No significant effect of Amerindian ancestry on the distribution of CYP3A5 alleles or phenotypes was observed. In conclusion, this study strongly supports the notion that the intrinsic heterogeneity of the Brazilian population must be acknowledged in the design and interpretation of pharmacogenomic studies, and dealt with as a continuous variable, rather than proportioned in arbitrary categories that do not capture the

  12. CYP3A4*18: it is not rare allele in Japanese population.

    Science.gov (United States)

    Yamamoto, Takehito; Nagafuchi, Nobue; Ozeki, Takeshi; Kubota, Takahiro; Ishikawa, Hiroshi; Ogawa, Seishi; Yamada, Yasuhiko; Hirai, Hisamaru; Iga, Tatsuji

    2003-01-01

    We sequenced all 13 exons of the CYP3A4 gene derived from 48 Japanese subjects. One subject possess the 20070 T>C mutation in the exon 10 (result in leu293Pro substitution, namely CYP3A4(*)18), as heterozygote. Thus, we investigated the frequency of CYP3A4(*)18 in 118 Japanese population using polymerase chain reaction-restriction fragment length polymorphism with Msp I and determined that the frequency of the CYP3A4(*)18 allele was 1.3%.

  13. Genetic analysis of drug metabolizing phase-I enzymes CYP3A4 in Tibetan populations.

    Science.gov (United States)

    Liu, Lijun; Chang, Yu; Du, Shuli; Shi, Xugang; Yang, Hua; Kang, Longli; Jin, Tianbo; Yuan, Dongya; He, Yongjun

    2017-06-01

    The enzymatic activity of CYP3A4 results in broad interindividual variability in response to certain pharmacotherapies. The present study aimed to screen Tibetan volunteers for CYP3A4 genetic polymorphisms. Previous research has focussed on Han Chinese patients, while little is known about the genetic variation of CYP3A4 in the Tibetan populations. Here, we adopted DNA sequencing to investigate the promoter, exons and surrounding introns, and 3'-untranslated region of the CYP3A4 gene in 96 unrelated healthy Tibetan individuals.We identified 20 different CYP3A4 polymorphisms in the Tibetan population, including two novel variants (21824 A>G and 15580 G>C). In addition, we also determined the allele frequencies of CYP3A4*1A and CYP3A4*1H were 82.29% and 28.13%, respectively. CYP3A4*1P and *1G were relatively rare with frequencies of only 1.04% and 0.52%, respectively. Our results provide information on CYP3A4 polymorphisms in Tibetan individuals which may help to optimize pharmacotherapy effectiveness by providing personalized medicine to this ethnic group.

  14. Significance of Nuclear Accumulation of Foxo3a in Esophageal Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    Chen, M.-F.; Fang, F.-M.; Lu, C.-H.; Lu, M.-S.; Chen, W.-C.; Lee, K.-D.; Lin, P.-Y.

    2008-01-01

    Purpose: To investigate the value of Foxo3a in predicting the response to neoadjuvant treatment of, and prognosis for, esophageal squamous cell carcinoma. Methods and Materials: Immunohistochemical staining was performed in a retrospective series of 60 biopsied esophageal squamous cell carcinomas, and the correlation between nuclear accumulation of Foxo3a and clinicopathologic features was analyzed, including patient survival. In addition, in vitro biologic changes, radiosensitivity, and in vivo tumorigenicity of esophageal carcinoma cells after experimental manipulation of Foxo3a expression levels were determined. Results: Clinical findings point to a significant correlation between the nuclear accumulation of Foxo3a and the survival rate of esophageal cancer patients. In addition, Foxo3a is a significant predictor for the response to neoadjuvant therapy. In cell culture, irradiation and oxidative stress seemed to result in nuclear accumulation of Foxo3a. Down-regulation of Foxo3a significantly decreased radiosensitivity but had no obvious effect on tumor growth, as measured by a clonogenic assay in vitro and growth delay in vivo. Conclusions: Nuclear accumulation of Foxo3a in tumor cells was correlated with increased radiosensitivity and with improved patient survival. Thus, it is suggested that Foxo3a may be a potential marker for esophageal cancer

  15. Secretoglobin Superfamily Protein SCGB3A2 Deficiency Potentiates Ovalbumin-Induced Allergic Pulmonary Inflammation

    Directory of Open Access Journals (Sweden)

    Taketomo Kido

    2014-01-01

    Full Text Available Secretoglobin (SCGB 3A2, a cytokine-like secretory protein of small molecular weight, which may play a role in lung inflammation, is predominantly expressed in airway epithelial cells. In order to understand the physiological role of SCGB3A2, Scgb3a2−/− mice were generated and characterized. Scgb3a2−/− mice did not exhibit any overt phenotypes. In ovalbumin- (OVA- induced airway allergy inflammation model, Scgb3a2−/− mice in mixed background showed a decreased OVA-induced airway inflammation, while six times C57BL/6NCr backcrossed congenic Scgb3a2−/− mice showed a slight exacerbation of OVA-induced airway inflammation as compared to wild-type littermates. These results indicate that the loss of SCGB3A2 function was influenced by a modifier gene(s in mixed genetic background and suggest that SCGB3A2 has anti-inflammatory property. The results further suggest the possible use of recombinant human SCGB3A2 as an anti-inflammatory agent.

  16. Regulation of zebrafish CYP3A65 transcription by AHR2

    International Nuclear Information System (INIS)

    Chang, Chin-Teng; Chung, Hsin-Yu; Su, Hsiao-Ting; Tseng, Hua-Pin; Tzou, Wen-Shyong; Hu, Chin-Hwa

    2013-01-01

    CYP3A proteins are the most abundant CYPs in the liver and intestines, and they play a pivotal role in drug metabolism. In mammals, CYP3A genes are induced by various xenobiotics through processes mediated by PXR. We previously identified zebrafish CYP3A65 as a CYP3A ortholog that is constitutively expressed in gastrointestinal tissues, and is upregulated by treatment with dexamethasone, rifampicin or tetrachlorodibenzo-p-dioxin (TCDD). However, the underlying mechanism of TCDD-mediated CYP3A65 transcription is unclear. Here we generated two transgenic zebrafish, Tg(CYP3A65S:EGFP) and Tg(CYP3A65L:EGFP), which contain 2.1 and 5.4 kb 5′ flanking sequences, respectively, of the CYP3A65 gene upstream of EGFP. Both transgenic lines express EGFP in larval gastrointestinal tissues in a pattern similar to that of the endogenous CYP3A65 gene. Moreover, EGFP expression can be significantly induced by TCDD exposure during the larval stage. In addition, EGFP expression can be stimulated by kynurenine, a putative AHR ligand produced during tryptophan metabolism. AHRE elements in the upstream regulatory region of the CYP3A65 gene are indispensible for basal and TCDD-induced transcription. Furthermore, the AHR2 DNA and ligand-binding domains are required to mediate effective CYP3A65 transcription. AHRE sequences are present in the promoters of many teleost CYP3 genes, but not of mammalian CYP3 genes, suggesting that AHR/AHR2-mediated transcription is likely a common regulatory mechanism for teleost CYP3 genes. It may also reflect the different environments that terrestrial and aquatic organisms encounter. - Highlights: • Tg(CYP3A65:EGFP) and CYP3A65 exhibits identical expression pattern. • CYP3A65 can be significantly induced by TCDD or kynurenine. • The AHRE elements are required to mediate CYP3A65 transcription. • The AHR2 DNA and ligand-binding domains are required for CYP3A65 transcription. • AHRE elements are present in many teleost CYP3 genes, but not in

  17. Cell proliferation is a key determinant of the outcome of FOXO3a activation

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Raewyn C., E-mail: raewyn.poulsen@gmail.com; Carr, Andrew J.; Hulley, Philippa A.

    2015-06-19

    The FOXO family of forkhead transcription factors have a pivotal role in determining cell fate in response to oxidative stress. FOXO activity can either promote cell survival or induce cell death. Increased FOXO-mediated cell death has been implicated in the pathogenesis of degenerative diseases affecting musculoskeletal tissues. The aim of this study was to determine the conditions under which one member of the FOXO family, FOXO3a, promotes cell survival as opposed to cell death. Treatment of primary human tenocytes with 1 pM hydrogen peroxide for 18 h resulted in increased protein levels of FOXO3a. In peroxide-treated cells cultured in low serum media, FOXO3a inhibited cell proliferation and protected against apoptosis. However in peroxide treated cells cultured in high serum media, cell proliferation was unchanged but level of apoptosis significantly increased. Similarly, in tenocytes transduced to over-express FOXO3a, cell proliferation was inhibited and level of apoptosis unchanged in cells cultured in low serum. However there was a robust increase in cell death in FOXO3a-expressing cells cultured in high serum. Inhibition of cell proliferation in either peroxide-treated or FOXO3a-expressing cells cultured in high serum protected against apoptosis induction. Conversely, addition of a Chk2 inhibitor to peroxide-treated or FOXO3a-expressing cells overrode the inhibitory effect of FOXO3a on cell proliferation and led to increased apoptosis in cells cultured in low serum. This study demonstrates that proliferating cells may be particularly susceptible to the apoptosis-inducing actions of FOXO3a. Inhibition of cell proliferation by FOXO3a may be a critical event in allowing the pro-survival rather than the pro-apoptotic activity of FOXO3a to prevail. - Highlights: • FOXO3a activity can result in either promotion of cell survival or apoptosis. • The outcome of FOXO3a activation differs in proliferating compared to non-proliferating cells. • Proliferating

  18. Cell proliferation is a key determinant of the outcome of FOXO3a activation

    International Nuclear Information System (INIS)

    Poulsen, Raewyn C.; Carr, Andrew J.; Hulley, Philippa A.

    2015-01-01

    The FOXO family of forkhead transcription factors have a pivotal role in determining cell fate in response to oxidative stress. FOXO activity can either promote cell survival or induce cell death. Increased FOXO-mediated cell death has been implicated in the pathogenesis of degenerative diseases affecting musculoskeletal tissues. The aim of this study was to determine the conditions under which one member of the FOXO family, FOXO3a, promotes cell survival as opposed to cell death. Treatment of primary human tenocytes with 1 pM hydrogen peroxide for 18 h resulted in increased protein levels of FOXO3a. In peroxide-treated cells cultured in low serum media, FOXO3a inhibited cell proliferation and protected against apoptosis. However in peroxide treated cells cultured in high serum media, cell proliferation was unchanged but level of apoptosis significantly increased. Similarly, in tenocytes transduced to over-express FOXO3a, cell proliferation was inhibited and level of apoptosis unchanged in cells cultured in low serum. However there was a robust increase in cell death in FOXO3a-expressing cells cultured in high serum. Inhibition of cell proliferation in either peroxide-treated or FOXO3a-expressing cells cultured in high serum protected against apoptosis induction. Conversely, addition of a Chk2 inhibitor to peroxide-treated or FOXO3a-expressing cells overrode the inhibitory effect of FOXO3a on cell proliferation and led to increased apoptosis in cells cultured in low serum. This study demonstrates that proliferating cells may be particularly susceptible to the apoptosis-inducing actions of FOXO3a. Inhibition of cell proliferation by FOXO3a may be a critical event in allowing the pro-survival rather than the pro-apoptotic activity of FOXO3a to prevail. - Highlights: • FOXO3a activity can result in either promotion of cell survival or apoptosis. • The outcome of FOXO3a activation differs in proliferating compared to non-proliferating cells. • Proliferating

  19. Membrane topology and cellular dynamics of foot-and-mouth disease virus 3A protein.

    Directory of Open Access Journals (Sweden)

    Mónica González-Magaldi

    Full Text Available Foot-and-mouth disease virus non-structural protein 3A plays important roles in virus replication, virulence and host-range; nevertheless little is known on the interactions that this protein can establish with different cell components. In this work, we have performed in vivo dynamic studies from cells transiently expressing the green fluorescent protein (GFP fused to the complete 3A (GFP3A and versions including different 3A mutations. The results revealed the presence of a mobile fraction of GFP3A, which was found increased in most of the mutants analyzed, and the location of 3A in a continuous compartment in the cytoplasm. A dual behavior was also observed for GFP3A upon cell fractionation, being the protein equally recovered from the cytosolic and membrane fractions, a ratio that was also observed when the insoluble fraction was further fractioned, even in the presence of detergent. Similar results were observed in the fractionation of GFP3ABBB, a 3A protein precursor required for initiating RNA replication. A nonintegral membrane protein topology of FMDV 3A was supported by the lack of glycosylation of versions of 3A in which each of the protein termini was fused to a glycosylation acceptor tag, as well as by their accessibility to degradation by proteases. According to this model 3A would interact with membranes through its central hydrophobic region exposing its N- and C- termini to the cytosol, where interactions between viral and cellular proteins required for virus replication are expected to occur.

  20. Activation and Inhibition of The Wnt3A Signaling Pathway in Buffalo (Bubalus bubalis Embryonic Stem Cells: Effects of WNT3A, Bio and Dkk1

    Directory of Open Access Journals (Sweden)

    Mohammad Zandi

    2015-07-01

    Full Text Available Background: This research studies the effects of activation and inhibition of Wnt3A signaling pathway in buffalo (Bubalus bubalis embryonic stem (ES cell-like cells. Materials and Methods: To carry on this experimental study, the effects of activation and inhibition of Wnt3A signaling in buffalo ES cell-like cells were examined using Bio (0.5 mM combined with WNT3A (200 ng/ml, as an activator, and Dickkopf-1 (Dkk1, 250 ng/ml, as an inhibitor, of the pathway. ES cells were cultured up to three weeks in ES cell medium without fibroblast growth factor-2 (FGF-2 and leukemia inhibitory factor (LIF, but in the presence of Bio, WNT3A, Bio+WNT3A and Dkk1. The effects of these supplements were measured on the mean area of ES cell colonies and on the expression levels of a number of important genes related to pluripotency (Oct4, Nanog, Sox2 and c-Myc and the Wnt pathway (β-catenin. ES cell colonies cultured in ES cell medium that contained optimized quantities of LIF and FGF-2 were used as the control. Data were collected for week-1 and week-3 treated cultures. In addition, WNT3A-transfected ES cells were compared with the respective mock-transfected colonies, either alone or in combination with Dkk1 for expression of β-catenin and the pluripotency-related genes. Data were analyzed by ANOVA, and statistical significance was accepted at P<0.05. Results: Among various examined concentrations of Bio (0.5-5 mM, the optimum effect was observed at the 0.5 mM dose as indicated by colony area and expressions of pluripotency- related genes at both weeks-1 and -3 culture periods. At this concentration,the expressions of Nanog, Oct3/4, Sox2, c-Myc and β-catenin genes were nonsignificantly higher compared to the controls. Expressions of these genes were highest in the Bio+WNT3A treated group, followed by the WNT3A and Bio-supplemented groups, and lowest in the Dkk1-treated group. The WNT-transfected colonies showed higher expressions compared to both mock and Dkk1

  1. 17 CFR 240.3a51-1 - Definition of “penny stock”.

    Science.gov (United States)

    2010-04-01

    ...), including hybrid products and derivative securities products, the national securities exchange or registered... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Definition of âpenny stockâ. 240.3a51-1 Section 240.3a51-1 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION...

  2. Implementation of Electrical Simulation Model for IEC Standard Type-3A Generator

    DEFF Research Database (Denmark)

    Subramanian, Chandrasekaran; Casadei, Domenico; Tani, Angelo

    2013-01-01

    This paper describes the implementation of electrical simulation model for IEC 61400-27-1 standard Type-3A generator. A general overview of the different wind electric generators(WEG) types are given and the main focused on Type-3A WEG standard models, namely a model for a variable speed wind tur...

  3. Neuroprotective Efficacy of an Aminopropyl Carbazole Derivative P7C3-A20 in Ischemic Stroke.

    Science.gov (United States)

    Wang, Shu-Na; Xu, Tian-Ying; Wang, Xia; Guan, Yun-Feng; Zhang, Sai-Long; Wang, Pei; Miao, Chao-Yu

    2016-09-01

    NAMPT is a novel therapeutic target of ischemic stroke. The aim of this study was to investigate the effect of a potential NAMPT activator, P7C3-A20, an aminopropyl carbazole derivative, on ischemic stroke. In vitro study, neuron protection effect of P7C3-A20 was investigated by co-incubation with primary neurons subjected to oxygen-glucose deprivation (OGD) or oxygen-glucose deprivation/reperfusion (OGD/R) injury. In vivo experiment, P7C3-A20 was administrated in middle cerebral artery occlusion (MCAO) rats and infarct volume was examined. Lastly, the brain tissue nicotinamide adenine dinucleotide (NAD) levels were detected in P7C3-A20 treated normal or MCAO mice. Cell viability, morphology, and Tuj-1 staining confirmed the neuroprotective effect of P7C3-A20 in OGD or OGD/R model. P7C3-A20 administration significantly reduced cerebral infarction in MCAO rats. Moreover, brain NAD levels were elevated both in normal and MCAO mice after P7C3-A20 treatment. P7C3-A20 has neuroprotective effect in cerebral ischemia. The study contributes to the development of NAMPT activators against ischemic stroke and expands the horizon of the neuroprotective effect of aminopropyl carbazole chemicals. © 2016 John Wiley & Sons Ltd.

  4. Analysis of CYP3A4 genetic polymorphisms in Han Chinese.

    Science.gov (United States)

    Zhou, Qing; Yu, Xiaomin; Shu, Chang; Cai, Yimei; Gong, Wei; Wang, Xumin; Wang, Duen-mei; Hu, Songnian

    2011-06-01

    Our study aimed to comprehensively investigate the genetic polymorphisms of CYP3A4 in Han Chinese. We sequenced the gene regions of CYP3A4, including its promoter, exons, surrounding introns and 3' untranslated region (3'UTR), from 100 unrelated-healthy Han Chinese individuals. We detected 11 SNPs, three of which are novel. According to in silico functional prediction of novel variants, 20148 A>G in exon 10, resulting in substitution of Tyr319 with Cys (CYP3A4*21), may induce dramatic alteration of protein conformation, and 26908 G>A in 3'UTR may disrupt post-transcriptional regulation. We identified five alleles in Han Chinese, the allele frequencies of CYP3A4*1, *5, *6, *18 and *21 are 97, 0.5, 1, 1 and 0.5%, respectively. Haplotype inference revealed 14 haplotypes, of which the major haplotype CYP3A4*1A constitutes 59% of the total chromosomes. We also examined the possible role of natural selection in shaping the variation of CYP3A4 and confirmed a trend, consistent with the action of positive selection. We systematically screened the genetic polymorphisms of CYP3A4 in Han Chinese, highlighted possible functional impairment of the novel allele and summarized the distinct allele and haplotype frequency distribution, with an emphasis on detecting the footprint of recent positive selection on the CYP3A4 gene in Han Chinese.

  5. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function

    OpenAIRE

    Jensen, Kim Steen; Binderup, Tina; Jensen, Klaus Thorleif; Therkelsen, Ib; Borup, Rehannah; Nilsson, Elise; Multhaupt, Hinke; Bouchard, Caroline; Quistorff, Bjørn; Kjær, Andreas; Landberg, Göran; Staller, Peter

    2011-01-01

    This paper characterizes FoxO3A as required for hypoxic suppression of mitochondrial mass, oxygen consumption, and ROS production. Mechanistically, FoxO3A is shown to promote hypoxic cell survival by directly antagonizing c-Myc at nuclear encoded mitochondrial genes.

  6. Loss of Dnmt3a Immortalizes Hematopoietic Stem Cells In Vivo

    Directory of Open Access Journals (Sweden)

    Mira Jeong

    2018-04-01

    Full Text Available Summary: Somatic mutations in DNMT3A are recurrent events across a range of blood cancers. Dnmt3a loss of function in hematopoietic stem cells (HSCs skews divisions toward self-renewal at the expense of differentiation. Moreover, DNMT3A mutations can be detected in the blood of aging individuals, indicating that mutant cells outcompete normal HSCs over time. It is important to understand how these mutations provide a competitive advantage to HSCs. Here we show that Dnmt3a-null HSCs can regenerate over at least 12 transplant generations in mice, far exceeding the lifespan of normal HSCs. Molecular characterization reveals that this in vivo immortalization is associated with gradual and focal losses of DNA methylation at key regulatory regions associated with self-renewal genes, producing a highly stereotypical HSC phenotype in which epigenetic features are further buttressed. These findings lend insight into the preponderance of DNMT3A mutations in clonal hematopoiesis and the persistence of mutant clones after chemotherapy. : Jeong et al. show that a single genetic manipulation, conditional inactivation of the DNA methyltransferase enzyme Dnmt3a, removes all inherent hematopoietic stem cell (HSC self-renewal limits and replicative lifespan. Deletion of Dnmt3a allows HSCs to be propagated indefinitely in vivo. Keywords: DNMT3A, DNA methylation, HSC, self-renewal, leukemia

  7. Cry3A δ-endotoxin gene mutagenized for enhanced toxicity

    African Journals Online (AJOL)

    Bacillus thuringiensis Cry3A gene was redesigned for high expression in Norwegian spruce and the sequence was slightly modified to allow for simple N- and C- terminal deletions and domain II loop 1 exchange for synthetic oligos. Modified Cry3A toxins from 13 variants of the synthetic gene were expressed in Escherichia ...

  8. Dnmt3a is an epigenetic mediator of adipose insulin resistance

    DEFF Research Database (Denmark)

    You, Dongjoo; Nilsson, Emma; Tenen, Danielle E.

    2017-01-01

    Insulin resistance results from an intricate interaction between genetic make-up and environment, and thus may be orchestrated by epigenetic mechanisms like DNA methylation. Here, we demonstrate that DNA methyltransferase 3a (Dnmt3a) is both necessary and sufficient to mediate insulin resistance...... in cultured mouse and human adipocytes. Furthermore, adipose-specific Dnmt3a knock-out mice are protected from diet-induced insulin resistance and glucose intolerance without accompanying changes in adiposity. Unbiased gene profiling studies revealed Fgf21 as a key negatively regulated Dnmt3a target gene...... in adipocytes with concordant changes in DNA methylation at the Fgf21 promoter region. Consistent with this, Fgf21 can rescue Dnmt3a-mediated insulin resistance, and DNA methylation at the FGF21 locus was elevated in human subjects with diabetes and correlated negatively with expression of FGF21 in human...

  9. Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A

    DEFF Research Database (Denmark)

    Eriksson, Maria; Nilsson, Anna; Froelich-Fabre, Susanne

    2002-01-01

    Native N-methyl-D-aspartate (NMDA) receptors are heteromeric assemblies of four or five subunits. The NMDA receptor subunits, NR1, NR2A, NR2B, NR2C, and NR2D have been cloned in several species, including man. The NR3A subunit, which in rodents is predominantly expressed during early development......, seems to function by reducing the NMDA receptor response. The human homologue to the rat NR3A, however, had not been cloned. In order to study the functions of the human NR3A (hNR3A), we have cloned and sequenced the hNR3A. It was found to share 88% of the DNA sequence with the rat gene, corresponding...

  10. Systematic screening for CYP3A4 genetic polymorphisms in a Han Chinese population.

    Science.gov (United States)

    Hu, Guo-Xin; Dai, Da-Peng; Wang, Hao; Huang, Xiang-Xin; Zhou, Xiao-Yang; Cai, Jie; Chen, Hao; Cai, Jian-Ping

    2017-03-01

    To systematically investigate the genetic polymorphisms of the CYP3A4 gene in a Han Chinese population. The promoter and exons of CYP3A4 gene in 1114 unrelated, healthy Han Chinese subjects were amplified and genotyped by direct sequencing. In total, five previously reported alleles (*1G, *4, *5, *18B and *23) were detected, of which one allele (*23) was reported for the first time in Han Chinese population. Additionally, seven novel exonic variants were also identified and designated as new alleles CYP3A4*28-*34. This study provides the most comprehensive data of CYP3A4 polymorphisms in Han Chinese population and detects the largest number of novel CYP3A4 alleles in one ethnic group.

  11. Neuropsychology and neuropharmacology of P3a and P3b.

    Science.gov (United States)

    Polich, John; Criado, José R

    2006-05-01

    Perspectives on the P300 event-related brain potential (ERP) are reviewed by outlining the distinction between the P3a and P3b subcomponents. The critical factor for eliciting P3a is how target/standard discrimination difficulty rather than novelty modulates task processing. The neural loci of P3a and P3b generation are sketched and a theoretical model is developed. P3a originates from stimulus-driven disruption of frontal attention engagement during task processing. P3b originates when temporal-parietal mechanisms process the stimulus information for memory storage. The neuropharmacological implications of this view are then outlined by evaluating how acute and chronic use of ethanol, marijuana, and nicotine affect P3a and P3b. The findings suggest that the circuit underlying ERP generation is influenced in a different ways for acute intake and varies between chronic use levels across drugs. Theoretical implications are assessed.

  12. CYP3A5 polymorphisms in renal transplant recipients: influence on tacrolimus treatment

    Directory of Open Access Journals (Sweden)

    Chen L

    2018-03-01

    Full Text Available Lucy Chen,1 G V Ramesh Prasad2 1Kidney Transplant Program, St Michael’s Hospital, Toronto, ON, Canada; 2Division of Nephrology, St Michael’s Hospital, Toronto, ON, Canada Abstract: Tacrolimus is a commonly used immunosuppressant after kidney transplantation. It has a narrow therapeutic range and demonstrates wide interindividual variability in pharmacokinetics, leading to potential underimmunosuppression or toxicity. Genetic polymorphism in CYP3A5 enzyme expression contributes to differences in tacrolimus bioavailability between individuals. Individuals carrying one or more copies of the wild-type allele *1 express CYP3A5, which increases tacrolimus clearance. CYP3A5 expressers require 1.5 to 2-fold higher tacrolimus doses compared to usual dosing to achieve therapeutic blood concentrations. Individuals with homozygous *3/*3 genotype are CYP3A5 nonexpressers. CYP3A5 nonexpression is the most frequent phenotype in most ethnic populations, except blacks. Differences between CYP3A5 genotypes in tacrolimus disposition have not translated into differences in clinical outcomes, such as acute rejection and graft survival. Therefore, although genotype-based dosing may improve achievement of therapeutic drug concentrations with empiric dosing, its role in clinical practice is unclear. CYP3A5 genotype may predict differences in absorption of extended-release and immediate-release oral formulations of tacrolimus. Two studies found that CYP3A5 expressers require higher doses of tacrolimus in the extended-release formulation compared to immediate release. CYP3A5 genotype plays a role in determining the impact of interacting drugs, such as fluconazole, on tacrolimus pharmacokinetics. Evidence conflicts regarding the impact of CYP3A5 genotype on risk of nephrotoxicity associated with tacrolimus. Further study is required. Keywords: calcineurin inhibitor, graft, pharmacogenomics, kidney, genotype

  13. Progesterone Metabolites Produced by Cytochrome P450 3A Modulate Uterine Contractility in a Murine Model

    Science.gov (United States)

    Patil, Avinash S.; Swamy, Geeta K.; Murtha, Amy P.; Heine, R. Phillips; Zheng, Xiaomei; Grotegut, Chad A.

    2015-01-01

    Objective: We seek to characterize the effect of progesterone metabolites on spontaneous and oxytocin-induced uterine contractility. Study Design: Spontaneous contractility was studied in mouse uterine horns after treatment with progesterone, 2α-hydroxyprogesterone, 6β-hydroxyprogesterone (6β-OHP), 16α-hydroxyprogesterone (16α-OHP), or 17-hydroxyprogesterone caproate (17-OHPC) at 10−9 to 10−6 mol/L. Uterine horns were exposed to progestins (10−6 mol/L), followed by increasing concentrations of oxytocin (1-100 nmol/L) to study oxytocin-induced contractility. Contraction parameters were compared for each progestin and matched vehicle control using repeated measures 2-way analysis of variance. In vitro metabolism of progesterone by recombinant cytochrome P450 3A (CYP3A) microsomes (3A5, 3A5, and 3A7) identified major metabolites. Results: Oxytocin-induced contractile frequency was decreased by 16α-OHP (P = .03) and increased by 6β-OHP (P = .05). Progesterone and 17-OHPC decreased oxytocin-induced contractile force (P = .02 and P = .04, respectively) and frequency (P = .02 and P = .03, respectively). Only progesterone decreased spontaneous contractile force (P = .02). Production of 16α-OHP and 6β-OHP metabolites were confirmed in all CYP3A isoforms tested. Conclusion: Progesterone metabolites produced by maternal or fetal CYP3A enzymes influence uterine contractility. PMID:26037300

  14. Effect of Wnt3a on Keratinocytes Utilizing in Vitro and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Ju-Suk Nam

    2014-03-01

    Full Text Available Wingless-type (Wnt signaling proteins participate in various cell developmental processes. A suppressive role of Wnt5a on keratinocyte growth has already been observed. However, the role of other Wnt proteins in proliferation and differentiation of keratinocytes remains unknown. Here, we investigated the effects of the Wnt ligand, Wnt3a, on proliferation and differentiation of keratinocytes. Keratinocytes from normal human skin were cultured and treated with recombinant Wnt3a alone or in combination with the inflammatory cytokine, tumor necrosis factor α (TNFα. Furthermore, using bioinformatics, we analyzed the biochemical parameters, molecular evolution, and protein–protein interaction network for the Wnt family. Application of recombinant Wnt3a showed an anti-proliferative effect on keratinocytes in a dose-dependent manner. After treatment with TNFα, Wnt3a still demonstrated an anti-proliferative effect on human keratinocytes. Exogenous treatment of Wnt3a was unable to alter mRNA expression of differentiation markers of keratinocytes, whereas an altered expression was observed in TNFα-stimulated keratinocytes. In silico phylogenetic, biochemical, and protein–protein interaction analysis showed several close relationships among the family members of the Wnt family. Moreover, a close phylogenetic and biochemical similarity was observed between Wnt3a and Wnt5a. Finally, we proposed a hypothetical mechanism to illustrate how the Wnt3a protein may inhibit the process of proliferation in keratinocytes, which would be useful for future researchers.

  15. Analysis of NR3A receptor subunits in human native NMDA receptors

    DEFF Research Database (Denmark)

    Nilsson, Anna; Eriksson, Maria; Muly, E Chris

    2007-01-01

    NR3A, representing the third class of NMDA receptor subunits, was first studied in rats, demonstrating ubiquitous expression in the developing central nervous system (CNS), but in the adult mainly expressed in spinal cord and some forebrain nuclei. Subsequent studies showed that rodent and non-human...... primate NR3A expression differs. We have studied the distribution of NR3A in the human CNS and show a widespread distribution of NR3A protein in adult human brain. NR3A mRNA and protein were found in all regions of the cerebral cortex, and also in the subcortical forebrain, midbrain and hindbrain. Only...... very low levels of NR3A mRNA and protein could be detected in homogenized adult human spinal cord, and in situ hybridization showed that expression was limited to ventral motoneurons. We found that NR3A is associated with NR1, NR2A and NR2B in adult human CNS, suggesting the existence of native NR1-NR2...

  16. SCP4 Promotes Gluconeogenesis Through FoxO1/3a Dephosphorylation.

    Science.gov (United States)

    Cao, Jin; Yu, Yi; Zhang, Zhengmao; Chen, Xi; Hu, Zhaoyong; Tong, Qiang; Chang, Jiang; Feng, Xin-Hua; Lin, Xia

    2018-01-01

    FoxO1 and FoxO3a (collectively FoxO1/3a) proteins regulate a wide array of cellular processes, including hepatic gluconeogenesis. Phosphorylation of FoxO1/3a is a key event that determines its subcellular location and transcriptional activity. During glucose synthesis, the activity of FoxO1/3a is negatively regulated by Akt-mediated phosphorylation, which leads to the cytoplasmic retention of FoxO1/3a. However, the nuclear phosphatase that directly regulates FoxO1/3a remains to be identified. In this study, we discovered a nuclear phosphatase, SCP4/CTDSPL2 (SCP4), that dephosphorylated FoxO1/3a and promoted FoxO1/3a transcription activity. We found that SCP4 enhanced the transcription of FoxO1/3a target genes encoding PEPCK1 and G6PC, key enzymes in hepatic gluconeogenesis. Ectopic expression of SCP4 increased, while knockdown of SCP4 inhibited, glucose production. Moreover, we demonstrated that gene ablation of SCP4 led to hypoglycemia in neonatal mice. Consistent with the positive role of SCP4 in gluconeogenesis, expression of SCP4 was regulated under pathophysiological conditions. SCP4 expression was induced by glucose deprivation in vitro and in vivo and was elevated in obese mice caused by genetic (A vy ) and dietary (high-fat) changes. Thus, our findings provided experimental evidence that SCP4 regulates hepatic gluconeogenesis and could serve as a potential target for the prevention and treatment of diet-induced glucose intolerance and type 2 diabetes. © 2017 by the American Diabetes Association.

  17. Influence of Donor and Recipient CYP3A4, CYP3A5, and ABCB1 Genotypes on Clinical Outcomes and Nephrotoxicity in Liver Transplant Recipients.

    Science.gov (United States)

    Debette-Gratien, Marilyne; Woillard, Jean-Baptiste; Picard, Nicolas; Sebagh, Mylène; Loustaud-Ratti, Véronique; Sautereau, Denis; Samuel, Didier; Marquet, Pierre

    2016-10-01

    This study investigated the influence of the CYP3A4*22, CYP3A5*3, and ABCB1 exons 12, 21, and 26 polymorphisms in donors and recipients on clinical outcomes and renal function in 170 liver transplant patients on cyclosporin A (CsA) or tacrolimus (Tac). Allelic discrimination assays were used for genotyping. Multivariate time-dependent Cox proportional hazard models, multiple linear regression using the generalized estimating equation and linear mixed-effect models were used for statistical analysis. Expression of CYP3A5 by either or both the donor and the recipient was significantly associated with lower Tac, but not CsA, dose-normalized trough levels. In the whole population, graft loss was only significantly associated with longer exposure to high calcineurin inhibitor (CNI) concentrations (hazard ratio, 6.93; 95% confidence interval, 2.13-22.55), P = 0.00129), whereas in the Tac subgroup, the risk of graft loss was significantly higher in recipient CYP3A5*1 expressers (hazard ratio, 3.39; 95% confidence interval, 1.52-7.58; P = 0.0028). Renal function was significantly associated with: (1) baseline modification of diet in renal disease (β = 0.51 ± 0.05; P < 0.0001); (2) duration of patient follow-up (per visit, β = -0.98 ± 0.22; P < 0.0001); and (3) CNI exposure (per quantile increase, β = -2.42 ± 0.59; P < 0.0001). No genetic factor was associated with patient survival, acute rejection, liver function test results, recurrence of viral or other initial liver disease, or renal function. This study confirms the effect of CYP3A5*3 on tacrolimus dose requirement in liver transplantation and shows unexpected associations between the type of, and exposure to, CNI and either chronic rejection or graft loss. None of the genetic polymorphisms studied had a noticeable impact on renal function degradation at 10 years.

  18. TRMM Precipitation Radar (PR) Gridded Rainfall Product (TRMM Product 3A25) V6

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary objective of algorithm 3A25 is to compute various rainfall statistics over a month from the level 2 PR products. The statistics are derived at two...

  19. TRMM Precipitation Radar (PR) Gridded Rainfall Product (TRMM Product 3A25) V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary objective of algorithm 3A25 is to compute various rainfall statistics over a month from the level 2 PR products. The statistics are derived at two...

  20. Allosteric activation of midazolam CYP3A5 hydroxylase activity by icotinib - Enhancement by ketoconazole.

    Science.gov (United States)

    Zhuang, XiaoMei; Zhang, TianHong; Yue, SiJia; Wang, Juan; Luo, Huan; Zhang, YunXia; Li, Zheng; Che, JinJing; Yang, HaiYing; Li, Hua; Zhu, MingShe; Lu, Chuang

    2016-12-01

    Icotinib (ICO), a novel small molecule and a tyrosine kinase inhibitor, was developed and approved recently in China for non-small cell lung cancer. During screening for CYP inhibition potential in human liver microsomes (HLM), heterotropic activation toward CYP3A5 was revealed. Activation by icotinib was observed with CYP3A-mediated midazolam hydroxylase activity in HLM (∼40% over the baseline) or recombinant human CYP3A5 (rhCYP3A5) (∼70% over the baseline), but not in the other major CYPs including rhCYP3A4. When co-incubated with selective CYP3A4 inhibitor CYP3cide or monoclonal human CYP3A4 inhibitory antibody in HLM, the activation was extended to ∼60%, suggesting CYP3A5 might be the isozyme involved. Further, the relative activation was enhanced to ∼270% in rhCYP3A5 in the presence of ketoconazole. The activation was substrate and pathway dependent and observed only in the formation of 1'-OH-midazolam, and not 4-OH-midazolam, 6β-OH-testosterone, or oxidized nifedipine. The activation requires the presence of cytochrome b5 and it is only observed in the liver microsomes of dogs, monkeys, and humans, but not in rats and mice. Kinetic analyses of 1'-OH-midazolam formation showed that ICO increased the V max values in HLM and rhCYP3A5 with no significant changes in K m values. By adding CYP3cide with ICO to the incubation, the V max values increased 2-fold over the CYP3cide control. Addition of ketoconazole with ICO alone or ICO plus CYP3cide resulted in an increase in V max values and decrease in K m values compared to their controls. This phenomenon may be attributed to a new mechanism of CYP3A5 heterotropic activation, which warrants further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Development of Murine Cyp3a Knockout Chimeric Mice with Humanized Liver.

    Science.gov (United States)

    Kato, Kota; Ohbuchi, Masato; Hamamura, Satoko; Ohshita, Hiroki; Kazuki, Yasuhiro; Oshimura, Mitsuo; Sato, Koya; Nakada, Naoyuki; Kawamura, Akio; Usui, Takashi; Kamimura, Hidetaka; Tateno, Chise

    2015-08-01

    We developed murine CYP3A knockout ko chimeric mice with humanized liver expressing human P450S similar to those in humans and whose livers and small intestines do not express murine CYP3A this: approach may overcome effects of residual mouse metabolic enzymes like Cyp3a in conventional chimeric mice with humanized liver, such as PXB-mice [urokinase plasminogen activator/severe combined immunodeficiency (uPA/SCID) mice repopulated with over 70% human hepatocytes] to improve the prediction of drug metabolism and pharmacokinetics in humans. After human hepatocytes were transplanted into Cyp3a KO/uPA/SCID host mice, human albumin levels logarithmically increased until approximately 60 days after transplantation, findings similar to those in PXB-mice. Quantitative real-time-polymerase chain reaction analyses showed that hepatic human P450s, UGTs, SULTs, and transporters mRNA expression levels in Cyp3a KO chimeric mice were also similar to those in PXB-mice and confirmed the absence of Cyp3a11 mRNA expression in mouse liver and intestine. Findings for midazolam and triazolam metabolic activities in liver microsomes were comparable between Cyp3a KO chimeric mice and PXB-mice. In contrast, these activities in the intestine of Cyp3a KO chimeric mice were attenuated compared with PXB-mice. Owing to the knockout of murine Cyp3a, hepatic Cyp2b10 and 2c55 mRNA levels in Cyp3a KO/uPA/SCID mice (without hepatocyte transplants) were 8.4- and 61-fold upregulated compared with PXB-mice, respectively. However, human hepatocyte transplantation successfully restored Cyp2b10 level nearly fully and Cyp2c55 level partly (still 13-fold upregulated) compared with those in PXB-mice. Intestinal Cyp2b10 and 2c55 were also repressed by human hepatocyte transplantation in Cyp3a KO chimeric mice. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Cell culture system of a hepatitis C genotype 3a and 2a chimera

    DEFF Research Database (Denmark)

    2015-01-01

    A robust and genetically stable cell culture system for Hepatitis C Virus (HCV) genotype 3a is provided. A genotype 3a/2a (S52/JFH1) recombinant containing the structural genes (Core, E1, E2), p7 and NS2 of strain S52 was constructed and characterized in Huh7.5 cells. S52/JFH1 and J6/JFH viruses ...

  3. Characterization of the genetic variation present in CYP3A4 in three South African populations

    Directory of Open Access Journals (Sweden)

    Britt Ingrid Drögemöller

    2013-02-01

    Full Text Available TThe CYP3A4 enzyme is the most abundant human cytochrome P450 and is regarded as the most important enzyme involved in drug metabolism. Inter-individual and inter-population variability in gene expression and enzyme activity are thought to be influenced, in part, by genetic variation. Although Southern African individuals have been shown to exhibit the highest levels of genetic diversity, they have been under-represented in pharmacogenetic research to date. Therefore, the aim of this study was to identify genetic variation within CYP3A4 in three South African population groups comprising of 29 Khoisan, 65 Xhosa and 65 Mixed Ancestry individuals. To identify known and novel CYP3A4 variants, 15 individuals were randomly selected from each of the population groups for bi-directional Sanger sequencing of approximately 600 bp of the 5’-upstream region and all thirteen exons including flanking intronic regions. Genetic variants detected were genotyped in the rest of the cohort. In total, 24 SNPs were detected, including CYP3A4*12, CYP3A4*15, and the reportedly functional CYP3A4*1B promoter polymorphism, as well as two novel non-synonymous variants. These putatively functional variants, p.R162W and p.Q200H, were present in two of the three populations and all three populations, respectively, and in silico analysis predicted that the former would damage the protein product. Furthermore, the three populations were shown to exhibit distinct genetic profiles. These results confirm that South African populations show unique patterns of variation in the genes encoding xenobiotic metabolizing enzymes. This research suggests that population-specific genetic profiles for CYP3A4 and other drug metabolizing genes would be essential to make full use of pharmacogenetics in Southern Africa. Further investigation is needed to determine if the identified genetic variants influence CYP3A4 metabolism phenotype in these populations.

  4. Characterization of the genetic variation present in CYP3A4 in three South African populations.

    Science.gov (United States)

    Drögemöller, Britt; Plummer, Marieth; Korkie, Lundi; Agenbag, Gloudi; Dunaiski, Anke; Niehaus, Dana; Koen, Liezl; Gebhardt, Stefan; Schneider, Nicol; Olckers, Antonel; Wright, Galen; Warnich, Louise

    2013-01-01

    The CYP3A4 enzyme is the most abundant human cytochrome P450 (CYP) and is regarded as the most important enzyme involved in drug metabolism. Inter-individual and inter-population variability in gene expression and enzyme activity are thought to be influenced, in part, by genetic variation. Although Southern African individuals have been shown to exhibit the highest levels of genetic diversity, they have been under-represented in pharmacogenetic research to date. Therefore, the aim of this study was to identify genetic variation within CYP3A4 in three South African population groups comprising of 29 Khoisan, 65 Xhosa and 65 Mixed Ancestry (MA) individuals. To identify known and novel CYP3A4 variants, 15 individuals were randomly selected from each of the population groups for bi-directional Sanger sequencing of ~600 bp of the 5'-upstream region and all thirteen exons including flanking intronic regions. Genetic variants detected were genotyped in the rest of the cohort. In total, 24 SNPs were detected, including CYP3A4(*)12, CYP3A4(*)15, and the reportedly functional CYP3A4(*)1B promoter polymorphism, as well as two novel non-synonymous variants. These putatively functional variants, p.R162W and p.Q200H, were present in two of the three populations and all three populations, respectively, and in silico analysis predicted that the former would damage the protein product. Furthermore, the three populations were shown to exhibit distinct genetic profiles. These results confirm that South African populations show unique patterns of variation in the genes encoding xenobiotic metabolizing enzymes. This research suggests that population-specific genetic profiles for CYP3A4 and other drug metabolizing genes would be essential to make full use of pharmacogenetics in Southern Africa. Further investigation is needed to determine if the identified genetic variants influence CYP3A4 metabolism phenotype in these populations.

  5. Identification of epoxybergamottin as a CYP3A4 inhibitor in grapefruit peel.

    Science.gov (United States)

    Wangensteen, H; Molden, E; Christensen, H; Malterud, K E

    2003-02-01

    The oral availability of many drugs metabolised by the enzyme cytochrome P(450) 3A4 (CYP3A4) is increased if co-administered with grapefruit juice. Extracts from grapefruit peel have also demonstrated inhibitory activity and, during commercial manufacturing of grapefruit juice, inhibitory components might be squeezed into the juice from the peel. Thus, the aim of this in vitro study was to identify CYP3A4 inhibitors in grapefruit peel. Grapefruit peel was extracted with diethyl ether, and the extract was further fractionated by normal-phase chromatography. Fractions demonstrating significant CYP3A4 inhibitory activity, as measured by the relative reduction in N-demethylation of diltiazem in transfected human liver epithelial cells, were subsequently separated by preparative thin-layer chromatography. Constituents of the fractions and isolated compounds were identified by nuclear magnetic resonance spectroscopy. Analysis of diltiazem and N-demethyl-diltiazem was performed using high-performance liquid chromatography. Of the identified components in grapefruit peel, only epoxybergamottin demonstrated a concentration-dependent inhibition of the CYP3A4-mediated N-demethylation of diltiazem. The IC(50) value was calculated to be 4.2+/-1.1 micro M. Coumarins without the furan ring and flavonoids isolated from grapefruit peel did not interfere with the metabolism of diltiazem. The results indicated the presence of other CYP3A4 inhibitors in grapefruit peel, but these agents were lost during the purification process excluding their identification. The furanocoumarin epoxybergamottin, present in grapefruit peel, is an inhibitor of CYP3A4. In commercial manufacturing of grapefruit juice, epoxybergamottin is possibly distributed into the juice. During manufacturing, however, epoxybergamottin may be hydrolysed to 6',7'-dihydroxybergamottin, which has been suggested as an important CYP3A4 inhibitor in grapefruit juice.

  6. The Aspergillus fumigatus dihydroxyacid dehydratase Ilv3A/IlvC is required for full virulence.

    Directory of Open Access Journals (Sweden)

    Jason D Oliver

    Full Text Available Dihydroxyacid dehydratase (DHAD is a key enzyme in the branched-chain amino acid biosynthetic pathway that exists in a variety of organisms, including fungi, plants and bacteria, but not humans. In this study we identified four putative DHAD genes from the filamentous fungus Aspergillus fumigatus by homology to Saccharomyces cerevisiae ILV3. Two of these genes, AFUA_2G14210 and AFUA_1G03550, initially designated AfIlv3A and AfIlv3B for this study, clustered in the same group as S. cerevisiae ILV3 following phylogenetic analysis. To investigate the functions of these genes, AfIlv3A and AfIlv3B were knocked out in A. fumigatus. Deletion of AfIlv3B gave no apparent phenotype whereas the Δilv3A strain required supplementation with isoleucine and valine for growth. Thus, AfIlv3A is required for branched-chain amino acid synthesis in A. fumigatus. A recombinant AfIlv3A protein derived from AFUA_2G14210 was shown to have DHAD activity in an in vitro assay, confirming that AfIlv3A is a DHAD. In addition we show that mutants lacking AfIlv3A and ilv3B exhibit reduced levels of virulence in murine infection models, emphasising the importance of branched-chain amino acid biosynthesis in fungal infections, and hence the potential of targeting this pathway with antifungal agents. Here we propose that AfIlv3A/AFUA_2G2410 be named ilvC.

  7. Dramatic loss of Ube3A expression during aging of the mammalian cortex

    Directory of Open Access Journals (Sweden)

    Kate Williams

    2010-05-01

    Full Text Available Neurobiological studies of aging are beginning to link functional changes with a loss of experience-dependent plasticity. In the visual system, age-related functional changes include decreases in visual acuity, orientation selectivity, motion perception, and ocular dominance plasticity. A recent paper has shown that Ube3A, an E3 ubiquitin ligase that is absent in Angelman's Syndrome, is required for experience-dependent plasticity during development of the visual cortex. Knocking out Ube3A during development leads to rigidity of ocular dominance plasticity that is strikingly similar to the reduced plasticity seen in older animals. Furthermore, ubiquitin ligases have been linked with age-related neurodegenerative disorders and longevity. Ubiquitin ligases selectively mark proteins for degradation, and a balance between synaptic proteins and their degradation is important for neural transmission and plasticity. This led us to ask whether normal aging is characterized by a loss of Ube3A in the cortex. We used Western blot analysis in order to quantify Ube3A expression across the life span of humans, macaque monkeys, and cats. We found that Ube3A expression declines across the lifespan in human, monkey, and cat cortex. The losses were substantial (50-80% in all areas studied which includes V1, V3, V4, frontal, and auditory cortex. In addition, when compared with other synaptic proteins there was a selective loss of Ube3A in human cortex. The progressive loss of Ube3A expression during cortical aging is an important new finding. Furthermore, the selective loss of Ube3A in human cortex highlights a specific vulnerability in human brain aging that may signify a dramatic shift in cortical function and plasticity.

  8. Dnmt3a in the dorsal dentate gyrus is a key regulator of fear renewal.

    Science.gov (United States)

    Gong, Zhiting; Zhou, Qiang

    2018-03-23

    Renewal of extinguished fear memory in an altered context is widely believed to be a major limiting issue for exposure therapy in treating various psychiatric diseases. Effective prevention of fear renewal will significantly improve the efficacy of exposure therapy. DNA methyltransferase (DNMTs) mediated epigenetic processes play critical roles in long term memory, but little is known about their functions in fear memory extinction or renewal. Here we investigated whether DNMTs regulate fear renewal after extinction. We found that elevated Dnmt3a level in the dorsal dentate gyrus (dDG) of hippocampus was associated with the absence of fear renewal in an altered context after extinction training. Overexpression and knockdown of Dnmt3a in the dDG regulated the occurrence of fear renewal in a bi-directional manner. In addition, Dnmt3a overexpression was associated with elevated expression of c-Fos in the dDG during extinction training. Furthermore, we found that renewal of remote fear memory can be prevented, and the absence of renewal was concurrent with an elevated Dnmt3a level. Our results indicate that Dnmt3a in the dDG is a key regulator of fear renewal after extinction, and Dnmt3a may play a critical role in controlling fear memory return and thus has therapeutic values.

  9. Opposing roles of STAT4 and Dnmt3a in Th1 gene regulation

    Science.gov (United States)

    Pham, Duy; Yu, Qing; Walline, Crystal C.; Muthukrishnan, Rajarajeswari; Blum, Janice S.; Kaplan, Mark H.

    2013-01-01

    The Signal Transducer and Activator of Transcription factor STAT4 is a critical regulator of Th1 differentiation and inflammatory disease. Yet, how STAT4 regulates gene expression is still unclear. In this report, we define a STAT4-dependent sequence of events including H3K4 methylation, Jmjd3 association with STAT4 target loci, and a Jmjd3-dependent decrease in H3K27 trimethylation and DNA methyltransferase (Dnmt) 3a association with STAT4 target loci. Dnmt3a has an obligate role in repressing Th1 gene expression, and in Th1 cultures deficient in both STAT4 and Dnmt3a, there is recovery in the expression of a subset of Th1 genes that is sufficient to increase IFNγ production. Moreover, although STAT4-deficient mice are protected from the development of EAE, mice deficient in STAT4 and conditionally-deficient in Dnmt3a in T cells develop paralysis. Th1 genes that are de-repressed in the absence of Dnmt3a have greater induction following the ectopic expression of the Th1-associated transcription factors T-bet and Hlx1. Together, these data demonstrate that STAT4 and Dnmt3a play opposing roles in regulating Th1 gene expression, and that one mechanism for STAT4-dependent gene programming is in establishing a de-repressed genetic state susceptible to transactivation by additional fate-determining transcription factors. PMID:23772023

  10. SPG3A-linked hereditary spastic paraplegia associated with cerebral glucose hypometabolism.

    Science.gov (United States)

    Terada, Tatsuhiro; Kono, Satoshi; Ouchi, Yasuomi; Yoshida, Kenichi; Hamaya, Yasushi; Kanaoka, Shigeru; Miyajima, Hiroaki

    2013-04-01

    SPG3A-linked hereditary spastic paraplegia (HSP) is a rare autosomal dominant motor disorder caused by a mutation in the SPG3A gene, and is characterized by progressive motor weakness and spasticity in the lower limbs, without any other neurological abnormalities. SPG3A-linked HSP caused by a R239C mutation has been reported to present a pure phenotype confined to impairment of the corticospinal tract. However, there is still a debate about the etiology of this motor deficit with regard to whether it is peripheral or central. We herein report two patients who were heterozygous for a R239C mutation in the SPG3A gene. Two middle-aged Japanese sisters had been suffering from a pure phenotype of HSP since their childhood. Both patients had a significant decrease in glucose metabolism in the frontal cortex medially and dorsolaterally in a [(18)F]-fluorodeoxyglucose (FDG) positron emission photography (PET) study and low scores on the Frontal Assessment Battery. A real-time PCR analysis in normal subjects showed the frontal cortex to be the major location where SPG3A mRNA is expressed. The present finding that the frontal glucose hypometabolism was associated with frontal cognitive impairment indicates that widespread neuropathology associated with mutations in the SPG3A gene may be present more centrally than previously assumed.

  11. SCGB3A2 Inhibits Acrolein-Induced Apoptosis through Decreased p53 Phosphorylation.

    Science.gov (United States)

    Kurotani, Reiko; Shima, Reika; Miyano, Yuki; Sakahara, Satoshi; Matsumoto, Yoshie; Shibata, Yoko; Abe, Hiroyuki; Kimura, Shioko

    2015-04-28

    Chronic obstructive pulmonary disease (COPD), a major global health problem with increasing morbidity and mortality rates, is anticipated to become the third leading cause of death worldwide by 2020. COPD arises from exposure to cigarette smoke. Acrolein, which is contained in cigarette smoke, is the most important risk factor for COPD. It causes lung injury through altering apoptosis and causes inflammation by augmenting p53 phosphorylation and producing reactive oxygen species (ROS). Secretoglobin (SCGB) 3A2, a secretory protein predominantly present in the epithelial cells of the lungs and trachea, is a cytokine-like small molecule having anti-inflammatory, antifibrotic, and growth factor activities. In this study, the effect of SCGB3A2 on acrolein-related apoptosis was investigated using the mouse fibroblast cell line MLg as the first step in determining the possible therapeutic value of SCGB3A2 in COPD. Acrolein increased the production of ROS and phosphorylation of p53 and induced apoptosis in MLg cells. While the extent of ROS production induced by acrolein was not affected by SCGB3A2, p53 phosphorylation was significantly decreased by SCGB3A2. These results demonstrate that SCGB3A2 inhibited acrolein-induced apoptosis through decreased p53 phosphorylation, not altered ROS levels.

  12. SCGB3A2 Inhibits Acrolein-Induced Apoptosis through Decreased p53 Phosphorylation

    International Nuclear Information System (INIS)

    Kurotani, Reiko; Shima, Reika; Miyano, Yuki; Sakahara, Satoshi; Matsumoto, Yoshie; Shibata, Yoko; Abe, Hiroyuki; Kimura, Shioko

    2015-01-01

    Chronic obstructive pulmonary disease (COPD), a major global health problem with increasing morbidity and mortality rates, is anticipated to become the third leading cause of death worldwide by 2020. COPD arises from exposure to cigarette smoke. Acrolein, which is contained in cigarette smoke, is the most important risk factor for COPD. It causes lung injury through altering apoptosis and causes inflammation by augmenting p53 phosphorylation and producing reactive oxygen species (ROS). Secretoglobin (SCGB) 3A2, a secretory protein predominantly present in the epithelial cells of the lungs and trachea, is a cytokine-like small molecule having anti-inflammatory, antifibrotic, and growth factor activities. In this study, the effect of SCGB3A2 on acrolein-related apoptosis was investigated using the mouse fibroblast cell line MLg as the first step in determining the possible therapeutic value of SCGB3A2 in COPD. Acrolein increased the production of ROS and phosphorylation of p53 and induced apoptosis in MLg cells. While the extent of ROS production induced by acrolein was not affected by SCGB3A2, p53 phosphorylation was significantly decreased by SCGB3A2. These results demonstrate that SCGB3A2 inhibited acrolein-induced apoptosis through decreased p53 phosphorylation, not altered ROS levels

  13. Loss of Dnmt3a induces CLL and PTCL with distinct methylomes and transcriptomes in mice.

    Science.gov (United States)

    Haney, Staci L; Upchurch, Garland M; Opavska, Jana; Klinkebiel, David; Appiah, Adams Kusi; Smith, Lynette M; Heavican, Tayla B; Iqbal, Javeed; Joshi, Shantaram; Opavsky, Rene

    2016-09-28

    Cytosine methylation of DNA is an epigenetic modification involved in the repression of genes that affect biological processes including hematopoiesis. It is catalyzed by DNA methyltransferases, one of which -DNMT3A- is frequently mutated in human hematologic malignancies. We have previously reported that Dnmt3a inactivation in hematopoietic stem cells results in chronic lymphocytic leukemia (CLL) and CD8-positive peripheral T cell lymphomas (PTCL) in EμSRα-tTA;Teto-Cre;Dnmt3a fl/fl ; Rosa26LOXP EGFP/EGFP (Dnmt3a Δ/Δ ) mice. The extent to which molecular changes overlap between these diseases is not clear. Using high resolution global methylation and expression analysis we show that whereas patterns of methylation and transcription in normal B-1a cells and CD8-positive T cells are similar, methylomes and transcriptomes in malignant B-1a and CD8+ T cells are remarkably distinct, suggesting a cell-type specific function for Dnmt3a in cellular transformation. Promoter hypomethylation in tumors was 10 times more frequent than hypermethylation, three times more frequent in CLL than PTCL and correlated better with gene expression than hypermethylation. Cross-species molecular comparison of mouse and human CLL and PTCL reveals significant overlaps and identifies putative oncogenic drivers of disease. Thus, Dnmt3a Δ/Δ mice can serve as a new mouse model to study CLL and PTCL in relevant physiological settings.

  14. Neuroprotective and regenerative roles of intranasal Wnt-3a administration after focal ischemic stroke in mice.

    Science.gov (United States)

    Wei, Zheng Zachory; Zhang, James Ya; Taylor, Tammi M; Gu, Xiaohuan; Zhao, Yingying; Wei, Ling

    2018-03-01

    Wnt signaling is a conserved pathway involved in expansion of neural progenitors and lineage specification during development. However, the role of Wnt signaling in the post-stroke brain has not been well-elucidated. We hypothesized that Wnt-3a would play an important role for neurogenesis and brain repair. Adult male mice were subjected to a focal ischemic stroke targeting the sensorimotor cortex. Mice that received Wnt-3a (2 µg/kg/day, 1 h after stroke and once a day for the next 2 days, intranasal delivery) had reduced infarct volume compared to stroke controls. Wnt-3a intranasal treatment of seven days upregulated the expression of brain-derived growth factor (BDNF), increased the proliferation and migration of neuroblasts from the subventricular zone (SVZ), resulting in increased numbers of newly formed neurons and endothelial cells in the peri-infarct zone. Both the molecular and cellular effects of Wnt-3a were blocked by the Wnt specific inhibitors XAV-939 or Dkk-1. In functional assays, Wnt-3a treatment enhanced the local cerebral blood flow (LCBF) in the peri-infarct, as well as improved sensorimotor functions in a battery of behavioral tests. Together, our data demonstrates that the Wnt-3a signaling can act as a dual neuroprotective and regenerative factor for the treatment of ischemic stroke.

  15. Two truncating USH3A mutations, including one novel, in a German family with Usher syndrome.

    Science.gov (United States)

    Ebermann, Inga; Wilke, Robert; Lauhoff, Thomas; Lübben, Dirk; Zrenner, Eberhart; Bolz, Hanno Jörn

    2007-08-30

    To identify the genetic defect in a German family with Usher syndrome (USH) and linkage to the USH3A locus. DNA samples of five family members (both parents and the three patients) were genotyped with polymorphic microsatellite markers specific for eight USH genes. Three affected family members underwent detailed ocular and audiologic characterization. Symptoms in the patients were compatible with Usher syndrome and show intrafamilial variation, for both hearing loss (ranging from severe to profound with non-linear progression) and vision. Genotyping of microsatellite markers for the different USH loci was in line with a defect in the USH3A gene on chromosome 3q25. Sequence analysis of the USH3A gene revealed two truncating mutations; c.149_152delCAGGinsTGTCCAAT, which has been described previously, and a novel mutation, c.502_503insA, segregating with the phenotype. To date, only 11 USH3A mutations have been described. This is the first description of a German family with USH due to USH3A mutations, including one novel. Our findings indicate that also in the Central European population, USH3A mutations should be considered in cases of USH.

  16. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function

    DEFF Research Database (Denmark)

    Jensen, Kim Steen; Binderup, Tina; Jensen, Klaus Thorleif

    2011-01-01

    Exposure of metazoan organisms to hypoxia engages a metabolic switch orchestrated by the hypoxia-inducible factor 1 (HIF-1). HIF-1 mediates induction of glycolysis and active repression of mitochondrial respiration that reduces oxygen consumption and inhibits the production of potentially harmful...... tumour tissue in vivo and that FoxO3A short-hairpin RNA (shRNA)-expressing xenograft tumours are decreased in size and metabolically changed. Our findings define a novel mechanism by which FoxO3A promotes metabolic adaptation and stress resistance in hypoxia....... reactive oxygen species (ROS). Here, we show that FoxO3A is activated in hypoxia downstream of HIF-1 and mediates the hypoxic repression of a set of nuclear-encoded mitochondrial genes. FoxO3A is required for hypoxic suppression of mitochondrial mass, oxygen consumption, and ROS production and promotes...... cell survival in hypoxia. FoxO3A is recruited to the promoters of nuclear-encoded mitochondrial genes where it directly antagonizes c-Myc function via a mechanism that does not require binding to the consensus FoxO recognition element. Furthermore, we show that FoxO3A is activated in human hypoxic...

  17. CYP3A isoforms in Ewing's sarcoma tumours: an immunohistochemical study with clinical correlation.

    Science.gov (United States)

    Zia, Hamid; Murray, Graeme I; Vyhlidal, Carrie A; Leeder, J Steven; Anwar, Ahmed E; Bui, Marilyn M; Ahmed, Atif A

    2015-04-01

    Ewing's sarcoma is an aggressive malignancy of bone and soft tissue with high incidence of metastasis and resistance to chemotherapy. Cytochrome P450 (CYP) monooxygenases are a family of enzymes that are involved in the metabolism of exogenous and endogenous compounds, including anti-cancer drugs, and have been implicated in the aggressive behaviour of various malignancies. Tumour samples and clinical information including age, sex, tumour site, tumour size, clinical stage and survival were collected from 36 adult and paediatric patients with Ewing's sarcoma family tumours. Tissue microarrays slides were processed for immunohistochemical labelling for CYP3A4, CYP3A5 and CYP3A7 using liver sections as positive control. The intensity of staining was scored as negative, low or high expression and was analysed statistically for any association with patients' clinical information. Four cases were later excluded due to inadequate viable tissue. CYP3A4 staining was present in 26 (81%) cases with high expression noted in 13 (40%) of 32 cases. High expression was significantly associated with distant metastases (P Ewing's sarcoma tumours and high CYP3A4 expression may be associated with metastasis. Additional studies are needed to further investigate the role of CYP3A4 in the prognosis of these tumours. © 2015 The Authors. International Journal of Experimental Pathology © 2015 International Journal of Experimental Pathology.

  18. E2F3a gene expression has prognostic significance in childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Wang, Kai-Ling; Mei, Yan-Yan; Cui, Lei; Zhao, Xiao-Xi; Li, Wei-Jing; Gao, Chao; Liu, Shu-Guang; Jiao, Ying; Liu, Fei-Fei; Wu, Min-Yuan; Ding, Wei; Li, Zhi-Gang

    2014-10-01

    To study E2F3a expression and its clinical significance in children with acute lymphoblastic leukemia (ALL). We quantified E2F3a expression at diagnosis in 148 children with ALL by real-time PCR. In the test cohort (n = 48), receiver operating characteristic (ROC) curve was used to find the best cut-off point to divide the patients into E2F3a low- and high-expression groups. The prognostic significance of E2F3a expression was investigated in the test cohort and confirmed in the validation cohort (n = 100). The correlations of E2F3a expression with the clinical features and treatment outcome of these patients were analyzed. ROC curve analysis indicated that the best cut-off point of E2F3a expression was 0.3780. In the test cohort, leukemia-free survival (LFS) and event-free survival (EFS) of the low-expression group were lower than those of the high-expression group (log rank: P = 0.026 for both). This finding was verified in the validation cohort. LFS, EFS, and overall survival were also lower in the low-expression group than in the high-expression group (log rank, P = 0.015, 0.008, and 0.002 respectively). E2F3a low expression was correlated with the existence of BCR-ABL fusion. An algorithm composed of E2F3a expression and minimal residual disease (MRD) could predict relapse or induction failure more precisely than current risk stratification. These results were still significant in the ALL patients without BCR-ABL fusion. Low expression of E2F3a was associated with inferior prognosis in childhood ALL. An algorithm composed of E2F3a expression and MRD could predict relapse or induction failure more precisely than that of the current risk stratification. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. The influence of CYP3A5 polymorphisms on haloperidol treatment in patients with alcohol addiction

    Directory of Open Access Journals (Sweden)

    Zastrozhin MS

    2017-12-01

    Full Text Available Mikhail Sergeevich Zastrozhin,1,2 Elena Anatolievna Grishina,1 Kristina Anatolievna Ryzhikova,1 Valery Valerievich Smirnov,3 Ludmila Mikhailovna Savchenko,1 Evgeny Alekseevich Bryun,1,2 Dmitry Alekseevich Sychev1 1Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation, 2Moscow Research and Practical Centre on Addictions, Moscow Department of Healthcare, 3National Research Center Institute of Immunology, Federal Medical-Biological Agency, Moscow, Russia Background: Isoenzymes CYP2D6 and CYP3A4, the activity of which varies widely, are involved in metabolism of haloperidol and may influence its profile of efficacy and safety.Objective: The primary aim of this study was to estimate the relationship between CYP3A5 gene polymorphism, activity of the CYP3A isoenzyme, and the risk of development of adverse drug reactions by haloperidol in patients with alcohol abuse.Methods: Sixty-six male alcohol-addicted patients participated in the study. The safety of haloperidol was evaluated by Udvalg for Kliniske Undersogelser Side Effect Rating Scale (UKU and Simpson–Angus Scale for extrapyramidal symptoms (SAS. The activity of CYP3A was evaluated by determining the concentrations of an endogenous substrate of this isoenzyme (cortisol and its urinary metabolite (6-beta-hydroxycortisol, 6-B-HC. Genotyping of CYP3A5*3 was performed by real-time polymerase chain reaction with allele-specific hybridization.Results: The frequency of A-allele occurrence in Russian population was very poor (2.27%. CYP3A5*3 polymorphism had no influence on safety profile indicators of haloperidol (UKU scale: p=0.55, SAS scale: p=0.64. In addition, there was no statistical significant difference between the values of indexes of the metabolic ratio (6-B-HC/cortisol in groups with different genotypes of CYP3A5*3: GG 5.00 (3.36; 6.39 vs AG 5.26 (2.10; 6.78 (p=0.902.Conclusion: The frequency of A-allele occurrence of CYP3A5*3 in Russian

  20. wnt3a but not wnt11 supports self-renewal of embryonic stem cells

    International Nuclear Information System (INIS)

    Singla, Dinender K.; Schneider, David J.; LeWinter, Martin M.; Sobel, Burton E.

    2006-01-01

    wnt proteins (wnts) promote both differentiation of midbrain dopaminergic cells and self-renewal of haematopoietic stem cells. Mouse embryonic stem (ES) cells can be maintained and self-renew on mouse feeder cell layers or in media containing leukemia inhibitory factor (LIF). However, the effects of wnts on ES cells self-renewal and differentiation are not clearly understood. In the present study, we found that conditioned medium prepared from L cells expressing wnt3a can replace feeder cell layers and medium containing LIF in maintaining ES cells in the proliferation without differentiation (self-renewal) state. By contrast, conditioned medium from NIH3T3 cells expressing wnt11 did not. Alkaline phosphatase staining and compact colony formation were used as criteria of cells being in the undifferentiated state. ES cells maintained in medium conditioned by Wnt3a expressing cells underwent freezing and thawing while maintaining properties seen with LIF maintained ES cells. Purified wnt3a did not maintain self-renewal of ES cells for prolonged intervals. Thus, other factors in the medium conditioned by wnt3a expressing cells may have contributed to maintenance of ES cells in a self-renewal state. Pluripotency of ES cells was determined with the use of embryoid bodies in vitro. PD98059, a MEK specific inhibitor, promoted the growth of undifferentiated ES cells maintained in conditioned medium from wnt3a expressing cells. By contrast, the P38 MAPK inhibitor SB230580 did not, suggesting a role for the MEK pathway in self-renewal and differentiation of ES cells maintained in the wnt3a cell conditioned medium. Thus, our results show that conditioned medium from wnt3a but not wnt11 expressing cells can maintain ES cells in self-renewal and in a pluripotent state

  1. CYP3A5 Polymorphism In Serbian Paediatric Epileptic Patients On Carbamazepine Treatment

    Directory of Open Access Journals (Sweden)

    Milovanovic Dragana Dragas

    2015-06-01

    Full Text Available Carbamazepine exhibits significant inter-individual variability in its efficacy and safety, which leads to unpredictable therapy outcomes for the majority of patients. Although its complex biotransformation depends on CYP3A5 activity, evidence of association between carbamazepine treatment outcomes and CYP3A5 functional variations remains inconclusive. The aim of the present study was to investigate the distribution of two of the functionally important CYP3A5 variants *2 and *3 as well as their effects on carbamazepine dose requirements, plasma concentrations and clearance in a Serbian population. The study involved 40 paediatric epileptic patients on steady-state carbamazepine treatment. Genotyping was conducted using the PCR-RFLP method, and carbamazepine plasma concentrations were determined using the HPLC method. CYP3A5*2 and *3 polymorphisms were found at frequencies of 0.0% and 97.5%, respectively, which corresponds well to previously published data for Caucasians. No differences in CYP3A5*3 allele frequencies were detected among epileptic patients in comparison to healthy volunteers within similar ethnic populations (p>0.08, indicating that CYP3A5 polymorphism does not represent a risk factor for epilepsy development. There was an observed tendency towards lower dosage requirements (mean±SD: 15.06±4.45 mg/kg vs. 18.74±5.55 mg/kg; p=0.26, higher plasma concentrations (mean±SD: 0.45±0.13 mg/kg vs. 0.38±0.03 mg/kg; p=0.47 and lower clearance (mean±SD: 0.14±0.05 mg/kg vs. 0.15±0.01 mg/kg; p=0.79 of carbamazepine in homozygous carriers of CYP3A5*3/*3 compared to heterozygous CYP3A5*1A/*3 Serbians. Because these genotype groups did not differ significantly in terms of their carbamazepine pharmacokinetics parameters, the proposed effects of CYP3A5*3 on carbamazepine metabolism could not be confirmed.

  2. RIM, Munc13, and Rab3A interplay in acrosomal exocytosis

    International Nuclear Information System (INIS)

    Bello, Oscar D.; Zanetti, M. Natalia; Mayorga, Luis S.; Michaut, Marcela A.

    2012-01-01

    Exocytosis is a highly regulated, multistage process consisting of multiple functionally definable stages, including recruitment, targeting, tethering, priming, and docking of secretory vesicles with the plasma membrane, followed by calcium-triggered membrane fusion. The acrosome reaction of spermatozoa is a complex, calcium-dependent regulated exocytosis. Fusion at multiple sites between the outer acrosomal membrane and the cell membrane causes the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. Not much is known about the molecules that mediate membrane docking in this particular fusion model. In neurons, the formation of the ternary RIM/Munc13/Rab3A complex has been suggested as a critical component of synaptic vesicles docking. Previously, we demonstrated that Rab3A localizes to the acrosomal region in human sperm, stimulates acrosomal exocytosis, and participates in an early stage during membrane fusion. Here, we report that RIM and Munc13 are also present in human sperm and localize to the acrosomal region. Like Rab3A, RIM and Munc13 participate in a prefusion step before the efflux of intra-acrosomal calcium. By means of a functional assay using antibodies and recombinant proteins, we show that RIM, Munc13 and Rab3A interplay during acrosomal exocytosis. Finally, we report by electron transmission microscopy that sequestering RIM and Rab3A alters the docking of the acrosomal membrane to the plasma membrane during calcium-activated acrosomal exocytosis. Our results suggest that the RIM/Munc13/Rab3 A complex participates in acrosomal exocytosis and that RIM and Rab3A have central roles in membrane docking. -- Highlights: ► RIM and Munc13 are present in human sperm and localize to the acrosomal region. ► RIM and Munc13 are necessary for acrosomal exocytosis. ► RIM and Munc13 participate before the acrosomal calcium efflux. ► RIM, Munc13 and Rab3A interplay in human sperm acrosomal exocytosis. ► RIM and Rab3A

  3. RIM, Munc13, and Rab3A interplay in acrosomal exocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Bello, Oscar D.; Zanetti, M. Natalia [Laboratorio de Biologia Celular y Molecular, Instituto de Histologia y Embriologia, IHEM (CONICET-UNCuyo), Facultad de Ciencias Medicas (Argentina); Laboratorio de Biologia Reproductiva, Instituto de Histologia y Embriologia, IHEM (CONICET-UNCuyo), Facultad de Ciencias Medicas (Argentina); Mayorga, Luis S. [Laboratorio de Biologia Celular y Molecular, Instituto de Histologia y Embriologia, IHEM (CONICET-UNCuyo), Facultad de Ciencias Medicas (Argentina); Michaut, Marcela A., E-mail: mmichaut@fcm.uncu.edu.ar [Laboratorio de Biologia Reproductiva, Instituto de Histologia y Embriologia, IHEM (CONICET-UNCuyo), Facultad de Ciencias Medicas (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (5500) (Argentina)

    2012-03-10

    Exocytosis is a highly regulated, multistage process consisting of multiple functionally definable stages, including recruitment, targeting, tethering, priming, and docking of secretory vesicles with the plasma membrane, followed by calcium-triggered membrane fusion. The acrosome reaction of spermatozoa is a complex, calcium-dependent regulated exocytosis. Fusion at multiple sites between the outer acrosomal membrane and the cell membrane causes the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. Not much is known about the molecules that mediate membrane docking in this particular fusion model. In neurons, the formation of the ternary RIM/Munc13/Rab3A complex has been suggested as a critical component of synaptic vesicles docking. Previously, we demonstrated that Rab3A localizes to the acrosomal region in human sperm, stimulates acrosomal exocytosis, and participates in an early stage during membrane fusion. Here, we report that RIM and Munc13 are also present in human sperm and localize to the acrosomal region. Like Rab3A, RIM and Munc13 participate in a prefusion step before the efflux of intra-acrosomal calcium. By means of a functional assay using antibodies and recombinant proteins, we show that RIM, Munc13 and Rab3A interplay during acrosomal exocytosis. Finally, we report by electron transmission microscopy that sequestering RIM and Rab3A alters the docking of the acrosomal membrane to the plasma membrane during calcium-activated acrosomal exocytosis. Our results suggest that the RIM/Munc13/Rab3 A complex participates in acrosomal exocytosis and that RIM and Rab3A have central roles in membrane docking. -- Highlights: Black-Right-Pointing-Pointer RIM and Munc13 are present in human sperm and localize to the acrosomal region. Black-Right-Pointing-Pointer RIM and Munc13 are necessary for acrosomal exocytosis. Black-Right-Pointing-Pointer RIM and Munc13 participate before the acrosomal calcium efflux. Black

  4. MDM2 antagonist Nutlin-3a potentiates antitumour activity of cytotoxic drugs in sarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Lothe Ragnhild A

    2011-05-01

    Full Text Available Abstract Background Frequent failure and severe side effects of current sarcoma therapy warrants new therapeutic approaches. The small-molecule MDM2 antagonist Nutlin-3a activates the p53 pathway and efficiently induces apoptosis in tumours with amplified MDM2 gene and overexpression of MDM2 protein. However, the majority of human sarcomas have normal level of MDM2 and the therapeutic potential of MDM2 antagonists in this group is still unclear. We have investigated if Nutlin-3a could be employed to augment the response to traditional therapy and/or reduce the genotoxic burden of chemotherapy. Methods A panel of sarcoma cell lines with different TP53 and MDM2 status were treated with Nutlin-3a combined with Doxorubicin, Methotrexate or Cisplatin, and their combination index determined. Results Clear synergism was observed when Doxorubicin and Nutlin-3a were combined in cell lines with wild-type TP53 and amplified MDM2, or with Methotrexate in both MDM2 normal and amplified sarcoma cell lines, allowing for up to tenfold reduction of cytotoxic drug dose. Interestingly, Nutlin-3a seemed to potentiate the effect of classical drugs as Doxorubicin and Cisplatin in cell lines with mutated TP53, but inhibited the effect of Methotrexate. Conclusion The use of Nutlin in combination with classical sarcoma chemotherapy shows promising preclinical potential, but since clear biomarkers are still lacking, clinical trials should be followed up with detailed tumour profiling.

  5. CYP3A4 Mediates Oxidative Metabolism of the Synthetic Cannabinoid AKB-48.

    Science.gov (United States)

    Holm, Niels Bjerre; Nielsen, Line Marie; Linnet, Kristian

    2015-09-01

    Synthetic cannabinoid designer drugs have emerged as drugs of abuse during the last decade, and acute intoxication cases are documented in the scientific literature. Synthetic cannabinoids are extensively metabolized, but our knowledge of the involved enzymes is limited. Here, we investigated the metabolism of N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (AKB-48), a compound identified in herbal blends from 2012 and onwards. We screened for metabolite formation using a panel of nine recombinant cytochrome P450 (CYP) enzymes (CYP1A2, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, and 3A4) and compared the formed metabolites to human liver microsomal (HLM) incubations with specific inhibitors against CYP2D6, 2C19, and 3A4, respectively. The data reported here demonstrate CYP3A4 to be the major CYP enzyme responsible for the oxidative metabolism of AKB-48, preferentially performing the oxidation on the adamantyl moiety. Genetic polymorphisms are likely not important with regard to toxicity given the major involvement of CYP3A4. Adverse drug-drug interactions (DDIs) could potentially occur in cases with co-intake of strong CYP3A4 inhibitors, e.g., HIV antivirals and azole antifungal agents.

  6. Pi-pi Stacking Mediated Cooperative Mechanism for Human Cytochrome P450 3A4

    Directory of Open Access Journals (Sweden)

    Botao Fa

    2015-04-01

    Full Text Available Human Cytochrome P450 3A4 (CYP3A4 is an important member of the cytochrome P450 superfamily with responsibility for metabolizing ~50% of clinical drugs. Experimental evidence showed that CYP3A4 can adopt multiple substrates in its active site to form a cooperative binding model, accelerating substrate metabolism efficiency. In the current study, we constructed both normal and cooperative binding models of human CYP3A4 with antifungal drug ketoconazoles (KLN. Molecular dynamics simulation and free energy calculation were then carried out to study the cooperative binding mechanism. Our simulation showed that the second KLN in the cooperative binding model had a positive impact on the first one binding in the active site by two significant pi-pi stacking interactions. The first one was formed by Phe215, functioning to position the first KLN in a favorable orientation in the active site for further metabolism reactions. The second one was contributed by Phe304. This pi-pi stacking was enhanced in the cooperative binding model by the parallel conformation between the aromatic rings in Phe304 and the dioxolan moiety of the first KLN. These findings can provide an atomic insight into the cooperative binding in CYP3A4, revealing a novel pi-pi stacking mechanism for drug-drug interactions.

  7. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability.

    Science.gov (United States)

    Tatton-Brown, Katrina; Seal, Sheila; Ruark, Elise; Harmer, Jenny; Ramsay, Emma; Del Vecchio Duarte, Silvana; Zachariou, Anna; Hanks, Sandra; O'Brien, Eleanor; Aksglaede, Lise; Baralle, Diana; Dabir, Tabib; Gener, Blanca; Goudie, David; Homfray, Tessa; Kumar, Ajith; Pilz, Daniela T; Selicorni, Angelo; Temple, I Karen; Van Maldergem, Lionel; Yachelevich, Naomi; van Montfort, Robert; Rahman, Nazneen

    2014-04-01

    Overgrowth disorders are a heterogeneous group of conditions characterized by increased growth parameters and other variable clinical features such as intellectual disability and facial dysmorphism. To identify new causes of human overgrowth, we performed exome sequencing in ten proband-parent trios and detected two de novo DNMT3A mutations. We identified 11 additional de novo mutations by sequencing DNMT3A in a further 142 individuals with overgrowth. The mutations alter residues in functional DNMT3A domains, and protein modeling suggests that they interfere with domain-domain interactions and histone binding. Similar mutations were not present in 1,000 UK population controls (13/152 cases versus 0/1,000 controls; P < 0.0001). Mutation carriers had a distinctive facial appearance, intellectual disability and greater height. DNMT3A encodes a DNA methyltransferase essential for establishing methylation during embryogenesis and is commonly somatically mutated in acute myeloid leukemia. Thus, DNMT3A joins an emerging group of epigenetic DNA- and histone-modifying genes associated with both developmental growth disorders and hematological malignancies.

  8. [Toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect].

    Science.gov (United States)

    Liao, R Y; Liu, S

    2016-06-20

    To investigate the toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect. The normal human liver cells (L02 cells) and liver cells with CYP3A4 gene defect were exposed to trichloroethylene at different doses (0.0, 0.4, 0.8, 1.6, 3.2, and 6.4 mmol/L). CCK8 assay and RT-qPCR were used to measure cell viability and changes in the expression of apoptosis genes and oncogenes. After being exposed to trichloroethylene at doses of 1.6, 3.2, and 6.4 mmol/L, the liver cells with CYP3A4 gene defect showed significantly higher cell viability than L02 cells (0.91±0.06/0.89±0.05/0.85±0.07 vs 0.80±0.04/0.73±0.06/0.67±0.07, Ptrichloroethylene groups showed significant increases in the expression of the apoptosis genes caspase-3, caspase-8, and caspase-9 (PTrichloroethylene exposure has a less effect on the expression of apoptosis genes and oncogenes in liver cells with CYP3A4 gene defect than in normal human liver cells, suggesting that CYP3A4 gene defect reduces the inductive effect of trichloroethylene on apoptosis genes and oncogenes.

  9. Bioactivation and Regioselectivity of Pig Cytochrome P450 3A29 towards Aflatoxin B1

    Directory of Open Access Journals (Sweden)

    Jun Wu

    2016-09-01

    Full Text Available Due to unavoidable contaminations in feedstuff, pigs are easily exposed to aflatoxin B1 (AFB1 and suffer from poisoning, thus the poisoned products potentially affect human health. Heretofore, the metabolic process of AFB1 in pigs remains to be clarified, especially the principal cytochrome P450 oxidases responsible for its activation. In this study, we cloned CYP3A29 from pig liver and expressed it in Escherichia coli, and its activity has been confirmed with the typical P450 CO-reduced spectral characteristic and nifedipine-oxidizing activity. The reconstituted membrane incubation proved that the recombinant CYP3A29 was able to oxidize AFB1 to form AFB1-exo-8,9-epoxide in vitro. The structural basis for the regioselective epoxidation of AFB1 by CYP3A29 was further addressed. The T309A mutation significantly decreased the production of AFBO, whereas F304A exhibited an enhanced activation towards AFB1. In agreement with the mutagenesis study, the molecular docking simulation suggested that Thr309 played a significant role in stabilization of AFB1 binding in the active center through a hydrogen bond. In addition, the bulk phenyl group of Phe304 potentially imposed steric hindrance on the binding of AFB1. Our study demonstrates the bioactivation of pig CYP3A29 towards AFB1 in vitro, and provides the insight for understanding regioselectivity of CYP3A29 to AFB1.

  10. Regulation of DNA Methylation Patterns by CK2-Mediated Phosphorylation of Dnmt3a

    Directory of Open Access Journals (Sweden)

    Rachel Deplus

    2014-08-01

    Full Text Available DNA methylation is a central epigenetic modification that is established by de novo DNA methyltransferases. The mechanisms underlying the generation of genomic methylation patterns are still poorly understood. Using mass spectrometry and a phosphospecific Dnmt3a antibody, we demonstrate that CK2 phosphorylates endogenous Dnmt3a at two key residues located near its PWWP domain, thereby downregulating the ability of Dnmt3a to methylate DNA. Genome-wide DNA methylation analysis shows that CK2 primarily modulates CpG methylation of several repeats, most notably of Alu SINEs. This modulation can be directly attributed to CK2-mediated phosphorylation of Dnmt3a. We also find that CK2-mediated phosphorylation is required for localization of Dnmt3a to heterochromatin. By revealing phosphorylation as a mode of regulation of de novo DNA methyltransferase function and by uncovering a mechanism for the regulation of methylation at repetitive elements, our results shed light on the origin of DNA methylation patterns.

  11. Depigmenting Effect of Resveratrol Is Dependent on FOXO3a Activation without SIRT1 Activation.

    Science.gov (United States)

    Kwon, Soon-Hyo; Choi, Hye-Ryung; Kang, Youn-A; Park, Kyoung-Chan

    2017-06-07

    Resveratrol exhibits not only anti-melanogenic property by inhibiting microphthalmia-associated transcription factor (MITF), but also anti-aging property by activating sirtuin-1 (SIRT1). In this study, the relationship between depigmenting effect of resveratrol and SIRT1/forkhead box O (FOXO) 3a activation and was investigated. Resveratrol suppressed melanogenesis by the downregulation of MITF and tyrosinase via ERK pathway. Results showed that the expression of both SIRT1 and FOXO3a were increased. It is reported that SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. However in our study, FOXO3a activation appeared earlier than that of SIRT1. Furthermore, the effect of resveratrol on the levels of MITF and tyrosinase was suppressed when melanocytes were pre-treated with SP600125 (JNK inhibitor). However, pre-treatment with SIRT1 inhibitor (EX527, or sirtinol) did not affect the levels of MITF and tyrosinase. Therefore, resveratrol inhibits melanogenesis through the activation of FOXO3a but not by the activation of SIRT1. Although SIRT1 activation by resveratrol is a well-known mechanism of resveratrol-induced antiaging effects, our study showed that not SIRT1 but FOXO3a activation is involved in depigmenting effects of resveratrol.

  12. CYP3A5* 1 is an Inhibitory Factor for Lung Cancer in Taiwanese

    Directory of Open Access Journals (Sweden)

    Kun-Tu Yeh

    2003-05-01

    Full Text Available The expression of the cytochrome P450 CYP3A5 enzymes shows a wide variation across the general population and ethnic groups. This wide disparity implies interracial differences in drug clearance and susceptibility to diseases such as cancer. CYP3A5 polymorphisms were rapidly determined using polymerase chain reaction-restriction fragment length polymorphism analysis in 113 Taiwanese patients with hepatoma, 70 with cervical cancer, 92 with breast cancer, 82 with oral cancer, 90 with thyroid cancer, 133 with lung cancer, and 270 healthy controls. The allelic frequencies of CYP3A5*1 were 25% in hepatoma patients, 33% in cervical cancer patients, 31% in breast cancer patients, 22% in oral cancer patients, 23% in thyroid cancer patients, 20% in lung cancer patients, and 27% in healthy subjects. Lung cancer patients had a significantly lower frequency (20% of CYP3A5*1 expression than healthy controls (p = 0.028, odds ratio = 1.49, 95% confidence interval = 1.04-2.13, but there was no statistically significant difference between healthy controls and other cancers. We suggest that CYP3A5*1 may play an important role in individual predisposition to lung cancer in Taiwan.

  13. Mutations in the DNA methyltransferase gene, DNMT3A, cause an overgrowth syndrome with intellectual disability

    Science.gov (United States)

    Tatton-Brown, Katrina; Seal, Sheila; Ruark, Elise; Harmer, Jenny; Ramsay, Emma; del Vecchio Duarte, Silvana; Zachariou, Anna; Hanks, Sandra; O’Brien, Eleanor; Aksglaede, Lise; Baralle, Diana; Dabir, Tabib; Gener, Blanca; Goudie, David; Homfray, Tessa; Kumar, Ajith; Pilz, Daniela T; Selicorni, Angelo; Temple, I Karen; Van Maldergem, Lionel; Yachelevich, Naomi; van Montfort, Robert; Rahman, Nazneen

    2014-01-01

    Overgrowth disorders are a heterogeneous group of conditions characterised by increased growth parameters and variable other clinical features, such as intellectual disability and facial dysmorphism1. To identify novel causes of human overgrowth we performed exome sequencing in 10 proband-parent trios and detected two de novo DNMT3A mutations. We identified 11 additional de novo mutations through DNMT3A sequencing of a further 142 individuals with overgrowth. The mutations were all located in functional DNMT3A domains and protein modelling suggests they interfere with domain-domain interactions and histone binding. No similar mutations were present in 1000 UK population controls (13/152 vs 0/1000; P<0.0001). Mutation carriers had a distinctive facial appearance, intellectual disability and increased height. DNMT3A encodes a key methyltransferase essential for establishing the methylation imprint in embryogenesis and is commonly somatically mutated in acute myeloid leukaemia2-4. Thus DNMT3A joins an emerging group of epigenetic DNA and histone modifying genes associated with both developmental growth disorders and haematological malignancies5. PMID:24614070

  14. Cr doping induced negative transverse magnetoresistance in C d3A s2 thin films

    Science.gov (United States)

    Liu, Yanwen; Tiwari, Rajarshi; Narayan, Awadhesh; Jin, Zhao; Yuan, Xiang; Zhang, Cheng; Chen, Feng; Li, Liang; Xia, Zhengcai; Sanvito, Stefano; Zhou, Peng; Xiu, Faxian

    2018-02-01

    The magnetoresistance of a material conveys various dynamic information about charge and spin carriers, inspiring both fundamental studies in physics and practical applications such as magnetic sensors, data storage, and spintronic devices. Magnetic impurities play a crucial role in the magnetoresistance as they induce exotic states of matter such as the quantum anomalous Hall effect in topological insulators and tunable ferromagnetic phases in dilute magnetic semiconductors. However, magnetically doped topological Dirac semimetals are hitherto lacking. Here, we report a systematic study of Cr-doped C d3A s2 thin films grown by molecular-beam epitaxy. With the Cr doping, C d3A s2 thin films exhibit unexpected negative transverse magnetoresistance and strong quantum oscillations, bearing a trivial Berry's phase and an enhanced effective mass. More importantly, with ionic gating the magnetoresistance of Cr-doped C d3A s2 thin films can be drastically tuned from negative to positive, demonstrating the strong correlation between electrons and the localized spins of the Cr impurities, which we interpret through the formation of magnetic polarons. Such a negative magnetoresistance under perpendicular magnetic field and its gate tunability have not been observed previously in the Dirac semimetal C d3A s2 . The Cr-induced topological phase transition and the formation of magnetic polarons in C d3A s2 provide insights into the magnetic interaction in Dirac semimetals as well as their potential applications in spintronics.

  15. Polychlorinated biphenyl (PCB) induction of CYP3A4 enzyme activity in healthy Faroese adults

    DEFF Research Database (Denmark)

    Petersen, Maria Skaalum; Halling, Jónrit; Damkier, Per

    2007-01-01

    The CYP3A4 enzyme is, along with other cytochrome P450 enzymes, involved in the metabolism of environmental pollutants and is highly inducible by these substances. A commercial polychlorinated biphenyl (PCB) mixture, 1,1,1,-trichloro-2-(o-chlorophenyl), 2-(p'-chlorophenyl)ethane (o,p'-DDT) and 1......,1,-dichloro-2,2-bis (p-chlorophenyl)ethene (p,p'-DDE) are known to induce CYP3A4 activity through activation of nuclear receptors, such as the pregnane X receptor. However, this induction of CYP3A4 has not yet been investigated in humans. Thus, the aim of the study was to determine the variability of the CYP3......A4 phenotype in regard to increased concentrations of PCBs and other persistent organohalogen pollutants (POPs) in healthy Faroese adults. In 310 randomly selected Faroese residents aged 18-60 years, the CYP3A4 activity was determined based on the urinary 6beta-hydroxycortisol/cortisol (6beta...

  16. Association study of FOXO3A SNPs and aging phenotypes in Danish oldest-old individuals

    DEFF Research Database (Denmark)

    Soerensen, Mette; Nygaard, Marianne; Dato, Serena

    2015-01-01

    -old Danes (age 92-93) with 4 phenotypes known to predict their survival: cognitive function, hand grip strength, activity of daily living (ADL), and self-rated health. Based on previous studies in humans and foxo animal models, we also explore self-reported diabetes, cancer, cardiovascular disease......FOXO3A variation has repeatedly been reported to associate with human longevity, yet only few studies have investigated whether FOXO3A variation also associates with aging-related traits. Here, we investigate the association of 15 FOXO3A tagging single nucleotide polymorphisms (SNPs) in 1088 oldest...... borderline significance (P = 0.054), while ADL did not (P = 0.396). Although the single-SNP associations did not formally replicate in another study population of oldest-old Danes (n = 1279, age 94-100), the estimates were of similar direction of effect as observed in the Discovery sample. A pooled analysis...

  17. Analysis of cubic and orthorhombic C3A hydration in presence of gypsum and lime

    KAUST Repository

    Kirchheim, A. P.

    2009-02-26

    Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) have been used to study the microstructural changes and phase development that take place during the hydration of cubic (pure) and orthorhombic (Na-doped) tricalcium aluminate (C3A) and gypsum in the absence and presence of lime. The results demonstrate that important differences occur in the hydration of each C3A polymorph and gypsum when no lime is added; orthorhombic C3A reacts faster with gypsum than the cubic phase, forming longer ettringite needles; however, the presence of lime slows down the formation of ettringite in the orthorhombic sample. Additional rheometric tests showed the possible effects on the setting time in these cementitious mixes.

  18. Analysis of cubic and orthorhombic C3A hydration in presence of gypsum and lime

    KAUST Repository

    Kirchheim, A. P.; Fernà ndez-Altable, V.; Monteiro, P. J. M.; Dal Molin, D. C. C.; Casanova, I.

    2009-01-01

    Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) have been used to study the microstructural changes and phase development that take place during the hydration of cubic (pure) and orthorhombic (Na-doped) tricalcium aluminate (C3A) and gypsum in the absence and presence of lime. The results demonstrate that important differences occur in the hydration of each C3A polymorph and gypsum when no lime is added; orthorhombic C3A reacts faster with gypsum than the cubic phase, forming longer ettringite needles; however, the presence of lime slows down the formation of ettringite in the orthorhombic sample. Additional rheometric tests showed the possible effects on the setting time in these cementitious mixes.

  19. Effects of Wnt3a on proliferation and differentiation of human epidermal stem cells

    International Nuclear Information System (INIS)

    Jia Liwei; Zhou Jiaxi; Peng Sha; Li Juxue; Cao Yujing; Duan Enkui

    2008-01-01

    Epidermal stem cells maintain development and homeostasis of mammalian epidermis throughout life. However, the molecular mechanisms involved in the proliferation and differentiation of epidermal stem cells are far from clear. In this study, we investigated the effects of Wnt3a and Wnt/β-catenin signaling on proliferation and differentiation of human fetal epidermal stem cells. We found both Wnt3a and active β-catenin, two key members of the Wnt/β-catenin signaling, were expressed in human fetal epidermis and epidermal stem cells. In addition, Wnt3a protein can promote proliferation and inhibit differentiation of epidermal stem cells in vitro culture. Our results suggest that Wnt/β-catenin signaling plays important roles in human fetal skin development and homeostasis, which also provide new insights on the molecular mechanisms of oncogenesis in human epidermis

  20. An impact of CYP3A4 *1B polymorphism on rifampicin metabolism

    Directory of Open Access Journals (Sweden)

    H. O. Poludenko

    2017-08-01

    Full Text Available Until now, the enzyme systems responsible for biotransformation of the antituberculous drug rifampicin remain unknown. The aim of research was an investigation of the candidate enzymes involved in the biotransformation of rifampicin using the computer system PASS and an experimental study concerning the effect of the polymorphism of the biotransformation gene CYP3A4 *1B on the level of rifampicin in the blood of patients with pulmonary tuberculosis (РTB. The probability (Pa of certain pharmacological activity and the effect on putative enzyme systems of the human body of rifampicin has been calculated by the PASS method. Polymerase chain reaction revealed the polymorphism of the CYP3A4 *1B gene among healthy volunteers as well as patients with РTB. With a high degree of probability, according to PASS calculations, it was predicted that rifampicin undergo metabolism with the CYP3A4 enzyme - probability (Ra were 0.891. According to the genotype CYP3A4 *1B, 95.3% of the healthy donors carried a homozygous wild-type gene (i.e., had high enzymatic activity - AA genotype; the rest 4.7% - were carriers of the heterozygous AG genotype (moderate enzyme activity.The polymorphism of CYP3A4 *1B genotypes and alleles in the south-west of Ukraine was close to the results obtained in European countries. 91.4% and 8.6% of the patients with РTB had AA and AG genotype, correspondently. Thus, among the patients with РTB, the AG genotype was more often observed than among healthy volunteers. There was no significant difference in rifampicin concentration among РTB-patients concerning CYP3A4 * 1B polymorphism.

  1. Ancestry-Adjusted Vitamin D Metabolite Concentrations in Association With Cytochrome P450 3A Polymorphisms.

    Science.gov (United States)

    Wilson, Robin Taylor; Masters, Loren D; Barnholtz-Sloan, Jill S; Salzberg, Anna C; Hartman, Terryl J

    2018-04-01

    We investigated the association between genetic polymorphisms in cytochrome P450 (CYP2R1, CYP24A1, and the CYP3A family) with nonsummer plasma concentrations of vitamin D metabolites (25-hydroxyvitamin D3 (25(OH)D3) and proportion 24,25-dihydroxyvitamin D3 (24,25(OH)2D3)) among healthy individuals of sub-Saharan African and European ancestry, matched on age (within 5 years; n = 188 in each ancestral group), in central suburban Pennsylvania (2006-2009). Vitamin D metabolites were measured using high-performance liquid chromatography with tandem mass spectrometry. Paired multiple regression and adjusted least-squares mean analyses were used to test for associations between genotype and log-transformed metabolite concentrations, adjusted for age, sex, proportion of West-African genetic ancestry, body mass index, oral contraceptive (OC) use, tanning bed use, vitamin D intake, days from summer solstice, time of day of blood draw, and isoforms of the vitamin D receptor (VDR) and vitamin D binding protein. Polymorphisms in CYP2R1, CYP3A43, vitamin D binding protein, and genetic ancestry proportion remained associated with plasma 25(OH)D3 after adjustment. Only CYP3A43 and VDR polymorphisms were associated with proportion 24,25(OH)2D3. Magnitudes of association with 25(OH)D3 were similar for CYP3A43, tanning bed use, and OC use. Significant least-squares mean interactions (CYP2R1/OC use (P = 0.030) and CYP3A43/VDR (P = 0.013)) were identified. A CYP3A43 genotype, previously implicated in cancer, is strongly associated with biomarkers of vitamin D metabolism. Interactive associations should be further investigated.

  2. Influence of CYP3A5 genetic variation on everolimus maintenance dosing after cardiac transplantation.

    Science.gov (United States)

    Lesche, Dorothea; Sigurdardottir, Vilborg; Setoud, Raschid; Englberger, Lars; Fiedler, Georg M; Largiadèr, Carlo R; Mohacsi, Paul; Sistonen, Johanna

    2015-12-01

    Everolimus (ERL) has become an alternative to calcineurin inhibitors (CNIs) due to its renal-sparing properties, especially in heart transplant (HTx) recipients with kidney dysfunction. However, ERL dosing is challenging due to its narrow therapeutic window combined with high interindividual pharmacokinetic variability. Our aim was to evaluate the effect of clinical and genetic factors on ERL dosing in a pilot cohort of 37 HTx recipients. Variants in CYP3A5, CYP3A4, CYP2C8, POR, NR1I2, and ABCB1 were genotyped, and clinical data were retrieved from patient charts. While ERL trough concentration (C0 ) was within the targeted range for most patients, over 30-fold variability in the dose-adjusted ERL C0 was observed. Regression analysis revealed a significant effect of the non-functional CYP3A5*3 variant on the dose-adjusted ERL C0 (p = 0.031). ERL dose requirement was 0.02 mg/kg/d higher in patients with CYP3A5*1/*3 genotype compared to patients with CYP3A5*3/*3 to reach the targeted C0 (p = 0.041). ERL therapy substantially improved estimated glomerular filtration rate (28.6 ± 6.6 mL/min/1.73 m(2)) in patients with baseline kidney dysfunction. Everolimus pharmacokinetics in HTx recipients is highly variable. Our preliminary data on patients on a CNI-free therapy regimen suggest that CYP3A5 genetic variation may contribute to this variability. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Snord 3A: A Molecular Marker and Modulator of Prion Disease Progression

    Science.gov (United States)

    Cohen, Eran; Avrahami, Dana; Frid, Kati; Canello, Tamar; Levy Lahad, Ephrat; Zeligson, Sharon; Perlberg, Shira; Chapman, Joab; Cohen, Oren S.; Kahana, Esther; Lavon, Iris; Gabizon, Ruth

    2013-01-01

    Since preventive treatments for prion disease require early identification of subjects at risk, we searched for surrogate peripheral markers characterizing the asymptomatic phases of such conditions. To this effect, we subjected blood mRNA from E200K PrP CJD patients and corresponding family members to global arrays and found that the expression of Snord3A, a non-coding RNA transcript, was elevated several times in CJD patients as compared to controls, while asymptomatic carriers presented intermediate Snord3A levels. In the brains of TgMHu2ME199K mice, a mouse model mimicking for E200K CJD, Snord 3A levels were elevated in an age and disease severity dependent manner, as was the case for brains of these mice in which disease was exacerbated by copper administration. Snord3A expression was also elevated in scrapie infected mice, but not in PrP0/0 mice, indicating that while the expression levels of this transcript may reflect diverse prion etiologies, they are not related to the loss of PrPC’s function. Elevation of Snord3A was consistent with the activation of ATF6, representing one of the arms of the unfolded protein response system. Indeed, SnoRNAs were associated with reduced resistance to oxidative stress, and with ER stress in general, factors playing a significant role in this and other neurodegenerative conditions. We hypothesize that in addition to its function as a disease marker, Snord3A may play an important role in the mechanism of prion disease manifestation and progression. PMID:23349890

  4. Snord 3A: a molecular marker and modulator of prion disease progression.

    Directory of Open Access Journals (Sweden)

    Eran Cohen

    Full Text Available Since preventive treatments for prion disease require early identification of subjects at risk, we searched for surrogate peripheral markers characterizing the asymptomatic phases of such conditions. To this effect, we subjected blood mRNA from E200K PrP CJD patients and corresponding family members to global arrays and found that the expression of Snord3A, a non-coding RNA transcript, was elevated several times in CJD patients as compared to controls, while asymptomatic carriers presented intermediate Snord3A levels. In the brains of TgMHu2ME199K mice, a mouse model mimicking for E200K CJD, Snord 3A levels were elevated in an age and disease severity dependent manner, as was the case for brains of these mice in which disease was exacerbated by copper administration. Snord3A expression was also elevated in scrapie infected mice, but not in PrP(0/0 mice, indicating that while the expression levels of this transcript may reflect diverse prion etiologies, they are not related to the loss of PrP(C's function. Elevation of Snord3A was consistent with the activation of ATF6, representing one of the arms of the unfolded protein response system. Indeed, SnoRNAs were associated with reduced resistance to oxidative stress, and with ER stress in general, factors playing a significant role in this and other neurodegenerative conditions. We hypothesize that in addition to its function as a disease marker, Snord3A may play an important role in the mechanism of prion disease manifestation and progression.

  5. Construction and characterization of 3A-epitope-tagged foot-and-mouth disease virus.

    Science.gov (United States)

    Ma, Xueqing; Li, Pinghua; Sun, Pu; Bai, Xingwen; Bao, Huifang; Lu, Zengjun; Fu, Yuanfang; Cao, Yimei; Li, Dong; Chen, Yingli; Qiao, Zilin; Liu, Zaixin

    2015-04-01

    Nonstructural protein 3A of foot-and-mouth disease virus (FMDV) is a partially conserved protein of 153 amino acids (aa) in most FMDVs examined to date. Specific deletion in the FMDV 3A protein has been associated with the inability of FMDV to grow in primary bovine cells and cause disease in cattle. However, the aa residues playing key roles in these processes are poorly understood. In this study, we constructed epitope-tagged FMDVs containing an 8 aa FLAG epitope, a 9 aa haemagglutinin (HA) epitope, and a 10 aa c-Myc epitope to substitute residues 94-101, 93-101, and 93-102 of 3A protein, respectively, using a recently developed O/SEA/Mya-98 FMDV infectious cDNA clone. Immunofluorescence assay (IFA), Western blot and sequence analysis showed that the epitope-tagged viruses stably maintained and expressed the foreign epitopes even after 10 serial passages in BHK-21 cells. The epitope-tagged viruses displayed growth properties and plaque phenotypes similar to those of the parental virus in BHK-21 cells. However, the epitope-tagged viruses exhibited lower growth rates and smaller plaque size phenotypes than those of the parental virus in primary fetal bovine kidney (FBK) cells, but similar growth properties and plaque phenotypes to those of the recombinant viruses harboring 93-102 deletion in 3A. These results demonstrate that the decreased ability of FMDV to replicate in primary bovine cells was not associated with the length of 3A, and the genetic determinant thought to play key role in decreased ability to replicate in primary bovine cells could be reduced from 93-102 residues to 8 aa residues at positions 94-101 in 3A protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Evidence of new risk genetic factor to systemic lupus erythematosus: the UBASH3A gene.

    Directory of Open Access Journals (Sweden)

    Lina-Marcela Diaz-Gallo

    Full Text Available The ubiquitin associated and Src-homology 3 (SH3 domain containing A (UBASH3a is a suppressor of T-cell receptor signaling, underscoring antigen presentation to T-cells as a critical shared mechanism of diseases pathogenesis. The aim of the present study was to determine whether the UBASH3a gene influence the susceptibility to systemic lupus erythematosus (SLE in Caucasian populations. We evaluated five UBASH3a polymorphisms (rs2277798, rs2277800, rs9976767, rs13048049 and rs17114930, using TaqMan® allelic discrimination assays, in a discovery cohort that included 906 SLE patients and 1165 healthy controls from Spain. The SNPs that exhibit statistical significance difference were evaluated in a German replication cohort of 360 SLE patients and 379 healthy controls. The case-control analysis in the Spanish population showed a significant association between the rs9976767 and SLE (Pc = 9.9E-03 OR = 1.21 95%CI = 1.07-1.37 and a trend of association for the rs2277798 analysis (P = 0.09 OR = 0.9 95%CI = 0.79-1.02. The replication in a German cohort and the meta-analysis confirmed that the rs9976767 (Pc = 0.02; Pc = 2.4E-04, for German cohort and meta-analysis, respectively and rs2277798 (Pc = 0.013; Pc = 4.7E-03, for German cohort and meta-analysis, respectively UBASH3a variants are susceptibility factors for SLE. Finally, a conditional regression analysis suggested that the most likely genetic variation responsible for the association was the rs9976767 polymorphism. Our results suggest that UBASH3a gene plays a role in the susceptibility to SLE. Moreover, our study indicates that UBASH3a can be considered as a common genetic factor in autoimmune diseases.

  7. Impaired social behavior in 5-HT3A receptor knockout mice

    Directory of Open Access Journals (Sweden)

    Laura A Smit-Rigter

    2010-11-01

    Full Text Available The 5-HT3 receptor is a ligand-gated ion channel expressed on interneurons throughout the brain. So far, analysis of the 5-HT3A knockout mouse revealed changes in nociceptive processing and a reduction in anxiety related behavior. Recently, it was shown that the 5-HT3 receptor is also expressed on Cajal-Retzius cells which play a key role in cortical development and that knockout mice lacking this receptor showed aberrant growth of the dendritic tree of cortical layer II/III pyramidal neurons. Other mouse models in which serotonergic signaling was disrupted during development showed similar morphological changes in the cortex, and in addition, also deficits in social behavior. Here, we subjected male and female 5-HT3A knockout mice and their non-transgenic littermates to several tests of social behavior. We found that 5-HT3A knockout mice display impaired social communication in the social transmission of food preference task. Interestingly, we showed that in the social interaction test only female 5-HT3A knockout mice spent less time in reciprocal social interaction starting after 5 minutes of testing. Moreover, we observed differences in preference for social novelty for male and female 5-HT3A knockout mice during the social approach test. However, no changes in olfaction, exploratory activity and anxiety were detected. These results indicate that the 5-HT3A knockout mouse displays impaired social behavior with specific changes in males and females, reminiscent to other mouse models in which serotonergic signaling is disturbed in the developing brain.

  8. The mechanochemical cycle of mammalian kinesin-2 KIF3A/B under load

    Science.gov (United States)

    Andreasson, Johan O.L.; Shastry, Shankar; Hancock, William O.; Block, Steven M.

    2015-01-01

    Summary The response of motor proteins to external loads underlies their ability to work in teams and determines the net speed and directionality of cargo transport. The mammalian kinesin-2, KIF3A/B, is a heterotrimeric motor involved in intraflagellar transport and vesicle motility in neurons. Bidirectional cargo transport is known to result from the opposing activities of KIF3A/B and dynein bound to the same cargo, but the load-dependent properties of kinesin-2 are poorly understood. We used a feedback-controlled optical trap to probe the velocity, run length and unbinding kinetics of mouse KIF3A/B under various loads and nucleotide conditions. The kinesin-2 motor velocity is less sensitive than kinesin-1 to external forces, but its processivity diminishes steeply with load, and the motor was observed occasionally to slip and reattach. Each motor domain was characterized by studying homodimeric constructs, and a global fit to the data resulted in a comprehensive pathway that quantifies the principal force-dependent kinetic transitions. The properties of the KIF3A/B heterodimer are intermediate between the two homodimers, and the distinct load-dependent behavior is attributable to the properties of the motor domains, and not to the neck-linkers or the coiled-coil stalk. We conclude that the force-dependent movement of KIF3A/B differs significantly from conventional kinesin-1. Against opposing dynein forces, KIF3A/B motors are predicted to rapidly unbind and rebind, resulting in qualitatively different transport behavior from kinesin-1. PMID:25866395

  9. Nukuhivensiums, indolo[2,3-a]quinoliziniums from the Marquesan plant Rauvolfia nukuhivensis.

    Science.gov (United States)

    Martin, Nicolas J; Prado, Soizic; Lecellier, Gael; Thomas, Olivier P; Raharivelomanana, Phila

    2012-10-12

    The first phytochemical inspection of the Marquesan endemic plant Rauvolfia nukuhivensis led to the isolation and structure characterization of two new indolo[2,3-a]quinolizinium derivatives named nukuhivensium and N₁₂-methyl-nukuhivensium. They feature an aromatic indolo[2,3-a]quinolizinium core, substituted at C-2 by a n-propyl group, which is unusual in this family of alkaloid derivatives. The structure elucidation was performed on the basis of NMR spectroscopy and especially by interpretation of 2D HMBC correlations. A biosynthetic pathway is proposed on the basis of known enzymatic transformations for this family of natural products. These compounds exhibited low antimicrobial activities.

  10. Identification of a functional homolog of the mammalian CYP3A4 in locusts

    DEFF Research Database (Denmark)

    Olsen, Line Rørbæk; Gabel-Jensen, Charlotte; Nielsen, Peter Aadal

    2014-01-01

    is specific to the cytochrome P450 enzyme 3A4. Using high-resolution mass spectrometry coupled to ultra-high-performance liquid chromatography, we have detected metabolites identical to human metabolites of terfenadine. The formation of human metabolites in locusts was inhibited by ketoconazole, a mammalian...

  11. Effect of CYP3A perpetrators on ibrutinib exposure in healthy participants.

    Science.gov (United States)

    de Jong, Jan; Skee, Donna; Murphy, Joe; Sukbuntherng, Juthamas; Hellemans, Peter; Smit, Johan; de Vries, Ronald; Jiao, Juhui James; Snoeys, Jan; Mannaert, Erik

    2015-08-01

    Ibrutinib (PCI-32765), a potent covalent inhibitor of Bruton's tyrosine kinase, has shown efficacy against a variety of B-cell malignancies. Given the prominent role of CYP3A in ibrutinib metabolism, effect of coadministration of CYP3A perpetrators with ibrutinib was evaluated in healthy adults. Ibrutinib (120 mg [Study 1, fasted], 560 mg [studies 2 (fasted), and 3 (nonfasted)]) was given alone and with ketoconazole [Study 1; 400 mg q.d.], rifampin [Study 2; 600 mg q.d.], and grapefruit juice [GFJ, Study 3]. Lower doses of ibrutinib were used together with CYP3A inhibitors [Study 1: 40 mg; Study 3: 140 mg], as safety precaution. Under fasted condition, ketoconazole increased ibrutinib dose-normalized (DN) exposure [DN-AUClast: 24-fold; DN-C max: 29-fold], rifampin decreased ibrutinib exposure [C max: 13-fold; AUClast: 10-fold]. Under nonfasted condition, GFJ caused a moderate increase [DN-C max: 3.5-fold; DN-AUC: 2.2-fold], most likely through inhibition of intestinal CYP3A. Half-life was not affected by CYP perpetrators indicating the interaction was mainly on first-pass extraction. All treatments were well-tolerated.

  12. The influence of Na2O on the hydration of C3A II. Suspension hydration

    NARCIS (Netherlands)

    Spierings, G.A.C.M.; Stein, H.N.

    1976-01-01

    The influence of Na2O on the hydration of C3A was studied in suspensions from the start of the reaction onwards. The heat evolution rate in very early stages of the hydration, measured at varying NaOH concentrations, and SEM, indicate that at NaOH concentrations larger then 0.1 M the reaction

  13. Genetic analysis of drug metabolizing phase-I enzymes CYP3A4 in ...

    Indian Academy of Sciences (India)

    LIJUN LIU1

    3Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education,. Xizang Minzu University ..... basic profile of CYP3A4 in the Tibetan population, and can be used to determine optimal dosage ... 19), and The Project of Young Teachers' Innovative Support. Programme in Universities ...

  14. Norway spruce (Picea abies) genetic transformation with modified Cry3A gene of Bacillus thuringiensis

    Czech Academy of Sciences Publication Activity Database

    Bříza, Jindřich; Pavingerová, Daniela; Vlasák, Josef; Niedermeierová, Hana

    2013-01-01

    Roč. 60, č. 3 (2013), s. 395-400 ISSN 0001-527X R&D Projects: GA MZe QH71290; GA ČR(CZ) GAP502/11/1471 Institutional support: RVO:60077344 Keywords : Cry3A gene modification * Picea abies * Agrobacterium tumefaciens Subject RIV: EB - Genetic s ; Molecular Biology Impact factor: 1.389, year: 2013

  15. Wnt3a nanodisks promote ex vivo expansion of hematopoietic stem and progenitor cells

    DEFF Research Database (Denmark)

    Lalefar, Nahal R.; Witkowski, Andrzej; Simonsen, Jens Bæk

    2016-01-01

    Background : Wnt proteins modulate development, stem cell fate and cancer through interactions with cell surface receptors. Wnts are cysteine-rich, glycosylated, lipid modified, two domain proteins that are prone to aggregation. The culprit responsible for this behavior is a covalently bound palm...... to Lin- Sca-1+ c-Kit+ cell expansion, an effect that was not mediated through β-catenin. Conclusions : The data indicate Wnt3a ND constitute a water-soluble transport vehicle capable of promoting ex vivo expansion of HSPC.......Background : Wnt proteins modulate development, stem cell fate and cancer through interactions with cell surface receptors. Wnts are cysteine-rich, glycosylated, lipid modified, two domain proteins that are prone to aggregation. The culprit responsible for this behavior is a covalently bound...... palmitoleoyl moiety in the N-terminal domain. Results : By combining murine Wnt3a with phospholipid and apolipoprotein A-I, ternary complexes termed nanodisks (ND) were generated. ND-associated Wnt3a is soluble in the absence of detergent micelles and gel filtration chromatography revealed that Wnt3a co...

  16. Comparison of SAS3A and MELT-III predictions for a transient overpower hypothetical accident

    International Nuclear Information System (INIS)

    Wilburn, N.P.

    1976-01-01

    A comparison is made of the predictions of the two major codes SAS3A and MELT-III for the hypothetical unprotected transient overpower accident in the FFTF. The predictions of temperatures, fuel restructuring, fuel melting, reactivity feedbacks, and core power are compared

  17. Synthesis and Selective Functionalization of [1,2,4]Triazolo[4,3-a]pyrazines

    DEFF Research Database (Denmark)

    Demmer, Charles Sylvain; Jorgensen, Morten; Kehler, Jan

    2015-01-01

    A new tactic for the synthesis and selective functionalization of [1,2,4]triazolo[4,3-a]pyrazines has been developed using an oxidative cyclization as key step. Furthermore, novel strategies for introducing diverse substituents in all positions of the heterocycle were identified....

  18. Histone Deacetylase Inhibition Downregulates Collagen 3A1 in Fibrotic Lung Fibroblasts

    Directory of Open Access Journals (Sweden)

    Victor J. Thannickal

    2013-09-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a deadly disease characterized by chronic inflammation and excessive collagen accumulation in the lung. Myofibroblasts are the primary collagen-producing cells in pulmonary fibrosis. Histone deacetylase inhibitor (HDACi can affect gene expression, and some, such as suberoylanilide hydroxamic acid (SAHA, are US FDA approved for cancer treatment. In this study, we investigated SAHA’s effects on the expression of collagen III alpha 1 (COL3A1 in primary human IPF fibroblasts and in a murine model of pulmonary fibrosis. We observed that increased COL3A1 expression in IPF fibroblasts can be substantially reduced by SAHA treatment at the level of transcription as detected by RT-PCR; collagen III protein level was also reduced, as detected by Western blots and immunofluorescence. The deacetylation inhibitor effect of SAHA was verified by observing higher acetylation levels of both histone H3 and H4 in treated IPF cells. Chromatin immunoprecipitation (ChIP experiments demonstrated that the reduced expression of COL3A1 by SAHA is with increased association of the repressive chromatin marker, H3K27Me3, and decreased association of the active chromatin marker, H3K9Ac. In our murine model of bleomycin-induced pulmonary fibrosis, the SAHA treated group demonstrated significantly less collagen III, as detected by immunohistochemistry. Our data indicate that the HDACi SAHA alters the chromatin associated with COL3A1, resulting in its decreased expression.

  19. KIF3A and IL-4 are disease-specific biomarkers for psoriatic arthritis susceptibility

    Science.gov (United States)

    Ragazzo, Michele; Manzo, Laura; Costanza, Gaetana; Bowes, John; Hüffmeier, Ulrike; Potenza, Saverio; Sangiuolo, Federica; Reis, André; Barton, Anne; Novelli, Giuseppe; Orlandi, Augusto; Giardina, Emiliano

    2017-01-01

    To date, the genes associated with Psoriatic Arthritis (PsA) are principally involved in inflammation, immune response and epidermal differentiation, without any information about the relationship between disease and bone metabolism genes. Our work was focused on 5q31 locus, which contains several genetic variants significantly associated with PsA. The study involved 1526 subjects (500 PsA, 426 PsV, 600 controls). The region was evaluated by selecting and genotyping the SNPs of interest by Real Time PCR and direct sequencing. The results were subjected to biostatistic and bioinformatic analysis. The case-control study highlighted a significant association between KIF3A/IL-4 and PsA, but not with PsV (Psoriasis Vulgaris) patients. In addition, the haplotype analysis revealed two haplotypes significantly associated with PsA susceptibility. The Linkage Disequilibrium (LD) study showed the presence of a specific block in high LD within 132,692,628-132,737,638 bp of 5q31, giving additional evidence of specific association of the 5q31 region in PsA patients. Moreover, KIF3A expression was assessed by immunohistochemistry assays which showed a marked and significant difference of KIF3A expression between pathological and normal tissues. Our analysis described KIF3A and IL-4 as novel susceptibility genes for PsA, suggesting a clear implication of bone metabolism genes in the disease etiopathogenesis. PMID:29221136

  20. Topical nutlin-3a does not decrease photocarcinogenesis induced by simulated solar radiation in hairless mice

    DEFF Research Database (Denmark)

    Lerche, Catharina Margrethe; Philipsen, Peter Alshede; Poulsen, Thomas

    2012-01-01

    Nutlin-3a increases p53 levels after UVB radiation, which could result in a decrease in DNA damage and thus lead to a lower risk of non-melanoma skin cancer. Especially, organ transplant recipients might derive benefit from such a topical formulation with an active ingredient to prevent DNA damage....

  1. 17 CFR 210.3A-04 - Intercompany items and transactions.

    Science.gov (United States)

    2010-04-01

    ... Financial Statements § 210.3A-04 Intercompany items and transactions. In general, there shall be eliminated intercompany items and transactions between persons included in the (a) consolidated financial statements being... FORM AND CONTENT OF AND REQUIREMENTS FOR FINANCIAL STATEMENTS, SECURITIES ACT OF 1933, SECURITIES...

  2. 17 CFR 210.3A-02 - Consolidated financial statements of the registrant and its subsidiaries.

    Science.gov (United States)

    2010-04-01

    ... 1975 Consolidated and Combined Financial Statements § 210.3A-02 Consolidated financial statements of... consolidated financial statements principles of inclusion or exclusion which will clearly exhibit the financial... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Consolidated financial...

  3. 17 CFR 210.3A-03 - Statement as to principles of consolidation or combination followed.

    Science.gov (United States)

    2010-04-01

    ... Consolidated and Combined Financial Statements § 210.3A-03 Statement as to principles of consolidation or... of (1) subsidiaries in consolidated or combined financial statements and (2) companies in consolidated or combined financial statements, shall be stated in the notes to the respective financial...

  4. 17 CFR 210.3A-05 - Special requirements as to public utility holding companies.

    Science.gov (United States)

    2010-04-01

    ... Consolidated and Combined Financial Statements § 210.3A-05 Special requirements as to public utility holding companies. There shall be shown in the consolidated balance sheet of a public utility holding company the... SECURITIES AND EXCHANGE COMMISSION FORM AND CONTENT OF AND REQUIREMENTS FOR FINANCIAL STATEMENTS, SECURITIES...

  5. Draft genome sequence of the white-rot fungus Obba rivulosa 3A-2

    Science.gov (United States)

    Otto Miettinen; Robert Riley; Kerrie Barry; Daniel Cullen; Ronald P. de Vries; Matthieu Hainaut; Annele Hatakka; Bernard Henrissat; Kristiina Hilden; Rita Kuo; Kurt LaButti; Anna Lipzen; Miia R. Makela; Laura Sandor; Joseph W. Spatafora; Igor V. Grigoriev; David S. Hibbett

    2016-01-01

    We report here the first genome sequence of the white-rot fungus Obba rivulsa (Polyporales, Basidiomycota), a polypore known for its lignin-decomposing ability. The genome is based on the homokaryon 3A-2 originating in Finland. The genome is typical in size and carbohydrate active enzyme (CAZy) content for wood-decomposing basidiomycetes.

  6. Genetic variation at CYP3A is associated with age at menarche and breast cancer risk

    DEFF Research Database (Denmark)

    Johnson, Nichola; Dudbridge, Frank; Orr, Nick

    2014-01-01

    INTRODUCTION: We have previously shown that a tag single nucleotide polymorphism (rs10235235), which maps to the CYP3A locus (7q22.1), was associated with a reduction in premenopausal urinary estrone glucuronide levels and a modest reduction in risk of breast cancer in women age <=50 years. METHO...

  7. Modeling the Structure of SARS 3a Transmembrane Protein Using a ...

    Indian Academy of Sciences (India)

    Modeling the structure of SARS 3a Transmembrane protein using a ... for the implicit membrane molecular dynamics (MD) simulations. ... The coordinates during the simulation were saved every 500 steps, and were used for analysis. ... the pair list for calculation of nonbonded interactions being updated after every 10 steps.

  8. Evidences for CYP3A4 autoactivation in the desulfuration of dimethoate by the human liver.

    Science.gov (United States)

    Buratti, Franca M; Testai, Emanuela

    2007-11-20

    Dimethoate (DIM) is an organophosphorothionate (OPT) pesticide used worldwide as a systemic insecticide and acaricide. It is characterized by low-to-moderate acute mammalian toxicity; similarly to the other OPT pesticides, its mode of action is mediated by the inhibition of acetylcholinesterase (AChE), exerted by its toxic metabolite dimethoate-oxon or omethoate (OME), which is also used as a direct acting pesticide. Human hepatic DIM bioactivation to the toxic metabolite OME has been characterized by using c-DNA expressed human CYPs and human liver microsomes (HLM) also in the presence of CYP-specific chemical inhibitors, with a method based on AChE inhibition. The obtained kinetic parameters and AChE IC(50) have been compared with those previously obtained with other OPTs, indicating a lower efficiency in DIM desulfuration reaction and a lower potency in inhibiting AChE. Results showed that, similarly to the other OPTs tested so far, at low DIM concentration OME formation is mainly catalysed by CYP1A2, while the role of 3A4 is relevant at high DIM levels. Differently from the other OPTs, DIM desulfuration reaction showed an atypical kinetic profile, likely due to CYP3A4 autoactivation. The sigmoidicity degree of the activity curve increased with the level of CYP3A4 in HLM or disappeared in the presence of a CYP3A4 chemical inhibitor. This atypical kinetic behaviour can be considered one of the possible explanations for the recent findings that among patients hospitalized following OPT intoxication, DIM ingestion gave different symptoms and more severe poisoning (23.1% of fatal cases versus total) than chlorpyrifos (8% of deaths), which has a lower LD(50) value. Since DIM-poisoned patients poorly responded to pralidoxime, the possibility to use CYP3A4 inhibitors could be considered as a complementary treatment.

  9. Polychlorinated biphenyl (PCB) induction of CYP3A4 enzyme activity in healthy Faroese adults

    International Nuclear Information System (INIS)

    Petersen, Maria Skaalum; Halling, Jonrit; Damkier, Per; Nielsen, Flemming; Grandjean, Philippe; Weihe, Pal; Brosen, Kim

    2007-01-01

    The CYP3A4 enzyme is, along with other cytochrome P450 enzymes, involved in the metabolism of environmental pollutants and is highly inducible by these substances. A commercial polychlorinated biphenyl (PCB) mixture, 1,1,1,-trichloro-2-(o-chlorophenyl), 2-(p'-chlorophenyl)ethane (o,p'-DDT) and 1,1,-dichloro-2,2-bis (p-chlorophenyl)ethene (p,p'-DDE) are known to induce CYP3A4 activity through activation of nuclear receptors, such as the pregnane X receptor. However, this induction of CYP3A4 has not yet been investigated in humans. Thus, the aim of the study was to determine the variability of the CYP3A4 phenotype in regard to increased concentrations of PCBs and other persistent organohalogen pollutants (POPs) in healthy Faroese adults. In 310 randomly selected Faroese residents aged 18-60 years, the CYP3A4 activity was determined based on the urinary 6β-hydroxycortisol/cortisol (6β-OHC/FC) ratio. POP exposures were assessed by measuring their concentrations in serum lipid. The results showed a unimodal distribution of the 6β-OHC/FC ratio with values ranging from 0.58 to 27.38. Women had a slightly higher 6β-OHC/FC ratio than men (p = 0.07). Confounder-adjusted multiple regression analysis showed significant associations between 6β-OHC/FC ratios and ΣPCB, PCB-TEQ and p,p'-DDE, o,p'-DDT and HCB, respectively, but the associations were statistically significant for men only

  10. N-Heterocyclic Carbene Capture by Cytochrome P450 3A4

    Science.gov (United States)

    Jennings, Gareth K.; Ritchie, Caroline M.; Shock, Lisa S.; Lyons, Charles E.

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) is the dominant P450 enzyme involved in human drug metabolism, and its inhibition may result in adverse interactions or, conversely, favorably reduce the systemic elimination rates of poorly bioavailable drugs. Herein we describe a spectroscopic investigation of the interaction of CYP3A4 with N-methylritonavir, an analog of ritonavir, widely used as a pharmacoenhancer. In contrast to ritonavir, the binding affinity of N-methylritonavir for CYP3A4 is pH-dependent. At pH UV-visible spectroscopy binding studies with molecular fragments narrows the source of this pH dependence to its N-methylthiazolium fragment. The C2 proton of this group is acidic, and variable-pH resonance Raman spectroscopy tentatively assigns it a pKa of 7.4. Hence, this fragment of N-methylritonavir is expected to be readily deprotonated under physiologic conditions to yield a thiazol-2-ylidene, which is an N-heterocyclic carbene that has high-affinity for and is presumed to be subsequently captured by the heme iron. This mechanism is supported by time-dependent density functional theory with an active site model that accurately reproduces distinguishing features of the experimental UV-visible spectra of N-methylritonavir bound to CYP3A4. Finally, density functional theory calculations support that this novel interaction is as strong as the tightest-binding azaheterocycles found in P450 inhibitors and could offer new avenues for inhibitor development. PMID:27126611

  11. Allosteric activation of cytochrome P450 3A4 by efavirenz facilitates midazolam binding.

    Science.gov (United States)

    Ichikawa, Tomohiko; Tsujino, Hirofumi; Miki, Takahiro; Kobayashi, Masaya; Matsubara, Chiaki; Miyata, Sara; Yamashita, Taku; Takeshita, Kohei; Yonezawa, Yasushige; Uno, Tadayuki

    2017-12-18

    1. The purpose of this study is to investigate the heteroactivation mechanism of CYP3A4 by efavirenz, which enhances metabolism of midazolam in vivo, in terms of its binding to CYP3A4 with in vitro spectroscopic methods. 2. Efavirenz exhibited a type II spectral change with binding to CYP3A4 indicating a possible inhibitor. Although dissociation constant (K d ) was approximated as 520 μM, efavirenz enhanced binding affinity of midazolam as a co-existing drug with an estimated iK d value of 5.6 µM which is comparable to a clinical concentration. 3. Efavirenz stimulated the formation of 1'-hydroxymidazolam, and the product formation rate (V max ) concentration-dependently increased without changing the K m . Besides, an efavirenz analogue, [6-chloro-1,4-dihydro-4-(1-pentynyl)-4-(trifluoromethyl)-2H-3,1-benzoxazin-2-one] (efavirenz impurity) slightly facilitated the binding affinity of midazolam in a concentration-dependent manner. These results propose that efavirenz affects midazolam-binding via binding to the peripheral site which is apart from the active site of CYP3A4. 4. A molecular dynamics simulation also suggested the bound-efavirenz was repositioned to effector-binding site. As a consequence, our spectroscopic studies clarified the heteroactivation of CYP3A4 caused by efavirenz with a proper affinity to the peripheral site, and we concluded the method can be a useful tool for characterising the potential for drug-drug interactions.

  12. DNA methyltransferase 3A gene polymorphism contributes to daily life stress susceptibility

    Directory of Open Access Journals (Sweden)

    Barliana MI

    2017-12-01

    Full Text Available Melisa I Barliana,1,2 Shintya N Amalya,1 Ivan S Pradipta,3 Sofa D Alfian,3 Arif SW Kusuma,1,2 Tiana Milanda,1,4 Rizky Abdulah3,4 1Department of Biological Pharmacy, Biotechnology Pharmacy Laboratory, 2Pharmacy Services Development Research Center, 3Department of Pharmacology and Clinical Pharmacy, Clinical Pharmacy Laboratory, 4Center for Drug Discovery and Product Development, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, West Java, Indonesia Abstract: Daily life stress markedly affects the response toward stressful stimuli. DNA methy­lation is one of the factors that regulate this response, and is a normal mechanism of somatic cell growth, but its regulatory gene variations may cause alterations in the stress response. The aim of the present study was to investigate genotypic variants of the DNA methyltransferase 3A (DNMT3A gene in 129 healthy subjects and evaluate its association with daily life stress. Blood samples were collected, and genomic DNA was isolated. DNA was amplified using specific tetra primers for DNMT3A (C/T rs11683424 and visualized following 2% agarose gel electrophoresis. The association of DNMT3A genetic variants with daily life stress was analyzed using the Kessler Psychological Distress Scale (K10. We observed that the distribution of subjects with genotype CC (wild type, CT (heteromutant, and TT (homomutant was 13.95%, 81.4%, and 4.65%, respectively. Genetic variations significantly affected the daily life stress condition (p=0.04 in Indonesian healthy subjects, but most of the subjects with the CT phenotype were classified in a stress condition. Keywords: daily life stressor, DNA methylation, epigenetic, Kessler Psychological Distress Scale (K10, rs11683424, DNMT3A

  13. TEAD1-dependent expression of the FoxO3a gene in mouse skeletal muscle

    Directory of Open Access Journals (Sweden)

    Xu Xuewen

    2011-01-01

    Full Text Available Abstract Background TEAD1 (TEA domain family member 1 is constitutively expressed in cardiac and skeletal muscles. It acts as a key molecule of muscle development, and trans-activates multiple target genes involved in cell proliferation and differentiation pathways. However, its target genes in skeletal muscles, regulatory mechanisms and networks are unknown. Results In this paper, we have identified 136 target genes regulated directly by TEAD1 in skeletal muscle using integrated analyses of ChIP-on-chip. Most of the targets take part in the cell process, physiology process, biological regulation metabolism and development process. The targets also play an important role in MAPK, mTOR, T cell receptor, JAK-STAT, calcineurin and insulin signaling pathways. TEAD1 regulates foxo3a transcription through binding to the M-CAT element in foxo3a promoter, demonstrated with independent ChIP-PCR, EMSA and luciferase reporter system assay. In addition, results of over-expression and inhibition experiments suggest that foxo3a is positively regulated by TEAD1. Conclusions Our present data suggests that TEAD1 plays an important role in the regulation of gene expression and different signaling pathways may co-operate with each other mediated by TEAD1. We have preliminarily concluded that TEAD1 may regulate FoxO3a expression through calcineurin/MEF2/NFAT and IGF-1/PI3K/AKT signaling pathways in skeletal muscles. These findings provide important clues for further analysis of the role of FoxO3a gene in the formation and transformation of skeletal muscle fiber types.

  14. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450.

    Science.gov (United States)

    Domanski, T L; Finta, C; Halpert, J R; Zaphiropoulos, P G

    2001-02-01

    The RACE amplification technology was used on a novel CYP3A-like exon 1 sequence detected during the reverse transcriptase/polymerase chain reaction analysis of human CYP3A gene expression. This resulted in the identification of cDNAs encompassing the complete coding sequence of a new member of the CYP3A gene subfamily, CYP3A43. Interestingly, the majority of the cDNAs identified were characterized by alternative splicing events such as exon skipping and complete or partial intron inclusion. CYP3A43 expression was detected in liver, kidney, pancreas, and prostate. The amino acid sequence is 75% identical to that of CYP3A4 and CYP3A5 and 71% identical to CYP3A7. CYP3A43 differs from CYP3A4 at six amino acid residues, found within the putative substrate recognition sites of CYP3A4, that are known to be determinants of substrate selectivity. The N terminus of CYP3A43 was modified for efficient expression of the protein in Escherichia coli, and a 6X histidine tag was added at the C terminus to facilitate purification. CYP3A43 gave a reduced carbon monoxide difference spectra with an absorbance maximum at 450 nm. The level of heterologous expression was significantly lower than that observed for CYP3A4 and CYP3A5. Immunoblot analyses revealed that CYP3A43 comigrates with CYP3A4 in polyacrylamide gel electrophoresis but does separate from CYP3A5. Monooxygenase assays were performed under a variety of conditions, several of which yielded reproducible, albeit low, testosterone hydroxylase activity. The findings from this study demonstrate that there is a novel CYP3A member expressed in human tissues, although its relative contribution to drug metabolism has yet to be ascertained.

  15. The development of a JCH-3a intelligent precision thickness meter

    International Nuclear Information System (INIS)

    He Fengqi; Chen Lin

    1988-12-01

    Plating and coating technique are more widely used along with the development of the material science and industry. A precision, real-time and non-distructive testing method is established and a digitized and intelligent thickness meter JCH-3a is developed for measuring the layer thickness. The JCH-3a meter consists of a high accurate probe, very large scale integrated circuits and a built-in microcomputer. Its special features are: 1. digital display of the measured data; 2. preseting the limitation of warning values and automatic storing the measured data; 3. output of printing data; 4. broad measuring range; 5. small in size and light in weight. It can be also used in the thickness measuring of the reactor components

  16. Mismatch negativity and P3a amplitude in young adolescents with first-episode psychosis

    DEFF Research Database (Denmark)

    Rydkjær, J.; Møllegaard Jepsen, J. R.; Pagsberg, A. K.

    2017-01-01

    Background Deficient mismatch negativity (MMN) has been proposed as a candidate biomarker in schizophrenia and may therefore be potentially useful in early identification and intervention in early onset psychosis. In this study we explored whether deficits in the automatic orienting and reorienting...... responses, measured as MMN and P3a amplitude, are present in young adolescents with first-episode psychosis (FEP) and whether findings are specific to psychosis compared to young adolescents with attention deficit hyperactivity disorder (ADHD). Method MMN and P3a amplitude were assessed in young adolescents...... (age 12-17 years) with either FEP (N = 27) or ADHD (N = 28) and age- and gender-matched healthy controls (N = 43). The MMN paradigm consisted of a four-tone auditory oddball task with deviant stimuli based on frequency, duration and their combination. Results Significantly less MMN was found...

  17. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    International Nuclear Information System (INIS)

    Sakisaka, Yukihiko; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi; Nemoto, Eiji

    2015-01-01

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression

  18. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakisaka, Yukihiko [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tohoku Fukushi University, Sendai 989-3201 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Liason Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2015-08-01

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression.

  19. Complete genome of Martelella sp. AD-3, a moderately halophilic polycyclic aromatic hydrocarbons-degrading bacterium.

    Science.gov (United States)

    Cui, Changzheng; Li, Zhijie; Qian, Jiangchao; Shi, Jie; Huang, Ling; Tang, Hongzhi; Chen, Xin; Lin, Kuangfei; Xu, Ping; Liu, Yongdi

    2016-05-10

    Martelella sp. strain AD-3, a moderate halophilic bacterium, was isolated from a petroleum-contaminated soil with high salinity in China. Here, we report the complete genome of strain AD-3, which contains one circular chromosome and two circular plasmids. An array of genes related to metabolism of polycyclic aromatic hydrocarbons and halophilic mechanism in this bacterium was identified by the whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Characterization of the genetic variation present in CYP3A4 in three South African populations

    OpenAIRE

    Drögemöller, Britt; Plummer, Marieth; Korkie, Lundi; Agenbag, Gloudi; Dunaiski, Anke; Niehaus, Dana; Koen, Liezl; Gebhardt, Stefan; Schneider, Nicol; Olckers, Antonel; Wright, Galen; Warnich, Louise

    2013-01-01

    TThe CYP3A4 enzyme is the most abundant human cytochrome P450 and is regarded as the most important enzyme involved in drug metabolism. Inter-individual and inter-population variability in gene expression and enzyme activity are thought to be influenced, in part, by genetic variation. Although Southern African individuals have been shown to exhibit the highest levels of genetic diversity, they have been under-represented in pharmacogenetic research to date. Therefore, the aim of this study wa...

  1. Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity.

    Science.gov (United States)

    Lv, Xuan; Pan, Liumeng; Wang, Jiaying; Lu, Liping; Yan, Weilin; Zhu, Yanye; Xu, Yiwen; Guo, Ming; Zhuang, Shulin

    2017-03-01

    Triazole fungicides are widely used as broad-spectrum fungicides, non-steroidal antiestrogens and for various industrial applications. Their residues have been frequently detected in multiple environmental and human matrices. The increasingly reported toxicity incidents have led triazole fungicides as emerging contaminants of environmental and public health concern. However, whether triazole fungicides behave as endocrine disruptors by directly mimicking environmental androgens/antiandrogens or exerting potential androgenic disruption indirectly through the inhibition of cytochrome P450 (CYP450) enzyme activity is yet an unresolved question. We herein evaluated five commonly used triazole fungicides including bitertanol, hexaconazole, penconazole, tebuconazole and uniconazole for the androgenic and anti-androgenic activity using two-hybrid recombinant human androgen receptor (AR) yeast bioassay and comparatively evaluated their effects on enzymatic activity of CYP3A4 by P450-Glo™ CYP3A4 bioassay. All five fungicides showed moderate anti-androgenic activity toward human AR with the IC 50 ranging from 9.34 μM to 79.85 μM. The anti-androgenic activity remained no significant change after the metabolism mediated by human liver microsomes. These fungicides significantly inhibited the activity of CYP3A4 at the environmental relevant concentrations and the potency ranks as tebuconazole > uniconazole > hexaconazole > penconazole > bitertanol with the corresponding IC 50 of 0.81 μM, 0.93 μM, 1.27 μM, 2.22 μM, and 2.74 μM, respectively. We found that their anti-androgenic activity and the inhibition potency toward CYP3A4 inhibition was significantly correlated (R 2 between 0.83 and 0.97, p pesticides and structurally similar chemicals should fully consider potential androgenic disrupting effects and the influences on the activity of CYP450s. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study.

    Science.gov (United States)

    Anselmi, Chiara Viviani; Malovini, Alberto; Roncarati, Roberta; Novelli, Valeria; Villa, Francesco; Condorelli, Gianluigi; Bellazzi, Riccardo; Puca, Annibale Alessandro

    2009-04-01

    A number of potential candidate genes in a variety of biological pathways have been associated with longevity in model organisms. Many of these genes have human homologs and thus have the potential to provide insights into human longevity. Recently, several studies suggested that FOXO3A functions as a key bridge for various signaling pathways that influence aging and longevity. Interestingly, Willcox and colleagues identified several variants that displayed significant genotype-gender interaction in male human longevity. In particular, a nested case-control study was performed in an ethnic Japanese population in Hawaii, and five candidate longevity genes were chosen based on links to the insulin-insulin-like growth factor-1 (IGF-1) signaling pathway. In the Willcox study, the investigated genetic variations (rs2802292, rs2764264, and rs13217795) within the FOXO3A gene were significantly associated with longevity in male centenarians. We validated the association of FOXO3A polymorphisms with extreme longevity in males from the Southern Italian Centenarian Study. Particularly, rs2802288, a proxy of rs2802292, showed the best allelic association--minor allele frequency (MAF) = 0.49; p = 0.003; odds ratio (OR) = 1.51; 95% confidence interval (CI), 1.15-1.98). Furthermore, we undertook a meta-analysis to explore the significance of rs2802292 association with longevity by combining the association results of the current study and the findings coming from the Willcox et al. investigation. Our data point to a key role of FOXO3A in human longevity and confirm the feasibility of the identification of such genes with centenarian-controls studies. Moreover, we hypothesize the susceptibility to the longevity phenotype may well be the result of complex interactions involving genes and environmental factors but also gender.

  3. Analysis of an Organisation: A University of the Third Age (U3A), Mornington, Victoria

    Science.gov (United States)

    Small, Michael

    2017-01-01

    The purpose of this paper is two fold: to look at Mornington U3A in organisational terms and then look at U3AM as a loosely coupled system. One outcome of the study would be to undertake further analyses of U3As in Victoria to determine the levels of bureaucracy under which each operates. Questions to be asked: are U3As in Victoria operating as…

  4. Status report of the ATR SPING-3A and detailed calibration guideline

    International Nuclear Information System (INIS)

    Koeppen, L.D.; Rogers, J.W.

    1985-12-01

    The Radiation Measurements Laboratory (RML) onducted testing and an evaluation of the ATR SPING-3 after installation of the new ''A'' series software (firmware) and retrofit kit. The purpose of this report is to provide the ATR SPING-3A users with a document describing the present status of the unit, how the system was tested, a suggested calibration guideline, how the system should be operated for the ATR application, and why it should be used in this manner

  5. BOREAS Level-3a Landsat TM Imagery: Scaled At-sensor Radiance in BSQ Format

    Science.gov (United States)

    Nickerson, Jaime; Hall, Forrest G. (Editor); Knapp, David; Newcomer, Jeffrey A.; Cihlar, Josef

    2000-01-01

    For BOREAS, the level-3a Landsat TM data, along with the other remotely sensed images, were collected in order to provide spatially extensive information over the primary study areas. This information includes radiant energy, detailed land cover, and biophysical parameter maps such as FPAR and LAI. Although very similar in content to the level-3s Landsat TM products, the level-3a images were created to provide users with a more usable BSQ format and to provide information that permitted direct determination of per-pixel latitude and longitude coordinates. Geographically, the level-3a images cover the BOREAS NSA and SSA. Temporally, the images cover the period of 22-Jun-1984 to 30-Jul-1996. The images are available in binary, image-format files. With permission from CCRS and RSI, several of the full-resolution images are included on the BOREAS CD-ROM series. Due to copyright issues, the images not included on the CD-ROM may not be publicly available. See Sections 15 and 16 for information about how to acquire the data. Information about the images not on the CD-ROMs is provided in an inventory listing on the CD-ROMs.

  6. The novel protein C9orf116 promotes rat liver cell line BRL-3A proliferation.

    Directory of Open Access Journals (Sweden)

    Chunyan Zhang

    Full Text Available Our previous study has proved that the chromosome 9 open reading frame 116 (C9orf116 (NM_001106564.1 was significantly up-regulated in the proliferation phase of liver regeneration. To study its possible physiological function, we analyzed the effect of C9orf116 on BRL-3A cells via over-expression and interference technique. MTT results showed that the cell viability of the interference group was significantly lower than the control group at 48h after transfection (P<0.05, whereas it was significantly higher in the over-expression group (P<0.05. The flow cytometry results showed that C9orf116 knockdown or over-expression had little effect on BRL-3A cell apoptosis. However, the number of cells in division phase (G2/M was significantly reduced in the interference group (P<0.05, but significantly increased in the over-expression group (P<0.01. Furthermore, the expressions of cell proliferation-related genes CCNA2, CCND1 and MYC both at mRNA and protein levels were down-regulated in the interference group and up-regulated in the over-expression group. Therefore, we concluded that C9orf116 may promote cell proliferation by modulating cell cycle transition and the expression of key genes CCNA2, CCND1 and MYC in BRL-3A cells.

  7. Mn(HPO3): A new manganese (II) phosphite with a condensed structure

    International Nuclear Information System (INIS)

    Chung, U-Chan; Mesa, Jose L.; Pizarro, Jose L.; Jubera, Veronique; Lezama, Luis; Arriortua, Maria I.; Rojo, Teofilo

    2005-01-01

    A new manganese (II) phosphite with the formula Mn(HPO 3 ) has been synthesised under mild hydrothermal conditions and autogenous pressure. Large pink coloured single crystals were obtained, allowing the resolution of the structure by x-ray diffraction. Mn(HPO 3 ) crystallises in the P2 1 /c monoclinic space group with a=8.036(3) A, b=8.240(3) A, c=10.410(3) A, β=124.73(3) deg. and Z=8. The structure consists of a three-dimensional, compact framework of edge sharing MnO 6 octahedra linked to phosphite groups via oxygens. The presence of the phosphite anion has been confirmed by IR spectroscopy. Mn(HPO 3 ) presents a high thermal stability limit of 580 deg. C, before rapid transformation to Mn 2 P 2 O 7 occurs. Photoluminescence and diffuse reflectance spectroscopy studies show the presence of high spin Mn(II) in significantly distorted octahedral coordination with Dq and Racah parameters of Dq=820, B=910 and C=3135 cm -1 . The ESR spectra, performed at different temperatures, are isotropic with a g-value of 2.00(1). Magnetic measurements indicate global antiferromagnetic interactions with a ferromagnetic transition at 15 K, attributed to a canting of the antiferromagneticaly aligned spins. - Graphical abstract: Crystal structure of Mn(HPO 3 )

  8. Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A

    Energy Technology Data Exchange (ETDEWEB)

    Lemak, Alexander; Yee, Adelinda [University of Toronto, and Northeast Structural Genomics Consortium, Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics (Canada); Bezsonova, Irina, E-mail: bezsonova@uchc.edu [University of Connecticut Health Center, Department of Molecular Microbial and Structural Biology (United States); Dhe-Paganon, Sirano, E-mail: sirano.dhepaganon@utoronto.ca [University of Toronto, Structural Genomics Consortium (Canada); Arrowsmith, Cheryl H., E-mail: carrow@uhnresearch.ca [University of Toronto, and Northeast Structural Genomics Consortium, Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics (Canada)

    2011-09-15

    Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X{sub 4}-Cys-X{sub 4}-Cys-X{sub 28}-Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two {alpha}-helicies.

  9. Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A

    International Nuclear Information System (INIS)

    Lemak, Alexander; Yee, Adelinda; Bezsonova, Irina; Dhe-Paganon, Sirano; Arrowsmith, Cheryl H.

    2011-01-01

    Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X 4 -Cys-X 4 -Cys-X 28 -Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two α-helicies.

  10. Enantiopure Indolo[2,3-a]quinolizidines: Synthesis and Evaluation as NMDA Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Nuno A. L. Pereira

    2016-08-01

    Full Text Available Enantiopure tryptophanol is easily obtained from the reduction of its parent natural amino acid trypthophan (available from the chiral pool, and can be used as chiral auxiliary/inductor to control the stereochemical course of a diastereoselective reaction. Furthermore, enantiopure tryptophanol is useful for the syntheses of natural products or biological active molecules containing the aminoalcohol functionality. In this communication, we report the development of a small library of indolo[2,3-a]quinolizidines and evaluation of their activity as N-Methyl d-Aspartate (NMDA receptor antagonists. The indolo[2,3-a]quinolizidine scaffold was obtained using the following key steps: (i a stereoselective cyclocondensation of (S- or (R-tryptophanol with appropriate racemic δ-oxoesters; (ii a stereocontrolled cyclization on the indole nucleus. The synthesized enantiopure indolo[2,3-a]quinolizidines were evaluated as NMDA receptor antagonists and one compound was identified to be 2.9-fold more potent as NMDA receptor blocker than amantadine (used in the clinic for Parkinson’s disease. This compound represents a hit compound for the development of novel NMDA receptor antagonists with potential applications in neurodegenerative disorders associated with overactivation of NMDA receptors.

  11. Transcriptional profiling of Foxo3a and Fancd2 regulated genes in mouse hematopoietic stem cells

    Directory of Open Access Journals (Sweden)

    Xiaoli Li

    2015-06-01

    Full Text Available Functional maintenance of hematopoietic stem cells (HSCs is constantly challenged by stresses like DNA damage and oxidative stress. Foxo factors particularly Foxo3a function to regulate the self-renewal of HSCs and contribute to the maintenance of the HSC pool during aging by providing resistance to oxidative stress. Fancd2-deficient mice had multiple hematopoietic defects including HSC loss in early development and in response to cellular stresses including oxidative stress. The cellular mechanisms underlying HSC loss in Fancd2-deficient mice include abnormal cell cycle status loss of quiescence and compromised hematopoietic repopulating capacity of HSCs. To address on a genome wide level the genes and pathways that are impacted by deletion of the Fancd2 and Foxo3a we performed microarray analysis on phenotypic HSCs (Lin−ckit+Sca-1+CD150+CD48− from Fancd2 single knockout Foxo3a single knockout and Fancd2−/−Foxo3a−/− double-knockout (dKO mice. Here we provide detailed methods and analysis on these microarray data which has been deposited in Gene Expression Omnibus (GEO: GSE64215.

  12. Utilization of the MCNP-3A code for criticality safety analysis

    International Nuclear Information System (INIS)

    Maragni, M.G.; Moreira, J.M.L.

    1996-01-01

    In the last decade, Brazil started to operate facilities for processing and storing uranium in different forms. The necessity of criticality safety analysis appeared in the design phase of the uranium pilot process plants and also in the licensing of transportation and storage of fissile materials. The 2-MW research reactor and the Angra I power plant also required criticality safety assessments because their spent-fuel storage was approaching full-capacity utilization. The criticality safety analysis in Brazil has been based on KENO IV code calculations, which present some difficulties for correct geometry representation. The MCNP-3A code is not reported to be used frequently for criticality safety analysis in Brazil, but its good geometry representation makes it a possible tool for treating problems of complex geometry. A set of benchmark tests was performed to verify its applicability for criticality safety analysis in Brazil. This paper presents several benchmark tests aimed at selecting a set of options available in the MCNP-3A code that would be adequate for criticality safety analysis. The MCNP-3A code is also compared with the KENO-IV code regarding its performance for criticality safety analysis

  13. Serotonin receptor 3A polymorphism c.-42C > T is associated with severe dyspepsia

    Directory of Open Access Journals (Sweden)

    Grobbee Diederick E

    2011-10-01

    Full Text Available Abstract Background The association between anxiety and depression related traits and dyspepsia may reflect a common genetic predisposition. Furthermore, genetic factors may contribute to the risk of having increased visceral sensitivity, which has been implicated in dyspeptic symptom generation. Serotonin (5-HT modulates visceral sensitivity by its action on 5-HT3 receptors. Interestingly, a functional polymorphism in HTR3A, encoding the 5-HT3 receptor A subunit, has been reported to be associated with depression and anxiety related traits. A functional polymorphism in the serotonin transporter (5-HTT, which terminates serotonergic signalling, was also found associated with these psychiatric comorbidities and increased visceral sensitivity in irritable bowel syndrome, which coexistence is associated with higher dyspeptic symptom severity. We investigated the association between these functional polymorphisms and dyspeptic symptom severity. Methods Data from 592 unrelated, Caucasian, primary care patients with dyspepsia participating in a randomised clinical trial comparing step-up and step-down antacid drug treatment (The DIAMOND trial were analysed. Patients were genotyped for HTR3A c.-42C > T SNP and the 44 bp insertion/deletion polymorphism in the 5-HTT promoter (5-HTTLPR. Intensity of 8 dyspeptic symptoms at baseline was assessed using a validated questionnaire (0 = none; 6 = very severe. Sum score ≥20 was defined severe dyspepsia. Results HTR3A c.-42T allele carriers were more prevalent in patients with severe dyspepsia (OR 1.50, 95% CI 1.06-2.20. This association appeared to be stronger in females (OR 2.05, 95% CI 1.25-3.39 and patients homozygous for the long (L variant of the 5-HTTLPR genotype (OR 2.00, 95% CI 1.01-3.94. Females with 5-HTTLPR LL genotype showed the strongest association (OR = 3.50, 95% CI = 1.37-8.90. Conclusions The HTR3A c.-42T allele is associated with severe dyspeptic symptoms. The stronger association among

  14. Transcriptome analysis of Wnt3a-treated triple-negative breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Sylvie Maubant

    Full Text Available The canonical Wnt/β-catenin pathway is activated in triple-negative breast cancer (TNBC. The activation of this pathway leads to the expression of specific target genes depending on the cell/tissue context. Here, we analyzed the transcriptome of two different TNBC cell lines to define a comprehensive list of Wnt target genes. The treatment of cells with Wnt3a for 6h up-regulated the expression (fold change > 1.3 of 59 genes in MDA-MB-468 cells and 241 genes in HCC38 cells. Thirty genes were common to both cell lines. Beta-catenin may also be a transcriptional repressor and we found that 18 and 166 genes were down-regulated in response to Wnt3a treatment for 6h in MDA-MB-468 and HCC38 cells, respectively, of which six were common to both cell lines. Only half of the activated and the repressed transcripts have been previously described as Wnt target genes. Therefore, our study reveals 137 novel genes that may be positively regulated by Wnt3a and 104 novel genes that may be negatively regulated by Wnt3a. These genes are involved in the Wnt pathway itself, and also in TGFβ, p53 and Hedgehog pathways. Thorough characterization of these novel potential Wnt target genes may reveal new regulators of the canonical Wnt pathway. The comparison of our list of Wnt target genes with those published in other cellular contexts confirms the notion that Wnt target genes are tissue-, cell line- and treatment-specific. Genes up-regulated in Wnt3a-stimulated cell lines were more strongly expressed in TNBC than in luminal A breast cancer samples. These genes were also overexpressed, but to a much lesser extent, in HER2+ and luminal B tumors. We identified 72 Wnt target genes higher expressed in TNBCs (17 with a fold change >1.3 which may reflect the chronic activation of the canonical Wnt pathway that occurs in TNBC tumors.

  15. Association between FOXO3A gene polymorphisms and human longevity: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Ji-Ming Bao

    2014-06-01

    Full Text Available Numerous studies have shown associations between the FOXO3A gene, encoding the forkhead box O3 transcription factor, and human or specifically male longevity. However, the associations of specific FOXO3A polymorphisms with longevity remain inconclusive. We performed a meta-analysis of existing studies to clarify these potential associations. A comprehensive search was conducted to identify studies of FOXO3A gene polymorphisms and longevity. Pooled odds ratios (ORs and 95% confidence intervals (CIs were calculated by comparing the minor and major alleles. A total of seven articles reporting associations of FOXO3A polymorphisms with longevity were identified and included in this meta-analysis. These comprised 11 independent studies with 5241 cases and 5724 controls from different ethnic groups. rs2802292, rs2764264, rs13217795, rs1935949 and rs2802288 polymorphisms were associated with human longevity (OR = 1.36, 95% CI = 1.10-1.69, P= 0.005; OR = 1.20, 95% CI = 1.04-1.37, P= 0.01; OR = 1.27, 95% CI = 1.10-1.46, P= 0.001; OR = 1.14, 95% CI = 1.01-1.27 and OR = 1.24, 95% CI = 1.07-1.43, P= 0.003, respectively. Analysis stratified by gender indicated significant associations between rs2802292, rs2764264 and rs13217795 and male longevity (OR = 1.54, 95% CI = 1.33-1.79, P < 0.001; OR = 1.38, 95% CI = 1.15-1.66, P= 0.001; and OR = 1.39, 95% CI = 1.15-1.67, P= 0.001, but rs2802292, rs2764264 and rs1935949 were not linked to female longevity. Moreover, our study showed no association between rs2153960, rs7762395 or rs13220810 polymorphisms and longevity. In conclusion, this meta-analysis indicates a significant association of five FOXO3A gene polymorphisms with longevity, with the effects of rs2802292 and rs2764264 being male-specific. Further investigations are required to confirm these findings.

  16. Association between FOXO3A gene polymorphisms and human longevity: a meta-analysis.

    Science.gov (United States)

    Bao, Ji-Ming; Song, Xian-Lu; Hong, Ying-Qia; Zhu, Hai-Li; Li, Cui; Zhang, Tao; Chen, Wei; Zhao, Shan-Chao; Chen, Qing

    2014-01-01

    Numerous studies have shown associations between the FOXO3A gene, encoding the forkhead box O3 transcription factor, and human or specifically male longevity. However, the associations of specific FOXO3A polymorphisms with longevity remain inconclusive. We performed a meta-analysis of existing studies to clarify these potential associations. A comprehensive search was conducted to identify studies of FOXO3A gene polymorphisms and longevity. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by comparing the minor and major alleles. A total of seven articles reporting associations of FOXO3A polymorphisms with longevity were identified and included in this meta-analysis. These comprised 11 independent studies with 5241 cases and 5724 controls from different ethnic groups. rs2802292, rs2764264, rs13217795, rs1935949 and rs2802288 polymorphisms were associated with human longevity (OR = 1.36, 95% CI = 1.10-1.69, P= 0.005; OR = 1.20, 95% CI = 1.04-1.37, P= 0.01; OR = 1.27, 95% CI = 1.10-1.46, P= 0.001; OR = 1.14, 95% CI = 1.01-1.27 and OR = 1.24, 95% CI = 1.07-1.43, P= 0.003, respectively). Analysis stratified by gender indicated significant associations between rs2802292, rs2764264 and rs13217795 and male longevity (OR = 1.54, 95% CI = 1.33-1.79, P < 0.001; OR = 1.38, 95% CI = 1.15-1.66, P= 0.001; and OR = 1.39, 95% CI = 1.15-1.67, P= 0.001), but rs2802292, rs2764264 and rs1935949 were not linked to female longevity. Moreover, our study showed no association between rs2153960, rs7762395 or rs13220810 polymorphisms and longevity. In conclusion, this meta-analysis indicates a significant association of five FOXO3A gene polymorphisms with longevity, with the effects of rs2802292 and rs2764264 being male-specific. Further investigations are required to confirm these findings.

  17. Metabolic stereoselectivity of cytochrome P450 3A4 towards deoxypodophyllotoxin : In silico predictions and experimental validation

    NARCIS (Netherlands)

    Julsing, Mattijs K.; Vasilev, Nikolay P.; Schneidman-Duhovny, Dina; Muntendarn, Remco; Woerdenbag, Herman J.; Quax, Wim J.; Wolfson, Haim J.; Ionkova, Iliana; Kayser, Oliver

    Deoxypodophyllotoxin is stereoselectively converted into epipodophyllotoxin by recombinant human cytochrome P450 3A4 (CY-P3A4). Further kinetic analysis revealed that the Michaelis-Menten K(m) and V(max) for hydroxylation of deoxypodophyllotoxin by CYP3A4 at C7 position were 1.93 mu M and 1.48

  18. Reductive metabolism of oxymatrine is catalyzed by microsomal CYP3A4

    Directory of Open Access Journals (Sweden)

    Liu W

    2015-10-01

    Full Text Available Wenqin Liu,1,2,* Jian Shi,1,2,* Lijun Zhu,2 Lingna Dong,1 Feifei Luo,2 Min Zhao,2 Ying Wang,2 Ming Hu,2,3 Linlin Lu,2 Zhongqiu Liu1,2 1Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China; 2International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China; 3Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA *These authors contributed equally to this work Abstract: Oxymatrine (OMT is a pharmacologically active primary quinolizidine alkaloid with various beneficial and toxic effects. It is confirmed that, after oral administration, OMT could be transformed to the more toxic metabolite matrine (MT, and this process may be through the reduction reaction, but the study on the characteristics of this transformation is limited. The aim of this study was to investigate the characteristics of this transformation of OMT in the human liver microsomes (HLMs and human intestinal microsomes (HIMs and the cytochrome P450 (CYP isoforms involved in this transformation. The current studies demonstrated that OMT could be metabolized to MT rapidly in HLMs and HIMs and CYP3A4 greatly contributed to this transformation. All HLMs, HIMs, and CYP3A4 isoform mediated reduction reaction followed typical biphasic kinetic model, and Km, Vmax, and CL were significant higher in HLMs than those in HIMs. Importantly, different oxygen contents could significantly affect the metabolism of OMT, and with the oxygen content decreased, the formation of metabolite was increased, suggesting this transformation was very likely a reduction reaction. Results of this in vitro study elucidated the metabolic pathways and characteristics of metabolism of OMT to MT and would provide a theoretical basis and guidance for the safe application of OMT

  19. Reference hearing threshold levels for chirp signals delivered by an ER-3A insert earphone

    DEFF Research Database (Denmark)

    Gøtsche-Rasmussen, Kristian; Poulsen, Torben; Elberling, Claus

    2012-01-01

    back from a Tucker Davies Technologies System II, and a Matlab program controlled the test setup. The results are specified in dB peak-to-peak equivalent threshold sound pressure levels (dB peETSPL). Study sample: The test group consisted of 25 otologically-normal young adults (age 18–25 years......Objective: To establish reference hearing threshold levels for chirps and frequency-specific chirps. Design: Hearing thresholds were determined monaurally for broad-band chirps and octave-band chirps using the Etymotic Research, ER-3A insert earphone. The chirps were presented using two repetition...

  20. SAS3A analysis of natural convection boiling behavior in the Sodium Boiling Test Facility

    International Nuclear Information System (INIS)

    Klein, G.A.

    1979-01-01

    An analysis of natural convection boiling behavior in the Sodium Boiling Test (SBT) Facility has been performed using the SAS3A computer code. The predictions from this analysis indicate that stable boiling can be achieved for extensive periods of time for channel powers less than 1.4 kW and indicate intermittent dryout at higher powers up to at least 1.7 kW. The results of this anaysis are in reasonable agreement with the SBT Facility test results

  1. Compliance of blood sampling procedures with the CLSI H3-A6 guidelines

    DEFF Research Database (Denmark)

    Simundic, A. M.; Church, S.; Cornes, M. P.

    2015-01-01

    compliance with the recommended CLSI guideline. Patient identification and test tube labelling were identified as the key guideline issues with the highest combination of probability and potential risk of harm. Administrative staff did not adhere to patient identification procedures during phlebotomy...... are patient identification and tube labelling....... checklist including 29 items was created to assess the compliance of European phlebotomy procedures with the CLSI H3-A6 guideline. A risk occurrence chart of individual phlebotomy steps was created from the observed error frequency and severity of harm of each guideline key issue. The severity of errors...

  2. Oxidase uncoupling in heme monooxygenases: Human cytochrome P450 CYP3A4 in Nanodiscs

    Energy Technology Data Exchange (ETDEWEB)

    Grinkova, Yelena V.; Denisov, Ilia G.; McLean, Mark A. [Departments of Biochemistry and Chemistry, University of Illinois, 505 South Goodwin Avenue (United States); Sligar, Stephen G., E-mail: s-sligar@illinois.edu [Departments of Biochemistry and Chemistry, University of Illinois, 505 South Goodwin Avenue (United States)

    2013-01-25

    Highlights: ► Substantial reducing equivalents are lost in human P450 CYP3A4 via an oxidase channel. ► Substrate binding has a pronounced effect on uncoupling in cytochrome P450. ► Anionic phospholipids improve the overall coupling in CYP3A4 Nanodiscs. -- Abstract: The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons:1 dioxygen:1 product. However, three alternate unproductive pathways exist where the intermediate iron–oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involves release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen–oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed “Compound I”. This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP3A4

  3. El masaje en el aula de 2-3 a??os

    OpenAIRE

    Navidad Morales, Carolina

    2015-01-01

    Se presenta el masaje infantil con una nueva visi??n donde es definido como instrumento de relaci??n y comunicaci??n entre el ni??o de 2-3 a??os con su entorno pr??ximo, concretamente con el adulto del aula. Se busca la defensa del recurso del masaje para emplear dentro del aula, utilizando como base las aportaciones de diferentes autores y las experiencias vividas en diferentes pa??ses. De estas ideas se concluyen los beneficios que aporta el masaje y la rutina posible a desarrollar dentro d...

  4. Assessment of human pregnane X receptor involvement in pesticide-mediated activation of CYP3A4 gene.

    Science.gov (United States)

    Matsubara, Tsutomu; Noracharttiyapot, Wachiraporn; Toriyabe, Takayoshi; Yoshinari, Kouichi; Nagata, Kiyoshi; Yamazoe, Yasushi

    2007-05-01

    Assessment of foreign chemical inducibility on CYP3A4 is necessary to optimize drug therapies. The properties of chemicals such as pesticides, however, are not well investigated. In the present study, properties of various pesticides on human CYP3A4 induction have been tested using HepG2-derived cells stably expressing the CYP3A4 promoter/enhancer (3-1-10 cells) and the human pregnane X receptor (hPXR)-small interfering RNA (siRNA) system. Among the examined pesticides, 13 pesticides were observed to activate the CYP3A4 gene. Surprisingly, pyributicarb was found to increase the CYP3A4 reporter activity at 0.1 to 1 microM more strongly than typical CYP3A4 inducer rifampicin. Expression of hPXR-siRNA clearly diminished the pyributicarb-stimulated CYP3A4 reporter activity in 3-1-10 cells and decreased the endogenous CYP3A4 mRNA levels in HepG2 cells. Pyributicarb caused enhancement of CYP3A4-derived reporter activity in mouse livers introduced with hPXR by adenovirus. These results indicate pyributicarb as a potent activator of CYP3A4 gene, suggesting the existence of pesticides leading to CYP3A4 induction in our environment.

  5. The Mediterranean Moored Multi-sensor Array (M3A: system development and initial results

    Directory of Open Access Journals (Sweden)

    K. Nittis

    Full Text Available Operational forecasting of ocean circulation and marine ecosystem fluctuations requires multi-parametric real-time measurements of physical and biochemical properties. The architecture of a system that is able to provide such measurements from the upper-thermocline layers of the Mediterranean Sea is described here. The system was developed for the needs of the Mediterranean Forecasting System and incorporates state-of-the-art sensors for optical and chemical measurements in the upper 100 m and physical measurements down to 500 m. Independent moorings that communicate via hydro-acoustic modems are hosting the sensors. The satellite data transfer and the large autonomy allow for the operation of the system in any open-ocean site. The system has been in pre-operational use in the Cretan Sea since January 2000. The results of this pilot phase indicate that multi-parametric real-time observations with the M3A system are feasible, if a consistent maintenance and re-calibration program is followed. The main limitations of the present configuration of M3A are related: (a to bio-fouling that primarily affects the turbidity and secondarily affects the other optical sensors, and (b to the limited throughput of the currently used satellite communication system.

    Key words. Atmospheric composition and structure (instruments and techniques. Oceanography: general (ocean prediction Oceanography: physical (upper ocean process

  6. PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides.

    Science.gov (United States)

    Coumoul, Xavier; Diry, Monique; Barouki, Robert

    2002-11-15

    OCP are xenobiotics which display various toxic effects on animal and human health. One of their effects is to bind and activate estrogen receptor alpha (ERalpha). We have previously studied the down-regulation of induced CYP1A1 (cytochrome P450) expression by this class of molecules in mammary carcinoma cells and shown the importance of ERalpha in this process. However, an alternative mechanism was suggested by those experiments in hepatoma cells. In this study, we have performed Northern blot and transient transfection assays in various cell lines and shown that OCP activate human pregnane X receptor (PXR) and subsequent CYP3A4 mRNA expression. This effect is mediated by the distal xenobiotic responsive element modulator of the promoter. The induction of CYP3A4 by OCP was dose-dependent within the 1-10 microM range. The data suggest that chronic exposure to OCP could alter a major metabolite pathway in human liver and putatively modify the pharmacokinetics of drugs and pollutants.

  7. ETHANOL-WATER ADSORPTION ON COMMERCIAL 3A ZEOLITES: KINETIC AND THERMODYNAMIC DATA

    Directory of Open Access Journals (Sweden)

    M.J. Carmo

    1997-09-01

    Full Text Available Dehydration of ethanol via adsorption using molecular sieves has recently been suggested as a promising alternative to the conventional separation methods for ethanol-water mixtures. 3A zeolites possess selective micropores whereon, due to the small size of their pores, the water molecules are adsorbed while the ethanol molecules are excluded. The scope of this work was, hence, the thermodynamic and kinetic study of ethanol-water adsorption on commercial zeolites of different origins, with the aim to select the best one. For the thermodynamic study, a thermostated bath was used at four different temperatures, where the data obtained by the static method could be correlated by means of a nonlinear isotherm. The kinetic data were obtained in a circulating finite liquid bath cell, where the effect of the temperature and of the mean diameter of the adsorbent particles on the rate of adsorption was studied. The results obtained in this way, expressed through uptake rate curves, showed that the adsorption rates were strongly dependent on the parameters studied. On comparing the adsorption rates among the adsorbents (commercial 3A zeolites, it could be concluded that, under the same operational conditions, exists a pronounced difference among them

  8. PLZF mediates the PTEN/AKT/FOXO3a signaling in suppression of prostate tumorigenesis.

    Directory of Open Access Journals (Sweden)

    JingPing Cao

    Full Text Available Promyelocytic leukemia zinc finger (PLZF protein expression is closely related to the progression of human cancers, including prostate cancer (PCa. However, the according context of a signaling pathway for PLZF to suppress prostate tumorigenesis remains greatly unknown. Here we report that PLZF is a downstream mediator of the PTEN signaling pathway in PCa. We found that PLZF expression is closely correlated with PTEN expression in a cohort of prostate cancer specimens. Interestingly, both PTEN rescue and phosphoinositide 3-kinase (PI3K inhibitor LY294002 treatment increase the PLZF expression in prostate cancer cell lines. Further, luciferase reporter assay and chromatin immunoprecipitation assay demonstrate that FOXO3a, a transcriptional factor phosphorylated by PI3K/AKT, could directly bind to the promoter of PLZF gene. These results indicate that PTEN regulates PLZF expression by AKT/FOXO3a. Moreover, our animal experiments also demonstrate that PLZF is capable of inhibiting prostate tumorigenesis in vivo. Taken together, our study defines a PTEN/PLZF pathway and would shed new lights for developing therapeutic strategy of prostate cancer.

  9. Self-cytoplasmic DNA upregulates the mutator enzyme APOBEC3A leading to chromosomal DNA damage.

    Science.gov (United States)

    Suspène, Rodolphe; Mussil, Bianka; Laude, Hélène; Caval, Vincent; Berry, Noémie; Bouzidi, Mohamed S; Thiers, Valérie; Wain-Hobson, Simon; Vartanian, Jean-Pierre

    2017-04-07

    Foreign and self-cytoplasmic DNA are recognized by numerous DNA sensor molecules leading to the production of type I interferons. Such DNA agonists should be degraded otherwise cells would be chronically stressed. Most human APOBEC3 cytidine deaminases can initiate catabolism of cytoplasmic mitochondrial DNA. Using the human myeloid cell line THP-1 with an interferon inducible APOBEC3A gene, we show that cytoplasmic DNA triggers interferon α and β production through the RNA polymerase III transcription/RIG-I pathway leading to massive upregulation of APOBEC3A. By catalyzing C→U editing in single stranded DNA fragments, the enzyme prevents them from re-annealing so attenuating the danger signal. The price to pay is chromosomal DNA damage in the form of CG→TA mutations and double stranded DNA breaks which, in the context of chronic inflammation, could drive cells down the path toward cancer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Phase I Studies of Acebilustat: Pharmacokinetics, Pharmacodynamics, Food Effect, and CYP3A Induction.

    Science.gov (United States)

    Elborn, J S; Bhatt, L; Grosswald, R; Ahuja, S; Springman, E B

    2017-01-01

    Acebilustat is a new once-daily oral antiinflammatory drug in development for treatment of cystic fibrosis (CF) and other diseases. It is an inhibitor of leukotriene A4 hydrolase; therefore, production of leukotriene B4 (LTB4) in biological fluids provides a direct measure of the pharmacodynamic (PD) response to acebilustat treatment. Here we compare the pharmacokinetics (PK) and PD between CF patients and healthy volunteers, and investigate the food effect and CYP3A4 induction in healthy volunteers. No significant differences between study populations were observed for peak plasma level (C max ) or exposure (AUC). In healthy volunteers, a shift in time to C max (T max ) was observed after a high-fat meal, but there was no change in AUC. LTB4 production was reduced in the blood of both populations and in sputum from CF patients. Acebilustat did not induce CYP3A4. These results support continued clinical study of once-daily oral acebilustat in CF at doses of 50 and 100 mg. © 2016 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  11. Design and implementation of a 3-A source and sink linear regulator for bus terminators

    International Nuclear Information System (INIS)

    Li Yanming; Wen Changbao; Wen Limin; Mao Xiangyu

    2012-01-01

    According to the requirements of the bus terminal regulator, a linear regulator with 3-A source-sink current ability is presented. The use of the NMOS pass transistor and load current feedback technique enhances the system current ability and response speed. The method of adaptive zero compensation realizes loop stability over the whole load range for either source or sink loop. Furthermore, the transconductance matching technique reduces the shoot-through current through the output stage to less than 3 μA. The regulator has been fabricated with a 0.6-μm 30 V BCD process successfully, and the area size is about 1 mm 2 . With a 20 μF output capacitor, the maximum transient output-voltage variation is within 3.5% of the output voltage with load step changes of ±2 A/1 μs. At the load range of ±3 A, the variation of output voltage is less than ±15 mV.

  12. MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering

    Directory of Open Access Journals (Sweden)

    M. Proksch

    2015-08-01

    Full Text Available The Microwave Emission Model of Layered Snowpacks (MEMLS was originally developed for microwave emissions of snowpacks in the frequency range 5–100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.

  13. Complement anaphylatoxin C3a is a potent inducer of embryonic chick retina regeneration

    Science.gov (United States)

    Haynes, Tracy; Luz-Madrigal, Agustin; Reis, Edimara S.; Echeverri Ruiz, Nancy P.; Grajales-Esquivel, Erika; Tzekou, Apostolia; Tsonis, Panagiotis A.; Lambris, John D.; Del Rio-Tsonis, Katia

    2013-01-01

    Identifying the initiation signals for tissue regeneration in vertebrates is one of the major challenges in regenerative biology. Much of the research thus far has indicated that certain growth factors have key roles. Here we show that complement fragment C3a is sufficient to induce complete regeneration of the embryonic chick retina from stem/progenitor cells present in the eye, independent of fibroblast growth factor receptor signaling. Instead, C3a induces retina regeneration via STAT3 activation, which in turn activates the injury- and inflammation-responsive factors, IL-6, IL-8 and TNF-α. This activation sets forth regulation of Wnt2b, Six3 and Sox2, genes associated with retina stem and progenitor cells. Thus, our results establish a mechanism for retina regeneration based on injury and inflammation signals. Furthermore, our results indicate a unique function for complement anaphylatoxins that implicate these molecules in the induction and complete regeneration of the retina, opening new avenues of experimentation in the field. PMID:23942241

  14. The Mediterranean Moored Multi-sensor Array (M3A: system development and initial results

    Directory of Open Access Journals (Sweden)

    K. Nittis

    2003-01-01

    Full Text Available Operational forecasting of ocean circulation and marine ecosystem fluctuations requires multi-parametric real-time measurements of physical and biochemical properties. The architecture of a system that is able to provide such measurements from the upper-thermocline layers of the Mediterranean Sea is described here. The system was developed for the needs of the Mediterranean Forecasting System and incorporates state-of-the-art sensors for optical and chemical measurements in the upper 100 m and physical measurements down to 500 m. Independent moorings that communicate via hydro-acoustic modems are hosting the sensors. The satellite data transfer and the large autonomy allow for the operation of the system in any open-ocean site. The system has been in pre-operational use in the Cretan Sea since January 2000. The results of this pilot phase indicate that multi-parametric real-time observations with the M3A system are feasible, if a consistent maintenance and re-calibration program is followed. The main limitations of the present configuration of M3A are related: (a to bio-fouling that primarily affects the turbidity and secondarily affects the other optical sensors, and (b to the limited throughput of the currently used satellite communication system. Key words. Atmospheric composition and structure (instruments and techniques. Oceanography: general (ocean prediction Oceanography: physical (upper ocean process

  15. Stability of krypton fixed in zeolite-3A and -5A

    International Nuclear Information System (INIS)

    Matsuoka, Shingo; Nakamura, Hirone; Tamura, Takaaki; Takano, Takemi; Ito, Yasuo; Sugawara, Ichiro.

    1986-01-01

    The fixation operation was carried out at 450 ∼ 650 deg C, 1,000 atm for 24 h. The amount of fixed Kr was measured using thermal neutron activation analysis. For zeolite-3A the amount of Kr fixed decreased from 20 to 5 w/o as the fixation temperature rose. In the case of zeolite-5A, Kr fixation was observed at 550 deg C and above, and the amount increased to 15 w/o as the temperature rose to 650 deg C. The diffusion coefficient of Kr in the zeolite was determined from the result of heating tests. The value obtained was substituted in a diffusion equation, enabling us to predict the Kr release behavior at any temperature in a dry atmosphere. Both the samples of zeolite-3A fixed below 525 deg C and of zeolite-5A below 625 deg C showed an intensive Kr release in water that would not be expected from the release behavior under dry conditions. However, such unexpected release was not observed in either sample fixed above these respective temperatures. This could be accounted for by the fact that zeolite cations move easily when zeolite is moisturized. (author)

  16. Development of a K3A robot for deployment in radioactive environments

    International Nuclear Information System (INIS)

    Sias, F.R. Jr.

    1996-01-01

    Radioactive materials make up a significant part of the hazardous-material inventory of the United States Department of Energy. Much of the radioactive material will be inspected or handled by robotic systems that contain electronic circuits that may be damaged by gamma radiation and other particles emitted from radioactive material. To use a mobile robot in the vicinity of high-level gamma radiation requires a special design. Since materials and electronic circuits can withstand some radiation without failure, the simplest approach would be simply to use an unmodified commercial mobile robot in the radioactive environment but remove it before failure occurs. Unpowered backup is another method of extending system lifetime in an ionizing radiation environment. When the primary system fails or degrades sufficiently, the backup system can be switched in to maintain system operation. By careful design and production-lot testing, systems can be designed to meet moderate doses of radiation; however, randomly-selected off- the-shelf commercial parts cannot be guaranteed to meet a specified total-dose tolerance. We can define the Basic Radiation-Hardened System to be a teleoperated K3A transport capable of deploying a radiation-hardened video camera for initial entry and inspection applications. The electronics in the K3A mobile base has three essential modules: MA-2 Motor Amplifier Circuit, DC-I Drive Control Computer, and DC/DC Converter for powering the electronics. Design of the system will be discussed

  17. Novel FGFR1 and KISS1R Mutations in Chinese Kallmann Syndrome Males with Cleft Lip/Palate

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2015-01-01

    Full Text Available Kallmann syndrome (KS is characterized by isolated hypogonadotropic hypogonadism (IHH with anosmia and is sometimes associated with cleft lip/palate (CLP. In order to describe the clinical features, genetic etiology, and treatment outcome of KS males with CLP, we performed genetic screening for 15 known causal IHH genes (KAL1, FGFR1, NELF, FGF8, CHD7, WDR11, SEMA3A, KISS1R, KISS1, PROKR2, PROK2, TAC3, TACR3, GNRH1, and GNRHR in four KS with CLP patients and six IHH patients without CLP. Two novel heterozygous missense mutations in FGFR1, (NM_001174066: c.776G>A (p.G259E and (NM_001174066: c.358C>T (p.R120C, were identified in a 23-year-old KS male with cleft lip and an 18-year-old KS patient with cleft lip and palate, dental agenesis, and high arched palate, respectively. These two mutations were not presented in their healthy parents and 200 normal controls. One novel heterozygous missense mutation in KISS1R, (NM_032551: c.587C>A (p.P196H, was identified in an 18-year-old KS male with cleft lip and dental agenesis who developed sperm after being treated with gonadotropin. This mutation was also presented in his healthy father and grandfather. These results have implications for the diagnosis, genetic counseling, and treatment of KS and CLP males with mutations in FGFR1 gene.

  18. Analysis of iris surface features in populations of diverse ancestry

    Science.gov (United States)

    Edwards, Melissa; Cha, David; Krithika, S.; Johnson, Monique; Parra, Esteban J.

    2016-01-01

    There are many textural elements that can be found in the human eye, including Fuchs’ crypts, Wolfflin nodules, pigment spots, contraction furrows and conjunctival melanosis. Although iris surface features have been well-studied in populations of European ancestry, the worldwide distribution of these traits is poorly understood. In this paper, we develop a new method of characterizing iris features from photographs of the iris. We then apply this method to a diverse sample of East Asian, European and South Asian ancestry. All five iris features showed significant differences in frequency between the three populations, indicating that iris features are largely population dependent. Although none of the features were correlated with each other in the East and South Asian groups, Fuchs’ crypts were significantly correlated with contraction furrows and pigment spots and contraction furrows were significantly associated with pigment spots in the European group. The genetic marker SEMA3A rs10235789 was significantly associated with Fuchs’ crypt grade in the European, East Asian and South Asian samples and a borderline association between TRAF3IP1 rs3739070 and contraction furrow grade was found in the European sample. The study of iris surface features in diverse populations may provide valuable information of forensic, biomedical and ophthalmological interest. PMID:26909168

  19. NRP1 Accelerates Odontoblast Differentiation of Dental Pulp Stem Cells Through Classical Wnt/β-Catenin Signaling.

    Science.gov (United States)

    Song, Yihua; Liu, Xiaojuan; Feng, Xingmei; Gu, Zhifeng; Gu, Yongchun; Lian, Min; Xiao, Jingwen; Cao, Peipei; Zheng, Ke; Gu, Xiaobing; Li, Dongping; He, Ping; Wang, Chenfei

    2017-10-01

    Neuropilin-1 (NRP1) is one of the members of neuropilin family. It can combine with disparate ligands involved in regulating cell proliferation, apoptosis, and differentiation. The binding of NRP1 to Sema3A stimulates osteoblast differentiation through the classical Wnt/β-catenin pathway. However, the functions of NRP1 in dental pulp stem cells (DPSCs) are not clear. The aim of our study was to investigate how NRP1 controlled odontoblast differentiation in DPSCs and clarified the underlying mechanisms. NRP1 expression was increased in time-dependent manner along with cell odontoblast differentiation. Overexpression of NRP1 upregulated dentin matrix protein-1, dentin sialophosphoprotein, alkaline phosphatase protein level, and mineralization in DPSCs, while knockdown of NRP1 induced the opposite effects. SiNRP1 similar to DKK1 availably blocked classical Wnt/β-catenin signaling and odontoblast differentiation. In summary, NRP1, as a promoter of odontoblast differentiation, regulates DPSCs via the classical Wnt/β-catenin pathway.

  20. Three new shRNA expression vectors targeting the CYP3A4 coding sequence to inhibit its expression

    Directory of Open Access Journals (Sweden)

    Siyun Xu

    2014-10-01

    Full Text Available RNA interference (RNAi is useful for selective gene silencing. Cytochrome P450 3A4 (CYP3A4, which metabolizes approximately 50% of drugs in clinical use, plays an important role in drug metabolism. In this study, we aimed to develop a short hairpin RNA (shRNA to modulate CYP3A4 expression. Three new shRNAs (S1, S2 and S3 were designed to target the coding sequence (CDS of CYP3A4, cloned into a shRNA expression vector, and tested in different cells. The mixture of three shRNAs produced optimal reduction (55% in CYP3A4 CDS-luciferase activity in both CHL and HEK293 cells. Endogenous CYP3A4 expression in HepG2 cells was decreased about 50% at both mRNA and protein level after transfection of the mixture of three shRNAs. In contrast, CYP3A5 gene expression was not altered by the shRNAs, supporting the selectivity of CYP3A4 shRNAs. In addition, HepG2 cells transfected with CYP3A4 shRNAs were less sensitive to Ginkgolic acids, whose toxic metabolites are produced by CYP3A4. These results demonstrate that vector-based shRNAs could modulate CYP3A4 expression in cells through their actions on CYP3A4 CDS, and CYP3A4 shRNAs may be utilized to define the role of CYP3A4 in drug metabolism and toxicity.

  1. Modulation of NMDA Receptor Properties and Synaptic Transmission by the NR3A Subunit in Mouse Hippocampal and Cerebrocortical Neurons

    Science.gov (United States)

    Tong, Gary; Takahashi, Hiroto; Tu, Shichun; Shin, Yeonsook; Talantova, Maria; Zago, Wagner; Xia, Peng; Nie, Zhiguo; Goetz, Thomas; Zhang, Dongxian; Lipton, Stuart A.; Nakanishi, Nobuki

    2015-01-01

    Expression of the NR3A subunit with NR1/NR2 in Xenopus oocytes or mammalian cell lines leads to a reduction in N-methyl-D-aspartate (NMDA)-induced currents and decreased Mg2+ sensitivity and Ca2+ permeability compared with NR1/NR2 receptors. Consistent with these findings, neurons from NR3A knockout (KO) mice exhibit enhanced NMDA-induced currents. Recombinant NR3A can also form excitatory glycine receptors with NR1 in the absence of NR2. However, the effects of NR3A on channel properties in neurons and synaptic transmission have not been fully elucidated. To study physiological roles of NR3A subunits, we generated NR3A transgenic (Tg) mice. Cultured NR3A Tg neurons exhibited two populations of NMDA receptor (NMDAR) channels, reduced Mg2+ sensitivity, and decreased Ca2+ permeability in response to NMDA/glycine, but glycine alone did not elicit excitatory currents. In addition, NMDAR-mediated excitatory postsynaptic currents (EPSCs) in NR3A Tg hippocampal slices showed reduced Mg2+ sensitivity, consistent with the notion that NR3A subunits incorporated into synaptic NMDARs. To study the function of endogenous NR3A subunits, we compared NMDAR-mediated EPSCs in NR3A KO and WT control mice. In NR3A KO mice, the ratio of the amplitudes of the NMDAR-mediated component to α-amino-3-hydroxy-5-methyl-4-isox-azolepropionic acid receptor-mediated component of the EPSC was significantly larger than that seen in WT littermates. This result suggests that NR3A subunits contributed to the NMDAR-mediated component of the EPSC in WT mice. Taken together, these results show that NR3A subunits contribute to NMDAR responses from both synaptic and extra-synaptic receptors, likely composed of NR1, NR2, and NR3 subunits. PMID:18003876

  2. Improvement of the Bacterial Pure Culture 3A by Gamma Irradiation for Increasing Efficiency in Degrading Pesticides

    International Nuclear Information System (INIS)

    Tongpim, Saowanit; Piadaeng, Nattaya

    2006-09-01

    This research work had an objective to improve bacterial activity in degrading a herbicide: 2,4-dichlorophenoxyacetic acid (2,4-D). The bacterial isolate 3 A , kept in the culture collection of Khon Kaen University that could degrade 2,4-D, was employed in this experiment. Cell suspension of isolate 3 A was exposed to gamma irradiation at various doses (1-5 kGy). The isolated survivors were screened on the basis of forming larger colonies than the parent strain 3 A when grown on mineral salts agar containing 2,4-D (MS + 2,4-D) as the sole carbon source. We obtained 70 effective isolates which 6 isolates called 3 A I2-21, 3 A I2-23, 3 A I1-51, 3 A I2-71, 3 A I1-52 and 3 A I2-73 were chosen for further studies. These 6 irradiated isolates together with the parent strain were characterized using morphological, physiological and biochemical tests. They were all identified as Pseudomonas cepacia. All isolates had optimal growth pH of 7 and grew best at 30 o C. Biodegradation experiments performed in mineral salts medium containing 200 ppm of 2,4-D showed that after 20 days of incubation 36.9%, 65.3%, 57.2%, 54.8%, 53.4%, 47.3% and 45.8% of 2,4- D was degraded by isolates 3 A , 3 A I2-21, 3 A I2-23, 3 A I1-51, 3 A I2-71, 3 A I1-52 and 3 A I2-73, respectively. Comparing the irradiated strains with parent strain 3 A revealed that the isolate 3 A I2-21 was the most effective one as it could degrade 2,4-D about 28.4% greater than the parent strain 3 A .

  3. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs

    Energy Technology Data Exchange (ETDEWEB)

    Bello, Oscar Daniel; Cappa, Andrea Isabel; Paola, Matilde de; Zanetti, María Natalia [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Fukuda, Mitsunori [Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Fissore, Rafael A. [Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003 (United States); Mayorga, Luis S. [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Michaut, Marcela A., E-mail: mmichaut@gmail.com [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (Argentina)

    2016-09-10

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs. - Highlights: • Rab3A has a similar migration pattern to cortical granules in mouse oocytes. • Rab3A can be a marker of

  4. Overview of Hole GT3A: The sheeted dike/gabbro transition

    Science.gov (United States)

    Abe, N.; Harris, M.; Michibayashi, K.; de Obeso, J. C.; Kelemen, P. B.; Takazawa, E.; Teagle, D. A. H.; Coggon, J. A.; Matter, J. M.; Phase I Science Party, T. O. D. P.

    2017-12-01

    Hole GT3A (23.11409 N, 58.21172 E) was drilled by the Oman Drilling Project (OmDP) into Wadi Abdah of the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientifi1c Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT3A was diamond cored in February to March 2017 to a total depth of 400 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. Hole GT3A recovered predominantly sheeted dikes and gabbros and has been sub-divided into 4 igneous groups based on the abundance of gabbro downhole. Group 1 (Upper Sheeted Dike Sequence) occurs from 0 to 111.02 m, group II (Upper Gabbro Sequence) is from 111.02 to 127.89 m, group III (Lower Sheeted Dike Sequence) is between 127.89 to 233.84 m and group IV (Lower Gabbro Sequence) is from 233.84 to 400 m. Group II and IV are both associated with almost equal proportions of dikes to gabbroic lithologies, whereas group I & III have >95% dikes. The sheeted dikes were logged as either basalt (46.9 %) or diabase (26.2 %) depending on the predominant grain size of the dike. Gabbroic lithologies include (most to least abundant) gabbro, oxide gabbro and olivine gabbro. Other lithologies present include diorite (7.5%) and tonalite and trondhjemite (1%). Tonalite and trondhjemite are present as cm-sized dikelets and are found within group II and IV. Gabbroic lithologies generally display a varitextured appearance and are characterised by the co-existence of poikilitic and granular domains. Detailed observations of chilled margins and igneous contacts reveal

  5. Midazolam microdose to determine systemic and pre-systemic metabolic CYP3A activity in humans.

    Science.gov (United States)

    Hohmann, Nicolas; Kocheise, Franziska; Carls, Alexandra; Burhenne, Jürgen; Haefeli, Walter E; Mikus, Gerd

    2015-02-01

    We aimed to establish a method to assess systemic and pre-systemic cytochrome P450 (CYP) 3A activity using ineffective microgram doses of midazolam. In an open, one sequence, crossover study, 16 healthy participants received intravenous and oral midazolam at microgram (0.001 mg intravenous and 0.003 mg oral) and regular milligram (1 mg intravenous and 3 mg oral) doses to assess the linearity of plasma and urine pharmacokinetics. Dose-normalized AUC and Cmax were 37.1 ng ml(-1 ) h [95% CI 35.5, 40.6] and 39.1 ng ml(-1) [95% CI 30.4, 50.2] for the microdose and 39.0 ng ml(-1 ) h [95% CI 36.1, 42.1] and 37.1 ng ml(-1) [95% CI 26.9, 51.3] for the milligram dose. CLmet was 253 ml min(-1) [95% CI 201, 318] vs. 278 ml min(-1) [95% CI 248, 311] for intravenous doses and 1880 ml min(-1) [95% CI 1590, 2230] vs. 2050 ml min(-1) [95% CI 1720, 2450] for oral doses. Oral bioavailability of a midazolam microdose was 23.4% [95% CI 20.0, 27.3] vs. 20.9% [95% CI 17.1, 25.5] after the regular dose. Hepatic and gut extraction ratios for microgram doses were 0.44 [95% CI 0.39, 0.49] and 0.53 [95% CI 0.45, 0.63] and compared well with those for milligram doses (0.43 [95% CI 0.37, 0.49] and 0.61 [95% CI 0.53, 0.70]). The pharmacokinetics of an intravenous midazolam microdose is linear to the applied regular doses and can be used to assess safely systemic CYP3A activity and, in combination with oral microdoses, pre-systemic CYP3A activity. © 2014 The British Pharmacological Society.

  6. JNC results of BFS-62-3A benchmark calculation (CRP: Phase 5)

    International Nuclear Information System (INIS)

    Ishikawa, M.

    2004-01-01

    The present work is the results of JNC, Japan, for the Phase 5 of IAEA CRP benchmark problem (BFS-62-3A critical experiment). Analytical Method of JNC is based on Nuclear Data Library JENDL-3.2; Group Constant Set JFS-3-J3.2R: 70-group, ABBN-type self-shielding factor table based on JENDL-3.2; Effective Cross-section - Current-weighted multigroup transport cross-section. Cell model for the BFS as-built tube and pellets was (Case 1) Homogeneous Model based on IPPE definition; (Case 2) Homogeneous atomic density equivalent to JNC's heterogeneous calculation only to cross-check the adjusted correction factors; (Case 3) Heterogeneous model based on JNC's evaluation, One-dimensional plate-stretch model with Tone's background cross-section method (CASUP code). Basic diffusion Calculation was done in 18-groups and three-dimensional Hex-Z model (by the CITATION code), with Isotropic diffusion coefficients (Case 1 and 2), and Benoist's anisotropic diffusion coefficients (Case 3). For sodium void reactivity, the exact perturbation theory was applied both to basic calculation and correction calculations, ultra-fine energy group correction - approx. 100,000 group constants below 50 keV, and ABBN-type 175 group constants with shielding factors above 50 keV. Transport theory and mesh size correction 18-group, was used for three-dimensional Hex-Z model (the MINIHEX code based on the S4-P0 transport method, which was developed by JNC. Effective delayed Neutron fraction in the reactivity scale was fixed at 0.00623 by IPPE evaluation. Analytical Results of criticality values and sodium void reactivity coefficient obtained by JNC are presented. JNC made a cross-check of the homogeneous model and the adjusted correction factors submitted by IPPE, and confirmed they are consistent. JNC standard system showed quite satisfactory analytical results for the criticality and the sodium void reactivity of BFS-62-3A experiment. JNC calculated the cross-section sensitivity coefficients of BFS

  7. A search for new CYP3A4 variants as determinants of tacrolimus dose requirements in renal-transplanted patients.

    Science.gov (United States)

    Tavira, Beatriz; Coto, Eliecer; Diaz-Corte, Carmen; Alvarez, Victoria; López-Larrea, Carlos; Ortega, Francisco

    2013-08-01

    The CYP3A5*3 and CYP3A4*1B alleles have been related with tacrolimus (Tac) dose requirements. The rare CYP3A4*22 variant has also been associated with a significantly lower Tac dose. We genotyped the three single-nucleotide polymorphisms in 206 kidney-transplanted patients who received Tac as the primary immunosuppressor. CYP3A5*1 and CYP3A4*1B allele carriers received a significantly higher Tac dose (PCYP3A4*22 genotypes, either nominally or according to the CYP3A5 genotype (expressers vs. nonexpressers). Sequencing of CYP3A4 coding exons in a total of 15 patients revealed only one nonreported missense change (p.P227>T) in one patient. We concluded that CYP3A5*3 and CYP3A4*1B were the main determinants of the Tac dose-adjusted blood concentration in our cohort of renal-transplanted patients.

  8. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.

    Science.gov (United States)

    Hatazawa, Yukino; Ono, Yusuke; Hirose, Yuma; Kanai, Sayaka; Fujii, Nobuharu L; Machida, Shuichi; Nishino, Ichizo; Shimizu, Takahiko; Okano, Masaki; Kamei, Yasutomi; Ogawa, Yoshihiro

    2018-03-01

    DNA methylation is an epigenetic mechanism regulating gene expression. In this study, we observed that DNA methyltransferase 3a (Dnmt3a) expression is decreased after muscle atrophy. We made skeletal muscle-specific Dnmt3a-knockout (Dnmt3a-KO) mice. The regeneration capacity after muscle injury was markedly decreased in Dnmt3a-KO mice. Diminished mRNA and protein expression of Dnmt3a were observed in skeletal muscles as well as in satellite cells, which are important for muscle regeneration, in Dnmt3a-KO mice. Dnmt3a-KO satellite cell showed smaller in size (length/area), suggesting suppressed myotube differentiation. Microarray analysis of satellite cells showed that expression of growth differentiation factor 5 (Gdf5) mRNA was markedly increased in Dnmt3a-KO mice. The DNA methylation level of the Gdf5 promoter was markedly decreased in Dnmt3a-KO satellite cells. In addition, DNA methylation inhibitor azacytidine treatment increased Gdf5 expression in wild-type satellite cells, suggesting Gdf5 expression is regulated by DNA methylation. Also, we observed increased inhibitor of differentiation (a target of Gdf5) mRNA expression in Dnmt3a-KO satellite cells. Thus, Dnmt3a appears to regulate satellite cell differentiation via DNA methylation. This mechanism may play a role in the decreased regeneration capacity during atrophy such as in aged sarcopenia.-Hatazawa, Y., Ono, Y., Hirose, Y., Kanai, S., Fujii, N. L., Machida, S., Nishino, I., Shimizu, T., Okano, M., Kamei, Y., Ogawa, Y. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.

  9. SHADOW3: a new version of the synchrotron X-ray optics modelling package

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, Manuel, E-mail: srio@esrf.eu [European Synchrotron Radiation Facility, 6 Jules Horowitz, 38000 Grenoble (France); Canestrari, Niccolo [CNRS, Grenoble (France); European Synchrotron Radiation Facility, 6 Jules Horowitz, 38000 Grenoble (France); Jiang, Fan; Cerrina, Franco [Boston University, 8 St Mary’s Street, Boston, MA 02215 (United States)

    2011-09-01

    SHADOW3, a new version of the X-ray tracing code SHADOW, is introduced. A new version of the popular X-ray tracing code SHADOW is presented. An important step has been made in restructuring the code following new computer engineering standards, ending with a modular Fortran 2003 structure and an application programming interface (API). The new code has been designed to be compatible with the original file-oriented SHADOW philosophy, but simplifying the compilation, installation and use. In addition, users can now become programmers using the newly designed SHADOW3 API for creating scripts, macros and programs; being able to deal with optical system optimization, image simulation, and also low transmission calculations requiring a large number of rays (>10{sup 6}). Plans for future development and questions on how to accomplish them are also discussed.

  10. LiNbO3 :Pr3+ : A Multipiezo Material with Simultaneous Piezoelectricity and Sensitive Piezoluminescence.

    Science.gov (United States)

    Tu, Dong; Xu, Chao-Nan; Yoshida, Akihito; Fujihala, Masayoshi; Hirotsu, Jou; Zheng, Xu-Guang

    2017-06-01

    Red-emitting piezoluminescence (elasticoluminescence) is achieved by doping rare earth Pr 3+ into the well-known piezoelectric matrix, LiNbO 3 . By precisely tuning the Li/Nb ratio in nonstoichiometric Li x NbO 3 :Pr 3+ , a material that exhibits an unusually high piezoluminescence intensity, which far exceeds that of any well-known piezoelectric material, is produced. Li x NbO 3 :Pr 3+ shows excellent strain sensitivity at the lowest strain level, with no threshold for stress sensing. These multipiezo properties of sensitive piezoluminescence in a piezoelectric matrix are ideal for microstress sensing, damage diagnosis, electro-mechano-optical energy conversion, and multifunctional control in optoelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The dissociation between the P3a event-related potential and behavioral distraction.

    Science.gov (United States)

    Wetzel, Nicole; Schröger, Erich; Widmann, Andreas

    2013-09-01

    Unexpected novel sounds can capture our attention and impair performance. Recent behavioral research revealed that only novel sounds that provided target-related (but not task-related) information impaired performance. This poses the question of the automaticity of novelty processing and its expression at the behavioral level. In an auditory-visual oddball paradigm, the informational content of sounds regarding the time and probability of target occurrence was varied. Independent from the informational content, novel, and deviant sounds elicited the P3a, an ERP-component related to novelty processing. In contrast, impaired performance was only observed if target-related information was provided. Results indicate that distractor sounds are automatically evaluated as potentially significant, but that the consequences for behavior depend on further processes such as the processing of the given information. Copyright © 2013 Society for Psychophysiological Research.

  12. Posttest REALP4 analysis of LOFT experiment L1-3A

    International Nuclear Information System (INIS)

    White, J.R.; Holmstrom, H.L.O.

    1977-10-01

    This report presents selected results of posttest RELAP4 modeling of LOFT loss-of-coolant experiment L1-3A, a double-ended isothermal cold leg break with lower plenum emergency core coolant injection. Comparisons are presented between the pretest prediction, the posttest analysis, and the experimental data. It is concluded that pressurizer modeling is important for accurately predicting system behavior during the initial portion of saturated blowdown. Using measured initial conditions rather than nominal specified initial conditions did not influence the system model results significantly. Using finer nodalization in the reactor vessel improved the prediction of the system pressure history by minimizing steam condensation effects. Unequal steam condensation between the downcomer and core volumes appear to cause the manometer oscillations observed in both the pretest and posttest RELAP4 analysis

  13. Enrichment of ammonia concentration from aqua-ammonia vapors by using 3A molecular sieve

    International Nuclear Information System (INIS)

    Chiou, J.S.; Lin, T.M.; She, K.Y.; Chen, W.M.

    2009-01-01

    In aqua-ammonia refrigeration systems, the ammonia is the refrigerant and the water is the absorbent, the vapor produced in the generator always contains a small fraction of water. The removed of this residual water is a crucial issue in order to guarantee a reliable and efficient operation of these systems. Currently, the thermal distillation methods (via a rectifier and/or an analyzer) are used to further separate the water from aqua-ammonia mixtures. In this study, a molecular sieve module is used for ammonia purification. A thermal system with a 3A molecular sieve module was set up, and the conditions of working fluid entering into the sieve module is similar to that entering into the rectifier tower of a typical aqua-ammonia absorption system. Results from ammonia enrichment tests indicate the concentration of ammonia can be raised from about 80% up to about 99% if siever installation was properly arranged.

  14. Two-dimensional Dirac fermions in thin films of C d3A s2

    Science.gov (United States)

    Galletti, Luca; Schumann, Timo; Shoron, Omor F.; Goyal, Manik; Kealhofer, David A.; Kim, Honggyu; Stemmer, Susanne

    2018-03-01

    Two-dimensional states in confined thin films of the three-dimensional Dirac semimetal C d3A s2 are probed by transport and capacitance measurements under applied magnetic and electric fields. The results establish the two-dimensional Dirac electronic spectrum of these states. We observe signatures of p -type conduction in the two-dimensional states as the Fermi level is tuned across their charge neutrality point and the presence of a zero-energy Landau level, all of which indicate topologically nontrivial states. The resistance at the charge neutrality point is approximately h /e2 and increases rapidly under the application of a magnetic field. The results open many possibilities for gate-tunable topological devices and for the exploration of novel physics in the zero-energy Landau level.

  15. Nukuhivensiums, Indolo[2,3-a]quinoliziniums from the Marquesan Plant Rauvolfia nukuhivensis

    Directory of Open Access Journals (Sweden)

    Phila Raharivelomanana

    2012-10-01

    Full Text Available The first phytochemical inspection of the Marquesan endemic plant Rauvolfia nukuhivensis led to the isolation and structure characterization of two new indolo[2,3‑a]quinolizinium derivatives named nukuhivensium (1 and N12-methyl-nukuhivensium (2. They feature an aromatic indolo[2,3-a]quinolizinium core, substituted at C-2 by a n-propyl group, which is unusual in this family of alkaloid derivatives. The structure elucidation was performed on the basis of NMR spectroscopy and especially by interpretation of 2D HMBC correlations. A biosynthetic pathway is proposed on the basis of known enzymatic transformations for this family of natural products. These compounds exhibited low antimicrobial activities.

  16. Karyopherin β3: A new cellular target for the HPV-16 E5 oncoprotein

    International Nuclear Information System (INIS)

    Krawczyk, Ewa; Hanover, John A.; Schlegel, Richard; Suprynowicz, Frank A.

    2008-01-01

    Epidemiological and experimental studies have shown that high-risk human papillomaviruses (HPVs) are the causative agents of cervical cancer worldwide, and that HPV-16 is associated with more than half of these cases. In addition to the well-characterized E6 and E7 oncoproteins of HPV-16, recent evidence increasingly has implicated the HPV-16 E5 protein (16E5) as an important mediator of oncogenic transformation. Since 16E5 has no known intrinsic enzymatic activity, its effects on infected cells are most likely mediated by interactions with various cellular proteins and/or its documented association with lipid rafts. In the present study, we describe a new cellular target that binds to 16E5 in COS cells and in stable human ectocervical cell lines. This target is karyopherin β3, a member of the nuclear import receptor family with critical roles in the nuclear import of ribosomal proteins and in the secretory pathway

  17. SHADOW3: a new version of the synchrotron X-ray optics modelling package

    International Nuclear Information System (INIS)

    Sanchez del Rio, Manuel; Canestrari, Niccolo; Jiang, Fan; Cerrina, Franco

    2011-01-01

    SHADOW3, a new version of the X-ray tracing code SHADOW, is introduced. A new version of the popular X-ray tracing code SHADOW is presented. An important step has been made in restructuring the code following new computer engineering standards, ending with a modular Fortran 2003 structure and an application programming interface (API). The new code has been designed to be compatible with the original file-oriented SHADOW philosophy, but simplifying the compilation, installation and use. In addition, users can now become programmers using the newly designed SHADOW3 API for creating scripts, macros and programs; being able to deal with optical system optimization, image simulation, and also low transmission calculations requiring a large number of rays (>10 6 ). Plans for future development and questions on how to accomplish them are also discussed

  18. Optimization of Manganese Reduction in Biotreated POME onto 3A Molecular Sieve and Clinoptilolite Zeolites.

    Science.gov (United States)

    Jami, Mohammed S; Rosli, Nurul-Shafiqah; Amosa, Mutiu K

    2016-06-01

    Availability of quality-certified water is pertinent to the production of food and pharmaceutical products. Adverse effects of manganese content of water on the corrosion of vessels and reactors necessitate that process water is scrutinized for allowable concentration levels before being applied in the production processes. In this research, optimization of the adsorption process conditions germane to the removal of manganese from biotreated palm oil mill effluent (BPOME) using zeolite 3A subsequent to a comparative adsorption with clinoptilolite was studied. A face-centered central composite design (FCCCD) of the response surface methodology (RSM) was adopted for the study. Analysis of variance (ANOVA) for response surface quadratic model revealed that the model was significant with dosage and agitation speed connoting the main significant process factors for the optimization. R(2) of 0.9478 yielded by the model was in agreement with predicted R(2). Langmuir and pseudo-second-order suggest the adsorption mechanism involved monolayer adsorption and cation exchanging.

  19. Correlation between pre-treatment quasispecies complexity and treatment outcome in chronic HCV genotype 3a.

    LENUS (Irish Health Repository)

    Moreau, Isabelle

    2012-02-03

    Pre-treatment HCV quasispecies complexity and diversity may predict response to interferon based anti-viral therapy. The objective of this study was to retrospectively (1) examine temporal changes in quasispecies prior to the start of therapy and (2) investigate extensively quasispecies evolution in a group of 10 chronically infected patients with genotype 3a, treated with pegylated alpha2a-Interferon and ribavirin. The degree of sequence heterogeneity within the hypervariable region 1 was assessed by analyzing 20-30 individual clones in serial serum samples. Genetic parameters, including amino acid Shannon entropy, Hamming distance and genetic distance were calculated for each sample. Treatment outcome was divided into (1) sustained virological responders (SVR) and (2) treatment failure (TF). Our results indicate, (1) quasispecies complexity and diversity are lower in the SVR group, (2) quasispecies vary temporally and (3) genetic heterogeneity at baseline can be use to predict treatment outcome. We discuss the results from the perspective of replicative homeostasis.

  20. Perovskite ThTaN3: A large-thermopower topological crystalline insulator

    Science.gov (United States)

    Jung, Myung-Chul; Lee, Kwan-Woo; Pickett, Warren E.

    2018-03-01

    ThTaN3, a rare cubic perovskite nitride semiconductor, has been studied using ab initio methods. Spin-orbit coupling (SOC) results in band inversion and a band gap of 150 meV at the zone center. Despite trivial Z2 indices, two pairs of spin-polarized surface bands cross the gap near the zone center, indicating that this system is a topological crystalline insulator with the mirror Chern number of | Cm|=2 protected by the mirror and C4 rotational symmetries. Additionally, SOC doubles the Seebeck coefficient, leading to a maximum of ˜400 μ V /K at 150 K for carrier-doping levels of several 1017/cm3.ThTaN3 combines excellent bulk thermopower with parallel conduction through topological surface states that may point toward new possibilities for platforms for engineering devices with larger figures of merit.

  1. Transgenic potato plants expressing cry3A gene confer resistance to Colorado potato beetle.

    Science.gov (United States)

    Mi, Xiaoxiao; Ji, Xiangzhuo; Yang, Jiangwei; Liang, Lina; Si, Huaijun; Wu, Jiahe; Zhang, Ning; Wang, Di

    2015-07-01

    The Colorado potato beetle (Leptinotarsa decemlineata Say, CPB) is a fatal pest, which is a quarantine pest in China. The CPB has now invaded the Xinjiang Uygur Autonomous Region and is constantly spreading eastward in China. In this study, we developed transgenic potato plants expressing cry3A gene. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the cry3A gene expressed in leaves, stems and roots of the transgenic plants under the control of CaMV 35S promoter, while they expressed only in leaves and stems under the control of potato leaf and stem-specific promoter ST-LS1. The mortality of the larvae was higher (28% and 36%) on the transgenic plant line 35S1 on the 3rd and 4th days, and on ST3 (48%) on the 5th day after inoculation with instar larvae. Insect biomass accumulation on the foliage of the transgenic plant lines 35S1, 35S2 and ST3 was significantly lower (0.42%, 0.43% and 0.42%). Foliage consumption was lowest on transgenic lines 35S8 and ST2 among all plant foliage (7.47 mg/larvae/day and 12.46 mg/larvae/day). The different transgenic plant foliages had varied inhibition to larval growth. The survivors on the transgenic lines obviously were smaller than their original size and extremely weak. The transgenic potato plants with CPB resistance could be used to develop germplasms or varieties for controlling CPB damage and halting its spread in China. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  2. The Conserved Proline18 in the Polerovirus P3a Is Important for Brassica Yellows Virus Systemic Infection

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Zhang

    2018-04-01

    Full Text Available ORF3a, a newly identified non-AUG-initiated ORF encoded by members of genera Polerovirus and Luteovirus, is required for long-distance movement in plants. However, the mechanism of action of P3a in viral systemic movement is still not clear. In this study, sequencing of a brassica yellows virus (BrYV mutant defective in systemic infection revealed two-nucleotide variation at positions 3406 and 3467 in the genome. Subsequent nucleotide substitution analysis proved that only the non-synonymous substitution (C→U at position 3406, resulting in P3aP18L, abolished the systemic infection of BrYV. Preliminary investigation showed that wild type BrYV was able to load into the petiole of the agroinfiltrated Nicotiana benthamiana leaves, whereas the mutant displayed very low efficiency. Further experiments revealed that the P3a and its mutant P3aP18L localized to the Golgi apparatus and near plasmodesmata, as well as the endoplasmic reticulum. Both P3a and P3aP18L were able to self-interact in vivo, however, the mutant P3aP18L seemed to form more stable dimer than wild type. More interestingly, we confirmed firstly that the ectopic expression of P3a of other poleroviruses and luteoviruses, as well as co-infection with Pea enation mosaic virus 2 (PEMV 2, restored the ability of systemic movement of BrYV P3a defective mutant, indicating that the P3a is functionally conserved in poleroviruses and luteoviruses and is redundant when BrYV co-infects with PEMV 2. These observations provide a novel insight into the conserved function of P3a and its underlying mechanism in the systemic infection.

  3. The Conserved Proline18 in the Polerovirus P3a Is Important for Brassica Yellows Virus Systemic Infection.

    Science.gov (United States)

    Zhang, Xiao-Yan; Zhao, Tian-Yu; Li, Yuan-Yuan; Xiang, Hai-Ying; Dong, Shu-Wei; Zhang, Zong-Ying; Wang, Ying; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2018-01-01

    ORF3a, a newly identified non-AUG-initiated ORF encoded by members of genera Polerovirus and Luteovirus , is required for long-distance movement in plants. However, the mechanism of action of P3a in viral systemic movement is still not clear. In this study, sequencing of a brassica yellows virus (BrYV) mutant defective in systemic infection revealed two-nucleotide variation at positions 3406 and 3467 in the genome. Subsequent nucleotide substitution analysis proved that only the non-synonymous substitution (C→U) at position 3406, resulting in P3a P18L , abolished the systemic infection of BrYV. Preliminary investigation showed that wild type BrYV was able to load into the petiole of the agroinfiltrated Nicotiana benthamiana leaves, whereas the mutant displayed very low efficiency. Further experiments revealed that the P3a and its mutant P3a P18L localized to the Golgi apparatus and near plasmodesmata, as well as the endoplasmic reticulum. Both P3a and P3a P18L were able to self-interact in vivo , however, the mutant P3a P18L seemed to form more stable dimer than wild type. More interestingly, we confirmed firstly that the ectopic expression of P3a of other poleroviruses and luteoviruses, as well as co-infection with Pea enation mosaic virus 2 (PEMV 2), restored the ability of systemic movement of BrYV P3a defective mutant, indicating that the P3a is functionally conserved in poleroviruses and luteoviruses and is redundant when BrYV co-infects with PEMV 2. These observations provide a novel insight into the conserved function of P3a and its underlying mechanism in the systemic infection.

  4. Chronic ethanol exposure downregulates hepatic expression of pregnane X receptor and P450 3A11 in female ICR mice

    International Nuclear Information System (INIS)

    Wang Jianping; Xu Dexiang; Sun Meifang; Chen Yuanhua; Wang Hua; Wei Wei

    2005-01-01

    Pregnane X receptor (PXR) is a nuclear receptor that regulates cytochrome P450 3A (CYP3A) gene transcription in a ligand-dependent manner. Ethanol has been reported to be either an inducer or an inhibitor of CYP3A expression. In this study, we investigated the effects of chronic ethanol exposure on PXR and P450 3A11 gene expression in mouse liver. Female ICR mice were administered by gavage with different doses (1000, 2000 and 4000 mg/kg) of ethanol for up to 5 weeks. Hepatic PXR and P450 3A11 mRNA levels were measured using RT-PCR. Erythromycin N-demethylase (ERND) activity was used as an indicator of CYP3A protein expression. Results showed that chronic ethanol exposure markedly decreased hepatic PXR and P450 3A11 mRNA levels. Consistent with downregulation of P450 3A11 mRNA, chronic ethanol exposure significantly decreased ERND activity in a dose-dependent manner. Additional experiment showed that chronic ethanol exposure significantly increased plasma endotoxin level and hepatic CD14 and TLR-4 mRNA expression, all of which were blocked by elimination of Gram-negative bacteria and endotoxin with antibiotics. Correspondingly, pretreatment with antibiotics reversed the downregulation of PXR and P450 3A11 mRNA expression and ERND activity in mouse liver. Furthermore, the downregulation of hepatic PXR and P450 3A11 mRNA expression was significantly attenuated in mice pretreated with GdCl 3 , a selective Kupffer cell toxicant. GdCl 3 pretreatment also significantly attenuated chronically ethanol-induced decrease in ERND activity. These results indicated that activation of Kupffer cells by gut-derived endotoxin contributes to downregulation of hepatic PXR and P450 3A11 expression during chronic alcohol intoxication

  5. Dysregulated DNA Methyltransferase 3A Upregulates IGFBP5 to Suppress Trophoblast Cell Migration and Invasion in Preeclampsia.

    Science.gov (United States)

    Jia, Yuanhui; Li, Ting; Huang, Xiaojie; Xu, Xianghong; Zhou, Xinyao; Jia, Linyan; Zhu, Jingping; Xie, Dandan; Wang, Kai; Zhou, Qian; Jin, Liping; Zhang, Jiqin; Duan, Tao

    2017-02-01

    Preeclampsia is a unique multiple system disorder during human pregnancy, which affects ≈5% to 8% of pregnancies. Its risks and complications have become the major causes of maternal and fetal morbidity and mortality. Although abnormal placentation to which DNA methylation dysregulation is always linked is speculated to be one of the reasons causing preeclampsia, the underlying mechanisms still remain elusive to date. Here we revealed that aberrant DNA methyltransferase 3A (DNMT3A) plays a critical role in preeclampsia. Our results show that the expression and localization of DNMT3A are dysregulated in preeclamptic placenta. Moreover, knockdown of DNMT3A obviously inhibits trophoblast cell migration and invasion. Mechanistically, IGFBP5 (insulin-like growth factor-binding protein 5), known as a suppressor, is upregulated by decreased DNMT3A because of promoter hypomethylation. Importantly, IGFBP5 downregulation can rescue the defects caused by DNMT3A knockdown, thereby, consolidating the significance of IGFBP5 in the downstream of DNMT3A in trophoblast. Furthermore, we detected low promoter methylation and high protein expression of IGFBP5 in the clinical samples of preeclamptic placenta. Collectively, our study suggests that dysregulation of DNMT3A and IGFBP5 is relevant to preeclampsia. Thus, we propose that DNMT3A and IGFBP5 can serve as potential markers and targets for the clinical diagnosis and therapy of preeclampsia. © 2017 American Heart Association, Inc.

  6. Nutlin-3a and Cytokine Co-loaded Spermine-Modified Acetalated Dextran Nanoparticles for Cancer Chemo-Immunotherapy

    DEFF Research Database (Denmark)

    Bauleth-Ramos, Tomás; Shahbazi, Mohammad-Ali; Liu, Dongfei

    2017-01-01

    The combination of chemo- and immunotherapy represents one promising strategy to overcome the existent challenges in the present-day anticancer therapy. Here, spermine-modified acetalated dextran nanoparticles (Sp-AcDEX NPs), co-loaded with the non-genotoxic molecule Nutlin-3a (Nut3a), and the cy......The combination of chemo- and immunotherapy represents one promising strategy to overcome the existent challenges in the present-day anticancer therapy. Here, spermine-modified acetalated dextran nanoparticles (Sp-AcDEX NPs), co-loaded with the non-genotoxic molecule Nutlin-3a (Nut3a...

  7. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield.

    Science.gov (United States)

    Ma, Lin; Li, Tian; Hao, Chenyang; Wang, Yuquan; Chen, Xinhong; Zhang, Xueyong

    2016-05-01

    Grain size is a dominant component of grain weight in cereals. Earlier studies have shown that OsGS5 plays a major role in regulating both grain size and weight in rice via promotion of cell division. In this study, we isolated TaGS5 homoeologues in wheat and mapped them on chromosomes 3A, 3B and 3D. Temporal and spatial expression analysis showed that TaGS5 homoeologues were preferentially expressed in young spikes and developing grains. Two alleles of TaGS5-3A, TaGS5-3A-T and TaGS5-3A-G were identified in wheat accessions, and a functional marker was developed to discriminate them. Association analysis revealed that TaGS5-3A-T was significantly correlated with larger grain size and higher thousand kernel weight. Biochemical assays showed that TaGS5-3A-T possesses a higher enzymatic activity than TaGS5-3A-G. Transgenic rice lines overexpressing TaGS5-3A-T also exhibited larger grain size and higher thousand kernel weight than TaGS5-3A-G lines, and the transcript levels of cell cycle-related genes in TaGS5-3A-T lines were higher than those in TaGS5-3A-G lines. Furthermore, systematic evolution analysis in diploid, tetraploid and hexaploid wheat showed that TaGS5-3A underwent strong artificial selection during wheat polyploidization events and the frequency changes of two alleles demonstrated that TaGS5-3A-T was favoured in global modern wheat cultivars. These results suggest that TaGS5-3A is a positive regulator of grain size and its favoured allele TaGS5-3A-T exhibits a larger potential application in wheat high-yield breeding. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Oct3/4 directly regulates expression of E2F3a in mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Kanai, Dai; Ueda, Atsushi; Akagi, Tadayuki; Yokota, Takashi; Koide, Hiroshi

    2015-01-01

    Embryonic stem (ES) cells, derived from the inner cell mass of blastocysts, have a characteristic cell cycle with truncated G1 and G2 phases. Recent findings that suppression of Oct3/4 expression results in a reduced proliferation rate of ES cells suggest the involvement of Oct3/4 in the regulation of ES cell growth, although the underlying molecular mechanism remains unclear. In the present study, we identified E2F3a as a direct target gene of Oct3/4 in ES cells. Oct3/4 directly bound to the promoter region of the E2F3a gene and positively regulated expression of E2F3a in mouse ES cells. Suppression of E2F3a activity by E2F6 overexpression led to the reduced proliferation in ES cells, which was relieved by co-expression of E2F3a. Furthermore, cell growth retardation caused by loss of Oct3/4 was rescued by E2F3a expression. These results suggest that Oct3/4 upregulates E2F3a expression to promote ES cell growth. - Highlights: • Oct3/4 positively regulates E2F3a expression in ES cells. • Oct3/4 binds to the promoter region of the E2F3a gene. • Overexpression of E2F6, an inhibitor of E2F3a, reduces ES cell growth. • E2F3a recovers growth retardation of ES cells caused by Oct3/4 reduction

  9. Oct3/4 directly regulates expression of E2F3a in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, Dai; Ueda, Atsushi; Akagi, Tadayuki; Yokota, Takashi; Koide, Hiroshi, E-mail: hkoide@med.kanazawa-u.ac.jp

    2015-04-10

    Embryonic stem (ES) cells, derived from the inner cell mass of blastocysts, have a characteristic cell cycle with truncated G1 and G2 phases. Recent findings that suppression of Oct3/4 expression results in a reduced proliferation rate of ES cells suggest the involvement of Oct3/4 in the regulation of ES cell growth, although the underlying molecular mechanism remains unclear. In the present study, we identified E2F3a as a direct target gene of Oct3/4 in ES cells. Oct3/4 directly bound to the promoter region of the E2F3a gene and positively regulated expression of E2F3a in mouse ES cells. Suppression of E2F3a activity by E2F6 overexpression led to the reduced proliferation in ES cells, which was relieved by co-expression of E2F3a. Furthermore, cell growth retardation caused by loss of Oct3/4 was rescued by E2F3a expression. These results suggest that Oct3/4 upregulates E2F3a expression to promote ES cell growth. - Highlights: • Oct3/4 positively regulates E2F3a expression in ES cells. • Oct3/4 binds to the promoter region of the E2F3a gene. • Overexpression of E2F6, an inhibitor of E2F3a, reduces ES cell growth. • E2F3a recovers growth retardation of ES cells caused by Oct3/4 reduction.

  10. A Combined Experimental and Computational Study of Vam3, a Derivative of Resveratrol, and Syk Interaction

    Directory of Open Access Journals (Sweden)

    Ming Jiang

    2014-09-01

    Full Text Available Spleen tyrosine kinase (Syk plays an indispensable role through preliminary extracellular antigen-induced crosslinking of Fc receptor (FcR in the pathogenesis of autoimmune disorders, such as rheumatoid arthritis. In this study, we identify Vam3, a dimeric derivative of resveratrol isolated from grapes, as an ATP-competitive inhibitor of Syk with an IC50 of 62.95 nM in an in vitro kinase assay. Moreover, docking and molecular dynamics simulation approaches were performed to get more detailed information about the binding mode of Vam3 and Syk. The results show that 11b-OH on ring-C and 4b-OH on ring-D could form two hydrogen bonds with Glu449 and Phe382 of Syk, respectively. In addition, arene-cation interaction between ring-D of Vam3 and Lys402 of Syk was also observed. These results indicate that ring-C and D play an essential role in Vam3–Syk interaction. Our studies may be helpful in the structural optimization of Vam3, and also aid the design of novel Syk inhibitors in the future.

  11. NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNFAIP3/A20.

    Science.gov (United States)

    Drennan, Michael B; Govindarajan, Srinath; Verheugen, Eveline; Coquet, Jonathan M; Staal, Jens; McGuire, Conor; Taghon, Tom; Leclercq, Georges; Beyaert, Rudi; van Loo, Geert; Lambrecht, Bart N; Elewaut, Dirk

    2016-09-19

    Natural killer T (NKT) cells are innate lymphocytes that differentiate into NKT1, NKT2, and NKT17 sublineages during development. However, the signaling events that control NKT sublineage specification and differentiation remain poorly understood. Here, we demonstrate that the ubiquitin-modifying enzyme TNFAIP3/A20, an upstream regulator of T cell receptor (TCR) signaling in T cells, is an essential cell-intrinsic regulator of NKT differentiation. A20 is differentially expressed during NKT cell development, regulates NKT cell maturation, and specifically controls the differentiation and survival of NKT1 and NKT2, but not NKT17, sublineages. Remaining A20-deficient NKT1 and NKT2 thymocytes are hyperactivated in vivo and secrete elevated levels of Th1 and Th2 cytokines after TCR ligation in vitro. Defective NKT development was restored by compound deficiency of MALT1, a key downstream component of TCR signaling in T cells. These findings therefore show that negative regulation of TCR signaling during NKT development controls the differentiation and survival of NKT1 and NKT2 cells. © 2016 Drennan et al.

  12. The cutaneous photosynthesis of previtamin D3: a unique photoendocrine system

    International Nuclear Information System (INIS)

    Holick, M.F.

    1981-01-01

    The skin has been recognized as the site for the sun-mediated photosynthesis of vitamin D3; until recently, however, very little was known about either the sequence of events leading to the formation of vitamin D3 in human skin or the factors that regulate the synthesis of this hormone. It is now established that, during exposure to sunlight, the cutaneous reservoir of 7-dehydrocholesterol (principally in the stratum Malpighii) converts to previtamin D3. Once this thermally labile previtamin is formed, it undergoes a temperature-dependent isomerization to vitamin D3 over a period of 3 days. The plasma vitamin-D binding protein preferentially translocates vitamin D3 from the skin into the circulation. During prolonged exposure to the sun, the accumulation of previtamin D3 is limited to about 10 to 15% of the original 7-dehydrocholesterol content because the previtamin photoisomerizes to 2 biologically inert photoproducts, lumisterol3 and tachysterol3. Increases in either latitude or the melanin concentration in the skin diminish the epidermal synthesis of previtamin D3. A single total body exposure to 3 minimal erythemal doses of ultraviolet radiation increased the vitamin-D3 levels in the serum 25-hydroxyvitamin-D levels after 7 days. The unique mechanism for the cutaneous synthesis, storage, and steady release of vitamin D3 into the circulation prompted an investigation into the potential therapeutic benefits of using the skin as the site for the synthesis and absorption of vitamin-D3 metabolites

  13. PRIMEGENSw3: a web-based tool for high-throughput primer and probe design.

    Science.gov (United States)

    Kushwaha, Garima; Srivastava, Gyan Prakash; Xu, Dong

    2015-01-01

    Highly specific and efficient primer and probe design has been a major hurdle in many high-throughput techniques. Successful implementation of any PCR or probe hybridization technique depends on the quality of primers and probes used in terms of their specificity and cross-hybridization. Here we describe PRIMEGENSw3, a set of web-based utilities for high-throughput primer and probe design. These utilities allow users to select genomic regions and to design primer/probe for selected regions in an interactive, user-friendly, and automatic fashion. The system runs the PRIMEGENS algorithm in the back-end on the high-performance server with the stored genomic database or user-provided custom database for cross-hybridization check. Cross-hybridization is checked not only using BLAST but also by checking mismatch positions and energy calculation of potential hybridization hits. The results can be visualized online and also can be downloaded. The average success rate of primer design using PRIMEGENSw3 is ~90 %. The web server also supports primer design for methylated sequences, which is used in epigenetic studies. Stand-alone version of the software is also available for download at the website.

  14. Understanding uncoupling in the multiredox centre P450 3A4-BMR model system.

    Science.gov (United States)

    Degregorio, Danilo; Sadeghi, Sheila J; Di Nardo, Giovanna; Gilardi, Gianfranco; Solinas, Sandro P

    2011-01-01

    Understanding the uncoupling at the haem active site and/or at the level of multidomain electron transfer is an important element in cytochrome P450 chemistry. Here a chimeric model system consisting of human cytochrome P450 3A4 and the soluble reductase domain of CYP102A1 from Bacillus megaterium (BMR) is used to study the relationship between electron transfer and the coupling efficiency in substrate monoxygenation. Several regulatory features were considered. FAD and FMN added to apoenzyme in oversaturating concentrations influence neither formaldehyde production nor coupling efficiency. The optimal conditions of coupling efficiency depended only on the NADPH concentration. The pH (8.0) and ionic strength (50 mM potassium phosphate) were found to modulate the level of coupling, indicating an influence over the formation of a productive interaction between the BMR and the haem domain. Overall, uncoupling is found to be an intrinsic property of the haem domain, and the covalent linkage of the reductase in a single polypeptide chain has little influence over the activity coupled to product formation.

  15. Gabbroic lithologies of the dike-gabbro transition, Hole GT3A, Oman Drilling Project

    Science.gov (United States)

    Jesus, A. P. M.; Koepke, J.; Morishita, T.; Beinlich, A.; Johnson, K. T. M.; Greenberger, R. N.; Harris, M.; Michibayashi, K.; de Obeso, J. C.

    2017-12-01

    Hole GT3A intersects 400 m of oceanic crust providing unique insight into the dike-gabbro transition and the variability of the high level gabbros in the Samail ophiolite. Olivine gabbro and olivine bearing gabbro occur exclusively within the Upper Gabbro Sequence (16 % thickness; 111.02 m - 127.89 m) whereas oxide gabbro and disseminated oxide gabbro represent ca 5 % of the Lower Gabbro Sequence (233.84 m - 398.21 m). Gabbro with less than 1 vol. % olivine and oxide is the most common lithology in both Gabbro Sequences (10-13 %). Most gabbroic rocks were classified as "varitextured" due to textural and grain size macroscopic variations forming irregular domains/patches. Varitextured gabbros are medium-grained (1-5 mm), with seriate grain size distribution and subophitic/poikilitic to granular textural domains. Poikilitic domains comprise clinopyroxene with plagioclase chadacrysts, whereas in granular domains plagioclase interstices are filled by green-brown magmatic hornblende; plagioclase is zoned in both domains. Olivine (bearing) gabbros have 4-8 mm skeletal olivine pseudomorphs with roundish inclusions of chromite and plagioclase. Oxide (disseminated) gabbros comprise variable amounts of plagioclase, clinopyroxene, Oman paleo ridge.

  16. Deep Sequence Analysis of AgoshRNA Processing Reveals 3' A Addition and Trimming.

    Science.gov (United States)

    Harwig, Alex; Herrera-Carrillo, Elena; Jongejan, Aldo; van Kampen, Antonius Hubertus; Berkhout, Ben

    2015-07-14

    The RNA interference (RNAi) pathway, in which microprocessor and Dicer collaborate to process microRNAs (miRNA), was recently expanded by the description of alternative processing routes. In one of these noncanonical pathways, Dicer action is replaced by the Argonaute2 (Ago2) slicer function. It was recently shown that the stem-length of precursor-miRNA or short hairpin RNA (shRNA) molecules is a major determinant for Dicer versus Ago2 processing. Here we present the results of a deep sequence study on the processing of shRNAs with different stem length and a top G·U wobble base pair (bp). This analysis revealed some unexpected properties of these so-called AgoshRNA molecules that are processed by Ago2 instead of Dicer. First, we confirmed the gradual shift from Dicer to Ago2 processing upon shortening of the hairpin length. Second, hairpins with a stem larger than 19 base pair are inefficiently cleaved by Ago2 and we noticed a shift in the cleavage site. Third, the introduction of a top G·U bp in a regular shRNA can promote Ago2-cleavage, which coincides with a loss of Ago2-loading of the Dicer-cleaved 3' strand. Fourth, the Ago2-processed AgoshRNAs acquire a short 3' tail of 1-3 A-nucleotides (nt) and we present evidence that this product is subsequently trimmed by the poly(A)-specific ribonuclease (PARN).

  17. Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women.

    Science.gov (United States)

    Floyd, Michael D; Gervasini, Guillermo; Masica, Andrew L; Mayo, Gail; George, Alfred L; Bhat, Kolari; Kim, Richard B; Wilkinson, Grant R

    2003-10-01

    CYP3A activity in adults varies between individuals and it has been suggested that this has a genetic basis, possibly related to variant alleles in CYP3A4 and CYP3A5 genes. Accordingly, genotype-phenotype associations were investigated under constitutive and induced conditions. Midazolam's systemic and oral clearances, and the erythromycin breath test (ERBT) were determined in 57 healthy subjects: 23 (11 men, 12 women) European- and 34 (14 men, 20 women) African-Americans. Studies were undertaken in the basal state and after 14-15 days pretreatment with rifampin. DNA was characterized for the common polymorphisms CYP3A4*1B, CYP3A5*3, CYP3A5*6 and CYP3A5*7 by direct sequencing, and for exon 21 and exon 26 variants of MDR1 by allele-specific, real-time polymerase chain reaction. In 95% of subjects, the basal systemic clearance of midazolam was unimodally distributed and variability was less than four-fold whereas, in 98% of the study population, oral clearance varied five-fold. No population or sex-related differences were apparent. Similar findings were observed with the ERBT. Rifampin pretreatment markedly increased the systemic (two-fold) and oral clearance (16-fold) of midazolam, and the ERBT (two-fold) but the variabilities were unchanged. No associations were noted between these phenotypic measures and any of the studied genotypes, except for oral clearance and its fold-increase after rifampin. These were related to the presence of CYP3A4*1B and the inversely linked CYP3A5*3 polymorphism, with the extent of induction being approximately 50% greater in CYP3A5*3 homozygotes compared to wild-type subjects. In most healthy subjects, variability in intestinal and hepatic CYP3A activity, using midazolam as an in-vivo probe, is modest and common polymorphisms in CYP3A4 and CYP3A5 do not appear to have important functional significance.

  18. Robust HCV Genotype 3a Infectious Cell Culture System Permits Identification of Escape Variants With Resistance to Sofosbuvir

    DEFF Research Database (Denmark)

    Ramirez Almeida, Santseharay; Mikkelsen, Lotte S.; Gottwein, Judith M.

    2016-01-01

    Background & Aims Direct-acting antivirals (DAAs) effectively eradicate chronic hepatitis C virus (HCV) infection, although HCV genotype 3a is less responsive to these drugs. We aimed to develop genotype 3a infectious cultures and study the effects of inhibitors of NS5A and NS5B and resistance to...

  19. 17 CFR 240.3a12-8 - Exemption for designated foreign government securities for purposes of futures trading.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Exemption for designated foreign government securities for purposes of futures trading. 240.3a12-8 Section 240.3a12-8 Commodity and... trading. (a) When used in this Rule, the following terms shall have the meaning indicated: (1) The term...

  20. Effect of ABCB1 (3435C>T) and CYP3A5 (6986A>G) genes ...

    African Journals Online (AJOL)

    Marwa Helal

    2016-11-30

    Nov 30, 2016 ... Tacrolimus (TAC) is the backbone of immunosuppressive drugs used worldwide ... the pharmacokinetics of tacrolimus and the polymorphisms of the. CYP3A5 and .... performance liquid chromatography tandem mass spectrometry. (LC/MS/MS ..... CYP3A5 polymorphism became the key factor. The deficient ...

  1. The impact of CYP3A5*3 on risk and prognosis in childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Borst, Louise; Wallerek, Sandra; Dalhoff, Kim

    2011-01-01

    Objectives: Acute lymphoblastic leukemia (ALL) is the most common cancer in childhood; however, little is known of the molecular etiology and environmental exposures causing the disease. Cytochrome P450 3A5 (CYP3A5) plays a crucial role in the catalytic oxidation of endogenous metabolites and toxic...

  2. The impact of CYP3A5*3 on risk and prognosis in childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Borst, Louise; Wallerek, Sandra; Dalhoff, Kim Peder

    2011-01-01

    Objectives:  Acute lymphoblastic leukemia (ALL) is the most common cancer in childhood; however, little is known of the molecular etiology and environmental exposures causing the disease. Cytochrome P450 3A5 (CYP3A5) plays a crucial role in the catalytic oxidation of endogenous metabolites...

  3. Bioconversion of deoxypodophyllotoxin into epipodophyllotoxin in E-coli using human cytochrome P450 3A4

    NARCIS (Netherlands)

    Vasilev, Nikolay P.; Julsing, Mattijs K.; Koulman, Albert; Clarkson, Cailean; Woerdenbag, Herman J.; Ionkova, Iliana; Bos, Rein; Jaroszewski, Jerzy W.; Kayser, Oliver; Quax, Wim J.

    2006-01-01

    Biotransformation of deoxypodophyllotoxin to epipodophyllotoxin by three major human hepatic enzymes, CYP1A2, CYP2C9 and CYP3A4, heterologously expressed in E coli DH5 alpha, was investigated. It was shown that CYP3A4 catalysed the hydroxylation of deoxypodophyllotoxin into epipodophyllotoxin in

  4. Time-dependent inhibition of CYP3A4 by gallic acid in human liver microsomes and recombinant systems.

    Science.gov (United States)

    Pu, Qiang-Hong; Shi, Liang; Yu, Chao

    2015-03-01

    1.Gallic acid is a main polyphenol in various fruits and plants. Inhibitory characteristics of gallic acid on CYP3A4 were still unclear. The objective of this work is hence to investigate inhibitory characteristics of gallic acid on CYP3A4 using testosterone as the probe substrate in human liver microsomes (HLMs) and recombinant CYP3A4 (rCYP3A4) systems. 2.Gallic acid caused concentration-dependent loss of CYP3A4 activity with IC50 values of 615.2 μM and 669.5 μM in HLM and rCYP3A4 systems, respectively. IC50-shift experiments showed that pre-incubation with gallic acid in the absence of NADPH contributed to 12- or 14-fold reduction of IC50 in HLM and rCYP3A4 systems, respectively, supporting a time-dependent inhibition. In HLM, time-dependent inactivation variables KI and Kinact were 485.8 μM and 0.05 min(-1), respectively. 3.Compared with the presence of NADPH, pre-incubation of gallic acid in the absence of NADPH markedly increased its inhibitory effects in HLM and rCYP3A4 systems. Those results indicate that CYP3A4 inactivation by gallic acid was independent on NADPH and was mainly mediated its oxidative products. 4.In conclusion, we showed that gallic acid weakly and time-dependently inactivated CYP3A4 via its oxidative products.

  5. MDM2 Antagonist Nutlin-3a Reverses Mitoxantrone Resistance by Inhibiting Breast Cancer Resistance Protein Mediated Drug Transport

    Science.gov (United States)

    Zhang, Fan; Throm, Stacy L.; Murley, Laura L.; Miller, Laura A.; Zatechka, D. Steven; Guy, R. Kiplin; Kennedy, Rachel; Stewart, Clinton F.

    2011-01-01

    Breast cancer resistance protein (BCRP; ABCG2), a clinical marker for identifying the side population (SP) cancer stem cell subgroup, affects intestinal absorption, brain penetration, hepatobiliary excretion, and multidrug resistance of many anti-cancer drugs. Nutlin-3a is currently under pre-clinical investigation in a variety of solid tumor and leukemia models as a p53 reactivation agent, and has been recently demonstrated to also have p53 independent actions in cancer cells. In the present study, we first report that nutlin-3a can inhibit the efflux function of BCRP. We observed that although the nutlin-3a IC50 did not differ between BCRP over-expressing and vector control cells, nutlin-3a treatment significantly potentiated the cells to treatment with the BCRP substrate mitoxantrone. Combination index calculations suggested synergism between nutlin-3a and mitoxantrone in cell lines over-expressing BCRP. Upon further investigation, it was confirmed that nutlin-3a increased the intracellular accumulation of BCRP substrates such as mitoxantrone and Hoechst 33342 in cells expressing functional BCRP without altering the expression level or localization of BCRP. Interestingly, nutlin-3b, considered virtually “inactive” in disrupting the MDM2/p53 interaction, reversed Hoechst 33342 efflux with the same potency as nutlin-3a. Intracellular accumulation and bi-directional transport studies using MDCKII cells suggested that nutlin-3a is not a substrate of BCRP. Additionally, an ATPase assay using Sf9 insect cell membranes over-expressing wild-type BCRP indicated that nutlin-3a inhibits BCRP ATPase activity in a dose-dependent fashion. In conclusion, our studies demonstrate that nutlin-3a inhibits BCRP efflux function, which consequently reverses BCRP-related drug resistance. PMID:21459080

  6. Up-regulatation of CYP3A expression through pregnent X receptor by praeruptorin D isolated from Peucedanum praeruptorum Dunn.

    Science.gov (United States)

    Huang, Ling; Huang, Min; Li, Yu-Hua; Li, Rui-Ming; Zeng, Yu; Kuang, Shao-Yi; Zhang, Li; Wang, Yi-Tao; Bi, Hui-Chang

    2013-07-09

    Qianhu, the dried roots of Peucedanum praeruptorum DUNN (Umbelliferae), is a well-known traditional Chinese medicinal herb which was officially listed in the Chinese Pharmacopoeia. Praeruptorin D (PD) is one of the major active constituents of Peucedanum praeruptorum Dunn (Qianhu). The Pregnane X receptor (PXR) is an orphan nuclear receptor and plays a pivotal role in the activation of human cytochrome P450 3A4 (CYP3A4) gene. The purpose of this study was to investigate the effect of PD on the PXR-mediated transactivation of CYP3A4, and thus to predict potential herb-drug interactions between PD, Qianhu, and the other co-administered drugs that metabolized by CYP3A4. The effect of PD on the Cyp3a11, mPXR mRNA expression in mice primary hepatocytes was measured using real-time PCR. The gene expression, protein expression, and catalytic activity of CYP3A4 in the LS174T cells after transfected with PXR expression plasmids were determined by real-time PCR, Western blot analysis, and LC-MS/MS based CYP3A4 substrate assay. The results revealed that the level of Cyp3a11 gene expression in mice primary hepatocytes was significantly increased by PD, but PD cannot induce the mPXR gene expression. On the other hand, CYP3A4 mRNA, protein expression and functional activity in PXR-over-expression LS174T cells were significantly increased by PD through PXR-mediated pathway; conversely, no significant change was found in the untransfected cells. These findings suggest that PD can significantly up-regulate CYP3A4 expression and activity via the PXR-mediated pathway and this should be taken into consideration to predict any potential herb-drug interactions when PD and Peucedanum praeruptorum Dunn are co-administered with other drugs. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. FOXO3a reactivation mediates the synergistic cytotoxic effects of rapamycin and cisplatin in oral squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    Fang Liang; Wang Huiming; Zhou Lin; Yu Da

    2011-01-01

    FOXO3a, a well-known transcriptional regulator, controls a wide spectrum of biological processes. The Phosphoinositide-3-kinase (PI3K)/Akt signaling pathway inactivates FOXO3a via phosphorylation-induced nuclear exclusion and degradation. A loss or gain of FOXO3a activity has been correlated with efficiency of chemotherapies in various cancers including oral squamous cell carcinoma (OSCC). Therefore, in the current study, we have investigated the FOXO3a activity modulating and antitumor effects of rapamycin and cisplatin in OSCC cells. Cisplatin inhibited proliferation and induced apoptosis in a dose-dependent way in OSCC Tca8113 cells. Rapamycin alone had no effect on cell proliferation and apoptosis. Rapamycin downregulated the expression of S-phase kinase associated protein-2 (Skp2) and increased the FOXO3a protein stability but induced the upregulation of feedback Akt activation-mediated FOXO3a phosphorylation. Cisplatin decreased the phosphorylation of FOXO3a via Akt inhibition. Rapamycin combined with cisplatin as its feedback Akt activation inhibitor revealed the most dramatic FOXO3a nuclear localization and reactivation with the prevention of its feedback loop and exposed significant synergistic effects of decreased cell proliferation and increased apoptosis in vitro and decreased tumor size in vivo. Furthermore, the downstream effects of FOXO3a reactivation were found to be accumulation of p27 and Bim. In conclusion, rapamycin/cisplatin combination therapy boosts synergistic antitumor effects through the significant FOXO3a reactivation in OSCC cells. These results may represent a novel mechanism by which rapamycin/cisplatin combination therapy proves to be a potent molecular-targeted strategy for OSCC.

  8. Roles for NHERF1 and NHERF2 on the regulation of C3a receptor signaling in human mast cells.

    Directory of Open Access Journals (Sweden)

    Hariharan Subramanian

    Full Text Available BACKGROUND: The anaphylatoxin C3a binds to the G protein coupled receptor (GPCR, C3aR and activates divergent signaling pathways to induce degranulation and cytokine production in human mast cells. Adapter proteins such as the Na(+/H(+ exchange regulatory factor (NHERF1 and NHERF2 have been implicated in regulating functions of certain GPCRs by binding to the class I PDZ (PSD-95/Dlg/Zo1 motifs present on their cytoplasmic tails. Although C3aR possesses a class I PDZ motif, the possibility that it interacts with NHERF proteins to modulate signaling in human mast cells has not been determined. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcription PCR and Western blotting, we found that NHERF1 and NHERF2 are expressed in human mast cell lines (HMC-1, LAD2 and CD34(+-derived primary human mast cells. Surprisingly, however, C3aR did not associate with these adapter proteins. To assess the roles of NHERFs on signaling downstream of C3aR, we used lentiviral shRNA to stably knockdown the expression of these proteins in human mast cells. Silencing the expression of NHERF1 and NHERF2 had no effect on C3aR desensitization, agonist-induced receptor internalization, ERK/Akt phosphorylation or chemotaxis. However, loss of NHERF1 and NHERF2 resulted in significant inhibition of C3a-induced mast cell degranulation, NF-κB activation and chemokine production. CONCLUSION/SIGNIFICANCE: This study demonstrates that although C3aR possesses a class I PDZ motif, it does not associate with NHERF1 and NHERF2. Surprisingly, these proteins provide stimulatory signals for C3a-induced degranulation, NF-κB activation and chemokine generation in human mast cells. These findings reveal a new level of complexity for the functional regulation of C3aR by NHERFs in human mast cells.

  9. Elastic properties of nano structured AZrO3 (A=Ba, Sr) single perovskites

    International Nuclear Information System (INIS)

    Pazhani, R.; Thomas, J.K.; Moses Ezhil Raj, A.; Solomon, S.; Bena Jothy, V.; Mathai, K.C.

    2011-01-01

    Nanocrystals of barium zirconate and strontium zirconate AZrO 3 (A=Ba and Sr) were synthesized by a unique self-sustained single-step combustion of an aqueous solution, containing Ba, Sr and Zr ions by using citric acid as complexing agent and liquor ammonia as fuel, thus giving rise to phase pure AZrO 3 nanopowder. In this process, a single phase pure nanopowder of AZrO 3 has been obtained without the need of calcination steps. The formation and stability of the compound was confirmed through the tolerance factor on the basis of the ionic radii of all the atoms of the compound. Phase-purity of the as-prepared powders was examined using X-ray diffraction. As-prepared powder was single phase, crystalline, and composed of uniform particles with sizes 20-30 nm. The crystal structure of AZrO 3 are respective cubic (Pm3-bar m, a=4.1839A) and orthorhombic (Pnma, a=5.7937A, b=8.17648A and c=5.7694A). Annealed samples of SrZrO 3 has improved crystal structure with a=5.764A, b=8.2292A and c=5.7989A, comparable to the standards. Microstrain acting on all the planes of the material is positive which indicates presence of tensile stress on the material. The calculated compressive stress on the surface of' the nanopowder is of the order 0.213 GPa to -0.274 GPa for BaZrO 3 and 4.443 GPa to -0.220 GPa for SrZrO 3 along various planes of the particles. (author)

  10. Dimensional crossover of effective orbital dynamics in polar distorted He 3 -A : Transitions to antispacetime

    Science.gov (United States)

    Nissinen, J.; Volovik, G. E.

    2018-01-01

    Topologically protected superfluid phases of He 3 allow one to simulate many important aspects of relativistic quantum field theories and quantum gravity in condensed matter. Here we discuss a topological Lifshitz transition of the effective quantum vacuum in which the determinant of the tetrad field changes sign through a crossing to a vacuum state with a degenerate fermionic metric. Such a transition is realized in polar distorted superfluid He 3 -A in terms of the effective tetrad fields emerging in the vicinity of the superfluid gap nodes: the tetrads of the Weyl points in the chiral A-phase of He 3 and the degenerate tetrad in the vicinity of a Dirac nodal line in the polar phase of He 3 . The continuous phase transition from the A -phase to the polar phase, i.e., the transition from the Weyl nodes to the Dirac nodal line and back, allows one to follow the behavior of the fermionic and bosonic effective actions when the sign of the tetrad determinant changes, and the effective chiral spacetime transforms to antichiral "anti-spacetime." This condensed matter realization demonstrates that while the original fermionic action is analytic across the transition, the effective action for the orbital degrees of freedom (pseudo-EM) fields and gravity have nonanalytic behavior. In particular, the action for the pseudo-EM field in the vacuum with Weyl fermions (A-phase) contains the modulus of the tetrad determinant. In the vacuum with the degenerate metric (polar phase) the nodal line is effectively a family of 2 +1 d Dirac fermion patches, which leads to a non-analytic (B2-E2)3/4 QED action in the vicinity of the Dirac line.

  11. The genes of all seven CYP3A isoenzymes identified in the equine genome are expressed in the airways of horses.

    Science.gov (United States)

    Tydén, E; Löfgren, M; Hakhverdyan, M; Tjälve, H; Larsson, P

    2013-08-01

    In the present study, we examined the gene expression of cytochrome P450 3A (CYP3A) isoenzymes in the tracheal and bronchial mucosa and in the lung of equines using TaqMan probes. The results show that all seven CYP3A isoforms identified in the equine genome, that is, CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, CYP3A97 and CYP3A129, are expressed in the airways of the investigated horses. Though in previous studies, CYP3A129 was found to be absent in equine intestinal mucosa and liver, this CYP3A isoform is expressed in the airways of horses. The gene expression of the CYP3A isoenzymes varied considerably between the individual horses studied. However, in most of the horses CYP3A89, CYP3A93, CYP3A96, CYP3A97 and CYP3A129 were expressed to a high extent, while CYP3A94 and CYP3A95 were expressed to a low extent in the different parts of the airways. The CYP3A isoenzymes present in the airways may play a role in the metabolic degradation of inhaled xenobiotics. In some instances, the metabolism may, however, result in bioactivation of the xenobiotics and subsequent tissue injury. © 2012 John Wiley & Sons Ltd.

  12. Ibrutinib Dosing Strategies Based on Interaction Potential of CYP3A4 Perpetrators Using Physiologically Based Pharmacokinetic Modeling.

    Science.gov (United States)

    de Zwart, L; Snoeys, J; De Jong, J; Sukbuntherng, J; Mannaert, E; Monshouwer, M

    2016-11-01

    Based on ibrutinib pharmacokinetics and potential sensitivity towards CYP3A4-mediated drug-drug interactions (DDIs), a physiologically based pharmacokinetic approach was developed to mechanistically describe DDI with various CYP3A4 perpetrators in healthy men under fasting conditions. These models were verified using clinical data for ketoconazole (strong CYP3A4 inhibitor) and used to prospectively predict and confirm the inducing effect of rifampin (strong CYP3A4 inducer); DDIs with mild (fluvoxamine, azithromycin) and moderate inhibitors (diltiazem, voriconazole, clarithromycin, itraconazole, erythromycin), and moderate (efavirenz) and strong CYP3A4 inducers (carbamazepine), were also predicted. Ketoconazole increased ibrutinib area under the curve (AUC) by 24-fold, while rifampin decreased ibrutinib AUC by 10-fold; coadministration of ibrutinib with strong inhibitors or inducers should be avoided. The ibrutinib dose should be reduced to 140 mg (quarter of maximal prescribed dose) when coadministered with moderate CYP3A4 inhibitors so that exposures remain within observed ranges at therapeutic doses. Thus, dose recommendations for CYP3A4 perpetrator use during ibrutinib treatment were developed and approved for labeling. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  13. Polymorphisms and phenotypic analysis of cytochrome P450 3A4 in the Uygur population in northwest China.

    Science.gov (United States)

    Jin, Tianbo; Yang, Hua; Zhang, Jiayi; Yunus, Zulfiya; Sun, Qiang; Geng, Tingting; Chen, Chao; Yang, Jie

    2015-01-01

    Genetic polymorphisms in CYP3A4 can change its activity to a certain degree, thus leading to differences among different populations in drug efficacy or adverse drug reactions. The study was intended to validate the genetic polymorphisms in CYP3A4 in Uygur Chinese population, we sequenced and screened for genetic variants including 5'UTR, promoters, exons, introns, and 3'UTR region of the whole CYP3A4 gene in 100 unrelated, healthy. Twenty-one genetic polymorphisms in CYP3A4, and nine of them were novel. We detected CYP3A4*8, a putative poor-metabolizer allele, with the frequency of 0.5% in Uygur population. Tfsitescan revealed that the density of transcription factor varied in the different promoter regions, among which some were key regions for transcription factor binding. our results provide basic information about CPY3A4 alleles in Uygur and suggest that the enzymatic activities of CPY3A4 may differ among the diverse ethnic populations of China.

  14. Foot-and-mouth disease virus non-structural protein 3A inhibits the interferon-β signaling pathway

    Science.gov (United States)

    Li, Dan; Lei, Caoqi; Xu, Zhisheng; Yang, Fan; Liu, Huanan; Zhu, Zixiang; Li, Shu; Liu, Xiangtao; Shu, Hongbing; Zheng, Haixue

    2016-01-01

    Foot-and-mouth disease virus (FMDV) is the etiological agent of FMD, which affects cloven-hoofed animals. The pathophysiology of FMDV has not been fully understood and the evasion of host innate immune system is still unclear. Here, the FMDV non-structural protein 3A was identified as a negative regulator of virus-triggered IFN-β signaling pathway. Overexpression of the FMDV 3A inhibited Sendai virus-triggered activation of IRF3 and the expressions of RIG-I/MDA5. Transient transfection and co-immunoprecipitation experiments suggested that FMDV 3A interacts with RIG-I, MDA5 and VISA, which is dependent on the N-terminal 51 amino acids of 3A. Furthermore, 3A also inhibited the expressions of RIG-I, MDA5, and VISA by disrupting their mRNA levels. These results demonstrated that 3A inhibits the RLR-mediated IFN-β induction and uncovered a novel mechanism by which the FMDV 3A protein evades the host innate immune system. PMID:26883855

  15. Rab3A Inhibition of Ca2+ -Dependent Dopamine Release From PC12 Cells Involves Interaction With Synaptotagmin I.

    Science.gov (United States)

    Dai, Zhipan; Tang, Xia; Chen, Jia; Tang, Xiaochao; Wang, Xianchun

    2017-11-01

    Rab3 and synaptotagmin have been suggested to play important roles in the regulation of neurotransmitter release and, however, the molecular mechanism has not been completely clear. Here, we studied the effects of Rab3A and synaptotagmin I (Syt I) on dopamine release using PC12 cells as a model system. Rab3A was demonstrated to have effects on both Ca 2+ -independent and Ca 2+ -dependent dopamine releases from the PC12 cells. Application of Rab3A (up to 2500 nM) gradually decreased the amount of Ca 2+ -dependently released dopamine, indicating that Rab3A is a negative modulator that was further supported by the increase in dopamine release caused by Rab3A knockdown. Syt I knockdown weakened the Ca 2+ -dependent dopamine release, suggesting that Syt I plays a positive regulatory role in the cellular process. Treatment of the Syt I-knocked down PC12 cells with Rab3A further decreased Ca 2+ -dependent dopamine release and, however, the decrease magnitude was significantly reduced compared with that before Syt I knockdown, thus for the first time demonstrating that the inhibitory effect of Rab3A on Ca 2+ -dependent dopamine release involves the interaction with Syt I. This work has shed new light on the molecular mechanism for Rab3 and synaptotamin regulation of neurotransmitter release. J. Cell. Biochem. 118: 3696-3705, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling

    Energy Technology Data Exchange (ETDEWEB)

    Marschall, Zofia von [Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD (United States); Fisher, Larry W., E-mail: lfisher@dir.nidcr.nih.gov [Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD (United States)

    2010-09-24

    Research highlights: {yields} sFRP2 enhances the Wnt3a-induced {beta}-catenin stabilization and its nuclear translocation. {yields} sFRP2 enhances LRP6 phosphorylation and Wnt3a/{beta}-catenin transcriptional reporter activity. {yields} Dickkopf-1 (DKK1) fully antagonizes both Wnt3a/sFRP2-induced LRP6 phosphorylation and transcriptional activity. {yields} sFRP2 enhances expression of genes known to be regulated by Wnt3a signaling. -- Abstract: Secreted Frizzled-related proteins (sFRP) are involved in embryonic development as well as pathological conditions including bone and myocardial disorders and cancer. Because of their sequence homology with the Wnt-binding domain of Frizzled, they have generally been considered antagonists of canonical Wnt signaling. However, additional activities of various sFRPs including both synergism and mimicry of Wnt signaling as well as functions other than modulation of Wnt signaling have been reported. Using human embryonic kidney cells (HEK293A), we found that sFRP2 enhanced Wnt3a-dependent phosphorylation of LRP6 as well as both cytosolic {beta}-catenin levels and its nuclear translocation. While addition of recombinant sFRP2 had no activity by itself, Top/Fop luciferase reporter assays showed a dose-dependent increase of Wnt3a-mediated transcriptional activity. sFRP2 enhancement of Wnt3a signaling was abolished by treatment with the Wnt antagonist, Dickkopf-1 (DKK1). Wnt-signaling pathway qPCR arrays showed that sFRP2 enhanced the Wnt3a-mediated transcriptional up-regulation of several genes regulated by Wnt3a including its antagonists, DKK1, and Naked cuticle-1 homolog (NKD1). These results support sFRP2's role as an enhancer of Wnt/{beta}-catenin signaling, a result with biological impact for both normal development and diverse pathologies such as tumorigenesis.

  17. Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling

    International Nuclear Information System (INIS)

    Marschall, Zofia von; Fisher, Larry W.

    2010-01-01

    Research highlights: → sFRP2 enhances the Wnt3a-induced β-catenin stabilization and its nuclear translocation. → sFRP2 enhances LRP6 phosphorylation and Wnt3a/β-catenin transcriptional reporter activity. → Dickkopf-1 (DKK1) fully antagonizes both Wnt3a/sFRP2-induced LRP6 phosphorylation and transcriptional activity. → sFRP2 enhances expression of genes known to be regulated by Wnt3a signaling. -- Abstract: Secreted Frizzled-related proteins (sFRP) are involved in embryonic development as well as pathological conditions including bone and myocardial disorders and cancer. Because of their sequence homology with the Wnt-binding domain of Frizzled, they have generally been considered antagonists of canonical Wnt signaling. However, additional activities of various sFRPs including both synergism and mimicry of Wnt signaling as well as functions other than modulation of Wnt signaling have been reported. Using human embryonic kidney cells (HEK293A), we found that sFRP2 enhanced Wnt3a-dependent phosphorylation of LRP6 as well as both cytosolic β-catenin levels and its nuclear translocation. While addition of recombinant sFRP2 had no activity by itself, Top/Fop luciferase reporter assays showed a dose-dependent increase of Wnt3a-mediated transcriptional activity. sFRP2 enhancement of Wnt3a signaling was abolished by treatment with the Wnt antagonist, Dickkopf-1 (DKK1). Wnt-signaling pathway qPCR arrays showed that sFRP2 enhanced the Wnt3a-mediated transcriptional up-regulation of several genes regulated by Wnt3a including its antagonists, DKK1, and Naked cuticle-1 homolog (NKD1). These results support sFRP2's role as an enhancer of Wnt/β-catenin signaling, a result with biological impact for both normal development and diverse pathologies such as tumorigenesis.

  18. Ube3a loss increases excitability and blunts orientation tuning in the visual cortex of Angelman syndrome model mice.

    Science.gov (United States)

    Wallace, Michael L; van Woerden, Geeske M; Elgersma, Ype; Smith, Spencer L; Philpot, Benjamin D

    2017-07-01

    Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of the maternally inherited allele of UBE3A Ube3a STOP/p+ mice recapitulate major features of AS in humans and allow conditional reinstatement of maternal Ube3a with the expression of Cre recombinase. We have recently shown that AS model mice exhibit reduced inhibitory drive onto layer (L)2/3 pyramidal neurons of visual cortex, which contributes to a synaptic excitatory/inhibitory imbalance. However, it remains unclear how this loss of inhibitory drive affects neural circuits in vivo. Here we examined visual cortical response properties in individual neurons to explore the consequences of Ube3a loss on intact cortical circuits and processing. Using in vivo patch-clamp electrophysiology, we measured the visually evoked responses to square-wave drifting gratings in L2/3 regular-spiking (RS) neurons in control mice, Ube3a -deficient mice, and mice in which Ube3a was conditionally reinstated in GABAergic neurons. We found that Ube3a -deficient mice exhibited enhanced pyramidal neuron excitability in vivo as well as weaker orientation tuning. These observations are the first to show alterations in cortical computation in an AS model, and they suggest a basis for cortical dysfunction in AS. NEW & NOTEWORTHY Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of the gene UBE3A Using electrophysiological recording in vivo, we describe visual cortical dysfunctions in a mouse model of AS. Aberrant cellular properties in AS model mice could be improved by reinstating Ube3a in inhibitory neurons. These findings suggest that inhibitory neurons play a substantial role in the pathogenesis of AS. Copyright © 2017 the American Physiological Society.

  19. Brn3a regulates neuronal subtype specification in the trigeminal ganglion by promoting Runx expression during sensory differentiation

    Directory of Open Access Journals (Sweden)

    Raisa Eng S

    2010-01-01

    Full Text Available Abstract The transcription factor Brn3a, product of the pou4f1 gene, is expressed in most sensory neurons throughout embryogenesis. Prior work has demonstrated a role for Brn3a in the repression of early neurogenic genes; here we describe a second major role for Brn3a in the specification of sensory subtypes in the trigeminal ganglion (TG. Sensory neurons initially co-express multiple Trk-family neurotrophin receptors, but are later marked by the unique expression of TrkA, TrkB or TrkC. Maturation of these sensory subtypes is known to depend on the expression of Runx transcription factors. Newborn Brn3a knockout mice fail to express TrkC, which is associated in the TG with mechanoreceptors, plus a set of functional genes associated with nociceptor subtypes. In embryonic Brn3a-/- ganglia, the normal expression of Runx3 is never initiated in TrkC+ neurons, and Runx1 expression is greatly attenuated in TrkA+ nociceptors. These changes are accompanied by expanded expression of TrkB in neurons that abnormally express multiple Trks, followed by the loss of TrkC and TrkA expression. In transgenic embryos expressing a Brn3a-VP16 dominant transactivator, Runx3 mRNA expression is increased, suggesting that it is a direct regulatory target of Brn3a. Chromatin immunoprecipitation confirms that Brn3a binds in vivo to a conserved upstream enhancer element within histone H3-acetylated chromatin in the Runx3 locus. Together these data show that Brn3a acts upstream of the Runx factors, which then repress TrkB expression to allow establishment of the non-overlapping Trk receptor profiles and correct terminally differentiated phenotypes.

  20. Specific phosphorylation of histone demethylase KDM3A determines target gene expression in response to heat shock.

    Directory of Open Access Journals (Sweden)

    Mo-bin Cheng

    2014-12-01

    Full Text Available Histone lysine (K residues, which are modified by methyl- and acetyl-transferases, diversely regulate RNA synthesis. Unlike the ubiquitously activating effect of histone K acetylation, the effects of histone K methylation vary with the number of methyl groups added and with the position of these groups in the histone tails. Histone K demethylases (KDMs counteract the activity of methyl-transferases and remove methyl group(s from specific K residues in histones. KDM3A (also known as JHDM2A or JMJD1A is an H3K9me2/1 demethylase. KDM3A performs diverse functions via the regulation of its associated genes, which are involved in spermatogenesis, metabolism, and cell differentiation. However, the mechanism by which the activity of KDM3A is regulated is largely unknown. Here, we demonstrated that mitogen- and stress-activated protein kinase 1 (MSK1 specifically phosphorylates KDM3A at Ser264 (p-KDM3A, which is enriched in the regulatory regions of gene loci in the human genome. p-KDM3A directly interacts with and is recruited by the transcription factor Stat1 to activate p-KDM3A target genes under heat shock conditions. The demethylation of H3K9me2 at the Stat1 binding site specifically depends on the co-expression of p-KDM3A in the heat-shocked cells. In contrast to heat shock, IFN-γ treatment does not phosphorylate KDM3A via MSK1, thereby abrogating its downstream effects. To our knowledge, this is the first evidence that a KDM can be modified via phosphorylation to determine its specific binding to target genes in response to thermal stress.

  1. Genetic interactions between diverged alleles of Early heading date 1 (Ehd1) and Heading date 3a (Hd3a)/ RICE FLOWERING LOCUS T1 (RFT1) control differential heading and contribute to regional adaptation in rice (Oryza sativa).

    Science.gov (United States)

    Zhao, Jing; Chen, Hongyi; Ren, Ding; Tang, Huiwu; Qiu, Rong; Feng, Jinglei; Long, Yunming; Niu, Baixiao; Chen, Danping; Zhong, Tianyu; Liu, Yao-Guang; Guo, Jingxin

    2015-11-01

    Initiation of flowering, also called heading, in rice (Oryza sativa) is determined by the florigens encoded by Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1). Early heading date 1 (Ehd1) regulates Hd3a and RFT1. However, different rice varieties have diverged alleles of Ehd1 and Hd3a/RFT1 and their genetic interactions remain largely unclear. Here we generated three segregating populations for different combinations of diverged Ehd1 and Hd3a/RFT1 alleles, and analyzed their genetic interactions between these alleles. We demonstrated that, in an ehd1 mutant background, Hd3a was silenced, but RFT1 was expressed (although at lower levels than in plants with a functional Ehd1) under short-day (SD) and long-day (LD) conditions. We identified a nonfunctional RFT1 allele (rft1); the lines carrying homozygous ehd1 and Hd3a/rft1 failed to induce the floral transition under SD and LD conditions. Like Hd3a, RFT1 also interacted with 14-3-3 proteins, the florigen receptors, but a nonfunctional RFT1 with a crucial E105K mutation failed to interact with 14-3-3 proteins. Furthermore, analyses of sequence variation and geographic distribution suggested that functional RFT1 alleles were selected during rice adaptation to high-latitude regions. Our results demonstrate the important roles of RFT1 in rice flowering and regional adaptation. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Polymorphisms and phenotypic analysis of cytochrome P450 3A4 in the Uygur population in northwest China

    OpenAIRE

    Jin, Tianbo; Yang, Hua; Zhang, Jiayi; Yunus, Zulfiya; Sun, Qiang; Geng, Tingting; Chen, Chao; Yang, Jie

    2015-01-01

    Purpose: Genetic polymorphisms in CYP3A4 can change its activity to a certain degree, thus leading to differences among different populations in drug efficacy or adverse drug reactions. Methods: The study was intended to validate the genetic polymorphisms in CYP3A4 in Uygur Chinese population, we sequenced and screened for genetic variants including 5’UTR, promoters, exons, introns, and 3’UTR region of the whole CYP3A4 gene in 100 unrelated, healthy. Results: Twenty-one genetic polymorphisms ...

  3. Dual-color fluorescence imaging to monitor CYP3A4 and CYP3A7 expression in human hepatic carcinoma HepG2 and HepaRG cells.

    Directory of Open Access Journals (Sweden)

    Saori Tsuji

    Full Text Available Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps.

  4. Pharmacokinetic variability of clarithromycin and differences in CYP3A4 activity in patients with cystic fibrosis

    DEFF Research Database (Denmark)

    Dalbøge, C S; Nielsen, X C; Dalhoff, K

    2014-01-01

    3A4-activity and clarithromycin metabolism was demonstrated (P cystic fibrosis patients may cause treatment failure. The Erythromycin Breath Test could be valuable in identifying cystic fibrosis patients in risk...

  5. Effect of Methamphetamine on Spectral Binding, Ligand Docking and Metabolism of Anti-HIV Drugs with CYP3A4

    Science.gov (United States)

    Ande, Anusha; Wang, Lei; Vaidya, Naveen K.; Li, Weihua; Kumar, Santosh; Kumar, Anil

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) is the major drug metabolic enzyme, and is involved in the metabolism of antiretroviral drugs, especially protease inhibitors (PIs). This study was undertaken to examine the effect of methamphetamine on the binding and metabolism of PIs with CYP3A4. We showed that methamphetamine exhibits a type I spectral change upon binding to CYP3A4 with δAmax and KD of 0.016±0.001 and 204±18 μM, respectively. Methamphetamine-CYP3A4 docking showed that methamphetamine binds to the heme of CYP3A4 in two modes, both leading to N-demethylation. We then studied the effect of methamphetamine binding on PIs with CYP3A4. Our results showed that methamphetamine alters spectral binding of nelfinavir but not the other type I PIs (lopinavir, atazanavir, tipranavir). The change in spectral binding for nelfinavir was observed at both δAmax (0.004±0.0003 vs. 0.0068±0.0001) and KD (1.42±0.36 vs.2.93±0.08 μM) levels. We further tested effect of methamphetamine on binding of 2 type II PIs; ritonavir and indinavir. Our results showed that methamphetamine alters the ritonavir binding to CYP3A4 by decreasing both the δAmax (0.0038±0.0003 vs. 0.0055±0.0003) and KD (0.043±0.0001 vs. 0.065±0.001 nM), while indinavir showed only reduced KD in presence of methamphetamine (0.086±0.01 vs. 0.174±0.03 nM). Furthermore, LC-MS/MS studies in high CYP3A4 human liver microsomes showed a decrease in the formation of hydroxy ritonavir in the presence of methamphetamine. Finally, CYP3A4 docking with lopinavir and ritonavir in the absence and presence of methamphetamine showed that methamphetamine alters the docking of ritonavir, which is consistent with the results obtained from spectral binding and metabolism studies. Overall, our results demonstrated differential effects of methamphetamine on the binding and metabolism of PIs with CYP3A4. These findings have clinical implication in terms of drug dose adjustment of antiretroviral medication, especially with ritonavir

  6. Availability of endogenous peptides limits expression of an M3a-Ld major histocompatibility complex class I chimera

    Science.gov (United States)

    1994-01-01

    Taking advantage of our understanding of the peptide specificity of the major histocompatibility complex class I-b molecule M3a, we sought to determine why these molecules are poorly represented on the cell surface. To this end we constructed a chimeric molecule with the alpha 1 and alpha 2 domains of M3a and alpha 3 of Ld thereby allowing use of available monoclonal antibodies to quantify surface expression. Transfected, but not control, B10.CAS2 (H-2M3b) cells were lysed readily by M3a-restricted monoclonal cytotoxic T lymphocytes. Thus, the chimera bound, trafficked, and presented endogenous mitochondrial peptides. However, despite high levels of M3a-Ld mRNA, transfectants were negative by surface staining. This finding was consistent with inefficient trafficking to the cell surface. Incubation at 26 degrees C, thought to permit trafficking of unoccupied heavy (H) chains, resulted in detectable cell surface expression of chimeric molecules. Incubation with exogenous peptide at 26 degrees C (but not at 37 degrees C) greatly enhanced expression of M3a-Ld molecules in a dose- dependent manner, suggesting stabilization of unoccupied molecules. Stable association of beta 2-microglobulin with the chimeric H chain was observed in labeled cell lysates only in the presence of exogenous specific peptide, indicating that peptide is required for the formation of a ternary complex. These results indicate that surface expression of M3a-Ld is limited largely by the steady-state availability of endogenous peptides. Since most known M3a-binding peptides are N- formylated, native M3a may normally be expressed at high levels only during infection by intracellular bacteria. PMID:8270862

  7. 17 CFR 270.3a-3 - Certain investment companies owned by companies which are not investment companies.

    Science.gov (United States)

    2010-04-01

    ... the definition of the term “investment company” by section 3(b)(1) or 3(b)(2) of the Act (15 U.S.C... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Certain investment companies owned by companies which are not investment companies. 270.3a-3 Section 270.3a-3 Commodity and...

  8. High glucose induced oxidative stress and apoptosis in cardiac microvascular endothelial cells are regulated by FoxO3a.

    Directory of Open Access Journals (Sweden)

    Chaoming Peng

    Full Text Available Cardiac microvascular endothelial cells (CMECs dysfunction contributes to cardiovascular complications in diabetes, whereas, the underlying mechanism is not fully clarified. FoxO transcription factors are involved in apoptosis and reactive oxygen species (ROS production. Therefore, the present study was designed to elucidate the potential role of FoxO3a on the CMECs injury induced by high glucose.CMECs were isolated from hearts of adult rats and cultured in normal or high glucose medium for 6 h, 12 h and 24 h respectively. To down-regulate FoxO3a expression, CMECs were transfected with FoxO3a siRNA. ROS accumulation and apoptosis in CMECs were assessed by dihydroethidine (DHE staining and TUNEL assay respectively. Moreover, the expressions of Akt, FoxO3a, Bim and BclxL in CMECs were assessed by Western blotting assay.ROS accumulation in CMECs was significantly increased after high glucose incubation for 6 to 24 h. Meanwhile, high glucose also increased apoptosis in CMECs, correlated with decreased the phosphorylation expressions of Akt and FoxO3a. Moreover, high glucose incubation increased the expression of Bim, whereas increased anti-apoptotic protein BclxL. Furthermore, siRNA target FoxO3a silencing enhanced the ROS accumulation, whereas suppressed apoptosis in CMECs. FoxO3a silencing also abolished the disturbance of Bcl-2 proteins induced by high glucose in CMECs.Our data provide evidence that high glucose induced FoxO3a activation which suppressed ROS accumulation, and in parallel, resulted in apoptosis of CMECs.

  9. Modulation of the interaction between human P450 3A4 and B. megaterium reductase via engineered loops.

    Science.gov (United States)

    Castrignanò, Silvia; D'Avino, Serena; Di Nardo, Giovanna; Catucci, Gianluca; Sadeghi, Sheila J; Gilardi, Gianfranco

    2018-01-01

    Chimerogenesis involving cytochromes P450 is a successful approach to generate catalytically self-sufficient enzymes. However, the connection between the different functional modules should allow a certain degree of flexibility in order to obtain functional and catalytically efficient proteins. We previously applied the molecular Lego approach to develop a chimeric P450 3A4 enzyme linked to the reductase domain of P450 BM3 (BMR). Three constructs were designed with the connecting loop containing no glycine, 3 glycine or 5 glycine residues and showed a different catalytic activity and coupling efficiency. Here we investigate how the linker affects the ability of P450 3A4 to bind substrates and inhibitors. We measure the electron transfer rates and the catalytic properties of the enzyme also in the presence of ketoconazole as inhibitor. The data show that the construct 3A4-5GLY-BMR with the longest loop better retains the binding ability and cooperativity for testosterone, compared to P450 3A4. In both 3A4-3GLY-BMR and 3A4-5GLY-BMR, the substrate induces an increase in the first electron transfer rate and a shorter lag phase related to a domain rearrangements, when compared to the construct without Gly. These data are consistent with docking results and secondary structure predictions showing a propensity to form helical structures in the loop of the 3A4-BMR and 3A4-3GLY-BMR. All three chimeras retain the ability to bind the inhibitor ketoconazole and show an IC 50 comparable with those reported for the wild type protein. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Importance of inverse correlation between ALDH3A1 and PPARγ in tumor cells and tissue regeneration.

    Science.gov (United States)

    Oraldi, M; Saracino, S; Maggiora, M; Chiaravalloti, A; Buemi, C; Martinasso, G; Paiuzzi, E; Thompson, D; Vasiliou, V; Canuto, R A

    2011-05-30

    Aldehyde dehydrogenase (ALDH) enzymes are involved in maintaining cellular homeostasis by metabolizing both endogenous and exogenous reactive aldehydes. They modulate several cell functions including proliferation, differentiation, survival as well as cellular response to oxidative stress. We previously reported that ALDH3A1 expression is inversely correlated with the activation of PPARs (Peroxisome Proliferators-Activated Receptors), a category of orphan nuclear hormone receptors, in both rat and human cells. PPARγ is involved in cell proliferation. In this study, we have used PPARγ transfection and inhibition to examine the relationship between ALDH3A1 and PPARγ and their role as regulators of cell proliferation. Induction of PPARγ in A549 and NCTC 2544 cells by transfection caused a decrease in ALDH3A1 and inhibition of cell proliferation, a result we obtained previously using ligands that induce PPARγ. A reduction of PPARγ expression using siRNA increased ALDH3A1 expression and cell proliferation. In cells induced to proliferate in a model of tissue regeneration, ALDH3A1 expression increased during the period of proliferation, whereas PPARγ expression decreased. In conclusion, through modulation of PPARγ or ALDH3A1, it may be possible to reduce cell proliferation in tumor cells or stimulate cell proliferation in normal cells during tissue regeneration. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Wnt3a regulates proliferation and migration of HUVEC via canonical and non-canonical Wnt signaling pathways

    International Nuclear Information System (INIS)

    Samarzija, Ivana; Sini, Patrizia; Schlange, Thomas; MacDonald, Gwen; Hynes, Nancy E.

    2009-01-01

    Untangling the signaling pathways involved in endothelial cell biology is of central interest for the development of antiangiogenesis based therapies. Here we report that Wnt3a induces the proliferation and migration of HUVECs, but does not affect their survival. Wnt3a-induced proliferation was VEGFR signaling independent, but reduced upon CamKII inhibition. In a search for the downstream mediators of Wnt3a's effects on HUVEC biology, we found that Wnt3a treatment leads to phosphorylation of DVL3 and stabilization of β-catenin. Moreover, under the same conditions we observed an upregulation in c-MYC, TIE-2 and GJA1 mRNA transcripts. Although treatment of HUVECs with Wnt5a induced DVL3 phosphorylation, we did not observe any of the other effects seen upon Wnt3a stimulation. Taken together, our data indicate that Wnt3a induces canonical and non-canonical Wnt signaling in HUVECs, and stimulates their proliferation and migration.

  12. Slc3a2 Mediates Branched-Chain Amino-Acid-Dependent Maintenance of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Kayo Ikeda

    2017-11-01

    Full Text Available Summary: Foxp3+ regulatory T (Treg cells, which suppress immune responses, are highly proliferative in vivo. However, it remains unclear how the active replication of Treg cells is maintained in vivo. Here, we show that branched-chain amino acids (BCAAs, including isoleucine, are required for maintenance of the proliferative state of Treg cells via the amino acid transporter Slc3a2-dependent metabolic reprogramming. Mice fed BCAA-reduced diets showed decreased numbers of Foxp3+ Treg cells with defective in vivo proliferative capacity. Mice lacking Slc3a2 specifically in Foxp3+ Treg cells showed impaired in vivo replication and decreased numbers of Treg cells. Slc3a2-deficient Treg cells showed impaired isoleucine-induced activation of the mTORC1 pathway and an altered metabolic state. Slc3a2 mutant mice did not show an isoleucine-induced increase of Treg cells in vivo and exhibited multi-organ inflammation. Taken together, these findings demonstrate that BCAA controls Treg cell maintenance via Slc3a2-dependent metabolic regulation. : Treg cells regulate excess immune responses and are highly proliferative in vivo. Ikeda et al. find that branched-chain amino acids (BCAAs are essentially required to maintain expansion and the suppressive capacity of Treg cells via Slc3a2 and mTORC1. Keywords: Treg cells, amino acids, immunometabolism, immune regulation, transporter

  13. A large-scale allosteric transition in cytochrome P450 3A4 revealed by luminescence resonance energy transfer (LRET.

    Directory of Open Access Journals (Sweden)

    Elena V Sineva

    Full Text Available Effector-induced allosteric transitions in cytochrome P450 3A4 (CYP3A4 were investigated by luminescence resonance energy transfer (LRET between two SH-reactive probes attached to various pairs of distantly located cysteine residues, namely the double-cysteine mutants CYP3A4(C64/C468, CYP3A4(C377/C468 and CYP3A4(C64/C121. Successive equimolar labeling of these proteins with the phosphorescent probe erythrosine iodoacetamide (donor and the near-infrared fluorophore DY-731 maleimide (acceptor allowed us to establish donor/acceptor pairs sensitive to conformational motions. The interactions of all three double-labeled mutants with the allosteric activators α-naphthoflavone and testosterone resulted in an increase in the distance between the probes. A similar effect was elicited by cholesterol. These changes in distance vary from 1.3 to 8.5 Å, depending on the position of the donor/acceptor pair and the nature of the effector. In contrast, the changes in the interprobe distance caused by such substrates as bromocriptine or 1-pyrenebutanol were only marginal. Our results provide a decisive support to the paradigm of allosteric modulation of CYP3A4 and indicate that the conformational transition caused by allosteric effectors increases the spatial separation between the beta-domain of the enzyme (bearing residues Cys64 and Cys377 and the alpha-domain, where Cys121 and Cys468 are located.

  14. Distribution of Exogenous and Endogenous CYP3A Markers and Related Factors in Healthy Males and Females.

    Science.gov (United States)

    Lee, Jieon; Kim, Andrew HyoungJin; Yi, SoJeong; Lee, SeungHwan; Yoon, Seo Hyun; Yu, Kyung-Sang; Jang, In-Jin; Cho, Joo-Youn

    2017-07-01

    Cytochrome P450 (CYP) 3A is an important drug-metabolizing enzyme in humans. Assessing CYP3A activity is necessary for predicting therapeutic outcomes or the potential adverse events of various therapeutics. This study sought to evaluate the distribution of endogenous and exogenous markers reflecting hepatic CYP3A activity and related factors affecting its activity in healthy male and female. Each subject was given a single 1 mg dose of midazolam intravenously. Pharmacokinetics, pharmacometabolomics, and pharmacogenomics analyses were performed to evaluate CYP3A activity. Urinary and plasma steroids were quantified with gas chromatography coupled with triple-quadrupole mass spectrometry (GC-MS), and the concentrations of midazolam and its metabolites were quantified with liquid chromatography coupled with electrospray tandem mass spectrometry (LC-MS/MS). A total of 100 subjects completed this study. Midazolam clearance (MDZ CL) and the metabolic ratio (MDZ MR) were significantly correlated with 6β-OH-cortisol/cortisol and 6β-OH-cortisone/cortisone. MDZ CL, 6β-OH-cortisol/cortisol, and 6β-OH-cortisone/cortisone decreased with increasing age (Pearson r = -0.333, -0.329, and -0.528, respectively; P exogenous and endogenous markers showed decreased CYP3A activity with increasing age, which suggested that age could be a factor that significantly influences CYP3A activity.

  15. A DNMT3A2-HDAC2 Complex Is Essential for Genomic Imprinting and Genome Integrity in Mouse Oocytes

    Directory of Open Access Journals (Sweden)

    Pengpeng Ma

    2015-11-01

    Full Text Available Maternal genomic imprints are established during oogenesis. Histone deacetylases (HDACs 1 and 2 are required for oocyte development in mouse, but their role in genomic imprinting is unknown. We find that Hdac1:Hdac2−/− double-mutant growing oocytes exhibit global DNA hypomethylation and fail to establish imprinting marks for Igf2r, Peg3, and Srnpn. Global hypomethylation correlates with increased retrotransposon expression and double-strand DNA breaks. Nuclear-associated DNMT3A2 is reduced in double-mutant oocytes, and injecting these oocytes with Hdac2 partially restores DNMT3A2 nuclear staining. DNMT3A2 co-immunoprecipitates with HDAC2 in mouse embryonic stem cells. Partial loss of nuclear DNMT3A2 and HDAC2 occurs in Sin3a−/− oocytes, which exhibit decreased DNA methylation of imprinting control regions for Igf2r and Srnpn, but not Peg3. These results suggest seminal roles of HDAC1/2 in establishing maternal genomic imprints and maintaining genomic integrity in oocytes mediated in part through a SIN3A complex that interacts with DNMT3A2.

  16. Expression of EFR3A in the mouse cochlea during degeneration of spiral ganglion following hair cell loss.

    Directory of Open Access Journals (Sweden)

    Chen Nie

    Full Text Available Retrograde degeneration of spiral ganglion cells in the cochlea following hair cell loss is similar to dying back in pathology. The EFR3A gene has recently been discovered to be involved in the pathogenesis of dying back. The relationship of EFR3A and spiral ganglion degeneration, however, was rarely investigated. In this study, we destroyed the hair cells of the mouse cochlea by co-administration of kanamycin and furosemide and then investigated the EFR3A expression during the induced spiral ganglion cell degeneration. Our results revealed that co-administration of kanamycin and furosemide quickly induced hair cell loss in the C57BL/6J mice and then resulted in progressive degeneration of the spiral ganglion beginning at day 5 following drug administration. The number of the spiral ganglion cells began to decrease at day 15. The expression of EFR3A increased remarkably in the spiral ganglion at day 5 and then decreased to near normal level within the next 10 days. Our study suggested that the change of EFR3A expression in the spiral ganglion was coincident with the time of the spiral ganglion degeneration, which implied that high expression of EFR3A may be important to prompt initiation of spiral ganglion degeneration following hair cell loss.

  17. Mutation analysis of the human CYP3A4 gene 5' regulatory region: population screening using non-radioactive SSCP.

    Science.gov (United States)

    Hamzeiy, Hossein; Vahdati-Mashhadian, Nasser; Edwards, Helen J; Goldfarb, Peter S

    2002-03-20

    Human CYP3A4 is the major cytochrome P450 isoenzyme in adult human liver and is known to metabolise many xenobiotic and endogenous compounds. There is substantial inter-individual variation in the hepatic levels of CYP3A4. Although, polymorphic mutations have been reported in the 5' regulatory region of the CYP3A4 gene, those that have been investigated so far do not appear to have any effect on gene expression. To determine whether other mutations exist in this region of the gene, we have performed a new population screen on a panel of 101 human DNA samples. A 1140 bp section of the 5' proximal regulatory region of the CYP3A4 gene, containing numerous regulatory motifs, was amplified from genomic DNA as three overlapping segments. The 300 bp distal enhancer region at -7.9kb containing additional regulatory motifs was also amplified. Mutation analysis of the resulting PCR products was carried out using non-radioactive single strand conformation polymorphism (SSCP) and confirmatory sequencing of both DNA strands in those samples showing extra SSCP bands. In addition to detection of the previously reported CYP3A4*1B allele in nine subjects, three novel alleles were found: CYP3A4*1E (having a T-->A transversion at -369 in one subject), CYP3A4*1F (having a C-->G tranversion at -747 in 17 subjects) and CYP3A4*15B containing a nine-nucleotide insertion between -845 and -844 linked to an A-->G transition at -392 and a G-->A transition in exon 6 (position 485 in the cDNA) in one subject. All the novel alleles were heterozygous. No mutations were found in the upstream distal enhancer region. Our results clearly indicate that this rapid and simple SSCP approach can reveal mutant alleles in drug metabolising enzyme genes. Detection and determination of the frequency of novel alleles in CYP3A4 will assist investigation of the relationship between genotype, xenobiotic metabolism and toxicity in the CYP3A family of isoenzymes.

  18. Dnmt3a deletion cooperates with the Flt3/ITD mutation to drive leukemogenesis in a murine model

    Science.gov (United States)

    Poitras, Jennifer L.; Heiser, Diane; Li, Li; Nguyen, Bao; Nagai, Kozo; Duffield, Amy S.; Gamper, Christopher; Small, Donald

    2016-01-01

    Internal tandem duplications of the juxtamembrane domain of FLT3 (FLT3/ITD) are among the most common mutations in Acute Myeloid Leukemia (AML). Resulting in constitutive activation of the kinase, FLT3/ITD portends a particularly poor prognosis, with reduced overall survival and increased rates of relapse. We previously generated a knock-in mouse, harboring an internal tandem duplication at the endogenous Flt3 locus, which develops a fatal myeloproliferative neoplasm (MPN), but fails to develop acute leukemia, suggesting additional mutations are necessary for transformation. To investigate the potential cooperativity of FLT3/ITD and mutant DNMT3A, we bred a conditional Dnmt3a knockout to a substrain of our Flt3/ITD knock-in mice, and found deletion of Dnmt3a significantly reduced median survival of Flt3ITD/+ mice in a dose dependent manner. As expected, pIpC treated Flt3ITD/+ mice solely developed MPN, while Flt3ITD/+;Dnmt3af/f and Flt3ITD/+;Dnmt3af/+ developed a spectrum of neoplasms, including MPN, T-ALL, and AML. Functionally, FLT3/ITD and DNMT3A deletion cooperate to expand LT-HSCs, which exhibit enhanced self-renewal in serial re-plating assays. These results illustrate that DNMT3A loss cooperates with FLT3/ITD to generate hematopoietic neoplasms, including AML. In combination with FLT3/ITD, homozygous Dnmt3a knock-out results in reduced time to disease onset, LT-HSC expansion, and a higher incidence of T-ALL compared with loss of just one allele. The co-occurrence of FLT3 and DNMT3A mutations in AML, as well as subsets of T-ALL, suggests the Flt3ITD/+;Dnmt3af/f model may serve as a valuable resource for delineating effective therapeutic strategies in two clinically relevant contexts. PMID:27636998

  19. Competitive Promoter-Associated Matrix Attachment Region Binding of the Arid3a and Cux1 Transcription Factors

    Directory of Open Access Journals (Sweden)

    Dongkyoon Kim

    2017-12-01

    Full Text Available Arid3a/Bright/Dril1 is a B cell-specific transactivator that regulates immunoglobulin heavy chain (IgH gene transcription by binding promoter and enhancer-associated matrix attachment regions (MARs within the IgH gene locus. Promoter MAR-mediated Arid3a transactivation is antagonized by direct competition of MAR binding by Cux1/CDP—a ubiquitously expressed repressor originally termed NF-μNR. We report that the NF-μNR complex includes Arid3a in B cells but not in non-B cells through mobility shift assays. The binding activity of NF-μNR and Arid3a in B cells is reciprocally altered during the cell division cycle and by the B cell mitogen lipopolysaccharide LPS. LPS treatment had no effect on Arid3a localization but increased its total abundance within the nucleus and cytoplasm. We show that this increased level of Arid3a is capable of displacing Cux from the MARs to facilitate IgH gene transcription. Finally, we showed that the MARs (termed Bf150 and Tx125 associated with the VH1 rearranged variable region expressed in the S107 murine plasmacytoma, can repress reporter gene transcription in non-B cells and that they can relieve the repression mediated by Eμ enhancer in B cells. These results have significant implications for early human development and demonstrate that MARs in IgH locus, NF-µNR and Arid3a regulate IgH gene expression in a concerted fashion. This paves the way for future studies examining the misregulation of this pathway in pediatric disease.

  20. Expression and methylation data from SLE patient and healthy control blood samples subdivided with respect to ARID3a levels

    Directory of Open Access Journals (Sweden)

    Julie M. Ward

    2016-12-01

    Full Text Available Previously published studies revealed that variation in expression of the DNA-binding protein ARID3a in B lymphocytes from patients with systemic lupus erythematosus (SLE correlated with levels of disease activity (“Disease activity in systemic lupus erythematosus correlates with expression of the transcription factor AT-rich-interactive domain 3A” (J.M. Ward, K. Rose, C. Montgomery, I. Adrianto, J.A. James, J.T. Merrill et al., 2014 [1]. The data presented here compare DNA methylation patterns from SLE peripheral blood mononuclear cells obtained from samples with high numbers of ARID3a expressing B cells (ARID3aH versus SLE samples with normal numbers of ARID3a+ B cells (ARID3aN. The methylation data is available at the gene expression omnibus (GEO repository, “Gene Expression Omnibus: NCBI gene expression and hybridization array data repository” (R. Edgar, M. Domrachev, A.E. Lash, 2002 [2]. Isolated B cells from SLE ARID3aH and ARID3aN B samples were also evaluated via qRT-PCR for Type I interferon (IFN signature and pathway gene expression levels by qRT-PCR. Similarly, healthy control B cells and B cells stimulated to express ARID3a with the TLR agonist, CpG, were also compared via qRT-PCR. Primers designed to detect 6 IFNa subtype mRNAs were tested in 4 IFNa, Epstein-Barr Virus-transformed B cell lines (“Reduced interferon-alpha production by Epstein-Barr virus transformed B-lymphoblastoid cell lines and lectin-stimulated lymphocytes in congenital dyserythropoietic anemia type I” (S.H. Wickramasinghe, R. Hasan, J. Smythe, 1997 [3]. The data in this article support the publication, “Human effector B lymphocytes express ARID3a and secrete interferon alpha” (J.M. Ward, M.L. Ratliff, M.G. Dozmorov, G. Wiley, J.M. Guthridge, P.M. Gaffney, J.A. James, C.F. Webb, 2016 [4].

  1. Single nucleotide polymorphism array lesions, TET2, DNMT3A, ASXL1 and CBL mutations are present in systemic mastocytosis.

    Directory of Open Access Journals (Sweden)

    Fabiola Traina

    Full Text Available We hypothesized that analysis of single nucleotide polymorphism arrays (SNP-A and new molecular defects may provide new insight in the pathogenesis of systemic mastocytosis (SM. SNP-A karyotyping was applied to identify recurrent areas of loss of heterozygosity and bidirectional sequencing was performed to evaluate the mutational status of TET2, DNMT3A, ASXL1, EZH2, IDH1/IDH2 and the CBL gene family. Overall survival (OS was analyzed using the Kaplan-Meier method. We studied a total of 26 patients with SM. In 67% of SM patients, SNP-A karyotyping showed new chromosomal abnormalities including uniparental disomy of 4q and 2p spanning TET2/KIT and DNMT3A. Mutations in TET2, DNMT3A, ASXL1 and CBL were found in 23%, 12%, 12%, and 4% of SM patients, respectively. No mutations were observed in EZH2 and IDH1/IDH2. Significant differences in OS were observed for SM mutated patients grouped based on the presence of combined TET2/DNMT3A/ASXL1 mutations independent of KIT (P = 0.04 and sole TET2 mutations (P<0.001. In conclusion, TET2, DNMT3A and ASXL1 mutations are also present in mastocytosis and these mutations may affect prognosis, as demonstrated by worse OS in mutated patients.

  2. Effect of DNA methylation profile on OATP3A1 and OATP4A1 transcript levels in colorectal cancer.

    Science.gov (United States)

    Rawłuszko-Wieczorek, Agnieszka Anna; Horst, Nikodem; Horbacka, Karolina; Bandura, Artur Szymon; Świderska, Monika; Krokowicz, Piotr; Jagodziński, Paweł Piotr

    2015-08-01

    Epidemiological studies indicate that 17β-estradiol (E2) prevents colorectal cancer (CRC). Organic anion transporting polypeptides (OATPs) are involved in the cellular uptake of various endogenous and exogenous substrates, including hormone conjugates. Because transfer of estrone sulfate (E1-S) can contribute to intra-tissue conversion of estrone to the biologically active form -E2, it is evident that the expression patterns of OATPs may be relevant to the analysis of CRC incidence and therapy. We therefore evaluated DNA methylation and transcript levels of two members of the OATP family, OATP3A1 and OATP4A1, that may be involved in E1-S transport in colorectal cancer patients. We detected a significant reduction in OATP3A1 and a significant increase in OATP4A1 mRNA levels in cancerous tissue, compared with histopathologically unchanged tissue (n=103). Moreover, we observed DNA hypermethylation in the OATP3A1 promoter region in a small subset of CRC patients and in HCT116 and Caco-2 colorectal cancer cell lines. We also observed increased OATP3A1 transcript following treatment with 5-aza-2-deoxycytidine and sodium butyrate. The OATP4A1 promoter region was hypomethylated in analyzed tissues and CRC cell lines and was not affected by these treatments. Our results suggest a potential mechanism for OATP3A1 downregulation that involves DNA methylation during colorectal carcinogenesis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Loss of Col3a1, the gene for Ehlers-Danlos syndrome type IV, results in neocortical dyslamination.

    Directory of Open Access Journals (Sweden)

    Sung-Jin Jeong

    Full Text Available It has recently been discovered that Collagen III, the encoded protein of the type IV Ehlers-Danlos Syndrome (EDS gene, is one of the major constituents of the pial basement membrane (BM and serves as the ligand for GPR56. Mutations in GPR56 cause a severe human brain malformation called bilateral frontoparietal polymicrogyria, in which neurons transmigrate through the BM causing severe mental retardation and frequent seizures. To further characterize the brain phenotype of Col3a1 knockout mice, we performed a detailed histological analysis. We observed a cobblestone-like cortical malformation, with BM breakdown and marginal zone heterotopias in Col3a1⁻/⁻ mouse brains. Surprisingly, the pial BM appeared intact at early stages of development but starting as early as embryonic day (E 11.5, prominent BM defects were observed and accompanied by neuronal overmigration. Although collagen III is expressed in meningeal fibroblasts (MFs, Col3a1⁻/⁻ MFs present no obvious defects. Furthermore, the expression and posttranslational modification of α-dystroglycan was undisturbed in Col3a1⁻/⁻ mice. Based on the previous finding that mutations in COL3A1 cause type IV EDS, our study indicates a possible common pathological pathway linking connective tissue diseases and brain malformations.

  4. Sub-lethal effects of Vip3A toxin on survival, development and fecundity of Heliothis virescens and Plutella xylostella.

    Science.gov (United States)

    Gulzar, Asim; Wright, Denis J

    2015-11-01

    The assessment of sub-lethal effects is important to interpret the overall insecticide efficacy in controlling insect pest populations. In addition to the lethal effect, sub-lethal effects may also occur in exposed insects. Vegetative insecticidal proteins (Vips) have shown a broad spectrum of insecticidal activity against many insect pest species. In this study the sub-lethal effects of the Bacillus thuringiensis vegetative insecticidal toxin Vip3A on the development and reproduction of Heliothis virescens F. and Plutella xylostella L. were evaluated in the laboratory. The results indicated that the sub-lethal concentration of Vip3A increased the duration of the larval and pupal stages as compared with the control treatment for both species. The percent pupation and percent adult emergence were significantly lower for Vip3A-treated insects. The proportion of pairs that produced eggs and the longevity of adults were not significantly different between treatments. H. virescens and P. xylostella treated with Vip3A showed an 11 and 17 % decrease in their intrinsic rate of increase (rm) respectively compared with untreated insects. The results from this study will be helpful to develop the strategy to incorporate Vip 3A containing crops in an integrated pest management programme.

  5. GABAergic Neuron-Specific Loss of Ube3a Causes Angelman Syndrome-Like EEG Abnormalities and Enhances Seizure Susceptibility.

    Science.gov (United States)

    Judson, Matthew C; Wallace, Michael L; Sidorov, Michael S; Burette, Alain C; Gu, Bin; van Woerden, Geeske M; King, Ian F; Han, Ji Eun; Zylka, Mark J; Elgersma, Ype; Weinberg, Richard J; Philpot, Benjamin D

    2016-04-06

    Loss of maternal UBE3A causes Angelman syndrome (AS), a neurodevelopmental disorder associated with severe epilepsy. We previously implicated GABAergic deficits onto layer (L) 2/3 pyramidal neurons in the pathogenesis of neocortical hyperexcitability, and perhaps epilepsy, in AS model mice. Here we investigate consequences of selective Ube3a loss from either GABAergic or glutamatergic neurons, focusing on the development of hyperexcitability within L2/3 neocortex and in broader circuit and behavioral contexts. We find that GABAergic Ube3a loss causes AS-like increases in neocortical EEG delta power, enhances seizure susceptibility, and leads to presynaptic accumulation of clathrin-coated vesicles (CCVs)-all without decreasing GABAergic inhibition onto L2/3 pyramidal neurons. Conversely, glutamatergic Ube3a loss fails to yield EEG abnormalities, seizures, or associated CCV phenotypes, despite impairing tonic inhibition onto L2/3 pyramidal neurons. These results substantiate GABAergic Ube3a loss as the principal cause of circuit hyperexcitability in AS mice, lending insight into ictogenic mechanisms in AS. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development.

    Science.gov (United States)

    Wan, Qun; Guan, Xueying; Yang, Nannan; Wu, Huaitong; Pan, Mengqiao; Liu, Bingliang; Fang, Lei; Yang, Shouping; Hu, Yan; Ye, Wenxue; Zhang, Hua; Ma, Peiyong; Chen, Jiedan; Wang, Qiong; Mei, Gaofu; Cai, Caiping; Yang, Donglei; Wang, Jiawei; Guo, Wangzhen; Zhang, Wenhua; Chen, Xiaoya; Zhang, Tianzhen

    2016-06-01

    Natural antisense transcripts (NATs) are commonly observed in eukaryotic genomes, but only a limited number of such genes have been identified as being involved in gene regulation in plants. In this research, we investigated the function of small RNA derived from a NAT in fiber cell development. Using a map-based cloning strategy for the first time in tetraploid cotton, we cloned a naked seed mutant gene (N1 ) encoding a MYBMIXTA-like transcription factor 3 (MML3)/GhMYB25-like in chromosome A12, GhMML3_A12, that is associated with fuzz fiber development. The extremely low expression of GhMML3_A12 in N1 is associated with NAT production, driven by its 3' antisense promoter, as indicated by the promoter-driven histochemical staining assay. In addition, small RNA deep sequencing analysis suggested that the bidirectional transcriptions of GhMML3_A12 form double-stranded RNAs and generate 21-22 nt small RNAs. Therefore, in a fiber-specific manner, small RNA derived from the GhMML3_A12 locus can mediate GhMML3_A12 mRNA self-cleavage and result in the production of naked seeds followed by lint fiber inhibition in N1 plants. The present research reports the first observation of gene-mediated NATs and siRNA directly controlling fiber development in cotton. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. The NO signaling pathway differentially regulates KCC3a and KCC3b mRNA expression.

    Science.gov (United States)

    Di Fulvio, Mauricio; Lauf, Peter K; Adragna, Norma C

    2003-11-01

    Nitric oxide (NO) donors and protein kinase G (PKG) acutely up-regulate K-Cl cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in vascular smooth muscle cells (VSMCs). Here, we report the presence, relative abundance, and regulation by sodium nitroprusside (SNP) of the novel KCC3a and KCC3b mRNAs, in primary cultures of rat VSMCs. KCC3a and KCC3b mRNAs were expressed in an approximate 3:1 ratio, as determined by semiquantitative RT-PCR analysis. SNP as well as YC-1 and 8-Br-cGMP, a NO-independent stimulator of soluble guanylyl cyclase (sGC) and PKG, respectively, increased KCC3a and KCC3b mRNA expression by 2.5-fold and 8.1-fold in a time-dependent manner, following a differential kinetics. Stimulation of the NO/sGC/PKG signaling pathway with either SNP, YC-1, or 8-Br-cGMP decreased the KCC3a/KCC3b ratio from 3.0+/-0.4 to 0.9+/-0.1. This is the first report on a differential regulation by the NO/sGC/PKG signaling pathway of a cotransporter and of KCC3a and KCC3b mRNA expression.

  8. Sensor Function for Butyrophilin 3A1 in Prenyl Pyrophosphate Stimulation of Human Vγ2Vδ2 T Cells

    Science.gov (United States)

    Wang, Hong; Morita, Craig T.

    2016-01-01

    Vγ2Vδ2 T cells play important roles in human immunity to pathogens and in cancer immunotherapy by responding to isoprenoid metabolites, such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and isopentenyl pyrophosphate. The Ig superfamily protein butyrophilin (BTN)3A1 was shown to be required for prenyl pyrophosphate stimulation. We proposed that the intracellular B30.2 domain of BTN3A1 binds prenyl pyrophosphates, resulting in a change in the extracellular BTN3A1 dimer that is detected by Vγ2Vδ2 TCRs. Such B30.2 binding was demonstrated recently. However, other investigators reported that the extracellular BTN3A1 IgV domain binds prenyl pyrophosphates, leading to the proposal that the Vγ2Vδ2 TCR recognizes the complex. To distinguish between these mechanisms, we mutagenized residues in the two binding sites and tested the mutant BTN3A1 proteins for their ability to mediate prenyl pyrophosphate stimulation of Vγ2Vδ2 T cells to proliferate and secrete TNF-α. Mutagenesis of residues in the IgV site had no effect on Vγ2Vδ2 T cell proliferation or secretion of TNF-α. In contrast, mutagenesis of residues within the basic pocket and surrounding V regions of the B30.2 domain abrogated prenyl pyrophosphate-induced proliferation. Mutations of residues making hydrogen bonds to the pyrophosphate moiety also abrogated TNF-α secretion, as did mutation of aromatic residues making contact with the alkenyl chain. Some mutations further from the B30.2 binding site also diminished stimulation, suggesting that the B30.2 domain may interact with a second protein. These findings support intracellular sensing of prenyl pyrophosphates by BTN3A1 rather than extracellular presentation. PMID:26475929

  9. Activation of p53 by nutlin-3a induces apoptosis and cellular senescence in human glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Ruth Villalonga-Planells

    2011-04-01

    Full Text Available Glioblastoma multiforme (GBM is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients.

  10. Tumor suppressive effect of PARP1 and FOXO3A in gastric cancers and its clinical implications

    Science.gov (United States)

    Yoon, Sarah; Jo, Yuna; Kwon, So Mee; Kim, Kyoung Min; Kwon, Keun Sang; Kim, Chan Young; Woo, Hyun Goo

    2015-01-01

    Poly (ADP-ribose) polymerase1 (PARP1) has been reported as a possible target for chemotherapy in many cancer types. However, its action mechanisms and clinical implications for gastric cancer survival are not yet fully understood. Here, we investigated the effect of PARP1 inhibition in the growth of gastric cancer cells. PARP1 inhibition by Olaparib or PARP1 siRNA could significantly attenuate growth and colony formation of gastric cancer cells, and which were mediated through induction of G2/M cell cycle arrest but not apoptosis. FOXO3A expression was induced by PARP1 inhibition, suggesting that FOXO3A might be one of downstream target of the PARP1 effect on gastric cancer cell growth. In addition, by performing tissue microarrays on the 166 cases of gastric cancer patients, we could observe that the expression status of PARP1 and FOXO3A were significantly associated with overall survival (OS) and relapse-free survival (RFS). Strikingly, combined expression status of PARP1 and FOXO3A showed better prediction for patient's clinical outcomes. The patient group with PARP1+/FOXO3A− expression had the worst prognosis while the patient group with PARP1−/FOXO3A+ had the most favorable prognosis (OS: P = 6.0 × 10−9, RFS: P = 2.2 × 10−8). In conclusion, we suggest that PARP1 and FOXO3A play critical roles in gastric cancer progression, and might have therapeutic and/or diagnostic potential in clinic. PMID:26540566

  11. Angelman syndrome protein UBE3A interacts with primary microcephaly protein ASPM, localizes to centrosomes and regulates chromosome segregation.

    Directory of Open Access Journals (Sweden)

    Pooja Singhmar

    Full Text Available Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.

  12. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    Energy Technology Data Exchange (ETDEWEB)

    Istrate, Monica A., E-mail: monicai@scripps.edu [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Nussler, Andreas K., E-mail: nuessler@uchir.me.tum.de [Department of Traumatology, Technical University Munich, Ismaningerstr. 22, 81675 Munich (Germany); Eichelbaum, Michel, E-mail: michel.eichelbaum@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Burk, Oliver, E-mail: oliver.burk@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany)

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  13. Isolation of CYP3A5P cDNA from human liver: a reflection of a novel cytochrome P-450 pseudogene.

    Science.gov (United States)

    Schuetz, J D; Guzelian, P S

    1995-03-14

    We have isolated, from a human liver cDNA library, a 1627 bp CYP3A5 cDNA variant (CYP3A5P) that contains several large insertions, deletions, and in-frame termination codons. By comparison with the genomic structure of other CYP3A genes, the major insertions in CYP3A5P cDNA demarcate the inferred sites of several CYP3A5 exons. The segments inserted in CYP3A5P have no homology with splice donor acceptor sites. It is unlikely that CYP3A5P cDNA represents an artifact of the cloning procedures since Southern blot analysis of human genomic DNA disclosed that CYP3A5P cDNA hybridized with a DNA fragment distinct from fragments that hybridized with either CYP3A5, CYP3A3 or CYP3A4. Moreover, analysis of adult human liver RNA on Northern blots hybridized with a CYP3A5P cDNA fragment revealed the presence of an mRNA with the predicted size of CYP3A5P. We conclude that CYP3A5P cDNA was derived from a separate gene, CYP3A5P, most likely a pseudogene evolved from CYP3A5.

  14. Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a

    OpenAIRE

    Deuis, J. R.; Dekan, Z.; Wingerd, J. S.; Smith, J. J.; Munasinghe, N. R.; Bhola, R. F.; Imlach, W. L.; Herzig, V.; Armstrong, D. A.; Rosengren, K. J.; Bosmans, F.; Waxman, S. G.; Dib-Hajj, S. D.; Escoubas, P.; Minett, M. S.

    2017-01-01

    Human genetic studies have implicated the voltage-gated sodium channel NaV1.7 as a therapeutic target for the treatment of pain. A novel peptide, μ-theraphotoxin-Pn3a, isolated from venom of the tarantula Pamphobeteus nigricolor, potently inhibits NaV1.7 (IC50 0.9 nM) with at least 40-1000-fold selectivity over all other NaV subtypes. Despite on-target activity in small-diameter dorsal root ganglia, spinal slices, and in a mouse model of pain induced by NaV1.7 activation, Pn3a alone displayed...

  15. Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a

    OpenAIRE

    Jennifer R. Deuis; Zoltan Dekan; Joshua S. Wingerd; Jennifer J. Smith; Nehan R. Munasinghe; Rebecca F. Bhola; Wendy L. Imlach; Volker Herzig; David A. Armstrong; K. Johan Rosengren; Frank Bosmans; Stephen G. Waxman; Sulayman D. Dib-Hajj; Pierre Escoubas; Michael S. Minett

    2017-01-01

    Human genetic studies have implicated the voltage-gated sodium channel NaV1.7 as a therapeutic target for the treatment of pain. A novel peptide, ?-theraphotoxin-Pn3a, isolated from venom of the tarantula Pamphobeteus nigricolor, potently inhibits NaV1.7 (IC50 0.9?nM) with at least 40?1000-fold selectivity over all other NaV subtypes. Despite on-target activity in small-diameter dorsal root ganglia, spinal slices, and in a mouse model of pain induced by NaV1.7 activation, Pn3a alone displayed...

  16. Programa Yupay en el aprendizaje de las Matemáticas en estudiantes de 3 años

    OpenAIRE

    Ramírez Pérez, Sandra

    2017-01-01

    El presente trabajo de investigación, tuvo como problema general: ¿Qué influencia tiene el programa “Yupay” en el aprendizaje de las matemáticas en los estudiantes de 3 años del Consorcio Educativo “”Sullay Wasi” Independencia, 201 6? cuyo objetivo general fue determinar la influencia del programa “Yupay” en el aprendizaje de las matemáticas en los estudiantes de 3 años del Consorcio Educativo “”Sullay Wasi” Independencia, 2016. El tipo de investigación fue aplicada, el dise...

  17. Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER

    International Nuclear Information System (INIS)

    Zekas, Erin; Prossnitz, Eric R.

    2015-01-01

    Estrogen (17β-estradiol) promotes the survival and proliferation of breast cancer cells and its receptors represent important therapeutic targets. The cellular actions of estrogen are mediated by the nuclear estrogen receptors ERα and ERβ as well as the 7-transmembrane spanning G protein-coupled estrogen receptor (GPER). We previously reported that estrogen activates the phosphoinositide 3-kinase (PI3Kinase) pathway via GPER, resulting in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production within the nucleus of breast cancer cells; however, the mechanisms and consequences of this activity remained unclear. MCF7 breast cancer cells were transfected with GFP-fused Forkhead box O3 (FOXO3) as a reporter to assess localization in response to estrogen stimulation. Inhibitors of PI3Kinases and EGFR were employed to determine the mechanisms of estrogen-mediated FOXO3a inactivation. Receptor knockdown with siRNA and the selective GPER agonist G-1 elucidated the estrogen receptor(s) responsible for estrogen-mediated FOXO3a inactivation. The effects of selective estrogen receptor modulators and downregulators (SERMs and SERDs) on FOXO3a in MCF7 cells were also determined. Cell survival (inhibition of apoptosis) was assessed by caspase activation. In the estrogen-responsive breast cancer cell line MCF7, FOXO3a inactivation occurs on a rapid time scale as a result of GPER, but not ERα, stimulation by estrogen, established by the GPER-selective agonist G-1 and knockdown of GPER and ERα. GPER-mediated inactivation of FOXO3a is effected by the p110α catalytic subunit of PI3Kinase as a result of transactivation of the EGFR. The SERMs tamoxifen and raloxifene, as well as the SERD ICI182,780, were active in mediating FOXO3a inactivation in a GPER-dependent manner. Additionally, estrogen-and G-1-mediated stimulation of MCF7 cells results in a decrease in caspase activation under proapoptotic conditions. Our results suggest that non-genomic signaling by GPER contributes

  18. MDM2 inhibitor nutlin-3a induces apoptosis and senescence in cutaneous T-cell lymphoma: Role of p53

    DEFF Research Database (Denmark)

    Manfé, Valentina; Biskup, Edyta Urszula; Johansen, Peter

    2012-01-01

    cell lines, P53 mutation analysis identified a homozygous nonsense mutation (R196Stop in Hut-78) and a homozygous missense mutation (G245S in SeAx). In MyLa2000, Mac1, and Mac2a carrying wild-type P53, nutlin-3a induced apoptosis and senescence demonstrated by permanent G0/G1 cell-cycle block...... with intact p53 but also in Hut-78, SeAx, and Sézary cells. Thus, targeting p53 by nutlin-3a may constitute a therapeutic approach in CTCL because of increased apoptosis and senescence of tumor cells....

  19. A Turkish family with Sjögren-Larsson syndrome caused by a novel ALDH3A2 mutation

    Directory of Open Access Journals (Sweden)

    Faruk Incecik

    2013-01-01

    Full Text Available Sjögren-Larsson syndrome (SLS is an inherited neurocutaneous disorder caused by mutations in the aldehyde dehydrogenase family 3 member A2 (ALDH3A2 gene that encodes fatty aldehyde dehydrogenase. Affected patients display ichthyosis, mental retardation, and spastic diplegia. More than 70 mutations in ALDH3A2 have been discovered in SLS patients. We diagnosed two brothers age of 12 and 20 years with characteristic features of this rare syndrome. Magnetic resonance imaging showed demyelinating disease in both of them. We described a novel homozygous, c. 835 T > A (p.Y279N mutation in exon 6 in two patients.

  20. The Cl-35/Cl-37 isotopic ratio in dense molecular clouds : HIFI observations of hydrogen chloride towards W3 A

    NARCIS (Netherlands)

    Cernicharo, J.; Goicoechea, J. R.; Daniel, F.; Agundez, M.; Caux, E.; de Graauw, T.; De Jonge, A.; Kester, D.; Leduc, H. G.; Steinmetz, E.; Stutzki, J.; Ward, J. S.

    2010-01-01

    We report on the detection with the HIFI instrument on board the Herschel satellite of the two hydrogen chloride isotopologues, (HCl)-Cl-35 and (HCl)-Cl-37, towards the massive star-forming region W3 A. The J = 1-0 line of both species was observed with receiver 1b of the HIFI instrument at similar

  1. Akt/FOXO3a signaling modulates the endothelial stress response through regulation of heat shock protein 70 expression.

    Science.gov (United States)

    Kim, Hyo-Soo; Skurk, Carsten; Maatz, Henrike; Shiojima, Ichiro; Ivashchenko, Yuri; Yoon, Suk-Won; Park, Young-Bae; Walsh, Kenneth

    2005-06-01

    To identify new antiapoptotic targets of the PI3K-Akt signaling pathway in endothelial cells, adenovirus-mediated Akt1 gene transfer and oligonucleotide microarrays were used to examine Akt-regulated transcripts. DNA microarray analysis revealed that HSP70 expression underwent the greatest fold activation of 12,532 transcripts examined in human umbilical vein endothelial cells (HUVEC) transduced with constitutively active Akt1. Akt1 gene transfer increased HSP70 transcript expression by 24.8-fold as determined by quantitative PCR and promoted a dose-dependent up-regulation of HSP70 protein as determined by Western immunoblot analysis. Gene transfer of FOXO3a, a downstream target of Akt in endothelial cells, significantly suppressed both basal and stress-induced HSP70 protein expression. FOXO3a induced caspase-9-dependent apoptosis in HUVEC, and cotransduction with Ad-HSP70 rescued endothelial cells from FOXO3a-induced apoptosis under basal and stress conditions. Our results identify HSP70 as a new antiapoptotic target of Akt-FOXO3a signaling in endothelial cells that controls viability through modulation of the stress-induced intrinsic cell death pathway.

  2. The absolute calibration of KOMPSAT-3 and 3A high spatial resolution satellites using radiometric tarps and MFRSR measurments

    Science.gov (United States)

    Yeom, J. M.

    2017-12-01

    Recently developed Korea Multi-Purpose Satellite-3A (KOMPSAT-3A), which is a continuation of the KOMPSAT-1, 2 and 3 earth observation satellite (EOS) programs from the Korea Aerospace Research Institute (KARI) was launched on March, 25 2015 on a Dnepr-1 launch vehicle from the Jasny Dombarovsky site in Russia. After launched, KARI performed in-orbit-test (IOT) including radiometric calibration for 6 months from 14 Apr. to 4 Sep. 2015. KOMPSAT-3A is equipped with two distinctive sensors; one is a high resolution multispectral optical sensor, namely the Advances Earth Image Sensor System-A (AEISS-A) and the other is the Scanner Infrared Imaging System (SIIS). In this study, we focused on the radiometric calibration of AEISS-A. The multispectral wavelengths of AEISS-A are covering three visible regions: blue (450 - 520 nm), green (520 - 600 nm), red (630 - 690 nm), one near infrared (760 - 900 nm) with a 2.0 m spatial resolution at nadir, whereas the panchromatic imagery (450 - 900 nm) has a 0.5 m resolution. Those are the same spectral response functions were same with KOMPSAT-3 multispectral and panchromatic bands but the spatial resolutions are improved. The main mission of KOMPSAT-3A is to develop for Geographical Information System (GIS) applications in environmental, agriculture, and oceanographic sciences, as well as natural hazard monitoring.

  3. P120-catenin isoforms 1A and 3A differently affect invasion and proliferation of lung cancer cells

    International Nuclear Information System (INIS)

    Liu Yang; Dong Qianze; Zhao Yue; Dong Xinjun; Miao Yuan; Dai Shundong; Yang Zhiqiang; Zhang Di; Wang Yan; Li Qingchang; Zhao Chen; Wang Enhua

    2009-01-01

    Different isoforms of p120-catenin (p120ctn), a member of the Armadillo gene family, are variably expressed in different tissues as a result of alternative splicing and the use of multiple translation initiation codons. When expressed in cancer cells, these isoforms may confer different properties with respect to cell adhesion and invasion. We have previously reported that the p120ctn isoforms 1 and 3 were the most highly expressed isoforms in normal lung tissues, and their expression level was reduced in lung tumor cells. To precisely define their biological roles, we transfected p120ctn isoforms 1A and 3A into the lung cancer cell lines A549 and NCI-H460. Enhanced expression of p120ctn isoform 1A not only upregulated E-cadherin and β-catenin, but also downregulated the Rac1 activity, and as a result, inhibited the ability of cells to invade. In contrast, overexpression of p120ctn isoform 3A led to the inactivation of Cdc42 and the activation of RhoA, and had a smaller influence on invasion. However, we found that isoform 3A had a greater ability than isoform 1A in both inhibiting the cell cycle and reducing tumor cell proliferation. The present study revealed that p120ctn isoforms 1A and 3A differently regulated the adhesive, proliferative, and invasive properties of lung cancer cells through distinct mechanisms

  4. A comparative pharmacokinetic study in healthy volunteers of the effect of carbamazepine and oxcarbazepine on cyp3a4

    DEFF Research Database (Denmark)

    Andreasen, Astrid-Helene; Brøsen, Kim; Damkier, Per

    2007-01-01

    PURPOSE: Carbamazepine (CBZ) and oxcarbazepine (OXCZ) are well-known inducers of drug metabolism via CYP3A4. Indirect interaction studies and clinical experience suggest that CBZ has a stronger potential in this regard than OXCZ. However this has never been subject to a direct comparative study. We...

  5. The Associations between RNA Splicing Complex Gene SF3A1 Polymorphisms and Colorectal Cancer Risk in a Chinese Population.

    Directory of Open Access Journals (Sweden)

    Xiaohua Chen

    Full Text Available Aberrant alternative splicing included alterations in components of the mRNA splicing machinery often occurred in colon cancer. However, the role of SF3A1, one key component of the mRNA splicing machinery, on colorectal cancer (CRC risk was still not elucidated.We performed a hospital-based case-control study containing 801 CRC patients and 817 cancer-free controls to examine the association between SF3A1 polymorphisms and CRC risk in a Chinese population. Four candidate SNPs (rs10376, rs5753073, rs2839998 and rs2074733 were selected based on bioinformatics analysis and previous findings. The results showed no significant associations between these SNPs and CRC risk (P > 0.05. Besides, the stratified analysis based on the smoking and alcohol use status obtained no statistically significant results.Our study was the first one to investigate the association between SF3A1 polymorphisms and CRC risk. The results suggested these four SNPs in SF3A1 were not associated with CRC risk in a Chinese population, however, further more studies are needed to confirm our findings.

  6. 49 CFR 545.6 - Reporting requirements for vehicles listed in § 541.3(a)(1).

    Science.gov (United States)

    2010-10-01

    ... VEHICLE THEFT PREVENTION STANDARD PHASE-IN AND SMALL-VOLUME LINE REPORTING REQUIREMENTS § 545.6 Reporting requirements for vehicles listed in § 541.3(a)(1). (a) General reporting requirements. Within 60 days after the... 49 Transportation 6 2010-10-01 2010-10-01 false Reporting requirements for vehicles listed in Â...

  7. Analysis of CYP3A inhibitory components of star fruit (Averrhoa carambola L.) using liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Hosoi, Shinzo; Shimizu, Eri; Arimori, Kazuhiko; Okumura, Manabu; Hidaka, Muneaki; Yamada, Mitsuko; Sakushima, Akiyo

    2008-07-01

    In this study, we analyzed the CYP3A inhibitory components of star fruit Averrhoa carambola L., using liquid chromatography-mass spectrometry (LC-MS). The stereoisomer of procyanidin B1 and B2 and/or the trimer consisting of catechin and/or epicatechin were suggested to be potent inhibitory components.

  8. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. 174.509 Section 174.509 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance...

  9. Overexpression of CYP3A4 in a COLO 205 Colon Cancer Stem Cell Model in vitro

    International Nuclear Information System (INIS)

    Olszewski, Ulrike; Liedauer, Richard; Ausch, Christoph; Thalhammer, Theresia; Hamilton, Gerhard

    2011-01-01

    Cancer stem cells (CSCs) seem to constitute a subpopulation of tumor cells that escape from chemotherapy and cause recurrent disease. Low proliferation rates, protection in a stem cell niche and overexpression of drug resistance proteins are considered to confer chemoresistance. We established an in vitro colon CSC-like model using the COLO 205 cell line, which revealed transiently increased expression of CD133 when transferred to serum-free stem cell culture medium. Assessment of global gene expression of COLO 205 cells under these conditions identified a set of upregulated genes including cytochrome P450 3A4 (CYP3A4) and aldehyde dehydrogenase 1A1 (ALDH1A1), as confirmed by real-time qPCR. ALDH1A1 is a CSC marker for certain tumor entities and confers resistance to cyclophosphamide. CYP3A4 is expressed in liver and colon and its overexpression seems particularly relevant in colon cancer, since it inactivates irinotecan and other xenobiotics, such as taxols and vinca alkaloids. In conclusion, this COLO 205 model provides evidence for CD133 induction concomitant with overexpression of CYP3A4, which, together with ATP-binding cassette, subfamily G, member 2 (ABCG2) and others, may have a role in chemoresistant colon CSCs and a negative impact on disease-free survival in colon cancer patients

  10. Maturity and storage influence on the apple (Malus domestica) allergen Mal d 3, a nonspecific lipid transfer protein

    NARCIS (Netherlands)

    Sancho, Ana I.; Foxall, Robert; Rigby, Neil M.; Browne, Thomas; Zuidmeer, Laurian; van Ree, Ronald; Waldron, Keith W.; Mills, E. N. Clare

    2006-01-01

    Consumption of apples can provoke severe allergic reactions, in susceptible individuals, due to the presence of the allergen Mal d 3, a nonspecific lipid transfer protein, found largely in the fruit skin. Levels of Mal d 3 were determined in peel as a function of apple cultivar, position of the

  11. Effect of botanical immunomodulators on human CYP3A4 inhibition: implications for concurrent use as adjuvants in cancer therapy.

    Science.gov (United States)

    Patil, Dada; Gautam, Manish; Gairola, Sunil; Jadhav, Suresh; Patwardhan, Bhushan

    2014-03-01

    Many botanical immunomodulators are used as adjuvants along with cancer chemotherapy. However, information on the impact of concurrent administration of such botanicals on pharmacokinetics of chemotherapy agents is inadequate. This study investigates inhibitory activities of 3 popular botanical adjuvants: ASPARAGUS RACEMOSU: (root aqueous extract; ARE), WITHANIA SOMNIFER: (root aqueous extract; WSE), and TINOSPORA CORDIFOLI: (stem aqueous extract, TCE) on human CYP3A4 isoenzyme, responsible for metabolism of several chemotherapy agents. . Testosterone 6-β hydroxylation was monitored using high-performance liquid chromatography as an indicator of CYP3A4 catalytic activities. Ketoconazole (positive control) and extracts were studied at their in vivo-relevant concentrations. TCE showed mild inhibition while no significant inhibitory activities were observed in WSE and ARE. TCE was further fractionated to obtain polar and nonpolar fractions. The nonpolar fraction showed significant CYP3A4 inhibition with IC50 13.06 ± 1.38 µg/mL. Major constituents of nonpolar fraction were identified using HPLC-DAD-MS profiling as berberine, jatrorrhizine, and palmatine, which showed IC50 values as 6.25 ± 0.30, 15.18 ± 1.59, and 15.53 ± 1.89 µg/mL, respectively. Our findings suggest that constituents of TCE extract especially protoberberine alkaloids have the potential to interact with cancer chemotherapy agents that are metabolized by CYP3A4 in vivo.

  12. Overexpression of Human-Derived DNMT3A Induced Intergenerational Inheritance of Active DNA Methylation Changes in Rat Sperm

    Directory of Open Access Journals (Sweden)

    Xiaoguo Zheng

    2017-12-01

    Full Text Available DNA methylation is the major focus of studies on paternal epigenetic inheritance in mammals, but most previous studies about inheritable DNA methylation changes are passively induced by environmental factors. However, it is unclear whether the active changes mediated by variations in DNA methyltransferase activity are heritable. Here, we established human-derived DNMT3A (hDNMT3A transgenic rats to study the effect of hDNMT3A overexpression on the DNA methylation pattern of rat sperm and to investigate whether this actively altered DNA methylation status is inheritable. Our results revealed that hDNMT3A was overexpressed in the testis of transgenic rats and induced genome-wide alterations in the DNA methylation pattern of rat sperm. Among 5438 reliable loci identified with 64 primer-pair combinations using a methylation-sensitive amplification polymorphism method, 28.01% showed altered amplified band types. Among these amplicons altered loci, 68.42% showed an altered DNA methylation status in the offspring of transgenic rats compared with wild-type rats. Further analysis based on loci which had identical DNA methylation status in all three biological replicates revealed that overexpression of hDNMT3A in paternal testis induced hypermethylation in sperm of both genotype-negative and genotype-positive offspring. Among the differentially methylated loci, 34.26% occurred in both positive and negative offspring of transgenic rats, indicating intergenerational inheritance of active DNA methylation changes in the absence of hDNM3A transmission. Furthermore, 75.07% of the inheritable loci were hyper-methylated while the remaining were hypomethylated. Distribution analysis revealed that the DNA methylation variations mainly occurred in introns and intergenic regions. Functional analysis revealed that genes related to differentially methylated loci were involved in a wide range of functions. Finally, this study demonstrated that active DNA methylation

  13. APOBEC3A is an oral cancer prognostic biomarker in Taiwanese carriers of an APOBEC deletion polymorphism.

    Science.gov (United States)

    Chen, Ting-Wen; Lee, Chi-Ching; Liu, Hsuan; Wu, Chi-Sheng; Pickering, Curtis R; Huang, Po-Jung; Wang, Jing; Chang, Ian Yi-Feng; Yeh, Yuan-Ming; Chen, Chih-De; Li, Hsin-Pai; Luo, Ji-Dung; Tan, Bertrand Chin-Ming; Chan, Timothy En Haw; Hsueh, Chuen; Chu, Lichieh Julie; Chen, Yi-Ting; Zhang, Bing; Yang, Chia-Yu; Wu, Chih-Ching; Hsu, Chia-Wei; See, Lai-Chu; Tang, Petrus; Yu, Jau-Song; Liao, Wei-Chao; Chiang, Wei-Fan; Rodriguez, Henry; Myers, Jeffrey N; Chang, Kai-Ping; Chang, Yu-Sun

    2017-09-06

    Oral squamous cell carcinoma is a prominent cancer worldwide, particularly in Taiwan. By integrating omics analyses in 50 matched samples, we uncover in Taiwanese patients a predominant mutation signature associated with cytidine deaminase APOBEC, which correlates with the upregulation of APOBEC3A expression in the APOBEC3 gene cluster at 22q13. APOBEC3A expression is significantly higher in tumors carrying APOBEC3B-deletion allele(s). High-level APOBEC3A expression is associated with better overall survival, especially among patients carrying APOBEC3B-deletion alleles, as examined in a second cohort (n = 188; p = 0.004). The frequency of APOBEC3B-deletion alleles is ~50% in 143 genotyped oral squamous cell carcinoma -Taiwan samples (27A3B -/- :89A3B +/- :27A3B +/+ ), compared to the 5.8% found in 314 OSCC-TCGA samples. We thus report a frequent APOBEC mutational profile, which relates to a APOBEC3B-deletion germline polymorphism in Taiwanese oral squamous cell carcinoma that impacts expression of APOBEC3A, and is shown to be of clinical prognostic relevance. Our finding might be recapitulated by genomic studies in other cancer types.Oral squamous cell carcinoma is a prevalent malignancy in Taiwan. Here, the authors show that OSCC in Taiwanese show a frequent deletion polymorphism in the cytidine deaminases gene cluster APOBEC3 resulting in increased expression of A3A, which is shown to be of clinical prognostic relevance.

  14. Influence of the 5-HT3A Receptor Gene Polymorphism and Childhood Sexual Trauma on Central Serotonin Activity.

    Directory of Open Access Journals (Sweden)

    Kuk-In Jang

    Full Text Available Gene-environment interactions are important for understanding alterations in human brain function. The loudness dependence of auditory evoked potential (LDAEP is known to reflect central serotonergic activity. Single nucleotide polymorphisms (SNPs in the 5-HT3A serotonin receptor gene are associated with psychiatric disorders. This study aimed to investigate the effect between 5-HT3A receptor gene polymorphisms and childhood sexual trauma on the LDAEP as an electrophysiological marker in healthy subjects.A total of 206 healthy subjects were recruited and evaluated using the childhood trauma questionnaire (CTQ and hospital anxiety and depression scale (HADS. Peak-to-peak N1/P2 was measured at five stimulus intensities, and the LDAEP was calculated as the linear-regression slope. In addition, the rs1062613 SNPs of 5-HT3A (CC, CT, and TT were analyzed in healthy subjects.There was a significant interaction between scores on the CTQ-sexual abuse subscale and 5-HT3A genotype on the LDAEP. Subjects with the CC polymorphism had a significantly higher LDEAP than T carriers in the sexually abused group. In addition, CC genotype subjects in the sexually abused group showed a significantly higher LDAEP compared with CC genotype subjects in the non-sexually abused group.Our findings suggest that people with the CC polymorphism of the 5-HT3A gene have a greater risk of developing mental health problems if they have experienced childhood sexual abuse, possibly due to low central serotonin activity. Conversely, the T polymorphism may be protective against any central serotonergic changes following childhood sexual trauma.

  15. Identification of Noncanonical Wnt Receptors Required for Wnt-3a-Induced Early Differentiation of Human Neural Stem Cells.

    Science.gov (United States)

    Bengoa-Vergniory, Nora; Gorroño-Etxebarria, Irantzu; López-Sánchez, Inmaculada; Marra, Michele; Di Chiaro, Pierluigi; Kypta, Robert

    2017-10-01

    Wnt proteins preferentially activate either β-catenin-dependent or β-catenin-independent signals, but the activity of a particular Wnt also depends on cellular context and receptor availability. We previously reported that Wnt-3a induces neural differentiation of human embryonic stem cell-derived neural stem cells (NSCs) in a β-catenin-independent manner by activating a signal involving JNK and the AP-1 family member ATF-2. Here, we report the results of a gene silencing approach to identify the Wnt receptors that mediate this response to Wnt-3a. Silencing of ROR2 increased neuronal differentiation, as measured by expression of the genes DCX, NEUROD1, and NGN1, suggesting ROR2 signals normally prevent differentiation. Silencing of the other Wnt receptors singly did not affect Wnt-3a-induced neuronal differentiation. However, pairwise silencing of ROR1 and FZD4 or FZD5 and of LRP6 and FZD4 or FZD5 inhibited neuronal differentiation, as detected by reductions in the expression of neuronal genes and immunocytochemical detection of DCX, NEUROD1 and DCX. Ectopic expression of these receptors in HEK 293 cells increased ATF2-dependent transcription. In addition, ROR1 coimmunoprecipitated with FZD4 and LRP6 in transfected HEK 293 cells and colocalized with FZD4 and with LRP6 at the cell surface of transfected L cells. Wnt-3a did not appear to affect these interactions but did alter the interactions between LRP6 and FZD4/5. Together, these observations highlight roles for ROR1, LRP6, FZD4, and FZD5 in neural stem cell differentiation and provide support for a model in which dynamic interactions among these receptors mediate Wnt-3a activation of ATF2 signaling.

  16. Differential effects of the enantiomers of tamsulosin and tolterodine on P-glycoprotein and cytochrome P450 3A4.

    Science.gov (United States)

    Doricakova, Aneta; Theile, Dirk; Weiss, Johanna; Vrzal, Radim

    2017-01-01

    The pregnane X receptor (PXR) is a transcription factor regulating P-glycoprotein (P-gp; ABCB1)-mediated transport and cytochrome P450 3A4 (CYP3A4)-mediated metabolism of xenobiotics thereby affecting the pharmacokinetics of many drugs and potentially modulating clinical efficacy. Thus, pharmacokinetic drug-drug interactions can arise from PXR activation. Here, we examined whether the selective α1-adrenoreceptor blocker tamsulosin or the antagonist of muscarinic receptors tolterodine affect PXR-mediated regulation of CYP3A4 and of P-gp at the messenger RNA (mRNA) and protein level in an enantiomer-specific way. In addition, the effect of tamsulosin and tolterodine on P-gp activity was evaluated. We used quantitative real-time PCR, gene reporter assay, western blotting, rhodamine efflux assay, and calcein assay for determination of expression, activity, and inhibition of P-glycoprotein. The studied compounds significantly and concentration-dependently increased PXR activity in the ABCB1-driven luciferase-based reporter gene assay. We observed much stronger induction of ABCB1 mRNA by S-tamsulosin as compared to the R or racemic form. R or racemic form of tolterodine and R-tamsulosin concentration-dependently increased P-gp protein expression; the latter also enhanced P-gp efflux function in a rhodamine-based efflux assay. R-tamsulosin and all forms of tolderodine slightly inhibited P-gp. The effect on CYP3A4 expression followed the same pattern but was much weaker. Taken together, tamsulosin and tolterodine are demonstrated to interfere with P-gp and CYP3A4 regulation in an enantiomer-specific way.

  17. Indirect effects of Wnt3a/β-catenin signalling support mouse spermatogonial stem cells in vitro.

    Directory of Open Access Journals (Sweden)

    Jonathan R Yeh

    Full Text Available Proper regulation of spermatogonial stem cells (SSCs is crucial for sustaining steady-state spermatogenesis. Previous work has identified several paracrine factors involved in this regulation, in particular, glial cell line-derived neurotrophic factor and fibroblast growth factor 2, which promote long-term SSC self-renewal. Using a SSC culture system, we have recently reported that Wnt5a promotes SSC self-renewal through a β-catenin-independent Wnt mechanism whereas the β-catenin-dependent Wnt pathway is not active in SSCs. In contrast, another study has reported that Wnt3a promotes SSC self-renewal through the β-catenin-dependent pathway, as it can stimulate the proliferation of a spermatogonia cell line. To reconcile these two contradictory reports, we assessed Wnt3a effects on SSCs and progenitor cells, rather than a cell line, in vitro. We observed that Wnt3a induced β-catenin-dependent signalling in a large subset of germ cells and increased SSC numbers. However, further investigation revealed that cell populations with greater β-catenin-signalling activity contained fewer SSCs. The increased maintenance of SSCs by Wnt3a coincided with more active cell cycling and the formation of germ cell aggregates, or communities, under feeder-free conditions. Therefore, the results of this study suggest that Wnt3a selectively stimulates proliferation of progenitors that are committed to differentiation or are in the process of exiting the SSC state, leading to enhanced formation of germ cell communities, which indirectly support SSCs and act as an in vitro niche.

  18. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients.

    Science.gov (United States)

    Thervet, Eric; Anglicheau, Dany; King, Barry; Schlageter, Marie-Hélène; Cassinat, Bruno; Beaune, Philippe; Legendre, Christophe; Daly, Ann K

    2003-10-27

    Tacrolimus pharmacokinetic characteristics vary greatly among individuals. Tacrolimus is a substrate of cytochrome p450 (CYP), of subfamily CYP3A. CYP3A activity is the sum of the activities of the family of CYP3A genes, including CYP3A5. Subjects with the CYP3A5*1/*1 genotype express large amounts of CYP3A5. Heterozygotes (genotype CYP3A5*1/*3) also express the enzyme. We postulated that CYP3A5 polymorphism is associated with tacrolimus pharmacokinetic variations. CYP3A5 genotype was evaluated in 80 renal transplant recipients and correlated with the daily tacrolimus dose and concentration-to-dose ratio. The frequency of the homozygous CYP3A5*1 genotype (CYP3A5*1/*1) was 5%, and 11% of subjects were heterozygous (CYP3A5*1/*3). The mean doses required to obtain the targeted concentration-to-dose ratio were significantly lower in patients with the CYP3A5*1/*1 genotype. Determination of CYP3A5 genotype is predictive of the dose of tacrolimus in renal transplant recipients and may help to determine the initial daily dose needed by individual patients for adequate immunosuppression without excess nephrotoxicity.

  19. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor

    International Nuclear Information System (INIS)

    Casabar, Richard C.T.; Das, Parikshit C.; DeKrey, Gregory K.; Gardiner, Catherine S.; Cao Yan; Rose, Randy L.; Wallace, Andrew D.

    2010-01-01

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 μM. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 μM. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 μM, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 μM and 10 μM, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5 mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates.

  20. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor.

    Science.gov (United States)

    Casabar, Richard C T; Das, Parikshit C; Dekrey, Gregory K; Gardiner, Catherine S; Cao, Yan; Rose, Randy L; Wallace, Andrew D

    2010-06-15

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused sign