WorldWideScience

Sample records for self-consistent-field wave functions

  1. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.

    Science.gov (United States)

    Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura

    2016-07-12

    A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.

  2. Self-consistent adjoint analysis for topology optimization of electromagnetic waves

    Science.gov (United States)

    Deng, Yongbo; Korvink, Jan G.

    2018-05-01

    In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.

  3. Alfven-wave particle interaction in finite-dimensional self-consistent field model

    International Nuclear Information System (INIS)

    Padhye, N.; Horton, W.

    1998-01-01

    A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth's geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons

  4. The numerical multiconfiguration self-consistent field approach for atoms; Der numerische Multiconfiguration Self-Consistent Field-Ansatz fuer Atome

    Energy Technology Data Exchange (ETDEWEB)

    Stiehler, Johannes

    1995-12-15

    The dissertation uses the Multiconfiguration Self-Consistent Field Approach to specify the electronic wave function of N electron atoms in a static electrical field. It presents numerical approaches to describe the wave functions and introduces new methods to compute the numerical Fock equations. Based on results computed with an implemented computer program the universal application, flexibility and high numerical precision of the presented approach is shown. RHF results and for the first time MCSCF results for polarizabilities and hyperpolarizabilities of various states of the atoms He to Kr are discussed. In addition, an application to interpret a plasma spectrum of gallium is presented. (orig.)

  5. Multiconfigurational self-consistent reaction field theory for nonequilibrium solvation

    DEFF Research Database (Denmark)

    Mikkelsen, Kurt V.; Cesar, Amary; Ågren, Hans

    1995-01-01

    electronic structure whereas the inertial polarization vector is not necessarily in equilibrium with the actual electronic structure. The electronic structure of the compound is described by a correlated electronic wave function - a multiconfigurational self-consistent field (MCSCF) wave function. This wave......, open-shell, excited, and transition states. We demonstrate the theory by computing solvatochromatic shifts in optical/UV spectra of some small molecules and electron ionization and electron detachment energies of the benzene molecule. It is shown that the dependency of the solvent induced affinity...

  6. 1ST-ORDER NONADIABATIC COUPLING MATRIX-ELEMENTS FROM MULTICONFIGURATIONAL SELF-CONSISTENT-FIELD RESPONSE THEORY

    DEFF Research Database (Denmark)

    Bak, Keld L.; Jørgensen, Poul; Jensen, H.J.A.

    1992-01-01

    A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response of a ref......A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response...... to the full configuration interaction limit. Comparisons are made with state-averaged MCSCF results for MgH2 and finite-difference configuration interaction by perturbation with multiconfigurational zeroth-order wave function reflected by interactive process (CIPSI) results for BH....

  7. The numerical multiconfiguration self-consistent field approach for atoms

    International Nuclear Information System (INIS)

    Stiehler, Johannes

    1995-12-01

    The dissertation uses the Multiconfiguration Self-Consistent Field Approach to specify the electronic wave function of N electron atoms in a static electrical field. It presents numerical approaches to describe the wave functions and introduces new methods to compute the numerical Fock equations. Based on results computed with an implemented computer program the universal application, flexibility and high numerical precision of the presented approach is shown. RHF results and for the first time MCSCF results for polarizabilities and hyperpolarizabilities of various states of the atoms He to Kr are discussed. In addition, an application to interpret a plasma spectrum of gallium is presented. (orig.)

  8. Self-Consistent Model of Magnetospheric Electric Field, Ring Current, Plasmasphere, and Electromagnetic Ion Cyclotron Waves: Initial Results

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.

    2009-01-01

    Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.

  9. MCSCF wave functions for excited states of polar molecules - Application to BeO. [Multi-Configuration Self-Consistent Field

    Science.gov (United States)

    Bauschlicher, C. W., Jr.; Yarkony, D. R.

    1980-01-01

    A previously reported multi-configuration self-consistent field (MCSCF) algorithm based on the generalized Brillouin theorem is extended in order to treat the excited states of polar molecules. In particular, the algorithm takes into account the proper treatment of nonorthogonality in the space of single excitations and invokes, when necessary, a constrained optimization procedure to prevent the variational collapse of excited states. In addition, a configuration selection scheme (suitable for use in conjunction with extended configuration interaction methods) is proposed for the MCSCF procedure. The algorithm is used to study the low-lying singlet states of BeO, a system which has not previously been studied using an MCSCF procedure. MCSCF wave functions are obtained for three 1 Sigma + and two 1 Pi states. The 1 Sigma + results are juxtaposed with comparable results for MgO in order to assess the generality of the description presented here.

  10. Self-consistent Langmuir waves in resonantly driven thermal plasmas

    Science.gov (United States)

    Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.

    2007-12-01

    The longitudinal dynamics of a resonantly driven Langmuir wave are analyzed in the limit that the growth of the electrostatic wave is slow compared to the bounce frequency. Using simple physical arguments, the nonlinear distribution function is shown to be nearly invariant in the canonical particle action, provided both a spatially uniform term and higher-order spatial harmonics are included along with the fundamental in the longitudinal electric field. Requirements of self-consistency with the electrostatic potential yield the basic properties of the nonlinear distribution function, including a frequency shift that agrees closely with driven, electrostatic particle simulations over a range of temperatures. This extends earlier work on nonlinear Langmuir waves by Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] and Dewar [R. L. Dewar, Phys. Plasmas 15, 712 (1972)], and could form the basis of a reduced kinetic treatment of plasma dynamics for accelerator applications or Raman backscatter.

  11. Self-consistent Langmuir waves in resonantly driven thermal plasmas

    International Nuclear Information System (INIS)

    Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.

    2007-01-01

    The longitudinal dynamics of a resonantly driven Langmuir wave are analyzed in the limit that the growth of the electrostatic wave is slow compared to the bounce frequency. Using simple physical arguments, the nonlinear distribution function is shown to be nearly invariant in the canonical particle action, provided both a spatially uniform term and higher-order spatial harmonics are included along with the fundamental in the longitudinal electric field. Requirements of self-consistency with the electrostatic potential yield the basic properties of the nonlinear distribution function, including a frequency shift that agrees closely with driven, electrostatic particle simulations over a range of temperatures. This extends earlier work on nonlinear Langmuir waves by Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] and Dewar [R. L. Dewar, Phys. Plasmas 15, 712 (1972)], and could form the basis of a reduced kinetic treatment of plasma dynamics for accelerator applications or Raman backscatter

  12. Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations

    DEFF Research Database (Denmark)

    Norman, Patrick; Bishop, David M.; Jensen, Hans Jørgen Aa

    2001-01-01

    Computationally tractable expressions for the evaluation of the linear response function in the multiconfigurational self-consistent field approximation were derived and implemented. The finite lifetime of the electronically excited states was considered and the linear response function was shown...... to be convergent in the whole frequency region. This was achieved through the incorporation of phenomenological damping factors that lead to complex response function values....

  13. Approximate self-consistent potentials for density-functional-theory exchange-correlation functionals

    International Nuclear Information System (INIS)

    Cafiero, Mauricio; Gonzalez, Carlos

    2005-01-01

    We show that potentials for exchange-correlation functionals within the Kohn-Sham density-functional-theory framework may be written as potentials for simpler functionals multiplied by a factor close to unity, and in a self-consistent field calculation, these effective potentials find the correct self-consistent solutions. This simple theory is demonstrated with self-consistent exchange-only calculations of the atomization energies of some small molecules using the Perdew-Kurth-Zupan-Blaha (PKZB) meta-generalized-gradient-approximation (meta-GGA) exchange functional. The atomization energies obtained with our method agree with or surpass previous meta-GGA calculations performed in a non-self-consistent manner. The results of this work suggest the utility of this simple theory to approximate exchange-correlation potentials corresponding to energy functionals too complicated to generate closed forms for their potentials. We hope that this method will encourage the development of complex functionals which have correct boundary conditions and are free of self-interaction errors without the worry that the functionals are too complex to differentiate to obtain potentials

  14. Self-consistent modelling of ICRH

    International Nuclear Information System (INIS)

    Hellsten, T.; Hedin, J.; Johnson, T.; Laxaaback, M.; Tennfors, E.

    2001-01-01

    The performance of ICRH is often sensitive to the shape of the high energy part of the distribution functions of the resonating species. This requires self-consistent calculations of the distribution functions and the wave-field. In addition to the wave-particle interactions and Coulomb collisions the effects of the finite orbit width and the RF-induced spatial transport are found to be important. The inward drift dominates in general even for a symmetric toroidal wave spectrum in the centre of the plasma. An inward drift does not necessarily produce a more peaked heating profile. On the contrary, for low concentrations of hydrogen minority in deuterium plasmas it can even give rise to broader profiles. (author)

  15. Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals

    DEFF Research Database (Denmark)

    Ruud, Kenneth; Helgaker, Trygve; Kobayashi, Rika

    1994-01-01

    to corresponding individual gauges for localized orbitals (IGLO) results. The London results show better basis set convergence than IGLO, especially for heavier atoms. It is shown that the choice of active space is crucial for determination of accurate nuclear shielding constants.......Nuclear shielding calculations are presented for multiconfigurational self-consistent field wave functions using London atomic orbitals (gauge invariant atomic orbitals). Calculations of nuclear shieldings for eight molecules (H2O, H2S, CH4, N2, CO, HF, F2, and SO2) are presented and compared...

  16. Self-consistent hybrid functionals for solids: a fully-automated implementation

    Science.gov (United States)

    Erba, A.

    2017-08-01

    A fully-automated algorithm for the determination of the system-specific optimal fraction of exact exchange in self-consistent hybrid functionals of the density-functional-theory is illustrated, as implemented into the public Crystal program. The exchange fraction of this new class of functionals is self-consistently updated proportionally to the inverse of the dielectric response of the system within an iterative procedure (Skone et al 2014 Phys. Rev. B 89, 195112). Each iteration of the present scheme, in turn, implies convergence of a self-consistent-field (SCF) and a coupled-perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) procedure. The present implementation, beside improving the user-friendliness of self-consistent hybrids, exploits the unperturbed and electric-field perturbed density matrices from previous iterations as guesses for subsequent SCF and CPHF/KS iterations, which is documented to reduce the overall computational cost of the whole process by a factor of 2.

  17. Translationally invariant self-consistent field theories

    International Nuclear Information System (INIS)

    Shakin, C.M.; Weiss, M.S.

    1977-01-01

    We present a self-consistent field theory which is translationally invariant. The equations obtained go over to the usual Hartree-Fock equations in the limit of large particle number. In addition to deriving the dynamic equations for the self-consistent amplitudes we discuss the calculation of form factors and various other observables

  18. Self-consistent normal ordering of gauge field theories

    International Nuclear Information System (INIS)

    Ruehl, W.

    1987-01-01

    Mean-field theories with a real action of unconstrained fields can be self-consistently normal ordered. This leads to a considerable improvement over standard mean-field theory. This concept is applied to lattice gauge theories. First an appropriate real action mean-field theory is constructed. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean-field theory are derived. (author). 4 refs

  19. Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics

    DEFF Research Database (Denmark)

    Miyagi, Haruhide; Madsen, Lars Bojer

    2013-01-01

    We present the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory as a framework for the time-dependent many-electron problem. The theory generalizes the multiconfigurational time-dependent Hartree-Fock (MCTDHF) theory by incorporating the restricted-active-space scheme...... well known in time-independent quantum chemistry. Optimization of the orbitals as well as the expansion coefficients at each time step makes it possible to construct the wave function accurately while using only a relatively small number of electronic configurations. In numerical calculations of high...

  20. Linear augmented plane wave method for self-consistent calculations

    International Nuclear Information System (INIS)

    Takeda, T.; Kuebler, J.

    1979-01-01

    O.K. Andersen has recently introduced a linear augmented plane wave method (LAPW) for the calculation of electronic structure that was shown to be computationally fast. A more general formulation of an LAPW method is presented here. It makes use of a freely disposable number of eigenfunctions of the radial Schroedinger equation. These eigenfunctions can be selected in a self-consistent way. The present formulation also results in a computationally fast method. It is shown that Andersen's LAPW is obtained in a special limit from the present formulation. Self-consistent test calculations for copper show the present method to be remarkably accurate. As an application, scalar-relativistic self-consistent calculations are presented for the band structure of FCC lanthanum. (author)

  1. Analysis of self-consistency effects in range-separated density-functional theory with Møller-Plesset perturbation theory

    DEFF Research Database (Denmark)

    Fromager, Emmanuel; Jensen, Hans Jørgen Aagaard

    2011-01-01

    Range-separated density-functional theory combines wave function theory for the long-range part of the two-electron interaction with density-functional theory for the short-range part. When describing the long-range interaction with non-variational methods, such as perturbation or coupled......-cluster theories, self-consistency effects are introduced in the density functional part, which for an exact solution requires iterations. They are generally assumed to be small but no detailed study has been performed so far. Here, the authors analyze self-consistency when using Møller-Plesset-type (MP......) perturbation theory for the long range interaction. The lowest-order self-consistency corrections to the wave function and the energy, that enter the perturbation expansions at the second and fourth order, respectively, are both expressed in terms of the one-electron reduced density matrix. The computational...

  2. Self-consistent mean-field models for nuclear structure

    International Nuclear Information System (INIS)

    Bender, Michael; Heenen, Paul-Henri; Reinhard, Paul-Gerhard

    2003-01-01

    The authors review the present status of self-consistent mean-field (SCMF) models for describing nuclear structure and low-energy dynamics. These models are presented as effective energy-density functionals. The three most widely used variants of SCMF's based on a Skyrme energy functional, a Gogny force, and a relativistic mean-field Lagrangian are considered side by side. The crucial role of the treatment of pairing correlations is pointed out in each case. The authors discuss other related nuclear structure models and present several extensions beyond the mean-field model which are currently used. Phenomenological adjustment of the model parameters is discussed in detail. The performance quality of the SCMF model is demonstrated for a broad range of typical applications

  3. Nonlinear and self-consistent treatment of ECRH

    Energy Technology Data Exchange (ETDEWEB)

    Tsironis, C.; Vlahos, L.

    2005-07-01

    A self-consistent formulation for the nonlinear interaction of electromagnetic waves with relativistic magnetized electrons is applied for the description of the ECRH. In general, electron-cyclotron absorption is the result of resonances between the cyclotron harmonics and the Doppler-shifted waver frequency. The resonant interaction results to an intense wave-particle energy exchange and an electron acceleration, and for that reason it is widely applied in fusion experiments for plasma heating and current drive. The linear theory, for the wave absorption, as well as the quasilinear theory for the electron distribution function, are the most frequently-used tools for the study of wave-particle interactions. However, in many cases the validity of these theories is violated, namely cases where nonlinear effects, like, e. g. particle trapping in the wave field, are dominant in the particle phase-space. Our model consists of electrons streaming and gyrating in a tokamak plasma slab, which is finite in the directions perpendicular to the main magnetic field. The particles interact with an electromagnetic electron-cyclotron wave of the ordinary (O-) or the extraordinary (X-) mode. A set of nonlinear and relativistic equations is derived, which take into account the effects of the charged particle motions on the wave. These consist of the equations of motion for the plasma electrons in the slab, as well as the wave equation in terms of the vector potential. The effect of the electron motions on the temporal evolution of the wave is reflected in the current density source term. (Author)

  4. Nonlinear and self-consistent treatment of ECRH

    International Nuclear Information System (INIS)

    Tsironis, C.; Vlahos, L.

    2005-01-01

    A self-consistent formulation for the nonlinear interaction of electromagnetic waves with relativistic magnetized electrons is applied for the description of the ECRH. In general, electron-cyclotron absorption is the result of resonances between the cyclotron harmonics and the Doppler-shifted waver frequency. The resonant interaction results to an intense wave-particle energy exchange and an electron acceleration, and for that reason it is widely applied in fusion experiments for plasma heating and current drive. The linear theory, for the wave absorption, as well as the quasilinear theory for the electron distribution function, are the most frequently-used tools for the study of wave-particle interactions. However, in many cases the validity of these theories is violated, namely cases where nonlinear effects, like, e. g. particle trapping in the wave field, are dominant in the particle phase-space. Our model consists of electrons streaming and gyrating in a tokamak plasma slab, which is finite in the directions perpendicular to the main magnetic field. The particles interact with an electromagnetic electron-cyclotron wave of the ordinary (O-) or the extraordinary (X-) mode. A set of nonlinear and relativistic equations is derived, which take into account the effects of the charged particle motions on the wave. These consist of the equations of motion for the plasma electrons in the slab, as well as the wave equation in terms of the vector potential. The effect of the electron motions on the temporal evolution of the wave is reflected in the current density source term. (Author)

  5. Parquet equations for numerical self-consistent-field theory

    International Nuclear Information System (INIS)

    Bickers, N.E.

    1991-01-01

    In recent years increases in computational power have provided new motivation for the study of self-consistent-field theories for interacting electrons. In this set of notes, the so-called parquet equations for electron systems are derived pedagogically. The principal advantages of the parquet approach are outlined, and its relationship to simpler self-consistent-field methods, including the Baym-Kadanoff technique, is discussed in detail. (author). 14 refs, 9 figs

  6. Self-consistent particle distribution of a bunched beam in RF field

    CERN Document Server

    Batygin, Y K

    2002-01-01

    An analytical solution for the self-consistent particle equilibrium distribution in an RF field with transverse focusing is found. The solution is attained in the approximation of a high brightness beam. The distribution function in phase space is determined as a stationary function of the energy integral. Equipartitioning of the beam distribution between degrees of freedom follows directly from the choice of the stationary distribution function. Analytical expressions for r-z equilibrium beam profile and maximum beam current in RF field are obtained.

  7. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media.

    Science.gov (United States)

    Ma, Manman; Xu, Zhenli

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  8. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Manman, E-mail: mmm@sjtu.edu.cn; Xu, Zhenli, E-mail: xuzl@sjtu.edu.cn [Department of Mathematics, Institute of Natural Sciences, and MoE Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  9. Bosons system with finite repulsive interaction: self-consistent field method

    International Nuclear Information System (INIS)

    Renatino, M.M.B.

    1983-01-01

    Some static properties of a boson system (T = zero degree Kelvin), under the action of a repulsive potential are studied. For the repulsive potential, a model was adopted consisting of a region where it is constant (r c ), and a decay as 1/r (r > r c ). The self-consistent field approximation used takes into account short range correlations through a local field corrections, which leads to an effective field. The static structure factor S(q-vector) and the effective potential ψ(q-vector) are obtained through a self-consistent calculation. The pair-correlation function g(r-vector) and the energy of the collective excitations E(q-vector) are also obtained, from the structure factor. The density of the system and the parameters of the repulsive potential, that is, its height and the size of the constant region were used as variables for the problem. The results obtained for S(q-vector), g(r-vector) and E(q-vector) for a fixed ratio r o /r c and a variable λ, indicates the raising of a system structure, which is more noticeable when the potential became more repulsive. (author)

  10. The Wave Function and Quantum Reality

    International Nuclear Information System (INIS)

    Gao Shan

    2011-01-01

    We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion of a particle. The essential difference between a field and the ergodic motion of a particle lies in the property of simultaneity; a field exists throughout space simultaneously, whereas the ergodic motion of a particle exists throughout space in a time-divided way. If the wave function is a physical field, then the mass and charge density will be distributed in space simultaneously for a charged quantum system, and thus there will exist gravitational and electrostatic self-interactions of its wave function. This not only violates the superposition principle of quantum mechanics but also contradicts experimental observations. Thus the wave function cannot be a description of a physical field but be a description of the ergodic motion of a particle. For the later there is only a localized particle with mass and charge at every instant, and thus there will not exist any self-interaction for the wave function. It is further argued that the classical ergodic models, which assume continuous motion of particles, cannot be consistent with quantum mechanics. Based on the negative result, we suggest that the wave function is a description of the quantum motion of particles, which is random and discontinuous in nature. On this interpretation, the square of the absolute value of the wave function not only gives the probability of the particle being found in certain locations, but also gives the probability of the particle being there. The suggested new interpretation of the wave function provides a natural realistic

  11. A new mixed self-consistent field procedure

    Science.gov (United States)

    Alvarez-Ibarra, A.; Köster, A. M.

    2015-10-01

    A new approach for the calculation of three-centre electronic repulsion integrals (ERIs) is developed, implemented and benchmarked in the framework of auxiliary density functional theory (ADFT). The so-called mixed self-consistent field (mixed SCF) divides the computationally costly ERIs in two sets: far-field and near-field. Far-field ERIs are calculated using the newly developed double asymptotic expansion as in the direct SCF scheme. Near-field ERIs are calculated only once prior to the SCF procedure and stored in memory, as in the conventional SCF scheme. Hence the name, mixed SCF. The implementation is particularly powerful when used in parallel architectures, since all RAM available are used for near-field ERI storage. In addition, the efficient distribution algorithm performs minimal intercommunication operations between processors, avoiding a potential bottleneck. One-, two- and three-dimensional systems are used for benchmarking, showing substantial time reduction in the ERI calculation for all of them. A Born-Oppenheimer molecular dynamics calculation for the Na+55 cluster is also shown in order to demonstrate the speed-up for small systems achievable with the mixed SCF. Dedicated to Sourav Pal on the occasion of his 60th birthday.

  12. Covariant density functional theory for decay of deformed proton emitters: A self-consistent approach

    Directory of Open Access Journals (Sweden)

    L.S. Ferreira

    2016-02-01

    Full Text Available Proton radioactivity from deformed nuclei is described for the first time by a self-consistent calculation based on covariant relativistic density functionals derived from meson exchange and point coupling models. The calculation provides an important new test to these interactions at the limits of stability, since the mixing of different angular momenta in the single particle wave functions is probed.

  13. Mean fields and self consistent normal ordering of lattice spin and gauge field theories

    International Nuclear Information System (INIS)

    Ruehl, W.

    1986-01-01

    Classical Heisenberg spin models on lattices possess mean field theories that are well defined real field theories on finite lattices. These mean field theories can be self consistently normal ordered. This leads to a considerable improvement over standard mean field theory. This concept is carried over to lattice gauge theories. We construct first an appropriate real mean field theory. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean field theory are derived. (orig.)

  14. Electronic symmetry breaking in polyatomic molecules. Multiconfiguration self-consistent field study of the cyclopropenyl radical C3H3

    International Nuclear Information System (INIS)

    Hoffmann, M.R.; Laidig, W.D.; Kim, K.S.; Fox, D.J.; Schaefer, H.F. III

    1984-01-01

    For equilateral triangle geometries (point group D/sub 3h/), the C 3 H 3 radical has a degenerate 2 E'' electronic ground state. Although the 2 A 2 and 2 B 1 components separate in energy for C/sub 2v/ geometries, these two components should have identical energies for equilateral triangle structures. In fact, when approximate wave functions are used and the orbitals not required to transform according to the D/sub 3h/ irreducible representations, an energy separation between the 2 A 2 and 2 B 1 components is observed. At the single configuration self-consistent field (SCF) level of theory this separation is 2.8 kcal with a double-zeta basis set and 2.4 kcal with double-zeta plus polarization. It has been demonstrated that this spurious separation may be greatly reduced using multiconfiguration self-consistent field (up to 7474 variationally optimum configurations) and configuration interaction (up to 60 685 space and spin adapted configurations) techniques. Configurations differing by three and four electrons from the Hartree--Fock reference function are found necessary to reduce the 2 A 2 - 2 B 1 separation to below 0.5 kcal

  15. Communication: A difference density picture for the self-consistent field ansatz

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, Robert M.; Liu, Fang; Martínez, Todd J., E-mail: toddjmartinez@gmail.com [Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-04-07

    We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this “difference self-consistent field (dSCF)” picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TERACHEM SCF implementation.

  16. Communication: A difference density picture for the self-consistent field ansatz

    International Nuclear Information System (INIS)

    Parrish, Robert M.; Liu, Fang; Martínez, Todd J.

    2016-01-01

    We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this “difference self-consistent field (dSCF)” picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TERACHEM SCF implementation.

  17. Communication: A difference density picture for the self-consistent field ansatz

    Science.gov (United States)

    Parrish, Robert M.; Liu, Fang; Martínez, Todd J.

    2016-04-01

    We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this "difference self-consistent field (dSCF)" picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TeraChem SCF implementation.

  18. Systematic theoretical investigation of the zero-field splitting in Gd(III) complexes: Wave function and density functional approaches

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shehryar, E-mail: sherkhan@fysik.su.se; Odelius, Michael, E-mail: odelius@fysik.su.se [Department of Physics, Stockholm University, AlbaNova University Center, S-106 91 Stockholm (Sweden); Kubica-Misztal, Aleksandra [Institute of Physics, Jagiellonian University, ul. Reymonta 4, PL-30-059 Krakow (Poland); Kruk, Danuta [Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Sloneczna 54, Olsztyn PL-10710 (Poland); Kowalewski, Jozef [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)

    2015-01-21

    The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H{sub 2}O){sup −}, Gd(III)DTPA(H{sub 2}O){sup 2−}, and Gd(III)(H{sub 2}O){sub 8}{sup 3+} in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.

  19. Beyond the relativistic mean-field approximation. II. Configuration mixing of mean-field wave functions projected on angular momentum and particle number

    International Nuclear Information System (INIS)

    Niksic, T.; Vretenar, D.; Ring, P.

    2006-01-01

    The framework of relativistic self-consistent mean-field models is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum and particle-number projected relativistic wave functions. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the relativistic mean-field+Lipkin-Nogami BCS equations, with a constraint on the mass quadrupole moment. The model employs a relativistic point-coupling (contact) nucleon-nucleon effective interaction in the particle-hole channel, and a density-independent δ-interaction in the pairing channel. Illustrative calculations are performed for 24 Mg, 32 S, and 36 Ar, and compared with results obtained employing the model developed in the first part of this work, i.e., without particle-number projection, as well as with the corresponding nonrelativistic models based on Skyrme and Gogny effective interactions

  20. Vibrational multiconfiguration self-consistent field theory: implementation and test calculations.

    Science.gov (United States)

    Heislbetz, Sandra; Rauhut, Guntram

    2010-03-28

    A state-specific vibrational multiconfiguration self-consistent field (VMCSCF) approach based on a multimode expansion of the potential energy surface is presented for the accurate calculation of anharmonic vibrational spectra. As a special case of this general approach vibrational complete active space self-consistent field calculations will be discussed. The latter method shows better convergence than the general VMCSCF approach and must be considered the preferred choice within the multiconfigurational framework. Benchmark calculations are provided for a small set of test molecules.

  1. Mean-field theory and self-consistent dynamo modeling

    International Nuclear Information System (INIS)

    Yoshizawa, Akira; Yokoi, Nobumitsu

    2001-12-01

    Mean-field theory of dynamo is discussed with emphasis on the statistical formulation of turbulence effects on the magnetohydrodynamic equations and the construction of a self-consistent dynamo model. The dynamo mechanism is sought in the combination of the turbulent residual-helicity and cross-helicity effects. On the basis of this mechanism, discussions are made on the generation of planetary magnetic fields such as geomagnetic field and sunspots and on the occurrence of flow by magnetic fields in planetary and fusion phenomena. (author)

  2. A self-consistent mean field theory for diffusion in alloys

    International Nuclear Information System (INIS)

    Nastar, M.; Barbe, V.

    2007-01-01

    Starting from a microscopic model of the atomic transport via vacancies and interstitials in alloys, a self-consistent mean field (SCMF) kinetic theory yields the phenomenological coefficients L ij . In this theory, kinetic correlations are accounted for through a set of effective interactions within a non-equilibrium distribution function of the system. The introduction of a master equation describing the evolution with time of the distribution function and its moments leads to general self-consistent kinetic equations. The L ij of a face centered cubic alloy are calculated using the kinetic equations of Nastar (M. Nastar, Philos. Mag., 2005, 85, 3767, ref. 1) derived from a microscopic broken bond model of the vacancy jump frequency. A first approximation leads to an analytical expression of the L ij and a second approximation to a better agreement with the Monte Carlo simulations. A change of sign of the L ij is studied as a function of the microscopic parameters of the jump frequency. The L ij of a cubic centered alloy obtained for the complex diffusion mechanism of the dumbbell configuration of the interstitial are used to study the effect of an on-site rotation of the dumbbell on the transport. (authors)

  3. Functional visual fields: relationship of visual field areas to self-reported function.

    Science.gov (United States)

    Subhi, Hikmat; Latham, Keziah; Myint, Joy; Crossland, Michael D

    2017-07-01

    The aim of this study is to relate areas of the visual field to functional difficulties to inform the development of a binocular visual field assessment that can reflect the functional consequences of visual field loss. Fifty-two participants with peripheral visual field loss undertook binocular assessment of visual fields using the 30-2 and 60-4 SITA Fast programs on the Humphrey Field Analyser, and mean thresholds were derived. Binocular visual acuity, contrast sensitivity and near reading performance were also determined. Self-reported overall and mobility function were assessed using the Dutch ICF Activity Inventory. Greater visual field loss (0-60°) was associated with worse self-reported function both overall (R 2 = 0.50; p function (R 2 = 0.61, p function in multiple regression analyses. Superior and inferior visual field areas related similarly to mobility function (R 2 = 0.56, p function in multiple regression analysis. Mean threshold of the binocular visual field to 60° eccentricity is a good predictor of self-reported function overall, and particularly of mobility function. Both the central (0-30°) and peripheral (30-60°) mean threshold are good predictors of self-reported function, but the peripheral (30-0°) field is a slightly better predictor of mobility function, and should not be ignored when considering functional consequences of field loss. The inferior visual field is a slightly stronger predictor of perceived overall and mobility function than the superior field. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  4. Gravitational waves from self-ordering scalar fields

    CERN Document Server

    Fenu, Elisa; Durrer, Ruth; Garcia-Bellido, Juan

    2009-01-01

    Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as $\\Omega_{\\rm GW}(f) \\propto f^3$ with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer tim...

  5. Self-consistent description of the isospin mixing

    International Nuclear Information System (INIS)

    Gabrakov, S.I.; Pyatov, N.I.; Baznat, M.I.; Salamov, D.I.

    1978-03-01

    The properties of collective 0 + states built of unlike particle-hole excitations in spherical nuclei have been investigated in a self-consistent microscopic approach. These states arise when the broken isospin symmetry of the nuclear shell model Hamiltonian is restored. The numerical calculations were performed with Woods-Saxon wave functions

  6. Spectral and partial-wave decomposition of time-dependent wave functions on a grid: Photoelectron spectra of H and H2+ in electromagnetic fields

    International Nuclear Information System (INIS)

    Nikolopoulos, L. A. A.; Kjeldsen, T. K.; Madsen, L. B.

    2007-01-01

    We present a method for spectral (bound and continuum) and partial-wave analysis of a three-dimensional time-dependent wave function, defined on a grid, without projecting onto the field-free eigenstates of the system. The method consists of propagating the time-dependent Schroedinger equation to obtain its autocorrelation function C(t)= after the end of the interaction, at time T, of the system with an external time-dependent field. The Fourier spectrum of this correlation function is directly related to the expansion coefficients of the wave function on the field-free bound and continuum energy eigenstates of the system. By expanding on a spherical harmonics basis we show how to calculate the contribution of the various partial waves to the total photoelectron energy spectrum

  7. Self-consistent RPA based on a many-body vacuum

    International Nuclear Information System (INIS)

    Jemaï, M.; Schuck, P.

    2011-01-01

    Self-Consistent RPA is extended in a way so that it is compatible with a variational ansatz for the ground-state wave function as a fermionic many-body vacuum. Employing the usual equation-of-motion technique, we arrive at extended RPA equations of the Self-Consistent RPA structure. In principle the Pauli principle is, therefore, fully respected. However, the correlation functions entering the RPA matrix can only be obtained from a systematic expansion in powers of some combinations of RPA amplitudes. We demonstrate for a model case that this expansion may converge rapidly.

  8. Charge symmetry of electron wave functions in a quantized electromagnetic wave field

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, M V [AN SSSR, Moscow. Fizicheskij Inst.

    1975-01-01

    An attempt to clear up the reasons of the electron charge symmetry violation in the quantum wave field was made in this article. For this purpose the connection between the Dirac equation and the electron wave functions in the external field with the exact equation of quantum electrodynamics is established. Attention is paid to the fact that a number of equations for single-electron wave functions can be used in the framework of the same assumptions. It permits the construction of the charge-symmetric solutions in particular.

  9. Relativistic four-component multiconfigurational self-consistent-field theory for molecules

    DEFF Research Database (Denmark)

    Jensen, Hans Jørgen Aa; Dyall, Kenneth G.; Saue, Trond

    1996-01-01

    A formalism for relativistic four-component multiconfigurational self-consistent-field calculations on molecules is presented. The formalism parallels a direct second-order restricted-step algorithm developed for nonrelativistic molecular calculations. The presentation here focuses on the differe......A formalism for relativistic four-component multiconfigurational self-consistent-field calculations on molecules is presented. The formalism parallels a direct second-order restricted-step algorithm developed for nonrelativistic molecular calculations. The presentation here focuses...... the memory used by the largest nonrelativistic calculation in the equivalent basis, due to the complex arithmetic. The feasibility of the calculations is then determined more by the disk space for storage of integrals and N-particle expansion vectors....

  10. Self-consistent quark bags

    International Nuclear Information System (INIS)

    Rafelski, J.

    1979-01-01

    After an introductory overview of the bag model the author uses the self-consistent solution of the coupled Dirac-meson fields to represent a bound state of strongly ineteracting fermions. In this framework he discusses the vivial approach to classical field equations. After a short description of the used numerical methods the properties of bound states of scalar self-consistent Fields and the solutions of a self-coupled Dirac field are considered. (HSI) [de

  11. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering Based on the Newly Developed Self-consistent RC/EMIC Waves Model by Khazanov et al. [2006

    Science.gov (United States)

    Khazanov, G. V.; Gallagher, D. L.; Gamayunov, K.

    2007-01-01

    It is well known that the effects of EMIC waves on RC ion and RB electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. Therefore, realistic characteristics of EMIC waves should be properly determined by modeling the RC-EMIC waves evolution self-consistently. Such a selfconsistent model progressively has been developing by Khaznnov et al. [2002-2006]. It solves a system of two coupled kinetic equations: one equation describes the RC ion dynamics and another equation describes the energy density evolution of EMIC waves. Using this model, we present the effectiveness of relativistic electron scattering and compare our results with previous work in this area of research.

  12. Macroscopic self-consistent model for external-reflection near-field microscopy

    International Nuclear Information System (INIS)

    Berntsen, S.; Bozhevolnaya, E.; Bozhevolnyi, S.

    1993-01-01

    The self-consistent macroscopic approach based on the Maxwell equations in two-dimensional geometry is developed to describe tip-surface interaction in external-reflection near-field microscopy. The problem is reduced to a single one-dimensional integral equation in terms of the Fourier components of the field at the plane of the sample surface. This equation is extended to take into account a pointlike scatterer placed on the sample surface. The power of light propagating toward the detector as the fiber mode is expressed by using the self-consistent field at the tip surface. Numerical results for trapezium-shaped tips are presented. The authors show that the sharper tip and the more confined fiber mode result in better resolution of the near-field microscope. Moreover, it is found that the tip-surface distance should not be too small so that better resolution is ensured. 14 refs., 10 figs

  13. Analytical relativistic self-consistent-field calculations for atoms

    International Nuclear Information System (INIS)

    Barthelat, J.C.; Pelissier, M.; Durand, P.

    1980-01-01

    A new second-order representation of the Dirac equation is presented. This representation which is exact for a hydrogen atom is applied to approximate analytical self-consistent-field calculations for atoms. Results are given for the rare-gas atoms from helium to radon and for lead. The results compare favorably with numerical Dirac-Hartree-Fock solutions

  14. Fully self-consistent GW calculations for molecules

    DEFF Research Database (Denmark)

    Rostgaard, Carsten; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2010-01-01

    We calculate single-particle excitation energies for a series of 34 molecules using fully self-consistent GW, one-shot G0W0, Hartree-Fock (HF), and hybrid density-functional theory (DFT). All calculations are performed within the projector-augmented wave method using a basis set of Wannier...... functions augmented by numerical atomic orbitals. The GW self-energy is calculated on the real frequency axis including its full frequency dependence and off-diagonal matrix elements. The mean absolute error of the ionization potential (IP) with respect to experiment is found to be 4.4, 2.6, 0.8, 0.4, and 0...

  15. Wave function for harmonically confined electrons in time-dependent electric and magnetostatic fields.

    Science.gov (United States)

    Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht

    2014-01-14

    We derive via the interaction "representation" the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field-the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement - the uniform electron gas - the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.

  16. First principles molecular dynamics without self-consistent field optimization

    International Nuclear Information System (INIS)

    Souvatzis, Petros; Niklasson, Anders M. N.

    2014-01-01

    We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations

  17. Applicability of self-consistent mean-field theory

    International Nuclear Information System (INIS)

    Guo Lu; Sakata, Fumihiko; Zhao Enguang

    2005-01-01

    Within the constrained Hartree-Fock (CHF) theory, an analytic condition is derived to estimate whether a concept of the self-consistent mean field is realized in the level repulsive region. The derived condition states that an iterative calculation of the CHF equation does not converge when the quantum fluctuations coming from two-body residual interaction and quadrupole deformation become larger than a single-particle energy difference between two avoided crossing orbits. By means of numerical calculation, it is shown that the analytic condition works well for a realistic case

  18. Self-consistent Green’s-function technique for surfaces and interfaces

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1991-01-01

    We have implemented an efficient self-consistent Green’s-function technique for calculating ground-state properties of surfaces and interfaces, based on the linear-muffin-tin-orbitals method within the tight-binding representation. In this approach the interlayer interaction is extremely short...... ranged, and only a few layers close to the interface need be treated self-consistently via a Dyson equation. For semi-infinite jellium, the technique gives work functions and surface energies that are in excellent agreement with earlier calculations. For the bcc(110) surface of the alkali metals, we find...

  19. Self-consistent equilibria in cylindrical reversed-field pinch

    International Nuclear Information System (INIS)

    Lo Surdo, C.; Paccagnella, R.; Guo, S.

    1995-03-01

    The object of this work is to study the self-consistent magnetofluidstatic equilibria of a 2-region (plasma + gas) reversed-field pinch (RFP) in cylindrical approximation (namely, with vanishing inverse aspect ratio). Differently from what happens in a tokamak, in a RFP a significant part of the plasma current is driven by a dynamo electric field (DEF), in its turn mainly due to plasma turbulence. So, it is worked out a reasonable mathematical model of the above self-consistent equilibria under the following main points it has been: a) to the lowest order, and according to a standard ansatz, the turbulent DEF say ε t , is expressed as a homogeneous transform of the magnetic field B of degree 1, ε t =(α) (B), with α≡a given 2-nd rank tensor, homogeneous of degree 0 in B and generally depending on the plasma state; b) ε t does not explicitly appear in the plasma energy balance, as it were produced by a Maxwell demon able of extract the corresponding Joule power from the plasma. In particular, it is showed that, if both α and the resistivity tensor η are isotropic and constant, the magnetic field is force-free with abnormality equal to αη 0 /η, in the limit of vanishing β; that is, the well-known J.B. Taylor'result is recovered, in this particular conditions, starting from ideas quite different from the usual ones (minimization of total magnetic energy under constrained total elicity). Finally, the general problem is solved numerically under circular (besides cylindrical) symmetry, for simplicity neglecting the existence of gas region (i.e., assuming the plasma in direct contact with the external wall)

  20. Self-consistent equilibria in the pulsar magnetosphere

    International Nuclear Information System (INIS)

    Endean, V.G.

    1976-01-01

    For a 'collisionless' pulsar magnetosphere the self-consistent equilibrium particle distribution functions are functions of the constants of the motion ony. Reasons are given for concluding that to a good approximation they will be functions of the rotating frame Hamiltonian only. This is shown to result in a rigid rotation of the plasma, which therefore becomes trapped inside the velocity of light cylinder. The self-consistent field equations are derived, and a method of solving them is illustrated. The axial component of the magnetic field decays to zero at the plasma boundary. In practice, some streaming of particles into the wind zone may occur as a second-order effect. Acceleration of such particles to very high energies is expected when they approach the velocity of light cylinder, but they cannot be accelerated to very high energies near the star. (author)

  1. Gravitational waves from self-ordering scalar fields

    International Nuclear Information System (INIS)

    Fenu, Elisa; Durrer, Ruth; Figueroa, Daniel G.; García-Bellido, Juan

    2009-01-01

    Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as Ω GW (f) ∝ f 3 with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer time, until a given mode which is initially superhorizon (kη * 1, we find that the gravitational wave energy density is frequency independent, i.e. scale invariant. Moreover, its amplitude for a GUT scale scenario turns out to be within the range and sensitivity of BBO and marginally detectable by LIGO and LISA. This new gravitational wave background can compete with the one generated during inflation, and distinguishing both may require extra information

  2. Self-consistent nonlinear transmission line model of standing wave effects in a capacitive discharge

    International Nuclear Information System (INIS)

    Chabert, P.; Raimbault, J.L.; Rax, J.M.; Lieberman, M.A.

    2004-01-01

    It has been shown previously [Lieberman et al., Plasma Sources Sci. Technol. 11, 283 (2002)], using a non-self-consistent model based on solutions of Maxwell's equations, that several electromagnetic effects may compromise capacitive discharge uniformity. Among these, the standing wave effect dominates at low and moderate electron densities when the driving frequency is significantly greater than the usual 13.56 MHz. In the present work, two different global discharge models have been coupled to a transmission line model and used to obtain the self-consistent characteristics of the standing wave effect. An analytical solution for the wavelength λ was derived for the lossless case and compared to the numerical results. For typical plasma etching conditions (pressure 10-100 mTorr), a good approximation of the wavelength is λ/λ 0 ≅40 V 0 1/10 l -1/2 f -2/5 , where λ 0 is the wavelength in vacuum, V 0 is the rf voltage magnitude in volts at the discharge center, l is the electrode spacing in meters, and f the driving frequency in hertz

  3. Screening effects in a polyelectrolyte brush: self-consistent-field theory

    NARCIS (Netherlands)

    Zhulina, E.B.; Klein Wolterink, J.; Borisov, O.V.

    2000-01-01

    We have developed an analytical self-consistent-field (SCF) theory describing conformations of weakly charged polyelectrolyte chains tethered to the solid-liquid interface and immersed in a solution of low molecular weight salt. Depending on the density of grafting of the polyelectrolytes to the

  4. Doubly self-consistent field theory of grafted polymers under simple shear in steady state

    International Nuclear Information System (INIS)

    Suo, Tongchuan; Whitmore, Mark D.

    2014-01-01

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkman equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities

  5. Effects of frequency mismatch on a self-consistent arbitrary amplitude cyclotron resonance laser accelerator

    International Nuclear Information System (INIS)

    Pakter, R.; Schneider, R.S.; Rizzato, F.B.

    1993-01-01

    The cyclotron-resonance laser accelerator (CRLA), where a coherent electromagnetic wave may transfer a large amount of energy to a beam of electrons gravitating in a guide magnetic field is studied. This large amount of transferred energy takes place due to the autoresonance mechanism where, under some ideal conditions, an initial wave-particle synchronism is self-sustained throughout the accelerating period. An improved analysis of the mentioned self-consistent wave-particle interaction, taking into account a possible frequency mismatch between wave and particles. It is also shown how the frequency mismatch can compensate the dispersion effects. (L.C.J.A.)

  6. Nonstationary self-action of electromagnetic wave beams in the beat accelerator

    International Nuclear Information System (INIS)

    Abramyan, L.A.; Litvak, A.G.; Mironov, V.A.

    1990-01-01

    The resonance excitation of a plasma wave in a modified accelerator using the beats of two electromagnetic waves permits to increase considerably the intensity of the accelerating field and, consequently, the rate of the accumulation of the energy by charged particles. The efficiency of the electromagnetic radiation conversion to the longitudinal wave is defined by nonlinear processes. The saturation of the accelerating field is considered which is due to the appearance of multiflux motion of electrons oscillating in the wave field with overturn of waves, due to the development of parametric instabilities and due to the change of natural frequency of plasma oscillations caused by the relativistic increase of electron mass. The effects of self-action which change the form of the electromagnetic radiation pulse and the wave beam structure play a significant role in the most promising laser plasma beat accelerator. We consider dynamics of space distribution of the plasma wave in a self-consistent field of the wave beam. (author) 5 refs., 2 figs

  7. Longitudinal wave function control in single quantum dots with an applied magnetic field

    Science.gov (United States)

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-01

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018

  8. Longitudinal wave function control in single quantum dots with an applied magnetic field.

    Science.gov (United States)

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-27

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.

  9. Wave function analysis of type-II self-assembled quantum dot structures using magneto-optics

    International Nuclear Information System (INIS)

    Godoy, Marcio Peron Franco de; Nakaema, Marcelo K.K.; Gomes, Paulo F.; Iikawa, Fernando; Brasil, Maria Jose S.P.; Bortoleto, Jose Roberto R.; Cotta, Monica A.; Ribeiro, Evaldo; Medeiros-Ribeiro, Gilberto; Marques, Gilmar E.; Bittencourt, A.C.R.

    2004-01-01

    Full text: Recently, self-assembled quantum dots have attracted considerable attention for their potential for device applications. Type II interface, in particular, present interesting properties due to the space separation of the carriers. One of the carriers is confined at the lower band gap layer and the other remains at the barrier layers and is only localized by the Coulomb attraction. An essential information for using type II quantum wells and quantum dots on technological applications is the localization of the carrier wave function, which is an experimentally difficult parameter to be measured. Some techniques have been proposed to map the wave functions in quantum dots such as magneto-tunneling spectroscopy and near- field scanning optical microscopy. These techniques involve however a very complex experimental apparatus and sample processing. The magneto-exciton transition can be used as an alternative tool to investigate the exciton wave function distribution, since this distribution has a strong influence on the diamagnetic shift and Zeeman splitting. In this work, we present magneto-optical studies of In P/GaAs type II self-assembled quantum dots, where the electron is strongly confined at the In P, while the hole is weakly localized at the GaAs barrier due to the Coulombic attraction from the electrons. This scenery is very distinct from type I systems. The weaker hole confinement should alter the valence band mixing resulting in a different valence band contribution on the Zeeman splitting as compared to type I systems. Based on the results of the magneto-exciton emission from the wetting layer and from the individual dots, we obtained interesting results concerning the wave function distribution in our system. We discuss the localization of the hole wave function along the growth direction based on the measured Zeeman splitting and the in-plane wave function distribution, based on the observed diamagnetic shift. A remarkable result is that the

  10. Self-consistent construction of virialized wave dark matter halos

    Science.gov (United States)

    Lin, Shan-Chang; Schive, Hsi-Yu; Wong, Shing-Kwong; Chiueh, Tzihong

    2018-05-01

    Wave dark matter (ψ DM ), which satisfies the Schrödinger-Poisson equation, has recently attracted substantial attention as a possible dark matter candidate. Numerical simulations have, in the past, provided a powerful tool to explore this new territory of possibility. Despite their successes in revealing several key features of ψ DM , further progress in simulations is limited, in that cosmological simulations so far can only address formation of halos below ˜2 ×1011 M⊙ and substantially more massive halos have become computationally very challenging to obtain. For this reason, the present work adopts a different approach in assessing massive halos by constructing wave-halo solutions directly from the wave distribution function. This approach bears certain similarities with the analytical construction of the particle-halo (cold dark matter model). Instead of many collisionless particles, one deals with one single wave that has many noninteracting eigenstates. The key ingredient in the wave-halo construction is the distribution function of the wave power, and we use several halos produced by structure formation simulations as templates to determine the wave distribution function. Among different models, we find the fermionic King model presents the best fits and we use it for our wave-halo construction. We have devised an iteration method for constructing the nonlinear halo and demonstrate its stability by three-dimensional simulations. A Milky Way-sized halo has also been constructed, and the inner halo is found to be flatter than the NFW profile. These wave-halos have small-scale interferences both in space and time producing time-dependent granules. While the spatial scale of granules varies little, the correlation time is found to increase with radius by 1 order of magnitude across the halo.

  11. Functional approach to a time-dependent self-consistent field theory

    International Nuclear Information System (INIS)

    Reinhardt, H.

    1979-01-01

    The time-dependent Hartree-Fock approximation is formulated within the path integral approach. It is shown that by a suitable choice of the collective field the classical equation of motion of the collective field coincides with the time-dependent Hartree (TDH) equation. The consideration is restricted to the TDH equation, since the exchange terms do not appear in the functional approach on the same footing as the direct terms

  12. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xufen [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, 230026 (China); Wang, Yougang [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Feix, Martin [CNRS, UMR 7095 and UPMC, Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, F-75014 Paris (France); Zhao, HongSheng, E-mail: xufenwu@ustc.edu.cn [School of Physics and Astronomy, University of St Andrews, North Haugh, Fife, KY16 9SS (United Kingdom)

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N -body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.

  13. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    Science.gov (United States)

    Wu, Xufen; Wang, Yougang; Feix, Martin; Zhao, HongSheng

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N-body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.

  14. Self-consistent-field calculations of proteinlike incorporations in polyelectrolyte complex micelles

    NARCIS (Netherlands)

    Lindhoud, S.; Cohen Stuart, M.A.; Norde, W.; Leermakers, F.A.M.

    2009-01-01

    Self-consistent field theory is applied to model the structure and stability of polyelectrolyte complex micelles with incorporated protein (molten globule) molecules in the core. The electrostatic interactions that drive the micelle formation are mimicked by nearest-neighbor interactions using

  15. Self-consistent green function calculations for isospin asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Mansour, Hesham; Gad, Khalaf; Hassaneen, Khaled S.A.

    2010-01-01

    The one-body potentials for protons and neutrons are obtained from the self-consistent Green-function calculations of asymmetric nuclear matter, in particular their dependence on the degree of proton/neutron asymmetry. Results of the binding energy per nucleon as a function of the density and asymmetry parameter are presented for the self-consistent Green function approach using the CD-Bonn potential. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The contribution of the hole-hole terms leads to a repulsive contribution to the energy per nucleon which increases with the nuclear density. The incompressibility for asymmetric nuclear matter has been also investigated in the framework of the self-consistent Green-function approach using the CD-Bonn potential. The behavior of the incompressibility is studied for different values of the nuclear density and the neutron excess parameter. The nuclear symmetry potential at fixed nuclear density is also calculated and its value decreases with increasing the nucleon energy. In particular, the nuclear symmetry potential at saturation density changes from positive to negative values at nucleon kinetic energy of about 200 MeV. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The proton/neutron effective mass splitting in neutron-rich matter has been studied. The predicted isospin splitting of the proton/neutron effective mass splitting in neutron-rich matter is such that m n * ≥ m p * . (author)

  16. Scalar fields nonminimally coupled to pp waves

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Hassaiene, Mokhtar

    2005-01-01

    Here, we report pp waves configurations of three-dimensional gravity for which a scalar field nonminimally coupled to them acts as a source. In absence of self-interaction the solutions are gravitational plane waves with a profile fixed in terms of the scalar wave. In the self-interacting case, only power-law potentials parameterized by the nonminimal coupling constant are allowed by the field equations. In contrast with the free case the self-interacting scalar field does not behave like a wave since it depends only on the wave-front coordinate. We address the same problem when gravitation is governed by topologically massive gravity and the source is a free scalar field. From the pp waves derived in this case, we obtain at the zero topological mass limit, new pp waves solutions of conformal gravity for any arbitrary value of the nonminimal coupling parameter. Finally, we extend these solutions to the self-interacting case of conformal gravity

  17. Self-consistent field theory based molecular dynamics with linear system-size scaling

    Energy Technology Data Exchange (ETDEWEB)

    Richters, Dorothee [Institute of Mathematics and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 9, D-55128 Mainz (Germany); Kühne, Thomas D., E-mail: kuehne@uni-mainz.de [Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)

    2014-04-07

    We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.

  18. Calculation of Self-consistent Radial Electric Field in Presence of Convective Electron Transport in a Stellarator

    International Nuclear Information System (INIS)

    Kernbichler, W.; Heyn, M.F.; Kasilov, S.V.

    2003-01-01

    Convective transport of supra-thermal electrons can play a significant role in the energy balance of stellarators in case of high power electron cyclotron heating. Here, together with neoclassical thermal particle fluxes also the supra-thermal electron flux should be taken into account in the flux ambipolarity condition, which defines the self-consistent radial electric field. Since neoclassical particle fluxes are non-linear functions of the radial electric field, one needs an iterative procedure to solve the ambipolarity condition, where the supra-thermal electron flux has to be calculated for each iteration. A conventional Monte-Carlo method used earlier for evaluation of supra-thermal electron fluxes is rather slow for performing the iterations in reasonable computer time. In the present report, the Stochastic Mapping Technique (SMT), which is more effective than the conventional Monte Carlo method, is used instead. Here, the problem with a local monoenergetic supra-thermal particle source is considered and the effect of supra-thermal electron fluxes on both, the self-consistent radial electric field and the formation of different roots of the ambipolarity condition are studied

  19. Semiclassical multicomponent wave function

    NARCIS (Netherlands)

    Mostovoy, M.V.

    A consistent method for obtaining the semiclassical multicomponent wave function for any value of adiabatic parameter is discussed and illustrated by examining the motion of a neutral particle in a nonuniform magnetic field. The method generalizes the Bohr-Sommerfeld quantization rule to

  20. Self-consistency and coherent effects in nonlinear resonances

    International Nuclear Information System (INIS)

    Hofmann, I.; Franchetti, G.; Qiang, J.; Ryne, R. D.

    2003-01-01

    The influence of space charge on emittance growth is studied in simulations of a coasting beam exposed to a strong octupolar perturbation in an otherwise linear lattice, and under stationary parameters. We explore the importance of self-consistency by comparing results with a non-self-consistent model, where the space charge electric field is kept 'frozen-in' to its initial values. For Gaussian distribution functions we find that the 'frozen-in' model results in a good approximation of the self-consistent model, hence coherent response is practically absent and the emittance growth is self-limiting due to space charge de-tuning. For KV or waterbag distributions, instead, strong coherent response is found, which we explain in terms of absence of Landau damping

  1. Self-consistent field theory of polymer-ionic molecule complexation

    OpenAIRE

    Nakamura, Issei; Shi, An-Chang

    2010-01-01

    A self-consistent field theory is developed for polymers that are capable of binding small ionic molecules (adsorbates). The polymer-ionic molecule association is described by Ising-like binding variables, C_(i)^(a)(kΔ)(= 0 or 1), whose average determines the number of adsorbed molecules, nBI. Polymer gelation can occur through polymer-ionic molecule complexation in our model. For polymer-polymer cross-links through the ionic molecules, three types of solutions for nBI are obtained, depending...

  2. Self-consistent field theory of collisions: Orbital equations with asymptotic sources and self-averaged potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Y.K., E-mail: ykhahn22@verizon.net

    2014-12-15

    The self-consistent field theory of collisions is formulated, incorporating the unique dynamics generated by the self-averaged potentials. The bound state Hartree–Fock approach is extended for the first time to scattering states, by properly resolving the principal difficulties of non-integrable continuum orbitals and imposing complex asymptotic conditions. The recently developed asymptotic source theory provides the natural theoretical basis, as the asymptotic conditions are completely transferred to the source terms and the new scattering function is made fullyintegrable. The scattering solutions can then be directly expressed in terms of bound state HF configurations, establishing the relationship between the bound and scattering state solutions. Alternatively, the integrable spin orbitals are generated by constructing the individual orbital equations that contain asymptotic sources and self-averaged potentials. However, the orbital energies are not determined by the equations, and a special channel energy fixing procedure is developed to secure the solutions. It is also shown that the variational construction of the orbital equations has intrinsic ambiguities that are generally associated with the self-consistent approach. On the other hand, when a small subset of open channels is included in the source term, the solutions are only partiallyintegrable, but the individual open channels can then be treated more simply by properly selecting the orbital energies. The configuration mixing and channel coupling are then necessary to complete the solution. The new theory improves the earlier continuum HF model. - Highlights: • First extension of HF to scattering states, with proper asymptotic conditions. • Orbital equations with asymptotic sources and integrable orbital solutions. • Construction of self-averaged potentials, and orbital energy fixing. • Channel coupling and configuration mixing, involving the new orbitals. • Critical evaluation of the

  3. On the hydrodynamic limit of self-consistent field equations

    International Nuclear Information System (INIS)

    Pauli, H.C.

    1980-01-01

    As an approximation to the nuclear many-body problem, the hydrodynamical limit of self-consistent field equations is worked out and applied to the treatment of vibrational and rotational motion. Its validity is coupled to the value of a smallness parameter, behaving as 20Asup(-2/3) with the number of nucleons. For finite nuclei, this number is not small enough as compared to 1, and indeed one observes a discrepancy of roughly a factor of 5 between the hydrodynamic frequencies and the relevant experimental numbers. (orig.)

  4. Irregular wave functions of a hydrogen atom in a uniform magnetic field

    Science.gov (United States)

    Wintgen, D.; Hoenig, A.

    1989-01-01

    The highly excited irregular wave functions of a hydrogen atom in a uniform magnetic field are investigated analytically, with wave function scarring by periodic orbits considered quantitatively. The results obtained confirm that the contributions of closed classical orbits to the spatial wave functions vanish in the semiclassical limit. Their disappearance, however, is slow. This discussion is illustrated by numerical examples.

  5. Time-dependent restricted-active-space self-consistent-field theory for bosonic many-body systems

    International Nuclear Information System (INIS)

    Lévêque, Camille; Madsen, Lars Bojer

    2017-01-01

    We develop an ab initio time-dependent wavefunction based theory for the description of a many-body system of cold interacting bosons. Like the multi-configurational time-dependent Hartree method for bosons (MCTDHB), the theory is based on a configurational interaction Ansatz for the many-body wavefunction with time-dependent self-consistent-field orbitals. The theory generalizes the MCTDHB method by incorporating restrictions on the active space of the orbital excitations. The restrictions are specified based on the physical situation at hand. The equations of motion of this time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory are derived. The similarity between the formal development of the theory for bosons and fermions is discussed. The restrictions on the active space allow the theory to be evaluated under conditions where other wavefunction based methods due to exponential scaling in the numerical effort cannot, and to clearly identify the excitations that are important for an accurate description, significantly beyond the mean-field approach. For ground state calculations we find it to be important to allow a few particles to have the freedom to move in many orbitals, an insight facilitated by the flexibility of the restricted-active-space Ansatz . Moreover, we find that a high accuracy can be obtained by including only even excitations in the many-body self-consistent-field wavefunction. Time-dependent simulations of harmonically trapped bosons subject to a quenching of their noncontact interaction, show failure of the mean-field Gross-Pitaevskii approach within a fraction of a harmonic oscillation period. The TD-RASSCF theory remains accurate at much reduced computational cost compared to the MCTDHB method. Exploring the effect of changes of the restricted-active-space allows us to identify that even self-consistent-field excitations are mainly responsible for the accuracy of the method. (paper)

  6. Self-consistent field variational cellular method as applied to the band structure calculation of sodium

    International Nuclear Information System (INIS)

    Lino, A.T.; Takahashi, E.K.; Leite, J.R.; Ferraz, A.C.

    1988-01-01

    The band structure of metallic sodium is calculated, using for the first time the self-consistent field variational cellular method. In order to implement the self-consistency in the variational cellular theory, the crystal electronic charge density was calculated within the muffin-tin approximation. The comparison between our results and those derived from other calculations leads to the conclusion that the proposed self-consistent version of the variational cellular method is fast and accurate. (author) [pt

  7. Current-driven instabilities of the kinetic shear Alfven wave: Application to reversed field pinches and spheromaks

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Perkins, F.W.

    1984-01-01

    The kinetic Alfven wave is studied in a cylindrical force-free plasma with self-consistent magnetic fields. This equilibrium represents a reversed field pinch or a spheromak. The stability of the wave is found to depend on the ratio of the electron drift velocity to the Alfven velocity. This ratio varies inversely with the square root of the plasma line density. The critical line density using the Spitzer--Harm electron distribution function is found for reversed field pinches with deuterium plasmas to be approximately 2 x 10 18 and is 5 x 10 17 m -1 in spheromaks with hydrogen plasmas. The critical line density is in reasonable agreement with experimental data for reversed field pinches

  8. Current driven instabilities of the kinetic shear Alfven wave: application to reversed field pinches and spheromaks

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Perkins, F.W.

    1984-04-01

    The kinetic Alfven wave is studied in a cylindrical force-free plasma with self-consistent magnetic fields. This equilibrium represents a reversed field pinch or a spheromak. The stability of the wave is found to depend on the ratio of the electron drift velocity to the Alfven velocity. This ratio varies inversely with the square root of the plasma line density. The critical line density using the Spitzer-Harm electron distribution function is found for reversed field pinches with deuterium plasmas to be approximately 2 x 10 18 m -1 and is 5 x 10 17 m -1 in spheromaks with hydrogen plasmas. The critical line density is in reasonable agreement with experimental data for reversed field pinches

  9. Reheating signature in the gravitational wave spectrum from self-ordering scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Kuroyanagi, Sachiko [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Hiramatsu, Takashi [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502 Japan (Japan); Yokoyama, Jun' ichi, E-mail: skuro@nagoya-u.jp, E-mail: hiramatz@yukawa.kyoto-u.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp [Research Center for the Early Universe (RESCEU), School of Science, The University of Tokyo, Tokyo, 113-0033 Japan (Japan)

    2016-02-01

    We investigate the imprint of reheating on the gravitational wave spectrum produced by self-ordering of multi-component scalar fields after a global phase transition. The equation of state of the Universe during reheating, which usually has different behaviour from that of a radiation-dominated Universe, affects the evolution of gravitational waves through the Hubble expansion term in the equations of motion. This gives rise to a different power-law behavior of frequency in the gravitational wave spectrum. The reheating history is therefore imprinted in the shape of the spectrum. We perform 512{sup 3} lattice simulations to investigate how the ordering scalar field reacts to the change of the Hubble expansion and how the reheating effect arises in the spectrum. We also compare the result with inflation-produced gravitational waves, which has a similar spectral shape, and discuss whether it is possible to distinguish the origin between inflation and global phase transition by detecting the shape with future direct detection gravitational wave experiments such as DECIGO.

  10. Addendum to foundations of multidimensional wave field signal theory: Gaussian source function

    Directory of Open Access Journals (Sweden)

    Natalie Baddour

    2018-02-01

    Full Text Available Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.

  11. Addendum to foundations of multidimensional wave field signal theory: Gaussian source function

    Science.gov (United States)

    Baddour, Natalie

    2018-02-01

    Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011)], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.

  12. Self-consistent finite-temperature model of atom-laser coherence properties

    International Nuclear Information System (INIS)

    Fergusson, J.R.; Geddes, A.J.; Hutchinson, D.A.W.

    2005-01-01

    We present a mean-field model of a continuous-wave atom laser with Raman output coupling. The noncondensate is pumped at a fixed input rate which, in turn, pumps the condensate through a two-body scattering process obeying the Fermi golden rule. The gas is then coupled out by a Gaussian beam from the system, and the temperature and particle number are self-consistently evaluated against equilibrium constraints. We observe the dependence of the second-order coherence of the output upon the width of the output-coupling beam, and note that even in the presence of a highly coherent trapped gas, perfect coherence of the output matter wave is not guaranteed

  13. The Bloch self-consistently renormalized spin wave approximation and behaviour of some thermodynamic quantities of a Heisenberg ferromagnet in the critical region

    International Nuclear Information System (INIS)

    Jezewski, W.

    1979-01-01

    Properties of the Bloch self-consistently renormalized spin wave approximation are analyzed near the zero-field transition temperature Tsub(m). The analysis is carried out on the basis of the application of this approximation to the Heisenberg ferromagnet involving nearest neighbour interaction. Series expansions for the resulting Helmholtz free energy, magnetization, and specific heat in the reduced temperature t=(Tsub(m)-T)/Tsub(m) are derived and the critical exponents β and α' are obtained. The limiting case of infinite spin (the classical limit) is also investigated. (author)

  14. Modeling stretched solitary waves along magnetic field lines

    Directory of Open Access Journals (Sweden)

    L. Muschietti

    2002-01-01

    Full Text Available A model is presented for a new type of fast solitary waves which is observed in downward current regions of the auroral zone. The three-dimensional, coherent structures are electrostatic, have a positive potential, and move along the magnetic field lines with speeds on the order of the electron drift. Their parallel potential profile is flattened and cannot fit to the Gaussian shape used in previous work. We develop a detailed BGK model which includes a flattened potential and an assumed cylindrical symmetry around a centric magnetic field line. The model envisions concentric shells of trapped electrons slowly drifting azimuthally while bouncing back and forth in the parallel direction. The electron dynamics is analysed in terms of three basic motions that occur on different time scales characterized by the cyclotron frequency We , the bounce frequency wb , and the azimuthal drift frequency wg. The ordering We >> wb >> wg is required. Self-consistent distribution functions are calculated in terms of approximate constants of motion. Constraints on the parameters characterizing the amplitude and shape of the stretched solitary wave are discussed.

  15. Self-consistent relativistic Boltzmann-Uehling-Uhlenbeck equation for the Δ distribution function

    International Nuclear Information System (INIS)

    Mao, G.; Li, Z.; Zhuo, Y.

    1996-01-01

    We derive the self-consistent relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) equation for the delta distribution function within the framework which we have done for nucleon close-quote s. In our approach, the Δ isobars are treated in essentially the same way as nucleons. Both mean field and collision terms of Δ close-quote s RBUU equation are derived from the same effective Lagrangian and presented analytically. We calculate the in-medium NΔ elastic and inelastic scattering cross sections up to twice nuclear matter density and the results show that the in-medium cross sections deviate substantially from Cugnon close-quote s parametrization that is commonly used in the transport model. copyright 1996 The American Physical Society

  16. Model for ICRF fast wave current drive in self-consistent MHD equilibria

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Englade, R.C.; Porkolab, M.; Fenstermacher, M.E.

    1993-01-01

    Recently, a model for fast wave current drive in the ion cyclotron radio frequency (ICRF) range was incorporated into the current drive and MHD equilibrium code ACCOME. The ACCOME model combines a free boundary solution of the Grad Shafranov equation with the calculation of driven currents due to neutral beam injection, lower hybrid (LH) waves, bootstrap effects, and ICRF fast waves. The equilibrium and current drive packages iterate between each other to obtain an MHD equilibrium which is consistent with the profiles of driven current density. The ICRF current drive package combines a toroidal full-wave code (FISIC) with a parameterization of the current drive efficiency obtained from an adjoint solution of the Fokker Planck equation. The electron absorption calculation in the full-wave code properly accounts for the combined effects of electron Landau damping (ELD) and transit time magnetic pumping (TTMP), assuming a Maxwellian (or bi-Maxwellian) electron distribution function. Furthermore, the current drive efficiency includes the effects of particle trapping, momentum conserving corrections to the background Fokker Planck collision operator, and toroidally induced variations in the parallel wavenumbers of the injected ICRF waves. This model has been used to carry out detailed studies of advanced physics scenarios in the proposed Tokamak Physics Experiment (TPX). Results are shown, for example, which demonstrate the possibility of achieving stable equilibria at high beta and high bootstrap current fraction in TPX. Model results are also shown for the proposed ITER device

  17. A review of 20 Ne structure in a full microscopic self-consistent shell ...

    African Journals Online (AJOL)

    A set of single-particle energies together with a set of two-body matrix- elements derived in a selfconsistent manner from the Reid soft–core potential are used to calculate the energy levels of 20Ne. We used a harmonic oscillator wave function folded with two-body correlation functions in our calculation. It is found that the ...

  18. Self-consistent radial sheath

    International Nuclear Information System (INIS)

    Hazeltine, R.D.

    1988-12-01

    The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig

  19. Bicontinuous Phases in Diblock Copolymer/Homopolymer Blends: Simulation and Self-Consistent Field Theory

    KAUST Repository

    Martínez-Veracoechea, Francisco J.; Escobedo, Fernando A.

    2009-01-01

    A combination of particle-based simulations and self-consistent field theory (SCFT) is used to study the stabilization of multiple ordered bicontinuous phases in blends of a diblock copolymer (DBC) and a homopolymer. The double-diamond phase (DD

  20. Self-consistent neutral point current and fields from single particle dynamics

    International Nuclear Information System (INIS)

    Martin, R.F. Jr.

    1988-01-01

    In order to begin to build a global model of the magnetotail-auroral region interaction, it is of interest to understand the role of neutral points as potential centers of particle energization in the tail. In this paper, the single particle current is calculated near a magnetic neutral point with magnetotail properties. This is balanced with the Ampere's law current producing the magnetic field to obtain the self-consistent electric field for the problem. Also calculated is the current-electric field relationship and, in the regime where this relation is linear, an effective conductivity. Results for these macroscopic quantities are surprisingly similar to the values calculated for a constant normal field current sheet geometry. Application to magnetotail modeling is discussed. 11 references

  1. The accuracy of the time-dependent self-consistent-field approximation for inelastic collisions

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Billing, Gert D.; Hansen, Flemming Yssing

    1992-01-01

    We study the accuracy of the time-dependent self-consistent-field approximation for collinear inelastic collisions between an atom and a diatomic molecule. Individual state-to-state transition probabilities, total energy transfer. and the global description of the wavefunction is considered...

  2. Self-consistent chaos in the beam-plasma instability

    International Nuclear Information System (INIS)

    Tennyson, J.L.; Meiss, J.D.

    1993-01-01

    The effect of self-consistency on Hamiltonian systems with a large number of degrees-of-freedom is investigated for the beam-plasma instability using the single-wave model of O'Neil, Winfrey, and Malmberg.The single-wave model is reviewed and then rederived within the Hamiltonian context, which leads naturally to canonical action- angle variables. Simulations are performed with a large (10 4 ) number of beam particles interacting with the single wave. It is observed that the system relaxes into a time asymptotic periodic state where only a few collective degrees are active; namely, a clump of trapped particles oscillating in a modulated wave, within a uniform chaotic sea with oscillating phase space boundaries. Thus self-consistency is seen to effectively reduce the number of degrees- of-freedom. A simple low degree-of-freedom model is derived that treats the clump as a single macroparticle, interacting with the wave and chaotic sea. The uniform chaotic sea is modeled by a fluid waterbag, where the waterbag boundaries correspond approximately to invariant tori. This low degree-of-freedom model is seen to compare well with the simulation

  3. Chameleon fields, wave function collapse and quantum gravity

    International Nuclear Information System (INIS)

    Zanzi, A

    2015-01-01

    Chameleon fields are quantum (usually scalar) fields, with a density-dependent mass. In a high-density environment, the mass of the chameleon is large. On the contrary, in a small-density environment (e.g. on cosmological distances), the chameleon is very light. A model where the collapse of the wave function is induced by chameleon fields is presented. During this analysis, a Chameleonic Equivalence Principle (CEP) will be formulated: in this model, quantum gravitation is equivalent to a conformal anomaly. Further research efforts are necessary to verify whether this proposal is compatible with phenomeno logical constraints. (paper)

  4. Self-consistent field theory of protein adsorption in a non-Gaussian polyelectrolyte brush

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Leermakers, F.A.M.; Stuart, M.A.C.

    2006-01-01

    To describe adsorption of globular protein molecules in a polyelectrolyte brush we use the strong-stretching approximation of the Edwards self-consistent field equation, combined with corrections for a non-Gaussian brush. To describe chemical potentials in this mixture of (globular) species of

  5. The nuclear N-body problem and the effective interaction in self-consistent mean-field methods

    International Nuclear Information System (INIS)

    Duguet, Thomas

    2002-01-01

    This work deals with two aspects of mean-field type methods extensively used in low-energy nuclear structure. The first study is at the mean-field level. The link between the wave-function describing an even-even nucleus and the odd-even neighbor is revisited. To get a coherent description as a function of the pairing intensity in the system, the utility of the formalization of this link through a two steps process is demonstrated. This two-steps process allows to identify the role played by different channels of the force when a nucleon is added in the system. In particular, perturbative formula evaluating the contribution of time-odd components of the functional to the nucleon separation energy are derived for zero and realistic pairing intensities. Self-consistent calculations validate the developed scheme as well as the derived perturbative formula. This first study ends up with an extended analysis of the odd-even mass staggering in nuclei. The new scheme allows to identify the contribution to this observable coming from different channels of the force. The necessity of a better understanding of time-odd terms in order to decide which odd-even mass formulae extracts the pairing gap the most properly is identified. These terms being nowadays more or less out of control, extended studies are needed to make precise the fit of a pairing force through the comparison of theoretical and experimental odd-even mass differences. The second study deals with beyond mean-field methods taking care of the correlations associated with large amplitude oscillations in nuclei. Their effects are usually incorporated through the GCM or the projected mean-field method. We derive a perturbation theory motivating such variational calculations from a diagrammatic point of view for the first time. Resuming two-body correlations in the energy expansion, we obtain an effective interaction removing the hard-core problem in the context of configuration mixing calculations. Proceeding to a

  6. Self-focusing of whistler waves

    Science.gov (United States)

    Karpman, V. I.; Kaufman, R. N.; Shagalov, A. G.

    1992-01-01

    The theory of axially symmetric self-focusing of whistler waves, based on the full system of Maxwell equations, is developed. The plasma is described by the magnetohydrodynamic equations including the ponderomotive force from RF field. The nonlinear Schrodinger equations (NSE) for arbitrary azimuthal modes of whistler waves are derived. It is shown that they differ from the NSE for a scalar field; this is connected with an intrinsic angular momentum due to the rotating polarization of whistlers. It is shown that the self-focusing, as described by the NSE, differs in its final stage from the results following the full set of Maxwell equations. The latter gives defocusing after sufficient narrowing of the initial wave beam, due to transformation of the trapped wave into a nontrapped branch which is not contained in the NSE description. The oscillatory character of the defocusing is demonstrated.

  7. Ionization waves caused by the effects of a magnetic field

    International Nuclear Information System (INIS)

    Miura, Kosuke; Imazu, Shingo

    1980-01-01

    The self-excited ionization waves was observed in the Ne positive column. The experiments were made for Ne gas from 0.07 to 1.0 Torr, with the magnetic field from 0 to 3.33 kG. The discharge current were 10 to 300 mA. The longitudinal magnetic field was made by an air-core solenoid coil. The axial electric field was measured by two wall probes. The frequency, wave length and amplitude of waves were measured with a photo multiplier. It was found that the longitudinal magnetic field caused new self-excited ionization waves. The frequency of these waves decreased monotonously with increasing field. The behaviors of the wave length and amplitude were complicate, and the cause of these phenomena is related to the ionization waves due to the spatial resonance of electron gas, namely s-waves, p-waves and fluid γ-waves. The threshold of the magnetic field to cause the ionization waves increased with increasing gas pressure, and with decreasing discharge current in the range 0.07 to 0.44 Torr. The frequency of the self-excited ionization waves occurred at zero field was almost constant in the field-frequency relation. A simple dispersion equation was derived, and the Novak constant can be introduced. (J.P.N.)

  8. Higher order alchemical derivatives from coupled perturbed self-consistent field theory.

    Science.gov (United States)

    Lesiuk, Michał; Balawender, Robert; Zachara, Janusz

    2012-01-21

    We present an analytical approach to treat higher order derivatives of Hartree-Fock (HF) and Kohn-Sham (KS) density functional theory energy in the Born-Oppenheimer approximation with respect to the nuclear charge distribution (so-called alchemical derivatives). Modified coupled perturbed self-consistent field theory is used to calculate molecular systems response to the applied perturbation. Working equations for the second and the third derivatives of HF/KS energy are derived. Similarly, analytical forms of the first and second derivatives of orbital energies are reported. The second derivative of Kohn-Sham energy and up to the third derivative of Hartree-Fock energy with respect to the nuclear charge distribution were calculated. Some issues of practical calculations, in particular the dependence of the basis set and Becke weighting functions on the perturbation, are considered. For selected series of isoelectronic molecules values of available alchemical derivatives were computed and Taylor series expansion was used to predict energies of the "surrounding" molecules. Predicted values of energies are in unexpectedly good agreement with the ones computed using HF/KS methods. Presented method allows one to predict orbital energies with the error less than 1% or even smaller for valence orbitals. © 2012 American Institute of Physics

  9. Elliptic Preconditioner for Accelerating the Self-Consistent Field Iteration in Kohn--Sham Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Lin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Yang, Chao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division

    2013-10-28

    We discuss techniques for accelerating the self consistent field (SCF) iteration for solving the Kohn-Sham equations. These techniques are all based on constructing approximations to the inverse of the Jacobian associated with a fixed point map satisfied by the total potential. They can be viewed as preconditioners for a fixed point iteration. We point out different requirements for constructing preconditioners for insulating and metallic systems respectively, and discuss how to construct preconditioners to keep the convergence rate of the fixed point iteration independent of the size of the atomistic system. We propose a new preconditioner that can treat insulating and metallic system in a unified way. The new preconditioner, which we call an elliptic preconditioner, is constructed by solving an elliptic partial differential equation. The elliptic preconditioner is shown to be more effective in accelerating the convergence of a fixed point iteration than the existing approaches for large inhomogeneous systems at low temperature.

  10. Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory.

    Science.gov (United States)

    Ismail-Beigi, Sohrab

    2017-09-27

    The question of which non-interacting Green's function 'best' describes an interacting many-body electronic system is both of fundamental interest as well as of practical importance in describing electronic properties of materials in a realistic manner. Here, we study this question within the framework of Baym-Kadanoff theory, an approach where one locates the stationary point of a total energy functional of the one-particle Green's function in order to find the total ground-state energy as well as all one-particle properties such as the density matrix, chemical potential, or the quasiparticle energy spectrum and quasiparticle wave functions. For the case of the Klein functional, our basic finding is that minimizing the length of the gradient of the total energy functional over non-interacting Green's functions yields a set of self-consistent equations for quasiparticles that is identical to those of the quasiparticle self-consistent GW (QSGW) (van Schilfgaarde et al 2006 Phys. Rev. Lett. 96 226402-4) approach, thereby providing an a priori justification for such an approach to electronic structure calculations. In fact, this result is general, applies to any self-energy operator, and is not restricted to any particular approximation, e.g., the GW approximation for the self-energy. The approach also shows that, when working in the basis of quasiparticle states, solving the diagonal part of the self-consistent Dyson equation is of primary importance while the off-diagonals are of secondary importance, a common observation in the electronic structure literature of self-energy calculations. Finally, numerical tests and analytical arguments show that when the Dyson equation produces multiple quasiparticle solutions corresponding to a single non-interacting state, minimizing the length of the gradient translates into choosing the solution with largest quasiparticle weight.

  11. Self-organising of wave and beach relief in storm: field experiments

    Science.gov (United States)

    Kuznetsova, Olga; Saprykina, Yana; Kuznetsov, Sergey; Stremel, Margarita; Korsinin, Dmitry; Trifonova, Ekaterina; Andreeva, Natalia

    2017-04-01

    This paper presents results of waves and morfodynamics observation carried out in frame of complex field experiments "Shkorpilowtsy-2016" and "Shkorpilowtsy-2007", which were made in order to understand how bottom deformations depend on wave parameters and how wave-bottom self-organisation process runs during storm events. Sediment transport and profile deformations were analysed taking into account the presence of underwater bar (data 2007) and without it (data 2016). Experiments were made on field base of Institute of Oceanology "Fridtjof Nansen" (Bulgarian Academy of Sciences) in Shkorpilowtsy settlement, that is locates on Black Sea coast, 40 km from Varna. The base is equipped with 253 m research pier that provide measuring until 5 m depth on distance 200 m from shore. During filed works synchronous observations on wave parameters and bottom changes were made on average three times a day for one month: 18.09-08.10.2007 and 07.10-02.11.2016. Morphological observations involved cross-shore beach profile deformations measuring along the scientific pier from shore to sea through each 2 m using metal pole in 2007 and metal or rope lot in 2016. Wave measurements included visual observations of breaking and surf zones location, wave type (wind or swell wave) and direction as well as free surface deviation (wave chronogram) registrations using high-frequency capacitive or resistance sensors mounted along the pier. In 2007 registration of free surface elevation was carried out with 7 capacitance and 8 resistant wire gauges, in 2016 - with 18 capacitance wire gauges. Sampling frequency was 5 Hz in 2007 and 20 Hz in 2016, duration of the records varied from 20 min up to one hour in 2007 and between 10 min and one hour in 2016. Wave spectra computed from chronogram allowed to estimate wave spectral (significant wave height, spectral peak and mean periods and complex) and integral parameters (Irribaren and Ursell numbers) to analyse dependence bottom deformations on it

  12. Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding.

    Science.gov (United States)

    Kowalczyk, Tim; Le, Khoa; Irle, Stephan

    2016-01-12

    We present an implementation of energies and gradients for the ΔDFTB method, an analogue of Δ-self-consistent-field density functional theory (ΔSCF) within density-functional tight-binding, for the lowest singlet excited state of closed-shell molecules. Benchmarks of ΔDFTB excitation energies, optimized geometries, Stokes shifts, and vibrational frequencies reveal that ΔDFTB provides a qualitatively correct description of changes in molecular geometries and vibrational frequencies due to excited-state relaxation. The accuracy of ΔDFTB Stokes shifts is comparable to that of ΔSCF-DFT, and ΔDFTB performs similarly to ΔSCF with the PBE functional for vertical excitation energies of larger chromophores where the need for efficient excited-state methods is most urgent. We provide some justification for the use of an excited-state reference density in the DFTB expansion of the electronic energy and demonstrate that ΔDFTB preserves many of the properties of its parent ΔSCF approach. This implementation fills an important gap in the extended framework of DFTB, where access to excited states has been limited to the time-dependent linear-response approach, and affords access to rapid exploration of a valuable class of excited-state potential energy surfaces.

  13. Self-consistent analysis of radial electric field and fast ion losses in CHS Torsatron/Heliotron

    International Nuclear Information System (INIS)

    Sanuki, H.; Itoh, K.; Itoh, S.

    1992-09-01

    A self-consistent analysis is developed to determine the radial electric field and loss cone boundary in Torsatron/Heliotron plasmas under the influence of non-classical ion losses such as the loss cone loss ans charge exchange loss of fast ions with neutrals. Analysis is applied to the NBI heated plasmas in the Compact Helical System (CHS) device. Comparison is made between theoretical results and experimental observations. The increased ion particle losses caused by the orbit loss and charge exchange loss with neutrals make the radial electric field more negative than the value of purely neoclassical calculation. The partition of the injection energy among the shine through, direct orbit loss, change exchange loss and bulk heating is evaluated by using the self-consistent electric field profile. On-going experiments in the CHS device are briefly introduced. (author)

  14. Self-consistent DFT +U method for real-space time-dependent density functional theory calculations

    Science.gov (United States)

    Tancogne-Dejean, Nicolas; Oliveira, Micael J. T.; Rubio, Angel

    2017-12-01

    We implemented various DFT+U schemes, including the Agapito, Curtarolo, and Buongiorno Nardelli functional (ACBN0) self-consistent density-functional version of the DFT +U method [Phys. Rev. X 5, 011006 (2015), 10.1103/PhysRevX.5.011006] within the massively parallel real-space time-dependent density functional theory (TDDFT) code octopus. We further extended the method to the case of the calculation of response functions with real-time TDDFT+U and to the description of noncollinear spin systems. The implementation is tested by investigating the ground-state and optical properties of various transition-metal oxides, bulk topological insulators, and molecules. Our results are found to be in good agreement with previously published results for both the electronic band structure and structural properties. The self-consistent calculated values of U and J are also in good agreement with the values commonly used in the literature. We found that the time-dependent extension of the self-consistent DFT+U method yields improved optical properties when compared to the empirical TDDFT+U scheme. This work thus opens a different theoretical framework to address the nonequilibrium properties of correlated systems.

  15. Self-consistent non-linear description of radio-frequency wave propagation and of the edge of a magnetized plasma

    International Nuclear Information System (INIS)

    Jacquot, Jonathan

    2013-01-01

    A correct understanding of the interactions between the edge plasma and the ion cyclotron (IC) waves (40-80 MHz) is needed to inject reliably large amount of power required for self-sustainable fusion plasmas. These thesis objectives were to model separately, with Comsol Multiphysics, but in compatible approaches the wave coupling and the radio-frequency (RF) sheath formation to anticipate development of a single code combining both. Modelling of fast wave coupling requires a detailed description of the antenna (2D or 3D) and of the plasma environment by a full wave approach for a cold plasma. Absorption of outgoing waves is emulated by perfectly matched layers, rendered compatible with a plasma dielectric tensor. Experimental trends for the coupling resistance of the antennas of Tore Supra are qualitatively reproduced but the coupling efficiency is overestimated. In parallel a novel self-consistent description, including RF sheaths, of the interplay between the cold wave propagation and DC biasing of the magnetized edge plasma of a tokamak was developed with the minimum set of physics ingredients. For Tore Supra antenna cases, the code coupled with TOPICA allowed to unveil qualitatively some unexpected observations on the latest design of Tore Supra Faraday screens whose electrical design was supposed to minimize RF sheaths. From simulations, a DC (Direct Current) current transport appears necessary to explain the radial structures of measurements. Cantilevered bars have been identified as the design element in the antenna structure enhancing the plasma potential. (author) [fr

  16. Persistence length of wormlike micelles composed of ionic surfactants: self-consistent-field predictions

    NARCIS (Netherlands)

    Lauw, Y.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2007-01-01

    The persistence length of a wormlike micelle composed of ionic surfactants CnEmXk in an aqueous solvent is predicted by means of the self-consistent-field theory where CnEm is the conventional nonionic surfactant and X-k is an additional sequence of k weakly charged (pH-dependent) segments. By

  17. Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.

    Science.gov (United States)

    Li, Yu-Qi; Pan, Xiao-Yin; Sahni, Viraht

    2013-09-21

    The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential.

  18. Influence of wetting-layer wave functions on phonon-mediated carrier capture into self-assembled quantum dots

    DEFF Research Database (Denmark)

    Markussen, Troels; Kristensen, Philip Trøst; Tromborg, Bjarne

    2006-01-01

    Models of carrier dynamics in quantum dots rely strongly on adequate descriptions of the carrier wave functions. In this work we numerically solve the one-band effective mass Schrodinger equation to calculate the capture times of phonon-mediated carrier capture into self-assembled quantum dots. C....... Comparing with results obtained using approximate carrier wave functions, we demonstrate that the capture times are strongly influenced by properties of the wetting layer wave functions not accounted for by earlier theoretical analyses....

  19. Enriching Elementary Quantum Mechanics with the Computer: Self-Consistent Field Problems in One Dimension

    Science.gov (United States)

    Bolemon, Jay S.; Etzold, David J.

    1974-01-01

    Discusses the use of a small computer to solve self-consistent field problems of one-dimensional systems of two or more interacting particles in an elementary quantum mechanics course. Indicates that the calculation can serve as a useful introduction to the iterative technique. (CC)

  20. Self-consistent electrostatic potential due to trapped plasma in the magnetosphere

    International Nuclear Information System (INIS)

    Miller, R.H.; Khazanov, G.V.

    1993-01-01

    The authors address the problem of the steady state confinement of plasma in a magnetic flux tube. They construct a steady state distribution function, under the assumption of no waves or collisions, using the kinematic constants of the motion, total energy and magnetic moment. The local particle densities are shown to be integrals over the equatorial distribution function for the particle of concern. The electric potential is determined by the imposition of quasineutrality. The authors show that their self consistent model produces potential drops which are consistent with the kinetic energy of the equatorially trapped particles. They comment on earlier work of Alfven and Faelthammar, and for a bi-Maxwellian distribution compare the results of the present model with the Alfven and Faelthammar model

  1. Pathological behavior of the open-shell restricted self-consistent-field equations

    International Nuclear Information System (INIS)

    Moscardo, F.; Alvarez-Collado, J.R.

    1979-01-01

    The possible solutions of open-shell restricted self-consistent-field equations for a doublet are studied for Li and Na atoms, according to the values of the parameters implied in those equations. A similar behavior, characterized by the presence of several variational solutions is observed in both atoms. Some of these solutions can be assigned to excited configurations. Excitation energies are in good agreement with experimental data. Doublet stability for the solutions obtained has been studied, discussing the saddle-point character present in those solutions associated to excited configurations

  2. Linear Scaling Solution of the Time-Dependent Self-Consistent-Field Equations

    Directory of Open Access Journals (Sweden)

    Matt Challacombe

    2014-03-01

    Full Text Available A new approach to solving the Time-Dependent Self-Consistent-Field equations is developed based on the double quotient formulation of Tsiper 2001 (J. Phys. B. Dual channel, quasi-independent non-linear optimization of these quotients is found to yield convergence rates approaching those of the best case (single channel Tamm-Dancoff approximation. This formulation is variational with respect to matrix truncation, admitting linear scaling solution of the matrix-eigenvalue problem, which is demonstrated for bulk excitons in the polyphenylene vinylene oligomer and the (4,3 carbon nanotube segment.

  3. Pathological behavior of the open-shell restricted self-consistent-field equations

    Energy Technology Data Exchange (ETDEWEB)

    Moscardo, F.; Alvarez-Collado, J.R.

    1979-02-01

    The possible solutions of open-shell restricted self-consistent-field equations for a doublet are studied for Li and Na atoms, according to the values of the parameters implied in those equations. A similar behavior, characterized by the presence of several variational solutions is observed in both atoms. Some of these solutions can be assigned to excited configurations. Excitation energies are in good agreement with experimental data. Doublet stability for the solutions obtained has been studied, discussing the saddle-point character present in those solutions associated to excited configurations.

  4. Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics

    Science.gov (United States)

    Taranu, D. S.; Obreschkow, D.; Dubinski, J. J.; Fogarty, L. M. R.; van de Sande, J.; Catinella, B.; Cortese, L.; Moffett, A.; Robotham, A. S. G.; Allen, J. T.; Bland-Hawthorn, J.; Bryant, J. J.; Colless, M.; Croom, S. M.; D'Eugenio, F.; Davies, R. L.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Mould, J. R.; Owers, M. S.; Power, C.; Richards, S. N.; Tonini, C.

    2017-11-01

    We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation, and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions for a galaxy with a Sérsic profile stellar bulge, exponential disk, and parametric dark-matter halo, generated by an updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean velocity, and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey, comparing parameter constraints with those from traditional 2D bulge-disk decomposition. Our method returns broadly consistent results for shared parameters while constraining the mass-to-light ratios of stellar components and reproducing the H I-inferred circular velocity well beyond the limits of the SAMI data. Although the method is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fiber dispersions and H I circular velocities, and is well-suited for modeling galaxies with a combination of deep imaging and H I and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient and can generate well-resolved models and kinematic maps in under a minute on modern processors.

  5. Self consistent field theory of virus assembly

    Science.gov (United States)

    Li, Siyu; Orland, Henri; Zandi, Roya

    2018-04-01

    The ground state dominance approximation (GSDA) has been extensively used to study the assembly of viral shells. In this work we employ the self-consistent field theory (SCFT) to investigate the adsorption of RNA onto positively charged spherical viral shells and examine the conditions when GSDA does not apply and SCFT has to be used to obtain a reliable solution. We find that there are two regimes in which GSDA does work. First, when the genomic RNA length is long enough compared to the capsid radius, and second, when the interaction between the genome and capsid is so strong that the genome is basically localized next to the wall. We find that for the case in which RNA is more or less distributed uniformly in the shell, regardless of the length of RNA, GSDA is not a good approximation. We observe that as the polymer-shell interaction becomes stronger, the energy gap between the ground state and first excited state increases and thus GSDA becomes a better approximation. We also present our results corresponding to the genome persistence length obtained through the tangent-tangent correlation length and show that it is zero in case of GSDA but is equal to the inverse of the energy gap when using SCFT.

  6. Towards a fully self-consistent inversion combining historical and paleomagnetic data for geomagnetic field reconstructions

    Science.gov (United States)

    Arneitz, P.; Leonhardt, R.; Fabian, K.; Egli, R.

    2017-12-01

    Historical and paleomagnetic data are the two main sources of information about the long-term geomagnetic field evolution. Historical observations extend to the late Middle Ages, and prior to the 19th century, they consisted mainly of pure declination measurements from navigation and orientation logs. Field reconstructions going back further in time rely solely on magnetization acquired by rocks, sediments, and archaeological artefacts. The combined dataset is characterized by a strongly inhomogeneous spatio-temporal distribution and highly variable data reliability and quality. Therefore, an adequate weighting of the data that correctly accounts for data density, type, and realistic error estimates represents the major challenge for an inversion approach. Until now, there has not been a fully self-consistent geomagnetic model that correctly recovers the variation of the geomagnetic dipole together with the higher-order spherical harmonics. Here we present a new geomagnetic field model for the last 4 kyrs based on historical, archeomagnetic and volcanic records. The iterative Bayesian inversion approach targets the implementation of reliable error treatment, which allows different record types to be combined in a fully self-consistent way. Modelling results will be presented along with a thorough analysis of model limitations, validity and sensitivity.

  7. Quantitative verification of ab initio self-consistent laser theory.

    Science.gov (United States)

    Ge, Li; Tandy, Robert J; Stone, A D; Türeci, Hakan E

    2008-10-13

    We generalize and test the recent "ab initio" self-consistent (AISC) time-independent semiclassical laser theory. This self-consistent formalism generates all the stationary lasing properties in the multimode regime (frequencies, thresholds, internal and external fields, output power and emission pattern) from simple inputs: the dielectric function of the passive cavity, the atomic transition frequency, and the transverse relaxation time of the lasing transition.We find that the theory gives excellent quantitative agreement with full time-dependent simulations of the Maxwell-Bloch equations after it has been generalized to drop the slowly-varying envelope approximation. The theory is infinite order in the non-linear hole-burning interaction; the widely used third order approximation is shown to fail badly.

  8. Renormalization in self-consistent approximation schemes at finite temperature I: theory

    International Nuclear Information System (INIS)

    Hees, H. van; Knoll, J.

    2001-07-01

    Within finite temperature field theory, we show that truncated non-perturbative self-consistent Dyson resummation schemes can be renormalized with local counter-terms defined at the vacuum level. The requirements are that the underlying theory is renormalizable and that the self-consistent scheme follows Baym's Φ-derivable concept. The scheme generates both, the renormalized self-consistent equations of motion and the closed equations for the infinite set of counter terms. At the same time the corresponding 2PI-generating functional and the thermodynamic potential can be renormalized, in consistency with the equations of motion. This guarantees the standard Φ-derivable properties like thermodynamic consistency and exact conservation laws also for the renormalized approximation scheme to hold. The proof uses the techniques of BPHZ-renormalization to cope with the explicit and the hidden overlapping vacuum divergences. (orig.)

  9. Time-dependent density functional theory (TD-DFT) coupled with reference interaction site model self-consistent field explicitly including spatial electron density distribution (RISM-SCF-SEDD)

    Energy Technology Data Exchange (ETDEWEB)

    Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp [Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602 (Japan); Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602 (Japan)

    2016-09-07

    Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.

  10. Expansions for Coulomb wave functions

    NARCIS (Netherlands)

    Boersma, J.

    1969-01-01

    In this paper we derive a number of expansions for Whittaker functions, regular and irregular Coulomb wave functions. The main result consists of a new expansion for the irregular Coulomb wave functions of orders zero and one in terms of regular Coulomb wave functions. The latter expansions are

  11. Stable Alfven wave dynamo action in the reversed field pinch

    International Nuclear Information System (INIS)

    Werley, K.A.

    1984-01-01

    Recent advances in linear resistive MHD stability analysis are used to calculate the quasi-linear dynamo mean electromotive force of Alfven waves. This emf is incorporated into a one-dimensional transport and mean-field evolution code. The changing equilibrium is then fed back to the stability code to complete a computational framework that self-consistently evaluates a dynamic plasma dynamo. Static quasi-linear Alfven wave calculations have shown that dynamo emfs on the order of eta vector J are possible. This suggested a possible explanation of RFP behavior and a new (externally driven) mechanism for extending operation and controlling field profiles (possibly reducing plasma transport). This thesis demonstrates that the dynamo emf can quickly induce plasma currents whose emf cancels the dynamo effect. This thesis also contains extensive studies of resistive Alfven wave properties. This includes behavior versus spectral location, magnetic Reynolds number and wave number

  12. Self-consistent hole motion and spin excitations in a quantum antiferromagnet

    International Nuclear Information System (INIS)

    Su, Z.B.; Yu, L.; Li, Y.M.; Lai, W.Y.

    1989-12-01

    A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes and spin excitations in a quantum antiferromagnet within the generalized t-J model. On the one hand, the effects of local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing to obtain the hole wave function and its spectrum, as well as the effective mass for a propagating hole. On the other hand, the change of the spin excitation spectrum and the spin correlations due to the presence of dynamical holes are studied within the same adiabatic approximation. The stability of the hole states with respect to such changes justifies the self-consistency of the proposed formalism. (author). 25 refs, 6 figs, 1 tab

  13. Cranked cluster wave function for molecular states

    International Nuclear Information System (INIS)

    Horiuchi, Hisashi; Yabana, Kazuhiro; Wada, Takahiro.

    1986-01-01

    Construction of the cranked cluster wave function is discussed by focussing on three problems; the self-consistency between the potential and the density distribution, the properties of the rotational angular frequency which is strongly influenced by the inter-cluster Pauli principle and by the parity projection, and the spin alignment along the rotation axis with the resulting structure-change of the molecular state. (author)

  14. Self-consistent model of confinement

    International Nuclear Information System (INIS)

    Swift, A.R.

    1988-01-01

    A model of the large-spatial-distance, zero--three-momentum, limit of QCD is developed from the hypothesis that there is an infrared singularity. Single quarks and gluons do not propagate because they have infinite energy after renormalization. The Hamiltonian formulation of the path integral is used to quantize QCD with physical, nonpropagating fields. Perturbation theory in the infrared limit is simplified by the absence of self-energy insertions and by the suppression of large classes of diagrams due to vanishing propagators. Remaining terms in the perturbation series are resummed to produce a set of nonlinear, renormalizable integral equations which fix both the confining interaction and the physical propagators. Solutions demonstrate the self-consistency of the concepts of an infrared singularity and nonpropagating fields. The Wilson loop is calculated to provide a general proof of confinement. Bethe-Salpeter equations for quark-antiquark pairs and for two gluons have finite-energy solutions in the color-singlet channel. The choice of gauge is addressed in detail. Large classes of corrections to the model are discussed and shown to support self-consistency

  15. Relativistic many-body perturbation-theory calculations based on Dirac-Fock-Breit wave functions

    International Nuclear Information System (INIS)

    Ishikawa, Y.; Quiney, H.M.

    1993-01-01

    A relativistic many-body perturbation theory based on the Dirac-Fock-Breit wave functions has been developed and implemented by employing analytic basis sets of Gaussian-type functions. The instantaneous Coulomb and low-frequency Breit interactions are treated using a unified formalism in both the construction of the Dirac-Fock-Breit self-consistent-field atomic potential and in the evaluation of many-body perturbation-theory diagrams. The relativistic many-body perturbation-theory calculations have been performed on the helium atom and ions of the helium isoelectronic sequence up to Z=50. The contribution of the low-frequency Breit interaction to the relativistic correlation energy is examined for the helium isoelectronic sequence

  16. Consistency relations in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Munshi, Dipak; Regan, Donough, E-mail: D.Munshi@sussex.ac.uk, E-mail: D.Regan@sussex.ac.uk [Astronomy Centre, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH (United Kingdom)

    2017-06-01

    The consistency relations in large scale structure relate the lower-order correlation functions with their higher-order counterparts. They are direct outcome of the underlying symmetries of a dynamical system and can be tested using data from future surveys such as Euclid. Using techniques from standard perturbation theory (SPT), previous studies of consistency relation have concentrated on continuity-momentum (Euler)-Poisson system of an ideal fluid. We investigate the consistency relations in effective field theory (EFT) which adjusts the SPT predictions to account for the departure from the ideal fluid description on small scales. We provide detailed results for the 3D density contrast δ as well as the scaled divergence of velocity θ-bar . Assuming a ΛCDM background cosmology, we find the correction to SPT results becomes important at k ∼> 0.05 h/Mpc and that the suppression from EFT to SPT results that scales as square of the wave number k , can reach 40% of the total at k ≈ 0.25 h/Mpc at z = 0. We have also investigated whether effective field theory corrections to models of primordial non-Gaussianity can alter the squeezed limit behaviour, finding the results to be rather insensitive to these counterterms. In addition, we present the EFT corrections to the squeezed limit of the bispectrum in redshift space which may be of interest for tests of theories of modified gravity.

  17. Self-consistent field theory simulations of polymers on arbitrary domains

    Energy Technology Data Exchange (ETDEWEB)

    Ouaknin, Gaddiel, E-mail: gaddielouaknin@umail.ucsb.edu [Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070 (United States); Laachi, Nabil; Delaney, Kris [Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5080 (United States); Fredrickson, Glenn H. [Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5080 (United States); Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080 (United States); Department of Materials, University of California, Santa Barbara, CA 93106-5050 (United States); Gibou, Frederic [Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070 (United States); Department of Computer Science, University of California, Santa Barbara, CA 93106-5110 (United States)

    2016-12-15

    We introduce a framework for simulating the mesoscale self-assembly of block copolymers in arbitrary confined geometries subject to Neumann boundary conditions. We employ a hybrid finite difference/volume approach to discretize the mean-field equations on an irregular domain represented implicitly by a level-set function. The numerical treatment of the Neumann boundary conditions is sharp, i.e. it avoids an artificial smearing in the irregular domain boundary. This strategy enables the study of self-assembly in confined domains and enables the computation of physically meaningful quantities at the domain interface. In addition, we employ adaptive grids encoded with Quad-/Oc-trees in parallel to automatically refine the grid where the statistical fields vary rapidly as well as at the boundary of the confined domain. This approach results in a significant reduction in the number of degrees of freedom and makes the simulations in arbitrary domains using effective boundary conditions computationally efficient in terms of both speed and memory requirement. Finally, in the case of regular periodic domains, where pseudo-spectral approaches are superior to finite differences in terms of CPU time and accuracy, we use the adaptive strategy to store chain propagators, reducing the memory footprint without loss of accuracy in computed physical observables.

  18. Stable Alfven-wave dynamo action in the reversed-field pinch

    International Nuclear Information System (INIS)

    Werley, K.A.

    1984-01-01

    Previous theoretical work has suggested that Alfven waves may be related to the anomalous toroidal magnetic flux generation and extended (over classical expectations) discharge times observed in the reversed-field pinch. This thesis examines the dynamo action of stable Alfven waves as a means of generating toroidal flux. Recent advances in linear resistive MHD stability analysis are used to calculate the quasi-linear dynamo mean electromotive force of Alfven waves. This emf is incorporated into a one-dimensional transport and mean-field evolution code. The changing equilibrium is then fed back to the stability code to complete a computational framework that self-consistently evaluates a dynamic plasma dynamo. This technique is readily extendable to other plasmas in which dynamic stable model action is of interest. Such plasmas include Alfven wave current-drive and plasma heating for fusion devices, as well as astrophysical and geophysical dynamo systems. This study also contains extensive studies of resistive Alfven wave properties. This includes behavior versus spectral location, magnetic Reynolds number and wave number

  19. Self-consistent electronic structure of the contracted tungsten (001) surface

    International Nuclear Information System (INIS)

    Posternak, M.; Krakauer, H.; Freeman, A.J.

    1982-01-01

    Self-consistent linearized-augmented-plane-wave energy-band studies using the warped muffin-tin approximation for a seven-layer W(001) single slab with the surface-layer separation contracted by 6% of the bulk interlayer spacing are reported. Surface electronic structure, local densities of states, generalized susceptibility for the surface, work function, and core-level shifts are found to have insignificant differences with corresponding results for the unrelaxed surface. Several differences in surface states between theory and recent angle-resolved photoemission experiments are discussed in the light of new proposed models of the actual unreconstructed surface structure at high temperatures

  20. Self-consistent spectral function for non-degenerate Coulomb systems and analytic scaling behaviour

    International Nuclear Information System (INIS)

    Fortmann, Carsten

    2008-01-01

    Novel results for the self-consistent single-particle spectral function and self-energy are presented for non-degenerate one-component Coulomb systems at various densities and temperatures. The GW (0) -method for the dynamical self-energy is used to include many-particle correlations beyond the quasi-particle approximation. The self-energy is analysed over a broad range of densities and temperatures (n = 10 17 cm -3 -10 27 cm -3 , T = 10 2 eV/k B -10 4 eV/k B ). The spectral function shows a systematic behaviour, which is determined by collective plasma modes at small wavenumbers and converges towards a quasi-particle resonance at higher wavenumbers. In the low density limit, the numerical results comply with an analytic scaling law that is presented for the first time. It predicts a power-law behaviour of the imaginary part of the self-energy, ImΣ ∼ -n 1/4 . This resolves a long time problem of the quasi-particle approximation which yields a finite self-energy at vanishing density

  1. Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects

    Energy Technology Data Exchange (ETDEWEB)

    Vigeesh, G.; Steiner, O. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstrasse 6, D-79104 Freiburg (Germany); Jackiewicz, J., E-mail: vigeesh@leibniz-kis.de [New Mexico State University, Department of Astronomy, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003 (United States)

    2017-02-01

    Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in the Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high- β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.

  2. Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer.

    Science.gov (United States)

    Kurashige, Yuki; Yanai, Takeshi

    2011-09-07

    We present a second-order perturbation theory based on a density matrix renormalization group self-consistent field (DMRG-SCF) reference function. The method reproduces the solution of the complete active space with second-order perturbation theory (CASPT2) when the DMRG reference function is represented by a sufficiently large number of renormalized many-body basis, thereby being named DMRG-CASPT2 method. The DMRG-SCF is able to describe non-dynamical correlation with large active space that is insurmountable to the conventional CASSCF method, while the second-order perturbation theory provides an efficient description of dynamical correlation effects. The capability of our implementation is demonstrated for an application to the potential energy curve of the chromium dimer, which is one of the most demanding multireference systems that require best electronic structure treatment for non-dynamical and dynamical correlation as well as large basis sets. The DMRG-CASPT2/cc-pwCV5Z calculations were performed with a large (3d double-shell) active space consisting of 28 orbitals. Our approach using large-size DMRG reference addressed the problems of why the dissociation energy is largely overestimated by CASPT2 with the small active space consisting of 12 orbitals (3d4s), and also is oversensitive to the choice of the zeroth-order Hamiltonian. © 2011 American Institute of Physics

  3. The Plumber’s Nightmare Phase in Diblock Copolymer/Homopolymer Blends. A Self-Consistent Field Theory Study.

    KAUST Repository

    Martinez-Veracoechea, Francisco J.

    2009-11-24

    Using self-consistent field theory, the Plumber\\'s Nightmare and the double diamond phases are predicted to be stable in a finite region of phase diagrams for blends of AB diblock copolymer (DBC) and A-component homopolymer. To the best of our knowledge, this is the first time that the P phase has been predicted to be stable using self-consistent field theory. The stabilization is achieved by tuning the composition or conformational asymmetry of the DBC chain, and the architecture or length of the homopolymer. The basic features of the phase diagrams are the same in all cases studied, suggesting a general type of behavior for these systems. Finally, it is noted that the homopolymer length should be a convenient variable to stabilize bicontinuous phases in experiments. © 2009 American Chemical Society.

  4. Self-consistent field theory of polymer-ionic molecule complexation.

    Science.gov (United States)

    Nakamura, Issei; Shi, An-Chang

    2010-05-21

    A self-consistent field theory is developed for polymers that are capable of binding small ionic molecules (adsorbates). The polymer-ionic molecule association is described by Ising-like binding variables, C(i) ((a))(kDelta)(=0 or 1), whose average determines the number of adsorbed molecules, n(BI). Polymer gelation can occur through polymer-ionic molecule complexation in our model. For polymer-polymer cross-links through the ionic molecules, three types of solutions for n(BI) are obtained, depending on the equilibrium constant of single-ion binding. Spinodal lines calculated from the mean-field free energy exhibit closed-loop regions where the homogeneous phase becomes unstable. This phase instability is driven by the excluded-volume interaction due to the single occupancy of ion-binding sites on the polymers. Moreover, sol-gel transitions are examined using a critical degree of conversion. A gel phase is induced when the concentration of adsorbates is increased. At a higher concentration of the adsorbates, however, a re-entrance from a gel phase into a sol phase arises from the correlation between unoccupied and occupied ion-binding sites. The theory is applied to a model system, poly(vinyl alcohol) and borate ion in aqueous solution with sodium chloride. Good agreement between theory and experiment is obtained.

  5. On the phase velocity of plasma waves in a self-modulated laser wake-field accelerator

    NARCIS (Netherlands)

    Andreev, N. E.; Kirsanov, V. I.; Sakharov, A. S.; van Amersfoort, P. W.; Goloviznin, V. V.

    1996-01-01

    The properties of the wake field excited by a flattop laser pulse with a sharp leading edge and a power below the critical one for relativistic self-focusing are studied analytically and numerically with emphasis on the phase velocity of the plasma wave. The paraxial model describing modulation of

  6. Calculation of the electron wave function in a graded-channel double-heterojunction modulation-doped field-effect transistor

    Science.gov (United States)

    Mui, D. S. L.; Patil, M. B.; Morkoc, H.

    1989-01-01

    Three double-heterojunction modulation-doped field-effect transistor structures with different channel composition are investigated theoretically. All of these transistors have an In(x)Ga(1-x)As channel sandwiched between two doped Al(0.3)Ga(0.7)As barriers with undoped spacer layers. In one of the structures, x varies from 0 from either heterojunction to 0.15 at the center of the channel quadratically; in the other two, constant values of x of 0 and 0.15 are used. The Poisson and Schroedinger equations are solved self-consistently for the electron wave function in all three cases. The results showed that the two-dimensional electron gas (2DEG) concentration in the channel of the quadratically graded structure is higher than the x = 0 one and slightly lower than the x = 0.15 one, and the mean distance of the 2DEG is closer to the center of the channel for this transistor than the other two. These two effects have important implications on the electron mobility in the channel.

  7. Self-organizing physical fields and gravity

    International Nuclear Information System (INIS)

    Pestov, I.B.

    2009-01-01

    It is shown that the Theory of Self-Organizing Physical Fields provides the adequate and consistent consideration of the gravitational phenomena. The general conclusion lies in the fact that the essence of gravidynamics is the new field concept of time and the general covariant law of energy conservation which in particular means that dark energy is simply the energy of the gravitational field. From the natural geometrical laws of gravidynamics the dynamical equations of the gravitational field are derived. Two exact solutions of these equations are obtained. One of them represents a shock gravitational wave and the other represents the Universe filled up with the gravitational energy only. These solutions are compared with the Schwarzschild and Friedmann solutions in the Einstein general theory of relativity

  8. Calculation of the self-consistent current distribution and coupling of an RF antenna array

    International Nuclear Information System (INIS)

    Ballico, M.; Puri, S.

    1993-10-01

    A self-consistent calculation of the antenna current distribution and fields in an axisymmetric cylindrical geometry for the ICRH antenna-plasma coupling problem is presented. Several features distinguish this calculation from other codes presently available. 1. Variational form: The formulation of the self consistent antenna current problem in a variational form allows good convergence and stability of the algorithm. 2. Multiple straps: Allows modelling of (a) the current distribution across the width of the strap (by dividing it up into sub straps) (b) side limiters and septum (c) antenna cross-coupling. 3. Analytic calculation of the antenna field and calculation of the antenna self-consistent current distribution, (given the surface impedance matrix) gives rapid calculation. 4. Framed for parallel computation on several different parallel architectures (as well as serial) gives a large speed improvement to the user. Results are presented for both Alfven wave heating and current drive antenna arrays, showing the optimal coupling to be achieved for toroidal mode numbers 8< n<10 for typical ASDEX upgrade plasmas. Simulations of the ASDEX upgrade antenna show the importance of the current distribution across the antenna and of image currents flowing in the side limiters, and an analysis of a proposed asymmetric ITER antenna is presented. (orig.)

  9. Self-Consistent Study of Conjugated Aromatic Molecular Transistors

    International Nuclear Information System (INIS)

    Jing, Wang; Yun-Ye, Liang; Hao, Chen; Peng, Wang; Note, R.; Mizuseki, H.; Kawazoe, Y.

    2010-01-01

    We study the current through conjugated aromatic molecular transistors modulated by a transverse field. The self-consistent calculation is realized with density function theory through the standard quantum chemistry software Gaussian03 and the non-equilibrium Green's function formalism. The calculated I – V curves controlled by the transverse field present the characteristics of different organic molecular transistors, the transverse field effect of which is improved by the substitutions of nitrogen atoms or fluorine atoms. On the other hand, the asymmetry of molecular configurations to the axis connecting two sulfur atoms is in favor of realizing the transverse field modulation. Suitably designed conjugated aromatic molecular transistors possess different I – V characteristics, some of them are similar to those of metal-oxide-semiconductor field-effect transistors (MOSFET). Some of the calculated molecular devices may work as elements in graphene electronics. Our results present the richness and flexibility of molecular transistors, which describe the colorful prospect of next generation devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. A Sparse Self-Consistent Field Algorithm and Its Parallel Implementation: Application to Density-Functional-Based Tight Binding.

    Science.gov (United States)

    Scemama, Anthony; Renon, Nicolas; Rapacioli, Mathias

    2014-06-10

    We present an algorithm and its parallel implementation for solving a self-consistent problem as encountered in Hartree-Fock or density functional theory. The algorithm takes advantage of the sparsity of matrices through the use of local molecular orbitals. The implementation allows one to exploit efficiently modern symmetric multiprocessing (SMP) computer architectures. As a first application, the algorithm is used within the density-functional-based tight binding method, for which most of the computational time is spent in the linear algebra routines (diagonalization of the Fock/Kohn-Sham matrix). We show that with this algorithm (i) single point calculations on very large systems (millions of atoms) can be performed on large SMP machines, (ii) calculations involving intermediate size systems (1000-100 000 atoms) are also strongly accelerated and can run efficiently on standard servers, and (iii) the error on the total energy due to the use of a cutoff in the molecular orbital coefficients can be controlled such that it remains smaller than the SCF convergence criterion.

  11. Linear and nonlinear Biot waves in a noncohesive granular medium slab: transfer function, self-action, second harmonic generation.

    Science.gov (United States)

    Legland, J-B; Tournat, V; Dazel, O; Novak, A; Gusev, V

    2012-06-01

    Experimental results are reported on second harmonic generation and self-action in a noncohesive granular medium supporting wave energy propagation both in the solid frame and in the saturating fluid. The acoustic transfer function of the probed granular slab can be separated into two main frequency regions: a low frequency region where the wave propagation is controlled by the solid skeleton elastic properties, and a higher frequency region where the behavior is dominantly due to the air saturating the beads. Experimental results agree well with a recently developed nonlinear Biot wave model applied to granular media. The linear transfer function, second harmonic generation, and self-action effect are studied as a function of bead diameter, compaction step, excitation amplitude, and frequency. This parametric study allows one to isolate different propagation regimes involving a range of described and interpreted linear and nonlinear processes that are encountered in granular media experiments. In particular, a theoretical interpretation is proposed for the observed strong self-action effect.

  12. The Plumber’s Nightmare Phase in Diblock Copolymer/Homopolymer Blends. A Self-Consistent Field Theory Study.

    KAUST Repository

    Martinez-Veracoechea, Francisco J.; Escobedo, Fernando A.

    2009-01-01

    Using self-consistent field theory, the Plumber's Nightmare and the double diamond phases are predicted to be stable in a finite region of phase diagrams for blends of AB diblock copolymer (DBC) and A-component homopolymer. To the best of our

  13. Resonant Alfven waves on auroral field lines

    International Nuclear Information System (INIS)

    Chiu, Y.T.

    1987-01-01

    It is shown that resonant Alfven waves on dipole magnetic field geometry and plasma distributions suitable for auroral field lines can be conveniently treated in the theory of Mathieu functions. Resurgent interest in invoking large-scale Alfven waves to structure some elements of auroral electrodynamics calls for interpretation of measured perpendicular electric and magnetic disturbance fields in terms of Alfven waves. The ability to express the resonant eigenmodes in closed form in terms of Mathieu functions allows for convenient tests of the Alfven wave structuring hypothesis. Implications for current vector electric and magnetic disturbance measurements are discussed

  14. Self-consistent theory of a harmonic gyroklystron with a minimum Q cavity

    International Nuclear Information System (INIS)

    Tran, T.M.; Kreischer, K.E.; Temkin, R.J.

    1986-01-01

    In this paper, the energy extraction stage of the gyroklystron [in Advances in Electronics and Electron Physics, edited by C. Marton (Academic, New York, 1979), Vol. 1, pp. 1--54], with a minimum Q cavity is investigated by using a self-consistent radio-frequency (rf) field model. In the low-field, low-current limit, expressions for the self-consistent field and the resulting energy extraction efficiency are derived analytically for an arbitrary cyclotron harmonic number. To our knowledge, these are the first analytic results for the self-consistent field structure and efficiency of a gyrotron device. The large signal regime analysis is carried out by numerically integrating the coupled self-consistent equations. Several examples in this regime are presented

  15. Electromagnetic fields of Nanometer electromagnetic waves and X-ray. New frontiers of electromagnetic wave engineering

    International Nuclear Information System (INIS)

    2009-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, X-ray microscope, application to medical and information communication technologies, such as interaction between material and nanometer electromagnetic waves of radiated light and X-ray, interaction between microwaves and particle beams, theory and design of high-frequency waveguides for resonator and accelerator, from January 2003 to December 2005. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and Cherenkov radiation, Kyushu synchrotron light source and its technology, nanometer electromagnetic fields in optical region, process of interaction between evanescent waves and near-field light, orthogonal relation of electromagnetic fields including evanescent waves in dispersive dielectrics, optical amplification using electron beam, nanometer electromagnetic fields in focusing waveguide lens device with curved facets, electromagnetic fields in nanometer photonic crystal waveguide consisting of atoms, X-ray scattering and absorption I bio-material for image diagnosis. (author)

  16. Properties of resonance wave functions.

    Science.gov (United States)

    More, R. M.; Gerjuoy, E.

    1973-01-01

    Construction and study of resonance wave functions corresponding to poles of the Green's function for several illustrative models of theoretical interest. Resonance wave functions obtained from the Siegert and Kapur-Peierls definitions of the resonance energies are compared. The comparison especially clarifies the meaning of the normalization constant of the resonance wave functions. It is shown that the wave functions may be considered renormalized in a sense analogous to that of quantum field theory. However, this renormalization is entirely automatic, and the theory has neither ad hoc procedures nor infinite quantities.

  17. Four-body correlation embedded in antisymmetrized geminal power wave function.

    Science.gov (United States)

    Kawasaki, Airi; Sugino, Osamu

    2016-12-28

    We extend the Coleman's antisymmetrized geminal power (AGP) to develop a wave function theory that can incorporate up to four-body correlation in a region of strong correlation. To facilitate the variational determination of the wave function, the total energy is rewritten in terms of the traces of geminals. This novel trace formula is applied to a simple model system consisting of one dimensional Hubbard ring with a site of strong correlation. Our scheme significantly improves the result obtained by the AGP-configuration interaction scheme of Uemura et al. and also achieves more efficient compression of the degrees of freedom of the wave function. We regard the result as a step toward a first-principles wave function theory for a strongly correlated point defect or adsorbate embedded in an AGP-based mean-field medium.

  18. Self-consistent ECCD calculations with bootstrap current

    International Nuclear Information System (INIS)

    Decker, J.; Bers, A.; Ram, A. K; Peysson, Y.

    2003-01-01

    To achieve high performance, steady-state operation in tokamaks, it is increasingly important to find the appropriate means for modifying and sustaining the pressure and magnetic shear profiles in the plasma. In such advanced scenarios, especially in the vicinity of internal transport barrier, RF induced currents have to be calculated self-consistently with the bootstrap current, thus taking into account possible synergistic effects resulting from the momentum space distortion of the electron distribution function f e . Since RF waves can cause the distribution of electrons to become non-Maxwellian, the associated changes in parallel diffusion of momentum between trapped and passing particles can be expected to modify the bootstrap current fraction; conversely, the bootstrap current distribution function can enhance the current driven by RF waves. For this purpose, a new, fast and fully implicit solver has been recently developed to carry out computations including new and detailed evaluations of the interactions between bootstrap current (BC) and Electron Cyclotron current drive (ECCD). Moreover, Ohkawa current drive (OKCD) appears to be an efficient method for driving current when the fraction of trapped particles is large. OKCD in the presence of BC is also investigated. Here, results are illustrated around projected tokamak parameters in high performance scenarios of AlcatorC-MOD. It is shown that by increasing n // , the EC wave penetration into the bulk of the electron distribution is greater, and since the resonance extends up to high p // values, this situation is the usual ECCD based on the Fisch-Boozer mechanism concerning passing particles. However, because of the close vicinity of the trapped boundary at r/a=0.7, this process is counterbalanced by the Ohkawa effect, possibly leading to a negative net current. Therefore, by injecting the EC wave in the opposite toroidal direction (n // RF by OKCD may be 70% larger than that of ECCD, with a choice of EC

  19. Fine structure of the electromagnetic fields formed by backward surface waves in an azimuthally symmetric surface wave-excited plasma source

    International Nuclear Information System (INIS)

    Kousaka, Hiroyuki; Ono, Kouichi

    2003-01-01

    The electromagnetic fields and plasma parameters have been studied in an azimuthally symmetric surface wave-excited plasma (SWP) source, by using a two-dimensional numerical analysis based on the finite-difference time-domain (FDTD) approximation to Maxwell's equations self-consistently coupled with a fluid model for plasma evolution. The FDTD/fluid hybrid simulation was performed for different gas pressures in Ar and different microwave powers at 2.45 GHz, showing that the surface waves (SWs) occur along the plasma-dielectric interfaces to sustain overdense plasmas. The numerical results indicated that the electromagnetic SWs consist of two different waves, Wave-1 and Wave-2, having relatively shorter and longer wavelengths. The Wave-1 was seen to fade away with increasing pressure and increasing power, while the Wave-2 remained relatively unchanged over the range of pressure and power investigated. The numerical results revealed that the Wave-1 propagates as backward SWs whose phase velocity and group velocity point in the opposite directions. In contrast, the Wave-2 appeared to form standing waves, being ascribed to a superposition of forward SWs whose phase and group velocities point in the same direction. The fadeaway of the Wave-1 or backward SWs at increased pressures and increased powers was seen with the damping rate increasing in the axial direction, being related to the increased plasma electron densities. A comparison with the conventional FDTD simulation indicated that such fine structure of the electromagnetic fields of SWs is not observed in the FDTD simulation with spatially uniform and time-independent plasma distributions; thus, the FDTD/fluid hybrid model should be employed in simulating the electromagnetic fields and plasma parameters in SWPs with high accuracy

  20. Interactions between Nanoparticles and Polymer Brushes: Molecular Dynamics Simulations and Self-consistent Field Theory Calculations

    Science.gov (United States)

    Cheng, Shengfeng; Wen, Chengyuan; Egorov, Sergei

    2015-03-01

    Molecular dynamics simulations and self-consistent field theory calculations are employed to study the interactions between a nanoparticle and a polymer brush at various densities of chains grafted to a plane. Simulations with both implicit and explicit solvent are performed. In either case the nanoparticle is loaded to the brush at a constant velocity. Then a series of simulations are performed to compute the force exerted on the nanoparticle that is fixed at various distances from the grafting plane. The potential of mean force is calculated and compared to the prediction based on a self-consistent field theory. Our simulations show that the explicit solvent leads to effects that are not captured in simulations with implicit solvent, indicating the importance of including explicit solvent in molecular simulations of such systems. Our results also demonstrate an interesting correlation between the force on the nanoparticle and the density profile of the brush. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.

  1. Studies of self-consistent field structure in a quasi-optical gyrotron

    International Nuclear Information System (INIS)

    Antonsen, T.M. Jr.

    1993-04-01

    The presence of an electron beam in a quasi-optical gyrotron cavity alters the structure of the fields from that of the empty cavity. A computer code has been written which calculates this alteration for either an electron beam or a thin dielectric tube placed in the cavity. Experiments measuring the quality factor of such a cavity performed for the case of a dielectric tube and the results agree with the predictions of the code. Simulations of the case of an electron beam indicate that self-consistent effects can be made small in that almost all the power leaves the cavity in a symmetric gaussian-like mode provided the resonator parameters are chosen carefully. (author) 6 figs., 1 tab., 13 refs

  2. Self-consistent equilibrium in a cylindrical, dissipative reverse field pinch

    International Nuclear Information System (INIS)

    Guo, S.C.; Paccagnella, R.

    1994-01-01

    One of the authors (C.L.S.) recently proposed a dissipative model to self-consistently solve the equilibrium problem in a free-boundary plasma column under cylindrical symmetry. In the present paper, on one hand the problem is strongly specialized to circular symmetry and to Ohm's and Fourier's laws without off-diagonal contributions; on the other hand, it is generalized by adding a dynamo effective electric field E d in Ohm's law, based on the standard turbulent model. This seems appropriate enough to study RFP equilibria, since it is well known that a stationary and cylindrically symmetric RFP is incompatible with a classical Ohm's law. Reasonably, only numerical solutions are expected to be accessible in general; but the further simplified problem with scalar and constant electric resistivity and constant dynamo coefficient α (E d =αB) can be solved analytically by elementary means. (author) 4 refs., 2 figs

  3. Adsorption of molecular brushes with polyelectrolyte backbones onto oppositely charged surfaces: A self-consistent field theory

    NARCIS (Netherlands)

    Feuz, L.; Leermakers, F.A.M.; Textor, M.; Borisov, O.V.

    2008-01-01

    The two-gradient version of the Scheutjens¿Fleer self-consistent field (SF-SCF) theory is employed to model the interaction between a molecular bottle brush with a polyelectrolyte backbone and neutral hydrophilic side chains and an oppositely charged surface. Our system mimics graft-copolymers with

  4. Quantum Ising model in transverse and longitudinal fields: chaotic wave functions

    International Nuclear Information System (INIS)

    Atas, Y Y; Bogomolny, E

    2017-01-01

    The construction of a statistical model for eigenfunctions of the Ising model in transverse and longitudinal fields is discussed in detail for the chaotic case. When the number of spins is large, each wave function coefficient has the Gaussian distribution with zero mean and variance calculated from the first two moments of the Hamiltonian. The main part of the paper is devoted to the discussion of various corrections to the asymptotic result. One type of correction is related to higher order moments of the Hamiltonian, and can be taken into account by Gibbs-like formulae. Other corrections are due to symmetry contributions, which manifest as different numbers of non-zero real and complex coefficients. The statistical model with these corrections included agrees well with numerical calculations of wave function moments. (paper)

  5. Coupled Dyson-Schwinger equations and effects of self-consistency

    International Nuclear Information System (INIS)

    Wu, S.S.; Zhang, H.X.; Yao, Y.J.

    2001-01-01

    Using the σ-ω model as an effective tool, the effects of self-consistency are studied in some detail. A coupled set of Dyson-Schwinger equations for the renormalized baryon and meson propagators in the σ-ω model is solved self-consistently according to the dressed Hartree-Fock scheme, where the hadron propagators in both the baryon and meson self-energies are required to also satisfy this coupled set of equations. It is found that the self-consistency affects the baryon spectral function noticeably, if only the interaction with σ mesons is considered. However, there is a cancellation between the effects due to the σ and ω mesons and the additional contribution of ω mesons makes the above effect insignificant. In both the σ and σ-ω cases the effects of self-consistency on meson spectral function are perceptible, but they can nevertheless be taken account of without a self-consistent calculation. Our study indicates that to include the meson propagators in the self-consistency requirement is unnecessary and one can stop at an early step of an iteration procedure to obtain a good approximation to the fully self-consistent results of all the hadron propagators in the model, if an appropriate initial input is chosen. Vertex corrections and their effects on ghost poles are also studied

  6. Configuration mixing of mean-field wave functions projected on angular momentum and particle number: Application to 24Mg

    International Nuclear Information System (INIS)

    Valor, A.; Heenen, P.-H.; Bonche, P.

    2000-01-01

    We present in this paper the general framework of a method which permits to restore the rotational and particle number symmetries of wave functions obtained in Skyrme HF + BCS calculations. This restoration is nothing but a projection of mean-field intrinsic wave functions onto good particle number and good angular momentum. The method allows us also to mix projected wave functions. Such a configuration mixing is discussed for sets of HF + BCS intrinsic states generated in constrained calculations with suitable collective variables. This procedure gives collective states which are eigenstates of the particle number and the angular momentum operators and between which transition probabilities are calculated. An application to 24 Mg is presented, with mean-field wave functions generated by axial quadrupole constraints. Theoretical spectra and transition probabilities are compared to the experiment

  7. Effects of self-consistency in a Green's function description of saturation in nuclear matter

    International Nuclear Information System (INIS)

    Dewulf, Y.; Neck, D. van; Waroquier, M.

    2002-01-01

    The binding energy in nuclear matter is evaluated within the framework of self-consistent Green's function theory, using a realistic nucleon-nucleon interaction. The two-body dynamics is solved at the level of summing particle-particle and hole-hole ladders. We go beyond the on-shell approximation and use intermediary propagators with a discrete-pole structure. A three-pole approximation is used, which provides a good representation of the quasiparticle excitations, as well as reproducing the zeroth- and first-order energy-weighted moments in both the nucleon removal and addition domains of the spectral function. Results for the binding energy are practically independent of the details of the discretization scheme. The main effect of the increased self-consistency is to introduce an additional density dependence, which causes a shift towards lower densities and smaller binding energies, as compared to a (continuous choice) Brueckner calculation with the same interaction. Particle number conservation and the Hugenholz-Van Hove theorem are satisfied with reasonable accuracy

  8. Consistent force fields for saccharides

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld

    1999-01-01

    Consistent force fields for carbohydrates were hitherto developed by extensive optimization ofpotential energy function parameters on experimental data and on ab initio results. A wide range of experimental data is used: internal structures obtained from gas phase electron diffraction and from x......-anomeric effects are accounted for without addition of specific terms. The work is done in the framework of the Consistent Force Field which originatedin Israel and was further developed in Denmark. The actual methods and strategies employed havebeen described previously. Extensive testing of the force field...

  9. Analytical free energy gradient for the molecular Ornstein-Zernike self-consistent-field method

    Directory of Open Access Journals (Sweden)

    N.Yoshida

    2007-09-01

    Full Text Available An analytical free energy gradient for the molecular Ornstein-Zernike self-consistent-field (MOZ-SCF method is presented. MOZ-SCF theory is one of the theories to considering the solvent effects on the solute electronic structure in solution. [Yoshida N. et al., J. Chem. Phys., 2000, 113, 4974] Molecular geometries of water, formaldehyde, acetonitrile and acetone in water are optimized by analytical energy gradient formula. The results are compared with those from the polarizable continuum model (PCM, the reference interaction site model (RISM-SCF and the three dimensional (3D RISM-SCF.

  10. Modeling of the 3RS tau protein with self-consistent field method and Monte Carlo simulation

    NARCIS (Netherlands)

    Leermakers, F.A.M.; Jho, Y.S.; Zhulina, E.B.

    2010-01-01

    Using a model with amino acid resolution of the 196 aa N-terminus of the 3RS tau protein, we performed both a Monte Carlo study and a complementary self-consistent field (SCF) analysis to obtain detailed information on conformational properties of these moieties near a charged plane (mimicking the

  11. Quasiparticle self-consistent GW method: a short summary

    International Nuclear Information System (INIS)

    Kotani, Takao; Schilfgaarde, Mark van; Faleev, Sergey V; Chantis, Athanasios

    2007-01-01

    We have developed a quasiparticle self-consistent GW method (QSGW), which is a new self-consistent method to calculate the electronic structure within the GW approximation. The method is formulated based on the idea of a self-consistent perturbation; the non-interacting Green function G 0 , which is the starting point for GWA to obtain G, is determined self-consistently so as to minimize the perturbative correction generated by GWA. After self-consistency is attained, we have G 0 , W (the screened Coulomb interaction) and G self-consistently. This G 0 can be interpreted as the optimum non-interacting propagator for the quasiparticles. We will summarize some theoretical discussions to justify QSGW. Then we will survey results which have been obtained up to now: e.g., band gaps for normal semiconductors are predicted to a precision of 0.1-0.3 eV; the self-consistency including the off-diagonal part is required for NiO and MnO; and so on. There are still some remaining disagreements with experiments; however, they are very systematic, and can be explained from the neglect of excitonic effects

  12. A relativistic self-consistent model for studying enhancement of space charge limited field emission due to counter-streaming ions

    International Nuclear Information System (INIS)

    Lin, M. C.; Lu, P. S.; Chang, P. C.; Ragan-Kelley, B.; Verboncoeur, J. P.

    2014-01-01

    Recently, field emission has attracted increasing attention despite the practical limitation that field emitters operate below the Child-Langmuir space charge limit. By introducing counter-streaming ion flow to neutralize the electron charge density, the space charge limited field emission (SCLFE) current can be dramatically enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of SCLFE by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a benchmark or comparison for verification of simulation codes, as well as extension to higher dimensions

  13. Propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere

    Science.gov (United States)

    Huba, J. D.; Rowland, H. L.

    1993-01-01

    The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.

  14. On the Self-Focusing of Whistler Waves in a Radial Inhomogeneous Plasma

    DEFF Research Database (Denmark)

    Balmashnov, A. A.

    1980-01-01

    The process of whistler wave self-focusing is experimentally investigated. It was found that a whistler wave propagating along the plasma column with a density crest excites a longitudinal wave of the same frequency propagating across the external magnetic field. The amplitude modulation of the l......The process of whistler wave self-focusing is experimentally investigated. It was found that a whistler wave propagating along the plasma column with a density crest excites a longitudinal wave of the same frequency propagating across the external magnetic field. The amplitude modulation...... of the latter wave is accompanied by a density modification, which leads to trapping of the whistler wave in a density trough in the center of the plasma column....

  15. Pearl-necklace structures in core-shell molecular brushes: Experiments, Monte Carlo simulations and self-consistent field modeling

    NARCIS (Netherlands)

    Polotsky, A.; Charlaganov, M.; Xu, Y.P.; Leermakers, F.A.M.; Daoud, M.; Muller, A.H.E.; Dotera, T.; Borisov, O.V.

    2008-01-01

    We present theoretical arguments and experimental evidence for a longitudinal instability in core-shell cylindrical polymer brushes with a solvophobic inner (core) block and a solvophilic outer (shell) block in selective solvents. The two-gradient self-consistent field Scheutjens-Fleer (SCF-SF)

  16. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: exactly solvable two-site Hubbard model.

    Science.gov (United States)

    Kutepov, A L

    2015-08-12

    Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ1 from the first-order perturbation theory, and the exact vertex Γ(E)). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. The results obtained with the exact vertex are directly related to the present open question-which approximation is more advantageous for future implementations, GW + DMFT or QPGW + DMFT. It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on perturbation theory (PT) systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.

  17. The self-consistent field model for Fermi systems with account of three-body interactions

    Directory of Open Access Journals (Sweden)

    Yu.M. Poluektov

    2015-12-01

    Full Text Available On the basis of a microscopic model of self-consistent field, the thermodynamics of the many-particle Fermi system at finite temperatures with account of three-body interactions is built and the quasiparticle equations of motion are obtained. It is shown that the delta-like three-body interaction gives no contribution into the self-consistent field, and the description of three-body forces requires their nonlocality to be taken into account. The spatially uniform system is considered in detail, and on the basis of the developed microscopic approach general formulas are derived for the fermion's effective mass and the system's equation of state with account of contribution from three-body forces. The effective mass and pressure are numerically calculated for the potential of "semi-transparent sphere" type at zero temperature. Expansions of the effective mass and pressure in powers of density are obtained. It is shown that, with account of only pair forces, the interaction of repulsive character reduces the quasiparticle effective mass relative to the mass of a free particle, and the attractive interaction raises the effective mass. The question of thermodynamic stability of the Fermi system is considered and the three-body repulsive interaction is shown to extend the region of stability of the system with the interparticle pair attraction. The quasiparticle energy spectrum is calculated with account of three-body forces.

  18. Self-consistent embedding of density-matrix renormalization group wavefunctions in a density functional environment.

    Science.gov (United States)

    Dresselhaus, Thomas; Neugebauer, Johannes; Knecht, Stefan; Keller, Sebastian; Ma, Yingjin; Reiher, Markus

    2015-01-28

    We present the first implementation of a density matrix renormalization group algorithm embedded in an environment described by density functional theory. The frozen density embedding scheme is used with a freeze-and-thaw strategy for a self-consistent polarization of the orbital-optimized wavefunction and the environmental densities with respect to each other.

  19. Measurements of electromagnetic waves in Phaedrus-B: Bench-mark test of ANTENA wave field calculations

    International Nuclear Information System (INIS)

    Intrator, T.; Meassick, S.; Browning, J.; Majeski, R.; Ferron, J.R.; Hershkowitz, N.

    1989-01-01

    It is shown that the predictions of a numerical code (ANTENA) and the data of wave field measurements in the Phaedrus-B tandem mirror are consistent (±25%) for right-handed (B-vector - ) wave fields and less so (±40%) for left-handed (B-vector + ) wave fields in the plasma core, and that they disagree for B-vector + fields near the column edge. Shorting out or reduction of the wave azimuthal electric fields by limiters is the probable cause of this discrepancy. The ICRF fluctuating wave B-vector fields are shown as |B-vector| contour maps in the r-z plane, where the B-vector + data peak at a smaller radius than predicted. The waves are characterized by different dominant axial wave numbers for the left- and right-handed circularly polarized fields. (author). 28 refs, 20 figs, 1 tab

  20. Micrononcasual Euclidean wave functions

    International Nuclear Information System (INIS)

    Enatsu, H.; Takenaka, A.; Okazaki, M.

    1978-01-01

    A theory which describes the internal attributes of hadrons in terms of space-time wave functions is presented. In order to develop the theory on the basis of a rather realistic model, covariant wave equations are first derived for the deuteron, in which the co-ordinates of the centre of mass of two nucleons can be defined unambiguously. Then the micro-noncasual behaviour of virtual mesons mediating between the two nucleons is expressed by means of wave functions depending only on the relative Euclidean co-ordinates with respect to the centre of mass of the two nucleons; the wave functions are assumed to obey the 0 4 and SU 2 x SU 2 groups. The properties of the wave functions under space inversion, time reversal and particle-antiparticle conjugation are investigated. It is found that the internal attributes of the mesons, such as spin, isospin, strangeness, intrinsic parity, charge parity and G-parity are explained consistently. The theory is applicable also to the case of baryons

  1. First-row diatomics: Calculation of the geometry and energetics using self-consistent gradient-functional approximations

    International Nuclear Information System (INIS)

    Kutzler, F.W.; Painter, G.S.

    1992-01-01

    A fully self-consistent series of nonlocal (gradient) density-functional calculations has been carried out using the augmented-Gaussian-orbital method to determine the magnitude of gradient corrections to the potential-energy curves of the first-row diatomics, Li 2 through F 2 . Both the Langreth-Mehl-Hu and the Perdew-Wang gradient-density functionals were used in calculations of the binding energy, bond length, and vibrational frequency for each dimer. Comparison with results obtained in the local-spin-density approximation (LSDA) using the Vosko-Wilk-Nusair functional, and with experiment, reveals that bond lengths and vibrational frequencies are rather insensitive to details of the gradient functionals, including self-consistency effects, but the gradient corrections reduce the overbinding commonly observed in the LSDA calculations of first-row diatomics (with the exception of Li 2 , the gradient-functional binding-energy error is only 50--12 % of the LSDA error). The improved binding energies result from a large differential energy lowering, which occurs in open-shell atoms relative to the diatomics. The stabilization of the atom arises from the use of nonspherical charge and spin densities in the gradient-functional calculations. This stabilization is negligibly small in LSDA calculations performed with nonspherical densities

  2. Gate-controlled current and inelastic electron tunneling spectrum of benzene: a self-consistent study.

    Science.gov (United States)

    Liang, Y Y; Chen, H; Mizuseki, H; Kawazoe, Y

    2011-04-14

    We use density functional theory based nonequilibrium Green's function to self-consistently study the current through the 1,4-benzenedithiol (BDT). The elastic and inelastic tunneling properties through this Au-BDT-Au molecular junction are simulated, respectively. For the elastic tunneling case, it is found that the current through the tilted molecule can be modulated effectively by the external gate field, which is perpendicular to the phenyl ring. The gate voltage amplification comes from the modulation of the interaction between the electrodes and the molecules in the junctions. For the inelastic case, the electron tunneling scattered by the molecular vibrational modes is considered within the self-consistent Born approximation scheme, and the inelastic electron tunneling spectrum is calculated.

  3. Wavelets in self-consistent electronic structure calculations

    International Nuclear Information System (INIS)

    Wei, S.; Chou, M.Y.

    1996-01-01

    We report the first implementation of orthonormal wavelet bases in self-consistent electronic structure calculations within the local-density approximation. These local bases of different scales efficiently describe localized orbitals of interest. As an example, we studied two molecules, H 2 and O 2 , using pseudopotentials and supercells. Considerably fewer bases are needed compared with conventional plane-wave approaches, yet calculated binding properties are similar. Our implementation employs fast wavelet and Fourier transforms, avoiding evaluating any three-dimensional integral numerically. copyright 1996 The American Physical Society

  4. Thermodynamically self-consistent theory for the Blume-Capel model.

    Science.gov (United States)

    Grollau, S; Kierlik, E; Rosinberg, M L; Tarjus, G

    2001-04-01

    We use a self-consistent Ornstein-Zernike approximation to study the Blume-Capel ferromagnet on three-dimensional lattices. The correlation functions and the thermodynamics are obtained from the solution of two coupled partial differential equations. The theory provides a comprehensive and accurate description of the phase diagram in all regions, including the wing boundaries in a nonzero magnetic field. In particular, the coordinates of the tricritical point are in very good agreement with the best estimates from simulation or series expansion. Numerical and analytical analysis strongly suggest that the theory predicts a universal Ising-like critical behavior along the lambda line and the wing critical lines, and a tricritical behavior governed by mean-field exponents.

  5. Optimization of autonomous magnetic field sensor consisting of giant magnetoimpedance sensor and surface acoustic wave transducer

    KAUST Repository

    Li, Bodong; Morsy, Ahmed Mohamed Aly; Kosel, Jü rgen

    2012-01-01

    This paper presents a novel autonomous thin film magnetic field sensor consisting of a tri-layer giant magnetoimpedance sensor and a surface acoustic wave transponder. Double and single electrode interdigital transducer (IDT) designs are employed and compared. The integrated sensor is fabricated using standard microfabrication technology. The results show the double electrode IDT has an advantage in terms of the sensitivity. In order to optimize the matching component, a simulation based on P-matrix is carried out. A maximum change of 2.4 dB of the reflection amplitude and a sensitivity of 0.34 dB/Oe are obtained experimentally. © 2012 IEEE.

  6. Optimization of autonomous magnetic field sensor consisting of giant magnetoimpedance sensor and surface acoustic wave transducer

    KAUST Repository

    Li, Bodong

    2012-11-01

    This paper presents a novel autonomous thin film magnetic field sensor consisting of a tri-layer giant magnetoimpedance sensor and a surface acoustic wave transponder. Double and single electrode interdigital transducer (IDT) designs are employed and compared. The integrated sensor is fabricated using standard microfabrication technology. The results show the double electrode IDT has an advantage in terms of the sensitivity. In order to optimize the matching component, a simulation based on P-matrix is carried out. A maximum change of 2.4 dB of the reflection amplitude and a sensitivity of 0.34 dB/Oe are obtained experimentally. © 2012 IEEE.

  7. A self-consistent field study of diblock copolymer/charged particle system morphologies for nanofiltration membranes

    International Nuclear Information System (INIS)

    Zhang, Bo; Ye, Xianggui; Edwards, Brian J.

    2013-01-01

    A combination of self-consistent field theory and density functional theory was used to examine the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Both neutral and interacting particles were examined, with and without favorable/unfavorable energetic potentials between the particles and the block segments. The phase diagrams of the various systems were constructed, allowing the identification of three types of ordered mesophases composed of lamellae, hexagonally packed cylinders, and spheroids. In particular, we examined the conditions under which the mesophases could be generated wherein the tethered particles were primarily located within the interface between the two blocks of the copolymer. Key factors influencing these properties were determined to be the particle position along the diblock chain, the interaction potentials of the blocks and particles, the block copolymer composition, and molecular weight of the copolymer

  8. Source and path effects in the wave fields of tremor and explosions at Stromboli Volcano, Italy

    Science.gov (United States)

    Chouet, B.; Saccorotti, G.; Martini, M.; Dawson, P.; De Luca, G.; Milana, G.; Scarpa, R.

    1997-01-01

    The wave fields generated by Strombolian activity are investigated using data from small-aperture seismic arrays deployed on the north flank of Stromboli and data from seismic and pressure transducers set up near the summit crater. Measurements of slowness and azimuth as a function of time clearly indicate that the sources of tremor and explosions are located beneath the summit crater at depths shallower than 200 m with occasional bursts of energy originating from sources extending to a depth of 3 km. Slowness, azimuth, and particle motion measurements reveal a complex composition of body and surface waves associated with topography, structure, and source properties. Body waves originating at depths shallower than 200 m dominate the wave field at frequencies of 0.5-2.5 Hz, and surface waves generated by the surficial part of the source and by scattering sources distributed around the island dominate at frequencies above 2.5 Hz. The records of tremor and explosions are both dominated by SH motion. Far-field records from explosions start with radial motion, and near-field records from those events show dominantly horizontal motion and often start with a low-frequency (1-2 Hz) precursor characterized by elliptical particle motion, followed within a few seconds by a high-frequency radial phase (1-10 Hz) accompanying the eruption of pyroclastics. The dominant component of the near- and far-field particle motions from explosions, and the timing of air and body wave phases observed in the near field, are consistent with a gaspiston mechanism operating on a shallow (<200 m deep), vertical crack-like conduit. Models of a degassing fluid column suggest that noise emissions originating in the collective oscillations of bubbles ascending in the magma conduit may provide an adequate self-excitation mechanism for sustained tremor generation at Stromboli. Copyright 1997 by the American Geophysical Union.

  9. Thermodynamics of a Compressible Maier-Saupe Model Based on the Self-Consistent Field Theory of Wormlike Polymer

    Directory of Open Access Journals (Sweden)

    Ying Jiang

    2017-02-01

    Full Text Available This paper presents a theoretical formalism for describing systems of semiflexible polymers, which can have density variations due to finite compressibility and exhibit an isotropic-nematic transition. The molecular architecture of the semiflexible polymers is described by a continuum wormlike-chain model. The non-bonded interactions are described through a functional of two collective variables, the local density and local segmental orientation tensor. In particular, the functional depends quadratically on local density-variations and includes a Maier–Saupe-type term to deal with the orientational ordering. The specified density-dependence stems from a free energy expansion, where the free energy of an isotropic and homogeneous homopolymer melt at some fixed density serves as a reference state. Using this framework, a self-consistent field theory is developed, which produces a Helmholtz free energy that can be used for the calculation of the thermodynamics of the system. The thermodynamic properties are analysed as functions of the compressibility of the model, for values of the compressibility realizable in mesoscopic simulations with soft interactions and in actual polymeric materials.

  10. The non-Gaussian joint probability density function of slope and elevation for a nonlinear gravity wave field. [in ocean surface

    Science.gov (United States)

    Huang, N. E.; Long, S. R.; Bliven, L. F.; Tung, C.-C.

    1984-01-01

    On the basis of the mapping method developed by Huang et al. (1983), an analytic expression for the non-Gaussian joint probability density function of slope and elevation for nonlinear gravity waves is derived. Various conditional and marginal density functions are also obtained through the joint density function. The analytic results are compared with a series of carefully controlled laboratory observations, and good agreement is noted. Furthermore, the laboratory wind wave field observations indicate that the capillary or capillary-gravity waves may not be the dominant components in determining the total roughness of the wave field. Thus, the analytic results, though derived specifically for the gravity waves, may have more general applications.

  11. A self-consistent theory of the magnetic polaron

    International Nuclear Information System (INIS)

    Marvakov, D.I.; Kuzemsky, A.L.; Vlahov, J.P.

    1984-10-01

    A finite temperature self-consistent theory of magnetic polaron in the s-f model of ferromagnetic semiconductors is developed. The calculations are based on the novel approach of the thermodynamic two-time Green function methods. This approach consists in the introduction of the ''irreducible'' Green functions (IGF) and derivation of the exact Dyson equation and exact self-energy operator. It is shown that IGF method gives a unified and natural approach for a calculation of the magnetic polaron states by taking explicitly into account the damping effects and finite lifetime. (author)

  12. Gyrokinetic theory of fast-wave transmission with arbitrary parallel wave number in a non-uniformly magnetized plasma

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Dendy, R.O.

    1990-01-01

    The gyrokinetic theory of ion cyclotron resonance is extended to include propagation at arbitrary angles to a straight equilibrium magnetic field with a linear perpendicular gradient in strength. The case of the compressional Alfven wave propagating in a D( 3 He) plasma is analyzed in detail, for arbitrary concentrations of the two species. A self-consistent local dispersion relation is obtained using a single mode description; this approach enables three-dimensional effects to be included and permits efficient calculation of the transmission coefficient. The dependence of this quantity on the species density ratio, minority temperature, plasma density, magnetic field and equilibrium scale length is obtained. A self-consistent treatment of the variation of the field polarization across the resonant region is included. Families of transmission curves are given as a function of the normalized parallel wave number for parameters relevant to Joint European Torus. Perpendicular absorption by the minority ions is also discussed, and shown to depend on a single parameter, the ratio of the ion thermal velocity to the Alfven speed. (author)

  13. Electrostatic wave heating and possible formation of self-generated high electric fields in a magnetized plasma

    Science.gov (United States)

    Mascali, D.; Celona, L.; Gammino, S.; Miracoli, R.; Castro, G.; Gambino, N.; Ciavola, G.

    2011-10-01

    A plasma reactor operates at the Laboratori Nazionali del Sud of INFN, Catania, and it has been used as a test-bench for the investigation of innovative mechanisms of plasma ignition based on electrostatic waves (ES-W), obtained via the inner plasma EM-to-ES wave conversion. Evidences of Bernstein wave (BW) generation will be shown. The Langmuir probe measurements have revealed a strong increase of the ion saturation current, where the BW are generated or absorbed, this being a signature of possible high energy ion flows. The results are interpreted through the Bernstein wave heating theory, which predicts the formation of high speed rotating layers of the plasma (a dense plasma ring is in fact observed). High intensity inner plasma self-generated electric fields (on the order of several tens of kV/cm) come out by our calculations.

  14. Kinetic Simulations of the Self-Focusing and Dissipation of Finite-Width Electron Plasma Waves

    Energy Technology Data Exchange (ETDEWEB)

    Winjum, B. J. [Univ. of California, Los Angeles, CA (United States); Berger, R. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chapman, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Banks, J. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brunner, S. [Federal Inst. of Technology, Lausanne (Switzerland)

    2013-09-01

    Two-dimensional simulations, both Vlasov and particle-in-cell, are presented that show the evolution of the field and electron distribution of finite-width, nonlinear electron plasma waves. The intrinsically intertwined effects of self-focusing and dissipation of field energy caused by electron trapping are studied in simulated systems that are hundreds of wavelengths long in the transverse direction but only one wavelength long and periodic in the propagation direction. From various initial wave states, both the width at focus Δm relative to the initial width Δ0 and the maximum field amplitude at focus are shown to be a function of the growth rate of the transverse modulational instability γTPMI divided by the loss rate of field energy νE to electrons escaping the trapping region. With dissipation included, an amplitude threshold for self-focusing γTPMIE~1 is found that supports the analysis of Rose [Phys. Plasmas 12, 012318 (2005)].

  15. Application of the generalized multi structural (GMS) wave function to photoelectron spectra and electron scattering processes

    International Nuclear Information System (INIS)

    Nascimento, M.A.C. do

    1992-01-01

    A Generalized Multi Structural (GMS) wave function is presented which combines the advantages of the SCF-MO and VB models, preserving the classical chemical structures but optimizing the orbitals in a self-consistent way. This wave function is particularly suitable to treat situations where the description of the molecular state requires localized wave functions. It also provides a very convenient way of treating the electron correlation problem, avoiding large CI expansions. The final wave functions are much more compact and easier to interpret than the ones obtained by the conventional methods, using orthogonal orbitals. Applications of the GMS wave function to the study of the photoelectron spectra of the trans-glyoxal molecule and to electron impact excitation processes in the nitrogen molecule are presented as an illustration of the method. (author)

  16. Self-consistent treatment of nuclear collective motion with an application to the giant-dipole resonance

    International Nuclear Information System (INIS)

    Liran, S.; Technion-Israel Inst. of Tech., Haifa. Dept. of Physics)

    1977-01-01

    This paper extends the recent theory of Liran, Scheefer, Scheid and Greiner on non-adiabatic cranking and nuclear collective motion. In the present work we show the self-consistency conditions for the collective motion, which are indicated by appropriate time-dependent Lagrange multipliers, can be treated explicitly. The energy conservation and the self-consistency condition in the case of one collective degree of freedom are expressed in differential form. This leads to a set of coupled differential equations in time for the many-body wave function, for the collective variable and for the Lagrange multiplier. An iteration procedure similar to that of the previous work is also presented. As an illustrative example, we investigate Brink's single-particle description of the giant-dipole resonance. In this case, the important role played by non-adiabaticity and self-consistency in determining the collective motion is demonstrated and discussed. We also consider the fact that in this example of a fast collective motion, the adiabatic cranking model of Inglis gives the correct mass parameter. (orig.) [de

  17. Application of the graphical unitary group approach to the energy second derivative for CI wave functions via the coupled perturbed CI equations

    International Nuclear Information System (INIS)

    Fox, D.J.

    1983-10-01

    Analytic derivatives of the potential energy for Self-Consistent-Field (SCF) wave functions have been developed in recent years and found to be useful tools. The first derivative for configuration interaction (CI) wave functions is also available. This work details the extension of analytic methods to energy second derivatives for CI wave functions. The principal extension required for second derivatives is evaluation of the first order change in the CI wave function with respect to a nuclear perturbation. The shape driven graphical unitary group approach (SDGUGA) direct CI program was adapted to evaluate this term via the coupled-perturbed CI equations. Several iterative schemes are compared for use in solving these equations. The pilot program makes no use of molecular symmetry but the timing results show that utilization of molecular symmetry is desirable. The principles for defining and solving a set of symmetry adapted equations are discussed. Evaluation of the second derivative also requires the solution of the second order coupled-perturbed Hartree-Fock equations to obtain the correction to the molecular orbitals due to the nuclear perturbation. This process takes a consistently higher percentage of the computation time than for the first order equations alone and a strategy for its reduction is discussed

  18. Communication: An efficient approach to compute state-specific nuclear gradients for a generic state-averaged multi-configuration self consistent field wavefunction

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, Alexander A., E-mail: alex.granovsky@gmail.com [Firefly project, Moscow, 117593 Moscow (Russian Federation)

    2015-12-21

    We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.

  19. Communication: An efficient approach to compute state-specific nuclear gradients for a generic state-averaged multi-configuration self consistent field wavefunction

    International Nuclear Information System (INIS)

    Granovsky, Alexander A.

    2015-01-01

    We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation

  20. Communication: An efficient approach to compute state-specific nuclear gradients for a generic state-averaged multi-configuration self consistent field wavefunction.

    Science.gov (United States)

    Granovsky, Alexander A

    2015-12-21

    We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.

  1. Self-consistent Maxwell-Bloch theory of quantum-dot-population switching in photonic crystals

    International Nuclear Information System (INIS)

    Takeda, Hiroyuki; John, Sajeev

    2011-01-01

    We theoretically demonstrate the population switching of quantum dots (QD's), modeled as two-level atoms in idealized one-dimensional (1D) and two-dimensional (2D) photonic crystals (PC's) by self-consistent solution of the Maxwell-Bloch equations. In our semiclassical theory, energy states of the electron are quantized, and electron dynamics is described by the atomic Bloch equation, while electromagnetic waves satisfy the classical Maxwell equations. Near a waveguide cutoff in a photonic band gap, the local electromagnetic density of states (LDOS) and spontaneous emission rates exhibit abrupt changes with frequency, enabling large QD population inversion driven by both continuous and pulsed optical fields. We recapture and generalize this ultrafast population switching using the Maxwell-Bloch equations. Radiative emission from the QD is obtained directly from the surrounding PC geometry using finite-difference time-domain simulation of the electromagnetic field. The atomic Bloch equations provide a source term for the electromagnetic field. The total electromagnetic field, consisting of the external input and radiated field, drives the polarization components of the atomic Bloch vector. We also include a microscopic model for phonon dephasing of the atomic polarization and nonradiative decay caused by damped phonons. Our self-consistent theory captures stimulated emission and coherent feedback effects of the atomic Mollow sidebands, neglected in earlier treatments. This leads to remarkable high-contrast QD-population switching with relatively modest (factor of 10) jump discontinuities in the electromagnetic LDOS. Switching is demonstrated in three separate models of QD's placed (i) in the vicinity of a band edge of a 1D PC, (ii) near a cutoff frequency in a bimodal waveguide channel of a 2D PC, and (iii) in the vicinity of a localized defect mode side coupled to a single-mode waveguide channel in a 2D PC.

  2. Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT).

    Science.gov (United States)

    Maurer, Reinhard J; Reuter, Karsten

    2013-07-07

    Accurate and efficient simulation of excited state properties is an important and much aspired cornerstone in the study of adsorbate dynamics on metal surfaces. To this end, the recently proposed linear expansion Δ-self-consistent field method by Gavnholt et al. [Phys. Rev. B 78, 075441 (2008)] presents an efficient alternative to time consuming quasi-particle calculations. In this method, the standard Kohn-Sham equations of density-functional theory are solved with the constraint of a non-equilibrium occupation in a region of Hilbert-space resembling gas-phase orbitals of the adsorbate. In this work, we discuss the applicability of this method for the excited-state dynamics of metal-surface mounted organic adsorbates, specifically in the context of molecular switching. We present necessary advancements to allow for a consistent quality description of excited-state potential-energy surfaces (PESs), and illustrate the concept with the application to Azobenzene adsorbed on Ag(111) and Au(111) surfaces. We find that the explicit inclusion of substrate electronic states modifies the topologies of intra-molecular excited-state PESs of the molecule due to image charge and hybridization effects. While the molecule in gas phase shows a clear energetic separation of resonances that induce isomerization and backreaction, the surface-adsorbed molecule does not. The concomitant possibly simultaneous induction of both processes would lead to a significantly reduced switching efficiency of such a mechanism.

  3. Wave function of a microwave-driven Bose-Einstein magnon condensate

    International Nuclear Information System (INIS)

    Rezende, Sergio M.

    2010-01-01

    It has been observed experimentally that a magnon gas in a film of yttrium-iron garnet at room temperature driven by a microwave field exhibits Bose-Einstein condensation (BEC) when the driving power exceeds a critical value. In a previous paper we presented a model for the dynamics of the magnon system in wave-vector space that provides firm theoretical support for the formation of the BEC. Here we show that the wave function of the magnon condensate in configuration space satisfies a Gross-Pitaevskii equation similarly to other BEC systems. The theory is consistent with the previous model in wave-vector space, and its results are in qualitative agreement with recent measurements of the spatial distribution of the magnon condensate driven by a nonuniform microwave field.

  4. Self-consistent one-gluon exchange in soliton bag models

    International Nuclear Information System (INIS)

    Dodd, L.R.; Adelaide Univ.; Williams, A.G.

    1988-01-01

    The treatment of soliton bag models as two-point boundary value problems is extended to include self-consistent one-gluon exchange interactions. The colour-magnetic contribution to the nucleon-delta mass splitting is calculated self-consistently in the mean-field, one-gluon-exchange approximation for the Friedberg-Lee and Nielsen-Patkos models. Small glueball mass parameters (m GB ∝ 500 MeV) are favoured. Comparisons with previous calculations are made. (orig.)

  5. Effect of external magnetic field on superconducting and spin density wave gaps of high-Tc superconductors

    International Nuclear Information System (INIS)

    Pradhan, B.; Raj, B.K.; Rout, G.C.

    2009-01-01

    A theoretical model is addressed here to study the interplay of the superconductivity (SC) and the spin density wave (SDW) long range orders in underdoped region in the vicinity of on-set of superconductivity in presence of an external magnetic field. The order parameters are calculated by using Zubarev's technique of Green's functions and determined numerically self-consistently. The gap parameters are found to be strongly coupled to each other through their coupling constants. The interplay displays BCS type two gaps in the quasi-particle density of states (DOS) which resemble the tunneling conductance of STM experiments. The gap edges in the DOS appear at ±(z+z 1 ) and ±(z-z 1 ). The applied magnetic field further induces Zeeman splitting which is explained on the basis of spin-filter effect of tunneling experiment.

  6. Spin-Wave Wave Function for Quantum Spin Models : Condensed Matter and Statistical Physics

    OpenAIRE

    Franjo, FRANJIC; Sandro, SORELLA; Istituto Nazionale di Fisica della Materia International School for Advance Studies; Istituto Nazionale di Fisica della Materia International School for Advance Studies

    1997-01-01

    We present a new approach to determine an accurate variational wave function for general quantum spin models, completely defined by a consistency requirement with the simple and well-known linear spin-wave expansion. With this wave function, it is also possible to obtain the correct behavior of the long distance correlation functions for the 1D S=1/2 antiferromagnet. In 2D the proposed spin-wave wave function represents an excellent approximation to the exact ground state of the S=1.2 XY mode...

  7. Self-consistent Analysis of Three-dimensional Uniformly Charged Ellipsoid with Zero Emittance

    International Nuclear Information System (INIS)

    Batygin, Yuri K.

    2001-01-01

    A self-consistent treatment of a three-dimensional ellipsoid with negligible emittance in time-dependent external field is performed. Envelope equations describing the evolution of an ellipsoid boundary are discussed. For a complete model it is required that the initial particle momenta be a linear function of the coordinates. Numerical example and verification of the problem by a 3-dimensional particle-in-cell simulations are given

  8. Application of Wave Distribution Function Method to the ERG/PWE Data

    Science.gov (United States)

    Ota, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Matsuoka, A.; Hikishima, M.; Kasaba, Y.; Ozaki, M.; Yagitani, S.; Tsuchiya, F.; Kumamoto, A.

    2017-12-01

    The ERG (Arase) satellite was launched on 20 December 2016 to study acceleration and loss mechanisms of relativistic electrons in the Earth's magnetosphere. The Plasma Wave Experiment (PWE), which is one of the science instruments on board the ERG satellite, measures electric field and magnetic field. The PWE consists of three sub-systems; EFD (Electric Field Detector), OFA/WFC (Onboard Frequency Analyzer and Waveform Capture), and HFA (High Frequency Analyzer).The OFA/WFC measures electromagnetic field spectra and raw waveforms in the frequency range from few Hz to 20 kHz. The OFA produces three kind of data; OFA-SPEC (power spectrum), OFA-MATRIX (spectral matrix), and OFA-COMPLEX (complex spectrum). The OFA-MATRIX measures ensemble averaged complex cross-spectra of two electric field components, and of three magnetic field components. The OFA-COMPLEX measures instantaneous complex spectra of electric and magnetic fields. These data are produced every 8 seconds in the nominal mode, and it can be used for polarization analysis and wave propagation direction finding.In general, spectral matrix composed by cross-spectra of observed signals is used for direction finding, and many algorithms have been proposed. For example, Means method and SVD method can be applied on the assumption that the spectral matrix is consists of a single plane wave, while wave distribution function (WDF) method is applicable even to the data in which multiple numbers of plane waves are simultaneously included. In this presentation, we introduce the results when the WDF method is applied to the ERG/PWE data.

  9. A combined wave distribution function and stability analysis of Viking particle and low-frequency wave data

    International Nuclear Information System (INIS)

    Oscarsson, T.E.; Roennmark, K.G.

    1990-01-01

    In this paper the authors present an investigation of low-frequency waves observed on auroral field lines below the acceleration region by the Swedish satellite Viking. The measured frequency spectra are peaked at half the local proton gyrofrequency, and the waves are observed in close connection with precipitating electrons. In order to obtain information about the distribution of wave energy in wave vector space, they reconstruct the wave distribution function (WDF) from observed spectral densities. They use a new scheme that allows them to reconstruct simultaneously the WDF over a broad frequency band. The method also makes it possible to take into account available particle observations as well as Doppler shifts caused by the relative motion between the plasma and the satellite. The distribution of energy in wave vector space suggested by the reconstructed WDF is found to be consistent with what is expected from a plasma instability driven by the observed precipitating electrons. Furthermore, by using UV images obtained on Viking, they demonstrate that the wave propagation directions indicated by the reconstructed WDFs are consistent with a simple model of the presumed wave source in the electron precipitation region

  10. The self-consistent multiparticle-multihole configuration mixing. Motivations, state of the art and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Pillet, N.; Dupuis, M.; Hupin, G.; Berger, J.F. [DAM, CEA, Arpajon (France); Robin, C. [Western Michigan University, Department of Physics, Kalamazoo, MI (United States)

    2017-03-15

    The main objective of this paper is to review the state of the art of the multiparticle-multihole configuration mixing approach which was proposed and implemented using the Gogny interaction ∝ 10 years ago. Various theoretical aspects are re-analyzed when a Hamiltonian description is chosen: the link with exact many-body theories, the impact of truncations in the multiconfigurational space, the importance of defining single-particle orbitals which are consistent with the correlations introduced in the many-body wave function, the role of the self-consistency, and more practically the numerical convergence algorithm. Several applications done with the phenomenological effective Gogny interaction are discussed. Finally, future directions to extend and generalize the method are discussed. (orig.)

  11. The self-consistent multiparticle-multihole configuration mixing. Motivations, state of the art and perspectives

    Science.gov (United States)

    Pillet, N.; Robin, C.; Dupuis, M.; Hupin, G.; Berger, J.-F.

    2017-03-01

    The main objective of this paper is to review the state of the art of the multiparticle-multihole configuration mixing approach which was proposed and implemented using the Gogny interaction ˜ 10 years ago. Various theoretical aspects are re-analyzed when a Hamiltonian description is chosen: the link with exact many-body theories, the impact of truncations in the multiconfigurational space, the importance of defining single-particle orbitals which are consistent with the correlations introduced in the many-body wave function, the role of the self-consistency, and more practically the numerical convergence algorithm. Several applications done with the phenomenological effective Gogny interaction are discussed. Finally, future directions to extend and generalize the method are discussed.

  12. The self-consistent multiparticle-multihole configuration mixing. Motivations, state of the art and perspectives

    International Nuclear Information System (INIS)

    Pillet, N.; Dupuis, M.; Hupin, G.; Berger, J.F.; Robin, C.

    2017-01-01

    The main objective of this paper is to review the state of the art of the multiparticle-multihole configuration mixing approach which was proposed and implemented using the Gogny interaction ∝ 10 years ago. Various theoretical aspects are re-analyzed when a Hamiltonian description is chosen: the link with exact many-body theories, the impact of truncations in the multiconfigurational space, the importance of defining single-particle orbitals which are consistent with the correlations introduced in the many-body wave function, the role of the self-consistency, and more practically the numerical convergence algorithm. Several applications done with the phenomenological effective Gogny interaction are discussed. Finally, future directions to extend and generalize the method are discussed. (orig.)

  13. Self-consistent potential variations in magnetic wells

    International Nuclear Information System (INIS)

    Kesner, J.; Knorr, G.; Nicholson, D.R.

    1981-01-01

    Self-consistent electrostatic potential variations are considered in a spatial region of weak magnetic field, as in the proposed tandem mirror thermal barriers (with no trapped ions). For some conditions, equivalent to ion distributions with a sufficiently high net drift speed along the magnetic field, the desired potential depressions are found. When the net drift speed is not high enough, potential depressions are found only in combination with strong electric fields on the boundaries of the system. These potential depressions are not directly related to the magnetic field depression. (author)

  14. Self-consistent approximations beyond the CPA: Part II

    International Nuclear Information System (INIS)

    Kaplan, T.; Gray, L.J.

    1982-01-01

    This paper concentrates on a self-consistent approximation for random alloys developed by Kaplan, Leath, Gray, and Diehl. The construction of the augmented space formalism for a binary alloy is sketched, and the notation to be used derived. Using the operator methods of the augmented space, the self-consistent approximation is derived for the average Green's function, and for evaluating the self-energy, taking into account the scattering by clusters of excitations. The particular cluster approximation desired is derived by treating the scattering by the excitations with S /SUB T/ exactly. Fourier transforms on the disorder-space clustersite labels solve the self-consistent set of equations. Expansion to short range order in the alloy is also discussed. A method to reduce the problem to a computationally tractable form is described

  15. Gravitational waves from scalar field accretion

    International Nuclear Information System (INIS)

    Nunez, Dario; Degollado, Juan Carlos; Moreno, Claudia

    2011-01-01

    Our aim in this work is to outline some physical consequences of the interaction between black holes and scalar field halos in terms of gravitational waves. In doing so, the black hole is taken as a static and spherically symmetric gravitational source, i.e. the Schwarzschild black hole, and we work within the test field approximation, considering that the scalar field lives in the curved space-time outside the black hole. We focused on the emission of gravitational waves when the black hole is perturbed by the surrounding scalar field matter. The symmetries of the space-time and the simplicity of the matter source allow, by means of a spherical harmonic decomposition, to study the problem by means of a one-dimensional description. Some properties of such gravitational waves are discussed as a function of the parameters of the infalling scalar field, and allow us to make the conjecture that the gravitational waves carry information on the type of matter that generated them.

  16. Role of elasticity forces in thermodynamics of intercalation compounds : Self-consistent mean-field theory and Monte Carlo simulations

    NARCIS (Netherlands)

    Kalikmanov, V.I.; De Leeuw, S.W.

    2002-01-01

    We propose a self-consistent mean-field lattice-gas theory of intercalation compounds based on effective interactions between interstitials in the presence of the host atoms. In addition to short-range screened Coulomb repulsions, usually discussed in the lattice gas models, the present theory takes

  17. A self-consistent mean-field approach to the dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Kunihiro, Teiji; Hatsuda, Tetsuo.

    1984-01-01

    The dynamical symmetry breaking phenomena in the Nambu and Jona-Lasimio model are reexamined in the framework of a self-consistent mean-field (SCMF) theory. First, we formulate the SCMF theory in a lucid manner based on a successful decomposition of the Lagrangian into semiclassical and residual interaction parts by imposing a condition that ''the dangerous term'' in Bogoliubov's sense should vanish. Then, we show that the difference of the energy density between the super and normal phases, the correct expression of which the original authors failed to give, can be readily obtained by applying the SCMF theory. Futhermore, it is shown that the expression thus obtained is identical to that of the effective potential (E.P.) given by the path-integral method with an auxiliary field up to the one loop order in the loop expansion, then one finds a new and simple way to get the E.P. Some numerical results of the E.P. and the dynamically generated mass of fermion are also shown. As another demonstration of the powerfulness of the SCMF theory, we derive, in the Appendix, the energy density of the O(N)-phi 4 model including the higher order corrections in the sense of large N expansion. (author)

  18. Magnetic form factor of NpAs2: a crystal field wave function for 5f electrons

    International Nuclear Information System (INIS)

    Amoretti, G.; Blaise, A.; Bonnet, M.; Boucherle, J.X.; Delapalme, A.; Fournier, J.M.; Vigneron, F.

    1982-10-01

    Neptunium magnetic form factor measurements in the ferromagnetic phase of NpAs 2 (T = 4.2 K, H = 4.6 T) are analysed under different assumptions: Np 3 + , Np 4 + or Np 5 + , with a free ion wave-function (Russel-Saunders and intermediate coupling scheme) or with a Crystal Field Wave function for 5f electrons: sub(m)sup(μ)asub(m)asub(m)/J,m>. The experimental results are compatible with either a 3+ or 4+ state

  19. Self-consistent electrodynamic scattering in the symmetric Bragg case

    International Nuclear Information System (INIS)

    Campos, H.S.

    1988-01-01

    We have analyzed the symmetric Bragg case, introducing a model of self consistent scattering for two elliptically polarized beams. The crystal is taken as a set of mathematical planes, each of them defined by a surface density of dipoles. We have considered the mesofield and the epifield differently from that of the Ewald's theory and, we assumed a plane of dipoles and the associated fields as a self consistent scattering unit. The exact analytical treatment when applied to any two neighbouring planes, results in a general and self consistent Bragg's equation, in terms of the amplitude and phase variations. The generalized solution for the set of N planes was obtained after introducing an absorption factor in the incident radiation, in two ways: (i) the analytical one, through a rule of field similarity, which says that the incidence occurs in both faces of the all crystal planes and also, through a matricial development with the Chebyshev polynomials; (ii) using the numerical solution we calculated, iteratively, the reflectivity, the reflection phase, the transmissivity, the transmission phase and the energy. The results are showed through reflection and transmission curves, which are characteristics as from kinematical as dynamical theories. The conservation of the energy results from the Ewald's self consistency principle is used. In the absorption case, the results show that it is not the only cause for the asymmetric form in the reflection curves. The model contains basic elements for a unified, microscope, self consistent, vectorial and exact formulation for interpretating the X ray diffraction in perfect crystals. (author)

  20. Nonstatic, self-consistent πN t matrix in nuclear matter

    International Nuclear Information System (INIS)

    Van Orden, J.W.

    1984-01-01

    In a recent paper, a calculation of the self-consistent πN t matrix in nuclear matter was presented. In this calculation the driving term of the self-consistent equation was chosen to be a static approximation to the free πN t matrix. In the present work, the earlier calculation is extended by using a nonstatic, fully-off-shell free πN t matrix as a starting point. Right-hand pole and cut contributions to the P-wave πN amplitudes are derived using a Low expansion and include effects due to recoil of the interacting πN system as well as the transformation from the πN c.m. frame to the nuclear rest frame. The self-consistent t-matrix equation is rewritten as two integral equations which modify the pole and cut contributions to the t matrix separately. The self-consistent πN t matrix is calculated in nuclear matter and a nonlocal optical potential is constructed from it. The resonant contribution to the optical potential is found to be broadened by 20% to 50% depending on pion momentum and is shifted upward in energy by approximately 10 MeV in comparison to the first-order optical potential. Modifications to the nucleon pole contribution are found to be negligible

  1. Self consistent hydrodynamic description of the plasma wake field excitation induced by a relativistic charged-particle beam in an unmagnetized plasma

    Science.gov (United States)

    Jovanović, Dušan; Fedele, Renato; De Nicola, Sergio; Akhter, Tamina; Belić, Milivoj

    2017-12-01

    A self-consistent nonlinear hydrodynamic theory is presented of the propagation of a long and thin relativistic electron beam, for a typical plasma wake field acceleration configuration in an unmagnetized and overdense plasma. The random component of the trajectories of the beam particles as well as of their velocity spread is modelled by an anisotropic temperature, allowing the beam dynamics to be approximated as a 3D adiabatic expansion/compression. It is shown that even in the absence of the nonlinear plasma wake force, the localisation of the beam in the transverse direction can be achieved owing to the nonlinearity associated with the adiabatic compression/rarefaction and a coherent stationary state is constructed. Numerical calculations reveal the possibility of the beam focussing and defocussing, but the lifetime of the beam can be significantly extended by the appropriate adjustments, so that transverse oscillations are observed, similar to those predicted within the thermal wave and Vlasov kinetic models.

  2. Solvent effects in time-dependent self-consistent field methods. II. Variational formulations and analytical gradients

    International Nuclear Information System (INIS)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2015-01-01

    This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performing microcanonical excited state molecular dynamics with p-nitroaniline

  3. What is the difference in the p-wave and s-wave photodetachment in an electric field?

    OpenAIRE

    Du, M. L.

    2009-01-01

    By applying closed-orbit theory to an existing model, a simple formula is derived for the modulation function of s-wave photo-detachment in the presence of a static electric field. We then compare the s-wave modulation function with the p-wave modulation function. We show the maximums (minimums) in the s-wave modulation function correspond to the minimums (maximums) in the p-wave modulation function because of a phase difference of $\\pi$ in their oscillations. The oscillation amplitude in the...

  4. Nonstandard jump functions for radically symmetric shock waves

    International Nuclear Information System (INIS)

    Baty, Roy S.; Tucker, Don H.; Stanescu, Dan

    2008-01-01

    Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function.

  5. SOLAR WIND STRAHL BROADENING BY SELF-GENERATED PLASMA WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, J.; Gaelzer, R. [UFPEL, Pelotas (Brazil); Vinas, A. F. [NASA GSFC, Greenbelt, MD 20771 (United States); Yoon, P. H. [IPST, UMD, College Park, MD (United States); Ziebell, L. F., E-mail: joel.pavan@ufpel.edu.br, E-mail: rudi@ufpel.edu.br, E-mail: adolfo.vinas@nasa.gov, E-mail: yoonp@umd.edu, E-mail: luiz.ziebell@ufrgs.br [UFRGS, Porto Alegre (Brazil)

    2013-06-01

    This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.

  6. Multifractality and quantum diffusion from self-consistent theory of localization

    Energy Technology Data Exchange (ETDEWEB)

    Suslov, I. M., E-mail: suslov@kapitza.ras.ru [Kapitza Institute for Physical Problems (Russian Federation)

    2015-11-15

    Multifractal properties of wave functions in a disordered system can be derived from self-consistent theory of localization by Vollhardt and Wölfle. A diagrammatic interpretation of results allows to obtain all scaling relations used in numerical experiments. The arguments are given that the one-loop Wegner result for a space dimension d = 2 + ϵ is exact, so the multifractal spectrum is strictly parabolical. The σ-models are shown to be deficient at the four-loop level and the possible reasons of that are discussed. The extremely slow convergence to the thermodynamic limit is demonstrated. The open question on the relation between multifractality and a spatial dispersion of the diffusion coefficient D(ω, q) is resolved in the compromise manner due to ambiguity of the D(ω, q) definition. Comparison is made with the extensive numerical material.

  7. Covariance Function for Nearshore Wave Assimilation Systems

    Science.gov (United States)

    2018-01-30

    which is applicable for any spectral wave model. The four dimensional variational (4DVar) assimilation methods are based on the mathematical ...covariance can be modeled by a parameterized Gaussian function, for nearshore wave assimilation applications , the covariance function depends primarily on...SPECTRAL ACTION DENSITY, RESPECTIVELY. ............................ 5 FIGURE 2. TOP ROW: STATISTICAL ANALYSIS OF THE WAVE-FIELD PROPERTIES AT THE

  8. Overlap function and Regge cut in a self-consistent multi-Regge model

    International Nuclear Information System (INIS)

    Banerjee, H.; Mallik, S.

    1977-01-01

    A self-consistent multi-Regge model with unit intercept for the input trajectory is presented. Violation of unitarity is avoided in the model by assuming the vanishing of the pomeron-pomeron-hadron vertex, as the mass of either pomeron tends to zero. The model yields an output Regge pole in the inelastic overlap function which for t>0 lies on the r.h.s. of the moving branch point in the complex J-plane, but for t<0 moves to unphysical sheets. The leading Regge-cut contribution to the forward diffraction amplitude can be negative, so that the total cross section predicted by the model attains a limiting value from below

  9. Overlap function and Regge cut in a self-consistent multi-Regge model

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, H [Saha Inst. of Nuclear Physics, Calcutta (India); Mallik, S [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik

    1977-04-21

    A self-consistent multi-Regge model with unit intercept for the input trajectory is presented. Violation of unitarity is avoided in the model by assuming the vanishing of the pomeron-pomeron-hadron vertex, as the mass of either pomeron tends to zero. The model yields an output Regge pole in the inelastic overlap function which for t>0 lies on the r.h.s. of the moving branch point in the complex J-plane, but for t<0 moves to unphysical sheets. The leading Regge-cut contribution to the forward diffraction amplitude can be negative, so that the total cross section predicted by the model attains a limiting value from below.

  10. A simple and realistic triton wave function

    International Nuclear Information System (INIS)

    Lomnitz-Adler, J.; Pandharipande, V.R.

    1980-01-01

    We propose a simple triton wave function that consists of a product of three correlation operators operating on a three-body spin-isospin state. This wave function is formally similar to that used in the recent variational theories of nuclear matter, the main difference being in the long-range behavior of the correlation operators. Variational calculations are carried out with the Reid potential, using this wave function in the so-called 'symmetrized product' and 'independent pair' forms. The triton energy and density distributions obtained with the symmetrized product wave function agree with those obtained in Faddeev and other variational calculations using harmonic oscillator states. The proposed wave function and calculational methods can be easily generalized to treat the four-nucleon α-particle. (orig.)

  11. Regularization of fields for self-force problems in curved spacetime: Foundations and a time-domain application

    International Nuclear Information System (INIS)

    Vega, Ian; Detweiler, Steven

    2008-01-01

    We propose an approach for the calculation of self-forces, energy fluxes and waveforms arising from moving point charges in curved spacetimes. As opposed to mode-sum schemes that regularize the self-force derived from the singular retarded field, this approach regularizes the retarded field itself. The singular part of the retarded field is first analytically identified and removed, yielding a finite, differentiable remainder from which the self-force is easily calculated. This regular remainder solves a wave equation which enjoys the benefit of having a nonsingular source. Solving this wave equation for the remainder completely avoids the calculation of the singular retarded field along with the attendant difficulties associated with numerically modeling a delta-function source. From this differentiable remainder one may compute the self-force, the energy flux, and also a waveform which reflects the effects of the self-force. As a test of principle, we implement this method using a 4th-order (1+1) code, and calculate the self-force for the simple case of a scalar charge moving in a circular orbit around a Schwarzschild black hole. We achieve agreement with frequency-domain results to ∼0.1% or better.

  12. Multidimensional Wave Field Signal Theory: Transfer Function Relationships

    Directory of Open Access Journals (Sweden)

    Natalie Baddour

    2012-01-01

    Full Text Available The transmission of information by propagating or diffusive waves is common to many fields of engineering and physics. Such physical phenomena are governed by a Helmholtz (real wavenumber or pseudo-Helmholtz (complex wavenumber equation. Since these equations are linear, it would be useful to be able to use tools from signal theory in solving related problems. The aim of this paper is to derive multidimensional input/output transfer function relationships in the spatial domain for these equations in order to permit such a signal theoretic approach to problem solving. This paper presents such transfer function relationships for the spatial (not Fourier domain within appropriate coordinate systems. It is shown that the relationships assume particularly simple and computationally useful forms once the appropriate curvilinear version of a multidimensional spatial Fourier transform is used. These results are shown for both real and complex wavenumbers. Fourier inversion of these formulas would have applications for tomographic problems in various modalities. In the case of real wavenumbers, these inversion formulas are presented in closed form, whereby an input can be calculated from a given or measured wavefield.

  13. Generalized molecular orbital theory: a limited multiconfiguration self-consistent-field-theory

    International Nuclear Information System (INIS)

    Hall, M.B.

    1981-01-01

    The generalized molecular orbital (GMO) approach is a limited type of multiconfiguration self-consistent-field (MCSCF) calculation which divides the orbitals of a closed shell molecule into four shells: doubly occupied, strongly occupied, weakly occupied, and unoccupied. The orbitals within each shell have the same occupation number and are associated with the same Fock operator. Thus, the orbital optimization is ideally suited to solution via a coupling operator. The determination of the orbitals is followed by a configuration interaction (CI) calculation within the strongly and weakly occupied shells. Results for BH 3 show a striking similarity between the GMO's and the natural orbitals (NO's) from an all singles and doubles CI calculation. Although the GMO approach would not be accurate for an entire potential surface, results for spectroscopic constants of N 2 show that it is suitable near the equilibrium geometry. This paper describes the use of the GMO technique to determine the primary orbital space, but a potentially important application may be in the determination of a secondary orbital space following a more accurate MCSCF determination of the primary space

  14. Self-consistent tight-binding model of B and N doping in graphene

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Pedersen, Jesper Goor

    2013-01-01

    . The impurity potential depends sensitively on the impurity occupancy, leading to a self-consistency requirement. We solve this problem using the impurity Green's function and determine the self-consistent local density of states at the impurity site and, thereby, identify acceptor and donor energy resonances.......Boron and nitrogen substitutional impurities in graphene are analyzed using a self-consistent tight-binding approach. An analytical result for the impurity Green's function is derived taking broken electron-hole symmetry into account and validated by comparison to numerical diagonalization...

  15. Exact self-consistent solutions to the interacting spinor and scalar field equations in Bianchi type-I space-time

    International Nuclear Information System (INIS)

    Alvarado, R.; Rybakov, Yu.P.; Shikin, G.N.; Saha, B.

    1995-01-01

    Self-consistent solutions to the system of spinor and scalar field equations in General Relativity are studied for the case of Bianchi type-I space-time. The absence of initial singularity should be emphasized for some types of solutions and also the isotropic mode of space-time expansion in some special cases. 3 refs

  16. Conformal consistency relations for single-field inflation

    International Nuclear Information System (INIS)

    Creminelli, Paolo; Noreña, Jorge; Simonović, Marko

    2012-01-01

    We generalize the single-field consistency relations to capture not only the leading term in the squeezed limit — going as 1/q 3 , where q is the small wavevector — but also the subleading one, going as 1/q 2 . This term, for an (n+1)-point function, is fixed in terms of the variation of the n-point function under a special conformal transformation; this parallels the fact that the 1/q 3 term is related with the scale dependence of the n-point function. For the squeezed limit of the 3-point function, this conformal consistency relation implies that there are no terms going as 1/q 2 . We verify that the squeezed limit of the 4-point function is related to the conformal variation of the 3-point function both in the case of canonical slow-roll inflation and in models with reduced speed of sound. In the second case the conformal consistency conditions capture, at the level of observables, the relation among operators induced by the non-linear realization of Lorentz invariance in the Lagrangian. These results mean that, in any single-field model, primordial correlation functions of ζ are endowed with an SO(4,1) symmetry, with dilations and special conformal transformations non-linearly realized by ζ. We also verify the conformal consistency relations for any n-point function in models with a modulation of the inflaton potential, where the scale dependence is not negligible. Finally, we generalize (some of) the consistency relations involving tensors and soft internal momenta

  17. Structure and representation of correlation functions and the density matrix for a statistical wave field in optics

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Mukunda, N.

    1978-03-01

    A systematic structure analysis of the correlation functions of statistical quantum optics is carried out. From a suitably defined auxiliary two-point function identification of the excited modes in the wave field is found. The relative simplicity of the higher order correlation functions emerges as a by-product and the conditions under which these are made pure are derived. These results depend in a crucial manner on the notion of coherence indices aand of unimodular coherence indices. A new class of approximate expressions for the density operator of a statistical wave field is worked out based on discrete characteristic sets. These are even more economical than the diagonal coherent state representations. An appreciation of the subtleties of quantum theory obtains. Certain implications for the physics of light beams are cited. 28 references

  18. Dynamic polarizability of a complex atom in strong laser fields

    International Nuclear Information System (INIS)

    Rapoport, L.P.; Klinskikh, A.F.; Mordvinov, V.V.

    1997-01-01

    An asymptotic expansion of the dynamic polarizability of a complex atom in a strong circularly polarized light field is found for the case of high frequencies. The self-consistent approximation of the Hartree-Fock type for the ''atom+field'' system is developed, within the framework of which a numerical calculation of the dynamic polarizability of Ne, Kr, and Ar atoms in a strong radiation field is performed. The strong field effect is shown to manifest itself not only in a change of the energy spectrum and the character of behavior of the wave functions of atomic electrons, but also in a modification of the one-electron self-consistent potential for the atom in the field

  19. A self-consistent nonlinear theory of resistive-wall instability in a relativistic electron beam

    International Nuclear Information System (INIS)

    Uhm, H.S.

    1994-01-01

    A self-consistent nonlinear theory of resistive-wall instability is developed for a relativistic electron beam propagating through a grounded cylindrical resistive tube. The theory is based on the assumption that the frequency of the resistive-wall instability is lower than the cutoff frequency of the waveguide. The theory is concentrated on study of the beam current modulation directly related to the resistive-wall klystron, in which a relativistic electron beam is modulated at the first cavity and propagates downstream through the resistive wall. Because of the self-excitation of the space charge waves by the resistive-wall instability, a highly nonlinear current modulation of the electron beam is accomplished as the beam propagates downstream. A partial integrodifferential equation is obtained in terms of the initial energy modulation (ε), the self-field effects (h), and the resistive-wall effects (κ). Analytically investigating the partial integrodifferential equation, a scaling law of the propagation distance z m at which the maximum current modulation occurs is obtained. It is found in general that the self-field effects dominate over the resistive-wall effects at the beginning of the propagation. As the beam propagates farther downstream, the resistive-wall effects dominate. Because of a relatively large growth rate of the instability, the required tube length of the klystron is short for most applications

  20. A self-consistent two-dimensional resistive fluid theory of field-aligned potential structures including charge separation and magnetic and velocity shear

    International Nuclear Information System (INIS)

    Hesse, M.; Birn, J.; Schindler, K.

    1990-01-01

    A self-consistent two-fluid theory that includes the magnetic field and shear patterns therein is developed to model stationary electrostatic structures with field-aligned potential drops. Shear flow is also included in the theory since this seems to be a prominent feature of the structures of interest. In addition, Ohmic dissipation, a Hall term and pressure gradients in a generalized Ohm's law, modified for cases without quasi-neutrality are included. In the analytic theory, the electrostatic force is balanced by field-aligned pressure gradients, i.e., thermal effects in the direction of the magnetic field, and by pressure gradients and magnetic stresses in the perpendicular direction. Within this theory simple examples of applications are presented to demonstrate the kind of solutions resulting from the model. The results show how the effects of charge separation and shear in the magnetic field and the velocity can be combined to form self-consistent structures such as are found to exist above the aurora, suggested also in association with solar flares

  1. BCS wave function, matrix product states, and the Ising conformal field theory

    Science.gov (United States)

    Montes, Sebastián; Rodríguez-Laguna, Javier; Sierra, Germán

    2017-11-01

    We present a characterization of the many-body lattice wave functions obtained from the conformal blocks (CBs) of the Ising conformal field theory (CFT). The formalism is interpreted as a matrix product state using continuous ancillary degrees of freedom. We provide analytic and numerical evidence that the resulting states can be written as BCS states. We give a complete proof that the translationally invariant 1D configurations have a BCS form and we find suitable parent Hamiltonians. In particular, we prove that the ground state of the finite-size critical Ising transverse field (ITF) Hamiltonian can be obtained with this construction. Finally, we study 2D configurations using an operator product expansion (OPE) approximation. We associate these states to the weak pairing phase of the p +i p superconductor via the scaling of the pairing function and the entanglement spectrum.

  2. Self-interaction corrected density functional calculations of molecular Rydberg states

    International Nuclear Information System (INIS)

    Gudmundsdóttir, Hildur; Zhang, Yao; Weber, Peter M.; Jónsson, Hannes

    2013-01-01

    A method is presented for calculating the wave function and energy of Rydberg excited states of molecules. A good estimate of the Rydberg state orbital is obtained using ground state density functional theory including Perdew-Zunger self-interaction correction and an optimized effective potential. The total energy of the excited molecule is obtained using the Delta Self-Consistent Field method where an electron is removed from the highest occupied orbital and placed in the Rydberg orbital. Results are presented for the first few Rydberg states of NH 3 , H 2 O, H 2 CO, C 2 H 4 , and N(CH 3 ) 3 . The mean absolute error in the energy of the 33 molecular Rydberg states presented here is 0.18 eV. The orbitals are represented on a real space grid, avoiding the dependence on diffuse atomic basis sets. As in standard density functional theory calculations, the computational effort scales as NM 2 where N is the number of orbitals and M is the number of grid points included in the calculation. Due to the slow scaling of the computational effort with system size and the high level of parallelism in the real space grid approach, the method presented here makes it possible to estimate Rydberg electron binding energy in large molecules

  3. Dynamics of a charged particle in a circularly polarized travelling electromagnetic wave. Self-consistent model for the wave-particle dynamical interaction

    International Nuclear Information System (INIS)

    Bourdier, A.

    1999-01-01

    This work concerns mainly the dynamics of a charged particle in an electromagnetic wave. It is a first step in elaborating a more general model permitting to predict the wave-particle interaction. We show how deriving a first integral gives an idea on how to create an electron current in a cold electron plasma. We present results which can be used to test the 2D and 3D Vlasov-Maxwell codes being built up in CEA-DAM. These codes will allow the calcination of the magnetic field created by an electromagnetic wave like the one due to the inverse Faraday effect when a circularly polarized wave drives the electrons of a plasma into circular orbits. (author)

  4. The externally corrected coupled cluster approach with four- and five-body clusters from the CASSCF wave function.

    Science.gov (United States)

    Xu, Enhua; Li, Shuhua

    2015-03-07

    An externally corrected CCSDt (coupled cluster with singles, doubles, and active triples) approach employing four- and five-body clusters from the complete active space self-consistent field (CASSCF) wave function (denoted as ecCCSDt-CASSCF) is presented. The quadruple and quintuple excitation amplitudes within the active space are extracted from the CASSCF wave function and then fed into the CCSDt-like equations, which can be solved in an iterative way as the standard CCSDt equations. With a size-extensive CASSCF reference function, the ecCCSDt-CASSCF method is size-extensive. When the CASSCF wave function is readily available, the computational cost of the ecCCSDt-CASSCF method scales as the popular CCSD method (if the number of active orbitals is small compared to the total number of orbitals). The ecCCSDt-CASSCF approach has been applied to investigate the potential energy surface for the simultaneous dissociation of two O-H bonds in H2O, the equilibrium distances and spectroscopic constants of 4 diatomic molecules (F2(+), O2(+), Be2, and NiC), and the reaction barriers for the automerization reaction of cyclobutadiene and the Cl + O3 → ClO + O2 reaction. In most cases, the ecCCSDt-CASSCF approach can provide better results than the CASPT2 (second order perturbation theory with a CASSCF reference function) and CCSDT methods.

  5. DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB).

    Science.gov (United States)

    Gaus, Michael; Cui, Qiang; Elstner, Marcus

    2012-04-10

    The self-consistent-charge density-functional tight-binding method (SCC-DFTB) is an approximate quantum chemical method derived from density functional theory (DFT) based on a second-order expansion of the DFT total energy around a reference density. In the present study we combine earlier extensions and improve them consistently with, first, an improved Coulomb interaction between atomic partial charges, and second, the complete third-order expansion of the DFT total energy. These modifications lead us to the next generation of the DFTB methodology called DFTB3, which substantially improves the description of charged systems containing elements C, H, N, O, and P, especially regarding hydrogen binding energies and proton affinities. As a result, DFTB3 is particularly applicable to biomolecular systems. Remaining challenges and possible solutions are also briefly discussed.

  6. Self-consistent perturbed equilibrium with neoclassical toroidal torque in tokamaks

    International Nuclear Information System (INIS)

    Park, Jong-Kyu; Logan, Nikolas C.

    2017-01-01

    Toroidal torque is one of the most important consequences of non-axisymmetric fields in tokamaks. The well-known neoclassical toroidal viscosity (NTV) is due to the second-order toroidal force from anisotropic pressure tensor in the presence of these asymmetries. This work shows that the first-order toroidal force originating from the same anisotropic pressure tensor, despite having no flux surface average, can significantly modify the local perturbed force balance and thus must be included in perturbed equilibrium self-consistent with NTV. The force operator with an anisotropic pressure tensor is not self-adjoint when the NTV torque is finite and thus is solved directly for each component. This approach yields a modified, non-self-adjoint Euler-Lagrange equation that can be solved using a variety of common drift-kinetic models in generalized tokamak geometry. The resulting energy and torque integral provides a unique way to construct a torque response matrix, which contains all the information of self-consistent NTV torque profiles obtainable by applying non-axisymmetric fields to the plasma. This torque response matrix can then be used to systematically optimize non-axisymmetric field distributions for desired NTV profiles. Published by AIP Publishing.

  7. Self-consistent asset pricing models

    Science.gov (United States)

    Malevergne, Y.; Sornette, D.

    2007-08-01

    We discuss the foundations of factor or regression models in the light of the self-consistency condition that the market portfolio (and more generally the risk factors) is (are) constituted of the assets whose returns it is (they are) supposed to explain. As already reported in several articles, self-consistency implies correlations between the return disturbances. As a consequence, the alphas and betas of the factor model are unobservable. Self-consistency leads to renormalized betas with zero effective alphas, which are observable with standard OLS regressions. When the conditions derived from internal consistency are not met, the model is necessarily incomplete, which means that some sources of risk cannot be replicated (or hedged) by a portfolio of stocks traded on the market, even for infinite economies. Analytical derivations and numerical simulations show that, for arbitrary choices of the proxy which are different from the true market portfolio, a modified linear regression holds with a non-zero value αi at the origin between an asset i's return and the proxy's return. Self-consistency also introduces “orthogonality” and “normality” conditions linking the betas, alphas (as well as the residuals) and the weights of the proxy portfolio. Two diagnostics based on these orthogonality and normality conditions are implemented on a basket of 323 assets which have been components of the S&P500 in the period from January 1990 to February 2005. These two diagnostics show interesting departures from dynamical self-consistency starting about 2 years before the end of the Internet bubble. Assuming that the CAPM holds with the self-consistency condition, the OLS method automatically obeys the resulting orthogonality and normality conditions and therefore provides a simple way to self-consistently assess the parameters of the model by using proxy portfolios made only of the assets which are used in the CAPM regressions. Finally, the factor decomposition with the

  8. Self-sustained collisional drift-wave turbulence in a sheared magnetic field

    International Nuclear Information System (INIS)

    Scott, B.D.

    1990-01-01

    Although collisional drift waves in a sheared slab configuration are linearly damped, it is found that the corresponding turbulence is self-sustaining if initialized at nonlinear amplitude. The influence of the free-energy source represented by the temperature and density gradients on the turbulent system involving bidirectional spectral energy transfer is responsible for this change of regime. Several important features of tokamak edge fluctuations are reproduced by these single-rational-surface nonlinear dynamics. As a result, drift-wave turbulence must still be considered as an underlying dynamic of anomalous transport in tokamak edges

  9. Self-consistent mean field theory studies of the thermodynamics and quantum spin dynamics of magnetic Skyrmions.

    Science.gov (United States)

    Wieser, R

    2017-05-04

    A self-consistent mean field theory is introduced and used to investigate the thermodynamics and spin dynamics of an S  =  1 quantum spin system with a magnetic Skyrmion. The temperature dependence of the Skyrmion profile as well as the phase diagram are calculated. In addition, the spin dynamics of a magnetic Skyrmion is described by solving the time dependent Schrödinger equation with additional damping term. The Skyrmion annihilation process driven by an electric field is used to compare the trajectories of the quantum mechanical simulation with a semi-classical description for the spin expectation values using a differential equation similar to the classical Landau-Lifshitz-Gilbert equation.

  10. Strong ion accelerating by collisionless magnetosonic shock wave propagating perpendicular to a magnetic field

    International Nuclear Information System (INIS)

    Ohsawa, Yukiharu.

    1984-12-01

    A 2-1/2 dimensional fully relativistic, fully electromagnetic particle code is used to study a time evolution of nonlinear magnetosonic pulse propagating in the direction perpendicular to a magnetic field. The pulse is excited by an instantaneous piston acceleration, and evolves totally self-consistently. Large amplitude pulse traps some ions and accelerates them parallel to the wave front. They are detrapped when their velocities become of the order of the sum of the ExB drift velocity and the wave phase velocity, where E is the electric field in the direction of wave propagation. The pulse develops into a quasi-shock wave in a collisionless plasma by a dissipation due to the resonant ion acceleration. Simple nonlinear wave theory for a cold plasma well describes the shock properties observed in the simulation except for the effects of resonant ions. In particular, magnitude of an electric potential across the shock region is derived analytically and is found to be in good agreement with our simulations. The potential jump is proportional to B 2 , and hence the ExB drift velocity of the trapped ions is proportional to B. (author)

  11. Self-consistent density functional calculation of the image potential at a metal surface

    International Nuclear Information System (INIS)

    Jung, J; Alvarellos, J E; Chacon, E; GarcIa-Gonzalez, P

    2007-01-01

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z 0 ), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z 0 , and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description

  12. Self-consistent density functional calculation of the image potential at a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Alvarellos, J E [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Chacon, E [Instituto de Ciencias de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, E-28049 Madrid (Spain); GarcIa-Gonzalez, P [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain)

    2007-07-04

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z{sub 0}), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z{sub 0}, and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description.

  13. Self-consistent gravitational self-force

    International Nuclear Information System (INIS)

    Pound, Adam

    2010-01-01

    I review the problem of motion for small bodies in general relativity, with an emphasis on developing a self-consistent treatment of the gravitational self-force. An analysis of the various derivations extant in the literature leads me to formulate an asymptotic expansion in which the metric is expanded while a representative worldline is held fixed. I discuss the utility of this expansion for both exact point particles and asymptotically small bodies, contrasting it with a regular expansion in which both the metric and the worldline are expanded. Based on these preliminary analyses, I present a general method of deriving self-consistent equations of motion for arbitrarily structured (sufficiently compact) small bodies. My method utilizes two expansions: an inner expansion that keeps the size of the body fixed, and an outer expansion that lets the body shrink while holding its worldline fixed. By imposing the Lorenz gauge, I express the global solution to the Einstein equation in the outer expansion in terms of an integral over a worldtube of small radius surrounding the body. Appropriate boundary data on the tube are determined from a local-in-space expansion in a buffer region where both the inner and outer expansions are valid. This buffer-region expansion also results in an expression for the self-force in terms of irreducible pieces of the metric perturbation on the worldline. Based on the global solution, these pieces of the perturbation can be written in terms of a tail integral over the body's past history. This approach can be applied at any order to obtain a self-consistent approximation that is valid on long time scales, both near and far from the small body. I conclude by discussing possible extensions of my method and comparing it to alternative approaches.

  14. A global wave-driven magnetohydrodynamic solar model with a unified treatment of open and closed magnetic field topologies

    Energy Technology Data Exchange (ETDEWEB)

    Oran, R.; Van der Holst, B.; Landi, E.; Jin, M.; Sokolov, I. V.; Gombosi, T. I., E-mail: oran@umich.edu [Atmospheric, Oceanic and Atmospheric Sciences, University of Michigan, 2455 Hayward, Ann Arbor, MI, 48105 (United States)

    2013-12-01

    We describe, analyze, and validate the recently developed Alfvén Wave Solar Model, a three-dimensional global model starting from the top of the chromosphere and extending into interplanetary space (out to 1-2 AU). This model solves the extended, two-temperature magnetohydrodynamics equations coupled to a wave kinetic equation for low-frequency Alfvén waves. In this picture, heating and acceleration of the plasma are due to wave dissipation and to wave pressure gradients, respectively. The dissipation process is described by a fully developed turbulent cascade of counterpropagating waves. We adopt a unified approach for calculating the wave dissipation in both open and closed magnetic field lines, allowing for a self-consistent treatment in any magnetic topology. Wave dissipation is the only heating mechanism assumed in the model; no geometric heating functions are invoked. Electron heat conduction and radiative cooling are also included. We demonstrate that the large-scale, steady state (in the corotating frame) properties of the solar environment are reproduced, using three adjustable parameters: the Poynting flux of chromospheric Alfvén waves, the perpendicular correlation length of the turbulence, and a pseudoreflection coefficient. We compare model results for Carrington rotation 2063 (2007 November-December) with remote observations in the extreme-ultraviolet and X-ray ranges from the Solar Terrestrial Relations Observatory, Solar and Heliospheric Observatory, and Hinode spacecraft and with in situ measurements by Ulysses. The results are in good agreement with observations. This is the first global simulation that is simultaneously consistent with observations of both the thermal structure of the lower corona and the wind structure beyond Earth's orbit.

  15. Self-consistent perturbation expansion for Bose-Einstein condensates satisfying Goldstone's theorem and conservation laws

    International Nuclear Information System (INIS)

    Kita, Takafumi

    2009-01-01

    Quantum-field-theoretic descriptions of interacting condensed bosons have suffered from the lack of self-consistent approximation schemes satisfying Goldstone's theorem and dynamical conservation laws simultaneously. We present a procedure to construct such approximations systematically by using either an exact relation for the interaction energy or the Hugenholtz-Pines relation to express the thermodynamic potential in a Luttinger-Ward form. Inspection of the self-consistent perturbation expansion up to the third order with respect to the interaction shows that the two relations yield a unique identical result at each order, reproducing the conserving-gapless mean-field theory [T. Kita, J. Phys. Soc. Jpn. 74, 1891 (2005)] as the lowest-order approximation. The uniqueness implies that the series becomes exact when infinite terms are retained. We also derive useful expressions for the entropy and superfluid density in terms of Green's function and a set of real-time dynamical equations to describe thermalization of the condensate.

  16. Self-action of Bessel wave packets in a system of coupled light guides and formation of light bullets

    Energy Technology Data Exchange (ETDEWEB)

    Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2017-01-15

    The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.

  17. Symmetrized partial-wave method for density-functional cluster calculations

    International Nuclear Information System (INIS)

    Averill, F.W.; Painter, G.S.

    1994-01-01

    The computational advantage and accuracy of the Harris method is linked to the simplicity and adequacy of the reference-density model. In an earlier paper, we investigated one way the Harris functional could be extended to systems outside the limits of weakly interacting atoms by making the charge density of the interacting atoms self-consistent within the constraints of overlapping spherical atomic densities. In the present study, a method is presented for augmenting the interacting atom charge densities with symmetrized partial-wave expansions on each atomic site. The added variational freedom of the partial waves leads to a scheme capable of giving exact results within a given exchange-correlation approximation while maintaining many of the desirable convergence and stability properties of the original Harris method. Incorporation of the symmetry of the cluster in the partial-wave construction further reduces the level of computational effort. This partial-wave cluster method is illustrated by its application to the dimer C 2 , the hypothetical atomic cluster Fe 6 Al 8 , and the benzene molecule

  18. Self-consistent velocity dependent effective interactions

    International Nuclear Information System (INIS)

    Kubo, Takayuki; Sakamoto, Hideo; Kammuri, Tetsuo; Kishimoto, Teruo.

    1993-09-01

    The field coupling method is extended to a system with a velocity dependent mean potential. By means of this method, we can derive the effective interactions which are consistent with the mean potential. The self-consistent velocity dependent effective interactions are applied to the microscopic analysis of the structures of giant dipole resonances (GDR) of 148,154 Sm, of the first excited 2 + states of Sn isotopes and of the first excited 3 - states of Mo isotopes. It is clarified that the interactions play crucial roles in describing the splitting of the resonant structure of GDR peaks, in restoring the energy weighted sum rule values, and in reducing B (Eλ) values. (author)

  19. Influence of hurricane wind field in the structure of directional wave spectra.

    Science.gov (United States)

    Esquivel-Trava, Bernardo; García-Nava, Hector; Osuna, Pedro; Ocampo-Torres, Francisco J.

    2017-04-01

    Three numerical experiments using the spectral wave prediction model SWAN were carried out to gain insight into the mechanism that controls the directional and frequency distributions of hurricane wave energy. One particular objective is to evaluate the effect of the translation speed of the hurricane and the presence of concentric eye walls, on both the wave growth process and the shape of the directional wave spectrum. The HRD wind field of Hurricane Dean on August 20 at 7:30 was propagated at two different velocities (5 and 10 m/s). An idealized concentric eye wall (a Gaussian function that evolve in time along a path in the form of an Archimedean spiral) was imposed to the wind field. The white-capping formulation of Westhuysen et al. (2007) was selected. The wave model represents fairly well the directionality of the energy and the shape of the directional spectra in the hurricane domain. The model results indicate that the forward movement of the storm influences the development of the waves, consistent with field observations. Additionally the same experiments were carried out using the Wave Watch III model with the source terms formulation proposed by Ardhuin et al., 2010, with the aim of making comparisons between the physical processes that represent each formulation, and the latest results will be addressed. References Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland, A., van der Westhuysen, A., et al. (2010). Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. Journal of Physical Oceanography, 40(9), 1917-1941. doi:10.1175/2010JPO4324.1 Van der Westhuysen, A. J., Zijlema, M., & Battjes, J. A. (2007). Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coast. Eng., 54(2), 151-170. doi:10.1016/j.coastaleng.2006.08.006

  20. Nonlinear wave breaking in self-gravitating viscoelastic quantum fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Aniruddha, E-mail: anibabun@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Roychoudhury, Rajkumar, E-mail: rajdaju@rediffmail.com [Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700075 (India); Department of Mathematics, Bethune College, Kolkata 700006 (India); Bhar, Radhaballav [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Khan, Manoranjan, E-mail: mkhan.ju@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India)

    2017-02-12

    The stability of a viscoelastic self-gravitating quantum fluid has been studied. Symmetry breaking instability of solitary wave has been observed through ‘viscosity modified Ostrovsky equation’ in weak gravity limit. In presence of strong gravitational field, the solitary wave breaks into shock waves. Response to a Gaussian perturbation, the system produces quasi-periodic short waves, which in terns predicts the existence of gravito-acoustic quasi-periodic short waves in lower solar corona region. Stability analysis of this dynamical system predicts gravity has the most prominent effect on the phase portraits, therefore, on the stability of the system. The non-existence of chaotic solution has also been observed at long wavelength perturbation through index value theorem. - Highlights: • In weak gravitational field, viscoelastic quantum fluid exhibits symmetry breaking instability. • Gaussian perturbation produces quasi-periodic gravito-acoustic waves into the system. • There exists no chaotic state of the system against long wavelength perturbations.

  1. Travelling-wave-sustained discharges

    International Nuclear Information System (INIS)

    Schlueter, Hans; Shivarova, Antonia

    2007-01-01

    This review is on discharges maintained by travelling waves: new plasma sources, discovered in 1974 and considered as a prototype of the gas discharges according to their definition as nonlinear systems which unify in a self-consistent manner plasmas and fields. In the presentation here of the fluid-plasma models of the diffusion-controlled regime of the travelling-wave-sustained discharges (TWSDs), the basic features of the discharge maintenance-the discharge self-consistency and the electron heating in the high-frequency field-are stressed. Operation of stationary and pulsed discharges, discharge maintenance without and in external magnetic fields as well as discharge production in different gases (argon, helium, helium-argon gas mixtures and hydrogen) are covered. Modulation instability of diffusion-controlled discharges and discharge filamentation at higher gas pressures are also included in the review. Experimental findings which motivate aspects of the reported modelling are pointed out

  2. Effect of external magnetic field on superconducting and spin density wave gaps of high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, B., E-mail: brunda@iopb.res.i [Govt. Science College, Malkangiri 764 048 (India); Raj, B.K. [B.J.B. College, Bhubaneswar 751 014 (India); Rout, G.C., E-mail: gcr@iopb.res.i [Condensed Matter Physics Group P.G. Dept. of Applied Physics and Ballistics, F.M. University, Balasore 756 019 (India)

    2009-07-01

    A theoretical model is addressed here to study the interplay of the superconductivity (SC) and the spin density wave (SDW) long range orders in underdoped region in the vicinity of on-set of superconductivity in presence of an external magnetic field. The order parameters are calculated by using Zubarev's technique of Green's functions and determined numerically self-consistently. The gap parameters are found to be strongly coupled to each other through their coupling constants. The interplay displays BCS type two gaps in the quasi-particle density of states (DOS) which resemble the tunneling conductance of STM experiments. The gap edges in the DOS appear at +-(z+z{sub 1}) and +-(z-z{sub 1}). The applied magnetic field further induces Zeeman splitting which is explained on the basis of spin-filter effect of tunneling experiment.

  3. Wave function of free electron in a strong laser plasma

    International Nuclear Information System (INIS)

    Zhu Shitong; Shen Wenda; Guo Qizhi

    1993-01-01

    The wave function of free electron in a strong laser plasma is obtained by solving exactly the Dirac equation in a curved space-time with optical metric for the laser plasma. When the laser field is diminished to zero, the wave function is naturally reduced to relativistic wave function of free electron. The possible application of the wave function is discussed

  4. Schrödinger Theory of Electrons in Electromagnetic Fields: New Perspectives

    Directory of Open Access Journals (Sweden)

    Viraht Sahni

    2017-03-01

    Full Text Available The Schrödinger theory of electrons in an external electromagnetic field is described from the new perspective of the individual electron. The perspective is arrived at via the time-dependent “Quantal Newtonian” law (or differential virial theorem. (The time-independent law, a special case, provides a similar description of stationary-state theory. These laws are in terms of “classical” fields whose sources are quantal expectations of Hermitian operators taken with respect to the wave function. The laws reveal the following physics: (a in addition to the external field, each electron experiences an internal field whose components are representative of a specific property of the system such as the correlations due to the Pauli exclusion principle and Coulomb repulsion, the electron density, kinetic effects, and an internal magnetic field component. The response of the electron is described by the current density field; (b the scalar potential energy of an electron is the work done in a conservative field. It is thus path-independent. The conservative field is the sum of the internal and Lorentz fields. Hence, the potential is inherently related to the properties of the system, and its constituent property-related components known. As the sources of the fields are functionals of the wave function, so are the respective fields, and, therefore, the scalar potential is a known functional of the wave function; (c as such, the system Hamiltonian is a known functional of the wave function. This reveals the intrinsic self-consistent nature of the Schrödinger equation, thereby providing a path for the determination of the exact wave functions and energies of the system; (d with the Schrödinger equation written in self-consistent form, the Hamiltonian now admits via the Lorentz field a new term that explicitly involves the external magnetic field. The new understandings are explicated for the stationary state case by application to two quantum

  5. Nonlinear self-precession and wavenumber shift of electromagnetic waves under resonance and of Alfven waves in plasmas

    International Nuclear Information System (INIS)

    Bhattacharyya, B.; Chakraborty, B.

    1979-01-01

    Nonlinear corrections of a left and a right circularly polarized electromagnetic wave of the same frequency, propagating in the direction of a static and uniform magnetic field in a cold and collisionally damped two-component plasma, have been evaluated. The nonlinearly correct dispersion relation, self-generating nonlinear precessional rotation of the polarization ellipse of the wave and the shift in a wave parameter depend on linear combinations of products of the amplitude components taken two at a time and hence on the energies of the waves. Both in the low frequency resonance (that is when the ion cyclotron frequency equals the wave frequency) and in the high frequency resonance (that is when the electron cyclotron frequency equals the wave frequency), the self-precessional rate and wavenumber shift are found to be large and so have the possibility of detection in laboratory experiments. Moreover, for the limit leading to Alfven waves, these nonlinear effects have been found to have some interesting and significant properties. (Auth.)

  6. Self-consistent collisional-radiative model for hydrogen atoms: Atom–atom interaction and radiation transport

    International Nuclear Information System (INIS)

    Colonna, G.; Pietanza, L.D.; D’Ammando, G.

    2012-01-01

    Graphical abstract: Self-consistent coupling between radiation, state-to-state kinetics, electron kinetics and fluid dynamics. Highlight: ► A CR model of shock-wave in hydrogen plasma has been presented. ► All equations have been coupled self-consistently. ► Non-equilibrium electron and level distributions are obtained. ► The results show non-local effects and non-equilibrium radiation. - Abstract: A collisional-radiative model for hydrogen atom, coupled self-consistently with the Boltzmann equation for free electrons, has been applied to model a shock tube. The kinetic model has been completed considering atom–atom collisions and the vibrational kinetics of the ground state of hydrogen molecules. The atomic level kinetics has been also coupled with a radiative transport equation to determine the effective adsorption and emission coefficients and non-local energy transfer.

  7. A simple model of the plasma deflagration gun including self-consistent electric and magnetic fields

    International Nuclear Information System (INIS)

    Enloe, C.L.; Reinovsky, R.E.

    1985-01-01

    At the Air Force Weapons Laboratory, interest has continued for some time in energetic plasma injectors. A possible scheme for such a device is the plasma deflagration gun. When the question arose whether it would be possible to scale a deflagration gun to the multi-megajoule energy level, it became clear that a scaling law which described the fun as a circuit element and allowed one to confidently scale gun parameters would be required. The authors sought to develop a scaling law which self-consistently described the current, magnetic field, and velocity profiles in the gun. They based this scaling law on plasma parameters exclusively, abandoning the fluid approach

  8. Two-particle irreducible effective actions versus resummation: Analytic properties and self-consistency

    Directory of Open Access Journals (Sweden)

    Michael Brown

    2015-11-01

    Full Text Available Approximations based on two-particle irreducible (2PI effective actions (also known as Φ-derivable, Cornwall–Jackiw–Tomboulis or Luttinger–Ward functionals depending on context have been widely used in condensed matter and non-equilibrium quantum/statistical field theory because this formalism gives a robust, self-consistent, non-perturbative and systematically improvable approach which avoids problems with secular time evolution. The strengths of 2PI approximations are often described in terms of a selective resummation of Feynman diagrams to infinite order. However, the Feynman diagram series is asymptotic and summation is at best a dangerous procedure. Here we show that, at least in the context of a toy model where exact results are available, the true strength of 2PI approximations derives from their self-consistency rather than any resummation. This self-consistency allows truncated 2PI approximations to capture the branch points of physical amplitudes where adjustments of coupling constants can trigger an instability of the vacuum. This, in effect, turns Dyson's argument for the failure of perturbation theory on its head. As a result we find that 2PI approximations perform better than Padé approximation and are competitive with Borel–Padé resummation. Finally, we introduce a hybrid 2PI–Padé method.

  9. Self-consistent theory of charged current neutrino-nucleus reactions

    Energy Technology Data Exchange (ETDEWEB)

    Paar, Nils; Marketin, Tomislav; Vretenar, Dario [Physics Department, Faculty of Science, University Zagreb (Croatia); Ring, Peter [Physik-Department, Technischen Universitaet Muenchen, D-85748 Muenchen (Germany)

    2009-07-01

    A novel theoretical framework has been introduced for description of neutrino induced reactions with nuclei. The properties of target nuclei are determined in a self-consistent way using relativistic mean-field framework based on effective Lagrangians with density dependent meson-nucleon vertex functions. The weak lepton-hadron interaction is expressed in the standard current-current form, the nuclear ground state is described in the relativistic Hartree-Bogolyubov model, and the relevant transitions to excited nuclear states are calculated in the proton-neutron relativistic quasiparticle random phase approximation. This framework has been employed in studies of charged-current neutrino reactions involving nuclei of relevance for neutrino detectors, r-process nuclei, and neutrino-nucleus cross sections averaged over measured neutrino fluxes and supernova neutrino distributions.

  10. Diffusion and coupled fluxes in concentrated alloys under irradiation: a self-consistent mean-field approach

    International Nuclear Information System (INIS)

    Nastar, M.

    2008-01-01

    When an alloy is irradiated, atomic transport can occur through the two types of defects which are created: vacancies and interstitials. Recent developments of the self-consistent mean field (SCMF) kinetic theory could treat within the same formalism diffusion due to vacancies and interstitials in a multi-component alloy. It starts from a microscopic model of the atomic transport via vacancies and interstitials and yields the fluxes with a complete Onsager matrix of the phenomenological coefficients. The jump frequencies depend on the local environment through a 'broken bond model' such that the large range of frequencies involved in concentrated alloys is produced by a small number of thermodynamic and kinetic parameters. Kinetic correlations are accounted for through a set of time-dependent effective interactions within a non-equilibrium distribution function of the system. The different approximations of the SCMF theory recover most of the previous diffusion models. Recent improvements of the theory were to extend the multi-frequency approach usually restricted to dilute alloys to diffusion in concentrated alloys with jump frequencies depending on local concentrations and to generalize the formalism first developed for the vacancy diffusion mechanism to the more complex diffusion mechanism of the interstitial in the dumbbell configuration. (author)

  11. General variational many-body theory with complete self-consistency for trapped bosonic systems

    International Nuclear Information System (INIS)

    Streltsov, Alexej I.; Alon, Ofir E.; Cederbaum, Lorenz S.

    2006-01-01

    In this work we develop a complete variational many-body theory for a system of N trapped bosons interacting via a general two-body potential. The many-body solution of this system is expanded over orthogonal many-body basis functions (configurations). In this theory both the many-body basis functions and the respective expansion coefficients are treated as variational parameters. The optimal variational parameters are obtained self-consistently by solving a coupled system of noneigenvalue--generally integro-differential--equations to get the one-particle functions and by diagonalizing the secular matrix problem to find the expansion coefficients. We call this theory multiconfigurational Hartree theory for bosons or MCHB(M), where M specifies explicitly the number of one-particle functions used to construct the configurations. General rules for evaluating the matrix elements of one- and two-particle operators are derived and applied to construct the secular Hamiltonian matrix. We discuss properties of the derived equations. We show that in the limiting cases of one configuration the theory boils down to the well-known Gross-Pitaevskii and the recently developed multi-orbital mean fields. The invariance of the complete solution with respect to unitary transformations of the one-particle functions is utilized to find the solution with the minimal number of contributing configurations. In the second part of our work we implement and apply the developed theory. It is demonstrated that for any practical computation where the configurational space is restricted, the description of trapped bosonic systems strongly depends on the choice of the many-body basis set used, i.e., self-consistency is of great relevance. As illustrative examples we consider bosonic systems trapped in one- and two-dimensional symmetric and asymmetric double well potentials. We demonstrate that self-consistency has great impact on the predicted physical properties of the ground and excited states

  12. Implementation of the diagonalization-free algorithm in the self-consistent field procedure within the four-component relativistic scheme.

    Science.gov (United States)

    Hrdá, Marcela; Kulich, Tomáš; Repiský, Michal; Noga, Jozef; Malkina, Olga L; Malkin, Vladimir G

    2014-09-05

    A recently developed Thouless-expansion-based diagonalization-free approach for improving the efficiency of self-consistent field (SCF) methods (Noga and Šimunek, J. Chem. Theory Comput. 2010, 6, 2706) has been adapted to the four-component relativistic scheme and implemented within the program package ReSpect. In addition to the implementation, the method has been thoroughly analyzed, particularly with respect to cases for which it is difficult or computationally expensive to find a good initial guess. Based on this analysis, several modifications of the original algorithm, refining its stability and efficiency, are proposed. To demonstrate the robustness and efficiency of the improved algorithm, we present the results of four-component diagonalization-free SCF calculations on several heavy-metal complexes, the largest of which contains more than 80 atoms (about 6000 4-spinor basis functions). The diagonalization-free procedure is about twice as fast as the corresponding diagonalization. Copyright © 2014 Wiley Periodicals, Inc.

  13. Coupled hydromagnetic wave excitation and ion acceleration upstream of the earth's bow shock

    International Nuclear Information System (INIS)

    Lee, M.A.

    1982-01-01

    A self-consistent theory is presented for the excitation of hydromagnetic waves and the acceleration of diffuse ions upstream of the earth's bow shock in the quasi-equilibrium that results when the solar wind velocity and the interplanetary magnetic field are nearly parallel. For the waves the quasi-equilibrium results from a balance between excitation by the ions, which stream relative to the solar wind plasma, and convective loss to the magnetosheath. For the diffuse ions the quasi-equilibrium results from a balance between injection at the shock front, confinement to the foreshock by pitch angle scattering on the waves, acceleration by compression at the shock front, loss to the magnetosheath, loss due to escape upstream of the foreshock, and loss via diffusion perpendicular to the average magnetic field onto field lines that do not connect to the shock front. Diffusion equations describing the ion transport and wave kinetic equations describing the hydromagnetic wave transport are solved self-consistently to yield analytical expressions for the differential wave intensity spectrum as a function of frequency and distance from the bow shock z and for the ion omnidirectional distribution functions and anisotropies as functions of energy and z, In quantitative agreement with observations, the theory predicts (1) exponential spectra at the bow shock in energy per charge, (2) a decrease in intensity and hardening of the ion spectra with increasing z, (3) a 30-keV proton anisotropy parallel to z increasing from -0.28 at the bow shock to +0.51 as z→infinity (4) a linearly polarized wave intensity spectrum with a minimum at approx.6 x 10 -3 Hz and a maximum at approx.2--3 x 10 -2 Hz, (5) a decrease in the wave intensity spectrum with increasing z, (6) a total energy density in protons with energies >15 keV about eight times that in the hydromagnetic waves

  14. Near-field millimeter - wave imaging of nonmetallic materials

    International Nuclear Information System (INIS)

    Gopalsami, N.; Bakhtiari, S.; Raptis, A.C.

    1996-01-01

    A near-field millimeter-wave (mm-wave) imaging system has been designed and built in the 94-GHz range for on-line inspection of nonmetallic (dielectric) materials. The imaging system consists of a transceiver block coupled to an antenna that scans the material to be imaged; a reflector plate is placed behind the material. A quadrature IF mixer in the transceiver block enables measurement of in-phase and quadrature-phase components of reflected signals with respect to the transmitted signal. All transceiver components, with the exception of the Gunn-diode oscillator and antenna, were fabricated in uniform blocks and integrated and packaged into a compact unit (12.7 x 10.2 x 2.5 cm). The objective of this work is to test the applicability of a near-field compact mm-wave sensor for on-line inspection of sheetlike materials such as paper, fabrics, and plastics. This paper presents initial near-field mm-wave images of paper and fabric samples containing known artifacts

  15. Pilot-wave approaches to quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Struyve, Ward, E-mail: Ward.Struyve@fys.kuleuven.be [Institute of Theoretical Physics, K.U.Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Institute of Philosophy, K.U.Leuven, Kardinaal Mercierplein 2, B-3000 Leuven (Belgium)

    2011-07-08

    The purpose of this paper is to present an overview of recent work on pilot-wave approaches to quantum field theory. In such approaches, systems are not only described by their wave function, as in standard quantum theory, but also by some additional variables. In the non-relativistic pilot-wave theory of deBroglie and Bohm those variables are particle positions. In the context of quantum field theory, there are two natural choices, namely particle positions and fields. The incorporation of those variables makes it possible to provide an objective description of nature in which rather ambiguous notions such as 'measurement' and 'observer' play no fundamental role. As such, the theory is free of the conceptual difficulties, such as the measurement problem, that plague standard quantum theory.

  16. A self-consistent formulation of quantum field theory on S4

    International Nuclear Information System (INIS)

    Harris, B.A.; Joshi, G.C.

    1991-01-01

    In this paper, a consistent formulation of field theory on a four-sphere was constructed and a method from which various amplitudes may be calculated is described. The standard results of quantum electrodynamics are derived, providing a valuable check on the validity of this approach, as well as allowing a direct comparison between this and previous work done in the area. It is believed that the matrix element approach offers a new way to deal with some of the more troublesome aspects of previous calculations. In particular one can easily handle the transverse part of the photon propagator which had made the (1 - α) gauge parts difficult to calculate. However the main advantage of this method is the ability to compute functions which involve the contraction of indices across different η integrals. This tends to happen when one has derivative couplings such as those in scalar electrodynamics. 12 refs., 3 figs

  17. Nonlinear Ion-Acoustic Waves in a Plasma Consisting of Warm Ions and Isothermal Distributed Electrons

    International Nuclear Information System (INIS)

    Abourabia, A.M.; Hassan, K.M.; Shahein, R.A.

    2008-01-01

    The formation of (1+1) dimensional ion-acoustic waves (IAWs) in an unmagnetized collisionless plasma consisting of warm ions and isothermal distributed electrons is investigated. The electrodynamics system of equations are solved analytically in terms of a new variable ξκ χ -φ τ, where k=k(ω) is a complex function, at a fixed position. The analytical calculations gives that the critical value σ = τ/τ ∼ 0.25 distinguishes between the linear and nonlinear characters of IAW within the nanosecond time scale. The flow velocity, pressure, number density, electric potential, electric field, mobility and the total energy in the system are estimated and illustrated

  18. Consistency relation for cosmic magnetic fields

    DEFF Research Database (Denmark)

    Jain, R. K.; Sloth, M. S.

    2012-01-01

    If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the cosmic microwave background anisotropies and large scale structure. Within an archetypical model of inflationary magnetogenesis, we show...... that there exists a new simple consistency relation for the non-Gaussian cross correlation function of the scalar metric perturbation with two powers of the magnetic field in the squeezed limit where the momentum of the metric perturbation vanishes. We emphasize that such a consistency relation turns out...... to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields. DOI...

  19. Self-focusing of nonlinear waves in a relativistic plasma with positive and negative ions

    International Nuclear Information System (INIS)

    Mukherjee, Joydeep; Chowdhury, A.R.

    1994-01-01

    The phenomenon of self-focusing of nonlinear waves was analysed in a relativistic plasma consisting of both positive and negative ions, which are assumed to be hot. The effect of the inertia of the relativistic electron is also considered by treating it dynamically. A modified form of reductive perturbation is used to deduce a nonlinear Schroedinger equation describing the purely spatial variation of the nonlinear wave. Self-focusing of the wave can be ascertained by analysing the transversal stability of the solitary wave. It is shown that the zones of stability of the wave may become wider due to the mutual influence of various factors present in the plasma, thus favouring the process of self-focusing. 10 refs., 2 figs

  20. Self-consistent electron transport in collisional plasmas

    International Nuclear Information System (INIS)

    Mason, R.J.

    1982-01-01

    A self-consistent scheme has been developed to model electron transport in evolving plasmas of arbitrary classical collisionality. The electrons and ions are treated as either multiple donor-cell fluids, or collisional particles-in-cell. Particle suprathermal electrons scatter off ions, and drag against fluid background thermal electrons. The background electrons undergo ion friction, thermal coupling, and bremsstrahlung. The components move in self-consistent advanced E-fields, obtained by the Implicit Moment Method, which permits Δt >> ω/sub p/ -1 and Δx >> lambda/sub D/ - offering a 10 2 - 10 3 -fold speed-up over older explicit techniques. The fluid description for the background plasma components permits the modeling of transport in systems spanning more than a 10 7 -fold change in density, and encompassing contiguous collisional and collisionless regions. Results are presented from application of the scheme to the modeling of CO 2 laser-generated suprathermal electron transport in expanding thin foils, and in multi-foil target configurations

  1. GRACE L1b inversion through a self-consistent modified radial basis function approach

    Science.gov (United States)

    Yang, Fan; Kusche, Juergen; Rietbroek, Roelof; Eicker, Annette

    2016-04-01

    Implementing a regional geopotential representation such as mascons or, more general, RBFs (radial basis functions) has been widely accepted as an efficient and flexible approach to recover the gravity field from GRACE (Gravity Recovery and Climate Experiment), especially at higher latitude region like Greenland. This is since RBFs allow for regionally specific regularizations over areas which have sufficient and dense GRACE observations. Although existing RBF solutions show a better resolution than classical spherical harmonic solutions, the applied regularizations cause spatial leakage which should be carefully dealt with. It has been shown that leakage is a main error source which leads to an evident underestimation of yearly trend of ice-melting over Greenland. Unlike some popular post-processing techniques to mitigate leakage signals, this study, for the first time, attempts to reduce the leakage directly in the GRACE L1b inversion by constructing an innovative modified (MRBF) basis in place of the standard RBFs to retrieve a more realistic temporal gravity signal along the coastline. Our point of departure is that the surface mass loading associated with standard RBF is smooth but disregards physical consistency between continental mass and passive ocean response. In this contribution, based on earlier work by Clarke et al.(2007), a physically self-consistent MRBF representation is constructed from standard RBFs, with the help of the sea level equation: for a given standard RBF basis, the corresponding MRBF basis is first obtained by keeping the surface load over the continent unchanged, but imposing global mass conservation and equilibrium response of the oceans. Then, the updated set of MRBFs as well as standard RBFs are individually employed as the basis function to determine the temporal gravity field from GRACE L1b data. In this way, in the MRBF GRACE solution, the passive (e.g. ice melting and land hydrology response) sea level is automatically

  2. Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, G., E-mail: geetphy9@gmail.com; Ahirwar, G. [School of Studies in Physics, Vikram University, Ujjain India (India); Shrivastava, J., E-mail: jayashrivastava2007@gmail.com [Dronacharya Group of Institutions, Greater Noida-India (India)

    2015-07-31

    The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (T{sub i}/T{sub e}), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave.

  3. Self-similarity of solitary waves on inertia-dominated falling liquid films.

    Science.gov (United States)

    Denner, Fabian; Pradas, Marc; Charogiannis, Alexandros; Markides, Christos N; van Wachem, Berend G M; Kalliadasis, Serafim

    2016-03-01

    We propose consistent scaling of solitary waves on inertia-dominated falling liquid films, which accurately accounts for the driving physical mechanisms and leads to a self-similar characterization of solitary waves. Direct numerical simulations of the entire two-phase system are conducted using a state-of-the-art finite volume framework for interfacial flows in an open domain that was previously validated against experimental film-flow data with excellent agreement. We present a detailed analysis of the wave shape and the dispersion of solitary waves on 34 different water films with Reynolds numbers Re=20-120 and surface tension coefficients σ=0.0512-0.072 N m(-1) on substrates with inclination angles β=19°-90°. Following a detailed analysis of these cases we formulate a consistent characterization of the shape and dispersion of solitary waves, based on a newly proposed scaling derived from the Nusselt flat film solution, that unveils a self-similarity as well as the driving mechanism of solitary waves on gravity-driven liquid films. Our results demonstrate that the shape of solitary waves, i.e., height and asymmetry of the wave, is predominantly influenced by the balance of inertia and surface tension. Furthermore, we find that the dispersion of solitary waves on the inertia-dominated falling liquid films considered in this study is governed by nonlinear effects and only driven by inertia, with surface tension and gravity having a negligible influence.

  4. Potential Functional Embedding Theory at the Correlated Wave Function Level. 2. Error Sources and Performance Tests.

    Science.gov (United States)

    Cheng, Jin; Yu, Kuang; Libisch, Florian; Dieterich, Johannes M; Carter, Emily A

    2017-03-14

    Quantum mechanical embedding theories partition a complex system into multiple spatial regions that can use different electronic structure methods within each, to optimize trade-offs between accuracy and cost. The present work incorporates accurate but expensive correlated wave function (CW) methods for a subsystem containing the phenomenon or feature of greatest interest, while self-consistently capturing quantum effects of the surroundings using fast but less accurate density functional theory (DFT) approximations. We recently proposed two embedding methods [for a review, see: Acc. Chem. Res. 2014 , 47 , 2768 ]: density functional embedding theory (DFET) and potential functional embedding theory (PFET). DFET provides a fast but non-self-consistent density-based embedding scheme, whereas PFET offers a more rigorous theoretical framework to perform fully self-consistent, variational CW/DFT calculations [as defined in part 1, CW/DFT means subsystem 1(2) is treated with CW(DFT) methods]. When originally presented, PFET was only tested at the DFT/DFT level of theory as a proof of principle within a planewave (PW) basis. Part 1 of this two-part series demonstrated that PFET can be made to work well with mixed Gaussian type orbital (GTO)/PW bases, as long as optimized GTO bases and consistent electron-ion potentials are employed throughout. Here in part 2 we conduct the first PFET calculations at the CW/DFT level and compare them to DFET and full CW benchmarks. We test the performance of PFET at the CW/DFT level for a variety of types of interactions (hydrogen bonding, metallic, and ionic). By introducing an intermediate CW/DFT embedding scheme denoted DFET/PFET, we show how PFET remedies different types of errors in DFET, serving as a more robust type of embedding theory.

  5. Identification of wind fields for wave modeling near Qatar

    Science.gov (United States)

    Nayak, Sashikant; Balan Sobhana, Sandeepan; Panchang, Vijay

    2016-04-01

    Due to the development of coastal and offshore infrastructure in and around the Arabian Gulf, a large semi-enclosed sea, knowledge of met-ocean factors like prevailing wind systems, wind generated waves, and currents etc. are of great importance. Primarily it is important to identify the wind fields that are used as forcing functions for wave and circulation models for hindcasting and forecasting purposes. The present study investigates the effects of using two sources of wind-fields on the modeling of wind-waves in the Arabian Gulf, in particular near the coastal regions of Qatar. Two wind sources are considered here, those obtained from ECMWF and those generated by us using the WRF model. The wave model SWAN was first forced with the 6 hourly ERA Interim daily winds (from ECMWF) having spatial resolution of 0.125°. For the second option, wind fields were generated by us using the mesoscale wind model (WRF) with a high spatial resolution (0.1°) at every 30 minute intervals. The simulations were carried out for a period of two months (7th October-7th December, 2015) during which measurements were available from two moored buoys (deployed and operated by the Qatar Meteorological Department), one in the north of Qatar ("Qatar North", in water depth of 58.7 m) and other in the south ("Shiraouh Island", in water depth of 16.64 m). This period included a high-sea event on 11-12th of October, recorded by the two buoys where the significant wave heights (Hs) reached as high as 2.9 m (i.e. max wave height H ~ 5.22 m) and 1.9 (max wave height H ~ 3.4 m) respectively. Model results were compared with the data for this period. The scatter index (SI) of the Hs simulated using the WRF wind fields and the observed Hs was found to be about 30% and 32% for the two buoys (total period). The observed Hs were generally reproduced but there was consistent underestimation. (Maximum 27% for the high-sea event). For the Hs obtained with ERA interim wind fields, the underestimation was

  6. The Green-function transform and wave propagation

    Directory of Open Access Journals (Sweden)

    Colin eSheppard

    2014-11-01

    Full Text Available Fourier methods well known in signal processing are applied to three-dimensional wave propagation problems. The Fourier transform of the Green function, when written explicitly in terms of a real-valued spatial frequency, consists of homogeneous and inhomogeneous components. Both parts are necessary to result in a pure out-going wave that satisfies causality. The homogeneous component consists only of propagating waves, but the inhomogeneous component contains both evanescent and propagating terms. Thus we make a distinction between inhomogeneous waves and evanescent waves. The evanescent component is completely contained in the region of the inhomogeneous component outside the k-space sphere. Further, propagating waves in the Weyl expansion contain both homogeneous and inhomogeneous components. The connection between the Whittaker and Weyl expansions is discussed. A list of relevant spherically symmetric Fourier transforms is given.

  7. CLOSED-FIELD CORONAL HEATING DRIVEN BY WAVE TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Downs, Cooper; Lionello, Roberto; Mikić, Zoran; Linker, Jon A [Predictive Science Incorporated, 9990 Mesa Rim Rd. Suite 170, San Diego, CA 92121 (United States); Velli, Marco, E-mail: cdowns@predsci.com [EPSS, UCLA, Los Angeles, CA 90095 (United States)

    2016-12-01

    To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditions is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-Sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.

  8. Photon wave function

    OpenAIRE

    Bialynicki-Birula, Iwo

    2005-01-01

    Photon wave function is a controversial concept. Controversies stem from the fact that photon wave functions can not have all the properties of the Schroedinger wave functions of nonrelativistic wave mechanics. Insistence on those properties that, owing to peculiarities of photon dynamics, cannot be rendered, led some physicists to the extreme opinion that the photon wave function does not exist. I reject such a fundamentalist point of view in favor of a more pragmatic approach. In my view, t...

  9. Self consistent propagation of hyperons and antikaons in nuclear matter based on relativistic chiral SU(3) dynamics

    International Nuclear Information System (INIS)

    Lutz, M.F.M.; Korpa, C.L.

    2001-05-01

    We evaluate the antikaon spectral density in isospin symmetric nuclear matter. The in-medium antikaon-nucleon scattering process and the antikaon propagation is treated in a self consistent and relativistic manner where a maximally scheme-independent formulation is derived by performing a partial density resummation in terms of the free-space antikaon-nucleon scattering amplitudes. The latter amplitudes are taken from a relativistic and chiral coupled-channel SU(3) approach which includes s-, p- and d-waves systematically. Particular care is taken on the proper evaluation of the in-medium mixing of the partial waves. Our analysis establishes a rich structure of the antikaon spectral function with considerable strength at small energies. At nuclear saturation density we predict attractive mass shifts for the Λ(1405), Σ(1385) and Λ(1520) of about 130 MeV, 60 MeV and 100 MeV respectively. The hyperon states are found to exhibit at the same time an increased decay width of about 150 MeV for the s-wave Λ(1405), 70 MeV for the p-wave Σ(1385) and 100 MeV for the d-wave Λ(1520) resonance. (orig.)

  10. Efficient self-consistency for magnetic tight binding

    Science.gov (United States)

    Soin, Preetma; Horsfield, A. P.; Nguyen-Manh, D.

    2011-06-01

    Tight binding can be extended to magnetic systems by including an exchange interaction on an atomic site that favours net spin polarisation. We have used a published model, extended to include long-ranged Coulomb interactions, to study defects in iron. We have found that achieving self-consistency using conventional techniques was either unstable or very slow. By formulating the problem of achieving charge and spin self-consistency as a search for stationary points of a Harris-Foulkes functional, extended to include spin, we have derived a much more efficient scheme based on a Newton-Raphson procedure. We demonstrate the capabilities of our method by looking at vacancies and self-interstitials in iron. Self-consistency can indeed be achieved in a more efficient and stable manner, but care needs to be taken to manage this. The algorithm is implemented in the code PLATO. Program summaryProgram title:PLATO Catalogue identifier: AEFC_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFC_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 228 747 No. of bytes in distributed program, including test data, etc.: 1 880 369 Distribution format: tar.gz Programming language: C and PERL Computer: Apple Macintosh, PC, Unix machines Operating system: Unix, Linux, Mac OS X, Windows XP Has the code been vectorised or parallelised?: Yes. Up to 256 processors tested RAM: Up to 2 Gbytes per processor Classification: 7.3 External routines: LAPACK, BLAS and optionally ScaLAPACK, BLACS, PBLAS, FFTW Catalogue identifier of previous version: AEFC_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2616 Does the new version supersede the previous version?: Yes Nature of problem: Achieving charge and spin self-consistency in magnetic tight binding can be very

  11. Self-consistent description of dipole states taking into account the one-particle continuum

    International Nuclear Information System (INIS)

    Gareev, F.A.; Ershov, S.N.; Pyatov, N.I.; Fayans, S.A.; Salamov, D.I.

    1981-01-01

    A self-consistent translationally invariant model with separable effective interactions is used to describe the dipole excitations of spherical nuclei. The equations for the effective field are solved in the coordinate representation, taking the one-particle continuum into account exactly. This makes it possible to obtain the escape widths of excitations with energy above the nucleon-emission threshold. We calculate the energies, B(E1), strength functions, escape widths, and transition densities of the dipole states for a number of light and heavy nuclei

  12. pp waves of conformal gravity with self-interacting source

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Hassaine, Mokhtar

    2005-01-01

    Recently, Deser, Jackiw and Pi have shown that three-dimensional conformal gravity with a source given by a conformally coupled scalar field admits pp wave solutions. In this paper, we consider this model with a self-interacting potential preserving the conformal structure. A pp wave geometry is also supported by this system and, we show that this model is equivalent to topologically massive gravity with a cosmological constant whose value is given in terms of the potential strength

  13. Wave-particle interaction and Hamiltonian dynamics investigated in a traveling wave tube

    International Nuclear Information System (INIS)

    Doveil, Fabrice; Macor, Alessandro

    2006-01-01

    For wave-particle interaction studies, the one-dimensional (1-D) beam-plasma system can be advantageously replaced by a Traveling Wave Tube (TWT). This led us to a detailed experimental analysis of the self-consistent interaction between unstable waves and a small either cold or warm beam. More recently, a test electron beam has been used to observe its non-self-consistent interaction with externally excited wave(s). The velocity distribution function of the electron beam is investigated with a trochoidal energy analyzer that records the beam energy distribution at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The nonlinear synchronization of particles by a single wave responsible for Landau damping is observed. The resonant velocity domain associated to a single wave is also observed, as well as the transition to large-scale chaos when the resonant domains of two waves and their secondary resonances overlap leading to a typical 'devil's staircase' behavior. A new strategy for the control of chaos is tested

  14. Ionizing gas breakdown waves in strong electric fields.

    Science.gov (United States)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  15. Quasi-Particle Self-Consistent GW for Molecules.

    Science.gov (United States)

    Kaplan, F; Harding, M E; Seiler, C; Weigend, F; Evers, F; van Setten, M J

    2016-06-14

    We present the formalism and implementation of quasi-particle self-consistent GW (qsGW) and eigenvalue only quasi-particle self-consistent GW (evGW) adapted to standard quantum chemistry packages. Our implementation is benchmarked against high-level quantum chemistry computations (coupled-cluster theory) and experimental results using a representative set of molecules. Furthermore, we compare the qsGW approach for five molecules relevant for organic photovoltaics to self-consistent GW results (scGW) and analyze the effects of the self-consistency on the ground state density by comparing calculated dipole moments to their experimental values. We show that qsGW makes a significant improvement over conventional G0W0 and that partially self-consistent flavors (in particular evGW) can be excellent alternatives.

  16. Observation of Hamiltonian chaos and its control in wave-particle interaction

    International Nuclear Information System (INIS)

    Doveil, F; Macor, A; Aissi, A

    2007-01-01

    Wave-particle interactions are central in plasma physics. They can be studied in a traveling wave tube (TWT) to avoid intrinsic plasma noise. This led to detailed experimental analysis of the self-consistent interaction between unstable waves and an either cold or warm beam. More recently a test cold electron beam has been used to observe its non-self-consistent interaction with externally excited wave(s). The velocity distribution function of the electron beam is recorded with a trochoidal energy analyzer at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The nonlinear synchronization of particles by a single wave responsible for Landau damping is observed. The resonant velocity domain associated with a single wave is also observed, as well as the transition to large scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a 'devil's staircase' behavior when increasing the excitation amplitude in agreement with numerical simulation. A new strategy for control of chaos by building barriers of transport which prevent electrons from escaping from a given velocity region as well as its robustness are successfully tested. The underlying concepts extend far beyond the field of electron devices and plasma physics

  17. Analysis of wave equation in electromagnetic field by Proca equation

    International Nuclear Information System (INIS)

    Pamungkas, Oky Rio; Soeparmi; Cari

    2017-01-01

    This research is aimed to analyze wave equation for the electric and magnetic field, vector and scalar potential, and continuity equation using Proca equation. Then, also analyze comparison of the solution on Maxwell and Proca equation for scalar potential and electric field, both as a function of distance and constant wave number. (paper)

  18. Conformal field theory construction for non-Abelian hierarchy wave functions

    Science.gov (United States)

    Tournois, Yoran; Hermanns, Maria

    2017-12-01

    The fractional quantum Hall effect is the paradigmatic example of topologically ordered phases. One of its most fascinating aspects is the large variety of different topological orders that may be realized, in particular non-Abelian ones. Here we analyze a class of non-Abelian fractional quantum Hall model states which are generalizations of the Abelian Haldane-Halperin hierarchy. We derive their topological properties and show that the quasiparticles obey non-Abelian fusion rules of type su (q)k . For a subset of these states we are able to derive the conformal field theory description that makes the topological properties—in particular braiding—of the state manifest. The model states we study provide explicit wave functions for a large variety of interesting topological orders, which may be relevant for certain fractional quantum Hall states observed in the first excited Landau level.

  19. Self-consistent electronic structure of the refractory metal ZrB2, a pseudographite intercalation compound

    International Nuclear Information System (INIS)

    Johnson, D.L.; Harmon, B.N.; Liu, S.H.

    1980-01-01

    The self-consistent band structure of ZrB 2 has been evaluated using the KKR method. It is noted that a large charge transfer is not necessary to explain many of the experimental results which can be understood in terms of the band structure and the bonding nature of the wave functions. X-ray photoemission spectra and optical reflectance measurements are compared with the calculated density of states and joint density of states, respectively. The calculations are also discussed with reference to nuclear quadrupole experiments, Hall effect measurements, and the electronic specific heat. The similarities to intercalated graphite and related compounds are discussed and the strong bonding as reflected in the hardness and high melting point is considered

  20. Simulation of wind wave growth with reference source functions

    Science.gov (United States)

    Badulin, Sergei I.; Zakharov, Vladimir E.; Pushkarev, Andrei N.

    2013-04-01

    conformity with theoretical predictions, previous simulations [2,6,9], experimental parameterizations of wave spectra [1,4] and to specify tunable parameters of terms (2,3). These simulations showed realistic spatio-temporal scales of wave evolution and spectral shaping close to conventional parameterizations [e.g. 4]. An additional important feature of the numerical solutions is a saturation of frequency-dependent wave steepness μw in short-frequency range. The work was supported by the Russian government contract No.11.934.31.0035, Russian Foundation for Basic Research grant 11-05-01114-a and ONR grant N00014-10-1-0991. References [1] S. I. Badulin, A. V. Babanin, D. Resio, and V. Zakharov. Weakly turbulent laws of wind-wave growth. J. Fluid Mech., 591:339-378, 2007. [2] S. I. Badulin, A. N. Pushkarev, D. Resio, and V. E. Zakharov. Self-similarity of wind-driven seas. Nonl. Proc. Geophys., 12:891-946, 2005. [3] S. I. Badulin and V. E. Zakharov. New dissipation function for weakly turbulent wind-driven seas. ArXiv e-prints, (1212.0963), December 2012. [4] M. A. Donelan, J. Hamilton, and W. H. Hui. Directional spectra of wind-generated waves. Phil. Trans. Roy. Soc. Lond. A, 315:509-562, 1985. [5] M. A. Donelan and W. J. Pierson-jr. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92(C5):4971-5029, 1987. [6] E. Gagnaire-Renou, M. Benoit, and S. I. Badulin. On weakly turbulent scaling of wind sea in simulations of fetch-limited growth. J. Fluid Mech., 669:178-213, 2011. [7] R. L. Snyder, F. W. Dobson, J. A. Elliot, and R. B. Long. Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102:1-59, 1981. [8] D. J. Webb. Non-linear transfers between sea waves. Deep Sea Res., 25:279-298, 1978. [9] V. E. Zakharov, D. Resio, and A. N. Pushkarev. New wind input term consistent with experimental, theoretical and numerical considerations. ArXiv e-prints, (1212

  1. Self-consistent electric field effect on electron transport of ECH plasmas

    International Nuclear Information System (INIS)

    Chan, V.S.; Murakami, S.

    1999-02-01

    An algorithm is proposed which treats the ECH generated potential in a self-consistent way, by extending the Monte-Carlo Fokker-Planck method used by Murakami [S. Murakami et al., Proc. 17th IAEA Fusion Energy Conference, Yokohama, 1998 (International Atomic Energy Agency, Vienna, in press), paper CN-69/TH2/1]. The additional physics is expected to influence the transport of both thermal and suprathermal electrons in a helical toroidal system. (author)

  2. Self-consistent cluster theory for systems with off-diagonal disorder

    International Nuclear Information System (INIS)

    Kaplan, T.; Leath, P.L.; Gray, L.J.; Diehl, H.W.

    1980-01-01

    A self-consistent cluster theory for elementary excitations in systems with diagonal, off-diagonal, and environmental disorder is presented. The theory is developed in augmented space where the configurational average over the disorder is replaced by a ground-state matrix element in a translationally invariant system. The analyticity of the resulting approximate Green's function is proved. Numerical results for the self-consistent single-site and pair approximations are presented for the vibrational and electronic properties of disordered linear chains with diagonal, off-diagonal, and environmental disorder

  3. Wave function, spectrum and effective mass of holes in 2 D quantum antiferromagnet

    Science.gov (United States)

    Su, Zhao-bin; Ll, Yan-min; Lai, Wu-yan; Yu, Lu

    1989-12-01

    A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes on an quantum antiferromagnetic (QAFM) background within the generalized t- J model. The local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing. The hole wave function and its spectrum, as well as the effective mass for a propagating hole are calculated explicitly.

  4. A Self Consistent Multiprocessor Space Charge Algorithm that is Almost Embarrassingly Parallel

    International Nuclear Information System (INIS)

    Nissen, Edward; Erdelyi, B.; Manikonda, S.L.

    2012-01-01

    We present a space charge code that is self consistent, massively parallelizeable, and requires very little communication between computer nodes; making the calculation almost embarrassingly parallel. This method is implemented in the code COSY Infinity where the differential algebras used in this code are important to the algorithm's proper functioning. The method works by calculating the self consistent space charge distribution using the statistical moments of the test particles, and converting them into polynomial series coefficients. These coefficients are combined with differential algebraic integrals to form the potential, and electric fields. The result is a map which contains the effects of space charge. This method allows for massive parallelization since its statistics based solver doesn't require any binning of particles, and only requires a vector containing the partial sums of the statistical moments for the different nodes to be passed. All other calculations are done independently. The resulting maps can be used to analyze the system using normal form analysis, as well as advance particles in numbers and at speeds that were previously impossible.

  5. Self-consistence equations for extended Feynman rules in quantum chromodynamics

    International Nuclear Information System (INIS)

    Wielenberg, A.

    2005-01-01

    In this thesis improved solutions for Green's functions are obtained. First the for this thesis essential techniques and concepts of QCD as euclidean field theory are presented. After a discussion of the foundations of the extended approach for the Feynman rules of QCD with a systematic approach for the 4-gluon vertex a modified renormalization scheme for the extended approach is developed. Thereafter the resummation of the Dyson-Schwinger equations (DSE) by the appropriately modified Bethe-Salpeter equation is discussed. Then the leading divergences for the 1-loop graphs of the resummed DSE are determined. Thereafter the equation-of-motion condensate is defined as result of an operator-product expansion. Then the self-consistency equations for the extended approaches are defined and numerically solved. (HSI)

  6. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate

  7. Eigenwave spectrum of surface acoustic waves on a rough self-affine fractal surface

    NARCIS (Netherlands)

    Palasantzas, George

    1994-01-01

    The propagation of a sound wave along a statistically rough solid-vacuum interface is investigated for the case of self-affine fractals. The wave-number relation ω=ω(k) is examined for the transverse polarized surface wave. The range of existence of this wave is analyzed as a function of the degree

  8. Shock wave compression and self-generated electric field repolarization in ferroelectric ceramics Pb0.99[(Zr0.90Sn0.10)0.96Ti0.04]0.98Nb0.02O3

    Science.gov (United States)

    Jiang, Dongdong; Du, Jinmei; Gu, Yan; Feng, Yujun

    2012-03-01

    The shock wave induced depoling current of Pb0.99[(Zr0.90Sn0.10)0.96Ti0.04]0.98Nb0.02O3 ceramics was investigated with a system composed of a resistive load and an unpoled ceramic. Disparity in the depoling current was explained by considering the drawing charge effect of unpoled ceramic. The drawing effect for poled ceramics was analysed by developing a model incorporating a time- and electric-field-dependent repolarization. This model predicts that the high-impedance current eventually becomes higher than the short-circuit current, which is consistent with the experimental results in the literature. This work indicates that both the repolarization of uncompressed ceramics caused by the self-generated electric field and depolarization of compressed ceramics caused by the shock wave govern the output current.

  9. Shock wave compression and self-generated electric field repolarization in ferroelectric ceramics Pb0.99[(Zr0.90Sn0.10)0.96Ti0.04]0.98Nb0.02O3

    International Nuclear Information System (INIS)

    Jiang Dongdong; Du Jinmei; Gu Yan; Feng Yujun

    2012-01-01

    The shock wave induced depoling current of Pb 0.99 [(Zr 0.90 Sn 0.10 ) 0.96 Ti 0.04 ] 0.98 Nb 0.02 O 3 ceramics was investigated with a system composed of a resistive load and an unpoled ceramic. Disparity in the depoling current was explained by considering the drawing charge effect of unpoled ceramic. The drawing effect for poled ceramics was analysed by developing a model incorporating a time- and electric-field-dependent repolarization. This model predicts that the high-impedance current eventually becomes higher than the short-circuit current, which is consistent with the experimental results in the literature. This work indicates that both the repolarization of uncompressed ceramics caused by the self-generated electric field and depolarization of compressed ceramics caused by the shock wave govern the output current. (paper)

  10. Self-Consistent-Field Method and τ-Functional Method on Group Manifold in Soliton Theory: a Review and New Results

    Directory of Open Access Journals (Sweden)

    Seiya Nishiyama

    2009-01-01

    Full Text Available The maximally-decoupled method has been considered as a theory to apply an basic idea of an integrability condition to certain multiple parametrized symmetries. The method is regarded as a mathematical tool to describe a symmetry of a collective submanifold in which a canonicity condition makes the collective variables to be an orthogonal coordinate-system. For this aim we adopt a concept of curvature unfamiliar in the conventional time-dependent (TD self-consistent field (SCF theory. Our basic idea lies in the introduction of a sort of Lagrange manner familiar to fluid dynamics to describe a collective coordinate-system. This manner enables us to take a one-form which is linearly composed of a TD SCF Hamiltonian and infinitesimal generators induced by collective variable differentials of a canonical transformation on a group. The integrability condition of the system read the curvature C = 0. Our method is constructed manifesting itself the structure of the group under consideration. To go beyond the maximaly-decoupled method, we have aimed to construct an SCF theory, i.e., υ (external parameter-dependent Hartree-Fock (HF theory. Toward such an ultimate goal, the υ-HF theory has been reconstructed on an affine Kac-Moody algebra along the soliton theory, using infinite-dimensional fermion. An infinite-dimensional fermion operator is introduced through a Laurent expansion of finite-dimensional fermion operators with respect to degrees of freedom of the fermions related to a υ-dependent potential with a Υ-periodicity. A bilinear equation for the υ-HF theory has been transcribed onto the corresponding τ-function using the regular representation for the group and the Schur-polynomials. The υ-HF SCF theory on an infinite-dimensional Fock space F∞ leads to a dynamics on an infinite-dimensional Grassmannian Gr∞ and may describe more precisely such a dynamics on the group manifold. A finite-dimensional Grassmannian is identified with a Gr

  11. Attosecond Electron Wave Packet Dynamics in Strong Laser Fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.

    2005-01-01

    We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (∼20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes

  12. Propagation functions in pseudoparticle fields

    International Nuclear Information System (INIS)

    Brown, L.S.; Carlitz, R.D.; Creamer, D.B.; Lee, C.

    1978-01-01

    The Green's functions for massless spinor and vector particles propagating in a self-dual but otherwise arbitrary non-Abelian gauge field are shown to be completely determined by the corrresponding Green's functions of scalar particles. Simple, explicit algebraic expressions are constructed for the scalar Green's functions of isospin-1/2 and isospin-1 particles in the self-dual field of a configuration of n pseudoparticles described by 5n arbitrary parameters

  13. Consistency relation and inflaton field redefinition in the δN formalism

    Energy Technology Data Exchange (ETDEWEB)

    Domènech, Guillem [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Gong, Jinn-Ouk, E-mail: jinn-ouk.gong@apctp.org [Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of); Department of Physics, Postech, Pohang 37673 (Korea, Republic of); Sasaki, Misao [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2017-06-10

    We compute for general single-field inflation the intrinsic non-Gaussianity due to the self-interactions of the inflaton field in the squeezed limit. We recover the consistency relation in the context of the δN formalism, and argue that there is a particular field redefinition that makes the intrinsic non-Gaussianity vanishing, thus improving the estimate of the local non-Gaussianity using the δN formalism.

  14. Atom localization and center-of-mass wave-function determination via multiple simultaneous quadrature measurements

    International Nuclear Information System (INIS)

    Evers, Joerg; Qamar, Shahid; Zubairy, M. Suhail

    2007-01-01

    We discuss localization and center-of-mass wave-function measurement of a quantum particle using multiple simultaneous dispersive interactions of the particle with different standing-wave fields. In particular, we consider objects with an internal structure consisting of a single ground state and several excited states. The transitions between ground and the corresponding excited states are coupled to the light fields in the dispersive limit, thus giving rise to a phase shift of the light field during the interaction. We show that multiple simultaneous measurements allow both an increase in the measurement or localization precision in a single direction and the performance of multidimensional measurements or localization. Further, we show that multiple measurements may relax the experimental requirements for each individual measurement

  15. Self-accelerating parabolic cylinder waves in 1-D

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C., E-mail: cyuce@anadolu.edu.tr

    2016-11-25

    Highlights: • We find a new class of self-accelerating waves. • We show that parabolic cylinder waves self-accelerates in a parabolic potential. • We discuss that truncated parabolic cylinder waves propagates large distance without almost being non-diffracted in free space. - Abstract: We introduce a new self-accelerating wave packet solution of the Schrodinger equation in one dimension. We obtain an exact analytical parabolic cylinder wave for the inverted harmonic potential. We show that truncated parabolic cylinder waves exhibits their accelerating feature.

  16. Self-consistent Hartree-Fock RPA calculations in 208Pb

    Science.gov (United States)

    Taqi, Ali H.; Ali, Mohammed S.

    2018-01-01

    The nuclear structure of 208Pb is studied in the framework of the self-consistent random phase approximation (SCRPA). The Hartree-Fock mean field and single particle states are used to implement a completely SCRPA with Skyrme-type interactions. The Hamiltonian is diagonalised within a model space using five Skyrme parameter sets, namely LNS, SkI3, SkO, SkP and SLy4. In view of the huge number of the existing Skyrme-force parameterizations, the question remains which of them provide the best description of data. The approach attempts to accurately describe the structure of the spherical even-even nucleus 208Pb. To illustrate our approach, we compared the binding energy, charge density distribution, excitation energy levels scheme with the available experimental data. Moreover, we calculated isoscalar and isovector monopole, dipole, and quadrupole transition densities and strength functions.

  17. All-electron ab initio calculations of YBa2Cu3O7 with self-consistence crystal field

    Institute of Scientific and Technical Information of China (English)

    刘洪霖; 陈念贻

    1995-01-01

    The quantum chemical calculations of cluster YBa2Cu3O7 considering all electrons have been per-formed by using the ab initio HF method with self-consistence crystal field.A Hartree-Fork surface potentialis proposed to make an asymmetric duster model possess a relatively symmetric potential field and to obtaina relatively symmetric electronic structure,electronic distributions,frontier orbitals,and bond order,etc.Thesuggestions that there exists a covalent bonding complex,[CuO2-O-CuO-O-Cu2]6,8-,in the cell unit ofthe crystal,and the cell units are connected with each other by ionic bonds along the c direction of the crys-tal lattice are offered based on the chemical bonding characteristics from the calculated results.The importantcontribution of the apical oxygen to superconductivities is emphasized as well.

  18. Self-consistent theory of hadron-nucleus scattering. Application to pion physics

    International Nuclear Information System (INIS)

    Johnson, M.B.

    1981-01-01

    The first part of this set of two seminars will consist of a review of several of the important accomplishments made in the last few years in the field of pion-nucleus physics. Next I discuss some questions raised by these accomplishments and show that for some very natural reasons the commonly employed theoretical methods cannot be applied to answer these questions. This situation leads to the idea of self-consistency, which is first explained in a general context. The remainder of the seminars are devoted to illustrating the idea within a simple multiple-scattering model for the case of pion scattering. An evaluation of the effectiveness of the self-consistent requirment to produce a solution to the model is made, and a few of the questions raised by recent accomplishments in the field of pion physics are addressed in the model. Finally, the results of the model calculation are compared to experimental data and implications of the results discussed. (orig./HSI)

  19. Fokker-Planck code for the quasi-linear absorption of electron cyclotron waves in a tokamak plasma

    International Nuclear Information System (INIS)

    Meyer, R.L.; Giruzzi, G.; Krivenski, V.

    1986-01-01

    We present the solution of the kinetic equation describing the quasi-linear evolution of the electron momentum distribution function under the influence of the electron cyclotron wave absorption. Coulomb collisions and the dc electric field in a tokamak plasma. The solution of the quasi-linear equation is obtained numerically using a two-dimensional initial value code following an ADI scheme. Most emphasis is given to the full non-linear and self-consistent problem, namely, the wave amplitude is evaluated at any instant and any point in space according to the actual damping. This is necessary since wave damping is a very sensitive function of the slope of the local momentum distribution function because the resonance condition relates the electron momentum to the location of wave energy deposition. (orig.)

  20. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions

    Science.gov (United States)

    Chen, Zhenhua; Chen, Xun; Wu, Wei

    2013-04-01

    In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.

  1. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    Directory of Open Access Journals (Sweden)

    Louise O’Boyle

    2017-01-01

    Full Text Available Wave energy converters (WECs inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An experimental campaign to map, at high resolution, the wave field variation around arrays of 5 oscillating water column WECs and a methodology for extracting scattered and radiated waves is presented. The results highlight the importance of accounting for the full extent of the WEC behavior when assessing impacts on the wave field. The effect of radiated waves on the wave field is not immediately apparent when considering changes to the entire wave spectrum, nor when observing changes in wave climate due to scattered and radiated waves superimposed together. The results show that radiated waves may account for up to 50% of the effects on wave climate in the near field in particular operating conditions.

  2. Simulations of Tokamak Edge Turbulence Including Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent zonal flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  3. Full wave simulations of lower hybrid wave propagation in tokamaks

    International Nuclear Information System (INIS)

    Wright, J. C.; Bonoli, P. T.; Phillips, C. K.; Valeo, E.; Harvey, R. W.

    2009-01-01

    Lower hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance on relatively fast tail electrons at (2.5-3)xv te , where v te ≡ (2T e /m e ) 1/2 is the electron thermal speed. Consequently these waves are well-suited to driving current in the plasma periphery where the electron temperature is lower, making LH current drive (LHCD) a promising technique for off-axis (r/a≥0.60) current profile control in reactor grade plasmas. Established techniques for computing wave propagation and absorption use WKB expansions with non-Maxwellian self-consistent distributions.In typical plasma conditions with electron densities of several 10 19 m -3 and toroidal magnetic fields strengths of 4 Telsa, the perpendicular wavelength is of the order of 1 mm and the parallel wavelength is of the order of 1 cm. Even in a relatively small device such as Alcator C-Mod with a minor radius of 22 cm, the number of wavelengths that must be resolved requires large amounts of computational resources for the full wave treatment. These requirements are met with a massively parallel version of the TORIC full wave code that has been adapted specifically for the simulation of LH waves [J. C. Wright, et al., Commun. Comput. Phys., 4, 545 (2008), J. C. Wright, et al., Phys. Plasmas 16 July (2009)]. This model accurately represents the effects of focusing and diffraction that occur in LH propagation. It is also coupled with a Fokker-Planck solver, CQL3D, to provide self-consistent distribution functions for the plasma dielectric as well as a synthetic hard X-ray (HXR) diagnostic for direct comparisons with experimental measurements of LH waves.The wave solutions from the TORIC-LH zero FLR model will be compared to the results from ray tracing from the GENRAY/CQL3D code via the synthetic HXR diagnostic and power deposition.

  4. Self-consistent simulation study on magnetized inductively coupled plasma for 450 mm semiconductor wafer processing

    International Nuclear Information System (INIS)

    Lee, Ho-Jun; Kim, Yun-Gi

    2012-01-01

    The characteristics of weakly magnetized inductively coupled plasma (MICP) are investigated using a self-consistent simulation based on the drift–diffusion approximation with anisotropic transport coefficients. MICP is a plasma source utilizing the cavity mode of the low-frequency branch of the right-hand circularly polarized wave. The model system is 700 mm in diameter and has a 250 mm gap between the radio-frequency window and wafer holder. The model chamber size is chosen to verify the applicability of this type of plasma source to the 450 mm wafer process. The effects of electron density distribution and external axial magnetic field on the propagation properties of the plasma wave, including the wavelength modulation and refraction toward the high-density region, are demonstrated. The restricted electron transport and thermal conductivity in the radial direction due to the magnetic field result in small temperature gradient along the field lines and off-axis peak density profile. The calculated impedance seen from the antenna terminal shows that MICP has a resistance component that is two to threefold higher than that of ICP. This property is practically important for large-size, low-pressure plasma sources because high resistance corresponds to high power-transfer efficiency and stable impedance matching characteristics. For the 0.665 Pa argon plasma, MICP shows a radial density uniformity of 6% within 450 mm diameter, which is much better than that of nonmagnetized ICP.

  5. Dynamics of an atomic wave packet in a standing-wave cavity field: A cavity-assisted single-atom detection

    International Nuclear Information System (INIS)

    Chough, Young-Tak; Nha, Hyunchul; Kim, Sang Wook; An, Kyungwon; Youn, Sun-Hyun

    2002-01-01

    We investigate the single-atom detection system using an optical standing-wave cavity, from the viewpoint of the quantized center-of-mass motion of the atomic wave packet. We show that since the atom-field coupling strength depends upon the overlap integral of the atomic wave packet and the field mode function, the effect of the wave-packet spreading via the momentum exchange process brings about a significant effect in the detection efficiency. We find that, as a result, the detection efficiency is not sensitive to the individual atomic trajectory for reasonably slow atoms. We also address an interesting phenomenon of the atomic wave-packet splitting occurring when an atom passes through a node of the cavity field

  6. An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method.

    Science.gov (United States)

    Ding, Kun; Chan, C T

    2018-02-28

    Plasmonics has attracted much attention not only because it has useful properties such as strong field enhancement, but also because it reveals the quantum nature of matter. To handle quantum plasmonics effects, ab initio packages or empirical Feibelman d-parameters have been used to explore the quantum correction of plasmonic resonances. However, most of these methods are formulated within the quasi-static framework. The self-consistent hydrodynamics model offers a reliable approach to study quantum plasmonics because it can incorporate the quantum effect of the electron gas into classical electrodynamics in a consistent manner. Instead of the standard scattering method, we formulate the self-consistent hydrodynamics method as an eigenvalue problem to study quantum plasmonics with electrons and photons treated on the same footing. We find that the eigenvalue approach must involve a global operator, which originates from the energy functional of the electron gas. This manifests the intrinsic nonlocality of the response of quantum plasmonic resonances. Our model gives the analytical forms of quantum corrections to plasmonic modes, incorporating quantum electron spill-out effects and electrodynamical retardation. We apply our method to study the quantum surface plasmon polariton for a single flat interface.

  7. Stochastic electron dynamics due to drift waves in a sheared magnetic field and other drift motion problems

    International Nuclear Information System (INIS)

    Robertson, J.A.

    1986-12-01

    Electron motion in a single electrostatic wave in a sheared magnetic field is shown to become stochastic in the presence of a second wave at an amplitude well below that obtained from the overlapping pendulum resonance approximation. The enhanced stochasticity occurs for low parallel velocity electrons for which the parallel trapping motion from eE/sub parallel//m interacts strongly with the E x B trapping motion due to the presence of magnetic shear. The guiding-center equations for single particle electron orbits in given fields are investigated using both analytical and numerical techniques. The model assumes a slab magnetic field geometry with shear and two electrostatic plane waves propagating at an angle with respect to each other. Collisions and the self-consistent effect of the electron motion upon the fields are ignored. The guiding-center motion in an inertial reference frame moving in phase with the two waves is given by a two degree-of-freedom, autonomous Hamiltonian system. The single wave particle motion may be reduced to a two parameter family of one degree-of-freedom Hamiltonians which bifurcate from a pendulum phase space to a topology with three chains of elliptic and hyperbolic fixed points separated in radius about the mode-rational surface. In the presence of a perturbing wave with a different helicity, electrons in the small parallel velocity regime become stochastic at an amplitude scaling as the fourth root of the wave potential. The results obtained for stochastic motion apply directly to the problem of electron diffusion in drift waves occurring in toroidal fusion confinement devices. The effect of an adiabatically changing radial electric field upon guiding-center orbits in tokamaks is also investigated. This perturbation causes a radial polarization drift of trapped particle tokamak orbits

  8. Self-field effects on electron dynamics in free-electron lasers with axial magnetic field

    International Nuclear Information System (INIS)

    Mirzanejhad, S.; Maraghechi, B.; Mohsenpour, T.

    2004-01-01

    A self-consistent method for the analysis of self-magnetic field for a free-electron laser with a one-dimensional helical wiggler and an axial guide magnetic field is presented. The equilibrium orbits and their stability, under the influence of self-electric and self-magnetic fields, are analyzed. New unstable orbits, in the first part of the Group I orbits and in the resonance region of the Group II orbits, are found. It is shown that an increase in the defocusing effect of self-fields will widen the unstable orbits. An anomalous self-field regime is found where an increase in the defocusing effect of self-fields can have stabilizing effect on the resonance region

  9. Self-consistent field theory for the interactions between keratin intermediate filaments

    International Nuclear Information System (INIS)

    Akinshina, Anna; Jambon-Puillet, Etienne; Warren, Patrick B; Noro, Massimo G

    2013-01-01

    Keratins are important structural proteins found in skin, hair and nails. Keratin Intermediate Filaments are major components of corneocytes, nonviable horny cells of the Stratum Corneum, the outermost layer of skin. It is considered that interactions between unstructured domains of Keratin Intermediate Filaments are the key factor in maintaining the elasticity of the skin. We have developed a model for the interactions between keratin intermediate filaments based on self-consistent field theory. The intermediate filaments are represented by charged surfaces, and the disordered terminal domains of the keratins are represented by charged heteropolymers grafted to these surfaces. We estimate the system is close to a charge compensation point where the heteropolymer grafting density is matched to the surface charge density. Using a protein model with amino acid resolution for the terminal domains, we find that the terminal chains can mediate a weak attraction between the keratin surfaces. The origin of the attraction is a combination of bridging and electrostatics. The attraction disappears when the system moves away from the charge compensation point, or when excess small ions and/or NMF-representing free amino acids are added. These results are in concordance with experimental observations, and support the idea that the interaction between keratin filaments, and ultimately in part the elastic properties of the keratin-containing tissue, is controlled by a combination of the physico-chemical properties of the disordered terminal domains and the composition of the medium in the inter-filament region

  10. Final Report Fermionic Symmetries and Self consistent Shell Model

    International Nuclear Information System (INIS)

    Zamick, Larry

    2008-01-01

    In this final report in the field of theoretical nuclear physics we note important accomplishments.We were confronted with 'anomoulous' magnetic moments by the experimetalists and were able to expain them. We found unexpected partial dynamical symmetries--completely unknown before, and were able to a large extent to expain them. The importance of a self consistent shell model was emphasized.

  11. Self-consistency in Capital Markets

    Science.gov (United States)

    Benbrahim, Hamid

    2013-03-01

    Capital Markets are considered, at least in theory, information engines whereby traders contribute to price formation with their diverse perspectives. Regardless whether one believes in efficient market theory on not, actions by individual traders influence prices of securities, which in turn influence actions by other traders. This influence is exerted through a number of mechanisms including portfolio balancing, margin maintenance, trend following, and sentiment. As a result market behaviors emerge from a number of mechanisms ranging from self-consistency due to wisdom of the crowds and self-fulfilling prophecies, to more chaotic behavior resulting from dynamics similar to the three body system, namely the interplay between equities, options, and futures. This talk will address questions and findings regarding the search for self-consistency in capital markets.

  12. Zero Field Splitting of the chalcogen diatomics using relativistic correlated wave-function methods

    DEFF Research Database (Denmark)

    Rota, Jean-Baptiste; Knecht, Stefan; Fleig, Timo

    2011-01-01

    The spectrum arising from the (π*)2 configuration of the chalcogen dimers, namely the X21, a2 and b0+ states, is calculated using Wave-Function Theory (WFT) based methods. Two-component (2c) and four-component (4c) MultiReference Configuration Interaction (MRCI) and Fock-Space Coupled Cluster (FSCC......) methods are used as well as two-step methods Spin-Orbit Complete Active Space Perturbation Theory at 2nd order (SO-CASPT2) and Spin-Orbit Difference Dedicated Configuration Interaction (SODDCI). The energy of the X21 state corresponds to the Zero-Field Splitting (ZFS) of the ground state spin triplet...

  13. Fully self-consistent multiparticle-multi-hole configuration mixing method - Applications to a few light nuclei

    International Nuclear Information System (INIS)

    Robin, Caroline

    2014-01-01

    This thesis project takes part in the development of the multiparticle-multi-hole configuration mixing method aiming to describe the structure of atomic nuclei. Based on a double variational principle, this approach allows to determine the expansion coefficients of the wave function and the single-particle states at the same time. In this work we apply for the first time the fully self-consistent formalism of the mp-mh method to the description of a few p- and sd-shell nuclei, using the D1S Gogny interaction. A first study of the 12 C nucleus is performed in order to test the doubly iterative convergence procedure when different types of truncation criteria are applied to select the many-body configurations included in the wave-function. A detailed analysis of the effect caused by the orbital optimization is conducted. In particular, its impact on the one-body density and on the fragmentation of the ground state wave function is analyzed. A systematic study of sd-shell nuclei is then performed. A careful analysis of the correlation content of the ground state is first conducted and observables quantities such as binding and separation energies, as well as charge radii are calculated and compared to experimental data. Satisfactory results are found. Spectroscopic properties are also studied. Excitation energies of low-lying states are found in very good agreement with experiment, and the study of magnetic dipole features are also satisfactory. Calculation of electric quadrupole properties, and in particular transition probabilities B(E2), however reveal a clear lack of collectivity of the wave function, due to the reduced valence space used to select the many-body configurations. Although the renormalization of orbitals leads to an important fragmentation of the ground state wave function, only little effect is observed on B(E2) probabilities. A tentative explanation is given. Finally, the structure description of nuclei provided by the multiparticle

  14. Electrostatic ion-cyclotron waves in a nonuniform magnetic field

    International Nuclear Information System (INIS)

    Cartier, S.L.; D'Angelo, N.; Merlino, R.L.

    1985-01-01

    The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f> or approx. =f/sub c/i, where f/sub c/i is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism

  15. Hierarchical wave functions revisited

    International Nuclear Information System (INIS)

    Li Dingping.

    1997-11-01

    We study the hierarchical wave functions on a sphere and on a torus. We simplify some wave functions on a sphere or a torus using the analytic properties of wave functions. The open question, the construction of the wave function for quasi electron excitation on a torus, is also solved in this paper. (author)

  16. Self-consistent calculation of the coupling constant in the Gross-Pitaevskii equation

    International Nuclear Information System (INIS)

    Cherny, A.Yu.; Brand, J.

    2004-01-01

    A method is proposed for a self-consistent evaluation of the coupling constant in the Gross-Pitaevskii equation without involving a pseudopotential replacement. A renormalization of the coupling constant occurs due to medium effects and the trapping potential, e.g., in quasi-1D or quasi-2D systems. It is shown that a simplified version of the Hartree-Fock-Bogoliubov approximation leads to a variational problem for both the condensate and a two-body wave function describing the behavior of a pair of bosons in the Bose-Einstein condensate. The resulting coupled equations are free of unphysical divergences. Particular cases of this scheme that admit analytical estimations are considered and compared to the literature. In addition to the well-known cases of low-dimensional trapping, crossover regimes can be studied. The values of the kinetic, interaction, external, and release energies in low dimensions are also evaluated and contributions due to short-range correlations are found to be substantial

  17. A CALCULATION OF SEMI-EMPIRICAL ONE-ELECTRON WAVE FUNCTIONS FOR MULTI-ELECTRON ATOMS USED FOR ELEMENTARY PROCESS SIMULATION IN NONLOCAL PLASMA

    Directory of Open Access Journals (Sweden)

    M. V. Tchernycheva

    2017-01-01

    Full Text Available Subject of Research. The paper deals with development outcomes for creation method of one-electron wave functions of complex atoms, relatively simple, symmetrical for all atom electrons and free from hard computations. The accuracy and resource intensity of the approach are focused on systematic calculations of cross sections and rate constants of elementary processes of inelastic collisions of atoms or molecules with electrons (ionization, excitation, excitation transfer, and others. Method. The method is based on a set of two iterative processes. At the first iteration step the Schrödinger equation was solved numerically for the radial parts of the electron wave functions in the potential of the atomic core self-consistent field. At the second iteration step the new approximationfor the atomic core field is created that uses found solutions for all one-electron wave functions. The solution optimization for described multiparameter problem is achieved by the use of genetic algorithm. The suitability of the developed method was verified by comparing the calculation results with numerous data on the energies of atoms in the ground and excited states. Main Results. We have created the run-time version of the program for creation of sets of one-electron wave functions and calculation of the cross sections and constants of collisional transition rates in the first Born approximation. The priori available information about binding energies of the electrons for any many-particle system for creation of semi-empirical refined solutions for the one-electron wave functions can be considered at any step of this procedure. Practical Relevance. The proposed solution enables a simple and rapid preparation of input data for the numerical simulation of nonlocal gas discharge plasma. The approach is focused on the calculation of discharges in complex gas mixtures requiring inclusion in the model of a large number of elementary collisional and radiation

  18. Electric field vector measurements in a surface ionization wave discharge

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Adamovich, Igor V; Lempert, Walter R; Böhm, Patrick S; Czarnetzki, Uwe

    2015-01-01

    This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ∼100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns −1 . The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (∼100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ∼1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85–95 Td, consistent with dc breakdown field estimated from the Paschen

  19. Ion sense of polarization of the electromagnetic wave field in the electron whistler frequency band

    Directory of Open Access Journals (Sweden)

    B. Lundin

    Full Text Available It is shown that the left-hand (or ion-type sense of polarization can appear in the field interference pattern of two plane electron whistler waves. Moreover, it is demonstrated that the ion-type polarized wave electric fields can be accompanied by the presence at the same observation point of electron-type polarized wave magnetic fields. The registration of ion-type polarized fields with frequencies between the highest ion gyrofrequency and the electron gyrofrequency in a cold, overdense plasma is a sufficient indication for the existence of an interference wave pattern, which can typically occur near artificial or natural reflecting magnetospheric plasma regions, inside waveguides (as in helicon discharges, for example, in fields resonantly emitted by beams of charged particles or, in principle, in some self-sustained, nonlinear wave field structures. A comparison with the conventional spectral matrix data processing approach is also presented in order to facilitate the calculations of the analyzed polarization parameters.

    Key words. Ionosphere (wave propagation Radio science (waves in plasma Space plasma physics (general or miscellaneous

  20. Ion sense of polarization of the electromagnetic wave field in the electron whistler frequency band

    Directory of Open Access Journals (Sweden)

    B. Lundin

    2002-08-01

    Full Text Available It is shown that the left-hand (or ion-type sense of polarization can appear in the field interference pattern of two plane electron whistler waves. Moreover, it is demonstrated that the ion-type polarized wave electric fields can be accompanied by the presence at the same observation point of electron-type polarized wave magnetic fields. The registration of ion-type polarized fields with frequencies between the highest ion gyrofrequency and the electron gyrofrequency in a cold, overdense plasma is a sufficient indication for the existence of an interference wave pattern, which can typically occur near artificial or natural reflecting magnetospheric plasma regions, inside waveguides (as in helicon discharges, for example, in fields resonantly emitted by beams of charged particles or, in principle, in some self-sustained, nonlinear wave field structures. A comparison with the conventional spectral matrix data processing approach is also presented in order to facilitate the calculations of the analyzed polarization parameters.Key words. Ionosphere (wave propagation Radio science (waves in plasma Space plasma physics (general or miscellaneous

  1. High energy QCD at NLO: from light-cone wave function to JIMWLK evolution

    Energy Technology Data Exchange (ETDEWEB)

    Lublinsky, Michael [Department of Physics, Ben-Gurion University of the Negev,Beer-Sheva 84105 (Israel); Physics Department, University of Connecticut,2152 Hillside Road, Storrs, CT 06269-3046 (United States); Mulian, Yair [Department of Physics, Ben-Gurion University of the Negev,Beer-Sheva 84105 (Israel)

    2017-05-17

    Soft components of the light cone wave-function of a fast moving projectile hadron is computed in perturbation theory to the third order in QCD coupling constant. At this order, the Fock space of the soft modes consists of one-gluon, two-gluon, and a quark-antiquark states. The hard component of the wave-function acts as a non-Abelian background field for the soft modes and is represented by a valence charge distribution that accounts for non-linear density effects in the projectile. When scattered off a dense target, the diagonal element of the S-matrix reveals the Hamiltonian of high energy evolution, the JIMWLK Hamiltonian. This way we provide a new direct derivation of the JIMWLK Hamiltonian at the Next-to-Leading Order.

  2. Self-contained filtered density function

    Science.gov (United States)

    Nouri, A. G.; Nik, M. B.; Givi, P.; Livescu, D.; Pope, S. B.

    2017-09-01

    The filtered density function (FDF) closure is extended to a "self-contained" format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  3. Self-consistent approach to the eletronic problem in disordered solids

    International Nuclear Information System (INIS)

    Taguena-Martinez, J.; Barrio, R.A.; Martinez, E.; Yndurain, F.

    1984-01-01

    It is developed a simple formalism which allows us to perform a self consistent non-parametrized calculation in a non-periodic system, by finding out the thermodynamically averaged Green's function of a cluster Bethe lattice system. (Author) [pt

  4. A Self-Consistent Fault Slip Model for the 2011 Tohoku Earthquake and Tsunami

    Science.gov (United States)

    Yamazaki, Yoshiki; Cheung, Kwok Fai; Lay, Thorne

    2018-02-01

    The unprecedented geophysical and hydrographic data sets from the 2011 Tohoku earthquake and tsunami have facilitated numerous modeling and inversion analyses for a wide range of dislocation models. Significant uncertainties remain in the slip distribution as well as the possible contribution of tsunami excitation from submarine slumping or anelastic wedge deformation. We seek a self-consistent model for the primary teleseismic and tsunami observations through an iterative approach that begins with downsampling of a finite fault model inverted from global seismic records. Direct adjustment of the fault displacement guided by high-resolution forward modeling of near-field tsunami waveform and runup measurements improves the features that are not satisfactorily accounted for by the seismic wave inversion. The results show acute sensitivity of the runup to impulsive tsunami waves generated by near-trench slip. The adjusted finite fault model is able to reproduce the DART records across the Pacific Ocean in forward modeling of the far-field tsunami as well as the global seismic records through a finer-scale subfault moment- and rake-constrained inversion, thereby validating its ability to account for the tsunami and teleseismic observations without requiring an exotic source. The upsampled final model gives reasonably good fits to onshore and offshore geodetic observations albeit early after-slip effects and wedge faulting that cannot be reliably accounted for. The large predicted slip of over 20 m at shallow depth extending northward to 39.7°N indicates extensive rerupture and reduced seismic hazard of the 1896 tsunami earthquake zone, as inferred to varying extents by several recent joint and tsunami-only inversions.

  5. Quasiparticle Lagrangian for the binding energies and self-consistent fields of nuclei in the Fermi-liquid approach

    International Nuclear Information System (INIS)

    Sapershtein, E.E.; Khodel', V.A.

    1981-01-01

    The problem of calculating the binding energy and self-consistent field of a nucleus in terms of the effective interaction of quasiparticles at the Fermi surface is solved. It is shown that for this one can go over from the system of N Fermi particles to a system of N interacting quasiparticles described by an effective quasiparticle Lagrangian L/sub q/. It is shown that the corresponding quasiparticle energy is equal to the ground-state energy of the system. The connection between the parameters of the effective Lagrangian and the constants of the quasiparticle interaction introduced in the theory of finite Fermi systems is established

  6. A Van Atta reflector consisting of half-wave dipoles

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1966-01-01

    The reradiation pattern of a passive Van Atta reflector consisting of half-wave dipoles is investigated. The character of the reradiation pattern first is deduced by qualitative and physical considerations. Various types of array elements are considered and several geometrical configurations...... of these elements are outlined. Following this, an analysis is made of the reradiation pattern of a linear Van Atta array consisting of four equispaced half-wave dipoles. The general form of the reradiation pattern is studied analytically. The influence of scattering and coupling is determined and the dependence...

  7. Empirical Mode Decomposition of the atmospheric wave field

    Directory of Open Access Journals (Sweden)

    A. J. McDonald

    2007-03-01

    Full Text Available This study examines the utility of the Empirical Mode Decomposition (EMD time-series analysis technique to separate the horizontal wind field observed by the Scott Base MF radar (78° S, 167° E into its constituent parts made up of the mean wind, gravity waves, tides, planetary waves and instrumental noise. Analysis suggests that EMD effectively separates the wind field into a set of Intrinsic Mode Functions (IMFs which can be related to atmospheric waves with different temporal scales. The Intrinsic Mode Functions resultant from application of the EMD technique to Monte-Carlo simulations of white- and red-noise processes are compared to those obtained from the measurements and are shown to be significantly different statistically. Thus, application of the EMD technique to the MF radar horizontal wind data can be used to prove that this data contains information on internal gravity waves, tides and planetary wave motions.

    Examination also suggests that the EMD technique has the ability to highlight amplitude and frequency modulations in these signals. Closer examination of one of these regions of amplitude modulation associated with dominant periods close to 12 h is suggested to be related to a wave-wave interaction between the semi-diurnal tide and a planetary wave. Application of the Hilbert transform to the IMFs forms a Hilbert-Huang spectrum which provides a way of viewing the data in a similar manner to the analysis from a continuous wavelet transform. However, the fact that the basis function of EMD is data-driven and does not need to be selected a priori is a major advantage. In addition, the skeleton diagrams, produced from the results of the Hilbert-Huang spectrum, provide a method of presentation which allows quantitative information on the instantaneous period and amplitude squared to be displayed as a function of time. Thus, it provides a novel way to view frequency and amplitude-modulated wave phenomena and potentially non

  8. Transfer function and near-field detection of evanescent waves

    DEFF Research Database (Denmark)

    Radko, Ylia P.; Bozhevolnyi, Sergey I.; Gregersen, Niels

    2006-01-01

    of collection and illumination modes. Making use of a collection near-field microscope with a similar fiber tip illuminated by an evanescent field, we measure the collected power as a function of the field spatial frequency in different polarization configurations. Considering a two-dimensional probe...... for the transfer function, which is derived by introducing an effective pointof (dipolelike) detection inside the probe tip. It is found to be possible to fit reasonably well both the experimental and the simulation data for evanescent field components, implying that the developed approximation of the near......-field transfer function can serve as a simple, rational, and sufficiently reliable means of fiber probe characterization....

  9. Transfer functions of laminar premixed flames subjected to forcing by acoustic waves, AC electric fields, and non-thermal plasma discharges

    KAUST Repository

    Lacoste, Deanna

    2016-06-23

    The responses of laminar methane-air flames to forcing by acoustic waves, AC electric fields, and nanosecond repetitively pulsed (NRP) glow discharges are reported here. The experimental setup consists of an axisymmetric burner with a nozzle made from a quartz tube. Three different flame geometries have been studied: conical, M-shaped and V-shaped flames. A central stainless steel rod is used as a cathode for the electric field and plasma excitations. The acoustic forcing is obtained with a loudspeaker located at the bottom part of the burner. For forcing by AC electric fields, a metallic grid is placed above the rod and connected to an AC power supply. Plasma forcing is obtained by applying high-voltage pulses of 10-ns duration applied at 10 kHz, between the rod and an annular stainless steel ring, placed at the outlet of the quartz tube. The chemiluminescence of CH is used to determine the heat release rate fluctuations. For forcing by acoustic waves and plasma, the geometry of the flame plays a key role in the response of the combustion, while the flame shape does not affect the response of the combustion to electric field forcing. The flame response to acoustic forcing of about 10% of the incoming flow is similar to those obtained in the literature. The flames are found to be responsive to an AC electric field across the whole range of frequencies studied. A forcing mechanism, based on the generation of ionic wind, is proposed. The gain of the transfer function obtained for plasma forcing is found to be up to 5 times higher than for acoustic forcing. A possible mechanism of plasma forcing is introduced.

  10. Transfer functions of laminar premixed flames subjected to forcing by acoustic waves, AC electric fields, and non-thermal plasma discharges

    KAUST Repository

    Lacoste, Deanna; Xiong, Yuan; Moeck, Jonas P.; Chung, Suk-Ho; Roberts, William L.; Cha, Min

    2016-01-01

    The responses of laminar methane-air flames to forcing by acoustic waves, AC electric fields, and nanosecond repetitively pulsed (NRP) glow discharges are reported here. The experimental setup consists of an axisymmetric burner with a nozzle made from a quartz tube. Three different flame geometries have been studied: conical, M-shaped and V-shaped flames. A central stainless steel rod is used as a cathode for the electric field and plasma excitations. The acoustic forcing is obtained with a loudspeaker located at the bottom part of the burner. For forcing by AC electric fields, a metallic grid is placed above the rod and connected to an AC power supply. Plasma forcing is obtained by applying high-voltage pulses of 10-ns duration applied at 10 kHz, between the rod and an annular stainless steel ring, placed at the outlet of the quartz tube. The chemiluminescence of CH is used to determine the heat release rate fluctuations. For forcing by acoustic waves and plasma, the geometry of the flame plays a key role in the response of the combustion, while the flame shape does not affect the response of the combustion to electric field forcing. The flame response to acoustic forcing of about 10% of the incoming flow is similar to those obtained in the literature. The flames are found to be responsive to an AC electric field across the whole range of frequencies studied. A forcing mechanism, based on the generation of ionic wind, is proposed. The gain of the transfer function obtained for plasma forcing is found to be up to 5 times higher than for acoustic forcing. A possible mechanism of plasma forcing is introduced.

  11. Regression analysis and transfer function in estimating the parameters of central pulse waves from brachial pulse wave.

    Science.gov (United States)

    Chai Rui; Li Si-Man; Xu Li-Sheng; Yao Yang; Hao Li-Ling

    2017-07-01

    This study mainly analyzed the parameters such as ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO) and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. These parameters extracted from the central pulse wave invasively measured were compared with the parameters measured from the brachial pulse waves by a regression model and a transfer function model. The accuracy of the parameters which were estimated by the regression model and the transfer function model was compared too. Our findings showed that in addition to the k value, the above parameters of the central pulse wave and the brachial pulse wave invasively measured had positive correlation. Both the regression model parameters including A_slope, DBP, SEVR and the transfer function model parameters had good consistency with the parameters invasively measured, and they had the same effect of consistency. The regression equations of the three parameters were expressed by Y'=a+bx. The SBP, PP, SV, CO of central pulse wave could be calculated through the regression model, but their accuracies were worse than that of transfer function model.

  12. Superconformal partial waves in Grassmannian field theories

    Energy Technology Data Exchange (ETDEWEB)

    Doobary, Reza; Heslop, Paul [Department of Mathematical Sciences, Durham University,South Road, Durham, DH1 3LE United Kingdom (United Kingdom)

    2015-12-23

    We derive superconformal partial waves for all scalar four-point functions on a super Grassmannian space Gr(m|n,2m|2n) for all m,n. This family of four-point functions includes those of all (arbitrary weight) half BPS operators in both N=4 SYM (m=n=2) and in N=2 superconformal field theories in four dimensions (m=2,n=1) on analytic superspace. It also includes four-point functions of all (arbitrary dimension) scalar fields in non-supersymmetric conformal field theories (m=2,n=0) on Minkowski space, as well as those of a certain class of representations of the compact SU(2n) coset spaces. As an application we then specialise to N=4 SYM and use these results to perform a detailed superconformal partial wave analysis of the four-point functions of arbitrary weight half BPS operators. We discuss the non-trivial separation of protected and unprotected sectors for the 〈2222〉, 〈2233〉 and 〈3333〉 cases in an SU(N) gauge theory at finite N. The 〈2233〉 correlator predicts a non-trivial protected twist four sector for 〈3333〉 which we can completely determine using the knowledge that there is precisely one such protected twist four operator for each spin.

  13. Consistent momentum space regularization/renormalization of supersymmetric quantum field theories: the three-loop β-function for the Wess-Zumino model

    International Nuclear Information System (INIS)

    Carneiro, David; Sampaio, Marcos; Nemes, Maria Carolina; Scarpelli, Antonio Paulo Baeta

    2003-01-01

    We compute the three loop β function of the Wess-Zumino model to motivate implicit regularization (IR) as a consistent and practical momentum-space framework to study supersymmetric quantum field theories. In this framework which works essentially in the physical dimension of the theory we show that ultraviolet are clearly disentangled from infrared divergences. We obtain consistent results which motivate the method as a good choice to study supersymmetry anomalies in quantum field theories. (author)

  14. A finite element approach to self-consistent field theory calculations of multiblock polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, David M. [Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 (United States); Delaney, Kris; Fredrickson, Glenn H. [Materials Research Laboratory, University of California, Santa Barbara (United States); Ganapathysubramanian, Baskar, E-mail: baskarg@iastate.edu [Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 (United States)

    2017-02-15

    Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibrium polymer morphologies. We discuss the formulation and address implementation challenges that ensure accuracy and efficiency. We explore higher order chain contour steppers that are efficiently implemented with Richardson Extrapolation. This approach is highly scalable and suitable for systems with arbitrary shapes. We show spatial and temporal convergence and illustrate scaling on up to 2048 cores. Finally, we illustrate confinement effects for selected complex geometries. This has implications for materials design for nanoscale applications where dimensions are such that equilibrium morphologies dramatically differ from the bulk phases.

  15. Influence of hurricane wind field in the structure of directional wave spectra

    Science.gov (United States)

    Esquivel-Trava, Bernardo; Ocampo-Torres, Francisco J.; Osuna, Pedro

    2015-04-01

    Extensive field measurements of wind waves in deep waters in the Gulf of Mexico and Caribbean Sea, have been analyzed to describe the spatial structure of directional wave spectra during hurricane conditions. Following Esquivel-Trava et al. (2015) this analysis was made for minor hurricanes (categories 1 and 2) and major hurricanes (categories 3, 4 and 5). In both cases the directionality of the energy wave spectrum is similar in all quadrants. Some differences are observed however, and they are associated with the presence and the shape of swell energy in each quadrant. Three numerical experiments using the spectral wave prediction model SWAN were carried out to gain insight into the mechanism that controls the directional and frequency distributions of hurricane wave energy. The aim of the experiments is to evaluate the effect of the translation speed of the hurricane and the presence of concentric eye walls, on both the wave growth process and the shape of the directional wave spectrum. The HRD wind field of Hurricane Dean on August 20 at 7:30 was propagated at two different velocities (5 and 10 m/s). An idealized concentric eye wall (a Gaussian function that evolve in time along a path in the form of an Archimedean spiral) was imposed to the wind field. The white-capping formulation of Westhuysen et al. (2007) was selected. The wave model represents fairly well the directionality of the energy and the shape of the directional spectra in the hurricane domain. The model results indicate that the forward movement of the storm influences the development of the waves, consistent with field observations. This work has been supported by CONACYT scholarship 164510 and projects RugDisMar (155793), CB-2011-01-168173 and the Department of Physical Oceanography of CICESE. References Esquivel-Trava, B., Ocampo-Torres, F. J., & Osuna, P. (2015). Spatial structure of directional wave spectra in hurricanes. Ocean Dynam., 65(1), 65-76. doi:10.1007/s10236-014-0791-9 Van der

  16. An alternative approach to exact wave functions for time-dependent coupled oscillator model of charged particle in variable magnetic field

    International Nuclear Information System (INIS)

    Menouar, Salah; Maamache, Mustapha; Choi, Jeong Ryeol

    2010-01-01

    The quantum states of time-dependent coupled oscillator model for charged particles subjected to variable magnetic field are investigated using the invariant operator methods. To do this, we have taken advantage of an alternative method, so-called unitary transformation approach, available in the framework of quantum mechanics, as well as a generalized canonical transformation method in the classical regime. The transformed quantum Hamiltonian is obtained using suitable unitary operators and is represented in terms of two independent harmonic oscillators which have the same frequencies as that of the classically transformed one. Starting from the wave functions in the transformed system, we have derived the full wave functions in the original system with the help of the unitary operators. One can easily take a complete description of how the charged particle behaves under the given Hamiltonian by taking advantage of these analytical wave functions.

  17. Human brain networks function in connectome-specific harmonic waves.

    Science.gov (United States)

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  18. A self-consistency check for unitary propagation of Hawking quanta

    Science.gov (United States)

    Baker, Daniel; Kodwani, Darsh; Pen, Ue-Li; Yang, I.-Sheng

    2017-11-01

    The black hole information paradox presumes that quantum field theory in curved space-time can provide unitary propagation from a near-horizon mode to an asymptotic Hawking quantum. Instead of invoking conjectural quantum-gravity effects to modify such an assumption, we propose a self-consistency check. We establish an analogy to Feynman’s analysis of a double-slit experiment. Feynman showed that unitary propagation of the interfering particles, namely ignoring the entanglement with the double-slit, becomes an arbitrarily reliable assumption when the screen upon which the interference pattern is projected is infinitely far away. We argue for an analogous self-consistency check for quantum field theory in curved space-time. We apply it to the propagation of Hawking quanta and test whether ignoring the entanglement with the geometry also becomes arbitrarily reliable in the limit of a large black hole. We present curious results to suggest a negative answer, and we discuss how this loss of naive unitarity in QFT might be related to a solution of the paradox based on the soft-hair-memory effect.

  19. Deformation properties of even-even Os, Pt, Hg nuclei and spectroscopic properties of odd Re, Os, Ir, Pt, Au, Hg nuclei from self-consistent calculations

    CERN Document Server

    Desthuilliers-Porquet, M G; Quentin, P; Sauvage-Letessier, J

    1981-01-01

    Static properties of even-even Os, Pt, Hg nuclei have been obtained from HF+BCS calculations. Single-particle wave functions which come from these self-consistent calculations have been used to calculate some spectroscopic properties of odd Re, Os, Ir, Pt, Au, and Hg nuclei, within the rotor-quasiparticle coupling model. The authors' calculations are able to give a good description of most of available experimental data. (12 refs).

  20. Soliton shock wave fronts and self-similar discontinuities in dispersion hydrodynamics

    International Nuclear Information System (INIS)

    Gurevich, A.V.; Meshcherkin, A.P.

    1987-01-01

    Nonlinear flows in nondissipative dispersion hydrodynamics are examined. It is demonstrated that in order to describe such flows it is necessary to incorporate a new concept: a special discontinuity called a ''self-similar'' discontinuity consisting of a nondissipative shock wave and a powerful slow wave discontinuity in regular hydrodynamics. The ''self similar discontinuity'' expands linearly over time. It is demonstrated that this concept may be introduced in a solution to Euler equations. The boundary conditions of the ''self similar discontinuity'' that allow closure of Euler equations for dispersion hydrodynamics are formulated, i.e., those that replace the shock adiabatic curve of standard dissipative hydrodynamics. The structure of the soliton front and of the trailing edge of the shock wave is investigated. A classification and complete solution are given to the problem of the decay of random initial discontinuities in the hydrodynamics of highly nonisothermic plasma. A solution is derived to the problem of the decay of initial discontinuities in the hydrodynamics of magnetized plasma. It is demonstrated that in this plasma, a feature of current density arises at the point of soliton inversion

  1. Self-Consistent Dynamical Model of the Broad Line Region

    Energy Technology Data Exchange (ETDEWEB)

    Czerny, Bozena [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland); Li, Yan-Rong [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Sredzinska, Justyna; Hryniewicz, Krzysztof [Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw (Poland); Panda, Swayam [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland); Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw (Poland); Wildy, Conor [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland); Karas, Vladimir, E-mail: bcz@cft.edu.pl [Astronomical Institute, Czech Academy of Sciences, Prague (Czech Republic)

    2017-06-22

    We develop a self-consistent description of the Broad Line Region based on the concept of a failed wind powered by radiation pressure acting on a dusty accretion disk atmosphere in Keplerian motion. The material raised high above the disk is illuminated, dust evaporates, and the matter falls back toward the disk. This material is the source of emission lines. The model predicts the inner and outer radius of the region, the cloud dynamics under the dust radiation pressure and, subsequently, the gravitational field of the central black hole, which results in asymmetry between the rise and fall. Knowledge of the dynamics allows us to predict the shapes of the emission lines as functions of the basic parameters of an active nucleus: black hole mass, accretion rate, black hole spin (or accretion efficiency) and the viewing angle with respect to the symmetry axis. Here we show preliminary results based on analytical approximations to the cloud motion.

  2. Self-Consistent Dynamical Model of the Broad Line Region

    Directory of Open Access Journals (Sweden)

    Bozena Czerny

    2017-06-01

    Full Text Available We develop a self-consistent description of the Broad Line Region based on the concept of a failed wind powered by radiation pressure acting on a dusty accretion disk atmosphere in Keplerian motion. The material raised high above the disk is illuminated, dust evaporates, and the matter falls back toward the disk. This material is the source of emission lines. The model predicts the inner and outer radius of the region, the cloud dynamics under the dust radiation pressure and, subsequently, the gravitational field of the central black hole, which results in asymmetry between the rise and fall. Knowledge of the dynamics allows us to predict the shapes of the emission lines as functions of the basic parameters of an active nucleus: black hole mass, accretion rate, black hole spin (or accretion efficiency and the viewing angle with respect to the symmetry axis. Here we show preliminary results based on analytical approximations to the cloud motion.

  3. THOR Fields and Wave Processor - FWP

    Science.gov (United States)

    Soucek, Jan; Rothkaehl, Hanna; Ahlen, Lennart; Balikhin, Michael; Carr, Christopher; Dekkali, Moustapha; Khotyaintsev, Yuri; Lan, Radek; Magnes, Werner; Morawski, Marek; Nakamura, Rumi; Uhlir, Ludek; Yearby, Keith; Winkler, Marek; Zaslavsky, Arnaud

    2017-04-01

    If selected, Turbulence Heating ObserveR (THOR) will become the first spacecraft mission dedicated to the study of plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all THOR fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer, and search-coil magnetometer (SCM), and perform signal digitization and on-board data processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The scientific value of highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation will further improve on this heritage. Large dynamic range of the instruments will be complemented by a thorough electromagnetic cleanliness program, which will prevent perturbation of field measurements by interference from payload and platform subsystems. Taking advantage of the capabilities of modern electronics and the large telemetry bandwidth of THOR, FWP will provide multi-component electromagnetic field waveforms and spectral data products at a high time resolution. Fully synchronized sampling of many signals will allow to resolve wave phase information and estimate wavelength via interferometric correlations between EFI probes. FWP will also implement a plasma resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will rapidly transmit information about magnetic field vector and spacecraft potential to the

  4. The exact solution of self-consistent equations in the scanning near-field optic microscopy problem

    DEFF Research Database (Denmark)

    Lozovski, Valeri; Bozhevolnyi, Sergey I.

    1999-01-01

    The macroscopic approach that allows one to obtain an exact solution of the self-consistent equation of the Lippmann-Schwinger type is developed. The main idea of our method consist in usage of diagram technque for exact summation of the infinite series corresponding to the iteration procedure fo...

  5. Wave function of an electron infinitely moving in the field of a one-dimensional layered structure

    International Nuclear Information System (INIS)

    Khachatrian, A.Zh.; Andreasyan, A.G.; Mgerian, G.G.; Badalyan, V.D.

    2003-01-01

    A method for finding the wave function of an electron infinitely moving in the field of an arbitrary layered structure bordered on both sides with two different semi infinite media is proposed. It is shown that this problem in the general form can be reduced to the solution of some system of linear finite-difference equations. The proposed approach is discussed in detail for the case of a periodic structure

  6. Self-consistent areas law in QCD

    International Nuclear Information System (INIS)

    Makeenko, Yu.M.; Migdal, A.A.

    1980-01-01

    The problem of obtaining the self-consistent areas law in quantum chromodynamics (QCD) is considered from the point of view of the quark confinement. The exact equation for the loop average in multicolor QCD is reduced to a bootstrap form. Its iterations yield new manifestly gauge invariant perturbation theory in the loop space, reproducing asymptotic freedom. For large loops, the areas law apprears to be a self-consistent solution

  7. Radio frequency wave experiments on the MST reversed field pinch

    International Nuclear Information System (INIS)

    Forest, C.B.; Chattopadhyay, P.K.; Nornberg, M.D.; Prager, S.C.; Thomas, M.A.; Harvey, R.W.; Ram, A.K.

    1999-04-01

    Experiments, simulations, and theory all indicate that the magnetic fluctuations responsible for the poor confinement in the reversed field pinch (RFP) can be controlled by altering the radial profile of the current density. The magnetic fluctuations in the RFP are due to resistive MHD instabilities caused by current profile peaking; thus confinement in the RFP is ultimately the result of a misalignment between inductively driven current profiles and the stable current profiles characteristic of the Taylor state. If a technique such as rf current drive can be developed to non-inductively sustain a Taylor state (a current profile linearly stable to all tearing modes), the confinement of the RFP and its potential as a reactor concept are likely to increase. Whether there is a self-consistent path from poor confinement to greatly improved confinement through current profile modification is an issue for future experiments to address if and only if near term experiments can demonstrate: (1) coupling to and the propagation of rf waves in RFP plasmas, (2) efficient current drive, and (3) control of the power deposition which will make it possible to control the current profile. In this paper, modeling results and experimental plans are presented for two rf experiments which have the potential of satisfying these three goals: high-n parallel lower hybrid (LH) waves and electron Bernstein waves (EBWs)

  8. SOCIAL COMPARISON, SELF-CONSISTENCY AND THE PRESENTATION OF SELF.

    Science.gov (United States)

    MORSE, STANLEY J.; GERGEN, KENNETH J.

    TO DISCOVER HOW A PERSON'S (P) SELF-CONCEPT IS AFFECTED BY THE CHARACTERISTICS OF ANOTHER (O) WHO SUDDENLY APPEARS IN THE SAME SOCIAL ENVIRONMENT, SEVERAL QUESTIONNAIRES, INCLUDING THE GERGEN-MORSE (1967) SELF-CONSISTENCY SCALE AND HALF THE COOPERSMITH SELF-ESTEEM INVENTORY, WERE ADMINISTERED TO 78 UNDERGRADUATE MEN WHO HAD ANSWERED AN AD FOR WORK…

  9. Radiation of Electron in the Field of Plane Light Wave

    International Nuclear Information System (INIS)

    Zelinsky, A.; Drebot, I.V.; Grigorev, Yu.N.; Zvonareva, O.D.; Tatchyn, R.

    2006-01-01

    Results of integration of a Lorentz equation for a relativistic electron moving in the field of running, plane, linear polarized electromagnetic wave are presented in the paper. It is shown that electron velocities in the field of the wave are almost periodic functions of time. For calculations of angular spectrum of electron radiation intensity expansion of the electromagnetic field in a wave zone into generalized Fourier series was used. Expressions for the radiation intensity spectrum are presented in the paper. Derived results are illustrated for electron and laser beam parameters of NSC KIPT X-ray generator NESTOR. It is shown that for low intensity of the interacting electromagnetic wave the results of energy and angular spectrum calculations in the frame of classical electrodynamics completely coincide with calculation results produced using quantum electrodynamics. Simultaneously, derived expressions give possibilities to investigate dependence of energy and angular Compton radiation spectrum on phase of interaction and the interacting wave intensity

  10. Self-consistent Optomechanical Dynamics and Radiation Forces in Thermal Light Fields

    International Nuclear Information System (INIS)

    Sonnleitner, M.

    2014-01-01

    We discuss two different aspects of the mechanical interaction between neutral matter and electromagnetic radiation.The first part addresses the complex dynamics of an elastic dielectric deformed by optical forces. To do so we use a one-dimensional model describing the medium by an array of beam splitters such that the interaction with the incident waves can be described with a transfer-matrix approach. Since the force on each individual beam splitter is known we thus obtain the correct volumetric force density inside the medium. Sending a light field through an initially homogeneous dielectric then results in density modulations which in turn alter the optical properties of this medium.The second part is concerned with mechanical light-effects on atoms in thermal radiation fields. At hand of a generic setup of an atom interacting with a hot sphere emitting blackbody radiation we show that the emerging gradient force may surpass gravity by several orders of magnitude. The strength of the repulsive scattering force strongly depends on the spectrum of the involved atoms and can be neglected in some setups. A special emphasis lies on possible implications on astrophysical scenarios where the interactions between heated dust and atoms, molecules or nanoparticles are of crucial interest. (author) [de

  11. Two general classes of self dual, Minkowski propagating wave solutions in Yang Mills gauge theory

    International Nuclear Information System (INIS)

    Kovacs, E.; Lo, S.Y.

    1979-01-01

    Two classes of self dual propogating wave solutions to the sourceless field equations in Minkowski space are presented. Some of these solutions can be linearly superposed. These waves can propogate at either the speed of light or at a speed less than that of light

  12. Self-consistent theory of finite Fermi systems and radii of nuclei

    International Nuclear Information System (INIS)

    Saperstein, E. E.; Tolokonnikov, S. V.

    2011-01-01

    Present-day self-consistent approaches in nuclear theory were analyzed from the point of view of describing distributions of nuclear densities. The generalized method of the energy density functional due to Fayans and his coauthors (this is the most successful version of the self-consistent theory of finite Fermi systems) was the first among the approaches under comparison. The second was the most successful version of the Skyrme-Hartree-Fock method with the HFB-17 functional due to Goriely and his coauthors. Charge radii of spherical nuclei were analyzed in detail. Several isotopic chains of deformed nuclei were also considered. Charge-density distributions ρ ch (r) were calculated for several spherical nuclei. They were compared with model-independent data extracted from an analysis of elastic electron scattering on nuclei.

  13. Full-data Results of Hubble Frontier Fields: UV Luminosity Functions at z ∼ 6–10 and a Consistent Picture of Cosmic Reionization

    Science.gov (United States)

    Ishigaki, Masafumi; Kawamata, Ryota; Ouchi, Masami; Oguri, Masamune; Shimasaku, Kazuhiro; Ono, Yoshiaki

    2018-02-01

    We present UV luminosity functions of dropout galaxies at z∼ 6{--}10 with the complete Hubble Frontier Fields data. We obtain a catalog of ∼450 dropout-galaxy candidates (350, 66, and 40 at z∼ 6{--}7, 8, and 9, respectively), with UV absolute magnitudes that reach ∼ -14 mag, ∼2 mag deeper than the Hubble Ultra Deep Field detection limits. We carefully evaluate number densities of the dropout galaxies by Monte Carlo simulations, including all lensing effects such as magnification, distortion, and multiplication of images as well as detection completeness and contamination effects in a self-consistent manner. We find that UV luminosity functions at z∼ 6{--}8 have steep faint-end slopes, α ∼ -2, and likely steeper slopes, α ≲ -2 at z∼ 9{--}10. We also find that the evolution of UV luminosity densities shows a non-accelerated decline beyond z∼ 8 in the case of {M}trunc}=-15, but an accelerated one in the case of {M}trunc}=-17. We examine whether our results are consistent with the Thomson scattering optical depth from the Planck satellite and the ionized hydrogen fraction Q H II at z≲ 7 based on the standard analytic reionization model. We find that reionization scenarios exist that consistently explain all of the observational measurements with the allowed parameters of {f}esc}={0.17}-0.03+0.07 and {M}trunc}> -14.0 for {log}{ξ }ion}/[{erg}}-1 {Hz}]=25.34, where {f}esc} is the escape fraction, M trunc is the faint limit of the UV luminosity function, and {ξ }ion} is the conversion factor of the UV luminosity to the ionizing photon emission rate. The length of the reionization period is estimated to be {{Δ }}z={3.9}-1.6+2.0 (for 0.1< {Q}{{H}{{II}}}< 0.99), consistent with the recent estimate from Planck.

  14. Vacuum source-field correlations and advanced waves in quantum optics

    Directory of Open Access Journals (Sweden)

    Adam Stokes

    2018-01-01

    Full Text Available The solution to the wave equation as a Cauchy problem with prescribed fields at an initial time $t=0$ is purely retarded. Similarly, in the quantum theory of radiation the specification of Heisenberg picture photon annihilation and creation operators at time $t \\gt 0$ in terms of operators at $t=0$ automatically yields purely retarded source-fields. However, we show that two-time quantum correlations between the retarded source-fields of a stationary dipole and the quantum vacuum-field possess advanced wave-like contributions. Despite their advanced nature, these correlations are perfectly consistent with Einstein causality. It is shown that while they do not significantly contribute to photo-detection amplitudes in the vacuum state, they do effect the statistics of measurements involving the radiative force experienced by a point charge in the field of the dipole. Specifically, the dispersion in the charge's momentum is found to increase with time. This entails the possibility of obtaining direct experimental evidence for the existence of advanced waves in physical reality, and provides yet another signature of the quantum nature of the vacuum.

  15. Latitudinal structure of Pc 5 waves in space: Magnetic and electric field observations

    International Nuclear Information System (INIS)

    Singer, H.J.; Kivelson, M.G.

    1979-01-01

    The occurrence frequency and spatial structure of Pc 5 magnetic pulsations in the dawnside of the plasma trough have been studied using data from the Ogo 5 satellite. The wave magnetic fields were obtained from the University of California, Los Angeles, flux-gate magnetometer measurements, and one component of the wave electric field was inferred from oscillations of the ion flux measured by the Lockheed light ion mass spectrometer. During portions of seven of the 19 passes comprising the survey, Pc 5 oscillations were observed in the ion flux but not in the magnetic field, and in each case the satellite was within 10 0 of the geomagnetic equator. Above 10 0 latitude, transverse magnetic and electric oscillations were both observed. The results are consistent with the model of a standing Alfven wave along a resonant field line with the geomagnetic equator as a node of the magnetic perturbation, that is, and odd mode. The wave periods are generally consistent with the fundamental resonant period. In this study, Pc 5 oscillations were identified 3 or 4 times more frequently (per orbit) than in previous spacecraft studies which relied only on magnetic data

  16. Comparison of Regression Analysis and Transfer Function in Estimating the Parameters of Central Pulse Waves from Brachial Pulse Wave.

    Science.gov (United States)

    Chai, Rui; Xu, Li-Sheng; Yao, Yang; Hao, Li-Ling; Qi, Lin

    2017-01-01

    This study analyzed ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO), and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. Invasively measured parameters were compared with parameters measured from brachial pulse waves by regression model and transfer function model. Accuracy of parameters estimated by regression and transfer function model, was compared too. Findings showed that k value, central pulse wave and brachial pulse wave parameters invasively measured, correlated positively. Regression model parameters including A_slope, DBP, SEVR, and transfer function model parameters had good consistency with parameters invasively measured. They had same effect of consistency. SBP, PP, SV, and CO could be calculated through the regression model, but their accuracies were worse than that of transfer function model.

  17. Self-consistent modeling of induced magnetic field in Titan's atmosphere accounting for the generation of Schumann resonance

    Science.gov (United States)

    Béghin, Christian

    2015-02-01

    This model is worked out in the frame of physical mechanisms proposed in previous studies accounting for the generation and the observation of an atypical Schumann Resonance (SR) during the descent of the Huygens Probe in the Titan's atmosphere on 14 January 2005. While Titan is staying inside the subsonic co-rotating magnetosphere of Saturn, a secondary magnetic field carrying an Extremely Low Frequency (ELF) modulation is shown to be generated through ion-acoustic instabilities of the Pedersen current sheets induced at the interface region between the impacting magnetospheric plasma and Titan's ionosphere. The stronger induced magnetic field components are focused within field-aligned arcs-like structures hanging down the current sheets, with minimum amplitude of about 0.3 nT throughout the ramside hemisphere from the ionopause down to the Moon surface, including the icy crust and its interface with a conductive water ocean. The deep penetration of the modulated magnetic field in the atmosphere is thought to be allowed thanks to the force balance between the average temporal variations of thermal and magnetic pressures within the field-aligned arcs. However, there is a first cause of diffusion of the ELF magnetic components, probably due to feeding one, or eventually several SR eigenmodes. A second leakage source is ascribed to a system of eddy-Foucault currents assumed to be induced through the buried water ocean. The amplitude spectrum distribution of the induced ELF magnetic field components inside the SR cavity is found fully consistent with the measurements of the Huygens wave-field strength. Waiting for expected future in-situ exploration of Titan's lower atmosphere and the surface, the Huygens data are the only experimental means available to date for constraining the proposed model.

  18. GENERAL P, TYPE-I S, AND TYPE-II S WAVES IN ANELASTIC SOLIDS; INHOMOGENEOUS WAVE FIELDS IN LOW-LOSS SOLIDS.

    Science.gov (United States)

    Borcherdt, Roger D.; Wennerberg, Leif

    1985-01-01

    The physical characteristics for general plane-wave radiation fields in an arbitrary linear viscoelastic solid are derived. Expressions for the characteristics of inhomogeneous wave fields, derived in terms of those for homogeneous fields, are utilized to specify the characteristics and a set of reference curves for general P and S wave fields in arbitrary viscoelastic solids as a function of wave inhomogeneity and intrinsic material absorption. The expressions show that an increase in inhomogeneity of the wave fields cause the velocity to decrease, the fractional-energy loss (Q** minus **1) to increase, the deviation of maximum energy flow with respect to phase propagation to increase, and the elliptical particle motions for P and type-I S waves to approach circularity. Q** minus **1 for inhomogeneous type-I S waves is shown to be greater than that for type-II S waves, with the deviation first increasing then decreasing with inhomogeneity. The mean energy densities (kinetic, potential, and total), the mean rate of energy dissipation, the mean energy flux, and Q** minus **1 for inhomogeneous waves are shown to be greater than corresponding characteristics for homogeneous waves, with the deviations increasing as the inhomogeneity is increased for waves of fixed maximum displacement amplitude.

  19. Integrable motion of curves in self-consistent potentials: Relation to spin systems and soliton equations

    Energy Technology Data Exchange (ETDEWEB)

    Myrzakulov, R.; Mamyrbekova, G.K.; Nugmanova, G.N.; Yesmakhanova, K.R. [Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Lakshmanan, M., E-mail: lakshman@cnld.bdu.ac.in [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024 (India)

    2014-06-13

    Motion of curves and surfaces in R{sup 3} lead to nonlinear evolution equations which are often integrable. They are also intimately connected to the dynamics of spin chains in the continuum limit and integrable soliton systems through geometric and gauge symmetric connections/equivalence. Here we point out the fact that a more general situation in which the curves evolve in the presence of additional self-consistent vector potentials can lead to interesting generalized spin systems with self-consistent potentials or soliton equations with self-consistent potentials. We obtain the general form of the evolution equations of underlying curves and report specific examples of generalized spin chains and soliton equations. These include principal chiral model and various Myrzakulov spin equations in (1+1) dimensions and their geometrically equivalent generalized nonlinear Schrödinger (NLS) family of equations, including Hirota–Maxwell–Bloch equations, all in the presence of self-consistent potential fields. The associated gauge equivalent Lax pairs are also presented to confirm their integrability. - Highlights: • Geometry of continuum spin chain with self-consistent potentials explored. • Mapping on moving space curves in R{sup 3} in the presence of potential fields carried out. • Equivalent generalized nonlinear Schrödinger (NLS) family of equations identified. • Integrability of identified nonlinear systems proved by deducing appropriate Lax pairs.

  20. Quadrupole mass detector in the field of weak plane gravitational waves

    International Nuclear Information System (INIS)

    Borisova, L.B.

    1978-01-01

    Studied is the behaviour of the system which consists of two test particles connected by a string (quadrupole mass detector) and placed in the field of weak plane monochromatic gravitational waves. It is shown that at cross orientation of the detector the gravitational wave effecting such a system excites oscillations in it with the frequency equal to that of the gravitational wave source. The role of the driving force is played by the periodical change with the time of the equilibrium position. The gravitational wave does not influence the detector at its longitudinal orientation

  1. WKB wave function for many-variable systems

    International Nuclear Information System (INIS)

    Sakita, B.; Tzani, R.

    1986-01-01

    The WKB method is a non-perturbative semi-classical method in quantum mechanics. The method for a system of one degree of freedom is well known and described in standard textbooks. The method for a system with many degrees of freedom especially for quantum fields is more involved. There exist two methods: Feynman path integral and Schrodinger wave function. The Feynman path integral WKB method is essentially a stationary phase approximation for Feynman path integrals. The WKB Schrodinger wave function method is on the other hand an extension of the standard WKB to many-variable systems

  2. Self-bending elastic waves and obstacle circumventing in wireless power transfer

    Science.gov (United States)

    Tol, S.; Xia, Y.; Ruzzene, M.; Erturk, A.

    2017-04-01

    We demonstrate self-bending of elastic waves along convex trajectories by means of geometric and phased arrays. Potential applications include ultrasonic imaging and manipulation, wave focusing, and wireless power transfer around obstacles. The basic concept is illustrated through a geometric array, which is designed to implement a phase delay profile among the array elements that leads to self-bending along a specified circular trajectory. Experimental validation is conducted for the lowest asymmetric Lamb wave mode in a thin plate over a range of frequencies to investigate the bandwidth of the approach. Experiments also illustrate the functionality of the array as a transmitter to deliver elastic wave energy to a receiver/harvester located behind a large obstacle for electrical power extraction. It is shown that the trajectory is not distorted by the presence of the obstacle and circumventing is achieved. A linear phased array counterpart of the geometric array is then constructed to illustrate the concept by imposing proper time delays to the array elements, which allows the generation of different trajectories using the same line source. This capability is demonstrated by tailoring the path diameter in the phased array setting, which offers the flexibility and versatility to induce a variety of convex trajectories for self-bending elastic waves.

  3. Wind wave source functions in opposing seas

    KAUST Repository

    Langodan, Sabique

    2015-08-26

    The Red Sea is a challenge for wave modeling because of its unique two opposed wave systems, forced by opposite winds and converging at its center. We investigate the different physical aspects of wave evolution and propagation in the convergence zone. The two opposing wave systems have similar amplitude and frequency, each driven by the action of its own wind. Wave patterns at the centre of the Red Sea, as derived from extensive tests and intercomparison between model and measured data, suggest that the currently available wave model source functions may not properly represent the evolution of the local fields that appear to be characterized by a less effective wind input and an enhanced white-capping. We propose and test a possible simple solution to improve the wave-model simulation under opposing winds and waves condition. This article is protected by copyright. All rights reserved.

  4. Self-consistent electronic structure of spin-polarized dilute magnetic semiconductor quantum wells

    International Nuclear Information System (INIS)

    Hong, S. P.; Yi, K. S.; Quinn, J. J.

    2000-01-01

    The electronic properties of spin-symmetry-broken dilute magnetic semiconductor quantum wells are investigated self-consistently at zero temperature. The spin-split subband structure and carrier concentration of modulation-doped quantum wells are examined in the presence of a strong magnetic field. The effects of exchange and correlations of electrons are included in a local-spin-density-functional approximation. We demonstrate that exchange correlation of electrons decreases the spin-split subband energy but enhances the carrier density in a spin-polarized quantum well. We also observe that as the magnetic field increases, the concentration of spin-down (majority) electrons increases but that of spin-up (minority) electrons decreases. The effect of orbital quantization on the in-plane motion of electrons is also examined and shows a sawtoothlike variation in subband electron concentrations as the magnetic-field intensity increases. The latter variation is attributed to the presence of ionized donors acting as the electron reservoir, which is partially responsible for the formation of the integer quantum Hall plateaus. (c) 2000 The American Physical Society

  5. Quasiparticle self-consistent GW method for the spectral properties of complex materials.

    Science.gov (United States)

    Bruneval, Fabien; Gatti, Matteo

    2014-01-01

    The GW approximation to the formally exact many-body perturbation theory has been applied successfully to materials for several decades. Since the practical calculations are extremely cumbersome, the GW self-energy is most commonly evaluated using a first-order perturbative approach: This is the so-called G 0 W 0 scheme. However, the G 0 W 0 approximation depends heavily on the mean-field theory that is employed as a basis for the perturbation theory. Recently, a procedure to reach a kind of self-consistency within the GW framework has been proposed. The quasiparticle self-consistent GW (QSGW) approximation retains some positive aspects of a self-consistent approach, but circumvents the intricacies of the complete GW theory, which is inconveniently based on a non-Hermitian and dynamical self-energy. This new scheme allows one to surmount most of the flaws of the usual G 0 W 0 at a moderate calculation cost and at a reasonable implementation burden. In particular, the issues of small band gap semiconductors, of large band gap insulators, and of some transition metal oxides are then cured. The QSGW method broadens the range of materials for which the spectral properties can be predicted with confidence.

  6. Excitation spectra and wave functions of quasiparticle bound states in bilayer Rashba superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Yoichi, E-mail: higashiyoichi@ms.osakafu-u.ac.jp [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Nagai, Yuki [CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871 (Japan); Yoshida, Tomohiro [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Kato, Masaru [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Yanase, Youichi [Department of Physics, Niigata University, Niigata 950-2181 (Japan)

    2015-11-15

    Highlights: • We focus on the pair-density wave state in bilayer Rashba superconductors. • The zero energy Bogoliubov wave functions are localized at the edge and vortex core. • We investigate the excitation spectra of edge and vortex bound states. - Abstract: We study the excitation spectra and the wave functions of quasiparticle bound states at a vortex and an edge in bilayer Rashba superconductors under a magnetic field. In particular, we focus on the quasiparticle states at the zero energy in the pair-density wave state in a topologically non-trivial phase. We numerically demonstrate that the quasiparticle wave functions with zero energy are localized at both the edge and the vortex core if the magnetic field exceeds the critical value.

  7. Bicontinuous Phases in Diblock Copolymer/Homopolymer Blends: Simulation and Self-Consistent Field Theory

    KAUST Repository

    Martínez-Veracoechea, Francisco J.

    2009-03-10

    A combination of particle-based simulations and self-consistent field theory (SCFT) is used to study the stabilization of multiple ordered bicontinuous phases in blends of a diblock copolymer (DBC) and a homopolymer. The double-diamond phase (DD) and plumber\\'s nightmare phase (P) were spontaneously formed in the range of homopolymer volume fraction simulated via coarse-grained molecular dynamics. To the best of our knowledge, this is the first time that such phases have been obtained in continuum-space molecular simulations of DBC systems. Though tentative phase boundaries were delineated via free-energy calculations, macrophase separation could not be satisfactorily assessed within the framework of particle-based simulations. Therefore, SCFT was used to explore the DBC/homopolymer phase diagram in more detail, showing that although in many cases two-phase coexistence of a DBC-rich phase and a homopolymer-rich phase does precede the stability of complex bicontinuous phases the DD phase can be stable in a relatively wide region of the phase diagram. Whereas the P phase was always metastable with respect to macrophase separation under the thermodynamic conditions explored with SCFT, it was sometimes nearly stable, suggesting that full stability could be achieved in other unexplored regions of parameter space. Moreover, even the predicted DD- and P-phase metastability regions were located significantly far from the spinodal line, suggesting that these phases could be observed in experiments as "long-lived" metastable phases under those conditions. This conjecture is also consistent with large-system molecular dynamics simulations that showed that the time scale of mesophase formation is much faster than that of macrophase separation. © 2009 American Chemical Society.

  8. Multiconfiguration time-dependent self-consistent field approximations in the numerical solution of quantum dynamical problems

    International Nuclear Information System (INIS)

    Kotler, Z.; Neria, E.; Nitzan, A.

    1991-01-01

    The use of the time-dependent self-consistent field approximation (TDSCF) in the numerical solution of quantum curve crossing and tunneling dynamical problems is investigated. Particular emphasis is given to multiconfiguration TDSCF (MCTDSCF) approximations, which are shown to perform considerably better with only a small increase in computational effort. We investigate a number of simple models in which a 'system' characterized by two electronic potential surfaces evolves while interacting with a 'bath' mode described by an harmonic oscillator, and compare exact numerical solutions to one- and two-configuration TDSCF approximations. We also introduce and investigate a semiclassical approximation in which the 'bath' mode is described by semiclassical wavepackets (one for each electronic state) and show that for all models investigated this scheme works very well in comparison with the fully quantum MCTDSCF approximation. This provides a potentially very useful method to simulate strongly quantum systems coupled to an essentially classical environment. (orig.)

  9. Multiconfiguration time-dependent self-consistent field approximations in the numerical solution of quantum dynamical problems

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, Z.; Neria, E.; Nitzan, A. (Tel Aviv Univ. (Israel). School of Chemistry)

    1991-02-01

    The use of the time-dependent self-consistent field approximation (TDSCF) in the numerical solution of quantum curve crossing and tunneling dynamical problems is investigated. Particular emphasis is given to multiconfiguration TDSCF (MCTDSCF) approximations, which are shown to perform considerably better with only a small increase in computational effort. We investigate a number of simple models in which a 'system' characterized by two electronic potential surfaces evolves while interacting with a 'bath' mode described by an harmonic oscillator, and compare exact numerical solutions to one- and two-configuration TDSCF approximations. We also introduce and investigate a semiclassical approximation in which the 'bath' mode is described by semiclassical wavepackets (one for each electronic state) and show that for all models investigated this scheme works very well in comparison with the fully quantum MCTDSCF approximation. This provides a potentially very useful method to simulate strongly quantum systems coupled to an essentially classical environment. (orig.).

  10. Prediction of Near-Field Wave Attenuation Due to a Spherical Blast Source

    Science.gov (United States)

    Ahn, Jae-Kwang; Park, Duhee

    2017-11-01

    Empirical and theoretical far-field attenuation relationships, which do not capture the near-field response, are most often used to predict the peak amplitude of blast wave. Jiang et al. (Vibration due to a buried explosive source. PhD Thesis, Curtin University, Western Australian School of Mines, 1993) present rigorous wave equations that simulates the near-field attenuation to a spherical blast source in damped and undamped media. However, the effect of loading frequency and velocity of the media have not yet been investigated. We perform a suite of axisymmetric, dynamic finite difference analyses to simulate the propagation of stress waves induced by spherical blast source and to quantify the near-field attenuation. A broad range of loading frequencies, wave velocities, and damping ratios are used in the simulations. The near-field effect is revealed to be proportional to the rise time of the impulse load and wave velocity. We propose an empirical additive function to the theoretical far-field attenuation curve to predict the near-field range and attenuation. The proposed curve is validated against measurements recorded in a test blast.

  11. Dispersion equations for field-aligned cyclotron waves in axisymmetric magnetospheric plasmas

    Directory of Open Access Journals (Sweden)

    N. I. Grishanov

    2006-03-01

    Full Text Available In this paper, we derive the dispersion equations for field-aligned cyclotron waves in two-dimensional (2-D magnetospheric plasmas with anisotropic temperature. Two magnetic field configurations are considered with dipole and circular magnetic field lines. The main contribution of the trapped particles to the transverse dielectric permittivity is estimated by solving the linearized Vlasov equation for their perturbed distribution functions, accounting for the cyclotron and bounce resonances, neglecting the drift effects, and assuming the weak connection of the left-hand and right-hand polarized waves. Both the bi-Maxwellian and bi-Lorentzian distribution functions are considered to model the ring current ions and electrons in the dipole magnetosphere. A numerical code has been developed to analyze the dispersion characteristics of electromagnetic ion-cyclotron waves in an electron-proton magnetospheric plasma with circular magnetic field lines, assuming that the steady-state distribution function of the energetic protons is bi-Maxwellian. As in the uniform magnetic field case, the growth rate of the proton-cyclotron instability (PCI in the 2-D magnetospheric plasmas is defined by the contribution of the energetic ions/protons to the imaginary part of the transverse permittivity elements. We demonstrate that the PCI growth rate in the 2-D axisymmetric plasmasphere can be significantly smaller than that for the straight magnetic field case with the same macroscopic bulk parameters.

  12. Path integral for Dirac particle in plane wave field

    International Nuclear Information System (INIS)

    Zeggari, S.; Boudjedaa, T.; Chetouani, L.

    2001-01-01

    The problem of a relativistic spinning particle in interaction with an electromagnetic plane wave field is treated via path integrals. The dynamics of the spin of the particle is described using the supersymmetric action proposed by Fradkin and Gitman. The problem has been solved by using two identities, one bosonic and the other fermionic, which are related directly to the classical equations of motion. The exact expression of the relative Green's function is given and the result agrees with those of the literature. Further, the suitably normalized wave functions are also extracted. (orig.)

  13. Path integral for Dirac particle in plane wave field

    Energy Technology Data Exchange (ETDEWEB)

    Zeggari, S.; Boudjedaa, T.; Chetouani, L. [Mentouri Univ., Constantine (Algeria). Dept. of Physique

    2001-10-01

    The problem of a relativistic spinning particle in interaction with an electromagnetic plane wave field is treated via path integrals. The dynamics of the spin of the particle is described using the supersymmetric action proposed by Fradkin and Gitman. The problem has been solved by using two identities, one bosonic and the other fermionic, which are related directly to the classical equations of motion. The exact expression of the relative Green's function is given and the result agrees with those of the literature. Further, the suitably normalized wave functions are also extracted. (orig.)

  14. Self-contained filtered density function

    International Nuclear Information System (INIS)

    Nouri, Arash G.; Pope, Stephen B.

    2017-01-01

    The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  15. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  16. Consistency of students’ conceptions of wave propagation: Findings from a conceptual survey in mechanical waves

    Directory of Open Access Journals (Sweden)

    Apisit Tongchai

    2011-07-01

    Full Text Available We recently developed a multiple-choice conceptual survey in mechanical waves. The development, evaluation, and demonstration of the use of the survey were reported elsewhere [A. Tongchai et al., Developing, evaluating and demonstrating the use of a conceptual survey in mechanical waves, Int. J. Sci. Educ. 31, 2437 (2009ISEDEB0950-069310.1080/09500690802389605]. We administered the survey to 902 students from seven different groups ranging from high school to second year university. As an outcome of that analysis we were able to identify several conceptual models which the students seemed to be using when answering the questions in the survey. In this paper we attempt to investigate the strength with which the students were committed to these conceptual models, as evidenced by the consistency with which they answered the questions. For this purpose we focus on the patterns of student responses to questions in one particular subtopic, wave propagation. This study has three main purposes: (1 to investigate the consistency of student conceptions, (2 to explore the relative usefulness of different analysis techniques, and (3 to determine what extra information a study of consistency can give about student understanding of basic concepts. We used two techniques: first, categorizing and counting, which is widely used in the science education community, and second, model analysis, recently introduced into physics education research. The manner in which categorizing and counting is used is very diverse while model analysis has been employed only in prescriptive ways. Research studies have reported that students often use their conceptual models inconsistently when solving a series of questions that test the same idea. Our results support their conclusions. Moreover, our findings suggest that students who have had more experiences in physics learning seem to use the scientifically accepted models more consistently. Further, the two analysis techniques

  17. Ion temperature in plasmas with intrinsic Alfven waves

    International Nuclear Information System (INIS)

    Wu, C. S.; Yoon, P. H.; Wang, C. B.

    2014-01-01

    This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process

  18. The self-consistent calculation of the edge states in bilayer quantum Hall bar

    International Nuclear Information System (INIS)

    Kavruk, A E; Orzturk, T; Orzturk, A; Atav, U; Yuksel, H

    2011-01-01

    In this study, we present the spatial distributions of the edge channels for each layer in bilayer quantum Hall bar geometry for a wide range of applied magnetic fields. For this purpose, we employ a self-consistent Thomas-Fermi-Poisson approach to obtain the electron density distributions and related screened potential distributions. In order to have a more realistic description of the system we solve three dimensional Poisson equation numerically in each iteration step to obtain self consistency in the Thomas-Fermi-Poisson approach instead of employing a 'frozen gate' approximation.

  19. Parabolic approximation method for fast magnetosonic wave propagation in tokamaks

    International Nuclear Information System (INIS)

    Phillips, C.K.; Perkins, F.W.; Hwang, D.Q.

    1985-07-01

    Fast magnetosonic wave propagation in a cylindrical tokamak model is studied using a parabolic approximation method in which poloidal variations of the wave field are considered weak in comparison to the radial variations. Diffraction effects, which are ignored by ray tracing mthods, are included self-consistently using the parabolic method since continuous representations for the wave electromagnetic fields are computed directly. Numerical results are presented which illustrate the cylindrical convergence of the launched waves into a diffraction-limited focal spot on the cyclotron absorption layer near the magnetic axis for a wide range of plasma confinement parameters

  20. PROPAGATING WAVES TRANSVERSE TO THE MAGNETIC FIELD IN A SOLAR PROMINENCE

    Energy Technology Data Exchange (ETDEWEB)

    Schmieder, B. [Observatoire de Paris, LESIA, UMR 8109 (CNRS), F-92195 Meudon (France); Kucera, T. A.; Knizhnik, K. [Code 671, NASA' s GSFC, Greenbelt, MD 20771 (United States); Luna, M. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Lopez-Ariste, A. [THEMIS, CNRS-UPS853, E-38205 La Laguna (Spain); Toot, D. [Alfred University, Alfred, NY 14802 (United States)

    2013-11-10

    We report an unusual set of observations of waves in a large prominence pillar that consist of pulses propagating perpendicular to the prominence magnetic field. We observe a huge quiescent prominence with the Solar Dynamics Observatory Atmospheric Imaging Assembly in EUV on 2012 October 10 and only a part of it, the pillar, which is a foot or barb of the prominence, with the Hinode Solar Optical Telescope (SOT; in Ca II and Hα lines), Sac Peak (in Hα, Hβ, and Na-D lines), and THEMIS ({sup T}élescope Héliographique pour l' Etude du Magnétisme et des Instabilités Solaires{sup )} with the MTR (MulTi-Raies) spectropolarimeter (in He D{sub 3} line). The THEMIS/MTR data indicates that the magnetic field in the pillar is essentially horizontal and the observations in the optical domain show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data over the four hour observing period show vertical oscillations appearing as wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along thin quasi-vertical columns in the much broader pillar. The pulses have a velocity of propagation of about 10 km s{sup –1}, a period of about 300 s, and a wavelength around 2000 km. We interpret these waves in terms of fast magnetosonic waves and discuss possible wave drivers.

  1. Electromagnetic ion-cyclotron instability in the presence of a parallel electric field with general loss-cone distribution function - particle aspect analysis

    Directory of Open Access Journals (Sweden)

    G. Ahirwar

    2006-08-01

    Full Text Available The effect of parallel electric field on the growth rate, parallel and perpendicular resonant energy and marginal stability of the electromagnetic ion-cyclotron (EMIC wave with general loss-cone distribution function in a low β homogeneous plasma is investigated by particle aspect approach. The effect of the steepness of the loss-cone distribution is investigated on the electromagnetic ion-cyclotron wave. The whole plasma is considered to consist of resonant and non-resonant particles. It is assumed that resonant particles participate in the energy exchange with the wave, whereas non-resonant particles support the oscillatory motion of the wave. The wave is assumed to propagate parallel to the static magnetic field. The effect of the parallel electric field with the general distribution function is to control the growth rate of the EMIC waves, whereas the effect of steep loss-cone distribution is to enhance the growth rate and perpendicular heating of the ions. This study is relevant to the analysis of ion conics in the presence of an EMIC wave in the auroral acceleration region of the Earth's magnetoplasma.

  2. Sum rules for baryonic vertex functions and the proton wave function in QCD

    International Nuclear Information System (INIS)

    Lavelle, M.J.

    1985-01-01

    We consider light-cone sum rules for vertex functions involving baryon-meson couplings. These sum rules relate the non-perturbative, and experimentally known, coupling constants to the moments of the wave function of the proton state. Our results for these moments are consistent with those obtained from QCD sum rules for two-point functions. (orig.)

  3. Ocean Wave Simulation Based on Wind Field.

    Directory of Open Access Journals (Sweden)

    Zhongyi Li

    Full Text Available Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  4. Collapse of the wave function models, ontology, origin, and implications

    CERN Document Server

    2018-01-01

    This is the first single volume about the collapse theories of quantum mechanics, which is becoming a very active field of research in both physics and philosophy. In standard quantum mechanics, it is postulated that when the wave function of a quantum system is measured, it no longer follows the Schrödinger equation, but instantaneously and randomly collapses to one of the wave functions that correspond to definite measurement results. However, why and how a definite measurement result appears is unknown. A promising solution to this problem are collapse theories in which the collapse of the wave function is spontaneous and dynamical. Chapters written by distinguished physicists and philosophers of physics discuss the origin and implications of wave-function collapse, the controversies around collapse models and their ontologies, and new arguments for the reality of wave function collapse. This is an invaluable resource for students and researchers interested in the philosophy of physics and foundations of ...

  5. The effects of noise on binocular rivalry waves: a stochastic neural field model

    International Nuclear Information System (INIS)

    Webber, Matthew A; Bressloff, Paul C

    2013-01-01

    We analyze the effects of extrinsic noise on traveling waves of visual perception in a competitive neural field model of binocular rivalry. The model consists of two one-dimensional excitatory neural fields, whose activity variables represent the responses to left-eye and right-eye stimuli, respectively. The two networks mutually inhibit each other, and slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We first show how, in the absence of any noise, the system supports a propagating composite wave consisting of an invading activity front in one network co-moving with a retreating front in the other network. Using a separation of time scales and perturbation methods previously developed for stochastic reaction–diffusion equations, we then show how extrinsic noise in the activity variables leads to a diffusive-like displacement (wandering) of the composite wave from its uniformly translating position at long time scales, and fluctuations in the wave profile around its instantaneous position at short time scales. We use our analysis to calculate the first-passage-time distribution for a stochastic rivalry wave to travel a fixed distance, which we find to be given by an inverse Gaussian. Finally, we investigate the effects of noise in the depression variables, which under an adiabatic approximation lead to quenched disorder in the neural fields during propagation of a wave. (paper)

  6. Wind wave source functions in opposing seas

    KAUST Repository

    Langodan, Sabique; Cavaleri, Luigi; Viswanadhapalli, Yesubabu; Hoteit, Ibrahim

    2015-01-01

    that the currently available wave model source functions may not properly represent the evolution of the local fields that appear to be characterized by a less effective wind input and an enhanced white-capping. We propose and test a possible simple solution

  7. Self-consistent mean field forces in turbulent plasmas: Current and momentum relaxation

    International Nuclear Information System (INIS)

    Hegna, C.C.

    1997-08-01

    The properties of turbulent plasmas are described using the two-fluid equations. Under some modest assumptions, global constraints for the turbulent mean field forces that act on the ion and electron fluids are derived. These constraints imply a functional form for the parallel mean field forces in the Ohm's law and the momentum balance equation. These forms suggest that the fluctuations attempt to relax the plasma to a state where both the current and the bulk plasma momentum are aligned along the mean magnetic field with proportionality constants that are global constants. Observations of flow profile evolution during discrete dynamo activity in reversed field pinch experiments are interpreted

  8. Experimental determination of radiated internal wave power without pressure field data

    OpenAIRE

    Lee, Frank M.; Paoletti, M. S.; Swinney, Harry L.; Morrison, P. J.

    2014-01-01

    We present a method to determine, using only velocity field data, the time-averaged energy flux $\\left$ and total radiated power $P$ for two-dimensional internal gravity waves. Both $\\left$ and $P$ are determined from expressions involving only a scalar function, the stream function $\\psi$. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method...

  9. Semi-classical derivation of charge-quantization through charge-field self-interaction

    International Nuclear Information System (INIS)

    Kosok, M.; Madhyastha, V.L.

    1990-01-01

    A semi-classical synthesis of classical mechanics, wave mechanics, and special relativity yields a unique nonlinear energy-wave structure of relations (velocity triad uv = c 2 ) fundamental to modern physics. Through the above vehicle, using Maxwell's equations, charge quantization and the fine structure constant are derived. It is shown that the numerical value of the nonlinear charge-field self-interaction range for the electron is of the order of 10 -13 m, which is greater than the classical electron radius but less than the Compton wavelength of the electron. Finally, it is suggested that the structure of the electron-in-space is expressed by a self-extending nonlinear ''fractal geometry'' based on derived numerical values obtained from our model, thus opening this presentation of charge-field structure to experimental testing for possible verification

  10. Correlations and self-consistency in pion scattering. II

    International Nuclear Information System (INIS)

    Johnson, M.B.; Keister, B.D.

    1978-01-01

    In an attempt to overcome certain difficulties of summing higher order processes in pion multiple scattering theories, a new, systematic expansion for the interaction of a pion in nuclear matter is derived within the context of the Foldy-Walecka theory, incorporating nucleon-nucleon correlations and an idea of self-consistency. The first two orders in the expansion are evaluated as a function of the nonlocality range; the expansion appears to be rapidly converging, in contrast to expansion schemes previously examined. (Auth.)

  11. Quark mean field theory and consistency with nuclear matter

    International Nuclear Information System (INIS)

    Dey, J.; Tomio, L.; Dey, M.; Frederico, T.

    1989-01-01

    1/N c expansion in QCD (with N c the number of colours) suggests using a potential from meson sector (e.g. Richardson) for baryons. For light quarks a σ field has to be introduced to ensure chiral symmetry breaking ( χ SB). It is found that nuclear matter properties can be used to pin down the χ SB-modelling. All masses, M Ν , m σ , m ω are found to scale with density. The equations are solved self consistently. (author)

  12. Convergence of repeated quantum nondemolition measurements and wave-function collapse

    International Nuclear Information System (INIS)

    Bauer, Michel; Bernard, Denis

    2011-01-01

    Motivated by recent experiments on quantum trapped fields, we give a rigorous proof that repeated indirect quantum nondemolition (QND) measurements converge to the collapse of the wave function as predicted by the postulates of quantum mechanics for direct measurements. We also relate the rate of convergence toward the collapsed wave function to the relative entropy of each indirect measurement, a result which makes contact with information theory.

  13. ERRATUM: Propagating Waves Transverse to the Magnetic Field in a Solar Prominence

    Science.gov (United States)

    Schmieder, B.; Kucera, T. A.; Knizhnik, K.; Luna, M.; Lopez-Ariste, A.; Toot, D.

    2014-01-01

    We report an unusual set of observations of waves in a large prominence pillar that consist of pulses propagating perpendicular to the prominence magnetic field. We observe a huge quiescent prominence with the Solar Dynamics Observatory Atmospheric Imaging Assembly in EUV on 2012 October 10 and only a part of it, the pillar, which is a foot or barb of the prominence, with the Hinode Solar Optical Telescope (SOT; in Ca II and Halpha lines), Sac Peak (in Ha, Hß, and Na-D lines), and THEMIS ("Télescope Héliographique pour l' Etude du Magnétisme et des Instabilités Solaires") with the MTR (MulTi-Raies) spectropolarimeter (in He D3 line). The THEMIS/MTR data indicates that the magnetic field in the pillar is essentially horizontal and the observations in the optical domain show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data over the four hour observing period show vertical oscillations appearing as wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along thin quasi-vertical columns in the much broader pillar. The pulses have a velocity of propagation of about 10 km/s, a period of about 300 s, and a wavelength around 2000 km. We interpret these waves in terms of fast magnetosonic waves and discuss possible wave drivers.

  14. Self-consistent approach to x-ray reflection from rough surfaces

    International Nuclear Information System (INIS)

    Feranchuk, I. D.; Feranchuk, S. I.; Ulyanenkov, A. P.

    2007-01-01

    A self-consistent analytical approach for specular x-ray reflection from interfaces with transition layers [I. D. Feranchuk et al., Phys. Rev. B 67, 235417 (2003)] based on the distorted-wave Born approximation (DWBA) is used for the description of coherent and incoherent x-ray scattering from rough surfaces and interfaces. This approach takes into account the transformation of the modeling transition layer profile at the interface, which is caused by roughness correlations. The reflection coefficients for each DWBA order are directly calculated without phenomenological assumptions on their exponential decay at large scattering angles. Various regions of scattering angles are discussed, which show qualitatively different dependence of the reflection coefficient on the scattering angle. The experimental data are analyzed using the method developed

  15. Self-consistent description of isobaric 0+ states taking the one-particle continuum into account exactly

    International Nuclear Information System (INIS)

    Pyatov, N.I.; Salamov, D.I.; Fayans, S.A.

    1981-01-01

    The properties of discrete and resonance isobaric 0 + states of nuclei are studied within the framework of a self-consistent approach. The equations for the charge-exchange effective field are solved in the coordinate representation taking the one-particle continuum into account exactly. Microscopic estimates of the analog-state energies and the matrix elements, transition densities, and strength functions of the isospin-allowed and forbidden Fermi transitions are obtained together with the values of the isospin admixtures in the ground states of the parent nuclei and their analogs. The escape widths of the isobaric resonances are also discussed

  16. Nonlinear wave chaos: statistics of second harmonic fields.

    Science.gov (United States)

    Zhou, Min; Ott, Edward; Antonsen, Thomas M; Anlage, Steven M

    2017-10-01

    Concepts from the field of wave chaos have been shown to successfully predict the statistical properties of linear electromagnetic fields in electrically large enclosures. The Random Coupling Model (RCM) describes these properties by incorporating both universal features described by Random Matrix Theory and the system-specific features of particular system realizations. In an effort to extend this approach to the nonlinear domain, we add an active nonlinear frequency-doubling circuit to an otherwise linear wave chaotic system, and we measure the statistical properties of the resulting second harmonic fields. We develop an RCM-based model of this system as two linear chaotic cavities coupled by means of a nonlinear transfer function. The harmonic field strengths are predicted to be the product of two statistical quantities and the nonlinearity characteristics. Statistical results from measurement-based calculation, RCM-based simulation, and direct experimental measurements are compared and show good agreement over many decades of power.

  17. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    Science.gov (United States)

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  18. Development of a numerical modelling tool for combined near field and far field wave transformations using a coupling of potential flow solvers

    DEFF Research Database (Denmark)

    Verbrugghe, Tim; Troch, Peter; Kortenhaus, Andreas

    2016-01-01

    Wave energy converters (WECs) need to be deployed in large numbers in an array layout in order to have a significant power production. Each WEC has an impact on the incoming wave field, diffracting, reflecting and radiating waves. Simulating the wave transformations within and around a WEC farm...... of a wave-structure interaction solver and a wave propagation model, both based on the potential flow theory. This paper discusses the coupling method and illustrates the functionality with a proof-of-concept. Additionally, a projection of the evolution of the numerical tool is given. It can be concluded...... is complex; it is difficult to simulate both near field and far field effects with a single numerical model, with relatively fast computing times. Within this research a numerical tool is developed to model near-field and far-field wave transformations caused by WECs. The tool is based on the coupling...

  19. Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent zonal flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  20. Cerebral functional connectivity and Mayer waves in mice: Phenomena and separability.

    Science.gov (United States)

    Bumstead, Jonathan R; Bauer, Adam Q; Wright, Patrick W; Culver, Joseph P

    2017-02-01

    Resting-state functional connectivity is a growing neuroimaging approach that analyses the spatiotemporal structure of spontaneous brain activity, often using low-frequency (Mayer waves. Despite how close in frequency these phenomena exist, there is little research on how vasomotion and Mayer waves are related to or affect resting-state functional connectivity. In this study, we analyze spontaneous hemodynamic fluctuations over the mouse cortex using optical intrinsic signal imaging. We found spontaneous occurrence of oscillatory hemodynamics ∼0.2 Hz consistent with the properties of Mayer waves reported in the literature. Across a group of mice (n = 19), there was a large variability in the magnitude of Mayer waves. However, regardless of the magnitude of Mayer waves, functional connectivity patterns could be recovered from hemodynamic signals when filtered to the lower frequency band, 0.01-0.08 Hz. Our results demonstrate that both Mayer waves and resting-state functional connectivity patterns can co-exist simultaneously, and that they can be separated by applying bandpass filters.

  1. Projector Augmented-Wave formulation of response to strain and electric field perturbation within the density-functional perturbation theory

    Science.gov (United States)

    Martin, Alexandre; Torrent, Marc; Caracas, Razvan

    2015-03-01

    A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).

  2. Quark mean field theory and consistency with nuclear matter

    International Nuclear Information System (INIS)

    Dey, J.; Dey, M.; Frederico, T.; Tomio, L.

    1990-09-01

    1/N c expansion in QCD (with N c the number of colours) suggests using a potential from meson sector (e.g. Richardson) for baryons. For light quarks a σ field has to be introduced to ensure chiral symmetry breaking ( χ SB). It is found that nuclear matter properties can be used to pin down the χ SB-modelling. All masses, M N , m σ , m ω are found to scale with density. The equations are solved self consistently. (author). 29 refs, 2 tabs

  3. Self-consistent studies of magnetic thin film Ni (001)

    International Nuclear Information System (INIS)

    Wang, C.S.; Freeman, A.J.

    1979-01-01

    Advances in experimental methods for studying surface phenomena have provided the stimulus to develop theoretical methods capable of interpreting this wealth of new information. Of particular interest have been the relative roles of bulk and surface contributions since in several important cases agreement between experiment and bulk self-consistent (SC) calculations within the local spin density functional formalism (LSDF) is lacking. We discuss our recent extension of the (LSDF) approach to the study of thin films (slabs) and the role of surface effects on magnetic properties. Results are described for Ni (001) films using our new SC numerical basis set LCAO method. Self-consistency within the superposition of overlapping spherical atomic charge density model is obtained iteratively with the atomic configuration as the adjustable parameter. Results are presented for the electronic charge densities and local density of states. The origin and role of (magnetic) surface states is discussed by comparison with results of earlier bulk calculations

  4. Self-consistent-field method and τ-functional method on group manifold in soliton theory. II. Laurent coefficients of soliton solutions for sln and for sun

    International Nuclear Information System (INIS)

    Nishiyama, Seiya; Providencia, Joao da; Komatsu, Takao

    2007-01-01

    To go beyond perturbative method in terms of variables of collective motion, using infinite-dimensional fermions, we have aimed to construct the self-consistent-field (SCF) theory, i.e., time dependent Hartree-Fock theory on associative affine Kac-Moody algebras along the soliton theory. In this paper, toward such an ultimate goal we will reconstruct a theoretical frame for a υ (external parameter)-dependent SCF method to describe more precisely the dynamics on the infinite-dimensional fermion Fock space. An infinite-dimensional fermion operator is introduced through Laurent expansion of finite-dimensional fermion operators with respect to degrees of freedom of the fermions related to a υ-dependent and a Υ-periodic potential. As an illustration, we derive explicit expressions for the Laurent coefficients of soliton solutions for sl n and for su n on infinite-dimensional Grassmannian. The associative affine Kac-Moody algebras play a crucial role to determine the dynamics on the infinite-dimensional fermion Fock space

  5. Mantle upwelling beneath Madagascar: evidence from receiver function analysis and shear wave splitting

    Science.gov (United States)

    Paul, Jonathan D.; Eakin, Caroline M.

    2017-07-01

    Crustal receiver functions have been calculated from 128 events for two three-component broadband seismomenters located on the south coast (FOMA) and in the central High Plateaux (ABPO) of Madagascar. For each station, crustal thickness and V p / V s ratio were estimated from H- κ plots. Self-consistent receiver functions from a smaller back-azimuthal range were then selected, stacked and inverted to determine shear wave velocity structure as a function of depth. These results were corroborated by guided forward modeling and by Monte Carlo error analysis. The crust is found to be thinner (39 ± 0.7 km) beneath the highland center of Madagascar compared to the coast (44 ± 1.6 km), which is the opposite of what would be expected for crustal isostasy, suggesting that present-day long wavelength topography is maintained, at least in part, dynamically. This inference of dynamic support is corroborated by shear wave splitting analyses at the same stations, which produce an overwhelming majority of null results (>96 %), as expected for vertical mantle flow or asthenospheric upwelling beneath the island. These findings suggest a sub-plate origin for dynamic support.

  6. Bootstrapping gravity: A consistent approach to energy-momentum self-coupling

    International Nuclear Information System (INIS)

    Butcher, Luke M.; Hobson, Michael; Lasenby, Anthony

    2009-01-01

    It is generally believed that coupling the graviton (a classical Fierz-Pauli massless spin-2 field) to its own energy-momentum tensor successfully recreates the dynamics of the Einstein field equations order by order; however the validity of this idea has recently been brought into doubt [T. Padmanabhan, Int. J. Mod. Phys. D 17, 367 (2008).]. Motivated by this, we present a graviton action for which energy-momentum self-coupling is indeed consistent with the Einstein field equations. The Hilbert energy-momentum tensor for this graviton is calculated explicitly and shown to supply the correct second-order term in the field equations; in contrast, the Fierz-Pauli action fails to supply the correct term. A formalism for perturbative expansions of metric-based gravitational theories is then developed, and these techniques employed to demonstrate that our graviton action is a starting point for a straightforward energy-momentum self-coupling procedure that, order by order, generates the Einstein-Hilbert action (up to a classically irrelevant surface term). The perturbative formalism is extended to include matter and a cosmological constant, and interactions between perturbations of a free matter field and the gravitational field are studied in a vacuum background. Finally, the effect of a nonvacuum background is examined, and the graviton is found to develop a nonvanishing 'mass-term' in the action.

  7. Consistency of students’ conceptions of wave propagation: Findings from a conceptual survey in mechanical waves

    Directory of Open Access Journals (Sweden)

    Chernchok Soankwan

    2011-07-01

    Full Text Available We recently developed a multiple-choice conceptual survey in mechanical waves. The development, evaluation, and demonstration of the use of the survey were reported elsewhere [ A. Tongchai et al. Int. J. Sci. Educ. 31 2437 (2009]. We administered the survey to 902 students from seven different groups ranging from high school to second year university. As an outcome of that analysis we were able to identify several conceptual models which the students seemed to be using when answering the questions in the survey. In this paper we attempt to investigate the strength with which the students were committed to these conceptual models, as evidenced by the consistency with which they answered the questions. For this purpose we focus on the patterns of student responses to questions in one particular subtopic, wave propagation. This study has three main purposes: (1 to investigate the consistency of student conceptions, (2 to explore the relative usefulness of different analysis techniques, and (3 to determine what extra information a study of consistency can give about student understanding of basic concepts. We used two techniques: first, categorizing and counting, which is widely used in the science education community, and second, model analysis, recently introduced into physics education research. The manner in which categorizing and counting is used is very diverse while model analysis has been employed only in prescriptive ways. Research studies have reported that students often use their conceptual models inconsistently when solving a series of questions that test the same idea. Our results support their conclusions. Moreover, our findings suggest that students who have had more experiences in physics learning seem to use the scientifically accepted models more consistently. Further, the two analysis techniques have different advantages and disadvantages. Our findings show that model analysis can be used in more diverse ways, provides

  8. The effects of noise on binocular rivalry waves: a stochastic neural field model

    KAUST Repository

    Webber, Matthew A

    2013-03-12

    We analyze the effects of extrinsic noise on traveling waves of visual perception in a competitive neural field model of binocular rivalry. The model consists of two one-dimensional excitatory neural fields, whose activity variables represent the responses to left-eye and right-eye stimuli, respectively. The two networks mutually inhibit each other, and slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We first show how, in the absence of any noise, the system supports a propagating composite wave consisting of an invading activity front in one network co-moving with a retreating front in the other network. Using a separation of time scales and perturbation methods previously developed for stochastic reaction-diffusion equations, we then show how extrinsic noise in the activity variables leads to a diffusive-like displacement (wandering) of the composite wave from its uniformly translating position at long time scales, and fluctuations in the wave profile around its instantaneous position at short time scales. We use our analysis to calculate the first-passage-time distribution for a stochastic rivalry wave to travel a fixed distance, which we find to be given by an inverse Gaussian. Finally, we investigate the effects of noise in the depression variables, which under an adiabatic approximation lead to quenched disorder in the neural fields during propagation of a wave. © 2013 IOP Publishing Ltd and SISSA Medialab srl.

  9. Self-consistent modeling of amorphous silicon devices

    International Nuclear Information System (INIS)

    Hack, M.

    1987-01-01

    The authors developed a computer model to describe the steady-state behaviour of a range of amorphous silicon devices. It is based on the complete set of transport equations and takes into account the important role played by the continuous distribution of localized states in the mobility gap of amorphous silicon. Using one set of parameters they have been able to self-consistently simulate the current-voltage characteristics of p-i-n (or n-i-p) solar cells under illumination, the dark behaviour of field-effect transistors, p-i-n diodes and n-i-n diodes in both the ohmic and space charge limited regimes. This model also describes the steady-state photoconductivity of amorphous silicon, in particular, its dependence on temperature, doping and illumination intensity

  10. Non linear self consistency of microtearing modes

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.

    1987-01-01

    The self consistency of a microtearing turbulence is studied in non linear regimes where the ergodicity of the flux lines determines the electron response. The current which sustains the magnetic perturbation via the Ampere law results from the combines action of the radial electric field in the frame where the island chains are static and of the thermal electron diamagnetism. Numerical calculations show that at usual values of β pol in Tokamaks the turbulence can create a diffusion coefficient of order ν th p 2 i where p i is the ion larmor radius and ν th the electron ion collision frequency. On the other hand, collisionless regimes involving special profiles of each mode near the resonant surface seem possible

  11. Non-Born-Oppenheimer trajectories with self-consistent decay of mixing

    International Nuclear Information System (INIS)

    Zhu Chaoyuan; Jasper, Ahren W.; Truhlar, Donald G.

    2004-01-01

    A semiclassical trajectory method, called the self-consistent decay of mixing (SCDM) method, is presented for the treatment of electronically nonadiabatic dynamics. The SCDM method is a modification of the semiclassical Ehrenfest (SE) method (also called the semiclassical time-dependent self-consistent-field method) that solves the problem of unphysical mixed final states by including decay-of-mixing terms in the equations for the evolution of the electronic state populations. These terms generate a force, called the decoherent force (or dephasing force), that drives the electronic component of each trajectory toward a pure state. Results for several mixed quantum-classical methods, in particular the SCDM, SE, and natural-decay-of-mixing methods and several trajectory surface hopping methods, are compared to the results of accurate quantum mechanical calculations for 12 cases involving five different fully dimensional triatomic model systems. The SCDM method is found to be the most accurate of the methods tested. The method should be useful for the simulation of photochemical reactions

  12. Primordial gravitational waves induced by magnetic fields in an ekpyrotic scenario

    Directory of Open Access Journals (Sweden)

    Asuka Ito

    2017-08-01

    Full Text Available Both inflationary and ekpyrotic scenarios can account for the origin of the large scale structure of the universe. It is often said that detecting primordial gravitational waves is the key to distinguish both scenarios. We show that this is not true if the gauge kinetic function is present in the ekpyrotic scenario. In fact, primordial gravitational waves sourced by the gauge field can be produced in an ekpyrotic universe. We also study scalar fluctuations sourced by the gauge field and show that it is negligible compared to primordial gravitational waves. This comes from the fact that the fast roll condition holds in ekpyrotic models.

  13. Excitation of surface waves and electrostatic fields by a RF (radiofrequency systems) wave in a plasma sheath with current

    International Nuclear Information System (INIS)

    Gutierrez Tapia, C.

    1990-01-01

    It is shown in a one-dimensional model that when a current in a plasma sheath is present, the excitation of surface waves and electrostatic fields by a RF wave is possible in the sheath. This phenomena depends strongly on the joint action of Miller's and driven forces. It is also shown that the action of these forces are carried out at different characteristic times when the wave front travels through the plasma sheath. The influence of the current, in the steady limit, is taken into account by a small functional variation of the density perturbations and generated electrostatic field. (Author)

  14. Statistical properties of nonlinear one-dimensional wave fields

    Directory of Open Access Journals (Sweden)

    D. Chalikov

    2005-01-01

    Full Text Available A numerical model for long-term simulation of gravity surface waves is described. The model is designed as a component of a coupled Wave Boundary Layer/Sea Waves model, for investigation of small-scale dynamic and thermodynamic interactions between the ocean and atmosphere. Statistical properties of nonlinear wave fields are investigated on a basis of direct hydrodynamical modeling of 1-D potential periodic surface waves. The method is based on a nonstationary conformal surface-following coordinate transformation; this approach reduces the principal equations of potential waves to two simple evolutionary equations for the elevation and the velocity potential on the surface. The numerical scheme is based on a Fourier transform method. High accuracy was confirmed by validation of the nonstationary model against known solutions, and by comparison between the results obtained with different resolutions in the horizontal. The scheme allows reproduction of the propagation of steep Stokes waves for thousands of periods with very high accuracy. The method here developed is applied to simulation of the evolution of wave fields with large number of modes for many periods of dominant waves. The statistical characteristics of nonlinear wave fields for waves of different steepness were investigated: spectra, curtosis and skewness, dispersion relation, life time. The prime result is that wave field may be presented as a superposition of linear waves is valid only for small amplitudes. It is shown as well, that nonlinear wave fields are rather a superposition of Stokes waves not linear waves. Potential flow, free surface, conformal mapping, numerical modeling of waves, gravity waves, Stokes waves, breaking waves, freak waves, wind-wave interaction.

  15. Statistical properties of nonlinear one-dimensional wave fields

    Science.gov (United States)

    Chalikov, D.

    2005-06-01

    A numerical model for long-term simulation of gravity surface waves is described. The model is designed as a component of a coupled Wave Boundary Layer/Sea Waves model, for investigation of small-scale dynamic and thermodynamic interactions between the ocean and atmosphere. Statistical properties of nonlinear wave fields are investigated on a basis of direct hydrodynamical modeling of 1-D potential periodic surface waves. The method is based on a nonstationary conformal surface-following coordinate transformation; this approach reduces the principal equations of potential waves to two simple evolutionary equations for the elevation and the velocity potential on the surface. The numerical scheme is based on a Fourier transform method. High accuracy was confirmed by validation of the nonstationary model against known solutions, and by comparison between the results obtained with different resolutions in the horizontal. The scheme allows reproduction of the propagation of steep Stokes waves for thousands of periods with very high accuracy. The method here developed is applied to simulation of the evolution of wave fields with large number of modes for many periods of dominant waves. The statistical characteristics of nonlinear wave fields for waves of different steepness were investigated: spectra, curtosis and skewness, dispersion relation, life time. The prime result is that wave field may be presented as a superposition of linear waves is valid only for small amplitudes. It is shown as well, that nonlinear wave fields are rather a superposition of Stokes waves not linear waves. Potential flow, free surface, conformal mapping, numerical modeling of waves, gravity waves, Stokes waves, breaking waves, freak waves, wind-wave interaction.

  16. Wake-field generation by the ponderomotive memory effect

    International Nuclear Information System (INIS)

    Wolf, U.; Schamel, H.

    1997-01-01

    An analytical and numerical investigation of the plasma response to an imposed high frequency wave packet with a slow explicit time-dependent envelope is presented. An underlying picture of ponderomotive effects is developed, which shows that the explicit time dependence forces us to treat the problem kinetically, and furthermore, that a wake field is generated by the ponderomotive memory effect. The latter supplements the well-known ponderomotive force and fake heating effect. Several perturbation schemes are compared showing that the influence of resonant particles, treated by the method of characteristics, has to be taken into account for Langmuir wave packets with kλ d ≥0.2, where k is the wave number and λ d the Debye length. A self-consistent Vlasov simulation shows the disappearance of the density depression in the case of immobile ions, whereas the wake-field pattern survives self-consistency. copyright 1997 The American Physical Society

  17. Self-consistency corrections in effective-interaction calculations

    International Nuclear Information System (INIS)

    Starkand, Y.; Kirson, M.W.

    1975-01-01

    Large-matrix extended-shell-model calculations are used to compute self-consistency corrections to the effective interaction and to the linked-cluster effective interaction. The corrections are found to be numerically significant and to affect the rate of convergence of the corresponding perturbation series. The influence of various partial corrections is tested. It is concluded that self-consistency is an important effect in determining the effective interaction and improving the rate of convergence. (author)

  18. Green's function in the color field of a large nucleus

    International Nuclear Information System (INIS)

    McLerran, L.; Venugopalan, R.

    1994-01-01

    We compute the Green's function for scalars, fermions, and vectors in the color field associated with the infinite momentum frame wave function of a large nucleus. Expectation values of this wave function can be computed by integrating over random orientations of the valence quark charge density. This relates the Green's functions to correlation functions of a two-dimensional, ultraviolet finite, field theory. We show how one can compute the sea quark distribution functions and explicitly compute them in the kinematic range of transverse momenta, α s 2 μ 2 much-lt k t 2 much-lt μ 2 , where μ 2 is the average color charge squared per unit area. When m quark 2 much-lt μ 2 ∼A 1/3 , the sea quark contribution to the infinite momentum frame wave function saturates at a value that is the same as that for massless sea quarks

  19. Computer simulation of driven Alfven waves

    International Nuclear Information System (INIS)

    Geary, J.L. Jr.

    1986-01-01

    The first particle simulation study of shear Alfven wave resonance heating is presented. Particle simulation codes self-consistently follow the time evolution of the individual and collective aspects of particle dynamics as well as wave dynamics in a fully nonlinear fashion. Alfven wave heating is a possible means of increasing the temperature of magnetized plasmas. A new particle simulation model was developed for this application that incorporates Darwin's formulation of the electromagnetic fields with a guiding center approximation for electron motion perpendicular to the ambient magnetic field. The implementation of this model and the examination of its theoretical and computational properties are presented. With this model, several cases of Alfven wave heating is examined in both uniform and nonuniform simulation systems in a two dimensional slab. For the inhomogeneous case studies, the kinetic Alfven wave develops in the vicinity of the shear Alfven resonance region

  20. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    Science.gov (United States)

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  1. The concept of coupling impedance in the self-consistent plasma wake field excitation

    International Nuclear Information System (INIS)

    Fedele, R.; Akhter, T.; De Nicola, S.; Migliorati, M.; Marocchino, A.; Massimo, F.; Palumbo, L.

    2016-01-01

    Within the framework of the Vlasov–Maxwell system of equations, we describe the self-consistent interaction of a relativistic charged-particle beam with the surroundings while propagating through a plasma-based acceleration device. This is done in terms of the concept of coupling (longitudinal) impedance in full analogy with the conventional accelerators. It is shown that also here the coupling impedance is a very useful tool for the Nyquist-type stability analysis. Examples of specific physical situations are finally illustrated.

  2. Superresolution Near-field Imaging with Surface Waves

    KAUST Repository

    Fu, Lei

    2017-10-21

    We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulas and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve superresolution imaging of subwavelength scatterers if they are located less than about 1/2 of the shear wavelength from the source line. We also show that the TRM operation for a single frequency is equivalent to natural migration, which uses the recorded data to approximate the Green’s functions for migration, and only costs O(N4) algebraic operations for poststack migration compared to O(N6) operations for natural prestack migration. Here, we assume the sources and receivers are on an N × N grid and there are N2 trial image points on the free surface. Our theoretical predictions of superresolution are validated with tests on synthetic data. The field-data tests suggest that hidden faults at the near surface can be detected with subwavelength imaging of surface waves by using the TRM operation if they are no deeper than about 1/2 the dominant shear wavelength.

  3. Wigner functions of s waves

    International Nuclear Information System (INIS)

    Dahl, J. P.; Varro, S.; Wolf, A.; Schleich, W. P.

    2007-01-01

    We derive explicit expressions for the Wigner function of wave functions in D dimensions which depend on the hyperradius--that is, of s waves. They are based either on the position or the momentum representation of the s wave. The corresponding Wigner function depends on three variables: the absolute value of the D-dimensional position and momentum vectors and the angle between them. We illustrate these expressions by calculating and discussing the Wigner functions of an elementary s wave and the energy eigenfunction of a free particle

  4. Wigner functions of s waves

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Varro, S.; Wolf, A.

    2007-01-01

    We derive explicit expressions for the Wigner function of wave functions in D dimensions which depend on the hyperradius-that is, of s waves. They are based either on the position or the momentum representation of the s wave. The corresponding Wigner function depends on three variables......: the absolute value of the D-dimensional position and momentum vectors and the angle between them. We illustrate these expressions by calculating and discussing the Wigner functions of an elementary s wave and the energy eigenfunction of a free particle....

  5. Characteristics of electron cyclotron waves creating field-aligned and transverse plasma-potential structures

    International Nuclear Information System (INIS)

    Takahashi, K; Kaneko, T; Hatakeyama, R; Fukuyama, A

    2009-01-01

    Characteristics of electromagnetic waves of azimuthal mode number m = ±1 are investigated experimentally, analytically and numerically when the waves triggering the field-aligned and transverse plasma-potential structure modification near an electron cyclotron resonance (ECR) point are injected into an inhomogeneously magnetized plasma with high-speed ion flow. The waves of m = +1 and -1 modes generate an electric double layer near the ECR point at the radially central and peripheral areas of the plasma column, respectively, and the transverse electric fields are consequently formed. At these areas the waves have a right-handed polarization and are absorbed through the ECR mechanism, where the experimental and analytical results do show the polarization reversal along the radial axis. The numerical results by plasma analysis by finite element method (FEM)/wave analysis by FEM (PAF/WF) code show that the wave-absorption area is localized at the radially central and peripheral areas for m = +1 and -1 mode waves, respectively, being consistent with the experimental and analytical ones.

  6. Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves.

    Science.gov (United States)

    Gong, Zheng; Chen, Tianrun; Ratilal, Purnima; Makris, Nicholas C

    2013-11-01

    An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations after propagating through a continental-shelf waveguide is shown to decay with a power-law of range to the -1/2 beyond roughly 1 km, decrease with increasing internal wave energy, to be consistent with measured acoustic coherence time scales. The model should provide a useful prediction of the acoustic coherence time scale as a function of internal wave energy in continental-shelf environments. The acoustic coherence time scale is an important parameter in remote sensing applications because it determines (i) the time window within which standard coherent processing such as matched filtering may be conducted, and (ii) the number of statistically independent fluctuations in a given measurement period that determines the variance reduction possible by stationary averaging.

  7. Electronic structure of thin films by the self-consistent numerical-basis-set linear combination of atomic orbitals method: Ni(001)

    International Nuclear Information System (INIS)

    Wang, C.S.; Freeman, A.J.

    1979-01-01

    We present the self-consistent numerical-basis-set linear combination of atomic orbitals (LCAO) discrete variational method for treating the electronic structure of thin films. As in the case of bulk solids, this method provides for thin films accurate solutions of the one-particle local density equations with a non-muffin-tin potential. Hamiltonian and overlap matrix elements are evaluated accurately by means of a three-dimensional numerical Diophantine integration scheme. Application of this method is made to the self-consistent solution of one-, three-, and five-layer Ni(001) unsupported films. The LCAO Bloch basis set consists of valence orbitals (3d, 4s, and 4p states for transition metals) orthogonalized to the frozen-core wave functions. The self-consistent potential is obtained iteratively within the superposition of overlapping spherical atomic charge density model with the atomic configurations treated as adjustable parameters. Thus the crystal Coulomb potential is constructed as a superposition of overlapping spherically symmetric atomic potentials and, correspondingly, the local density Kohn-Sham (α = 2/3) potential is determined from a superposition of atomic charge densities. At each iteration in the self-consistency procedure, the crystal charge density is evaluated using a sampling of 15 independent k points in (1/8)th of the irreducible two-dimensional Brillouin zone. The total density of states (DOS) and projected local DOS (by layer plane) are calculated using an analytic linear energy triangle method (presented as an Appendix) generalized from the tetrahedron scheme for bulk systems. Distinct differences are obtained between the surface and central plane local DOS. The central plane DOS is found to converge rapidly to the DOS of bulk paramagnetic Ni obtained by Wang and Callaway. Only a very small surplus charge (0.03 electron/atom) is found on the surface planes, in agreement with jellium model calculations

  8. Self-consistent Random Phase Approximation applied to a schematic model of the field theory

    International Nuclear Information System (INIS)

    Bertrand, Thierry

    1998-01-01

    The self-consistent Random Phase Approximation (SCRPA) is a method allowing in the mean-field theory inclusion of the correlations in the ground and excited states. It has the advantage of not violating the Pauli principle in contrast to RPA, that is based on the quasi-bosonic approximation; in addition, numerous applications in different domains of physics, show a possible variational character. However, the latter should be formally demonstrated. The first model studied with SCRPA is the anharmonic oscillator in the region where one of its symmetries is spontaneously broken. The ground state energy is reproduced by SCRPA more accurately than RPA, with no violation of the Ritz variational principle, what is not the case for the latter approximation. The success of SCRPA is the the same in case of ground state energy for a model mixing bosons and fermions. At the transition point the SCRPA is correcting RPA drastically, but far from this region the correction becomes negligible, both methods being of similar precision. In the deformed region in the case of RPA a spurious mode occurred due to the microscopical character of the model.. The SCRPA may also reproduce this mode very accurately and actually it coincides with an excitation in the exact spectrum

  9. Self-excitation of space charge waves

    DEFF Research Database (Denmark)

    Lyuksyutov, Sergei; Buchhave, Preben; Vasnetsov, Mikhail

    1997-01-01

    We report a direct observation of space charge waves in photorefractive crystals with point group 23 (sillenites) based on their penetration into an area with uniform light illumination. It is shown experimentally that the quality factor of the waves increases substantially with respect to what c...... current theory predicts [B. Sturman el al., Appl. Phys. A 55, 235 (1992)]. This results in the appearance of strong spontaneous beams caused by space charge wave self-excitation....

  10. Self-consistent calculation of atomic structure for mixture

    International Nuclear Information System (INIS)

    Meng Xujun; Bai Yun; Sun Yongsheng; Zhang Jinglin; Zong Xiaoping

    2000-01-01

    Based on relativistic Hartree-Fock-Slater self-consistent average atomic model, atomic structure for mixture is studied by summing up component volumes in mixture. Algorithmic procedure for solving both the group of Thomas-Fermi equations and the self-consistent atomic structure is presented in detail, and, some numerical results are discussed

  11. Consequences of wave function orthogonality for medium energy nuclear reactions

    International Nuclear Information System (INIS)

    Noble, J.V.

    1978-01-01

    In the usual models of high-energy bound-state to continuum transitions no account is taken of the orthogonality of the bound and continuum wave functions. This orthogonality induces considerable cancellations in the overlap integrals expressing the transition amplitudes for reactions such as (e,e'p), (γ,p), and (π,N), which are simply not included in the distorted-wave Born-approximation calculations which to date remain the only computationally feasible heirarchy of approximations. The object of this paper is to present a new formulation of the bound-state to continuum transition problem, based upon flux conservation, in which the orthogonality of wave functions is taken into account ab initio. The new formulation, while exact if exact wave functions are used, offers the possibility of using approximate wave functions for the continuum states without doing violence to the cancellations induced by orthogonality. The method is applied to single-particle states obeying the Schroedinger and Dirac equations, as well as to a coupled-channel model in which absorptive processes can be described in a fully consistent manner. Several types of absorption vertex are considered, and in the (π,N) case the equivalence of pseudoscalar and pseudovector πNN coupling is seen to follow directly from wave function orthogonality

  12. Coherent drift wave structures in sheared magnetic fields

    International Nuclear Information System (INIS)

    Morrison, P.J.; Horton, W.

    1993-01-01

    For the problem of calculating the coherent drift wave structures in sheared magnetic fields, the authors have found it useful to derive the governing nonlinear pde from a variational principle. The variational principle is based on the free energy functional F[var-phi] = ∫ V F(var-phi, ∇ var-phi, x)dx dy. The method is applied to the vortex with speed u derived in Su et al., given by ∇ 2 var-phi = (1 - v d /u) var-phi - S m 2 /u 2 (x - var-phi/u) (x - var-phi/2u) var-phi where space is measured in units of ρ s , var-phi = (eΦ/T e )(L n /ρ s ) and the magnetic shear parameter is S m . While the linearized problem (var-phi much-lt ux) describes the usual shear induced damping, nonlinear solutions with trapped flow (var-phi > ur 0 ) form nonlinear self-bound states, which are maxima of the free energy F. The authors discuss the analytic properties and the numerical procedures for solving these types of nonlinear pde's

  13. Self-consistent generalized Langevin-equation theory for liquids of nonspherically interacting particles

    Science.gov (United States)

    Elizondo-Aguilera, L. F.; Zubieta Rico, P. F.; Ruiz-Estrada, H.; Alarcón-Waess, O.

    2014-11-01

    A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, Fl m ,l m(k ,t ) and Flm ,l m S(k ,t ) , are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density nl m(k ,t ) and the translational (α =T ) and rotational (α =R ) current densities jlm α(k ,t ) . Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by Sl m ,l m(k ) . Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γT and γR, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.

  14. Self-consistent generalized Langevin-equation theory for liquids of nonspherically interacting particles.

    Science.gov (United States)

    Elizondo-Aguilera, L F; Zubieta Rico, P F; Ruiz-Estrada, H; Alarcón-Waess, O

    2014-11-01

    A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, F_{lm,lm}(k,t) and F_{lm,lm}^{S}(k,t), are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density n_{lm}(k,t) and the translational (α=T) and rotational (α=R) current densities j_{lm}^{α}(k,t). Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by S_{lm,lm}(k). Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γ_{T} and γ_{R}, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.

  15. Double photoionization of helium: A new correlated double continuum wave function

    Energy Technology Data Exchange (ETDEWEB)

    Macri, P.A.; Kornberg, M.A.; Miraglia, J.E. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina). Inst. de Astron. y Fisica del Espacio; Garibotti, C.R.; Gasaneo, G.; Colavecchia, F.D. [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, 8400 S.C. de Bariloche, Rio Negro (Argentina)

    1997-10-01

    In this work we discuss the failures and goodness of using the product of two and three Coulomb waves to represent the double-continuum wave function of two electrons in the field of an ion. Furthermore, we present a new wave function for the double continuum, which takes into account the non-diagonal part of the kinetic energy. It satisfies the correct boundary conditions for large particle separations, and treats the electronic interaction in a more realistic way than the previously enunciated models. (orig.). 14 refs.

  16. A Simulation Model for Drift Resistive Ballooning Turbulence Examining the Influence of Self-consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim; Joseph, Ilon

    2015-11-01

    Progress is reported on including self-consistent zonal flows in simulations of drift-resistive ballooning turbulence using the BOUT + + framework. Previous published work addressed the simulation of L-mode edge turbulence in realistic single-null tokamak geometry using the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations. The effects of imposed sheared ExB poloidal rotation were included, with a static radial electric field fitted to experimental data. In new work our goal is to include the self-consistent effects on the radial electric field driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We describe a model for including self-consistent zonal flows and an algorithm for maintaining underlying plasma profiles to enable the simulation of steady-state turbulence. We examine the role of Braginskii viscous forces in providing necessary dissipation when including axisymmetric perturbations. We also report on some of the numerical difficulties associated with including the axisymmetric component of the fluctuating fields. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory (LLNL-ABS-674950).

  17. Low-frequency electromagnetic field in a Wigner crystal

    OpenAIRE

    Stupka, Anton

    2016-01-01

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  18. Relativistic bound state wave functions

    International Nuclear Information System (INIS)

    Micu, L.

    2005-01-01

    A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is

  19. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling

    International Nuclear Information System (INIS)

    Pera, H.; Kleijn, J. M.; Leermakers, F. A. M.

    2014-01-01

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus k c and k ¯ and the preferred monolayer curvature J 0 m , and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of k c and the area compression modulus k A are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k ¯ and J 0 m can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k ¯ and J 0 m change sign with relevant parameter changes. Although typically k ¯ 0 m ≫0, especially at low ionic strengths. We anticipate that these changes lead to unstable membranes as these become vulnerable to pore formation or disintegration into lipid disks

  20. Nonlinear self-modulation of ion-acoustic waves

    International Nuclear Information System (INIS)

    Ikezi, H.; Schwarzenegger, K.; Simons, A.L.; Ohsawa, Y.; Kamimura, T.

    1978-01-01

    The nonlinear evolution of an ion-acoustic wave packet is studied. Experimentally, it is found that (i) nonlinear phase modulation develops in the wave packet; (ii) the phase modulation, together with the dispersion effect, causes expansion and breaking of the wave packet; (iii) the ions trapped in the troughs of the wave potential introduce self-phase modulation; and (iv) the ion-acoustic wave is stable with respect to the modulational instability. Computer simulations have reproduced the experimental results. The physical picture and the model equation describing the wave evolution are discussed

  1. Self-assembly behavior of pH- and thermosensitive amphiphilic triblock copolymers in solution: experimental studies and self-consistent field theory simulations.

    Science.gov (United States)

    Cai, Chunhua; Zhang, Liangshun; Lin, Jiaping; Wang, Liquan

    2008-10-09

    We investigated, both experimentally and theoretically, the self-assembly behaviors of pH- and thermosensitive poly(L-glutamic acid)- b-poly(propylene oxide)-b-poly(L-glutamic acid) (PLGA-b-PPO-b-PLGA) triblock copolymers in aqueous solution by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), circular dichroism (CD), and self-consistent field theory (SCFT) simulations. Vesicles were observed when the hydrophilic PLGA block length is shorter or the pH value of solution is lower. The vesicles were found to transform to spherical micelles when the PLGA block length increases or its conformation changes from helix to coil with increasing the pH value. In addition, increasing temperature gives rise to a decrease in the size of aggregates, which is related to the dehydration of the PPO segments at higher temperatures. The SCFT simulation results show that the vesicles transform to the spherical micelles with increasing the fraction or statistical length of A block in model ABA triblock copolymer, which corresponds to the increase in the PLGA length or its conformation change from helix to coil in experiments, respectively. The SCFT calculations also provide chain distribution information in the aggregates. On the basis of both experimental and SCFT results, the mechanism of the structure change of the PLGA- b-PPO- b-PLGA aggregates was proposed.

  2. Self-consistent modeling of radio-frequency plasma generation in stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Moiseenko, V. E., E-mail: moiseenk@ipp.kharkov.ua; Stadnik, Yu. S., E-mail: stadnikys@kipt.kharkov.ua [National Academy of Sciences of Ukraine, National Science Center Kharkov Institute of Physics and Technology (Ukraine); Lysoivan, A. I., E-mail: a.lyssoivan@fz-juelich.de [Royal Military Academy, EURATOM-Belgian State Association, Laboratory for Plasma Physics (Belgium); Korovin, V. B. [National Academy of Sciences of Ukraine, National Science Center Kharkov Institute of Physics and Technology (Ukraine)

    2013-11-15

    A self-consistent model of radio-frequency (RF) plasma generation in stellarators in the ion cyclotron frequency range is described. The model includes equations for the particle and energy balance and boundary conditions for Maxwell’s equations. The equation of charged particle balance takes into account the influx of particles due to ionization and their loss via diffusion and convection. The equation of electron energy balance takes into account the RF heating power source, as well as energy losses due to the excitation and electron-impact ionization of gas atoms, energy exchange via Coulomb collisions, and plasma heat conduction. The deposited RF power is calculated by solving the boundary problem for Maxwell’s equations. When describing the dissipation of the energy of the RF field, collisional absorption and Landau damping are taken into account. At each time step, Maxwell’s equations are solved for the current profiles of the plasma density and plasma temperature. The calculations are performed for a cylindrical plasma. The plasma is assumed to be axisymmetric and homogeneous along the plasma column. The system of balance equations is solved using the Crank-Nicholson scheme. Maxwell’s equations are solved in a one-dimensional approximation by using the Fourier transformation along the azimuthal and longitudinal coordinates. Results of simulations of RF plasma generation in the Uragan-2M stellarator by using a frame antenna operating at frequencies lower than the ion cyclotron frequency are presented. The calculations show that the slow wave generated by the antenna is efficiently absorbed at the periphery of the plasma column, due to which only a small fraction of the input power reaches the confinement region. As a result, the temperature on the axis of the plasma column remains low, whereas at the periphery it is substantially higher. This leads to strong absorption of the RF field at the periphery via the Landau mechanism.

  3. Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for density-functional calculations of solids

    International Nuclear Information System (INIS)

    Holzwarth, N.A.; Matthews, G.E.; Dunning, R.B.; Tackett, A.R.; Zeng, Y.

    1997-01-01

    The projector augmented-wave (PAW) method was developed by Bloechl as a method to accurately and efficiently calculate the electronic structure of materials within the framework of density-functional theory. It contains the numerical advantages of pseudopotential calculations while retaining the physics of all-electron calculations, including the correct nodal behavior of the valence-electron wave functions and the ability to include upper core states in addition to valence states in the self-consistent iterations. It uses many of the same ideas developed by Vanderbilt in his open-quotes soft pseudopotentialclose quotes formalism and in earlier work by Bloechl in his open-quotes generalized separable potentials,close quotes and has been successfully demonstrated for several interesting materials. We have developed a version of the PAW formalism for general use in structural and dynamical studies of materials. In the present paper, we investigate the accuracy of this implementation in comparison with corresponding results obtained using pseudopotential and linearized augmented-plane-wave (LAPW) codes. We present results of calculations for the cohesive energy, equilibrium lattice constant, and bulk modulus for several representative covalent, ionic, and metallic materials including diamond, silicon, SiC, CaF 2 , fcc Ca, and bcc V. With the exception of CaF 2 , for which core-electron polarization effects are important, the structural properties of these materials are represented equally well by the PAW, LAPW, and pseudopotential formalisms. copyright 1997 The American Physical Society

  4. A self-consistent model of a thermally balanced quiescent prominence in magnetostatic equilibrium in a uniform gravitational field

    International Nuclear Information System (INIS)

    Lerche, I.; Low, B.C.

    1977-01-01

    A theoretical model of quiescent prominences in the form of an infinite vertical sheet is presented. Self-consistent solutions are obtained by integrating simultaneously the set of nonlinear equations of magnetostatic equilibrium and thermal balance. The basic features of the models are: (1) The prominence matter is confined to a sheet and supported against gravity by a bowed magnetic field. (2) The thermal flux is channelled along magnetic field lines. (3) The thermal flux is everywhere balanced by Low's (1975) hypothetical heat sink which is proportional to the local density. (4) A constant component of the magnetic field along the length of the prominence shields the cool plasma from the hot surrounding. It is assumed that the prominence plasma emits more radiation than it absorbes from the radiation fields of the photosphere, chromosphere and corona, and the above hypothetical heat sink is interpreted to represent the amount of radiative loss that must be balanced by a nonradiative energy input. Using a central density and temperature of 10 11 particles cm -3 and 5000 K respectively, a magnetic field strength between 2 to 10 gauss and a thermal conductivity that varies linearly with temperature, the physical properties implied by the model are discussed. The analytic treatment can also be carried out for a class of more complex thermal conductivities. These models provide a useful starting point for investigating the combined requirements of magnetostatic equilibrium and thermal balance in the quiescent prominence. (Auth.)

  5. Microscopy of electronic wave function

    International Nuclear Information System (INIS)

    Harb, M.

    2010-01-01

    This work of thesis aims to visualize, on a position sensitive detector, the spatial oscillations of slow electrons (∼ meV) emitted by a threshold photoionization in the presence of an external electric field. The interference figure obtained represents the square magnitude of electronic wavefunction. This fundamental work allows us to have access to the electronic dynamics and thus to highlight several quantum mechanisms that occur at the atomic scale (field Coulomb, electron/electron interaction..). Despite the presence an electronic core in Li atom, we have succeeded, experimentally and for the first time, in visualizing the wave function associated with the quasi-discrete Stark states coupled to the ionization continuum. Besides, using simulations of wave packet propagation, based on the 'Split-operator' method, we have conducted a comprehensive study of the H, Li and Cs atoms while revealing the significant effects of the Stark resonances. A very good agreement, on and off resonances, was obtained between simulated and experimental results. In addition, we have developed a generalized analytical model to understand deeply the function of VMI (Velocity-Map Imaging) spectrometer. This model is based on the paraxial approximation; it is based on matrix optics calculation by making an analogy between the electronic trajectory and the light beam. An excellent agreement was obtained between the model predictions and the experimental results. (author)

  6. Modeling self-consistent multi-class dynamic traffic flow

    Science.gov (United States)

    Cho, Hsun-Jung; Lo, Shih-Ching

    2002-09-01

    In this study, we present a systematic self-consistent multiclass multilane traffic model derived from the vehicular Boltzmann equation and the traffic dispersion model. The multilane domain is considered as a two-dimensional space and the interaction among vehicles in the domain is described by a dispersion model. The reason we consider a multilane domain as a two-dimensional space is that the driving behavior of road users may not be restricted by lanes, especially motorcyclists. The dispersion model, which is a nonlinear Poisson equation, is derived from the car-following theory and the equilibrium assumption. Under the concept that all kinds of users share the finite section, the density is distributed on a road by the dispersion model. In addition, the dynamic evolution of the traffic flow is determined by the systematic gas-kinetic model derived from the Boltzmann equation. Multiplying Boltzmann equation by the zeroth, first- and second-order moment functions, integrating both side of the equation and using chain rules, we can derive continuity, motion and variance equation, respectively. However, the second-order moment function, which is the square of the individual velocity, is employed by previous researches does not have physical meaning in traffic flow. Although the second-order expansion results in the velocity variance equation, additional terms may be generated. The velocity variance equation we propose is derived from multiplying Boltzmann equation by the individual velocity variance. It modifies the previous model and presents a new gas-kinetic traffic flow model. By coupling the gas-kinetic model and the dispersion model, a self-consistent system is presented.

  7. Self-consistent modelling of resonant tunnelling structures

    DEFF Research Database (Denmark)

    Fiig, T.; Jauho, A.P.

    1992-01-01

    We report a comprehensive study of the effects of self-consistency on the I-V-characteristics of resonant tunnelling structures. The calculational method is based on a simultaneous solution of the effective-mass Schrödinger equation and the Poisson equation, and the current is evaluated...... applied voltages and carrier densities at the emitter-barrier interface. We include the two-dimensional accumulation layer charge and the quantum well charge in our self-consistent scheme. We discuss the evaluation of the current contribution originating from the two-dimensional accumulation layer charges......, and our qualitative estimates seem consistent with recent experimental studies. The intrinsic bistability of resonant tunnelling diodes is analyzed within several different approximation schemes....

  8. Self-interaction error in density functional theory: a mean-field correction for molecules and large systems

    International Nuclear Information System (INIS)

    Ciofini, Ilaria; Adamo, Carlo; Chermette, Henry

    2005-01-01

    Corrections to the self-interaction error which is rooted in all standard exchange-correlation functionals in the density functional theory (DFT) have become the object of an increasing interest. After an introduction reminding the origin of the self-interaction error in the DFT formalism, and a brief review of the self-interaction free approximations, we present a simple, yet effective, self-consistent method to correct this error. The model is based on an average density self-interaction correction (ADSIC), where both exchange and Coulomb contributions are screened by a fraction of the electron density. The ansatz on which the method is built makes it particularly appealing, due to its simplicity and its favorable scaling with the size of the system. We have tested the ADSIC approach on one of the classical pathological problem for density functional theory: the direct estimation of the ionization potential from orbital eigenvalues. A large set of different chemical systems, ranging from simple atoms to large fullerenes, has been considered as test cases. Our results show that the ADSIC approach provides good numerical values for all the molecular systems, the agreement with the experimental values increasing, due to its average ansatz, with the size (conjugation) of the systems

  9. Electron-acoustic solitary waves in the Earth's inner magnetosphere

    Science.gov (United States)

    Dillard, C. S.; Vasko, I. Y.; Mozer, F. S.; Agapitov, O. V.; Bonnell, J. W.

    2018-02-01

    The broadband electrostatic turbulence observed in the inner magnetosphere is produced by large-amplitude electrostatic solitary waves of generally two types. The solitary waves with symmetric bipolar parallel (magnetic field-aligned) electric field are electron phase space holes. The solitary waves with highly asymmetric bipolar parallel electric field have been recently shown to correspond to the electron-acoustic plasma mode (existing due to two-temperature electron population). Through theoretical and numerical analysis of hydrodynamic and modified Korteweg-de Vries equations, we demonstrate that the asymmetric solitary waves appear due to the steepening of initially quasi-monochromatic electron-acoustic perturbation arrested at some moment by collisionless dissipation (Landau damping). The typical steepening time is found to be from a few to tens of milliseconds. The steepening of the electron-acoustic waves has not been reproduced in self-consistent kinetic simulations yet, and factors controlling the formation of steepened electron-acoustic waves, rather than electron phase space holes, remain unclear.

  10. Wigner functions for nonparaxial, arbitrarily polarized electromagnetic wave fields in free space.

    Science.gov (United States)

    Alonso, Miguel A

    2004-11-01

    New representations are defined for describing electromagnetic wave fields in free space exactly in terms of rays for any wavelength, level of coherence or polarization, and numerical aperture, as long as there are no evanescent components. These representations correspond to tensors assigned to each ray such that the electric and magnetic energy densities, the Poynting vector, and the polarization properties of the field correspond to simple integrals involving these tensors for the rays that go through the specified point. For partially coherent fields, the ray-based approach provided by the new representations can reduce dramatically the computation times for the physical properties mentioned earlier.

  11. Exotic nuclei in self-consistent mean-field models

    International Nuclear Information System (INIS)

    Bender, M.; Rutz, K.; Buervenich, T.; Reinhard, P.-G.; Maruhn, J. A.; Greiner, W.

    1999-01-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei with emphasis on neutron-rich tin isotopes and superheavy nuclei. (c) 1999 American Institute of Physics

  12. Interaction of gravitational waves with magnetic and electric fields

    International Nuclear Information System (INIS)

    Barrabes, C.; Hogan, P. A.

    2010-01-01

    The existence of large-scale magnetic fields in the universe has led to the observation that if gravitational waves propagating in a cosmological environment encounter even a small magnetic field then electromagnetic radiation is produced. To study this phenomenon in more detail we take it out of the cosmological context and at the same time simplify the gravitational radiation to impulsive waves. Specifically, to illustrate our findings, we describe the following three physical situations: (1) a cylindrical impulsive gravitational wave propagating into a universe with a magnetic field, (2) an axially symmetric impulsive gravitational wave propagating into a universe with an electric field and (3) a 'spherical' impulsive gravitational wave propagating into a universe with a small magnetic field. In cases (1) and (3) electromagnetic radiation is produced behind the gravitational wave. In case (2) no electromagnetic radiation appears after the wave unless a current is established behind the wave breaking the Maxwell vacuum. In all three cases the presence of the magnetic or electric fields results in a modification of the amplitude of the incoming gravitational wave which is explicitly calculated using the Einstein-Maxwell vacuum field equations.

  13. An alternative to the plasma emission model: Particle-in-cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts

    International Nuclear Information System (INIS)

    Tsiklauri, David

    2011-01-01

    High-resolution (sub-Debye length grid size and 10 000 particle species per cell), 1.5D particle-in-cell, relativistic, fully electromagnetic simulations are used to model electromagnetic wave emission generation in the context of solar type III radio bursts. The model studies generation of electromagnetic waves by a super-thermal, hot beam of electrons injected into a plasma thread that contains uniform longitudinal magnetic field and a parabolic density gradient. In effect, a single magnetic line connecting Sun to Earth is considered, for which five cases are studied. (i) We find that the physical system without a beam is stable and only low amplitude level electromagnetic drift waves (noise) are excited. (ii) The beam injection direction is controlled by setting either longitudinal or oblique electron initial drift speed, i.e., by setting the beam pitch angle (the angle between the beam velocity vector and the direction of background magnetic field). In the case of zero pitch angle, i.e., when v-vector b ·E-vector perpendicular =0, the beam excites only electrostatic, standing waves, oscillating at local plasma frequency, in the beam injection spatial location, and only low level electromagnetic drift wave noise is also generated. (iii) In the case of oblique beam pitch angles, i.e., when v-vector b ·E-vector perpendicular =0, again electrostatic waves with same properties are excited. However, now the beam also generates the electromagnetic waves with the properties commensurate to type III radio bursts. The latter is evidenced by the wavelet analysis of transverse electric field component, which shows that as the beam moves to the regions of lower density and hence lower plasma frequency, frequency of the electromagnetic waves drops accordingly. (iv) When the density gradient is removed, an electron beam with an oblique pitch angle still generates the electromagnetic radiation. However, in the latter case no frequency decrease is seen. (v) Since in most of

  14. Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks.

    Science.gov (United States)

    Zhang, WenJun

    2007-07-01

    Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance

  15. The wave properties of matter and the zeropoint radiation field

    International Nuclear Information System (INIS)

    Pena, L. de la; Cetto, A.M.

    1994-01-01

    The origin of the wave properties of matter is discussed from the point of view of stochastic electrodynamics. A nonrelativistic model of a changed particle with an effective structure embedded in the random zeropoint radiation field reveals that the field induces a high-frequency vibration on the particle; internal consistency of the theory fixes the frequency of this jittering at mc 2 /h. The particle is therefore assumed to interact intensely with stationary zeropoint waves of this frequency as seen from its proper frame of reference; such waves, identified here as de Broglie's phase waves, give rise to a modulated wave in the laboratory frame, with de Broglie's wavelength and phase velocity equal to the particle velocity. The time-independent equation that describes this modulated wave is shown to be the stationary Schroedinger equation (or the Klein-Gordon equation in the relativistic version). In a heuristic analysis applied to simple periodic cases, the quantization rules are recovered from the assumption that for a particle in a stationary state there must correspond a stationary modulation. Along an independent and complementary line of reasoning, an equation for the probability amplitude in configuration space for a particle under a general potential V(x) is constructed, and it is shown that under conditions derived from stochastic electrodynamics it reduces to Schroedinger's equation. This equation reflects therefore the dual nature of the quantum particles, by describing simultaneously the corresponding modulated wave and the ensemble of particles

  16. Electromagnetic fields and waves

    CERN Document Server

    Iskander, Magdy F

    2013-01-01

    The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...

  17. Model wave functions for the deuteron

    International Nuclear Information System (INIS)

    Certov, A.; Mathelitsch, L.; Moravcsik, M.J.

    1987-01-01

    Model wave functions are constructed for the deuteron to facilitate the unambiguous exploration of dependencies on the percentage D state and on the small-, medium-, and large-distance parts of the deuteron wave function. The wave functions are constrained by those deuteron properties which are accurately known experimentally, and are in an analytic form which is easily integrable in expressions usually encountered in the use of such wave functions

  18. Wave-function functionals for the density

    International Nuclear Information System (INIS)

    Slamet, Marlina; Pan Xiaoyin; Sahni, Viraht

    2011-01-01

    We extend the idea of the constrained-search variational method for the construction of wave-function functionals ψ[χ] of functions χ. The search is constrained to those functions χ such that ψ[χ] reproduces the density ρ(r) while simultaneously leading to an upper bound to the energy. The functionals are thereby normalized and automatically satisfy the electron-nucleus coalescence condition. The functionals ψ[χ] are also constructed to satisfy the electron-electron coalescence condition. The method is applied to the ground state of the helium atom to construct functionals ψ[χ] that reproduce the density as given by the Kinoshita correlated wave function. The expectation of single-particle operators W=Σ i r i n , n=-2,-1,1,2, W=Σ i δ(r i ) are exact, as must be the case. The expectations of the kinetic energy operator W=-(1/2)Σ i ∇ i 2 , the two-particle operators W=Σ n u n , n=-2,-1,1,2, where u=|r i -r j |, and the energy are accurate. We note that the construction of such functionals ψ[χ] is an application of the Levy-Lieb constrained-search definition of density functional theory. It is thereby possible to rigorously determine which functional ψ[χ] is closer to the true wave function.

  19. On guided circumferential waves in soft electroactive tubes under radially inhomogeneous biasing fields

    Science.gov (United States)

    Wu, Bin; Su, Yipin; Chen, Weiqiu; Zhang, Chuanzeng

    2017-02-01

    Soft electroactive (EA) tube actuators and many other cylindrical devices have been proposed recently in literature, which show great advantages over those made from conventional hard solid materials. However, their practical applications may be limited because these soft EA devices are prone to various failure modes. In this paper, we present an analysis of the guided circumferential elastic waves in soft EA tube actuators, which has potential applications in the in-situ nondestructive evaluation (NDE) or online structural health monitoring (SHM) to detect structural defects or fatigue cracks in soft EA tube actuators and in the self-sensing of soft EA tube actuators based on the concept of guided circumferential elastic waves. Both circumferential SH and Lamb-type waves in an incompressible soft EA cylindrical tube under inhomogeneous biasing fields are considered. The biasing fields, induced by the application of an electric voltage difference to the electrodes on the inner and outer cylindrical surfaces of the EA tube in addition to an axial pre-stretch, are inhomogeneous in the radial direction. Dorfmann and Ogden's theory of nonlinear electroelasticity and the associated linear theory for small incremental motion constitute the basis of our analysis. By means of the state-space formalism for the incremental wave motion along with the approximate laminate technique, dispersion relations are derived in a particularly efficient way. For a neo-Hookean ideal dielectric model, the proposed approach is first validated numerically. Numerical examples are then given to show that the guided circumferential wave propagation characteristics are significantly affected by the inhomogeneous biasing fields and the geometrical parameters. Some particular phenomena such as the frequency veering and the nonlinear dependence of the phase velocity on the radial electric voltage are discussed. Our numerical findings demonstrate that it is feasible to use guided circumferential

  20. Electric field measurements on plasma bullets in N2 using four-wave mixing

    NARCIS (Netherlands)

    van der Schans, M.; Böhm, P.; Nijdam, S.; IJzerman, W.L.; Czarnetzki, U.

    2015-01-01

    Atmospheric pressure plasma jets driven by pulsed DC or kHz AC voltages typically consist of discrete guided ionisation waves called plasma bullets. In this work, the electric field of plasma bullets generated in a pulsed DC jet with N2 as feed gas is investigated. Electric field measurements in N2

  1. Self-consistent determination of quasiparticle properties in nuclear matter

    International Nuclear Information System (INIS)

    Oset, E.; Palanques-Mestre, A.

    1981-01-01

    The self-energy of nuclear matter is calculated by directing the attention to the energy and momentum dependent pieces which determine the quasiparticle properties. A microscopic approach is followed which starts from the boson exchange picture for the NN interaction, then the π-and p-mesons are shown to play a major role in the nucleon renormalization. The calculation is done self-consistently and the effective mass and pole strength determined as a function of the nuclear density and momentum. Particular emphasis is put on the non-static character of the interaction and its consequences. Finally a comparison is made with other calculations and with experimental results. The consequences of the nucleon renormalization in pion condensation are also examined with the result that the critical density is pushed up appreciably. (orig.)

  2. A Kind of Nanofluid Consisting of Surface-Functionalized Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Xuefei

    2010-01-01

    Full Text Available Abstract A method of surface functionalization of silica nanoparticles was used to prepare a kind of stable nanofluid. The functionalization was achieved by grafting silanes directly to the surface of silica nanoparticles in silica solutions (both a commercial solution and a self-made silica solution were used. The functionalized nanoparticles were used to make nanofluids, in which well-dispersed nanoparticles can keep good stability. One of the unique characteristics of the nanofluids is that no deposition layer forms on the heated surface after a pool boiling process. The nanofluids have applicable prospect in thermal engineering fields with the phase-change heat transfer.

  3. On the self-trapping of an electromagnetic wave in magnetized plasma

    International Nuclear Information System (INIS)

    El-Ashry, M.Y.; Berezhiani, V.I.; Pichkhadze, Sh.D.

    1987-06-01

    The possibility of relativistic self-trapping of an electromagnetic wave in magnetized plasma is studied. It is shown that in the case of propagation of fast wave packet of electromagnetic wave in plasma, self-trapping is possible due to the effect of relativistic non-linearity, which is effective even for small amplitudes of the pumping wave. (author). 7 refs

  4. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory.

    Science.gov (United States)

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter S; Shirley, Eric L; Prendergast, David

    2017-03-03

    Constrained-occupancy delta-self-consistent-field (ΔSCF) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The ΔSCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle ΔSCF approach can be rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.

  5. QCD Phenomenology and Light-Front Wave Functions

    International Nuclear Information System (INIS)

    Brodsky, St.J.

    2001-01-01

    A natural calculus for describing the bound-state structure of relativistic composite systems in quantum field theory is the light-front Fock expansion which encodes the properties of a hadrons in terms of a set of frame-independent n-particle wave functions. Light-front quantization in the doubly-transverse light-cone gauge has a number of remarkable advantages, including explicit unitarity, a physical Fock expansion, the absence of ghost degrees of freedom, and the decoupling properties needed to prove factorization theorems in high momentum transfer inclusive and exclusive reactions. A number of applications are discussed in these lectures, including semileptonic B decays, two-photon exclusive reactions, diffractive dissociation into jets, and deeply virtual Compton scattering. The relation of the intrinsic sea to the light-front wave functions is discussed. Light-front quantization can also be used in the Hamiltonian form to construct an event generator for high energy physics reactions at the amplitude level. The light-cone partition function, summed over exponentially-weighted light-cone energies, has simple boost properties which may be useful for studies in heavy ion collisions. I also review recent work which shows that the structure functions measured in deep inelastic lepton scattering are affected by final-state rescattering, thus modifying their connection to light-front probability distributions. In particular, the shadowing of nuclear structure functions is due to destructive interference effects from leading-twist diffraction of the virtual photon, physics not included in the nuclear light-cone wave functions. (author)

  6. On the full exploitation of symmetry in periodic (as well as molecular) self-consistent-field ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, Roberto, E-mail: roberto.orlando@unito.it; Erba, Alessandro; Dovesi, Roberto [Dipartimento di Chimica, Università di Torino and NIS, Nanostructured Interfaces and Surfaces, Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); De La Pierre, Marco [Dipartimento di Chimica, Università di Torino and NIS, Nanostructured Interfaces and Surfaces, Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Zicovich-Wilson, Claudio M. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, 62209 Cuernavaca (Morelos) (Mexico)

    2014-09-14

    Use of symmetry can dramatically reduce the computational cost (running time and memory allocation) of self-consistent-field ab initio calculations for molecular and crystalline systems. Crucial for running time is symmetry exploitation in the evaluation of one- and two-electron integrals, diagonalization of the Fock matrix at selected points in reciprocal space, reconstruction of the density matrix. As regards memory allocation, full square matrices (overlap, Fock, and density) in the Atomic Orbital (AO) basis are avoided and a direct transformation from the packed AO to the symmetry adapted crystalline orbital basis is performed, so that the largest matrix to be handled has the size of the largest sub-block in the latter basis. Quantitative examples, referring to the implementation in the CRYSTAL code, are given for high symmetry families of compounds such as carbon fullerenes and nanotubes.

  7. Liking for Evaluators: Consistency and Self-Esteem Theories

    Science.gov (United States)

    Regan, Judith Weiner

    1976-01-01

    Consistency and self-esteem theories make contrasting predictions about the relationship between a person's self-evaluation and his liking for an evaluator. Laboratory experiments confirmed predictions about these theories. (Editor/RK)

  8. Reciprocal links among differential parenting, perceived partiality, and self-worth: a three-wave longitudinal study.

    Science.gov (United States)

    Shebloski, Barbara; Conger, Katherine J; Widaman, Keith F

    2005-12-01

    This study examined reciprocal links between parental differential treatment, siblings' perception of partiality, and self-worth with 3 waves of data from 384 adolescent sibling dyads. Results suggest that birth-order status was significantly associated with self-worth and perception of maternal and paternal differential treatment. There was a consistent across-time effect of self-worth on perception of parental partiality for later born siblings, but not earlier born siblings, and a consistent effect of differential treatment on perception of partiality for earlier born but not later born siblings. The results contribute new insight into the associations between perception of differential parenting and adolescents' adjustment and the role of birth order. Copyright 2006 APA, all rights reserved).

  9. FOREWORD: Workshop on Large Amplitude Waves and Fields in Plasmas, sponsored by the Commission of the European Communities

    Science.gov (United States)

    Bingham, R.; De Angelis, U.; Shukla, P. K.; Stenflo, L.

    1990-01-01

    During the last decade considerable progress has been made in the area of nonlinear plasma wave phenomena and their applications. In order to exhibit the present state-of-art in this field, a one-week (22-26 May) workshop on Large Amplitude Waves and Fields was organized at the International Centre for Theoretical Physics (ICTP), Trieste, Italy, during the bi-yearly activity of the Spring College on Plasma Physics (15 May-9 June, 1989). Most of the invited lectures are published in this Topical Issue of Physica Scripta so that scientists working, or who want to enter the field of nonlinear plasma wave theory, can find out what has been achieved and what are the current research trends in this area. The material included here consists of general plasma wave theory, results of computer simulations, and experimental verifications. Without going into any detail, we shall just highlight the topics and the general features of the lectures contained in these proceedings. Various aspects of the excitation, propagation and interaction of nonlinear waves in plasmas are reviewed. Their relevance to plasma-based beat wave accelerators, short pulse laser and particle beam wake-field accelerators, plasma lenses, laser fusion and ionospheric modification experiments is discussed. Some introductory lectures present the general physics of nonlinear plasma waves including the saturation mechanisms and wave breaking conditions for both non-relativistic and relativistic nonlinearities. Three wave and four wave processes which include stimulated Raman, Brillouin and Compton scattering, modulational instabilities, self-focusing and collapse of the waves are discussed, emphasizing the important effects due to the relativistic electron mass variation and ponderomotive force. Detailed numerical studies of the interaction of high frequency plasma waves with low frequency density fluctuations described by the Zakharov equations show the localization of the high frequency field in density

  10. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  11. Functional self-organization in complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, W. (Los Alamos National Lab., NM (USA) Santa Fe Inst., NM (USA))

    1990-01-01

    A novel approach to functional self-organization is presented. It consists of a universe generated by a formal language that defines objects (=programs), their meaning (=functions), and their interactions (=composition). Results obtained so far are briefly discussed. 17 refs., 5 figs.

  12. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. II. Application of the local basis equation.

    Science.gov (United States)

    Ferenczy, György G

    2013-04-05

    The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009, 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self-consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree-Fock-Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self-consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave-function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. Copyright © 2013 Wiley Periodicals, Inc.

  13. Relativistic Scott correction in self-generated magnetic fields

    DEFF Research Database (Denmark)

    Erdos, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    /3}$ and it is unchanged by including the self-generated magnetic field. We prove the first correction term to this energy, the so-called Scott correction of the form $S(\\alpha Z) Z^2$. The current paper extends the result of \\cite{SSS} on the Scott correction for relativistic molecules to include a self......-generated magnetic field. Furthermore, we show that the corresponding Scott correction function $S$, first identified in \\cite{SSS}, is unchanged by including a magnetic field. We also prove new Lieb-Thirring inequalities for the relativistic kinetic energy with magnetic fields....

  14. Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture

    International Nuclear Information System (INIS)

    Yuan Jianmin

    2002-01-01

    An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H 2 O), and CO 2 at a few temperatures and densities are presented

  15. Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture.

    Science.gov (United States)

    Yuan, Jianmin

    2002-10-01

    An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H2O), and CO2 at a few temperatures and densities are presented.

  16. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    OpenAIRE

    O'Boyle, Louise; Elsäßer, Björn; Whittaker, Trevor

    2017-01-01

    Wave energy converters (WECs) inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An ...

  17. Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules.

    Science.gov (United States)

    Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji

    2016-08-18

    Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.

  18. Magnetic field amplification in interstellar collisionless shock waves

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1977-01-01

    It is stated that it is commonly assumed that a simple compression of the magnetic field occurs in interstellar shock waves. Recent space observations of the Earth's bow shock have shown that turbulent amplification of the magnetic field can occur in a collisionless shock. It is shown here that radio observations of Tycho's supernova remnant indicate the presence of a shock wave with such magnetic field amplification. There is at present no theory for the microinstabilities that give rise to turbulent amplification of the magnetic field. Despite the lack of theoretical understanding the possibility of field amplification in interstellar shock waves is here considered. In Tycho's supernova remnant there is evidence for the presence of a collisionless shock, and this is discussed. On the basis of observations of the Earth's bow shock, it is expected that turbulent magnetic field amplification occurs in the shock wave of this remnant, and this is supported by radio observations of the remnant. Consideration is given as to what extent the magnetic field is amplified in the shock wave on the basis of the non-thermal radio flux. (U.K.)

  19. On relation of momenta of structure functions of the composite systems with their simultaneous wave functions

    International Nuclear Information System (INIS)

    Linkevich, A.D.; Savrin, V.I.; Sanadze, V.V.; Skachkov, N.B.

    1984-01-01

    Calculation of hadron structure function (SF) comprising point objects is carried out. The obtained hadron SF is expressed by means of simultaneous relativistic wave functions of a composite particle. Exact calculation of hadron SF momenta in simultaneous formulation of quantum field theory off-energy surface is conducted. The given calculation of hadron SF is shown to result in their dependence on momentum transferred square (or square of total vector of energy-momentum of Compton scattering on a quark) whih is determined by the set of simultaneous hadron wave functions as bound state of quark (partons) in the considered case of non-structural quarks

  20. Twist-2 Light-Cone Pion Wave Function

    OpenAIRE

    Belyaev, V. M.; Johnson, Mikkel B.

    1997-01-01

    We present an analysis of the existing constraints for the twist-2 light-cone pion wave function. We find that existing information on the pion wave function does not exclude the possibility that the pion wave function attains its asymptotic form. New bounds on the parameters of the pion wave function are presented.