DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB).
Gaus, Michael; Cui, Qiang; Elstner, Marcus
2012-04-10
The self-consistent-charge density-functional tight-binding method (SCC-DFTB) is an approximate quantum chemical method derived from density functional theory (DFT) based on a second-order expansion of the DFT total energy around a reference density. In the present study we combine earlier extensions and improve them consistently with, first, an improved Coulomb interaction between atomic partial charges, and second, the complete third-order expansion of the DFT total energy. These modifications lead us to the next generation of the DFTB methodology called DFTB3, which substantially improves the description of charged systems containing elements C, H, N, O, and P, especially regarding hydrogen binding energies and proton affinities. As a result, DFTB3 is particularly applicable to biomolecular systems. Remaining challenges and possible solutions are also briefly discussed.
Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus
2007-10-25
The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.
Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding.
Kowalczyk, Tim; Le, Khoa; Irle, Stephan
2016-01-12
We present an implementation of energies and gradients for the ΔDFTB method, an analogue of Δ-self-consistent-field density functional theory (ΔSCF) within density-functional tight-binding, for the lowest singlet excited state of closed-shell molecules. Benchmarks of ΔDFTB excitation energies, optimized geometries, Stokes shifts, and vibrational frequencies reveal that ΔDFTB provides a qualitatively correct description of changes in molecular geometries and vibrational frequencies due to excited-state relaxation. The accuracy of ΔDFTB Stokes shifts is comparable to that of ΔSCF-DFT, and ΔDFTB performs similarly to ΔSCF with the PBE functional for vertical excitation energies of larger chromophores where the need for efficient excited-state methods is most urgent. We provide some justification for the use of an excited-state reference density in the DFTB expansion of the electronic energy and demonstrate that ΔDFTB preserves many of the properties of its parent ΔSCF approach. This implementation fills an important gap in the extended framework of DFTB, where access to excited states has been limited to the time-dependent linear-response approach, and affords access to rapid exploration of a valuable class of excited-state potential energy surfaces.
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids
International Nuclear Information System (INIS)
Aradi, Balint; Frauenheim, Thomas
2015-01-01
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materials science, chemistry, and biology
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.
Aradi, Bálint; Niklasson, Anders M N; Frauenheim, Thomas
2015-07-14
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. For systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can be applied to a broad range of problems in materials science, chemistry, and biology.
Nishimoto, Yoshio
2015-09-07
We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.
Energy Technology Data Exchange (ETDEWEB)
Lukose, Binit; Supronowicz, Barbara; Kuc, Agnieszka B.; Heine, Thomas [School of Engineering and Science, Jacobs University Bremen (Germany); Petkov, Petko S.; Vayssilov, Georgi N. [Faculty of Chemistry, University of Sofia (Bulgaria); Frenzel, Johannes [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum (Germany); Seifert, Gotthard [Physikalische Chemie, Technische Universitaet Dresden (Germany)
2012-02-15
Density-functional based tight-binding (DFTB) is a powerful method to describe large molecules and materials. Metal-organic frameworks (MOFs), materials with interesting catalytic properties and with very large surface areas, have been developed and have become commercially available. Unit cells of MOFs typically include hundreds of atoms, which make the application of standard density-functional methods computationally very expensive, sometimes even unfeasible. The aim of this paper is to prepare and to validate the self-consistent charge-DFTB (SCC-DFTB) method for MOFs containing Cu, Zn, and Al metal centers. The method has been validated against full hybrid density-functional calculations for model clusters, against gradient corrected density-functional calculations for supercells, and against experiment. Moreover, the modular concept of MOF chemistry has been discussed on the basis of their electronic properties. We concentrate on MOFs comprising three common connector units: copper paddlewheels (HKUST-1), zinc oxide Zn{sub 4}O tetrahedron (MOF-5, MOF-177, DUT-6 (MOF-205)), and aluminum oxide AlO{sub 4}(OH){sub 2} octahedron (MIL-53). We show that SCC-DFTB predicts structural parameters with a very good accuracy (with less than 5% deviation, even for adsorbed CO and H{sub 2}O on HKUST-1), while adsorption energies differ by 12 kJ mol{sup -1} or less for CO and water compared to DFT benchmark calculations. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Directory of Open Access Journals (Sweden)
Ala Aldin M. H. M. Darghouth
2015-12-01
Full Text Available Ionization potentials (IPs and electron affinities (EAs are important quantities input into most models for calculating the open-circuit voltage (Voc of organic solar cells. We assess the semi-empirical density-functional tight-binding (DFTB method with the third-order self-consistent charge (SCC correction and the 3ob parameter set (the third-order DFTB (DFTB3 organic and biochemistry parameter set against experiments (for smaller molecules and against first-principles GW (Green’s function, G, times the screened potential, W calculations (for larger molecules of interest in organic electronics for the calculation of IPs and EAs. Since GW calculations are relatively new for molecules of this size, we have also taken care to validate these calculations against experiments. As expected, DFTB is found to behave very much like density-functional theory (DFT, but with some loss of accuracy in predicting IPs and EAs. For small molecules, the best results were found with ΔSCF (Δ self-consistent field SCC-DFTB calculations for first IPs (good to ± 0.649 eV. When considering several IPs of the same molecule, it is convenient to use the negative of the orbital energies (which we refer to as Koopmans’ theorem (KT IPs as an indication of trends. Linear regression analysis shows that KT SCC-DFTB IPs are nearly as accurate as ΔSCF SCC-DFTB eigenvalues (± 0.852 eV for first IPs, but ± 0.706 eV for all of the IPs considered here for small molecules. For larger molecules, SCC-DFTB was also the ideal choice with IP/EA errors of ± 0.489/0.740 eV from ΔSCF calculations and of ± 0.326/0.458 eV from (KT orbital energies. Interestingly, the linear least squares fit for the KT IPs of the larger molecules also proves to have good predictive value for the lower energy KT IPs of smaller molecules, with significant deviations appearing only for IPs of 15–20 eV or larger. We believe that this quantitative analysis of errors in SCC-DFTB IPs and EAs may be of
Improved Density Functional Tight Binding Potentials for Metalloid Aluminum Clusters
2016-06-01
unlimited IMPROVED DENSITY-FUNCTIONAL TIGHT BINDING POTENTIALS FOR METALLOID ALUMINUM CLUSTERS by Joon H. Kim June 2016 Thesis Advisor...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE IMPROVED DENSITY-FUNCTIONAL TIGHT BINDING POTENTIALS FOR METALLOID ALUMINUM CLUSTERS 5. FUNDING...repulsive potentials for use in density-functional tight binding (DFTB) simulations of low-valence aluminum metalloid clusters . These systems are under
Rapacioli, Mathias; Spiegelman, Fernand; Talbi, Dahbia; Mineva, Tzonka; Goursot, Annick; Heine, Thomas; Seifert, Gotthard
2009-06-01
The density functional based tight binding (DFTB) is a semiempirical method derived from the density functional theory (DFT). It inherits therefore its problems in treating van der Waals clusters. A major error comes from dispersion forces, which are poorly described by commonly used DFT functionals, but which can be accounted for by an a posteriori treatment DFT-D. This correction is used for DFTB. The self-consistent charge (SCC) DFTB is built on Mulliken charges which are known to give a poor representation of Coulombic intermolecular potential. We propose to calculate this potential using the class IV/charge model 3 definition of atomic charges. The self-consistent calculation of these charges is introduced in the SCC procedure and corresponding nuclear forces are derived. Benzene dimer is then studied as a benchmark system with this corrected DFTB (c-DFTB-D) method, but also, for comparison, with the DFT-D. Both methods give similar results and are in agreement with references calculations (CCSD(T) and symmetry adapted perturbation theory) calculations. As a first application, pyrene dimer is studied with the c-DFTB-D and DFT-D methods. For coronene clusters, only the c-DFTB-D approach is used, which finds the sandwich configurations to be more stable than the T-shaped ones.
Origin of the Surface-Induced First Hyperpolarizability in the C60/SiO2 System: SCC-DFTB Insight.
Nénon, Sébastien; Champagne, Benoît
2014-01-02
Using the self-consistent charge density functional tight binding (SCC-DFTB) method, C60 molecules physisorbed on an α-quartz slab are shown to display a first hyperpolarizability, whereas, owing to their symmetry, both the α-quartz slab and C60 molecule have no first hyperpolarizabilities. A larger first hyperpolarizability is achieved when the lowest-lying (five- or six-membered) ring is situated in between two hydroxyl rows, rather than on top, because this situation favors orbital overlaps and charge transfer. Further analysis has demonstrated that (i) the first hyperpolarizability originates from the MO overlap and field-induced charge transfers from the neighboring substrate/adsorbate moieties but not to geometric relaxation of the C60 molecules at the interface and that (ii) larger first hyperpolarizabilities are associated with low surface coverage and with small distances between C60 and the surface. This contribution is a clear illustration of the emergence of second-order nonlinear optical responses (first hyperpolarizability) as a result of breaking the centrosymmetry.
Energy Technology Data Exchange (ETDEWEB)
Zobelli, Alberto [Laboratoire de Physique des Solides, Univ. Paris Sud, CNRS UMR, Orsay (France); Ivanovskaya, Viktoria; Wagner, Philipp; Yaya, Abu; Ewels, Chris P. [Institut des Materiaux Jean Rouxel (IMN), CNRS UMR, University of Nantes (France); Suarez-Martinez, Irene [Nanochemistry Research Institute, Curtin University of Technology, Perth, Western Australia (Australia)
2012-02-15
The density functional tight binding approach (DFTB) is well adapted for the study of point and line defects in graphene based systems. After briefly reviewing the use of DFTB in this area, we present a comparative study of defect structures, energies, and dynamics between DFTB results obtained using the dftb+ code, and density functional results using the localized Gaussian orbital code, AIMPRO. DFTB accurately reproduces structures and energies for a range of point defect structures such as vacancies and Stone-Wales defects in graphene, as well as various unfunctionalized and hydroxylated graphene sheet edges. Migration barriers for the vacancy and Stone-Wales defect formation barriers are accurately reproduced using a nudged elastic band approach. Finally we explore the potential for dynamic defect simulations using DFTB, taking as an example electron irradiation damage in graphene. DFTB-MD derived sputtering energy threshold map for a carbon atom in a graphene plane. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Assessment of the Density Functional Tight Binding Method for Protic Ionic Liquids.
Addicoat, Matthew A; Stefanovic, Ryan; Webber, Grant B; Atkin, Rob; Page, Alister J
2014-10-14
Density functional tight binding (DFTB), which is ∼100-1000 times faster than full density functional theory (DFT), has been used to simulate the structure and properties of protic ionic liquid (IL) ions, clusters of ions and the bulk liquid. Proton affinities for a wide range of IL cations and anions determined using DFTB generally reproduce G3B3 values to within 5-10 kcal/mol. The structures and thermodynamic stabilities of n -alkyl ammonium nitrate clusters (up to 450 quantum chemical atoms) predicted with DFTB are in excellent agreement with those determined using DFT. The IL bulk structure simulated using DFTB with periodic boundary conditions is in excellent agreement with published neutron diffraction data.
Efficient self-consistency for magnetic tight binding
Soin, Preetma; Horsfield, A. P.; Nguyen-Manh, D.
2011-06-01
Tight binding can be extended to magnetic systems by including an exchange interaction on an atomic site that favours net spin polarisation. We have used a published model, extended to include long-ranged Coulomb interactions, to study defects in iron. We have found that achieving self-consistency using conventional techniques was either unstable or very slow. By formulating the problem of achieving charge and spin self-consistency as a search for stationary points of a Harris-Foulkes functional, extended to include spin, we have derived a much more efficient scheme based on a Newton-Raphson procedure. We demonstrate the capabilities of our method by looking at vacancies and self-interstitials in iron. Self-consistency can indeed be achieved in a more efficient and stable manner, but care needs to be taken to manage this. The algorithm is implemented in the code PLATO. Program summaryProgram title:PLATO Catalogue identifier: AEFC_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFC_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 228 747 No. of bytes in distributed program, including test data, etc.: 1 880 369 Distribution format: tar.gz Programming language: C and PERL Computer: Apple Macintosh, PC, Unix machines Operating system: Unix, Linux, Mac OS X, Windows XP Has the code been vectorised or parallelised?: Yes. Up to 256 processors tested RAM: Up to 2 Gbytes per processor Classification: 7.3 External routines: LAPACK, BLAS and optionally ScaLAPACK, BLACS, PBLAS, FFTW Catalogue identifier of previous version: AEFC_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2616 Does the new version supersede the previous version?: Yes Nature of problem: Achieving charge and spin self-consistency in magnetic tight binding can be very
DEFF Research Database (Denmark)
Jalkanen, Karl J.; Frimand, Kenneth
2002-01-01
-binding method for equilibrium structures, VA and VCD spectra of ethylene oxide and propylene oxide in the gas-phase. Comparison to conventional methods AM1, PM3, MP2, RHF and DFT/B3LYP is carried out. We report results over a wider range of frequencies than previous work. In particular, we find indications...... that the self-consistent-charge tight-binding method, combined with DFT/B3LYP atomic polar tensors and atomic axial tensors, compares favourably with competing methods tendency to overestimate the location of spectral peaks with respect to frequencies, the latter observation being most pronounced in the higher...... frequency regions. Our findings produce additional support for the self-consistent-charge tight-binding method as a fast computational method for small and larger molecules, however, also that improved parameterisations are needed to reach accuracies of MP2 and DFT/B3LYP. (C) 2002 Elsevier Science B.V. All...
Ruger, R.; Niehaus, T.; van Lenthe, E.; Heine, T.; Visscher, L.
2016-01-01
We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nu- clear wavefunction.
Mortazavi, Majid; Brandenburg, Jan Gerit; Maurer, Reinhard J; Tkatchenko, Alexandre
2018-01-18
Accurate prediction of structure and stability of molecular crystals is crucial in materials science and requires reliable modeling of long-range dispersion interactions. Semiempirical electronic structure methods are computationally more efficient than their ab initio counterparts, allowing structure sampling with significant speedups. We combine the Tkatchenko-Scheffler van der Waals method (TS) and the many-body dispersion method (MBD) with third-order density functional tight-binding (DFTB3) via a charge population-based method. We find an overall good performance for the X23 benchmark database of molecular crystals, despite an underestimation of crystal volume that can be traced to the DFTB parametrization. We achieve accurate lattice energy predictions with DFT+MBD energetics on top of vdW-inclusive DFTB3 structures, resulting in a speedup of up to 3000 times compared with a full DFT treatment. This suggests that vdW-inclusive DFTB3 can serve as a viable structural prescreening tool in crystal structure prediction.
Description of Non-Covalent Interactions in SCC-DFTB Methods
Czech Academy of Sciences Publication Activity Database
Miriyala, Vijay Madhav; Řezáč, Jan
2017-01-01
Roč. 38, č. 10 (2017), s. 688-697 ISSN 0192-8651 R&D Projects: GA ČR(CZ) GJ16-11321Y Institutional support: RVO:61388963 Keywords : density functional tight binding * DFTB3 * non- covalent interactions * dispersion correction * hydrogen bonding correction Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.229, year: 2016
Nishimoto, Yoshio; Fedorov, Dmitri G.
2018-02-01
The exactly analytic gradient is derived and implemented for the fragment molecular orbital (FMO) method combined with density-functional tight-binding (DFTB) using adaptive frozen orbitals. The response contributions which arise from freezing detached molecular orbitals on the border between fragments are computed by solving Z-vector equations. The accuracy of the energy, its gradient, and optimized structures is verified on a set of representative inorganic materials and polypeptides. FMO-DFTB is applied to optimize the structure of a silicon nano-wire, and the results are compared to those of density functional theory and experiment. FMO accelerates the DFTB calculation of a boron nitride nano-ring with 7872 atoms by a factor of 406. Molecular dynamics simulations using FMO-DFTB applied to a 10.7 μm chain of boron nitride nano-rings, consisting of about 1.2 × 106 atoms, reveal the rippling and twisting of nano-rings at room temperature.
Kroonblawd, Matthew; Goldman, Nir
First principles molecular dynamics using highly accurate density functional theory (DFT) is a common tool for predicting chemistry, but the accessible time and space scales are often orders of magnitude beyond the resolution of experiments. Semi-empirical methods such as density functional tight binding (DFTB) offer up to a thousand-fold reduction in required CPU hours and can approach experimental scales. However, standard DFTB parameter sets lack good transferability and calibration for a particular system is usually necessary. Force matching the pairwise repulsive energy term in DFTB to short DFT trajectories can improve the former's accuracy for chemistry that is fast relative to DFT simulation times (Contract DE-AC52-07NA27344.
Kroonblawd, Matthew; Goldman, Nir
2017-06-01
First principles molecular dynamics using highly accurate density functional theory (DFT) is a common tool for predicting chemistry, but the accessible time and space scales are often orders of magnitude beyond the resolution of experiments. Semi-empirical methods such as density functional tight binding (DFTB) offer up to a thousand-fold reduction in required CPU hours and can approach experimental scales. However, standard DFTB parameter sets lack good transferability and calibration for a particular system is usually necessary. Force matching the pairwise repulsive energy term in DFTB to short DFT trajectories can improve the former's accuracy for reactions that are fast relative to DFT simulation times (Contract DE-AC52-07NA27344.
Proton transfer along water bridges in biological systems with density-functional tight-binding
Reiss, Krystle; Wise, Abigail; Mazzuca, James
2015-03-01
When examining the dynamics of charge transfer in high dimensional enzymatic systems, the cost of quantum mechanical treatment of electrons increases exponentially with the size of the system. As a semi-empirical method, density-functional tight-binding aids in shortening these calculation times, but can be inaccurate in the regime where bonds are being formed and broken. To address these inaccuracies with respect to proton transfer in an enzymatic system, DFTB is being used to calculate small model systems containing only a single amino acid residue donor, represented by an imidazole molecule, and a water acceptor. When DFTB calculations are compared to B3LYP geometry calculations of the donor molecule, we observe a bond angle error on the order of 1.2 degrees and a bond length error on the order of 0.011 Å. As we move forward with small donor-acceptor systems, comparisons between DFTB and B3LYP energy profiles will provide a better clue as to what extent improvements need to be made. To improve the accuracy of the DFTB calculations, the internuclear repulsion term may be altered. This would result in energy profiles that closely resemble those produced by higher-level theory. Alma College Provost's Office.
Fujiwara, Takeo; Nishino, Shinya; Yamamoto, Susumu; Suzuki, Takashi; Ikeda, Minoru; Ohtani, Yasuaki
2018-06-01
A novel tight-binding method is developed, based on the extended Hückel approximation and charge self-consistency, with referring the band structure and the total energy of the local density approximation of the density functional theory. The parameters are so adjusted by computer that the result reproduces the band structure and the total energy, and the algorithm for determining parameters is established. The set of determined parameters is applicable to a variety of crystalline compounds and change of lattice constants, and, in other words, it is transferable. Examples are demonstrated for Si crystals of several crystalline structures varying lattice constants. Since the set of parameters is transferable, the present tight-binding method may be applicable also to molecular dynamics simulations of large-scale systems and long-time dynamical processes.
Self-consistent tight-binding model of B and N doping in graphene
DEFF Research Database (Denmark)
Pedersen, Thomas Garm; Pedersen, Jesper Goor
2013-01-01
. The impurity potential depends sensitively on the impurity occupancy, leading to a self-consistency requirement. We solve this problem using the impurity Green's function and determine the self-consistent local density of states at the impurity site and, thereby, identify acceptor and donor energy resonances.......Boron and nitrogen substitutional impurities in graphene are analyzed using a self-consistent tight-binding approach. An analytical result for the impurity Green's function is derived taking broken electron-hole symmetry into account and validated by comparison to numerical diagonalization...
Energy Technology Data Exchange (ETDEWEB)
Rüger, Robert, E-mail: rueger@scm.com [Scientific Computing & Modelling NV, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig (Germany); Lenthe, Erik van [Scientific Computing & Modelling NV, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Heine, Thomas [Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig (Germany); Visscher, Lucas [Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)
2016-05-14
We propose a new method of calculating electronically excited states that combines a density functional theory based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed time-dependent density functional theory TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive TD-DFT calculations. Errors in vertical excitation energies are reduced by a factor of two compared to TD-DFTB.
Rajbanshi, Biplab; Kar, Moumita; Sarkar, Pallavi; Sarkar, Pranab
2017-10-01
Using the self-consistent charge density-functional based tight-binding (SCC-DFTB) method, coupled with time-dependent density functional theory (TDDFT) calculations, for the first time we explore the possibility of use of phosphorene quantum dots in solar energy harvesting devices. The phosphorene quantum dots-fullerene (PQDs-PCBA) nanocomposites show type-II band alignment indicating spatial separation of charge carriers. The TDDFT calculations also show that the PQD-fullerene nanocomposites seem to be exciting material for future generation solar energy harvester, with extremely fast charge transfer and very poor recombination rate.
Gruden, Maja; Andjeklović, Ljubica; Jissy, Akkarapattiakal Kuriappan; Stepanović, Stepan; Zlatar, Matija; Cui, Qiang; Elstner, Marcus
2017-09-30
Density Functional Tight Binding (DFTB) models are two to three orders of magnitude faster than ab initio and Density Functional Theory (DFT) methods and therefore are particularly attractive in applications to large molecules and condensed phase systems. To establish the applicability of DFTB models to general chemical reactions, we conduct benchmark calculations for barrier heights and reaction energetics of organic molecules using existing databases and several new ones compiled in this study. Structures for the transition states and stable species have been fully optimized at the DFTB level, making it possible to characterize the reliability of DFTB models in a more thorough fashion compared to conducting single point energy calculations as done in previous benchmark studies. The encouraging results for the diverse sets of reactions studied here suggest that DFTB models, especially the most recent third-order version (DFTB3/3OB augmented with dispersion correction), in most cases provide satisfactory description of organic chemical reactions with accuracy almost comparable to popular DFT methods with large basis sets, although larger errors are also seen for certain cases. Therefore, DFTB models can be effective for mechanistic analysis (e.g., transition state search) of large (bio)molecules, especially when coupled with single point energy calculations at higher levels of theory. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Nicholas Capel
2015-11-01
Full Text Available We present a comparative dispersion-corrected Density Functional Theory (DFT and Density Functional Tight Binding (DFTB-D study of several phases of nitrogen, including the well-known alpha, beta, and gamma phases as well as recently discovered highly energetic phases: covalently bound cubic gauche (cg nitrogen and molecular (vdW-bound N8 crystals. Among several tested parametrizations of N–N interactions for DFTB, we identify only one that is suitable for modeling of all these phases. This work therefore establishes the applicability of DFTB-D to studies of phases, including highly metastable phases, of nitrogen, which will be of great use for modelling of dynamics of reactions involving these phases, which may not be practical with DFT due to large required space and time scales. We also derive a dispersion-corrected DFT (DFT-D setup (atom-centered basis parameters and Grimme dispersion parameters tuned for accurate description simultaneously of several nitrogen allotropes including covalently and vdW-bound crystals and including high-energy phases.
Scemama, Anthony; Renon, Nicolas; Rapacioli, Mathias
2014-06-10
We present an algorithm and its parallel implementation for solving a self-consistent problem as encountered in Hartree-Fock or density functional theory. The algorithm takes advantage of the sparsity of matrices through the use of local molecular orbitals. The implementation allows one to exploit efficiently modern symmetric multiprocessing (SMP) computer architectures. As a first application, the algorithm is used within the density-functional-based tight binding method, for which most of the computational time is spent in the linear algebra routines (diagonalization of the Fock/Kohn-Sham matrix). We show that with this algorithm (i) single point calculations on very large systems (millions of atoms) can be performed on large SMP machines, (ii) calculations involving intermediate size systems (1000-100 000 atoms) are also strongly accelerated and can run efficiently on standard servers, and (iii) the error on the total energy due to the use of a cutoff in the molecular orbital coefficients can be controlled such that it remains smaller than the SCF convergence criterion.
Li, L. L.; Partoens, B.; Peeters, F. M.
2018-04-01
By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.
Yen, Tsung-Wen; Lim, Thong-Leng; Yoon, Tiem-Leong; Lai, S. K.
2017-11-01
We combined a new parametrized density functional tight-binding (DFTB) theory (Fihey et al. 2015) with an unbiased modified basin hopping (MBH) optimization algorithm (Yen and Lai 2015) and applied it to calculate the lowest energy structures of Au clusters. From the calculated topologies and their conformational changes, we find that this DFTB/MBH method is a necessary procedure for a systematic study of the structural development of Au clusters but is somewhat insufficient for a quantitative study. As a result, we propose an extended hybridized algorithm. This improved algorithm proceeds in two steps. In the first step, the DFTB theory is employed to calculate the total energy of the cluster and this step (through running DFTB/MBH optimization for given Monte-Carlo steps) is meant to efficiently bring the Au cluster near to the region of the lowest energy minimum since the cluster as a whole has explicitly considered the interactions of valence electrons with ions, albeit semi-quantitatively. Then, in the second succeeding step, the energy-minimum searching process will continue with a skilledly replacement of the energy function calculated by the DFTB theory in the first step by one calculated in the full density functional theory (DFT). In these subsequent calculations, we couple the DFT energy also with the MBH strategy and proceed with the DFT/MBH optimization until the lowest energy value is found. We checked that this extended hybridized algorithm successfully predicts the twisted pyramidal structure for the Au40 cluster and correctly confirms also the linear shape of C8 which our previous DFTB/MBH method failed to do so. Perhaps more remarkable is the topological growth of Aun: it changes from a planar (n =3-11) → an oblate-like cage (n =12-15) → a hollow-shape cage (n =16-18) and finally a pyramidal-like cage (n =19, 20). These varied forms of the cluster's shapes are consistent with those reported in the literature.
Nishizawa, Hiroaki; Nishimura, Yoshifumi; Kobayashi, Masato; Irle, Stephan; Nakai, Hiromi
2016-08-05
The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively parallel program that achieves on-the-fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC-DFTB potential energy surface are implemented to the program called DC-DFTB-K. A novel interpolation-based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC-DFTB-K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC-DFTB-K program, a single-point energy gradient calculation of a one-million-atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Energy Technology Data Exchange (ETDEWEB)
Hourahine, B [Department of Physics, SUPA, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom); Aradi, B; Frauenheim, T, E-mail: benjamin.hourahine@strath.ac.u [BCCMS, Universitaet Bremen, Am Fallturm 1, 28359 Bremen (Germany)
2010-07-01
DFTB{sup +} is a recent general purpose implementation of density-functional based tight binding. One of the early motivators to develop this code was to investigate lanthanide impurities in nitride semiconductors, leading to a series of successful studies into structure and electrical properties of these systems. Here we describe our general framework to treat the physical effects needed for these problematic impurities within a tight-binding formalism, additionally discussing forces and stresses in DFTB. We also present an approach to evaluate the general case of Slater-Koster transforms and all of their derivatives in Cartesian coordinates. These developments are illustrated by simulating isolated Gd impurities in GaN.
Tight binding simulation study on zigzag single-walled carbon nanotubes
Sharma, Deepa; Jaggi, Neena; Gupta, Vishu
2018-01-01
Tight binding simulation studies using the density functional tight binding (DFTB) model have been performed on various zigzag single-walled carbon-nanotubes (SWCNTs) to investigate their electronic properties using DFTB module of the Material Studio Software version 7.0. Various combinations of different eigen-solvers and charge mixing schemes available in the DFTB Module have been tried to chalk out the electronic structure. The analytically deduced values of the bandgap of (9, 0) SWCNT were compared with the experimentally determined value reported in the literature. On comparison, it was found that the tight binding approximations tend to drastically underestimate the bandgap values. However, the combination of Anderson charge mixing method with standard eigensolver when implemented using the smart algorithm was found to produce fairly close results. These optimized model parameters were then used to determine the band structures of various zigzag SWCNTs. (9, 0) Single-walled Nanotube which is extensively being used for sensing NH3, CH4 and NO2 has been picked up as a reference material since its experimental bandgap value has been reported in the literature. It has been found to exhibit a finite energy bandgap in contrast to its expected metallic nature. The study is of utmost significance as it not only probes and validates the simulation route for predicting suitable properties of nanomaterials but also throws light on the comparative efficacy of the different approximation and rationalization quantum mechanical techniques used in simulation studies. Such simulation studies if used intelligently prove to be immensely useful to the material scientists as they not only save time and effort but also pave the way to new experiments by making valuable predictions.
Energy Technology Data Exchange (ETDEWEB)
Holthaus, Svea große; Köppen, Susan, E-mail: koeppen@hmi.uni-bremen.de; Frauenheim, Thomas; Ciacchi, Lucio Colombi [Bremen Centre for Computational Materials Science, University of Bremen, 28359 Bremen (Germany)
2014-06-21
We investigate the adsorption behavior of four different amino acids (glutamine, glutamate, serine, cysteine) on the zinc oxide (101{sup ¯}0) surface, comparing the geometry and energy associated with a number of different adsorption configurations. In doing this, we highlight the benefits and limits of using density-functional tight-binding (DFTB) with respect to standard density functional theory (DFT). The DFTB method is found to reliably reproduce the DFT adsorption geometries. Analysis of the adsorption configurations emphasizes the fundamental role of the first hydration layer in mediating the interactions between the amino acids and the surface. Direct surface-molecule bonds are found to form predominantly via the carboxylate groups of the studied amino acids. No surface-mediated chemical reactions are observed, with the notable exception of a proton transfer from the thiol group of cysteine to a hydroxyl group of the surface hydration layer. The adsorption energies are found to be dominated both by the formation of direct or indirect surface-molecule hydrogen bonds, but also by the rearrangement of the hydrogen-bond network in surface proximity in a non-intuitive way. Energetic comparisons between DFTB and DFT are made difficult on one side by the long time necessary to achieve convergence of potential energy values in MD simulations and on the other side by the necessity of including higher-order corrections to DFTB to obtain a good description of the hydrogen bond energetics. Overall, our results suggest that DFTB is a good reference method to set the correct chemical states and the initial geometries of hybrid biomolecule/ZnO systems to be simulated with non-reactive force fields.
grosse Holthaus, Svea; Köppen, Susan; Frauenheim, Thomas; Ciacchi, Lucio Colombi
2014-06-21
We investigate the adsorption behavior of four different amino acids (glutamine, glutamate, serine, cysteine) on the zinc oxide (101̄0) surface, comparing the geometry and energy associated with a number of different adsorption configurations. In doing this, we highlight the benefits and limits of using density-functional tight-binding (DFTB) with respect to standard density functional theory (DFT). The DFTB method is found to reliably reproduce the DFT adsorption geometries. Analysis of the adsorption configurations emphasizes the fundamental role of the first hydration layer in mediating the interactions between the amino acids and the surface. Direct surface-molecule bonds are found to form predominantly via the carboxylate groups of the studied amino acids. No surface-mediated chemical reactions are observed, with the notable exception of a proton transfer from the thiol group of cysteine to a hydroxyl group of the surface hydration layer. The adsorption energies are found to be dominated both by the formation of direct or indirect surface-molecule hydrogen bonds, but also by the rearrangement of the hydrogen-bond network in surface proximity in a non-intuitive way. Energetic comparisons between DFTB and DFT are made difficult on one side by the long time necessary to achieve convergence of potential energy values in MD simulations and on the other side by the necessity of including higher-order corrections to DFTB to obtain a good description of the hydrogen bond energetics. Overall, our results suggest that DFTB is a good reference method to set the correct chemical states and the initial geometries of hybrid biomolecule/ZnO systems to be simulated with non-reactive force fields.
Energy Technology Data Exchange (ETDEWEB)
Christensen, Anders S., E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Cui, Qiang, E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706 (United States); Elstner, Marcus [Theoretische Chemische Biologie, Universität Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe (Germany)
2015-08-28
Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets.
Extended Lagrangian formulation of charge-constrained tight-binding molecular dynamics.
Cawkwell, M J; Coe, J D; Yadav, S K; Liu, X-Y; Niklasson, A M N
2015-06-09
The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated.
Automatized Parameterization of DFTB Using Particle Swarm Optimization.
Chou, Chien-Pin; Nishimura, Yoshifumi; Fan, Chin-Chai; Mazur, Grzegorz; Irle, Stephan; Witek, Henryk A
2016-01-12
We present a novel density-functional tight-binding (DFTB) parametrization toolkit developed to optimize the parameters of various DFTB models in a fully automatized fashion. The main features of the algorithm, based on the particle swarm optimization technique, are discussed, and a number of initial pilot applications of the developed methodology to molecular and solid systems are presented.
Kar, J. K.; Panda, Saswati; Rout, G. C.
2017-05-01
We propose here a tight binding model study of the interplay between charge and spin orderings in the CMR manganites taking anisotropic effect due to electron hoppings and spin exchanges. The Hamiltonian consists of the kinetic energies of eg and t2g electrons of manganese ion. It further includes double exchange and Heisenberg interactions. The charge density wave interaction (CDW) describes an extra mechanism for the insulating character of the system. The CDW gap and spin parameters are calculated using Zubarev's Green's function technique and computed self-consistently. The results are reported in this communication.
Simon, Aude; Rapacioli, Mathias; Mascetti, Joëlle; Spiegelman, Fernand
2012-05-21
This paper reports structures, energetics, dynamics and spectroscopy of H2O and (H2O)2 systems adsorbed on coronene (C24H12), a compact polycyclic aromatic hydrocarbon (PAH). On-the-fly Born-Oppenheimer molecular dynamics simulations are performed for temperatures T varying from 10 to 300 K, on a potential energy surface obtained within the self-consistent-charge density-functional based tight-binding (SCC-DFTB) approach. Anharmonic infrared (IR) spectra are extracted from these simulations. We first benchmark the SCC-DFTB semi-empirical hamiltonian vs. DFT (Density Functional Theory) calculations that include dispersion, on (C6H6)(H2O)1,2 small complexes. We find that charge corrections and inclusion of dispersion contributions in DFTB are necessary to obtain consistent structures, energetics and IR spectra. Using this Hamiltonian, the structures, energetics and IR features of the low-energy isomers of (C24H12)(H2O)1,2 are found to be similar to the DFT ones, with evidence for a stabilizing edge-coordination. The temperature dependence of the motions of H2O and (H2O)2 on the surface of C24H12 is analysed, revealing ultra-fast periodic motion. The water dimer starts diffusing at a higher temperature than the water monomer (150 K vs. 10 K respectively), which appears to be consistent with the binding energies. Qualitative and quantitative analyses of the effects of T on the IR spectra are performed. Anharmonic factors in particular are derived and it is shown that they can be used as signatures for the presence of PAH-water complexes. Finally, this paper lays the foundations for the studies of larger (PAH)m(H2O)n clusters, that can be treated with the efficient computational approach benchmarked in this paper.
Communication: Photoinduced carbon dioxide binding with surface-functionalized silicon quantum dots
Douglas-Gallardo, Oscar A.; Sánchez, Cristián Gabriel; Vöhringer-Martinez, Esteban
2018-04-01
Nowadays, the search for efficient methods able to reduce the high atmospheric carbon dioxide concentration has turned into a very dynamic research area. Several environmental problems have been closely associated with the high atmospheric level of this greenhouse gas. Here, a novel system based on the use of surface-functionalized silicon quantum dots (sf-SiQDs) is theoretically proposed as a versatile device to bind carbon dioxide. Within this approach, carbon dioxide trapping is modulated by a photoinduced charge redistribution between the capping molecule and the silicon quantum dots (SiQDs). The chemical and electronic properties of the proposed SiQDs have been studied with a Density Functional Theory and Density Functional Tight-Binding (DFTB) approach along with a time-dependent model based on the DFTB framework. To the best of our knowledge, this is the first report that proposes and explores the potential application of a versatile and friendly device based on the use of sf-SiQDs for photochemically activated carbon dioxide fixation.
Jahangiri, Soran; Mosey, Nicholas J.
2018-01-01
Nickel hydroxide is a material composed of two-dimensional layers that can be rolled up to form cylindrical nanotubes belonging to a class of inorganic metal hydroxide nanotubes that are candidates for applications in catalysis, energy storage, and microelectronics. The stabilities and other properties of this class of inorganic nanotubes have not yet been investigated in detail. The present study uses self-consistent-charge density-functional tight-binding calculations to examine the stabilities, mechanical properties, and electronic properties of nickel hydroxide nanotubes along with the energetics associated with the adsorption of water by these systems. The tight-binding model was parametrized for this system based on the results of first-principles calculations. The stabilities of the nanotubes were examined by calculating strain energies and performing molecular dynamics simulations. The results indicate that single-walled nickel hydroxide nanotubes are stable at room temperature, which is consistent with experimental investigations. The nanotubes possess size-dependent mechanical properties that are similar in magnitude to those of other inorganic nanotubes. The electronic properties of the nanotubes were also found to be size-dependent and small nickel oxyhydroxide nanotubes are predicted to be semiconductors. Despite this size-dependence, both the mechanical and electronic properties were found to be almost independent of the helical structure of the nanotubes. The calculations also show that water molecules have higher adsorption energies when binding to the interior of the nickel hydroxide nanotubes when compared to adsorption in nanotubes formed from other two-dimensional materials such as graphene. The increased adsorption energy is due to the hydrophilic nature of nickel hydroxide. Due to the broad applications of nickel hydroxide, the nanotubes investigated here are also expected to be used in catalysis, electronics, and clean energy production.
Bulk and interface dielectric functions: New results within the tight-binding approximation
International Nuclear Information System (INIS)
Elvira, V.D.; Duran, J.C.
1991-01-01
A tight-binding approach is used to analyze the dielectric behaviour of bulk semiconductors and semiconductor interfaces. This time interactions between second nearest neighbours are taken into account and several electrostatic models are proposed for the induced charge density around the atoms. The bulk dielectric function of different semiconductors (Si, Ge, GaAs and AlAs) are obtained and compared with other theoretical and experimental results. Finally, the energy band offset for GaAs-AlAs(1,0,0) interface is obtained and related to bulk properties of both semiconductors. The results presented in this paper show how the use of very simple but more realistic electrostatic models improve the analysis of the screening properties in semiconductors, giving a new support to the consistent tight-binding method for studying characteristics related to those properties. (Author)
Rare earth point defects in GaN
Energy Technology Data Exchange (ETDEWEB)
Sanna, S.
2007-12-14
In this work we investigate rare earth doped GaN, by means of theoretical simulations. The huge unit cells necessary to model the experimental system, where dilute amount of rare earth ions are used, are handled with the charge self consistent density-functional based-tight binding (SCC-DFTB) calculational scheme. The method has been extended to include LDA+U and simplified self interaction corrected (SIC)-like potentials for the simulation of systems with localised and strongly correlated electrons. A set of tight-binding parameters has been created to model the interaction of GaN with some dopants, including a selection of lanthanide ions interesting due to their optical or magnetic properties (Pr, Eu, Gd, Er and Tm). The f-electrons were treated as valence electrons. A qualitatively correct description of the band gap is crucial for the simulation of rare earth doped GaN, because the luminescence intensity of the implanted samples depends on the size of the host band gap and because the rare earths could introduce charge transition levels near the conduction band. In this work these levels are calculated with the Slater-Janak (SJ) transition state model, which allows an approximate calculation of the charge transition levels by analysing the Kohn-Sham eigenvalues of the DFT. (orig.)
Panda, Rudrashish; Sahu, Sivabrata; Rout, G. C.
2017-05-01
We communicate here a tight binding theoretical model study of the band filling effect on the charge gap in graphene-on-substrate. The Hamiltonian consists of nearest neighbor electron hopping and substrate induced gap. Besides this the Coulomb interaction is considered here within mean-field approximation in the paramagnetic limit. The electron occupancies at two sublattices are calculated by Green's function technique and are solved self consistently. Finally the charge gap i.e. Δ ¯=U [ - ] is calculated and computed numerically. The results are reported.
DEFF Research Database (Denmark)
Abdali, Salim; Niehaus, T.A.; Jalkanen, Karl J.
2003-01-01
. Ab initio (DFT at the B3LYP/6-31G* level of theory) and semi-empirical (SCC-DFTB) with and without dispersion correction were applied to simulate the VA spectra of [Leu] enkephalin. In these calculations structures taken from X-ray measurements for different conformers of the molecule were used...
Empirical Self-Consistent Correction for the Description of Hydrogen Bonds in DFTB3
Czech Academy of Sciences Publication Activity Database
Řezáč, Jan
2017-01-01
Roč. 13, č. 10 (2017), s. 4804-4817 ISSN 1549-9618 R&D Projects: GA ČR(CZ) GJ16-11321Y Institutional support: RVO:61388963 Keywords : density functional theory * tight-binding method * including dispersion corrections Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 5.245, year: 2016
Takanashi, Tsukasa; Nakamura, Kosuke; Kukk, Edwin; Motomura, Koji; Fukuzawa, Hironobu; Nagaya, Kiyonobu; Wada, Shin-Ichi; Kumagai, Yoshiaki; Iablonskyi, Denys; Ito, Yuta; Sakakibara, Yuta; You, Daehyun; Nishiyama, Toshiyuki; Asa, Kazuki; Sato, Yuhiro; Umemoto, Takayuki; Kariyazono, Kango; Ochiai, Kohei; Kanno, Manabu; Yamazaki, Kaoru; Kooser, Kuno; Nicolas, Christophe; Miron, Catalin; Asavei, Theodor; Neagu, Liviu; Schöffler, Markus; Kastirke, Gregor; Liu, Xiao-Jing; Rudenko, Artem; Owada, Shigeki; Katayama, Tetsuo; Togashi, Tadashi; Tono, Kensuke; Yabashi, Makina; Kono, Hirohiko; Ueda, Kiyoshi
2017-08-02
Coulomb explosion of diiodomethane CH 2 I 2 molecules irradiated by ultrashort and intense X-ray pulses from SACLA, the Japanese X-ray free electron laser facility, was investigated by multi-ion coincidence measurements and self-consistent charge density-functional-based tight-binding (SCC-DFTB) simulations. The diiodomethane molecule, containing two heavy-atom X-ray absorbing sites, exhibits a rather different charge generation and nuclear motion dynamics compared to iodomethane CH 3 I with only a single heavy atom, as studied earlier. We focus on charge creation and distribution in CH 2 I 2 in comparison to CH 3 I. The release of kinetic energy into atomic ion fragments is also studied by comparing SCC-DFTB simulations with the experiment. Compared to earlier simulations, several key enhancements are made, such as the introduction of a bond axis recoil model, where vibrational energy generated during charge creation processes induces only bond stretching or shrinking. We also propose an analytical Coulomb energy partition model to extract the essential mechanism of Coulomb explosion of molecules from the computed and the experimentally measured kinetic energies of fragment atomic ions by partitioning each pair Coulomb interaction energy into two ions of the pair under the constraint of momentum conservation. Effective internuclear distances assigned to individual fragment ions at the critical moment of the Coulomb explosion are then estimated from the average kinetic energies of the ions. We demonstrate, with good agreement between the experiment and the SCC-DFTB simulation, how the more heavily charged iodine fragments and their interplay define the characteristic features of the Coulomb explosion of CH 2 I 2 . The present study also confirms earlier findings concerning the magnitude of bond elongation in the ultrashort X-ray pulse duration, showing that structural damage to all but C-H bonds does not develop to a noticeable degree in the pulse length of ∼10
DFTB Parameters for the Periodic Table: Part 1, Electronic Structure.
Wahiduzzaman, Mohammad; Oliveira, Augusto F; Philipsen, Pier; Zhechkov, Lyuben; van Lenthe, Erik; Witek, Henryk A; Heine, Thomas
2013-09-10
A parametrization scheme for the electronic part of the density-functional based tight-binding (DFTB) method that covers the periodic table is presented. A semiautomatic parametrization scheme has been developed that uses Kohn-Sham energies and band structure curvatures of real and fictitious homoatomic crystal structures as reference data. A confinement potential is used to tighten the Kohn-Sham orbitals, which includes two free parameters that are used to optimize the performance of the method. The method is tested on more than 100 systems and shows excellent overall performance.
Tight-binding molecular dynamics simulation of charge state effects in semiconductors
Khakimov, Z M; Sulaymonov, N T; Kiv, A E; Levin, A A
2002-01-01
New model of Si-H bond dissociation has been proposed and tested in the cluster Si sub 1 sub 0 H sub 1 sub 6 by the simulation approach that combines classical molecular dynamics method and the self-consistent tight-binding electronic and total energy calculation one. It is shown that the monohydride Si-H bond is unstable with respect to formation of silicon dangling bond and bend bridge Si-H-Si bond when this cluster traps the single positive charge. In this case hydrogen atom migrates rather rotating around Si-Si bond than crossing the center of this bond (the bond-centered position). The model can be useful for understanding hydrogen related phenomena at surfaces, interfaces, internal voids of various hydrogenated silicon systems: electronic devices, silicon solar cells, and nanocrystalline and porous silicon. (author)
Structural, electronic and mechanical properties of inner surface modified imogolite nanotubes
Directory of Open Access Journals (Sweden)
Maurício Chagas Da Silva
2015-03-01
Full Text Available The electronic, structural and mechanical properties of the modified imogolites have been investigated using self consistent charge-density functional-tight binding method with a posteriori treatment of the dispersion interaction (SCC-DFTB-D. The zigzag (12,0 imogolite has been used as the initial structure for the calculations. The functionalization of the interior (12,0 imogolite nanotubes by organosilanes and by heat treatment leading to the dehydroxylation of the silanols were investigated. The reaction of the silanols with the trimethylmethoxysilanes is favored and the arrangement of the different substitutions that leads to the most symmetrical structures are preferred. The Young moduli and band gaps are slightly decreased. However, the dehydroxylation of the silanol groups in the inner surface of the imogolite leads to the increase of the Young moduli and a drastic decrease of the band gap of about 4.4 eV. It has been shown that the degree of the dehydroxylation can be controlled by heat treatment and tune the band gap, eventually, leading to a semiconductor material with well defined nanotube structure.
Dissociation of polycyclic aromatic hydrocarbons: molecular dynamics studies
Simon, A.; Rapacioli, M.; Rouaut, G.; Trinquier, G.; Gadéa, F. X.
2017-03-01
We present dynamical studies of the dissociation of polycyclic aromatic hydrocarbon (PAH) radical cations in their ground electronic states with significant internal energy. Molecular dynamics simulations are performed, the electronic structure being described on-the-fly at the self-consistent-charge density functional-based tight binding (SCC-DFTB) level of theory. The SCC-DFTB approach is first benchmarked against DFT results. Extensive simulations are achieved for naphthalene , pyrene and coronene at several energies. Such studies enable one to derive significant trends on branching ratios, kinetics, structures and hints on the formation mechanism of the ejected neutral fragments. In particular, dependence of branching ratios on PAH size and energy were retrieved. The losses of H and C2H2 (recognized as the ethyne molecule) were identified as major dissociation channels. The H/C2H2 ratio was found to increase with PAH size and to decrease with energy. For , which is the most interesting PAH from the astrophysical point of view, the loss of H was found as the quasi-only channel for an internal energy of 30 eV. Overall, in line with experimental trends, decreasing the internal energy or increasing the PAH size will favour the hydrogen loss channels with respect to carbonaceous fragments. This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.
Environment-dependent crystal-field tight-binding based on density-functional theory
International Nuclear Information System (INIS)
Urban, Alexander
2012-01-01
Electronic structure calculations based on Kohn-Sham density-functional theory (DFT) allow the accurate prediction of chemical bonding and materials properties. Due to the high computational demand DFT calculations are, however, restricted to structures containing at most several hundreds of atoms, i.e., to length scales of a few nanometers. Though, many processes of technological relevance, for example in the field of nanoelectronics, are governed by phenomena that occur on a slightly larger length scale of up to 100 nanometers, which corresponds to tens of thousands of atoms. The semiempirical Slater-Koster tight-binding (TB) method makes it feasible to calculate the electronic structure of such large systems. In contrast to first-principles-based DFT, which is universally applicable to almost all chemical species, the TB method is based on parametrized models that are usually specialized for a particular application or for one certain class of compounds. Usually the model parameters (Slater-Koster tables) are empirically adjusted to reproduce either experimental reference data (e.g., geometries, elastic constants) or data from first-principles methods such as DFT. The construction of a new TB model is therefore connected with a considerable effort that is often contrasted by a low transferability of the parametrization. In this thesis we develop a systematic methodology for the derivation of accurate and transferable TB models from DFT calculations. Our procedure exploits the formal relationship between the two methods, according to which the TB total energy can be understood as a direct approximation of the Kohn--Sham energy functional. The concept of our method is different to previous approaches such as the DFTB method, since it allows to extract TB parameters from converged DFT wave functions and Hamiltonians of arbitrary reference structures. In the following the different subjects of this thesis are briefly summarized. We introduce a new technique for the
Incipient localization and tight-binding superconductivity: Tsub(c) calculation
International Nuclear Information System (INIS)
Kolley, E.; Kolley, W.
1984-01-01
Localization effects on the superconducting transition temperature Tsub(c) are examined in strongly disordered three-dimensional systems. A tight-binding formulation of strong-coupling superconductivity is combined, after configuration averaging, with the self-consistent treatment of Anderson localization developed by Vollhardt and Woelfle. The Coulomb interaction becomes retarded via the joint local local density of states, giving rise to an enhancement of the pseudopotential. Numerical Tsub(c) results as a function of disorder are compared with another theoretical work and experimental values for some high-Tsub(c) materials. (orig.)
Self-consistent Green’s-function technique for surfaces and interfaces
DEFF Research Database (Denmark)
Skriver, Hans Lomholt; Rosengaard, N. M.
1991-01-01
We have implemented an efficient self-consistent Green’s-function technique for calculating ground-state properties of surfaces and interfaces, based on the linear-muffin-tin-orbitals method within the tight-binding representation. In this approach the interlayer interaction is extremely short...... ranged, and only a few layers close to the interface need be treated self-consistently via a Dyson equation. For semi-infinite jellium, the technique gives work functions and surface energies that are in excellent agreement with earlier calculations. For the bcc(110) surface of the alkali metals, we find...
International Nuclear Information System (INIS)
Kutzler, F.W.; Painter, G.S.
1992-01-01
A fully self-consistent series of nonlocal (gradient) density-functional calculations has been carried out using the augmented-Gaussian-orbital method to determine the magnitude of gradient corrections to the potential-energy curves of the first-row diatomics, Li 2 through F 2 . Both the Langreth-Mehl-Hu and the Perdew-Wang gradient-density functionals were used in calculations of the binding energy, bond length, and vibrational frequency for each dimer. Comparison with results obtained in the local-spin-density approximation (LSDA) using the Vosko-Wilk-Nusair functional, and with experiment, reveals that bond lengths and vibrational frequencies are rather insensitive to details of the gradient functionals, including self-consistency effects, but the gradient corrections reduce the overbinding commonly observed in the LSDA calculations of first-row diatomics (with the exception of Li 2 , the gradient-functional binding-energy error is only 50--12 % of the LSDA error). The improved binding energies result from a large differential energy lowering, which occurs in open-shell atoms relative to the diatomics. The stabilization of the atom arises from the use of nonspherical charge and spin densities in the gradient-functional calculations. This stabilization is negligibly small in LSDA calculations performed with nonspherical densities
International Nuclear Information System (INIS)
Cafiero, Mauricio; Gonzalez, Carlos
2005-01-01
We show that potentials for exchange-correlation functionals within the Kohn-Sham density-functional-theory framework may be written as potentials for simpler functionals multiplied by a factor close to unity, and in a self-consistent field calculation, these effective potentials find the correct self-consistent solutions. This simple theory is demonstrated with self-consistent exchange-only calculations of the atomization energies of some small molecules using the Perdew-Kurth-Zupan-Blaha (PKZB) meta-generalized-gradient-approximation (meta-GGA) exchange functional. The atomization energies obtained with our method agree with or surpass previous meta-GGA calculations performed in a non-self-consistent manner. The results of this work suggest the utility of this simple theory to approximate exchange-correlation potentials corresponding to energy functionals too complicated to generate closed forms for their potentials. We hope that this method will encourage the development of complex functionals which have correct boundary conditions and are free of self-interaction errors without the worry that the functionals are too complex to differentiate to obtain potentials
Franchini, C; Kováčik, R; Marsman, M; Murthy, S Sathyanarayana; He, J; Ederer, C; Kresse, G
2012-06-13
Using the newly developed VASP2WANNIER90 interface we have constructed maximally localized Wannier functions (MLWFs) for the e(g) states of the prototypical Jahn-Teller magnetic perovskite LaMnO(3) at different levels of approximation for the exchange-correlation kernel. These include conventional density functional theory (DFT) with and without the additional on-site Hubbard U term, hybrid DFT and partially self-consistent GW. By suitably mapping the MLWFs onto an effective e(g) tight-binding (TB) Hamiltonian we have computed a complete set of TB parameters which should serve as guidance for more elaborate treatments of correlation effects in effective Hamiltonian-based approaches. The method-dependent changes of the calculated TB parameters and their interplay with the electron-electron (el-el) interaction term are discussed and interpreted. We discuss two alternative model parameterizations: one in which the effects of the el-el interaction are implicitly incorporated in the otherwise 'noninteracting' TB parameters and a second where we include an explicit mean-field el-el interaction term in the TB Hamiltonian. Both models yield a set of tabulated TB parameters which provide the band dispersion in excellent agreement with the underlying ab initio and MLWF bands.
Detection of CO{sub 2} using CNT-based sensors: Role of Fe catalyst on sensitivity and selectivity
Energy Technology Data Exchange (ETDEWEB)
Tit, Nacir, E-mail: ntit@uaeu.ac.ae [Physics Department, UAE University, P.O. Box 15551, Al-Ain (United Arab Emirates); Ezzi, Mohammed M. Al; Abdullah, Hasan M. [Physics Department, King Fahd University of Petroleum and Minerals, P.O. Box 1690, Dhahran, 31261 (Saudi Arabia); Yusupov, Maksudbek [Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610, Wilrijk-Antwerp (Belgium); Kouser, Summayya [Theoretical Sciences Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore (India); Bahlouli, Hocine [Physics Department, King Fahd University of Petroleum and Minerals, P.O. Box 1690, Dhahran, 31261 (Saudi Arabia); Yamani, Zain H. [Physics Department, King Fahd University of Petroleum and Minerals, P.O. Box 1690, Dhahran, 31261 (Saudi Arabia); Center for Research Excellence in Nanotechnology, KFUPM, P.O. Box 5040, Dhahran 31261 (Saudi Arabia)
2017-01-15
The adsorption of CO{sub 2} on surfaces of graphene and carbon nanotubes (CNTs), decorated with Fe atoms, are investigated using the self-consistent-charge density-functional tight-binding (SCC-DFTB) method, neglecting the heat effects. Fe ad-atoms are more stable when they are dispersed on hollow sites. They introduce a large density of states at the Fermi level (N{sub F}); where keeping such density low would help in gas sensing. Furthermore, the Fe ad-atom can weaken the C=O double bonds of the chemisorbed CO{sub 2} molecule, paving the way for oxygen atoms to drain more charges from Fe. Consequently, chemisorption of CO{sub 2} molecules reduces both N{sub F} and the conductance while it enhances the sensitivity with the increasing gas dose. Conducting armchair CNTs (ac-CNTs) have higher sensitivity than graphene and semiconducting zigzag CNTs (zz-CNTs). Comparative study of sensitivity of ac-CNT-Fe composite towards various gases (e.g., O{sub 2}, N{sub 2}, H{sub 2}, H{sub 2}O, CO and CO{sub 2}) has shown high sensitivity and selectivity towards CO, CO{sub 2} and H{sub 2}O gases. - Highlights: • DFTB is used to study Adsorptions of CO{sub 2} molecule on pG and CNT, with Fe catalyst. • Armchair CNT-Fe has higher sensitivity to detect CO{sub 2} than zigzag CNT-Fe and pG-Fe. • Ac-CNT-Fe is highly sensitive and selective towards CO, CO{sub 2} and H{sub 2}O gases. • Keeping Fe ad-atoms dispersed and with low density enhances sensitivity. • Our theoretical results corroborate the experimental findings of Ref. .
Oliveira, Augusto F; Philipsen, Pier; Heine, Thomas
2015-11-10
In the first part of this series, we presented a parametrization strategy to obtain high-quality electronic band structures on the basis of density-functional-based tight-binding (DFTB) calculations and published a parameter set called QUASINANO2013.1. Here, we extend our parametrization effort to include the remaining terms that are needed to compute the total energy and its gradient, commonly referred to as repulsive potential. Instead of parametrizing these terms as a two-body potential, we calculate them explicitly from the DFTB analogues of the Kohn-Sham total energy expression. This strategy requires only two further numerical parameters per element. Thus, the atomic configuration and four real numbers per element are sufficient to define the DFTB model at this level of parametrization. The QUASINANO2015 parameter set allows the calculation of energy, structure, and electronic structure of all systems composed of elements ranging from H to Ca. Extensive benchmarks show that the overall accuracy of QUASINANO2015 is comparable to that of well-established methods, including PM7 and hand-tuned DFTB parameter sets, while coverage of a much larger range of chemical systems is available.
Self-consistent density functional calculation of the image potential at a metal surface
International Nuclear Information System (INIS)
Jung, J; Alvarellos, J E; Chacon, E; GarcIa-Gonzalez, P
2007-01-01
It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z 0 ), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z 0 , and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description
Self-consistent density functional calculation of the image potential at a metal surface
Energy Technology Data Exchange (ETDEWEB)
Jung, J [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Alvarellos, J E [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Chacon, E [Instituto de Ciencias de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, E-28049 Madrid (Spain); GarcIa-Gonzalez, P [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain)
2007-07-04
It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z{sub 0}), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z{sub 0}, and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description.
Density-functional expansion methods: Grand challenges.
Giese, Timothy J; York, Darrin M
2012-03-01
We discuss the source of errors in semiempirical density functional expansion (VE) methods. In particular, we show that VE methods are capable of well-reproducing their standard Kohn-Sham density functional method counterparts, but suffer from large errors upon using one or more of these approximations: the limited size of the atomic orbital basis, the Slater monopole auxiliary basis description of the response density, and the one- and two-body treatment of the core-Hamiltonian matrix elements. In the process of discussing these approximations and highlighting their symptoms, we introduce a new model that supplements the second-order density-functional tight-binding model with a self-consistent charge-dependent chemical potential equalization correction; we review our recently reported method for generalizing the auxiliary basis description of the atomic orbital response density; and we decompose the first-order potential into a summation of additive atomic components and many-body corrections, and from this examination, we provide new insights and preliminary results that motivate and inspire new approximate treatments of the core-Hamiltonian.
Dresselhaus, Thomas; Neugebauer, Johannes; Knecht, Stefan; Keller, Sebastian; Ma, Yingjin; Reiher, Markus
2015-01-28
We present the first implementation of a density matrix renormalization group algorithm embedded in an environment described by density functional theory. The frozen density embedding scheme is used with a freeze-and-thaw strategy for a self-consistent polarization of the orbital-optimized wavefunction and the environmental densities with respect to each other.
Third nearest neighbor parameterized tight binding model for graphene nano-ribbons
Directory of Open Access Journals (Sweden)
Van-Truong Tran
2017-07-01
Full Text Available The existing tight binding models can very well reproduce the ab initio band structure of a 2D graphene sheet. For graphene nano-ribbons (GNRs, the current sets of tight binding parameters can successfully describe the semi-conducting behavior of all armchair GNRs. However, they are still failing in reproducing accurately the slope of the bands that is directly associated with the group velocity and the effective mass of electrons. In this work, both density functional theory and tight binding calculations were performed and a new set of tight binding parameters up to the third nearest neighbors including overlap terms is introduced. The results obtained with this model offer excellent agreement with the predictions of the density functional theory in most cases of ribbon structures, even in the high-energy region. Moreover, this set can induce electron-hole asymmetry as manifested in results from density functional theory. Relevant outcomes are also achieved for armchair ribbons of various widths as well as for zigzag structures, thus opening a route for multi-scale atomistic simulation of large systems that cannot be considered using density functional theory.
Efficient mixing scheme for self-consistent all-electron charge density
Shishidou, Tatsuya; Weinert, Michael
2015-03-01
In standard ab initio density-functional theory calculations, the charge density ρ is gradually updated using the ``input'' and ``output'' densities of the current and previous iteration steps. To accelerate the convergence, Pulay mixing has been widely used with great success. It expresses an ``optimal'' input density ρopt and its ``residual'' Ropt by a linear combination of the densities of the iteration sequences. In large-scale metallic systems, however, the long range nature of Coulomb interaction often causes the ``charge sloshing'' phenomenon and significantly impacts the convergence. Two treatments, represented in reciprocal space, are known to suppress the sloshing: (i) the inverse Kerker metric for Pulay optimization and (ii) Kerker-type preconditioning in mixing Ropt. In all-electron methods, where the charge density does not have a converging Fourier representation, treatments equivalent or similar to (i) and (ii) have not been described so far. In this work, we show that, by going through the calculation of Hartree potential, one can accomplish the procedures (i) and (ii) without entering the reciprocal space. Test calculations are done with a FLAPW method.
Absorption of CO2 on Carbon-based Sensors: First-Principle Analysis
Tit, Nacir; Elezzi, Mohammed; Abdullah, Hasan; Bahlouli, Hocine; Yamani, Zain
We present first-principle investigation of the adsorption properties of CO and CO2 molecules on both graphene and carbon nano-tubes (CNTs) in presence of metal catalysis, mainly iron (Fe). The relaxations were carried out using the self-consistent-charge density-functional tight-binding (SCC-DFTB) code in neglect of heat effects. The results show the following: (1) Defected graphene is found to have high sensitivity and high selectivity towards chemisorption of CO molecules and weak physisorption with CO2 molecules. (2) In case of CNTs, the iron ``Fe'' catalyst plays an essential role in capturing CO2 molecules. The Fe ad-atoms on the surface of CNT introduce huge density of states at Fermi level, but the capture of CO2 molecules would reduce that density and consequently reduce conductivity and increase sensitivity. Concerning the selectivity, we have studied the sensitivity versus various gas molecules (such as: O2, N2, H2, H2O, and CO). Furthermore, to assess the effect of catalysis on sensitivity, we have studied the sensitivity of other metal catalysts (such as: Ni, Co, Ti, and Sc). We found that CNT-Fe is highly sensitive and selective towards detection of CO and CO2 molecules. CNT being conductive or semiconducting does not matter much on the adsorption properties.
Charge-density-wave instabilities expected in monophosphate tungsten bronzes
International Nuclear Information System (INIS)
Canadell, E.; Whangbo, M.
1991-01-01
On the basis of tight-binding band calculations, we examined the electronic structures of the tungsten oxide layers found in the monophosphate tungsten bronze (MPTB) phases. The Fermi surfaces of these MPTB phases consist of five well-nested one- and two-dimensional pieces. We calculated the nesting vectors of these Fermi surfaces and discussed the expected charge-density-wave instabilities
Self-compacting concrete (SCC)
DEFF Research Database (Denmark)
Geiker, Mette Rica
2008-01-01
In many aspects Self-Compacting Concrete (SCC, “Self-Consolidating Concrete” in North America) can be considered the concrete of the future. SCC is a family of tailored concretes with special engineered properties in the fresh state. SCC flows into the formwork and around even complicated...... reinforcement arrangements under its own weight. Thus, SCC is not vibrated like conventional concrete. This drastically improves the working environment during construction, the productivity, and potentially improves the homogeneity and quality of the concrete. In addition SCC provides larger architectural...
A general intermolecular force field based on tight-binding quantum chemical calculations
Grimme, Stefan; Bannwarth, Christoph; Caldeweyher, Eike; Pisarek, Jana; Hansen, Andreas
2017-10-01
A black-box type procedure is presented for the generation of a molecule-specific, intermolecular potential energy function. The method uses quantum chemical (QC) information from our recently published extended tight-binding semi-empirical scheme (GFN-xTB) and can treat non-covalently bound complexes and aggregates with almost arbitrary chemical structure. The necessary QC information consists of the equilibrium structure, Mulliken atomic charges, charge centers of localized molecular orbitals, and also of frontier orbitals and orbital energies. The molecular pair potential includes model density dependent Pauli repulsion, penetration, as well as point charge electrostatics, the newly developed D4 dispersion energy model, Drude oscillators for polarization, and a charge-transfer term. Only one element-specific and about 20 global empirical parameters are needed to cover systems with nuclear charges up to radon (Z = 86). The method is tested for standard small molecule interaction energy benchmark sets where it provides accurate intermolecular energies and equilibrium distances. Examples for structures with a few hundred atoms including charged systems demonstrate the versatility of the approach. The method is implemented in a stand-alone computer code which enables rigid-body, global minimum energy searches for molecular aggregation or alignment.
Density functional study of graphene antidot lattices: Roles of geometrical relaxation and spin
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Pedersen, Thomas Garm; Brandbyge, Mads
2009-01-01
thereof. We find from DFT that all structures investigated have band gaps ranging from 0.2 to 1.5 eV. Band gap sizes and general trends are well captured by DFTB with band gaps agreeing within about 0.2 eV even for very small structures. A combination of the two methods is found to offer a good trade...... properties. In this work, we perform calculations of the band structure for various hydrogen-passivated hole geometries using both spin-polarized density functional theory (DFT) and DFT based tight-binding (DFTB) and address the importance of relaxation of the structures using either method or a combination......-off between computational cost and accuracy. Both methods predict nondegenerate midgap states for certain antidot hole symmetries. The inclusion of spin results in a spin-splitting of these states as well as magnetic moments obeying the Lieb theorem. The local-spin texture of both magnetic and nonmagnetic...
DEFF Research Database (Denmark)
Fromager, Emmanuel; Jensen, Hans Jørgen Aagaard
2011-01-01
Range-separated density-functional theory combines wave function theory for the long-range part of the two-electron interaction with density-functional theory for the short-range part. When describing the long-range interaction with non-variational methods, such as perturbation or coupled......-cluster theories, self-consistency effects are introduced in the density functional part, which for an exact solution requires iterations. They are generally assumed to be small but no detailed study has been performed so far. Here, the authors analyze self-consistency when using Møller-Plesset-type (MP......) perturbation theory for the long range interaction. The lowest-order self-consistency corrections to the wave function and the energy, that enter the perturbation expansions at the second and fourth order, respectively, are both expressed in terms of the one-electron reduced density matrix. The computational...
Self-consistent green function calculations for isospin asymmetric nuclear matter
International Nuclear Information System (INIS)
Mansour, Hesham; Gad, Khalaf; Hassaneen, Khaled S.A.
2010-01-01
The one-body potentials for protons and neutrons are obtained from the self-consistent Green-function calculations of asymmetric nuclear matter, in particular their dependence on the degree of proton/neutron asymmetry. Results of the binding energy per nucleon as a function of the density and asymmetry parameter are presented for the self-consistent Green function approach using the CD-Bonn potential. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The contribution of the hole-hole terms leads to a repulsive contribution to the energy per nucleon which increases with the nuclear density. The incompressibility for asymmetric nuclear matter has been also investigated in the framework of the self-consistent Green-function approach using the CD-Bonn potential. The behavior of the incompressibility is studied for different values of the nuclear density and the neutron excess parameter. The nuclear symmetry potential at fixed nuclear density is also calculated and its value decreases with increasing the nucleon energy. In particular, the nuclear symmetry potential at saturation density changes from positive to negative values at nucleon kinetic energy of about 200 MeV. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The proton/neutron effective mass splitting in neutron-rich matter has been studied. The predicted isospin splitting of the proton/neutron effective mass splitting in neutron-rich matter is such that m n * ≥ m p * . (author)
Total energy calculation of perovskite, BaTiO3, by self-consistent
Indian Academy of Sciences (India)
Unknown
rgy, lattice constant, density of states, band structure etc using self-consistent tight binding method. ... share the paraelectric simple-cubic perovskite structure .... of neighbouring ions. In order to find the ground state, we solve the variation problem, minimizing Etot with respect to the coefficients, .*,λµ ic. The final equation is.
Self-consistent DFT +U method for real-space time-dependent density functional theory calculations
Tancogne-Dejean, Nicolas; Oliveira, Micael J. T.; Rubio, Angel
2017-12-01
We implemented various DFT+U schemes, including the Agapito, Curtarolo, and Buongiorno Nardelli functional (ACBN0) self-consistent density-functional version of the DFT +U method [Phys. Rev. X 5, 011006 (2015), 10.1103/PhysRevX.5.011006] within the massively parallel real-space time-dependent density functional theory (TDDFT) code octopus. We further extended the method to the case of the calculation of response functions with real-time TDDFT+U and to the description of noncollinear spin systems. The implementation is tested by investigating the ground-state and optical properties of various transition-metal oxides, bulk topological insulators, and molecules. Our results are found to be in good agreement with previously published results for both the electronic band structure and structural properties. The self-consistent calculated values of U and J are also in good agreement with the values commonly used in the literature. We found that the time-dependent extension of the self-consistent DFT+U method yields improved optical properties when compared to the empirical TDDFT+U scheme. This work thus opens a different theoretical framework to address the nonequilibrium properties of correlated systems.
Effects of self-consistency in a Green's function description of saturation in nuclear matter
International Nuclear Information System (INIS)
Dewulf, Y.; Neck, D. van; Waroquier, M.
2002-01-01
The binding energy in nuclear matter is evaluated within the framework of self-consistent Green's function theory, using a realistic nucleon-nucleon interaction. The two-body dynamics is solved at the level of summing particle-particle and hole-hole ladders. We go beyond the on-shell approximation and use intermediary propagators with a discrete-pole structure. A three-pole approximation is used, which provides a good representation of the quasiparticle excitations, as well as reproducing the zeroth- and first-order energy-weighted moments in both the nucleon removal and addition domains of the spectral function. Results for the binding energy are practically independent of the details of the discretization scheme. The main effect of the increased self-consistency is to introduce an additional density dependence, which causes a shift towards lower densities and smaller binding energies, as compared to a (continuous choice) Brueckner calculation with the same interaction. Particle number conservation and the Hugenholz-Van Hove theorem are satisfied with reasonable accuracy
Mazzuca, James; Garashchuk, Sophya; Jakowski, Jacek
2014-03-01
It has been shown that the proton transfer in the enzymatic active site of soybean lipoxygenase-1 (SLO-1) occurs largely by a quantum tunneling mechanism. This study examined the role of local substrate vibrations on this proton tunneling reaction. We employ an approximate quantum trajectory (QT) dynamics method with linear quantum force. The electronic structure (ES) was calculated on-the-fly with a density functional tight binding (DFTB) method. This QTES-DFTB method scales linearly with number of trajectories, and the calculation of the quantum force is a small addition to the overall cost of trajectory dynamics. The active site was represented as a 44-atom system. Quantum effects were included only for the transferring proton, and substrate nuclei were treated classically. The effect of substrate vibrations was evaluated by freezing or relaxing the substrate nuclei. Trajectory calculations were performed at several temperatures ranging from 250-350 K, and rate constants were calculated through the quantum mechanical flux operator which depends on time-dependent correlation functions. It was found that the substrate motion reliably increases the rate constants, as well as the P/D kinetic isotope effect, by approximately 10% across all temperatures examined. NSF Grant No. CHE-1056188, APRA-NSF-EPS-0919436, and CHE-1048629, NICS Teragrid/Xsede TG-DMR110037.
Self-consistent theory of charged current neutrino-nucleus reactions
Energy Technology Data Exchange (ETDEWEB)
Paar, Nils; Marketin, Tomislav; Vretenar, Dario [Physics Department, Faculty of Science, University Zagreb (Croatia); Ring, Peter [Physik-Department, Technischen Universitaet Muenchen, D-85748 Muenchen (Germany)
2009-07-01
A novel theoretical framework has been introduced for description of neutrino induced reactions with nuclei. The properties of target nuclei are determined in a self-consistent way using relativistic mean-field framework based on effective Lagrangians with density dependent meson-nucleon vertex functions. The weak lepton-hadron interaction is expressed in the standard current-current form, the nuclear ground state is described in the relativistic Hartree-Bogolyubov model, and the relevant transitions to excited nuclear states are calculated in the proton-neutron relativistic quasiparticle random phase approximation. This framework has been employed in studies of charged-current neutrino reactions involving nuclei of relevance for neutrino detectors, r-process nuclei, and neutrino-nucleus cross sections averaged over measured neutrino fluxes and supernova neutrino distributions.
Development of tight-binding based GW algorithm and its computational implementation for graphene
Energy Technology Data Exchange (ETDEWEB)
Majidi, Muhammad Aziz [Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); NUSNNI-NanoCore, Department of Physics, National University of Singapore (NUS), Singapore 117576 (Singapore); Singapore Synchrotron Light Source (SSLS), National University of Singapore (NUS), 5 Research Link, Singapore 117603 (Singapore); Naradipa, Muhammad Avicenna, E-mail: muhammad.avicenna11@ui.ac.id; Phan, Wileam Yonatan; Syahroni, Ahmad [Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Rusydi, Andrivo [NUSNNI-NanoCore, Department of Physics, National University of Singapore (NUS), Singapore 117576 (Singapore); Singapore Synchrotron Light Source (SSLS), National University of Singapore (NUS), 5 Research Link, Singapore 117603 (Singapore)
2016-04-19
Graphene has been a hot subject of research in the last decade as it holds a promise for various applications. One interesting issue is whether or not graphene should be classified into a strongly or weakly correlated system, as the optical properties may change upon several factors, such as the substrate, voltage bias, adatoms, etc. As the Coulomb repulsive interactions among electrons can generate the correlation effects that may modify the single-particle spectra (density of states) and the two-particle spectra (optical conductivity) of graphene, we aim to explore such interactions in this study. The understanding of such correlation effects is important because eventually they play an important role in inducing the effective attractive interactions between electrons and holes that bind them into excitons. We do this study theoretically by developing a GW method implemented on the basis of the tight-binding (TB) model Hamiltonian. Unlike the well-known GW method developed within density functional theory (DFT) framework, our TB-based GW implementation may serve as an alternative technique suitable for systems which Hamiltonian is to be constructed through a tight-binding based or similar models. This study includes theoretical formulation of the Green’s function G, the renormalized interaction function W from random phase approximation (RPA), and the corresponding self energy derived from Feynman diagrams, as well as the development of the algorithm to compute those quantities. As an evaluation of the method, we perform calculations of the density of states and the optical conductivity of graphene, and analyze the results.
Development of tight-binding based GW algorithm and its computational implementation for graphene
International Nuclear Information System (INIS)
Majidi, Muhammad Aziz; Naradipa, Muhammad Avicenna; Phan, Wileam Yonatan; Syahroni, Ahmad; Rusydi, Andrivo
2016-01-01
Graphene has been a hot subject of research in the last decade as it holds a promise for various applications. One interesting issue is whether or not graphene should be classified into a strongly or weakly correlated system, as the optical properties may change upon several factors, such as the substrate, voltage bias, adatoms, etc. As the Coulomb repulsive interactions among electrons can generate the correlation effects that may modify the single-particle spectra (density of states) and the two-particle spectra (optical conductivity) of graphene, we aim to explore such interactions in this study. The understanding of such correlation effects is important because eventually they play an important role in inducing the effective attractive interactions between electrons and holes that bind them into excitons. We do this study theoretically by developing a GW method implemented on the basis of the tight-binding (TB) model Hamiltonian. Unlike the well-known GW method developed within density functional theory (DFT) framework, our TB-based GW implementation may serve as an alternative technique suitable for systems which Hamiltonian is to be constructed through a tight-binding based or similar models. This study includes theoretical formulation of the Green’s function G, the renormalized interaction function W from random phase approximation (RPA), and the corresponding self energy derived from Feynman diagrams, as well as the development of the algorithm to compute those quantities. As an evaluation of the method, we perform calculations of the density of states and the optical conductivity of graphene, and analyze the results.
Empirical tight-binding parameters for solid C60
International Nuclear Information System (INIS)
Tit, N.; Kumar, V.
1993-01-01
We present a tight-binding model for the electronic structure of C 60 using four (1s and 3p) orbitals per carbon atom. The model has been developed by fitting the tight-binding parameters to the ab-initio pseudopotential calculation of Troullier and Martins (Phys. Rev. B46, 1754 (1992)) in the face-centered cubic (Fm3-bar) phase. Following this, calculations of the energy bands and the density of electronic states have been carried out as a function of the lattice constant. Good agreement has been obtained with the observed lattice-constant dependence of T c using McMillan's formula. Furthermore, calculations of the electronic structure are presented in the simple cubic (Pa3-bar) phase. (author). 43 refs, 3 figs, 1 tab
An efficient magnetic tight-binding method for transition metals and alloys
DEFF Research Database (Denmark)
Barreteau, Cyrille; Spanjaard, Daniel; Desjonquères, Marie-Catherine
2016-01-01
that does not necessitate any further fitting is proposed to deal with systems made of several chemical elements. This model is extended to spin (and orbital) polarized materials by adding Stoner-like and spin–orbit interactions. Collinear and non-collinear magnetism as well as spin-spirals are considered......An efficient parameterized self-consistent tight-binding model for transition metals using s, p and d valence atomic orbitals as a basis set is presented. The parameters of our tight-binding model for pure elements are determined from a fit to bulk ab-initio calculations. A very simple procedure...
DEFF Research Database (Denmark)
Bohr, Henrik; Jalkanen, Karl J.; Elstner, M.
1999-01-01
dichroism (VCD) spectra of NALANMA. We have utilised MP2/6-31G*, B3LYP/6-31G*, RHF/6-31G* and SCC-DFTB level theory to determine the geometries and Hessians, atomic polar tensors (APT) and atomic axial tensors (AAT) which are required for simulating the VA and VCD spectra. We have also calculated the AAT...
Kuechler, Erich R; Giese, Timothy J; York, Darrin M
2016-04-28
To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state.
Directory of Open Access Journals (Sweden)
Sergei Manzhos
2015-02-01
Full Text Available We present a comparative density functional tight binding study of an organic molecule attachment to TiO2 via a carboxylic group, with the example of acetic acid. For the first time, binding to low-energy surfaces of crystalline anatase (101, rutile (110 and (B-TiO2 (001, as well as to the surface of amorphous (a- TiO2 is compared with the same computational setup. On all surfaces, bidentate configurations are identified as providing the strongest adsorption energy, Eads = −1.93, −2.49 and −1.09 eV for anatase, rutile and (B-TiO2, respectively. For monodentate configurations, the strongest Eads = −1.06, −1.11 and −0.86 eV for anatase, rutile and (B-TiO2, respectively. Multiple monodentate and bidentate configurations are identified on a-TiO2 with a distribution of adsorption energies and with the lowest energy configuration having stronger bonding than that of the crystalline counterparts, with Eads up to −4.92 eV for bidentate and −1.83 eV for monodentate adsorption. Amorphous TiO2 can therefore be used to achieve strong anchoring of organic molecules, such as dyes, that bind via a -COOH group. While the presence of the surface leads to a contraction of the band gap vs. the bulk, molecular adsorption caused no appreciable effect on the band structure around the gap in any of the systems.
Directory of Open Access Journals (Sweden)
L.S. Ferreira
2016-02-01
Full Text Available Proton radioactivity from deformed nuclei is described for the first time by a self-consistent calculation based on covariant relativistic density functionals derived from meson exchange and point coupling models. The calculation provides an important new test to these interactions at the limits of stability, since the mixing of different angular momenta in the single particle wave functions is probed.
International Nuclear Information System (INIS)
Grimme, Stefan; Bannwarth, Christoph
2016-01-01
The computational bottleneck of the extremely fast simplified Tamm-Dancoff approximated (sTDA) time-dependent density functional theory procedure [S. Grimme, J. Chem. Phys. 138, 244104 (2013)] for the computation of electronic spectra for large systems is the determination of the ground state Kohn-Sham orbitals and eigenvalues. This limits such treatments to single structures with a few hundred atoms and hence, e.g., sampling along molecular dynamics trajectories for flexible systems or the calculation of chromophore aggregates is often not possible. The aim of this work is to solve this problem by a specifically designed semi-empirical tight binding (TB) procedure similar to the well established self-consistent-charge density functional TB scheme. The new special purpose method provides orbitals and orbital energies of hybrid density functional character for a subsequent and basically unmodified sTDA procedure. Compared to many previous semi-empirical excited state methods, an advantage of the ansatz is that a general eigenvalue problem in a non-orthogonal, extended atomic orbital basis is solved and therefore correct occupied/virtual orbital energy splittings as well as Rydberg levels are obtained. A key idea for the success of the new model is that the determination of atomic charges (describing an effective electron-electron interaction) and the one-particle spectrum is decoupled and treated by two differently parametrized Hamiltonians/basis sets. The three-diagonalization-step composite procedure can routinely compute broad range electronic spectra (0-8 eV) within minutes of computation time for systems composed of 500-1000 atoms with an accuracy typical of standard time-dependent density functional theory (0.3-0.5 eV average error). An easily extendable parametrization based on coupled-cluster and density functional computed reference data for the elements H–Zn including transition metals is described. The accuracy of the method termed sTDA-xTB is first
Energy Technology Data Exchange (ETDEWEB)
Grimme, Stefan, E-mail: grimme@thch.uni-bonn.de; Bannwarth, Christoph [Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn (Germany)
2016-08-07
The computational bottleneck of the extremely fast simplified Tamm-Dancoff approximated (sTDA) time-dependent density functional theory procedure [S. Grimme, J. Chem. Phys. 138, 244104 (2013)] for the computation of electronic spectra for large systems is the determination of the ground state Kohn-Sham orbitals and eigenvalues. This limits such treatments to single structures with a few hundred atoms and hence, e.g., sampling along molecular dynamics trajectories for flexible systems or the calculation of chromophore aggregates is often not possible. The aim of this work is to solve this problem by a specifically designed semi-empirical tight binding (TB) procedure similar to the well established self-consistent-charge density functional TB scheme. The new special purpose method provides orbitals and orbital energies of hybrid density functional character for a subsequent and basically unmodified sTDA procedure. Compared to many previous semi-empirical excited state methods, an advantage of the ansatz is that a general eigenvalue problem in a non-orthogonal, extended atomic orbital basis is solved and therefore correct occupied/virtual orbital energy splittings as well as Rydberg levels are obtained. A key idea for the success of the new model is that the determination of atomic charges (describing an effective electron-electron interaction) and the one-particle spectrum is decoupled and treated by two differently parametrized Hamiltonians/basis sets. The three-diagonalization-step composite procedure can routinely compute broad range electronic spectra (0-8 eV) within minutes of computation time for systems composed of 500-1000 atoms with an accuracy typical of standard time-dependent density functional theory (0.3-0.5 eV average error). An easily extendable parametrization based on coupled-cluster and density functional computed reference data for the elements H–Zn including transition metals is described. The accuracy of the method termed sTDA-xTB is first
Kotlyar, R.; Linton, T. D.; Rios, R.; Giles, M. D.; Cea, S. M.; Kuhn, K. J.; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard
2012-06-01
The hole surface roughness and phonon limited mobility in the silicon , , and square nanowires under the technologically important conditions of applied gate bias and stress are studied with the self-consistent Poisson-sp3d5s*-SO tight-binding bandstructure method. Under an applied gate field, the hole carriers in a wire undergo a volume to surface inversion transition diminishing the positive effects of the high and valence band nonparabolicities, which are known to lead to the large gains of the phonon limited mobility at a zero field in narrow wires. Nonetheless, the hole mobility in the unstressed wires down to the 5 nm size remains competitive or shows an enhancement at high gate field over the large wire limit. Down to the studied 3 nm sizes, the hole mobility is degraded by strong surface roughness scattering in and wires. The channels are shown to experience less surface scattering degradation. The physics of the surface roughness scattering dependence on wafer and channel orientations in a wire is discussed. The calculated uniaxial compressive channel stress gains of the hole mobility are found to reduce in the narrow wires and at the high field. This exacerbates the stressed mobility degradation with size. Nonetheless, stress gains of a factor of 2 are obtained for wires down to 3 nm size at a 5×1012 cm-2 hole inversion density per gate area.
Self-consistent hybrid functionals for solids: a fully-automated implementation
Erba, A.
2017-08-01
A fully-automated algorithm for the determination of the system-specific optimal fraction of exact exchange in self-consistent hybrid functionals of the density-functional-theory is illustrated, as implemented into the public Crystal program. The exchange fraction of this new class of functionals is self-consistently updated proportionally to the inverse of the dielectric response of the system within an iterative procedure (Skone et al 2014 Phys. Rev. B 89, 195112). Each iteration of the present scheme, in turn, implies convergence of a self-consistent-field (SCF) and a coupled-perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) procedure. The present implementation, beside improving the user-friendliness of self-consistent hybrids, exploits the unperturbed and electric-field perturbed density matrices from previous iterations as guesses for subsequent SCF and CPHF/KS iterations, which is documented to reduce the overall computational cost of the whole process by a factor of 2.
Gate dielectric strength dependent performance of CNT MOSFET and CNT TFET: A tight binding study
Directory of Open Access Journals (Sweden)
Md. Shamim Sarker
Full Text Available This paper presents a comparative study between CNT MOSFET and CNT TFET taking into account of different dielectric strength of gate oxide materials. Here we have studied the transfer characteristics, on/off current (ION/IOFF ratio and subthreshold slope of the device using Non Equilibrium Greens Function (NEGF formalism in tight binding frameworks. The results are obtained by solving the NEGF and Poisson’s equation self-consistently in NanoTCADViDES environment and found that the ON state performance of CNT MOSFET and CNT TFET have significant dependency on the dielectric strength of the gate oxide materials. The figure of merits of the devices also demonstrates that the CNT TFET is promising for high-speed and low-power logic applications. Keywords: CNT TFET, Subthreshold slop, Barrier width, Conduction band (C.B and Valance band (V.B, Oxide dielectric strength, Tight binding approach
Kroonblawd, Matthew P; Pietrucci, Fabio; Saitta, Antonino Marco; Goldman, Nir
2018-04-10
We demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTB model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol -1 .
Self-consistent theory of finite Fermi systems and radii of nuclei
International Nuclear Information System (INIS)
Saperstein, E. E.; Tolokonnikov, S. V.
2011-01-01
Present-day self-consistent approaches in nuclear theory were analyzed from the point of view of describing distributions of nuclear densities. The generalized method of the energy density functional due to Fayans and his coauthors (this is the most successful version of the self-consistent theory of finite Fermi systems) was the first among the approaches under comparison. The second was the most successful version of the Skyrme-Hartree-Fock method with the HFB-17 functional due to Goriely and his coauthors. Charge radii of spherical nuclei were analyzed in detail. Several isotopic chains of deformed nuclei were also considered. Charge-density distributions ρ ch (r) were calculated for several spherical nuclei. They were compared with model-independent data extracted from an analysis of elastic electron scattering on nuclei.
Self-consistent Hartree-Fock RPA calculations in 208Pb
Taqi, Ali H.; Ali, Mohammed S.
2018-01-01
The nuclear structure of 208Pb is studied in the framework of the self-consistent random phase approximation (SCRPA). The Hartree-Fock mean field and single particle states are used to implement a completely SCRPA with Skyrme-type interactions. The Hamiltonian is diagonalised within a model space using five Skyrme parameter sets, namely LNS, SkI3, SkO, SkP and SLy4. In view of the huge number of the existing Skyrme-force parameterizations, the question remains which of them provide the best description of data. The approach attempts to accurately describe the structure of the spherical even-even nucleus 208Pb. To illustrate our approach, we compared the binding energy, charge density distribution, excitation energy levels scheme with the available experimental data. Moreover, we calculated isoscalar and isovector monopole, dipole, and quadrupole transition densities and strength functions.
Dielectric response of molecules in empirical tight-binding theory
Boykin, Timothy B.; Vogl, P.
2002-01-01
In this paper we generalize our previous approach to electromagnetic interactions within empirical tight-binding theory to encompass molecular solids and isolated molecules. In order to guarantee physically meaningful results, we rederive the expressions for relevant observables using commutation relations appropriate to the finite tight-binding Hilbert space. In carrying out this generalization, we examine in detail the consequences of various prescriptions for the position and momentum operators in tight binding. We show that attempting to fit parameters of the momentum matrix directly generally results in a momentum operator which is incompatible with the underlying tight-binding model, while adding extra position parameters results in numerous difficulties, including the loss of gauge invariance. We have applied our scheme, which we term the Peierls-coupling tight-binding method, to the optical dielectric function of the molecular solid PPP, showing that this approach successfully predicts its known optical properties even in the limit of isolated molecules.
Czech Academy of Sciences Publication Activity Database
Kubař, Tomáš; Jurečka, Petr; Černý, Jiří; Řezáč, Jan; Otyepka, M.; Valdes, Haydee; Hobza, Pavel
2007-01-01
Roč. 111, č. 26 (2007), s. 5642-5647 ISSN 1089-5639 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550510; GA ČR(CZ) GD203/05/H001; GA ČR GA203/05/0009 Institutional research plan: CEZ:AV0Z40550506 Keywords : density functional theory * empirical dispersion-energy term * non-covalent interactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.918, year: 2007
Self-consistent studies of magnetic thin film Ni (001)
International Nuclear Information System (INIS)
Wang, C.S.; Freeman, A.J.
1979-01-01
Advances in experimental methods for studying surface phenomena have provided the stimulus to develop theoretical methods capable of interpreting this wealth of new information. Of particular interest have been the relative roles of bulk and surface contributions since in several important cases agreement between experiment and bulk self-consistent (SC) calculations within the local spin density functional formalism (LSDF) is lacking. We discuss our recent extension of the (LSDF) approach to the study of thin films (slabs) and the role of surface effects on magnetic properties. Results are described for Ni (001) films using our new SC numerical basis set LCAO method. Self-consistency within the superposition of overlapping spherical atomic charge density model is obtained iteratively with the atomic configuration as the adjustable parameter. Results are presented for the electronic charge densities and local density of states. The origin and role of (magnetic) surface states is discussed by comparison with results of earlier bulk calculations
International Nuclear Information System (INIS)
Rasolt, M.; Vignale, G.
1992-03-01
We formulate the current-density functional theory for systems in arbitrarily strong magnetic fields. A set of self-consistent equations comparable to the Kohn-Sham equations for ordinary density functional theory is derived, and proved to be gauge-invariant and to satisfy the continuity equation. These equations of Vignale and Rasolt involve the gauge field corresponding to the external magnetic field as well as a new gauge field generated entirely from the many-body interactions. We next extend this gauge theory (following Rasolt and Vignale) to a lattice Lagrangian believed to be appropriate to a tight-binding Hamiltonian in the presence of an external magnetic field. We finally examine the nature of the ground state of a strongly nonuniform electron gas in the presence of this many-body self-induced gauge field
Surakhot, Yaowarat; Laszlo, Viktor; Chitpakdee, Chirawat; Promarak, Vinich; Sudyoadsuk, Taweesak; Kungwan, Nawee; Kowalczyk, Tim; Irle, Stephan; Jungsuttiwong, Siriporn
2017-05-05
The search for greater efficiency in organic dye-sensitized solar cells (DSCs) and in their perovskite cousins is greatly aided by a more complete understanding of the spectral and morphological properties of the photoactive layer. This investigation resolves a discrepancy in the observed photoconversion efficiency (PCE) of two closely related DSCs based on carbazole-containing D-π-A organic sensitizers. Detailed theoretical characterization of the absorption spectra, dye adsorption on TiO 2 , and electronic couplings for charge separation and recombination permit a systematic determination of the origin of the difference in PCE. Although the two dyes produce similar spectral features, ground- and excited-state density functional theory (DFT) simulations reveal that the dye with the bulkier donor group adsorbs more strongly to TiO 2 , experiences limited π-π aggregation, and is more resistant to loss of excitation energy via charge recombination on the dye. The effects of conformational flexibility on absorption spectra and on the electronic coupling between the bright exciton and charge-transfer states are revealed to be substantial and are characterized through density-functional tight-binding (DFTB) molecular dynamics sampling. These simulations offer a mechanistic explanation for the superior open-circuit voltage and short-circuit current of the bulky-donor dye sensitizer and provide theoretical justification of an important design feature for the pursuit of greater photocurrent efficiency in DSCs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
From structure to spectra. Tight-binding theory of InGaAs quantum dots
International Nuclear Information System (INIS)
Goldmann, Elias
2014-01-01
Self-assembled semiconductor quantum dots have raised considerable interest in the last decades due to a multitude of possible applications ranging from carrier storage to light emitters, lasers and future quantum communication devices. Quantum dots offer unique electronic and photonic properties due to the three-dimensional confinement of charge carriers and the coupling to a quasi-continuum of wetting layer and barrier states. In this work we investigate the electronic structure of In x Ga 1-x As quantum dots embedded in GaAs, considering realistic quantum dot geometries and Indium concentrations. We utilize a next-neighbour sp 3 s * tight-binding model for the calculation of electronic single-particle energies and wave functions bound in the nanostructure and account for strain arising from lattice mismatch of the constituent materials atomistically. With the calculated single-particle wave functions we derive Coulomb matrix elements and include them into a configuration interaction treatment, yielding many-particle states and energies of the interacting many-carrier system. Also from the tight-binding single-particle wave functions we derive dipole transition strengths to obtain optical quantum dot emission and absorption spectra with Fermi's golden rule. Excitonic fine-structure splittings are obtained, which play an important role for future quantum cryptography and quantum communication devices for entanglement swapping or quantum repeating. For light emission suited for long-range quantum-crypted fiber communication InAs quantum dots are embedded in an In x Ga 1-x As strain-reducing layer, shifting the emission wavelength into telecom low-absorption windows. We investigate the influence of the strain-reducing layer Indium concentration on the excitonic finestructure splitting. The fine-structure splitting is found to saturate and, in some cases, even reduce with strain-reducing layer Indium concentration, a result being counterintuitively. Our result
From structure to spectra. Tight-binding theory of InGaAs quantum dots
Energy Technology Data Exchange (ETDEWEB)
Goldmann, Elias
2014-07-23
Self-assembled semiconductor quantum dots have raised considerable interest in the last decades due to a multitude of possible applications ranging from carrier storage to light emitters, lasers and future quantum communication devices. Quantum dots offer unique electronic and photonic properties due to the three-dimensional confinement of charge carriers and the coupling to a quasi-continuum of wetting layer and barrier states. In this work we investigate the electronic structure of In{sub x}Ga{sub 1-x}As quantum dots embedded in GaAs, considering realistic quantum dot geometries and Indium concentrations. We utilize a next-neighbour sp{sup 3}s{sup *} tight-binding model for the calculation of electronic single-particle energies and wave functions bound in the nanostructure and account for strain arising from lattice mismatch of the constituent materials atomistically. With the calculated single-particle wave functions we derive Coulomb matrix elements and include them into a configuration interaction treatment, yielding many-particle states and energies of the interacting many-carrier system. Also from the tight-binding single-particle wave functions we derive dipole transition strengths to obtain optical quantum dot emission and absorption spectra with Fermi's golden rule. Excitonic fine-structure splittings are obtained, which play an important role for future quantum cryptography and quantum communication devices for entanglement swapping or quantum repeating. For light emission suited for long-range quantum-crypted fiber communication InAs quantum dots are embedded in an In{sub x}Ga{sub 1-x}As strain-reducing layer, shifting the emission wavelength into telecom low-absorption windows. We investigate the influence of the strain-reducing layer Indium concentration on the excitonic finestructure splitting. The fine-structure splitting is found to saturate and, in some cases, even reduce with strain-reducing layer Indium concentration, a result being
A Self Consistent Multiprocessor Space Charge Algorithm that is Almost Embarrassingly Parallel
International Nuclear Information System (INIS)
Nissen, Edward; Erdelyi, B.; Manikonda, S.L.
2012-01-01
We present a space charge code that is self consistent, massively parallelizeable, and requires very little communication between computer nodes; making the calculation almost embarrassingly parallel. This method is implemented in the code COSY Infinity where the differential algebras used in this code are important to the algorithm's proper functioning. The method works by calculating the self consistent space charge distribution using the statistical moments of the test particles, and converting them into polynomial series coefficients. These coefficients are combined with differential algebraic integrals to form the potential, and electric fields. The result is a map which contains the effects of space charge. This method allows for massive parallelization since its statistics based solver doesn't require any binning of particles, and only requires a vector containing the partial sums of the statistical moments for the different nodes to be passed. All other calculations are done independently. The resulting maps can be used to analyze the system using normal form analysis, as well as advance particles in numbers and at speeds that were previously impossible.
Full charge-density calculation of the surface energy of metals
DEFF Research Database (Denmark)
Vitos, Levente; Kollár, J..; Skriver, Hans Lomholt
1994-01-01
of a spherically symmetrized charge density, while the Coulomb and exchange-correlation contributions are calculated by means of the complete, nonspherically symmetric charge density within nonoverlapping, space-filling Wigner-Seitz cells. The functional is used to assess the convergence and the accuracy......We have calculated the surface energy and the work function of the 4d metals by means of an energy functional based on a self-consistent, spherically symmetric atomic-sphere potential. In this approach the kinetic energy is calculated completely within the atomic-sphere approximation (ASA) by means...... of the linear-muffin-tin-orbitals (LMTO) method and the ASA in surface calculations. We find that the full charge-density functional improves the agreement with recent full-potential LMTO calculations to a level where the average deviation in surface energy over the 4d series is down to 10%....
Nuclear charge-exchange excitations in a self-consistent covariant approach
International Nuclear Information System (INIS)
Liang, Haozhao
2010-01-01
Nowadays, charge-exchange excitations in nuclei become one of the central topics in nuclear physics and astrophysics. Basically, a systematic pattern of the energy and collectivity of these excitations could provide direct information on the spin and isospin properties of the in-medium nuclear interaction, and the equation of state of asymmetric nuclear matter. Furthermore, a basic and critical quantity in nuclear structure, neutron skin thickness, can be determined indirectly by the sum rule of spin-dipole resonances (SDR) or the excitation energy spacing between the isobaric analog states (IAS) and Gamow-Teller resonances (GTR). More generally, charge-exchange excitations allow one to attack other kinds of problems outside the realm of nuclear structure, like the description of neutron star and supernova evolutions, the β-decay of nuclei which lie on the r-process path of stellar nucleosynthesis, and the neutrino-nucleus cross sections. They also play an essential role in extracting the value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V ud via the nuclear 0 + → 0 + superallowed Fermi β decays. For all these reasons, it is important to develop the microscopic theories of charge-exchange excitations and it is the main motivation of the present work. In this work, a fully self-consistent charge-exchange relativistic random phase approximation (RPA) based on the relativistic Hartree-Fock (RHF) approach is established. Its self-consistency is verified by the so-called IAS check. This approach is then applied to investigate the nuclear spin-isospin resonances, isospin symmetry-breaking corrections for the superallowed β decays, and the charged-current neutrino-nucleus cross sections. For two important spin-isospin resonances, GTR and SDR, it is shown that a very satisfactory agreement with the experimental data can be obtained without any readjustment of the energy functional. Furthermore, the isoscalar mesons are found to play an essential role in spin
Communication: A difference density picture for the self-consistent field ansatz
Energy Technology Data Exchange (ETDEWEB)
Parrish, Robert M.; Liu, Fang; Martínez, Todd J., E-mail: toddjmartinez@gmail.com [Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)
2016-04-07
We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this “difference self-consistent field (dSCF)” picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TERACHEM SCF implementation.
Communication: A difference density picture for the self-consistent field ansatz
International Nuclear Information System (INIS)
Parrish, Robert M.; Liu, Fang; Martínez, Todd J.
2016-01-01
We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this “difference self-consistent field (dSCF)” picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TERACHEM SCF implementation.
Communication: A difference density picture for the self-consistent field ansatz
Parrish, Robert M.; Liu, Fang; Martínez, Todd J.
2016-04-01
We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this "difference self-consistent field (dSCF)" picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TeraChem SCF implementation.
Orthogonal bases of radial functions for charge density refinements
International Nuclear Information System (INIS)
Restori, R.
1990-01-01
Charge density determination from X-ray measurements necessitates the evaluation of the Fourier-Bessel transforms of the radial functions used to expand the charge density. Analytical expressions are given here for four sets of orthogonal functions which can substitute for the 'traditional exponential functions' set in least-squares refinements. (orig.)
Self-consistent modelling of resonant tunnelling structures
DEFF Research Database (Denmark)
Fiig, T.; Jauho, A.P.
1992-01-01
We report a comprehensive study of the effects of self-consistency on the I-V-characteristics of resonant tunnelling structures. The calculational method is based on a simultaneous solution of the effective-mass Schrödinger equation and the Poisson equation, and the current is evaluated...... applied voltages and carrier densities at the emitter-barrier interface. We include the two-dimensional accumulation layer charge and the quantum well charge in our self-consistent scheme. We discuss the evaluation of the current contribution originating from the two-dimensional accumulation layer charges......, and our qualitative estimates seem consistent with recent experimental studies. The intrinsic bistability of resonant tunnelling diodes is analyzed within several different approximation schemes....
Transferable tight-binding model for strained group IV and III-V materials and heterostructures
Tan, Yaohua; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard
2016-07-01
It is critical to capture the effect due to strain and material interface for device level transistor modeling. We introduce a transferable s p3d5s* tight-binding model with nearest-neighbor interactions for arbitrarily strained group IV and III-V materials. The tight-binding model is parametrized with respect to hybrid functional (HSE06) calculations for varieties of strained systems. The tight-binding calculations of ultrasmall superlattices formed by group IV and group III-V materials show good agreement with the corresponding HSE06 calculations. The application of the tight-binding model to superlattices demonstrates that the transferable tight-binding model with nearest-neighbor interactions can be obtained for group IV and III-V materials.
Lin, M. C.; Verboncoeur, J.
2016-10-01
A maximum electron current transmitted through a planar diode gap is limited by space charge of electrons dwelling across the gap region, the so called space charge limited (SCL) emission. By introducing a counter-streaming ion flow to neutralize the electron charge density, the SCL emission can be dramatically raised, so electron current transmission gets enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of maximum transmission by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a comparison for verification of simulation codes, as well as extension to higher dimensions.
Energy Technology Data Exchange (ETDEWEB)
Hegde, Ganesh, E-mail: ghegde@purdue.edu; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard, E-mail: gekco@purdue.edu [Network for Computational Nanotechnology (NCN), Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Boykin, Timothy [Department of Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama (United States)
2014-03-28
Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.
International Nuclear Information System (INIS)
Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard; Boykin, Timothy
2014-01-01
Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales
Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard
2014-03-01
Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.
Self-contained filtered density function
Nouri, A. G.; Nik, M. B.; Givi, P.; Livescu, D.; Pope, S. B.
2017-09-01
The filtered density function (FDF) closure is extended to a "self-contained" format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
Nanoscale capacitance: A quantum tight-binding model
Zhai, Feng; Wu, Jian; Li, Yang; Lu, Jun-Qiang
2017-01-01
Landauer-Buttiker formalism with the assumption of semi-infinite electrodes as reservoirs has been the standard approach in modeling steady electron transport through nanoscale devices. However, modeling dynamic electron transport properties, especially nanoscale capacitance, is a challenging problem because of dynamic contributions from electrodes, which is neglectable in modeling macroscopic capacitance and mesoscopic conductance. We implement a self-consistent quantum tight-binding model to calculate capacitance of a nano-gap system consisting of an electrode capacitance C‧ and an effective capacitance Cd of the middle device. From the calculations on a nano-gap made of carbon nanotube with a buckyball therein, we show that when the electrode length increases, the electrode capacitance C‧ moves up while the effective capacitance Cd converges to a value which is much smaller than the electrode capacitance C‧. Our results reveal the importance of electrodes in modeling nanoscale ac circuits, and indicate that the concepts of semi-infinite electrodes and reservoirs well-accepted in the steady electron transport theory may be not applicable in modeling dynamic transport properties.
International Nuclear Information System (INIS)
Lin, M. C.; Lu, P. S.; Chang, P. C.; Ragan-Kelley, B.; Verboncoeur, J. P.
2014-01-01
Recently, field emission has attracted increasing attention despite the practical limitation that field emitters operate below the Child-Langmuir space charge limit. By introducing counter-streaming ion flow to neutralize the electron charge density, the space charge limited field emission (SCLFE) current can be dramatically enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of SCLFE by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a benchmark or comparison for verification of simulation codes, as well as extension to higher dimensions
Self-interaction corrected density functional calculations of molecular Rydberg states
International Nuclear Information System (INIS)
Gudmundsdóttir, Hildur; Zhang, Yao; Weber, Peter M.; Jónsson, Hannes
2013-01-01
A method is presented for calculating the wave function and energy of Rydberg excited states of molecules. A good estimate of the Rydberg state orbital is obtained using ground state density functional theory including Perdew-Zunger self-interaction correction and an optimized effective potential. The total energy of the excited molecule is obtained using the Delta Self-Consistent Field method where an electron is removed from the highest occupied orbital and placed in the Rydberg orbital. Results are presented for the first few Rydberg states of NH 3 , H 2 O, H 2 CO, C 2 H 4 , and N(CH 3 ) 3 . The mean absolute error in the energy of the 33 molecular Rydberg states presented here is 0.18 eV. The orbitals are represented on a real space grid, avoiding the dependence on diffuse atomic basis sets. As in standard density functional theory calculations, the computational effort scales as NM 2 where N is the number of orbitals and M is the number of grid points included in the calculation. Due to the slow scaling of the computational effort with system size and the high level of parallelism in the real space grid approach, the method presented here makes it possible to estimate Rydberg electron binding energy in large molecules
Structure of the Pds5-Scc1 Complex and Implications for Cohesin Function
Directory of Open Access Journals (Sweden)
Kyle W. Muir
2016-03-01
Full Text Available Sister chromatid cohesion is a fundamental prerequisite to faithful genome segregation. Cohesion is precisely regulated by accessory factors that modulate the stability with which the cohesin complex embraces chromosomes. One of these factors, Pds5, engages cohesin through Scc1 and is both a facilitator of cohesion, and, conversely also mediates the release of cohesin from chromatin. We present here the crystal structure of a complex between budding yeast Pds5 and Scc1, thus elucidating the molecular basis of Pds5 function. Pds5 forms an elongated HEAT repeat that binds to Scc1 via a conserved surface patch. We demonstrate that the integrity of the Pds5-Scc1 interface is indispensable for the recruitment of Pds5 to cohesin, and that its abrogation results in loss of sister chromatid cohesion and cell viability.
Energy Technology Data Exchange (ETDEWEB)
Shneyder, E.I., E-mail: shneyder@iph.krasn.ru [Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036 (Russian Federation); Reshetnev Siberian State Aerospace University, Krasnoyarsk 660014 (Russian Federation); Spitaler, J. [Materials Center Leoben Forschung GmbH, Rosegger-Straße 18, A-8700 Leoben (Austria); Kokorina, E.E.; Nekrasov, I.A. [Institute of Electrophysics UB RAS, Amundsena Str. 106, 620016 Yekaterinburg (Russian Federation); Gavrichkov, V.A. [Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036 (Russian Federation); Draxl, C. [Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 Berlin (Germany); Ovchinnikov, S.G. [Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036 (Russian Federation)
2015-11-05
We present results for the electron-phonon interaction of the Γ-point phonons in the tetragonal high-temperature phase of La{sub 2} CuO{sub 4} obtained from a hybrid scheme, combining density-functional theory (DFT) with the generalized tight-binding approach. As a starting point, eigenfrequencies and eigenvectors for the Γ-point phonons are determined from DFT within the frozen phonon approach utilizing the augmented plane wave + local orbitals method. The so obtained characteristics of electron-phonon coupling are converted into parameters of the generalized tight-binding method. This approach is a version of cluster perturbation theory and takes the strong on-site electron correlations into account. The obtained parameters describe the interaction of phonons with Hubbard fermions which form quasiparticle bands in strongly correlated electron systems. As a result, it is found that the Γ-point phonons with the strongest electron-phonon interaction are the A{sub 2u} modes (236 cm{sup −1}, 131 cm{sup −1} and 476 cm{sup −1}). Finally it is shown, that the single-electron spectral-weight redistribution between different Hubbard fermion quasiparticles results in a suppression of electron-phonon interaction which is strongest for the triplet Hubbard band with z oriented copper and oxygen electrons. - Highlights: • Electron-phonon interaction in strongly correlated electron systems is analyzed. • Interaction parameters between strongly correlated electrons and phonons are obtained. • The suppression of these parameters by strong electron correlations is demonstrated.
International Nuclear Information System (INIS)
Nobile, A.; Tosatti, E.
1979-05-01
The coexistence of tight-binding and exchange-correlation effects inside each chain of a model quasi-one-dimensional metal, on both plasmon and charge density wave properties have been studied. The results, while in qualitative agreement with other treatments of the problem at long wavelengths, indicate a strong tendency for plasmons to turn into excitons at larger momenta, and to exhibit an ''excitonic'' charge-density wave instability at k approximately 2ksub(F). The nature of the plasmon branches and of the excitonic charge distortion is examined. Relevance to existing quasi-one-dimensional materials is also discussed. (author)
Self-contained filtered density function
International Nuclear Information System (INIS)
Nouri, Arash G.; Pope, Stephen B.
2017-01-01
The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
International Nuclear Information System (INIS)
Abedi Ravan, B
2012-01-01
In this paper, the electronic transport characteristics of Fe/trans-polyacetylene/Fe magnetic tunnel junctions (MTJs) are investigated using multi-band tight-binding calculations within the framework of nonequilibrium Green function theory. A CH 2 radical is added to different positions on the polymer chain and its effects on the tunnelling magnetoresistance of the MTJ are studied. The ferromagnetic electrodes are assumed to be single-band and their tight-binding parameters are chosen in such a way as to simulate the ab initio density functional calculations of the band structure of bcc-Fe along its [001] crystallographic direction. In building the Hamiltonian of the trans-polyacetylene (t-PA) chain, we have assumed an s orbital on the H atoms and one s and three p(p x ,p y ,p z ) orbitals on the C atoms, and the dimerization effects are taken into account. It is found that moving the radical out of the centre of the polymer chain enhances the tunnelling magnetoresistance of the MTJ.
Weng, Meng-Hsiung; Ju, Shin-Pon; Chen, Hsin-Tsung; Chen, Hui-Lung; Lu, Jian-Ming; Lin, Ken-Huang; Lin, Jenn-Sen; Hsieh, Jin-Yuan; Yang, Hsi-Wen
2013-02-01
The adsorption and dissociation properties of carbon monoxide (CO) molecule on tungsten W(n) (n = 10-15) nanoparticles have been investigated by density-functional theory (DFT) calculations. The lowest-energy structures for W(n) (n = 10-15) nanoparticles are found by the basin-hopping method and big-bang method with the modified tight-binding many-body potential. We calculated the corresponding adsorption energies, C-O bond lengths and dissociation barriers for adsorption of CO on nanoparticles. The electronic properties of CO on nanoparticles are studied by the analysis of density of state and charge density. The characteristic of CO on W(n) nanoparticles are also compared with that of W bulk.
Low-order moment expansions to tight binding for interatomic potentials: Successes and failures
International Nuclear Information System (INIS)
Kress, J.D.; Voter, A.F.
1995-01-01
We discuss the use of moment-based approximations to tight binding. Using a maximum entropy form for the electronic density of states, we show that a general interatomic potential can be defined that is suitable for molecular-dynamics simulations and has several other desirable features. For covalent materials (C and Si), properties where the atoms are in equivalent environments are well converged at low-order moments. For defect environments, which offer a more critical (and relevant) test, the method is found to give less satisfactory results. For example, the vacancy formation energy for Si is too low by ∼2 eV at 10 moments relative to exact tight binding. Attempts to improve the accuracy were unsuccessful, leading to the conclusion that potentials based on this approach are inadequate for covalent materials. We speculate that this may be a deficiency of low-order moment methods in general. For metals, in contrast to the covalent systems, we find that the low-order moment approach is better behaved. This finding is consistent with the success of existing empirical fourth-moment potentials for metals
Microwave emulations and tight-binding calculations of transport in polyacetylene
Energy Technology Data Exchange (ETDEWEB)
Stegmann, Thomas, E-mail: stegmann@icf.unam.mx [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Franco-Villafañe, John A., E-mail: jofravil@fis.unam.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla (Mexico); Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Ortiz, Yenni P. [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Kuhl, Ulrich [Université de Nice – Sophia Antipolis, Laboratoire de la Physique de la Matière Condensée, CNRS, Parc Valrose, 06108 Nice (France); Mortessagne, Fabrice, E-mail: fabrice.mortessagne@unice.fr [Université de Nice – Sophia Antipolis, Laboratoire de la Physique de la Matière Condensée, CNRS, Parc Valrose, 06108 Nice (France); Seligman, Thomas H. [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Centro Internacional de Ciencias, 62210 Cuernavaca (Mexico)
2017-01-05
A novel approach to investigate the electron transport of cis- and trans-polyacetylene chains in the single-electron approximation is presented by using microwave emulation measurements and tight-binding calculations. In the emulation we take into account the different electronic couplings due to the double bonds leading to coupled dimer chains. The relative coupling constants are adjusted by DFT calculations. For sufficiently long chains a transport band gap is observed if the double bonds are present, whereas for identical couplings no band gap opens. The band gap can be observed also in relatively short chains, if additional edge atoms are absent, which cause strong resonance peaks within the band gap. The experimental results are in agreement with our tight-binding calculations using the nonequilibrium Green's function method. The tight-binding calculations show that it is crucial to include third nearest neighbor couplings to obtain the gap in the cis-polyacetylene. - Highlights: • Electronic transport in individual polyacetylene chains is studied. • Microwave emulation experiments and tight-binding calculations agree well. • In long chains a band-gap opens due the dimerization of the chain. • In short chains edge atoms cause strong resonance peaks in the center of the band-gap.
Microwave emulations and tight-binding calculations of transport in polyacetylene
International Nuclear Information System (INIS)
Stegmann, Thomas; Franco-Villafañe, John A.; Ortiz, Yenni P.; Kuhl, Ulrich; Mortessagne, Fabrice; Seligman, Thomas H.
2017-01-01
A novel approach to investigate the electron transport of cis- and trans-polyacetylene chains in the single-electron approximation is presented by using microwave emulation measurements and tight-binding calculations. In the emulation we take into account the different electronic couplings due to the double bonds leading to coupled dimer chains. The relative coupling constants are adjusted by DFT calculations. For sufficiently long chains a transport band gap is observed if the double bonds are present, whereas for identical couplings no band gap opens. The band gap can be observed also in relatively short chains, if additional edge atoms are absent, which cause strong resonance peaks within the band gap. The experimental results are in agreement with our tight-binding calculations using the nonequilibrium Green's function method. The tight-binding calculations show that it is crucial to include third nearest neighbor couplings to obtain the gap in the cis-polyacetylene. - Highlights: • Electronic transport in individual polyacetylene chains is studied. • Microwave emulation experiments and tight-binding calculations agree well. • In long chains a band-gap opens due the dimerization of the chain. • In short chains edge atoms cause strong resonance peaks in the center of the band-gap.
International Nuclear Information System (INIS)
Xie, Z.L.; Dy, K.S.; Wu, S.Y.
1997-01-01
A real-space scheme has been developed for a first-principles calculation of electronic structures and total energies of atomic clusters. The scheme is based on the combination of the tight-binding linear muffin-tin orbital (TBLMTO) method and the method of real-space Green close-quote s function. With this approach, the local electronic density of states can be conveniently determined from the real-space Green close-quote s function. Furthermore, the full electron density of a cluster can be directly calculated in real space. The scheme has been shown to be very efficient due to the incorporation of the method of real-space Green close-quote s function and Delley close-quote s method of evaluating multicenter integrals. copyright 1996 The American Physical Society
A self-consistent first-principle based approach to model carrier mobility in organic materials
International Nuclear Information System (INIS)
Meded, Velimir; Friederich, Pascal; Symalla, Franz; Neumann, Tobias; Danilov, Denis; Wenzel, Wolfgang
2015-01-01
Transport through thin organic amorphous films, utilized in OLEDs and OPVs, has been a challenge to model by using ab-initio methods. Charge carrier mobility depends strongly on the disorder strength and reorganization energy, both of which are significantly affected by the details in environment of each molecule. Here we present a multi-scale approach to describe carrier mobility in which the materials morphology is generated using DEPOSIT, a Monte Carlo based atomistic simulation approach, or, alternatively by molecular dynamics calculations performed with GROMACS. From this morphology we extract the material specific hopping rates, as well as the on-site energies using a fully self-consistent embedding approach to compute the electronic structure parameters, which are then used in an analytic expression for the carrier mobility. We apply this strategy to compute the carrier mobility for a set of widely studied molecules and obtain good agreement between experiment and theory varying over several orders of magnitude in the mobility without any freely adjustable parameters. The work focuses on the quantum mechanical step of the multi-scale workflow, explains the concept along with the recently published workflow optimization, which combines density functional with semi-empirical tight binding approaches. This is followed by discussion on the analytic formula and its agreement with established percolation fits as well as kinetic Monte Carlo numerical approaches. Finally, we skatch an unified multi-disciplinary approach that integrates materials science simulation and high performance computing, developed within EU project MMM@HPC
Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura
2015-08-11
The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.
Self-consistency and coherent effects in nonlinear resonances
International Nuclear Information System (INIS)
Hofmann, I.; Franchetti, G.; Qiang, J.; Ryne, R. D.
2003-01-01
The influence of space charge on emittance growth is studied in simulations of a coasting beam exposed to a strong octupolar perturbation in an otherwise linear lattice, and under stationary parameters. We explore the importance of self-consistency by comparing results with a non-self-consistent model, where the space charge electric field is kept 'frozen-in' to its initial values. For Gaussian distribution functions we find that the 'frozen-in' model results in a good approximation of the self-consistent model, hence coherent response is practically absent and the emittance growth is self-limiting due to space charge de-tuning. For KV or waterbag distributions, instead, strong coherent response is found, which we explain in terms of absence of Landau damping
Phononic crystals of spherical particles: A tight binding approach
Energy Technology Data Exchange (ETDEWEB)
Mattarelli, M., E-mail: maurizio.mattarelli@fisica.unipg.it [NiPS Laboratory, Dipartimento di Fisica, Università di Perugia, Via Pascoli, 06100 Perugia (Italy); Secchi, M. [CMM - Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Trento (Italy); Montagna, M. [Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Trento (Italy)
2013-11-07
The vibrational dynamics of a fcc phononic crystal of spheres is studied and compared with that of a single free sphere, modelled either by a continuous homogeneous medium or by a finite cluster of atoms. For weak interaction among the spheres, the vibrational dynamics of the phononic crystal is described by shallow bands, with low degree of dispersion, corresponding to the acoustic spheroidal and torsional modes of the single sphere. The phonon displacements are therefore related to the vibrations of a sphere, as the electron wave functions in a crystal are related to the atomic wave functions in a tight binding model. Important dispersion is found for the two lowest phonon bands, which correspond to zero frequency free translation and rotation of a free sphere. Brillouin scattering spectra are calculated at some values of the exchanged wavevectors of the light, and compared with those of a single sphere. With weak interaction between particles, given the high acoustic impedance mismatch in dry systems, the density of phonon states consist of sharp bands separated by large gaps, which can be well accounted for by a single particle model. Based on the width of the frequency gaps, tunable with the particle size, and on the small number of dispersive acoustic phonons, such systems may provide excellent materials for application as sound or heat filters.
Theoretical model for the detection of charged proteins with a silicon-on-insulator sensor
International Nuclear Information System (INIS)
Birner, S; Uhl, C; Bayer, M; Vogl, P
2008-01-01
For a bio-sensor device based on a silicon-on-insulator structure, we calculate the sensitivity to specific charge distributions in the electrolyte solution that arise from protein binding to the semiconductor surface. This surface is bio-functionalized with a lipid layer so that proteins can specifically bind to the headgroups of the lipids on the surface. We consider charged proteins such as the green fluorescent protein (GFP) and artificial proteins that consist of a variable number of aspartic acids. Specifically, we calculate self-consistently the spatial charge and electrostatic potential distributions for different ion concentrations in the electrolyte. We fully take into account the quantum mechanical charge density in the semiconductor. We determine the potential change at the binding sites as a function of protein charge and ionic strength. Comparison with experiment is generally very good. Furthermore, we demonstrate the superiority of the full Poisson-Boltzmann equation by comparing its results to the simplified Debye-Hueckel approximation
Self-consistent spectral function for non-degenerate Coulomb systems and analytic scaling behaviour
International Nuclear Information System (INIS)
Fortmann, Carsten
2008-01-01
Novel results for the self-consistent single-particle spectral function and self-energy are presented for non-degenerate one-component Coulomb systems at various densities and temperatures. The GW (0) -method for the dynamical self-energy is used to include many-particle correlations beyond the quasi-particle approximation. The self-energy is analysed over a broad range of densities and temperatures (n = 10 17 cm -3 -10 27 cm -3 , T = 10 2 eV/k B -10 4 eV/k B ). The spectral function shows a systematic behaviour, which is determined by collective plasma modes at small wavenumbers and converges towards a quasi-particle resonance at higher wavenumbers. In the low density limit, the numerical results comply with an analytic scaling law that is presented for the first time. It predicts a power-law behaviour of the imaginary part of the self-energy, ImΣ ∼ -n 1/4 . This resolves a long time problem of the quasi-particle approximation which yields a finite self-energy at vanishing density
MANAGING TIGHT BINDING RECEPTORS FOR NEW SPEARATIONS TECHNOLOGIES
Energy Technology Data Exchange (ETDEWEB)
DARYLE H BUSCH RICHARD S GIVENS
2004-12-10
even more interesting. They convert from rings to structures that wrap around a metal ion to form a cage. These ligands are called cryptands. Switch release is accomplished by photolytic cleavage of a bond to convert a cyclic ligand into a linear ligand or to break similar bonds in a cryptate. Our studies have demonstrated switch binding and switch release with cryptates of calcium. These remarkable cyclic ligands and cage-like ligands are indeed tight-binding and may, in principle, be incorporated in various separations methodologies, including the soil poultice. The soil poultice mimics the way in which microbes secrete extremely powerful ligands into the soil in order to harvest iron. The cellular membrane of the microbe recognizes the iron/ligand complex and admits it into the cell. The soil poultice uses molecularly imprinted polymers (MIPs) to play the role of the cellular membrane. Imprinting involves creation of the polymer in the presence of the metal/ligand complex. In principle, a well design ligand/MIP combination can be highly selective toward almost any targeted metal ion. The principles for that design are the focus of these investigations. An imprinting molecule can interact with the polymer through any, some, or all of the so-called supramolecular modes; e.g., hydrogen bonding, electrostatic charge, minor ligand bonding, Pi-Pi stacking, and hydrophobic and van der Waals interactions. Historically these modes of binding have given MIPs only small re-binding capacities and very limited selectivities. This program has shown that each mode of interaction can be made more powerful than previously suspected and that combinations of different supramolecular interaction modes can produce remarkable synergisms. The results of this systematic study provide a firm foundation for tailoring molecular imprinted polymers for reclamation of specific metal ion, including those important to the DOE EM mission.
International Nuclear Information System (INIS)
Fathalian, A.
2012-01-01
A theoretical approach based on a tight-binding model is developed to study the effects of the adsorption of finite concentrations of C 6 H 5 gas molecules on double-walled carbon nanotube (DWCNT) electronic properties. To obtain proper hopping integrals and random on-site energies for the case of one molecule adsorption, the local density of states for various hopping integrals and random on-site energies are calculated. Since C 6 H 5 molecule is a donor with respect to the carbon nanotubes and their states should appear near the conduction band of the system, effects of various hopping integral deviations and on-site energies for one molecule adsorption are considered to find proper hopping and on-site energies consistent with expected n-type semiconductor. We found that adsorption of C 6 H 5 gas molecules could lead to a (8.0)-(20.0) DWCNT n-type semiconductor. The width of impurity adsorbed gas states in the density of states could be controlled by adsorbed gas concentration.
Porosity of Self-Compacting Concrete (SCC) incorporating high volume fly ash
Kristiawan, S. A.; Sunarmasto; Murti, G. Y.
2017-02-01
Degradation of concrete could be triggered by the presence of aggressive agents from the environment into the body of concrete. The penetration of these agents is influenced by the pore characteristics of the concrete. Incorporating a pozzolanic material such as fly ash could modify the pore characteristic of the concrete. This research aims to investigate the influence of incorporating fly ash at high volume level on the porosity of Self-Compacting Concrete (SCC). Laboratory investigations were carried out following the ASTM C642 for measuring density and volume of permeable pores (voids) of the SCC with varying fly ash contents (50-70% by weight of total binder). In addition, a measurement of permeable voids by saturation method was carried out to obtain an additional volume of voids that could not be measured by the immersion and boiling method of ASTM C642. The results show that the influence of fly ash content on the porosity appears to be dependent on age of SCC. At age less than 56 d, fly ash tends to cause an increase of voids but at 90 d of age it reduces the pores. The additional pores that can be penetrated by vacuum saturation method counts about 50% of the total voids.
Self-consistent simulation studies of periodically focused intense charged-particle beams
International Nuclear Information System (INIS)
Chen, C.; Jameson, R.A.
1995-01-01
A self-consistent two-dimensional model is used to investigate intense charged-particle beam propagation through a periodic solenoidal focusing channel, particularly in the regime in which there is a mismatch between the beam and the focusing channel. The present self-consistent studies confirm that mismatched beams exhibit nonlinear resonances and chaotic behavior in the envelope evolution, as predicted by an earlier envelope analysis [C. Chen and R. C. Davidson, Phys. Rev. Lett. 72, 2195 (1994)]. Transient effects due to emittance growth are studied, and halo formation is investigated. The halo size is estimated. The halo characteristics for a periodic focusing channel are found to be qualitatively the same as those for a uniform focusing channel. A threshold condition is obtained numerically for halo formation in mismatched beams in a uniform focusing channel, which indicates that relative envelope mismatch must be kept well below 20% to prevent space-charge-dominated beams from developing halos
Density functional theory calculations of charge transport properties ...
Indian Academy of Sciences (India)
ZIRAN CHEN
2017-08-04
Aug 4, 2017 ... properties of 'plate-like' coronene topological structures ... Keywords. Organic semiconductors; density functional theory; charge carrier mobility; ambipolar transport; ..... nology Department of Sichuan Province (Grant Number.
Charge Density Waves and the Hidden Nesting of Purple Bronze KMo6O17
Su, Lei; Pereira, Vitor
The layered purple bronze KMo6O17, with its robust triple CDW phase up to high temperatures, became the emblematic example of the ''hidden nesting'' concept. Recent experiments suggest that, on the surface layers, its CDW phase can be stabilized at much higher temperatures, and with a tenfold increase in the electronic gap in comparison with the bulk. Despite such interesting fermiology and properties, the K and Na purple bronzes remain largely unexplored systems, most particularly so at the theoretical level. We introduce the first multi-orbital effective tight-binding model to describe the effect of electron-electron interactions in this system. Upon fixing all the effective hopping parameters in the normal state against an ab-initio band structure, and with only the overall scale of the interactions as sole adjustable parameter, we find that a self-consistent Hartree-Fock solution reproduces extremely well the experimental behavior of the charge density wave (CDW) order parameter in the full range 0 < T < Tc , as well as the precise reciprocal space locations of the partial gap opening and Fermi arc development. The interaction strengths extracted from fitting to the experimental CDW gap are consistent with those derived from an independent Stoner-type analysis This work was supported by the Singapore National Research Foundation under Grant NRF-CRP6-2010-05.
Injection space charge: enlargements of flux density functioning point choice
International Nuclear Information System (INIS)
Ropert, A.
In Saturne, injection consists of a synchrobetatron filling of the chamber, with the goal of providing a beam with the following characteristics circulating in the machine: horizontal flux density 90 πmm mrd, vertical flux density 210 πmm mrd, dispersion in moments +- 7 x 10 -3 , and number of particles 2 x 10 12 . The determination of the principal injection parameters was made by means of GOC calculation programs. The goal of this study is to show a certain number of phenomena induced by the forces due to space charge and left suspended up to this point: variations in the intensity injectable into the machine extension of the beam occupation zone in the ν/sub x'/ ν/sub z/ diagram, and turn-turn interactions. The effects of the space charge lead to a deterioration of the injected beam for certain functioning points leading to the selection of a zone in the ν/sub x'/ ν/sub z/ diagram that is particularly suitable for beam injection
Analysis of the tight-binding description of the structure of metallic 2D systems
International Nuclear Information System (INIS)
Baquero, R.
1990-12-01
Bidimensional metallic systems as interfaces, quantum wells and superlattices with sharp interfaces became recently available and their properties can now be experimentally studied in detail. To calculate the Local Density of States (LDOS) for surfaces, interfaces, quantum wells and superlattices we use empirical tight-binding Hamiltonians together with the Green function matching method (GFM). In this paper we show some examples of our results employing the method just outlined to describe metallic 2D systems. In particular, we refer briefly to the effect on the LDOS of the very recently established contraction of the first interatomic layer distance in the Ta(001) surface. We then discuss the Nb-V ideal (100) interface and conclude that under certain conditions the V-side of an interface can show magnetism as the V(001) surface does. As a last example, we present a calculation that relates the changes with gold coverage of the reaction rate of the catalytic reaction of cyclohexene into benzene on a Pt(001) surface to the changes on the LDOS of the outermost Pt atomic layer. We show that the behavior of the LDOS around the Fermi level is an important factor to the explanation of the behavior of this catalytic reaction. We conclude by stating that the empirical tight-binding method is a very simple and useful tool for the description of 2D metallic systems. The advantage is that the computational demands are low and all the ingredients to take full profit of this method are available (reliable tight-binding parameters and suitable methods for the calculation of the Green function). (author). 14 refs, 3 figs
International Nuclear Information System (INIS)
Bhattacharya, Sayak; Shah, Kushal
2015-01-01
The analytical dispersion relation of spoof surface plasmon (SSP) is known only in the low-frequency limit and thus cannot be used to describe various practically important characteristics of SSP in the high-frequency limit (such as multimodal nature, anisotropic propagation, self-collimation). In this article, we consider a square lattice of holes made on a perfect electric conductor and derive a closed form expression of the SSP dispersion relation in the high-frequency limit using a tight binding model. Instead of using prior knowledge of the band diagram along the entire first Brillouin zone (BZ) edge, we analytically determine the hopping parameters by using the eigenfrequencies only at the three high-symmetry points of the square lattice. Using this dispersion relation, we derive an expression for the self-collimation frequency of SSP. We show that this analytical formulation is also applicable to dielectric photonic crystals and can be used to predict the frequencies corresponding to centimetre-scale supercollimation and second band self-collimation in these structures. Finally, we show that our analytical results are in agreement with the simulation results for both SSP and photonic crystals. (paper)
Direct quantification of negatively charged functional groups on membrane surfaces
Tiraferri, Alberto
2012-02-01
Surface charge plays an important role in membrane-based separations of particulates, macromolecules, and dissolved ionic species. In this study, we present two experimental methods to determine the concentration of negatively charged functional groups at the surface of dense polymeric membranes. Both techniques consist of associating the membrane surface moieties with chemical probes, followed by quantification of the bound probes. Uranyl acetate and toluidine blue O dye, which interact with the membrane functional groups via complexation and electrostatic interaction, respectively, were used as probes. The amount of associated probes was quantified using liquid scintillation counting for uranium atoms and visible light spectroscopy for the toluidine blue dye. The techniques were validated using self-assembled monolayers of alkanethiols with known amounts of charged moieties. The surface density of negatively charged functional groups of hand-cast thin-film composite polyamide membranes, as well as commercial cellulose triacetate and polyamide membranes, was quantified under various conditions. Using both techniques, we measured a negatively charged functional group density of 20-30nm -2 for the hand-cast thin-film composite membranes. The ionization behavior of the membrane functional groups, determined from measurements with toluidine blue at varying pH, was consistent with published data for thin-film composite polyamide membranes. Similarly, the measured charge densities on commercial membranes were in general agreement with previous investigations. The relative simplicity of the two methods makes them a useful tool for quantifying the surface charge concentration of a variety of surfaces, including separation membranes. © 2011 Elsevier B.V.
Self-consistent coupling of atomic orbitals to a moving charge
International Nuclear Information System (INIS)
Da Costa, H.F.M.; Micha, D.A.
1994-01-01
The authors describe the time evolution of hydrogenic orbitals perturbed by a moving charge. Starting with the equation for an atom interacting with a charge, the authors use an eikonal representation of the total wave-function, followed by an eikonal approximation, to derive coupled differential equations for the temporal change of the orbitals and the charge's trajectory. The orbitals are represented by functions with complex exponents changing with time, describing electronic density and flux changes. For each orbital, they solve a set of six coupled differential equations; two of them are derived with a time-dependent variational procedure for the real and imaginary parts of the exponents, and the other four are the Hamilton equations of the positions and momenta of the moving charge. The molecular potentials are derived from the exact expressions for the electronic energies. Results of calculations for 1s and 2s orbitals show large variation of the real exponent parts over time, with respect to asymptotic values, and that imaginary parts remain small
Panda, Saswati; Sahoo, D. D.; Rout, G. C.
2018-04-01
We report here a tight binding model for colossal magnetoresistive (CMR) manganites to study the pseudo gap (PG) behavior near Fermi level. In the Kubo-Ohata type DE model, we consider first and second nearest neighbor interactions for transverse spin fluctuations in core band and hopping integrals in conduction band, in the presence of static band Jahn-Teller distortion. The model Hamiltonian is solved using Zubarev's Green's function technique. The electron density of states (DOS) is found out from the Green's functions. We observe clear PG near Fermi level in the electron DOS.
Multi-charge-state molecular dynamics and self-diffusion coefficient in the warm dense matter regime
Fu, Yongsheng; Hou, Yong; Kang, Dongdong; Gao, Cheng; Jin, Fengtao; Yuan, Jianmin
2018-01-01
We present a multi-ion molecular dynamics (MIMD) simulation and apply it to calculating the self-diffusion coefficients of ions with different charge-states in the warm dense matter (WDM) regime. First, the method is used for the self-consistent calculation of electron structures of different charge-state ions in the ion sphere, with the ion-sphere radii being determined by the plasma density and the ion charges. The ionic fraction is then obtained by solving the Saha equation, taking account of interactions among different charge-state ions in the system, and ion-ion pair potentials are computed using the modified Gordon-Kim method in the framework of temperature-dependent density functional theory on the basis of the electron structures. Finally, MIMD is used to calculate ionic self-diffusion coefficients from the velocity correlation function according to the Green-Kubo relation. A comparison with the results of the average-atom model shows that different statistical processes will influence the ionic diffusion coefficient in the WDM regime.
Energy Technology Data Exchange (ETDEWEB)
Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp [Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602 (Japan); Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602 (Japan)
2016-09-07
Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.
Characteristics of SCC with Fly Ash and Manufactured Sand
Praveen Kumar, K.; Radhakrishna
2016-09-01
Self compacting concrete (SCC) of M40 grade was designed. The binder in SCC consists of OPC and fly ash in the ratio of 65:35. River sand was replaced by manufactured sand (M-sand) at replacement levels of 20,40,60,80 and 100%. An attempt was made to evaluate the workability and strength characteristics of self compacting concrete with river sand and manufactured sand as fine aggregates. For each replacement level, constant workability was maintained by varying the dosage of superplasticizer. T50 flow time, V Funnel time, V-funnel T5 time as well as compressive, split tensile and flexural strength of SCC were found at each replacement level of M-sand. They were compared to SCC with river sand. Results indicate favourable use of M-sand in preparation of Self Compacting Concrete.
Bond index: relation to second-order density matrix and charge fluctuations
International Nuclear Information System (INIS)
Giambiagi, M.S. de; Giambiagi, M.; Jorge, F.E.
1985-01-01
It is shown that, in the same way as the atomic charge is an invariant built from the first-order density matrix, the closed-shell generalized bond index is an invariant associated with the second-order reduced density matrix. The active charge of an atom (sum of bond indices) is shown to be the sum of all density correlation functions between it and the other atoms in the molecule; similarly, the self-charge is the fluctuation of its total charge. (Author) [pt
Rectification of graphene self-switching diodes: First-principles study
Ghaziasadi, Hassan; Jamasb, Shahriar; Nayebi, Payman; Fouladian, Majid
2018-05-01
The first principles calculations based on self-consistent charge density functional tight-binding have performed to investigate the electrical properties and rectification behavior of the graphene self-switching diodes (GSSD). The devices contained two structures called CG-GSSD and DG-GSSD which have metallic or semiconductor gates depending on their side gates have a single or double hydrogen edge functionalized. We have relaxed the devices and calculated I-V curves, transmission spectrums and maximum rectification ratios. We found that the DG-MSM devices are more favorable and more stable. Also, the DG-MSM devices have better maximum rectification ratios and current. Moreover, by changing the side gates widths and behaviors from semiconductor to metal, the threshold voltages under forward bias changed from +1.2 V to +0.3 V. Also, the maximum currents are obtained from 1.12 μA to 10.50 μA. Finally, the MSM and SSS type of all devices have minimum and maximum values of voltage threshold and maximum rectification ratios, but the 769-DG devices don't obey this rule.
Directory of Open Access Journals (Sweden)
Guo-Jun Kang
2016-11-01
Full Text Available The electronic geometries and optical properties of two D-π-A type zinc porphyrin dyes (NCH3-YD2 and TPhe-YD were systematically investigated by density functional theory (DFT and time-dependent density functional theory (TD-DFT to reveal the origin of significantly altered charge transfer enhancement by changing the electron donor of the famous porphyrin-based sensitizer YD2-o-C8. The molecular geometries and photophysical properties of dyes before and after binding to the TiO2 cluster were fully investigated. From the analyses of natural bond orbital (NBO, extended charge decomposition analysis (ECDA, and electron density variations (Δρ between the excited state and ground state, it was found that the introduction of N(CH32 and 1,1,2-triphenylethene groups enhanced the intramolecular charge-transfer (ICT character compared to YD2-o-C8. The absorption wavelength and transition possess character were significantly influenced by N(CH32 and 1,1,2-triphenylethene groups. NCH3-YD2 with N(CH32 groups in the donor part is an effective way to improve the interactions between the dyes and TiO2 surface, light having efficiency (LHE, and free energy change (ΔGinject, which is expected to be an efficient dye for use in dye-sensitized solar cells (DSSCs.
International Nuclear Information System (INIS)
Wang, C.S.; Freeman, A.J.
1979-01-01
We present the self-consistent numerical-basis-set linear combination of atomic orbitals (LCAO) discrete variational method for treating the electronic structure of thin films. As in the case of bulk solids, this method provides for thin films accurate solutions of the one-particle local density equations with a non-muffin-tin potential. Hamiltonian and overlap matrix elements are evaluated accurately by means of a three-dimensional numerical Diophantine integration scheme. Application of this method is made to the self-consistent solution of one-, three-, and five-layer Ni(001) unsupported films. The LCAO Bloch basis set consists of valence orbitals (3d, 4s, and 4p states for transition metals) orthogonalized to the frozen-core wave functions. The self-consistent potential is obtained iteratively within the superposition of overlapping spherical atomic charge density model with the atomic configurations treated as adjustable parameters. Thus the crystal Coulomb potential is constructed as a superposition of overlapping spherically symmetric atomic potentials and, correspondingly, the local density Kohn-Sham (α = 2/3) potential is determined from a superposition of atomic charge densities. At each iteration in the self-consistency procedure, the crystal charge density is evaluated using a sampling of 15 independent k points in (1/8)th of the irreducible two-dimensional Brillouin zone. The total density of states (DOS) and projected local DOS (by layer plane) are calculated using an analytic linear energy triangle method (presented as an Appendix) generalized from the tetrahedron scheme for bulk systems. Distinct differences are obtained between the surface and central plane local DOS. The central plane DOS is found to converge rapidly to the DOS of bulk paramagnetic Ni obtained by Wang and Callaway. Only a very small surplus charge (0.03 electron/atom) is found on the surface planes, in agreement with jellium model calculations
Phillips, Jordan J; Peralta, Juan E
2012-09-11
Semilocal functionals generally yield poor magnetic exchange couplings for transition-metal complexes, typically overpredicting in magnitude the experimental values. Here we show that semilocal functionals evaluated nonself-consistently on densities from hybrid functionals can yield magnetic exchange couplings that are greatly improved with respect to their self-consistent semilocal values. Furthermore, when semilocal functionals are evaluated nonself-consistently on densities from a "half-and-half" hybrid, their errors with respect to experimental values can actually be lower than those from self-consistent calculations with standard hybrid functionals such as PBEh or TPSSh. This illustrates that despite their notoriously poor performance for exchange couplings, for many systems semilocal functionals are capable of delivering accurate relative energies for magnetic states provided that their electron delocalization error is corrected. However, while self-consistent calculations with hybrids uniformly improve results for all complexes, evaluating nonself-consistently with semilocal functionals does not give a balanced improvement for both ferro- and antiferromagnetically coupled complexes, indicating that there is more at play with the overestimation problem than simply the delocalization error. Additionally, we show that for some systems the conventional wisdom of choice of exchange functional mattering more than correlation does not hold. This combined with results from the nonself-consistent calculations provide insight on clarifying the relative roles of exchange, correlation, and delocalization in calculating magnetic exchange coupling parameters in Kohn-Sham Density Functional Theory.
Topological and Energetic Conditions for Lithographic Production of Carbon Nanotubes from Graphene
Directory of Open Access Journals (Sweden)
D. Fülep
2015-01-01
Full Text Available Density Functional Based Tight-Binding (DFTB molecular dynamics (MD simulations were performed for producing carbon nanotubes from graphene nanoribbons. The constant temperature simulations were controlled with the help of Nosé-Hoover thermostat. In our systematic study we obtained critical curvature energies and determined topological conditions for nanotube production from two parallel graphene nanoribbons. We obtained linear relationship between the curvature energy and the square of the curvature.
Sancho-García, J C
2012-05-07
A set of N-heteroquinones, deriving from oligoacenes, have been recently proposed as n-type organic semiconductors with high electron mobilities in thin-film transistors. Generally speaking, this class of compounds self-assembles in neighboring π-stacks linked by weak hydrogen bonds. We aim at theoretically characterizing here the sequential charge transport (hopping) process expected to take place across these arrays of molecules. To do so, we need to accurately address the preferred packing of these materials simultaneously to single-molecule properties related to charge-transfer events, carefully employing dispersion-corrected density functional theory methods to accurately extract the key molecular parameters governing this phenomenon at the nanoscale. This study confirms the great deal of interest around these compounds, since controlled functionalization of model molecules (i.e., pentacene) allows to efficiently tune the corresponding charge mobilities, and the capacity of modern quantum-chemical methods to predict it after rationalizing the underlying structure-property relationships.
Structural Studies Reveal the Functional Modularity of the Scc2-Scc4 Cohesin Loader
Directory of Open Access Journals (Sweden)
William C.H. Chao
2015-08-01
Full Text Available The remarkable accuracy of eukaryotic cell division is partly maintained by the cohesin complex acting as a molecular glue to prevent premature sister chromatid separation. The loading of cohesin onto chromosomes is catalyzed by the Scc2-Scc4 loader complex. Here, we report the crystal structure of Scc4 bound to the N terminus of Scc2 and show that Scc4 is a tetratricopeptide repeat (TPR superhelix. The Scc2 N terminus adopts an extended conformation and is entrapped by the core of the Scc4 superhelix. Electron microscopy (EM analysis reveals that the Scc2-Scc4 loader complex comprises three domains: a head, body, and hook. Deletion studies unambiguously assign the Scc2N-Scc4 as the globular head domain, whereas in vitro cohesin loading assays show that the central body and the hook domains are sufficient to catalyze cohesin loading onto circular DNA, but not chromatinized DNA in vivo, suggesting a possible role for Scc4 as a chromatin adaptor.
International Nuclear Information System (INIS)
Biglari, H.; Diamond, P.H.
1988-01-01
A simple physical model which describes the dynamics of turbulence and the spectrum of density fluctuations in compressible, self-gravitating matter and self-binding, phase-space density fluctuations is presented. The two systems are analogous to each other in that each tends to self-organize into hierarchical structures via the mechanism of Jeans collapse. The model, the essential physical ingredient of which is a cascade constrained by the physical requirement of quasivirialization, is shown to exhibit interesting geometric properties such as intrinsic intermittency and anisotropy
Tight-binding tunneling amplitude of an optical lattice
Arzamasovs, Maksims; Liu, Bo
2017-11-01
The particle in a periodic potential is an important topic in an undergraduate quantum mechanics curriculum and a stepping stone on the way to more advanced topics, such as courses on interacting electrons in crystalline solids, and graduate-level research in solid-state and condensed matter physics. The interacting many-body phenomena are usually described in terms of the second quantized lattice Hamiltonians which treat single-particle physics on the level of tight-binding approximation and add interactions on top of it. The aim of this paper is to show how the tight-binding tunneling amplitude can be related to the strength of the periodic potential for the case of a cosine potential used in the burgeoning field of ultracold atoms. We show how to approach the problem of computing the tunneling amplitude of a deep lattice using the JWKB (Jeffreys-Wentzel-Kramers-Brillouin, also known as semiclassical) approximation. We also point out that care should be taken when applying the method of the linear combination of atomic orbitals (LCAO) in an optical lattice context. A summary of the exact solution in terms of Mathieu functions is also given.
Tight-binding tunneling amplitude of an optical lattice
International Nuclear Information System (INIS)
Arzamasovs, Maksims; Liu, Bo
2017-01-01
The particle in a periodic potential is an important topic in an undergraduate quantum mechanics curriculum and a stepping stone on the way to more advanced topics, such as courses on interacting electrons in crystalline solids, and graduate-level research in solid-state and condensed matter physics. The interacting many-body phenomena are usually described in terms of the second quantized lattice Hamiltonians which treat single-particle physics on the level of tight-binding approximation and add interactions on top of it. The aim of this paper is to show how the tight-binding tunneling amplitude can be related to the strength of the periodic potential for the case of a cosine potential used in the burgeoning field of ultracold atoms. We show how to approach the problem of computing the tunneling amplitude of a deep lattice using the JWKB (Jeffreys–Wentzel–Kramers–Brillouin, also known as semiclassical) approximation. We also point out that care should be taken when applying the method of the linear combination of atomic orbitals (LCAO) in an optical lattice context. A summary of the exact solution in terms of Mathieu functions is also given. (paper)
International Nuclear Information System (INIS)
Xu, Chunhui.
1991-01-01
Semiempirical interatomic potentials are developed for silicon and carbon by modeling the total energy of the system using tight-binding approaches. The parameters of the models were obtained by fitting to results from accurate first-principles Local Density Functional calculations. Applications to the computation of phonons as a function of volume for diamond-structured silicon and carbon and the thermal expansions for silicon and diamond yields results which agree well with experiment. The physical origin of the negative thermal expansion observed in silicon is explained. A tight-binding total energy model is generated capable of describing carbon systems with a variety of atomic coordinations and topologies. The model reproduces the total energy versus volume curves of various carbon polytypes as well as phonons and elastic constants of diamond and graphite. The model has also been used in the molecular-dynamics simulation of the properties of carbon clusters. The calculated ground-state geometries of small clusters (C 2 --C 10 ) correlates well with results from accurate quantum chemical calculations, and the structural trend of clusters from C 2 to C 60 are investigated. 67 refs., 19 figs
Effects of charge density and hydrophobicity of poly(amido amine)s for non-viral gene delivery
Piest, Martin; Engbersen, Johannes F.J.
2010-01-01
High cationic charge densities in polymeric vectors result in tight DNA condensation, leading to small highly positively charged polyplexes which show generally high cellular uptake in vitro. However, high cationic charge densities also introduce membrane-disruptive properties to the polymers,
Aizawa, Hirohito; Kuroki, Kazuhiko
2018-03-01
We present a first-principles band calculation for the quasi-one-dimensional (Q1D) organic superconductor (TMTSF) 2ClO4 . An effective tight-binding model with the TMTSF molecule to be regarded as the site is derived from a calculation based on maximally localized Wannier orbitals. We apply a two-particle self-consistent (TPSC) analysis by using a four-site Hubbard model, which is composed of the tight-binding model and an onsite (intramolecular) repulsive interaction, which serves as a variable parameter. We assume that the pairing mechanism is mediated by the spin fluctuation, and the sign of the superconducting gap changes between the inner and outer Fermi surfaces, which correspond to a d -wave gap function in a simplified Q1D model. With the parameters we adopt, the critical temperature for superconductivity estimated by the TPSC approach is approximately 1 K, which is consistent with experiment.
Self-consistent RPA and the time-dependent density matrix approach
Energy Technology Data Exchange (ETDEWEB)
Schuck, P. [Institut de Physique Nucleaire, Orsay (France); CNRS et Universite Joseph Fourier, Laboratoire de Physique et Modelisation des Milieux Condenses, Grenoble (France); Tohyama, M. [Kyorin University School of Medicine, Mitaka, Tokyo (Japan)
2016-10-15
The time-dependent density matrix (TDDM) or BBGKY (Bogoliubov, Born, Green, Kirkwood, Yvon) approach is decoupled and closed at the three-body level in finding a natural representation of the latter in terms of a quadratic form of two-body correlation functions. In the small amplitude limit an extended RPA coupled to an also extended second RPA is obtained. Since including two-body correlations means that the ground state cannot be a Hartree-Fock state, naturally the corresponding RPA is upgraded to Self-Consistent RPA (SCRPA) which was introduced independently earlier and which is built on a correlated ground state. SCRPA conserves all the properties of standard RPA. Applications to the exactly solvable Lipkin and the 1D Hubbard models show good performances of SCRPA and TDDM. (orig.)
Density dependent hadron field theory
International Nuclear Information System (INIS)
Fuchs, C.; Lenske, H.; Wolter, H.H.
1995-01-01
A fully covariant approach to a density dependent hadron field theory is presented. The relation between in-medium NN interactions and field-theoretical meson-nucleon vertices is discussed. The medium dependence of nuclear interactions is described by a functional dependence of the meson-nucleon vertices on the baryon field operators. As a consequence, the Euler-Lagrange equations lead to baryon rearrangement self-energies which are not obtained when only a parametric dependence of the vertices on the density is assumed. It is shown that the approach is energy-momentum conserving and thermodynamically consistent. Solutions of the field equations are studied in the mean-field approximation. Descriptions of the medium dependence in terms of the baryon scalar and vector density are investigated. Applications to infinite nuclear matter and finite nuclei are discussed. Density dependent coupling constants obtained from Dirac-Brueckner calculations with the Bonn NN potentials are used. Results from Hartree calculations for energy spectra, binding energies, and charge density distributions of 16 O, 40,48 Ca, and 208 Pb are presented. Comparisons to data strongly support the importance of rearrangement in a relativistic density dependent field theory. Most striking is the simultaneous improvement of charge radii, charge densities, and binding energies. The results indicate the appearance of a new ''Coester line'' in the nuclear matter equation of state
Self-assembled monolayer structures of hexadecylamine on Cu surfaces: density-functional theory.
Liu, Shih-Hsien; Balankura, Tonnam; Fichthorn, Kristen A
2016-12-07
We used dispersion-corrected density-functional theory to probe possible structures for adsorbed layers of hexadecylamine (HDA) on Cu(100) and Cu(111). HDA forms self-assembled layers on these surfaces, analogous to alkanethiols on various metal surfaces, and it binds by donating electrons in the amine group to the Cu surface atoms, consistent with experiment. van der Waals interactions between the alkyl tails of HDA molecules are stronger than the interaction between the amine group and the Cu surfaces. Strong HDA-tail interactions lead to coverage-dependent tilting of the HDA layers, such that the tilt angle is larger for lower coverages. At full monolayer coverage, the energetically preferred binding configuration for HDA on Cu(100) is a (5 × 3) pattern - although we cannot rule out incommensurate structures - while the pattern is preferred on Cu(111). A major motivation for this study is to understand the experimentally observed capability of HDA as a capping agent for producing {100}-faceted Cu nanocrystals. Consistent with experiment, we find that HDA binds more strongly to Cu(100) than to Cu(111). This strong binding stems from the capability of HDA to form more densely packed layers on Cu(100), which leads to stronger HDA-tail interactions, as well as the stronger binding of the amine group to Cu(100). We estimate the surface energies of HDA-covered Cu(100) and Cu(111) surfaces and find that these surfaces are nearly isoenergetic. By drawing analogies to previous theoretical work, it seems likely that HDA-covered Cu nanocrystals could have kinetic shapes that primarily express {100} facets, as is seen experimentally.
Screening effects in a polyelectrolyte brush: self-consistent-field theory
Zhulina, E.B.; Klein Wolterink, J.; Borisov, O.V.
2000-01-01
We have developed an analytical self-consistent-field (SCF) theory describing conformations of weakly charged polyelectrolyte chains tethered to the solid-liquid interface and immersed in a solution of low molecular weight salt. Depending on the density of grafting of the polyelectrolytes to the
Self-compacting concretes (SCC: comparison of methods of dosage
Directory of Open Access Journals (Sweden)
B. F. Tutikian
Full Text Available The composition of a self-compacting concrete (SCC should be defined to fulfills a number of requirements, such as self-compactibility, strength and durability. This study aims to compare three methods of dosage for SCC with local materials, so as to determine which one is the most economical and rational, thus assisting the executor in making a decision and enabling economic and technical feasibility for its application. The methods used in the experimental program were: Nan Su et al., which was developed in 2001 [1]; Repette-Melo, which was proposed in 2005 [2]; and Tutikian & Dal Molin, which was developed in 2007 [3]. From the results obtained in the experimental program, it was observed that the method which presented the lowest cost and highest compressive strength at the ages of 7, 28 and 91 days was Tutikian & Dal Molin, while the one which reached the lowest chloride ion penetration, best compactness and highest elasticity modulus was Repette-Melo. In tests carried out in the fresh state, all tested methods yielded mixtures which comply with the self-compactibility levels required by ABNT NBR 15823:2010 [4].
Maurer, Reinhard J; Reuter, Karsten
2013-07-07
Accurate and efficient simulation of excited state properties is an important and much aspired cornerstone in the study of adsorbate dynamics on metal surfaces. To this end, the recently proposed linear expansion Δ-self-consistent field method by Gavnholt et al. [Phys. Rev. B 78, 075441 (2008)] presents an efficient alternative to time consuming quasi-particle calculations. In this method, the standard Kohn-Sham equations of density-functional theory are solved with the constraint of a non-equilibrium occupation in a region of Hilbert-space resembling gas-phase orbitals of the adsorbate. In this work, we discuss the applicability of this method for the excited-state dynamics of metal-surface mounted organic adsorbates, specifically in the context of molecular switching. We present necessary advancements to allow for a consistent quality description of excited-state potential-energy surfaces (PESs), and illustrate the concept with the application to Azobenzene adsorbed on Ag(111) and Au(111) surfaces. We find that the explicit inclusion of substrate electronic states modifies the topologies of intra-molecular excited-state PESs of the molecule due to image charge and hybridization effects. While the molecule in gas phase shows a clear energetic separation of resonances that induce isomerization and backreaction, the surface-adsorbed molecule does not. The concomitant possibly simultaneous induction of both processes would lead to a significantly reduced switching efficiency of such a mechanism.
Self-consistent study of space-charge-dominated beams in a misaligned transport system
International Nuclear Information System (INIS)
Sing Babu, P.; Goswami, A.; Pandit, V.S.
2013-01-01
A self-consistent particle-in-cell (PIC) simulation method is developed to investigate the dynamics of space-charge-dominated beams through a misaligned solenoid based transport system. Evolution of beam centroid, beam envelope and emittance is studied as a function of misalignment parameters for various types of beam distributions. Simulation results performed up to 40 mA of proton beam indicate that centroid oscillations induced by the displacement and rotational misalignments of solenoids do not depend of the beam distribution. It is shown that the beam envelope around the centroid is independent of the centroid motion for small centroid oscillation. In addition, we have estimated the loss of beam during the transport caused by the misalignment for various beam distributions
Electron beam charging of insulators: A self-consistent flight-drift model
International Nuclear Information System (INIS)
Touzin, M.; Goeuriot, D.; Guerret-Piecourt, C.; Juve, D.; Treheux, D.; Fitting, H.-J.
2006-01-01
Electron beam irradiation and the self-consistent charge transport in bulk insulating samples are described by means of a new flight-drift model and an iterative computer simulation. Ballistic secondary electron and hole transport is followed by electron and hole drifts, their possible recombination and/or trapping in shallow and deep traps. The trap capture cross sections are the Poole-Frenkel-type temperature and field dependent. As a main result the spatial distributions of currents j(x,t), charges ρ(x,t), the field F(x,t), and the potential slope V(x,t) are obtained in a self-consistent procedure as well as the time-dependent secondary electron emission rate σ(t) and the surface potential V 0 (t). For bulk insulating samples the time-dependent distributions approach the final stationary state with j(x,t)=const=0 and σ=1. Especially for low electron beam energies E 0 G of a vacuum grid in front of the target surface. For high beam energies E 0 =10, 20, and 30 keV high negative surface potentials V 0 =-4, -14, and -24 kV are obtained, respectively. Besides open nonconductive samples also positive ion-covered samples and targets with a conducting and grounded layer (metal or carbon) on the surface have been considered as used in environmental scanning electron microscopy and common SEM in order to prevent charging. Indeed, the potential distributions V(x) are considerably small in magnitude and do not affect the incident electron beam neither by retarding field effects in front of the surface nor within the bulk insulating sample. Thus the spatial scattering and excitation distributions are almost not affected
Ding, Kun; Chan, C. T.
2018-04-01
The calculation of optical force density distribution inside a material is challenging at the nanoscale, where quantum and nonlocal effects emerge and macroscopic parameters such as permittivity become ill-defined. We demonstrate that the microscopic optical force density of nanoplasmonic systems can be defined and calculated using the microscopic fields generated using a self-consistent hydrodynamics model that includes quantum, nonlocal, and retardation effects. We demonstrate this technique by calculating the microscopic optical force density distributions and the optical binding force induced by external light on nanoplasmonic dimers. This approach works even in the limit when the nanoparticles are close enough to each other so that electron tunneling occurs, a regime in which classical electromagnetic approach fails completely. We discover that an uneven distribution of optical force density can lead to a light-induced spinning torque acting on individual particles. The hydrodynamics method offers us an accurate and efficient approach to study optomechanical behavior for plasmonic systems at the nanoscale.
Directory of Open Access Journals (Sweden)
Alexander L. Ivanovskii
2008-01-01
Full Text Available Atomic models of cubic crystals (CC of carbon and graphene-like Si nanotubes are offered and their structural, cohesive, elastic and electronic properties are predicted by means of the DFTB method. Our main findings are that the isotropic crystals of carbon nanotubes adopt a very high elastic modulus B and low compressibility β, namely B = 650 GPa, β = 0.0015 1/GPa. In addition, these crystals preserve the initial conductivity type of their “building blocks”, i.e. isolated carbon and Si nanotubes. This feature may be important for design of materials with the selected conductivity type.
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy
DEFF Research Database (Denmark)
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-01-01
Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far...
Energy Technology Data Exchange (ETDEWEB)
Rout, G. C., E-mail: siva1987@iopb.res.in, E-mail: skp@iopb.res.in, E-mail: gcr@iopb.res.in [Physics Enclave, Plot No-664/4825, Lane-4A, Shree Vihar, Bhubaneswar-751031, Odisha (India); Sahu, Sivabrata [School of Applied Sciences (Physics), KIIT University, Bhubaneswar-751024, Odisha (India); Panda, S. K. [K.D. Science College, Pochilima, Hinjilicut,Pin-761101 Ganjam, Orissa (India)
2016-04-13
We report here a microscopic tight-binding model calculation for AB-stacked bilayer graphene in presence of biasing potential between the two layers and the impurity effects to study the evolution of the total density of states with special emphasis on opening of band gap near Dirac point. We have calculated the electron Green’s functions for both the A and B sub-lattices by Zubarev technique. The imaginary part of the Green’s function gives the partial and total density of states of electrons. The density of states are computed numerically for 1000 × 1000 grid points of the electron momentum. The evolution of the opening of band gap near van-Hove singularities as well as near Dirac point is investigated by varying the different interlayer hoppings and the biasing potentials. The inter layer hopping splits the density of states at van-Hove singularities and produces a V-shaped gap near Dirac point. Further the biasing potential introduces a U shaped gap near Dirac point with a density minimum at the applied potential(i.e. at V/2).
International Nuclear Information System (INIS)
Rout, G. C.; Sahu, Sivabrata; Panda, S. K.
2016-01-01
We report here a microscopic tight-binding model calculation for AB-stacked bilayer graphene in presence of biasing potential between the two layers and the impurity effects to study the evolution of the total density of states with special emphasis on opening of band gap near Dirac point. We have calculated the electron Green’s functions for both the A and B sub-lattices by Zubarev technique. The imaginary part of the Green’s function gives the partial and total density of states of electrons. The density of states are computed numerically for 1000 × 1000 grid points of the electron momentum. The evolution of the opening of band gap near van-Hove singularities as well as near Dirac point is investigated by varying the different interlayer hoppings and the biasing potentials. The inter layer hopping splits the density of states at van-Hove singularities and produces a V-shaped gap near Dirac point. Further the biasing potential introduces a U shaped gap near Dirac point with a density minimum at the applied potential(i.e. at V/2).
Breakdown of the Siegert theorem and the many-body charge density operators
International Nuclear Information System (INIS)
Hyuga, H.; Ohtsubo, H.
1978-01-01
The exchange charge density operator is studied in the two-boson exchange model with consistent treatment of the exchange current and nuclear wave functions. A non-vanishing exchange charge density operator even in the static limit, which leads to the breakdown of the Siegert theorem, is found. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Kubas, Adam; Blumberger, Jochen, E-mail: j.blumberger@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hoffmann, Felix [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum (Germany); Heck, Alexander; Elstner, Marcus [Institute of Physical Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Oberhofer, Harald [Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching (Germany)
2014-03-14
We introduce a database (HAB11) of electronic coupling matrix elements (H{sub ab}) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NEVPT2, and (spin-component scaled) approximate coupled cluster model (SCS)-CC2 are reported for this database to assess the performance of three DFT methods of decreasing computational cost, including constrained density functional theory (CDFT), fragment-orbital DFT (FODFT), and self-consistent charge density functional tight-binding (FODFTB). We find that the CDFT approach in combination with a modified PBE functional containing 50% Hartree-Fock exchange gives best results for absolute H{sub ab} values (mean relative unsigned error = 5.3%) and exponential distance decay constants β (4.3%). CDFT in combination with pure PBE overestimates couplings by 38.7% due to a too diffuse excess charge distribution, whereas the economic FODFT and highly cost-effective FODFTB methods underestimate couplings by 37.6% and 42.4%, respectively, due to neglect of interaction between donor and acceptor. The errors are systematic, however, and can be significantly reduced by applying a uniform scaling factor for each method. Applications to dimers outside the database, specifically rotated thiophene dimers and larger acenes up to pentacene, suggests that the same scaling procedure significantly improves the FODFT and FODFTB results for larger π-conjugated systems relevant to organic semiconductors and DNA.
Dispersion- and Exchange-Corrected Density Functional Theory for Sodium Ion Hydration.
Soniat, Marielle; Rogers, David M; Rempe, Susan B
2015-07-14
A challenge in density functional theory is developing functionals that simultaneously describe intermolecular electron correlation and electron delocalization. Recent exchange-correlation functionals address those two issues by adding corrections important at long ranges: an atom-centered pairwise dispersion term to account for correlation and a modified long-range component of the electron exchange term to correct for delocalization. Here we investigate how those corrections influence the accuracy of binding free energy predictions for sodium-water clusters. We find that the dual-corrected ωB97X-D functional gives cluster binding energies closest to high-level ab initio methods (CCSD(T)). Binding energy decomposition shows that the ωB97X-D functional predicts the smallest ion-water (pairwise) interaction energy and larger multibody contributions for a four-water cluster than most other functionals - a trend consistent with CCSD(T) results. Also, ωB97X-D produces the smallest amounts of charge transfer and the least polarizable waters of the density functionals studied, which mimics the lower polarizability of CCSD. When compared with experimental binding free energies, however, the exchange-corrected CAM-B3LYP functional performs best (error <1 kcal/mol), possibly because of its parametrization to experimental formation enthalpies. For clusters containing more than four waters, "split-shell" coordination must be considered to obtain accurate free energies in comparison with experiment.
How important is self-consistency for the dDsC density dependent dispersion correction?
Energy Technology Data Exchange (ETDEWEB)
Brémond, Éric; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Golubev, Nikolay [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Steinmann, Stephan N., E-mail: sns25@duke.edu [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States)
2014-05-14
The treatment of dispersion interactions is ubiquitous but computationally demanding for seamless ab initio approaches. A highly popular and simple remedy consists in correcting for the missing interactions a posteriori by adding an attractive energy term summed over all atom pairs to standard density functional approximations. These corrections were originally based on atom pairwise parameters and, hence, had a strong touch of empiricism. To overcome such limitations, we recently proposed a robust system-dependent dispersion correction, dDsC, that is computed from the electron density and that provides a balanced description of both weak inter- and intramolecular interactions. From the theoretical point of view and for the sake of increasing reliability, we here verify if the self-consistent implementation of dDsC impacts ground-state properties such as interaction energies, electron density, dipole moments, geometries, and harmonic frequencies. In addition, we investigate the suitability of the a posteriori scheme for molecular dynamics simulations, for which the analysis of the energy conservation constitutes a challenging tests. Our study demonstrates that the post-SCF approach in an excellent approximation.
International Nuclear Information System (INIS)
Koyama, Michihisa; Kubo, Momoji; Miyamoto, Akira
2005-01-01
Improvement of anode characteristics of solid oxide fuel cells is important for the better cell performance and especially the direct use of hydrocarbons. A mixture of ceramics and metal is generally used as anode, and different combinations of ceramics and metals lead to different electrode characteristics. We performed large-scale calculations to investigate the characteristics of Ni/CeO 2 and Cu/CeO 2 anodes at the electronic level using our tight-binding quantum chemical molecular dynamics program. Charge distribution analysis clarified the electron transfer from metal to oxide in both anodes. The calculations of density of states clarified different contributions of Ni and Cu orbitals to the energy levels at around Fermi level in each cermet. Based on the obtained results, we made considerations to explain different characteristics of both cermet anodes. The effectiveness of our approach for the investigation of complex cermet system was proved
Self-consistent electronic structure of disordered Fe/sub 0.65/Ni/sub 0.35/
International Nuclear Information System (INIS)
Johnson, D.D.; Pinski, F.J.; Stocks, G.M.
1985-01-01
We present the results of the first ab initio calculation of the electronic structure of the disordered alloy Fe/sub 0.65/Ni/sub 0.35/. The calculation is based on the multiple-scattering coherent-potential approach (KKR-CPA) and is fully self-consistent and spin polarized. Magnetic effects are included within local-spin-density functional theory using the exchange-correlation function of Vosko--Wilk--Nusair. The most striking feature of the calculation is that electrons of different spins experience different degrees of disorder. The minority spin electrons see a very large disorder, whereas the majority spin electrons see little disorder. Consequently, the minority spin density of states is smooth compared to the very structured majority spin density of states. This difference is due to a subtle balance between exchange splitting and charge neutrality
Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution
Tan, Yaohua P.; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard
2015-08-01
Empirical tight-binding (ETB) methods are widely used in atomistic device simulations. Traditional ways of generating the ETB parameters rely on direct fitting to bulk experiments or theoretical electronic bands. However, ETB calculations based on existing parameters lead to unphysical results in ultrasmall structures like the As-terminated GaAs ultrathin bodies (UTBs). In this work, it is shown that more transferable ETB parameters with a short interaction range can be obtained by a process of mapping ab initio bands and wave functions to ETB models. This process enables the calibration of not only the ETB energy bands but also the ETB wave functions with corresponding ab initio calculations. Based on the mapping process, ETB models of Si and GaAs are parameterized with respect to hybrid functional calculations. Highly localized ETB basis functions are obtained. Both the ETB energy bands and wave functions with subatomic resolution of UTBs show good agreement with the corresponding hybrid functional calculations. The ETB methods can then be used to explain realistically extended devices in nonequilibrium that cannot be tackled with ab initio methods.
Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study
International Nuclear Information System (INIS)
Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I.
2014-01-01
The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented
Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study
Energy Technology Data Exchange (ETDEWEB)
Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac. (Mexico)
2014-05-15
The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented.
International Nuclear Information System (INIS)
Gelzinis, Andrius; Valkunas, Leonas; Abramavicius, Darius; Fuller, Franklin D; Ogilvie, Jennifer P; Mukamel, Shaul
2013-01-01
We propose an optimized tight-binding electron–hole model of the photosystem II (PSII) reaction center (RC). Our model incorporates two charge separation pathways and spatial correlations of both static disorder and fast fluctuations of energy levels. It captures the main experimental features observed in time-resolved two-dimensional (2D) optical spectra at 77 K: peak pattern, lineshapes and time traces. Analysis of 2D spectra kinetics reveals that specific regions of the 2D spectra of the PSII RC are sensitive to the charge transfer states. We find that the energy disorder of two peripheral chlorophylls is four times larger than the other RC pigments. (paper)
Gelzinis, Andrius; Valkunas, Leonas; Fuller, Franklin D.; Ogilvie, Jennifer P.; Mukamel, Shaul; Abramavicius, Darius
2013-07-01
We propose an optimized tight-binding electron-hole model of the photosystem II (PSII) reaction center (RC). Our model incorporates two charge separation pathways and spatial correlations of both static disorder and fast fluctuations of energy levels. It captures the main experimental features observed in time-resolved two-dimensional (2D) optical spectra at 77 K: peak pattern, lineshapes and time traces. Analysis of 2D spectra kinetics reveals that specific regions of the 2D spectra of the PSII RC are sensitive to the charge transfer states. We find that the energy disorder of two peripheral chlorophylls is four times larger than the other RC pigments.
Secondary electron emission and self-consistent charge transport in semi-insulating samples
Energy Technology Data Exchange (ETDEWEB)
Fitting, H.-J. [Institute of Physics, University of Rostock, Universitaetsplatz 3, D-18051 Rostock (Germany); Touzin, M. [Unite Materiaux et Transformations, UMR CNRS 8207, Universite de Lille 1, F-59655 Villeneuve d' Ascq (France)
2011-08-15
Electron beam induced self-consistent charge transport and secondary electron emission (SEE) in insulators are described by means of an electron-hole flight-drift model (FDM) now extended by a certain intrinsic conductivity (c) and are implemented by an iterative computer simulation. Ballistic secondary electrons (SE) and holes, their attenuation to drifting charge carriers, and their recombination, trapping, and field- and temperature-dependent detrapping are included. As a main result the time dependent ''true'' secondary electron emission rate {delta}(t) released from the target material and based on ballistic electrons and the spatial distributions of currents j(x,t), charges {rho}(x,t), field F(x,t), and potential V(x,t) are obtained where V{sub 0} = V(0,t) presents the surface potential. The intrinsic electronic conductivity limits the charging process and leads to a conduction sample current to the support. In that case the steady-state total SE yield will be fixed below the unit: i.e., {sigma} {eta} + {delta} < 1.
International Nuclear Information System (INIS)
Lino, A.T.; Takahashi, E.K.; Leite, J.R.; Ferraz, A.C.
1988-01-01
The band structure of metallic sodium is calculated, using for the first time the self-consistent field variational cellular method. In order to implement the self-consistency in the variational cellular theory, the crystal electronic charge density was calculated within the muffin-tin approximation. The comparison between our results and those derived from other calculations leads to the conclusion that the proposed self-consistent version of the variational cellular method is fast and accurate. (author) [pt
Wavelets in self-consistent electronic structure calculations
International Nuclear Information System (INIS)
Wei, S.; Chou, M.Y.
1996-01-01
We report the first implementation of orthonormal wavelet bases in self-consistent electronic structure calculations within the local-density approximation. These local bases of different scales efficiently describe localized orbitals of interest. As an example, we studied two molecules, H 2 and O 2 , using pseudopotentials and supercells. Considerably fewer bases are needed compared with conventional plane-wave approaches, yet calculated binding properties are similar. Our implementation employs fast wavelet and Fourier transforms, avoiding evaluating any three-dimensional integral numerically. copyright 1996 The American Physical Society
Planar density of vacuum charge induced by a supercritical Coulomb potential
Directory of Open Access Journals (Sweden)
V.R. Khalilov
2017-06-01
Full Text Available Analytical expressions for the planar density of an induced vacuum charge are obtained in a strong Coulomb potential in coordinate space. Treatment is based on a self-adjoint extension approach for constructing of the Green's function of a charged fermion in an external electromagnetic field. Induced vacuum charge density is calculated and analyzed in subcritical and supercritical Coulomb potentials for massless and massive fermions. We argue that the virtual and so-called real vacuum polarizations contribute in an induced vacuum charge in a supercritical Coulomb potential. The behavior of the polarization vacuum charge density is investigated at long and short distances from the Coulomb center. The induced vacuum charge has a screening sign. Screening of a Coulomb impurity in graphene is briefly discussed. The real vacuum polarization charge density that acquires the quantum electrodynamics vacuum in a supercritical Coulomb potential due to the real vacuum polarization is calculated. It is shown that the vacuum charge densities essentially differ in massive and massless cases. We expect that our results can, as a matter of principle, be tested in graphene with a supercritical Coulomb impurity.
Planar density of vacuum charge induced by a supercritical Coulomb potential
Energy Technology Data Exchange (ETDEWEB)
Khalilov, V.R., E-mail: khalilov@phys.msu.ru; Mamsurov, I.V.
2017-06-10
Analytical expressions for the planar density of an induced vacuum charge are obtained in a strong Coulomb potential in coordinate space. Treatment is based on a self-adjoint extension approach for constructing of the Green's function of a charged fermion in an external electromagnetic field. Induced vacuum charge density is calculated and analyzed in subcritical and supercritical Coulomb potentials for massless and massive fermions. We argue that the virtual and so-called real vacuum polarizations contribute in an induced vacuum charge in a supercritical Coulomb potential. The behavior of the polarization vacuum charge density is investigated at long and short distances from the Coulomb center. The induced vacuum charge has a screening sign. Screening of a Coulomb impurity in graphene is briefly discussed. The real vacuum polarization charge density that acquires the quantum electrodynamics vacuum in a supercritical Coulomb potential due to the real vacuum polarization is calculated. It is shown that the vacuum charge densities essentially differ in massive and massless cases. We expect that our results can, as a matter of principle, be tested in graphene with a supercritical Coulomb impurity.
Optimization of nonthermal fusion power consistent with channeling of charged fusion product energy
International Nuclear Information System (INIS)
Snyder, P.B.; Herrmann, M.C.; Fisch, N.J.
1994-01-01
If the energy of charged fusion products can be diverted directly to fuel ions, non-Maxwellian fuel ion distributions and temperature differences between species will result. To determine the importance of these nonthermal effects, the fusion power density is optimized at constant-β for non-thermal distributions that are self-consistently maintained by channeling of energy from charged fusion products. For D-T and D- 3 He reactors, with 75% of charged fusion product power diverted to fuel ions, temperature differences between electrons and ions increase the reactivity by 40-70%, while non-Maxwellian fuel ion distributions and temperature differences between ionic species increase the reactivity by an additional 3-15%
The density functional theory and the charged fluid molecular dynamics
International Nuclear Information System (INIS)
Hansen, J.P.; Zerah, G.
1993-01-01
Car and Parrinello had the idea of combining the density functional theory (Hohenberg, Kohn and Sham) to the 'molecular dynamics' numerical modelling method, in order to simulate metallic or co-valent solids and liquids from the first principles. The objective of this paper is to present a simplified version of this method ab initio, applicable to classical and quantal charged systems. The method is illustrated with recent results on charged colloidal suspensions and highly correlated electron-proton plasmas. 1 fig., 21 refs
Stability and electronic properties of oxygen-doped ZnS polytypes: DFTB study
Popov, Ilya S.; Vorokh, Andrey S.; Enyashin, Andrey N.
2018-06-01
Synthesis from aqueous solutions is an affordable method for fabrication of II-VI semiconductors. However, application of this method often imposes a disorder of crystal lattice, manifesting as a rich variety of polytypes arising from wurtzite and zinc blende phases. The origin of this disordering still remains debatable. Here, the influence of the most likely impurity at water environment - substitutional oxygen - on the polytypic equilibrium of zinc sulphide is studied by means of density-functional tight-binding method. According to calculations, the inclusion of such oxygen does not affect the polytypic equilibrium. Apart of thermodynamic stability, the electronic and elastic properties of ZnS polytypes are studied as the function of oxygen distribution.
Ab initio work function of elemental metals
DEFF Research Database (Denmark)
Skriver, Hans Lomholt; Rosengaard, N. M.
1992-01-01
We have used a recently developed self-consistent Green’s-function technique based on tight-binding linear-muffin-tin-orbital theory to calculate the work function for the close-packed surfaces of 37 elemental metals. The results agree with the limited experimental data obtained from single cryst...
Surface Passivation in Empirical Tight Binding
He, Yu; Tan, Yaohua; Jiang, Zhengping; Povolotskyi, Michael; Klimeck, Gerhard; Kubis, Tillmann
2015-01-01
Empirical Tight Binding (TB) methods are widely used in atomistic device simulations. Existing TB methods to passivate dangling bonds fall into two categories: 1) Method that explicitly includes passivation atoms is limited to passivation with atoms and small molecules only. 2) Method that implicitly incorporates passivation does not distinguish passivation atom types. This work introduces an implicit passivation method that is applicable to any passivation scenario with appropriate parameter...
Charge-density study of crystalline beryllium
Energy Technology Data Exchange (ETDEWEB)
Stewart, R F [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Chemistry
1977-01-01
The X-ray structure factors for crystalline beryllium measured by Brown (Phil. Mag. (1972), 26, 1377) have been analyzed with multipole deformation functions for charge-density information. Single exponential radial functions were used for the valence charge density. A valence monopole plus the three harmonics, P/sup 3//sub 5/(cos theta) sin 3phi, P/sub 6/(cos theta) and P/sup 3//sub 7/(cos theta) sin 3phi, provide a least-squares fit to the data with Rsub(w)=0.0081. The superposition of these density functions describes a bonding charge density between Be atoms along the c axis through the tetrahedral vacancy. The results reported here are in qualitative agreement with a recent pseudo-potential calculation of metallic beryllium. The final residuals in the analysis are largest at high sin theta/lambda values. This suggests that core charge deformation is present and/or anharmonic motion of the nuclei is appreciable.
Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun
2016-10-01
Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.
Humeniuk, Alexander; Mitrić, Roland
2017-12-01
A software package, called DFTBaby, is published, which provides the electronic structure needed for running non-adiabatic molecular dynamics simulations at the level of tight-binding DFT. A long-range correction is incorporated to avoid spurious charge transfer states. Excited state energies, their analytic gradients and scalar non-adiabatic couplings are computed using tight-binding TD-DFT. These quantities are fed into a molecular dynamics code, which integrates Newton's equations of motion for the nuclei together with the electronic Schrödinger equation. Non-adiabatic effects are included by surface hopping. As an example, the program is applied to the optimization of excited states and non-adiabatic dynamics of polyfluorene. The python and Fortran source code is available at http://www.dftbaby.chemie.uni-wuerzburg.de.
LDA+U and tight-binding electronic structure of InN nanowires
Molina-Sánchez, A.; García-Cristóbal, A.; Cantarero, A.; Terentjevs, A.; Cicero, G.
2010-10-01
In this paper we employ a combined ab initio and tight-binding approach to obtain the electronic and optical properties of hydrogenated Indium nitride (InN) nanowires. We first discuss InN band structure for the wurtzite structure calculated at the LDA+U level and use this information to extract the parameters needed for an empirical tight-binging implementation. These parameters are then employed to calculate the electronic and optical properties of InN nanowires in a diameter range that would not be affordable by ab initio techniques. The reliability of the large nanowires results is assessed by explicitly comparing the electronic structure of a small diameter wire studied both at LDA+U and tight-binding level.
Porchelvi, E. Elamurugu; Muthu, S.
2015-01-01
The thiosemicarbazone compound, Salicylaldehyde p-methylphenylthiosemicarbazone (abbreviated as SMPTSC) was synthesized and characterized by FTIR, FT-Raman and UV. Density functional (DFT) calculations have been carried out for the title compound by performing DFT level of theory using B3LYP/6-31++G(d,p) basis set. The molecular geometry and vibrational frequencies were calculated and compared with the experimental data. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using density functional theory (DFT/B3LYP) with 6-311++G(d,p) basis set. The stability and charge delocalization of the molecule was studied by natural bond orbital (NBO) analysis. Thearomaticities of the phenyl rings were studied using the standard harmonic oscillator model of aromaticity (HOMA) index. Mulliken population analysis on atomic charges is also calculated. The molecule orbital contributions are studied by density of energy states (DOSs).
Plato: A localised orbital based density functional theory code
Kenny, S. D.; Horsfield, A. P.
2009-12-01
The Plato package allows both orthogonal and non-orthogonal tight-binding as well as density functional theory (DFT) calculations to be performed within a single framework. The package also provides extensive tools for analysing the results of simulations as well as a number of tools for creating input files. The code is based upon the ideas first discussed in Sankey and Niklewski (1989) [1] with extensions to allow high-quality DFT calculations to be performed. DFT calculations can utilise either the local density approximation or the generalised gradient approximation. Basis sets from minimal basis through to ones containing multiple radial functions per angular momenta and polarisation functions can be used. Illustrations of how the package has been employed are given along with instructions for its utilisation. Program summaryProgram title: Plato Catalogue identifier: AEFC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 219 974 No. of bytes in distributed program, including test data, etc.: 1 821 493 Distribution format: tar.gz Programming language: C/MPI and PERL Computer: Apple Macintosh, PC, Unix machines Operating system: Unix, Linux and Mac OS X Has the code been vectorised or parallelised?: Yes, up to 256 processors tested RAM: Up to 2 Gbytes per processor Classification: 7.3 External routines: LAPACK, BLAS and optionally ScaLAPACK, BLACS, PBLAS, FFTW Nature of problem: Density functional theory study of electronic structure and total energies of molecules, crystals and surfaces. Solution method: Localised orbital based density functional theory. Restrictions: Tight-binding and density functional theory only, no exact exchange. Unusual features: Both atom centred and uniform meshes available
Self-consistent simulation of the CSR effect on beam emittance
Li, R
1999-01-01
When a microbunch with high charge traverses a curved trajectory, the curvature-induced Coherent Synchrotron Radiation (CSR) and space-charge forces may cause serious emittance degradation. Earlier analyses based on rigid-line charge model are helpful in understanding the mechanism of this curvature-induced bunch self-interaction. In reality, however, the bunch has finite transverse size and its dynamics respond to the CSR force. In this paper, we present the first self-consistent simulation for the study of the impact of CSR on beam optics. With the bunch represented by a set of macroparticles, the dynamics of the bunch under the influence of the CSR force are simulated, where the CSR force in turn depends on the history of bunch charge distribution and current density in accordance to causality. This simulation is bench-marked with previous analytical results for a rigid-line bunch. The algorithm applied in the simulation will be presented, along with the simulation results obtained for bending systems in t...
Self-consistent simulation of the CSR effect on beam emittance
International Nuclear Information System (INIS)
Li, R.
1999-01-01
When a microbunch with high charge traverses a curved trajectory, the curvature-induced Coherent Synchrotron Radiation (CSR) and space-charge forces may cause serious emittance degradation. Earlier analyses based on rigid-line charge model are helpful in understanding the mechanism of this curvature-induced bunch self-interaction. In reality, however, the bunch has finite transverse size and its dynamics respond to the CSR force. In this paper, we present the first self-consistent simulation for the study of the impact of CSR on beam optics. With the bunch represented by a set of macroparticles, the dynamics of the bunch under the influence of the CSR force are simulated, where the CSR force in turn depends on the history of bunch charge distribution and current density in accordance to causality. This simulation is bench-marked with previous analytical results for a rigid-line bunch. The algorithm applied in the simulation will be presented, along with the simulation results obtained for bending systems in the Jefferson Lab FEL lattice
International Nuclear Information System (INIS)
Rodriguez-Vargas, I; Madrigal-Melchor, J; Vlaev, S J
2009-01-01
We present the hole subband structure of p-type delta-doped single, double, multiple and superlattice quantum wells in Si. We use the first neighbors sp 3 s' tight-binding approximation including spin for the hole level structure analysis. The parameters of the tight-binding hamiltonian were taken from Klimeck et al. [Klimeck G, Bowen R C, Boykin T B, Salazar-Lazaro C, Cwik T A and Stoica A 2000 Superlattice. Microst. 27 77], first neighbors parameters that give realiable results for the valence band of Si. The calculations are based on a scheme previously proposed and applied to delta-doped quantum well systems [Vlaev S J and Gaggero-Sager L M 1998 Phys. Rev. B 58 1142]. The scheme relies on the incorporation of the delta-doped quantum well potential in the diagonal terms of the tight-binding hamiltonian. We give a detail description of the delta-doped quantum well structures, this is, we study the hole subband structure behavior as a function of the impurity density, the interwell distance of the doped planes and the superlattice period. We also compare our results with the available theoretical and experimental data, obtaining a reasonable agreement.
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Vargas, I; Madrigal-Melchor, J; Vlaev, S J, E-mail: isaac@planck.reduaz.m [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, ZAC. (Mexico)
2009-05-01
We present the hole subband structure of p-type delta-doped single, double, multiple and superlattice quantum wells in Si. We use the first neighbors sp{sup 3}s' tight-binding approximation including spin for the hole level structure analysis. The parameters of the tight-binding hamiltonian were taken from Klimeck et al. [Klimeck G, Bowen R C, Boykin T B, Salazar-Lazaro C, Cwik T A and Stoica A 2000 Superlattice. Microst. 27 77], first neighbors parameters that give realiable results for the valence band of Si. The calculations are based on a scheme previously proposed and applied to delta-doped quantum well systems [Vlaev S J and Gaggero-Sager L M 1998 Phys. Rev. B 58 1142]. The scheme relies on the incorporation of the delta-doped quantum well potential in the diagonal terms of the tight-binding hamiltonian. We give a detail description of the delta-doped quantum well structures, this is, we study the hole subband structure behavior as a function of the impurity density, the interwell distance of the doped planes and the superlattice period. We also compare our results with the available theoretical and experimental data, obtaining a reasonable agreement.
A multiconfigurational hybrid density-functional theory
DEFF Research Database (Denmark)
Sharkas, Kamal; Savin, Andreas; Jensen, Hans Jørgen Aagaard
2012-01-01
We propose a multiconfigurational hybrid density-functional theory which rigorously combines a multiconfiguration self-consistent-field calculation with a density-functional approximation based on a linear decomposition of the electron-electron interaction. This gives a straightforward extension ...
Charge spill-out and work function of few-layer graphene on SiC(0 0 0 1)
International Nuclear Information System (INIS)
Renault, O; Rotella, H; Kaja, K; Blaise, P; Poiroux, T; Pascon, A M; Fonseca, L R C; Mathieu, C; Rault, J E; Barrett, N
2014-01-01
We report on the charge spill-out and work function of epitaxial few-layer graphene on 6 H-SiC(0 0 0 1). Experiments from high-resolution, energy-filtered x-ray photoelectron emission microscopy (XPEEM) are combined with ab initio density functional theory calculations using a relaxed interface model. The work function values obtained from theory and experiments are in qualitative agreement, reproducing the previously observed trend of increasing work function with each additional graphene plane. Electron transfer at the SiC/graphene interface through a buffer layer (BL) causes an interface dipole moment which is at the origin of the graphene work function modulation. The total charge transfer is independent of the number of graphene layers, and is consistent with the constant binding energy of the SiC component of the C 1s core-level, measured by XPEEM. Charge leakage into a vacuum depends on the number of graphene layers, explaining why the experimental, layer-dependent C 1s graphene core-level binding energy shift does not rigidly follow that of the work function. Thus, a combination of charge transfer at the SiC/graphene interface and charge spill-out into the vacuum resolves the apparent discrepancy between the experimental work function and C 1s binding energy. (paper)
Self-consistency condition and high-density virial theorem in relativistic many-particle systems
International Nuclear Information System (INIS)
Kalman, G.; Canuto, V.; Datta, B.
1976-01-01
In order for the thermodynamic and kinetic definitions of the chemical potential and the pressure to lead to identical results a nontrivial self-consistency criterion has to be satisfied. This, in turn, leads to a virial-like theorem in the high-density limit
Energy Technology Data Exchange (ETDEWEB)
Olsen, Seth, E-mail: seth.olsen@uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072 (Australia)
2015-01-28
This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed (“microcanonical”) SA-CASSCF ensembles, self-consistency is invariant to any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with “more diabatic than adiabatic” states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse “temperature,” unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space
Nuclear level densities with pairing and self-consistent ground-state shell effects
Arnould, M
1981-01-01
Nuclear level density calculations are performed using a model of fermions interacting via the pairing force, and a realistic single particle potential. The pairing interaction is treated within the BCS approximation with different pairing strength values. The single particle potentials are derived in the framework of an energy-density formalism which describes self-consistently the ground states of spherical nuclei. These calculations are extended to statistically deformed nuclei, whose estimated level densities include rotational band contributions. The theoretical results are compared with various experimental data. In addition, the level densities for several nuclei far from stability are compared with the predictions of a back-shifted Fermi gas model. Such a comparison emphasizes the possible danger of extrapolating to unknown nuclei classical level density formulae whose parameter values are tailored for known nuclei. (41 refs).
International Nuclear Information System (INIS)
Sattonnay, G; Tétot, R
2014-01-01
Atomistic simulations with new interatomic potentials derived from a tight-binding variable-charge model were performed in order to investigate the lattice properties and the defect formation energies in Gd 2 Ti 2 O 7 and Gd 2 Zr 2 O 7 pyrochlores. The main objective was to determine the role played by the defect stability on the radiation tolerance of these compounds. Calculations show that the titanate has a more covalent character than the zirconate. Moreover, the properties of oxygen Frenkel pairs, cation antisite defects and cation Frenkel pairs were studied. In Gd 2 Ti 2 O 7 the cation antisite defect and the Ti-Frenkel pair are not stable: they evolve towards more stable defect configurations during the atomic relaxation process. This phenomenon is driven by a decrease of the Ti coordination number down to five which leads to a local atomic reorganization and strong structural distortions around the defects. These kinds of atomic rearrangements are not observed around defects in Gd 2 Zr 2 O 7 . Therefore, the defect stability in A 2 B 2 O 7 depends on the ability of B atoms to accommodate high coordination number (higher than six seems impossible for Ti). The accumulation of structural distortions around Ti-defects due to this phenomenon could drive the Gd 2 Ti 2 O 7 amorphization induced by irradiation. (paper)
Modeling charged defects inside density functional theory band gaps
International Nuclear Information System (INIS)
Schultz, Peter A.; Edwards, Arthur H.
2014-01-01
Density functional theory (DFT) has emerged as an important tool to probe microscopic behavior in materials. The fundamental band gap defines the energy scale for charge transition energy levels of point defects in ionic and covalent materials. The eigenvalue gap between occupied and unoccupied states in conventional DFT, the Kohn–Sham gap, is often half or less of the experimental band gap, seemingly precluding quantitative studies of charged defects. Applying explicit and rigorous control of charge boundary conditions in supercells, we find that calculations of defect energy levels derived from total energy differences give accurate predictions of charge transition energy levels in Si and GaAs, unhampered by a band gap problem. The GaAs system provides a good theoretical laboratory for investigating band gap effects in defect level calculations: depending on the functional and pseudopotential, the Kohn–Sham gap can be as large as 1.1 eV or as small as 0.1 eV. We find that the effective defect band gap, the computed range in defect levels, is mostly insensitive to the Kohn–Sham gap, demonstrating it is often possible to use conventional DFT for quantitative studies of defect chemistry governing interesting materials behavior in semiconductors and oxides despite a band gap problem
Computational modelling of SCC flow
DEFF Research Database (Denmark)
Geiker, Mette Rica; Thrane, Lars Nyholm; Szabo, Peter
2005-01-01
To benefit from the full potential of self-compacting concrete (SCC) prediction tools are needed for the form filling of SCC. Such tools should take into account the properties of the concrete, the shape and size of the structural element, the position of rebars, and the casting technique. Examples...
Renormalization-group decimation technique for spectra, wave-functions and density of states
International Nuclear Information System (INIS)
Wiecko, C.; Roman, E.
1983-09-01
The Renormalization Group decimation technique is very useful for problems described by 1-d nearest neighbour tight-binding model with or without translational invariance. We show how spectra, wave-functions and density of states can be calculated with little numerical work from the renormalized coefficients upon iteration. The results of this new procedure are verified using the model of Soukoulis and Economou. (author)
Study of chemical bonding in the interhalogen complexes based on density functional theory
Energy Technology Data Exchange (ETDEWEB)
Poleshchuk, O. Kh., E-mail: poleshch@tspu.edu.ru [National Research Tomsk Polytechnic University (Russian Federation); Fateev, A. V.; Yarkova, A. G. [Tomsk State Pedagogical University (Russian Federation); Ermakhanov, M. N.; Saidakhmetov, P. A. [M. Auezov South Kazakhstan State University (Kazakhstan)
2016-12-15
The density functional theory analysis was used for a number XYL complexes (XY is a dihalogen molecule and L is a Lewis base), formed between molecules I{sub 2}, ICl, IBr and pyridine. The calculated geometrical parameters, IR spectra and nuclear quadrupole interaction constants of iodine are consistent with the data of microwave spectroscopy and nuclear quadrupole resonance. The good correlation between the experimental and calculated binding energies of the inner electrons of iodine, chlorine and nitrogen atoms were found with the calculation using both Gaussian and Slater functions. The comparison of experimental and calculated changes in the electron density on the atoms upon complex formation suggested the choice of scheme for calculating the effective charge on the atoms, which allow us to interpret the experimental spectra. It is shown that the use of both calculated schemes allows us to predict the enthalpy of complex formation in close agreement with the experimental values. The energy analysis shows that in the complexes the electrostatic binding energy dominates that of covalent binding.
Gillespie, Dirk
2014-11-01
Classical density functional theory (DFT) of fluids is a fast and efficient theory to compute the structure of the electrical double layer in the primitive model of ions where ions are modeled as charged, hard spheres in a background dielectric. While the hard-core repulsive component of this ion-ion interaction can be accurately computed using well-established DFTs, the electrostatic component is less accurate. Moreover, many electrostatic functionals fail to satisfy a basic theorem, the contact density theorem, that relates the bulk pressure, surface charge, and ion densities at their distances of closest approach for ions in equilibrium at a smooth, hard, planar wall. One popular electrostatic functional that fails to satisfy the contact density theorem is a perturbation approach developed by Kierlik and Rosinberg [Phys. Rev. A 44, 5025 (1991)PLRAAN1050-294710.1103/PhysRevA.44.5025] and Rosenfeld [J. Chem. Phys. 98, 8126 (1993)JCPSA60021-960610.1063/1.464569], where the full free-energy functional is Taylor-expanded around a bulk (homogeneous) reference fluid. Here, it is shown that this functional fails to satisfy the contact density theorem because it also fails to satisfy the known low-density limit. When the functional is corrected to satisfy this limit, a corrected bulk pressure is derived and it is shown that with this pressure both the contact density theorem and the Gibbs adsorption theorem are satisfied.
Symmetrized partial-wave method for density-functional cluster calculations
International Nuclear Information System (INIS)
Averill, F.W.; Painter, G.S.
1994-01-01
The computational advantage and accuracy of the Harris method is linked to the simplicity and adequacy of the reference-density model. In an earlier paper, we investigated one way the Harris functional could be extended to systems outside the limits of weakly interacting atoms by making the charge density of the interacting atoms self-consistent within the constraints of overlapping spherical atomic densities. In the present study, a method is presented for augmenting the interacting atom charge densities with symmetrized partial-wave expansions on each atomic site. The added variational freedom of the partial waves leads to a scheme capable of giving exact results within a given exchange-correlation approximation while maintaining many of the desirable convergence and stability properties of the original Harris method. Incorporation of the symmetry of the cluster in the partial-wave construction further reduces the level of computational effort. This partial-wave cluster method is illustrated by its application to the dimer C 2 , the hypothetical atomic cluster Fe 6 Al 8 , and the benzene molecule
Self-interaction and charge transfer in organic semiconductors
Energy Technology Data Exchange (ETDEWEB)
Koerzdoerfer, Thomas
2009-12-18
This work concentrates on the problem of self-interaction, which is one of the most serious problems of commonly used approximative density functionals. As a major result of this work, it is demonstrated that self-interaction plays a decisive role for the performance of different approximative functionals in predicting accurate electronic properties of organic molecular semiconductors. In search for a solution to the self-interaction problem, a new concept for correcting commonly used density functionals for self-interaction is introduced and applied to a variety of systems, spanning small molecules, extended molecular chains, and organic molecular semiconductors. It is further shown that the performance of functionals that are not free from self-interaction can vary strongly for different systems and observables of interest, thus entailing the danger of misinterpretation of the results obtained from those functionals. The underlying reasons for the varying performance of commonly used density functionals are discussed thoroughly in this work. Finally, this thesis provides strategies that allow to analyze the reliability of commonly used approximations to the exchange-correlation functional for particular systems of interest. This cumulative dissertation is divided into three parts. Part I gives a short introduction into DFT and its time-dependent extension (TDDFT). Part II provides further insights into the self-interaction problem, presents a newly developed concept for the correction of self-interaction, gives an introduction into the publications, and discusses their basic results. Finally, the four publications on self-interaction and charge-transfer in extended molecular systems and organic molecular semiconductors are collected in Part III. (orig.)
Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture
International Nuclear Information System (INIS)
Yuan Jianmin
2002-01-01
An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H 2 O), and CO 2 at a few temperatures and densities are presented
Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture.
Yuan, Jianmin
2002-10-01
An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H2O), and CO2 at a few temperatures and densities are presented.
Feuz, L.; Leermakers, F.A.M.; Textor, M.; Borisov, O.V.
2008-01-01
The two-gradient version of the Scheutjens¿Fleer self-consistent field (SF-SCF) theory is employed to model the interaction between a molecular bottle brush with a polyelectrolyte backbone and neutral hydrophilic side chains and an oppositely charged surface. Our system mimics graft-copolymers with
International Nuclear Information System (INIS)
Henke, Paul S.; Mak, Chi H.
2014-01-01
The thermodynamic stability of a folded RNA is intricately tied to the counterions and the free energy of this interaction must be accounted for in any realistic RNA simulations. Extending a tight-binding model published previously, in this paper we investigate the fundamental structure of charges arising from the interaction between small functional RNA molecules and divalent ions such as Mg 2+ that are especially conducive to stabilizing folded conformations. The characteristic nature of these charges is utilized to construct a discretely connected energy landscape that is then traversed via a novel application of a deterministic graph search technique. This search method can be incorporated into larger simulations of small RNA molecules and provides a fast and accurate way to calculate the free energy arising from the interactions between an RNA and divalent counterions. The utility of this algorithm is demonstrated within a fully atomistic Monte Carlo simulation of the P4-P6 domain of the Tetrahymena group I intron, in which it is shown that the counterion-mediated free energy conclusively directs folding into a compact structure
Energy Technology Data Exchange (ETDEWEB)
Henke, Paul S. [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Mak, Chi H., E-mail: cmak@usc.edu [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, California 90089 (United States)
2014-08-14
The thermodynamic stability of a folded RNA is intricately tied to the counterions and the free energy of this interaction must be accounted for in any realistic RNA simulations. Extending a tight-binding model published previously, in this paper we investigate the fundamental structure of charges arising from the interaction between small functional RNA molecules and divalent ions such as Mg{sup 2+} that are especially conducive to stabilizing folded conformations. The characteristic nature of these charges is utilized to construct a discretely connected energy landscape that is then traversed via a novel application of a deterministic graph search technique. This search method can be incorporated into larger simulations of small RNA molecules and provides a fast and accurate way to calculate the free energy arising from the interactions between an RNA and divalent counterions. The utility of this algorithm is demonstrated within a fully atomistic Monte Carlo simulation of the P4-P6 domain of the Tetrahymena group I intron, in which it is shown that the counterion-mediated free energy conclusively directs folding into a compact structure.
Quantum tight-binding chains with dissipative coupling
International Nuclear Information System (INIS)
Mogilevtsev, D; Slepyan, G Ya; Garusov, E; Kilin, S Ya; Korolkova, N
2015-01-01
We present a one-dimensional tight-binding chain of two-level systems coupled only through common dissipative Markovian reservoirs. This quantum chain can demonstrate anomalous thermodynamic behavior contradicting Fourier law. Population dynamics of individual systems of the chain is polynomial with the order determined by the initial state of the chain. The chain can simulate classically hard problems, such as multi-dimensional random walks. (paper)
Tight-binding study of the structural and magnetic properties of vanadium clusters
International Nuclear Information System (INIS)
Zhao Jijun; Lain, K.D.
1995-01-01
The structural and magnetic properties of small vanadium clusters are studied in the framework of tight-binding theory. According to parameters of the cluster dimer and bulk solid, we developed a tight-binding interatomic potential and calculated the bonding energies for the different possible structures to determine the ground state atomic configurations of the small vanadium clusters. The theoretical bonding energies for the vanadium clusters agree with the experiment much better than the simple droplet model. However, the calculated values for the clusters of odd atomic number are somewhat higher than the measured ones, corresponding to the pair occupation of delocalized 4s 1 electrons. Based on the optimized geometries, we study the magnetic properties of these clusters through a parametrized Hubbard Hamiltonian. We find the small V clusters of ground-state structures exhibit antiferromagnetic behavior while the alignment of local moments in the clusters with the unoptimized structures may show either ferromagnetic or antiferromagnetic characteristics. The average magnetic moments of the clusters decrease nonmonotonically as cluster size increases and the theoretical results are consistent with the upper limits obtained from a recent experiment. (orig.)
International Nuclear Information System (INIS)
Johnson, D.L.; Harmon, B.N.; Liu, S.H.
1980-01-01
The self-consistent band structure of ZrB 2 has been evaluated using the KKR method. It is noted that a large charge transfer is not necessary to explain many of the experimental results which can be understood in terms of the band structure and the bonding nature of the wave functions. X-ray photoemission spectra and optical reflectance measurements are compared with the calculated density of states and joint density of states, respectively. The calculations are also discussed with reference to nuclear quadrupole experiments, Hall effect measurements, and the electronic specific heat. The similarities to intercalated graphite and related compounds are discussed and the strong bonding as reflected in the hardness and high melting point is considered
Self-interaction corrections in density functional theory
International Nuclear Information System (INIS)
Tsuneda, Takao; Hirao, Kimihiko
2014-01-01
Self-interaction corrections for Kohn-Sham density functional theory are reviewed for their physical meanings, formulations, and applications. The self-interaction corrections get rid of the self-interaction error, which is the sum of the Coulomb and exchange self-interactions that remains because of the use of an approximate exchange functional. The most frequently used self-interaction correction is the Perdew-Zunger correction. However, this correction leads to instabilities in the electronic state calculations of molecules. To avoid these instabilities, several self-interaction corrections have been developed on the basis of the characteristic behaviors of self-interacting electrons, which have no two-electron interactions. These include the von Weizsäcker kinetic energy and long-range (far-from-nucleus) asymptotic correction. Applications of self-interaction corrections have shown that the self-interaction error has a serious effect on the states of core electrons, but it has a smaller than expected effect on valence electrons. This finding is supported by the fact that the distribution of self-interacting electrons indicates that they are near atomic nuclei rather than in chemical bonds
International Nuclear Information System (INIS)
Feller, D.; Apra, E.; Nichols, J.A.; Bernholdt, D.E.
1996-01-01
The structures and binding energies of several cation:ether complexes (K + :dimethyl ether, K + :dimethoxyethane, K + :12-crown-4 and K + :18-crown-6) were determined with second and fourth order perturbation theory using correlation consistent basis sets. Several of these are the largest correlated calculations yet attempted on crown ethers. The observed systematic convergence to the complete basis set limit provides a standard by which the accuracy of previous studies can be measured and facilitates the calibration of density functional methods. Recent Fouier transform ion cyclotron resonance experiments predicted K + :18-crown-6 binding energies which were significantly smaller than ab initio calculations. None of the potential sources of error examined in the present study were large enough to explain this difference. Although the 6-31+G* basis set used in an earlier theoretical study was smaller than the smallest of the correlation consistent basis sets, with suitable correction for basis set superposition error, it appears capable of yielding binding energies within several kcal/mol of the basis set limit. Perturbation theory calculations exploiting the open-quote open-quote resolution of the identity close-quote close-quote approximation were found to faithfully reproduce binding energies and conformational differences. Although the cation endash ether interaction is dominated by classical electrostatics, the accuracy of density functional techniques was found to be quite sensitive to the choice of functionals. The local density SVWN procedure performed well for binding energies and conformational differences, while underestimating K + O distances by up to 0.08 A. The gradient-corrected Becke endash Lee endash Yang endash Parr functional underestimated the K + :12c4 binding energy by 4 endash 7 kcal/mol or 15%. copyright 1996 American Institute of Physics
DEFF Research Database (Denmark)
Soulairol, R.; Barreteau, Cyrille; Fu, Chu-Chun
2016-01-01
Magnetism is a key driving force controlling several thermodynamic and kinetic properties of Fe-Cr systems. We present a tight-binding model for Fe-Cr, where magnetism is treated beyond the usual collinear approximation. A major advantage of this model consists in a rather simple fitting procedur...
Gräfenstein, Jürgen; Kraka, Elfi; Cremer, Dieter
2004-01-08
Self-interaction corrected density functional theory was used to determine the self-interaction error for dissociating one-electron bonds. The self-interaction error of the unpaired electron mimics nondynamic correlation effects that have no physical basis where these effects increase for increasing separation distance. For short distances the magnitude of the self-interaction error takes a minimum and increases then again for decreasing R. The position of the minimum of the magnitude of the self-interaction error influences the equilibrium properties of the one-electron bond in the radical cations H2+ (1), B2H4+ (2), and C2H6+ (3), which differ significantly. These differences are explained by hyperconjugative interactions in 2 and 3 that are directly reflected by the self-interaction error and its orbital contributions. The density functional theory description of the dissociating radical cations suffers not only from the self-interaction error but also from the simplified description of interelectronic exchange. The calculated differences between ionic and covalent dissociation for 1, 2, and 3 provide an excellent criterion for determining the basic failures of density functional theory, self-interaction corrected density functional theory, and other methods. Pure electronic, orbital relaxation, and geometric relaxation contributions to the self-interaction error are discussed. The relevance of these effects for the description of transition states and charge transfer complexes is shown. Suggestions for the construction of new exchange-correlation functionals are given. In this connection, the disadvantages of recently suggested self-interaction error-free density functional theory methods are emphasized. (c) 2004 American Institute of Physics
Fully self-consistent GW calculations for molecules
DEFF Research Database (Denmark)
Rostgaard, Carsten; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer
2010-01-01
We calculate single-particle excitation energies for a series of 34 molecules using fully self-consistent GW, one-shot G0W0, Hartree-Fock (HF), and hybrid density-functional theory (DFT). All calculations are performed within the projector-augmented wave method using a basis set of Wannier...... functions augmented by numerical atomic orbitals. The GW self-energy is calculated on the real frequency axis including its full frequency dependence and off-diagonal matrix elements. The mean absolute error of the ionization potential (IP) with respect to experiment is found to be 4.4, 2.6, 0.8, 0.4, and 0...
WSN-Based Space Charge Density Measurement System.
Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong
2017-01-01
It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.
Venkataraman, Vijay Shankar
The experimental and theoretical study of transition metal compounds have occupied condensed matter physicists for the best part of the last century. The rich variety of physical behaviour exhibited by these compounds owes its origin to the subtle balance of the energy scales at play for the d orbitals. In this thesis, we study three different systems comprised of transition metal atoms from the third, the fourth, and the fifth group of the periodic table using a combination of ab-initio density functional theory (DFT) computations and effective tight-binding models for the electronic properties. We first consider the electronic properties of artificially fabricated perovskite superlattices of the form [(SrIrO3)m / SrTiO3] with integer m denoting the number of layers of SrIrO3. After discussing the results of experiments undertaken by our collaborators, we present the results of our DFT calculations and build tight-binding models for the m = 1 and m = 2 superlattices. The active ingredient is found to be the 5d orbitals with significant spin-orbit coupling. We then study the energies of magnetic ground states within DFT and compare and contrast our results with those obtained for the bulk Ruddlesden-Popper iridates. Together with experimental measurements, our results suggest that these superlattices are an exciting venue to probe the magnetism and metal-insulator transitions that occur from the intricate balance of the spin-orbit coupling and electron interactions, as has been reported for their bulk counterparts. Next, we consider alpha-RuCl3, a honeycomb lattice compound. We first show using DFT calculations in conjunction with experiments performed by our collaborators, how spin-orbit coupling in the 4d orbitals of Ru is essential to understand the insulating state realized in this compound. Then, in the latter half of the chapter, we study the magnetic ground states of a two-dimensional analogue of alpha-RuCl3 in weak and strong-coupling regimes obtained from
International Nuclear Information System (INIS)
Ekpunobi, A.J.
2005-01-01
A recently reformulated tight binding method is used to calculate the valence band discontinuity at the CdTe/Hg x Cd 1-x Te interface in the s 2 p 2 configuration. The calculated valence band discontinuity of 0.31 eV at CdTe/HgTe interface is in good agreement with self-consistent calculation and accepted experimental value. Calculations were extended to alloy interfaces, which enabled the investigation of the band-offset problem at the transition point. Both valence band discontinuity ratio and conduction band discontinuity ratio show inflexions at the transition point
The QTP family of consistent functionals and potentials in Kohn-Sham density functional theory
Energy Technology Data Exchange (ETDEWEB)
Jin, Yifan; Bartlett, Rodney J., E-mail: bartlett@qtp.ufl.edu [Quantum Theory Project and Departments of Chemistry and Physics, University of Florida, Gainesville, Florida 32611 (United States)
2016-07-21
This manuscript presents the second, consistent density functional in the QTP (Quantum Theory Project) family, that is, the CAM-QTP(01). It is a new range-separated exchange-correlation functional in which the non-local exchange contribution is 100% at large separation. It follows the same basic principles of this family that the Kohn-Sham eigenvalues of the occupied orbitals approximately equal the vertical ionization energies, which is not fulfilled by most of the traditional density functional methods. This new CAM-QTP(01) functional significantly improves the accuracy of the vertical excitation energies especially for the Rydberg states in the test set. It also reproduces many other properties such as geometries, reaction barrier heights, and atomization energies.
2012-08-01
Concrete specimens were fabricated for shrinkage, creep, and abrasion resistance : testing. Variations of self-consolidating concrete (SCC) and conventional concrete were : all tested. The results were compared to previous similar testing programs an...
Crystal Structure of the Cohesin Gatekeeper Pds5 and in Complex with Kleisin Scc1
Directory of Open Access Journals (Sweden)
Byung-Gil Lee
2016-03-01
Full Text Available Sister chromatid cohesion is mediated by cohesin, whose Smc1, Smc3, and kleisin (Scc1 subunits form a ring structure that entraps sister DNAs. The ring is opened either by separase, which cleaves Scc1 during anaphase, or by a releasing activity involving Wapl, Scc3, and Pds5, which bind to Scc1 and open its interface with Smc3. We present crystal structures of Pds5 from the yeast L. thermotolerans in the presence and absence of the conserved Scc1 region that interacts with Pds5. Scc1 binds along the spine of the Pds5 HEAT repeat fold and is wedged between the spine and C-terminal hook of Pds5. We have isolated mutants that confirm the observed binding mode of Scc1 and verified their effect on cohesin by immunoprecipitation and calibrated ChIP-seq. The Pds5 structure also reveals architectural similarities to Scc3, the other large HEAT repeat protein of cohesin and, most likely, Scc2.
International Nuclear Information System (INIS)
Ciofini, Ilaria; Adamo, Carlo; Chermette, Henry
2005-01-01
Corrections to the self-interaction error which is rooted in all standard exchange-correlation functionals in the density functional theory (DFT) have become the object of an increasing interest. After an introduction reminding the origin of the self-interaction error in the DFT formalism, and a brief review of the self-interaction free approximations, we present a simple, yet effective, self-consistent method to correct this error. The model is based on an average density self-interaction correction (ADSIC), where both exchange and Coulomb contributions are screened by a fraction of the electron density. The ansatz on which the method is built makes it particularly appealing, due to its simplicity and its favorable scaling with the size of the system. We have tested the ADSIC approach on one of the classical pathological problem for density functional theory: the direct estimation of the ionization potential from orbital eigenvalues. A large set of different chemical systems, ranging from simple atoms to large fullerenes, has been considered as test cases. Our results show that the ADSIC approach provides good numerical values for all the molecular systems, the agreement with the experimental values increasing, due to its average ansatz, with the size (conjugation) of the systems
Self-Interaction Error in Density Functional Theory: An Appraisal.
Bao, Junwei Lucas; Gagliardi, Laura; Truhlar, Donald G
2018-05-03
Self-interaction error (SIE) is considered to be one of the major sources of error in most approximate exchange-correlation functionals for Kohn-Sham density-functional theory (KS-DFT), and it is large with all local exchange-correlation functionals and with some hybrid functionals. In this work, we consider systems conventionally considered to be dominated by SIE. For these systems, we demonstrate that by using multiconfiguration pair-density functional theory (MC-PDFT), the error of a translated local density-functional approximation is significantly reduced (by a factor of 3) when using an MCSCF density and on-top density, as compared to using KS-DFT with the parent functional; the error in MC-PDFT with local on-top functionals is even lower than the error in some popular KS-DFT hybrid functionals. Density-functional theory, either in MC-PDFT form with local on-top functionals or in KS-DFT form with some functionals having 50% or more nonlocal exchange, has smaller errors for SIE-prone systems than does CASSCF, which has no SIE.
Mahant, A. K.; Rao, P. S.; Misra, S. C.
1994-07-01
In the calculational model developed by Warren and Shah for the computation of the gamma sensitivity ( Sγ) it has been observed that the computed Sγ value is quite sensitive to the space charge distribution function assumed for the insulator region and the energy of the gamma photons. The Sγ of SPNDs with Pt, Co and V emitters (manufactured by Thermocoax, France) has been measured at 60Co photon energy and a good correlation between the measured and computed values has been obtained using a composite space charge density function (CSCD), the details of which are presented in this paper. The arguments are extended for evaluating the Sγ values of several SPNDs for which Warren and Shah reported the measured values for a prompt fission gamma spectrum obtained in a swimming pool reactor. These results are also discussed.
Self-consistent study of nuclei far from stability with the energy density method
Tondeur, F
1981-01-01
The self-consistent energy density method has been shown to give good results with a small number of parameters for the calculation of nuclear masses, radii, deformations, neutron skins, shell and sub- shell effects. It is here used to study the properties of nuclei far from stability, like densities, shell structure, even-odd mass differences, single-particle potentials and nuclear deformations. A few possible consequences of the results for astrophysical problems are briefly considered. The predictions of the model in the super- heavy region are summarised. (34 refs).
Relating saturation capacity to charge density in strong cation exchangers.
Steinebach, Fabian; Coquebert de Neuville, Bertrand; Morbidelli, Massimo
2017-07-21
In this work the relation between physical and chemical resin characteristics and the total amount of adsorbed protein (saturation capacity) for ion-exchange resins is discussed. Eleven different packing materials with a sulfo-functionalization and one multimodal resin were analyzed in terms of their porosity, pore size distribution, ligand density and binding capacity. By specifying the ligand density and binding capacity by the total and accessible surface area, two different groups of resins were identified: Below a ligand density of approx. 2.5μmol/m 2 area the ligand density controls the saturation capacity, while above this limit the accessible surface area becomes the limiting factor. This results in a maximum protein uptake of around 2.5mg/m 2 of accessible surface area. The obtained results allow estimating the saturation capacity from independent resin characteristics like the saturation capacity mainly depends on "library data" such as the accessible and total surface area and the charge density. Hence these results give an insight into the fundamentals of protein adsorption and help to find suitable resins, thus limiting the experimental effort in early process development stages. Copyright © 2017 Elsevier B.V. All rights reserved.
Poisson solvers for self-consistent multi-particle simulations
International Nuclear Information System (INIS)
Qiang, J; Paret, S
2014-01-01
Self-consistent multi-particle simulation plays an important role in studying beam-beam effects and space charge effects in high-intensity beams. The Poisson equation has to be solved at each time-step based on the particle density distribution in the multi-particle simulation. In this paper, we review a number of numerical methods that can be used to solve the Poisson equation efficiently. The computational complexity of those numerical methods will be O(N log(N)) or O(N) instead of O(N2), where N is the total number of grid points used to solve the Poisson equation
Chen, Junjie; van Dongen, Mallory A; Merzel, Rachel L; Dougherty, Casey A; Orr, Bradford G; Kanduluru, Ananda Kumar; Low, Philip S; Marsh, E Neil G; Banaszak Holl, Mark M
2016-03-14
Polymer-ligand conjugates are designed to bind proteins for applications as drugs, imaging agents, and transport scaffolds. In this work, we demonstrate a folic acid (FA)-triggered exosite binding of a generation five poly(amidoamine) (G5 PAMAM) dendrimer scaffold to bovine folate binding protein (bFBP). The protein exosite is a secondary binding site on the protein surface, separate from the FA binding pocket, to which the dendrimer binds. Exosite binding is required to achieve the greatly enhanced binding constants and protein structural change observed in this study. The G5Ac-COG-FA1.0 conjugate bound tightly to bFBP, was not displaced by a 28-fold excess of FA, and quenched roughly 80% of the initial fluorescence. Two-step binding kinetics were measured using the intrinsic fluorescence of the FBP tryptophan residues to give a KD in the low nanomolar range for formation of the initial G5Ac-COG-FA1.0/FBP* complex, and a slow conversion to the tight complex formed between the dendrimer and the FBP exosite. The extent of quenching was sensitive to the choice of FA-dendrimer linker chemistry. Direct amide conjugation of FA to G5-PAMAM resulted in roughly 50% fluorescence quenching of the FBP. The G5Ac-COG-FA, which has a longer linker containing a 1,2,3-triazole ring, exhibited an ∼80% fluorescence quenching. The binding of the G5Ac-COG-FA1.0 conjugate was compared to poly(ethylene glycol) (PEG) conjugates of FA (PEGn-FA). PEG2k-FA had a binding strength similar to that of FA, whereas other PEG conjugates with higher molecular weight showed weaker binding. However, no PEG conjugates gave an increased degree of total fluorescence quenching.
International Nuclear Information System (INIS)
Pyatov, N.I.; Salamov, D.I.; Fayans, S.A.
1981-01-01
The properties of discrete and resonance isobaric 0 + states of nuclei are studied within the framework of a self-consistent approach. The equations for the charge-exchange effective field are solved in the coordinate representation taking the one-particle continuum into account exactly. Microscopic estimates of the analog-state energies and the matrix elements, transition densities, and strength functions of the isospin-allowed and forbidden Fermi transitions are obtained together with the values of the isospin admixtures in the ground states of the parent nuclei and their analogs. The escape widths of the isobaric resonances are also discussed
Electronic properties of graphene with single vacancy and Stone-Wales defects
International Nuclear Information System (INIS)
Zaminpayma, Esmaeil; Razavi, Mohsen Emami; Nayebi, Payman
2017-01-01
Highlights: • The electronic properties of graphene device with single vacancy (SV) and Stone-Wales (SW) defect have been studied. • The first principles calculations have been performed based on self-consistent charge density functional tight-binding. • The density of state, current voltage curves of pure graphene and graphene with SV and SW defects have been investigated. • Transmission spectrum of pristine graphene device and graphene with SV and SW defects has been examined. - Abstract: The first principles calculations have been performed based on self-consistent charge density functional tight-binding in order to examine the electronic properties of graphene with single vacancy (SV) and Stone-Wales (SW) defects. We have optimized structures of pristine graphene and graphene with SV and SW defects. The bond lengths, current-voltage curve and transmission probability have been calculated. We found that the bond length for relaxed graphene is 1.43 Å while for graphene with SV and SW defects the bond lengths are 1.41 Å and 1.33 Å, respectively. For the SV defect, the arrangement of atoms with three nearest neighbors indicates sp_2 bonding. While for SW defect, the arrangement of atoms suggests nearly sp bonding. From the current-voltage curve for graphene with defects we have determined that the behavior of the I–V curves is nonlinear. It is also found that the SV and SW defects cause to decrease the current compared to the pristine graphene case. Furthermore, the single vacancy defect reduces the current more than the Stone-Wales defect. Moreover, we observed that by increasing the voltage from zero to 1 V new peaks near Fermi level in the transmission probability curves have been created.
Electronic properties of graphene with single vacancy and Stone-Wales defects
Energy Technology Data Exchange (ETDEWEB)
Zaminpayma, Esmaeil [Physics Group, Qazvin Branch, Islamic Azad University, Qazvin (Iran, Islamic Republic of); Razavi, Mohsen Emami, E-mail: razavi246@gmail.com [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, P.O. Box 14665-678, Tehran (Iran, Islamic Republic of); Nayebi, Payman [Department of Physics, College of Technical and Engineering, Saveh Branch, Islamic Azad University, Saveh (Iran, Islamic Republic of)
2017-08-31
Highlights: • The electronic properties of graphene device with single vacancy (SV) and Stone-Wales (SW) defect have been studied. • The first principles calculations have been performed based on self-consistent charge density functional tight-binding. • The density of state, current voltage curves of pure graphene and graphene with SV and SW defects have been investigated. • Transmission spectrum of pristine graphene device and graphene with SV and SW defects has been examined. - Abstract: The first principles calculations have been performed based on self-consistent charge density functional tight-binding in order to examine the electronic properties of graphene with single vacancy (SV) and Stone-Wales (SW) defects. We have optimized structures of pristine graphene and graphene with SV and SW defects. The bond lengths, current-voltage curve and transmission probability have been calculated. We found that the bond length for relaxed graphene is 1.43 Å while for graphene with SV and SW defects the bond lengths are 1.41 Å and 1.33 Å, respectively. For the SV defect, the arrangement of atoms with three nearest neighbors indicates sp{sub 2} bonding. While for SW defect, the arrangement of atoms suggests nearly sp bonding. From the current-voltage curve for graphene with defects we have determined that the behavior of the I–V curves is nonlinear. It is also found that the SV and SW defects cause to decrease the current compared to the pristine graphene case. Furthermore, the single vacancy defect reduces the current more than the Stone-Wales defect. Moreover, we observed that by increasing the voltage from zero to 1 V new peaks near Fermi level in the transmission probability curves have been created.
Charge transfers in complex transition metal alloys (Ti2Fe)
International Nuclear Information System (INIS)
Abramovici, G.
1998-01-01
We introduce a new non-orthogonal tight-binding model, for complex alloys, in which electronic structure is characterized by charge transfers. We give the analytic calculation of a charge transfer, in which overlapping two-center terms are rigorously taken into account. Then, we apply numerically this result to an approximant phase of a quasicrystal of Ti 2 Fe alloy. This model is more particularly adapted to transition metals, and gives realistic densities of states. (orig.)
Interplay of charge density wave and spin density wave in high-Tc superconductors
International Nuclear Information System (INIS)
Pradhan, B.; Raj, B.K.; Rout, G.C.
2008-01-01
We present a mean-field theory theoretical model study for the coexistence of the two strongly interacting charge density wave (CDW) and spin density wave (SDW) for high-T c cuprates in the underdoped region before the onset of the superconductivity in the system. The analytic expressions for the temperature dependence of the CDW and SDW order parameters are derived and solved self-consistently. Their interplay is studied by varying their respective coupling constants. It is observed that in the interplay region both the gap parameters exhibit very strong dependence of their gap values for the coupling constants. Further, the electronic density of states (DOS) for the conduction electrons, which represents the scanning tunneling data, show two gap parameters in the interplay region from these experimental data. Our model can help to determine separately the CDW and SDW parameters
Rudberg, Elias
2012-02-01
Self-consistency-based Kohn-Sham density functional theory (KS-DFT) electronic structure calculations with Gaussian basis sets are reported for a set of 17 protein-like molecules with geometries obtained from the Protein Data Bank. It is found that in many cases such calculations do not converge due to vanishing HOMO-LUMO gaps. A sequence of polyproline I helix molecules is also studied and it is found that self-consistency calculations using pure functionals fail to converge for helices longer than six proline units. Since the computed gap is strongly correlated to the fraction of Hartree-Fock exchange, test calculations using both pure and hybrid density functionals are reported. The tested methods include the pure functionals BLYP, PBE and LDA, as well as Hartree-Fock and the hybrid functionals BHandHLYP, B3LYP and PBE0. The effect of including solvent molecules in the calculations is studied, and it is found that the inclusion of explicit solvent molecules around the protein fragment in many cases gives a larger gap, but that convergence problems due to vanishing gaps still occur in calculations with pure functionals. In order to achieve converged results, some modeling of the charge distribution of solvent water molecules outside the electronic structure calculation is needed. Representing solvent water molecules by a simple point charge distribution is found to give non-vanishing HOMO-LUMO gaps for the tested protein-like systems also for pure functionals.
International Nuclear Information System (INIS)
Rudberg, Elias
2012-01-01
Self-consistency-based Kohn-Sham density functional theory (KS-DFT) electronic structure calculations with Gaussian basis sets are reported for a set of 17 protein-like molecules with geometries obtained from the Protein Data Bank. It is found that in many cases such calculations do not converge due to vanishing HOMO-LUMO gaps. A sequence of polyproline I helix molecules is also studied and it is found that self-consistency calculations using pure functionals fail to converge for helices longer than six proline units. Since the computed gap is strongly correlated to the fraction of Hartree-Fock exchange, test calculations using both pure and hybrid density functionals are reported. The tested methods include the pure functionals BLYP, PBE and LDA, as well as Hartree-Fock and the hybrid functionals BHandHLYP, B3LYP and PBE0. The effect of including solvent molecules in the calculations is studied, and it is found that the inclusion of explicit solvent molecules around the protein fragment in many cases gives a larger gap, but that convergence problems due to vanishing gaps still occur in calculations with pure functionals. In order to achieve converged results, some modeling of the charge distribution of solvent water molecules outside the electronic structure calculation is needed. Representing solvent water molecules by a simple point charge distribution is found to give non-vanishing HOMO-LUMO gaps for the tested protein-like systems also for pure functionals. (fast track communication)
International Nuclear Information System (INIS)
Sakata, Fumihiko; Marumori, Toshio; Hashimoto, Yukio; Une, Tsutomu.
1983-05-01
The geometry of the self-consistent collective-coordinate (SCC) method formulated within the framework of the time-dependent Hartree-Fock (TDHF) theory is investigated by associating the variational parameters with a symplectic manifold (a TDHF manifold). With the use of a canonical-variables parametrization, it is shown that the TDHF equation is equivalent to the canonical equations of motion in classical mechanics in the TDHF manifold. This enables us to investigate geometrical structure of the SCC method in the language of the classical mechanics. The SCC method turns out to give a prescription how to dynamically extract a ''maximally-decoupled'' collective submanifold (hypersurface) out of the TDHF manifold, in such a way that a certain kind of trajectories corresponding to the large-amplitude collective motion under consideration can be reproduced on the hypersurface as precisely as possible. The stability of the hypersurface at each point on it is investigated, in order to see whether the hypersurface obtained by the SCC method is really an approximate integral surface in the TDHF manifold or not. (author)
SELF-CONSISTENT LANGEVIN SIMULATION OF COULOMB COLLISIONS IN CHARGED-PARTICLE BEAMS
International Nuclear Information System (INIS)
QIANG, J.; RYNE, R.; HABIB, S.
2000-01-01
In many plasma physics and charged-particle beam dynamics problems, Coulomb collisions are modeled by a Fokker-Planck equation. In order to incorporate these collisions, we present a three-dimensional parallel Langevin simulation method using a Particle-In-Cell (PIC) approach implemented on high-performance parallel computers. We perform, for the first time, a fully self-consistent simulation, in which the FR-iction and diffusion coefficients are computed FR-om first principles. We employ a two-dimensional domain decomposition approach within a message passing programming paradigm along with dynamic load balancing. Object oriented programming is used to encapsulate details of the communication syntax as well as to enhance reusability and extensibility. Performance tests on the SGI Origin 2000 and the Cray T3E-900 have demonstrated good scalability. Work is in progress to apply our technique to intrabeam scattering in accelerators
Self-consistent relativistic Boltzmann-Uehling-Uhlenbeck equation for the Δ distribution function
International Nuclear Information System (INIS)
Mao, G.; Li, Z.; Zhuo, Y.
1996-01-01
We derive the self-consistent relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) equation for the delta distribution function within the framework which we have done for nucleon close-quote s. In our approach, the Δ isobars are treated in essentially the same way as nucleons. Both mean field and collision terms of Δ close-quote s RBUU equation are derived from the same effective Lagrangian and presented analytically. We calculate the in-medium NΔ elastic and inelastic scattering cross sections up to twice nuclear matter density and the results show that the in-medium cross sections deviate substantially from Cugnon close-quote s parametrization that is commonly used in the transport model. copyright 1996 The American Physical Society
Charge symmetry breaking nuclear forces and the properties of nuclear matter
International Nuclear Information System (INIS)
Haensel, P.
1977-01-01
The charge symmetry breaking (CSB) component of the nuclear forces yields the charge asymmetric term Esub(a)(N-Z)/A in the nuclear binding energy of nuclear matter. Calculation performed with several models of the CSB nuclear forces, and accounting for the strong short-range two-body correlations, gives Esub(a) approximately -0.2 MeV at the normal nuclear density. The charge asymmetry of the effective nucleon-nucleon interaction is determined primarily by the CSB nuclear forces at the neutron excess, observed in finite nuclei. The exclusion principle and dispersion (self-consistency) effects of the nuclear medium decrease this charge asymmetry. (author)
Eco-SCC: From Theory to Practical Application
Hüsken, G.; Brouwers, H.J.H.; Shui, Z.; Wu, S.; Yu, J.
2010-01-01
This paper presents the results of an experimental investigation on the application of self-compacting concrete (SCC) with reduced cement content and fine stone waste materials. Two SCC mixes containing stone waste material were designed for the application in a new formwork system developed for
Metazoan Scc4 homologs link sister chromatid cohesion to cell and axon migration guidance
V.C. Seitan (Vlad); P.A. Banks (Peter); S. Laval (Steve); N.A. Majid (Nazia); D. Dorsett (Dale); A. Rana (Amer); J. Smith (Jeremy); A. Bateman (Alex); S. Krpic (Sanja); A. Hostert (Arnd); S.M. Rollins; H. Erdjument-Bromage (Hediye); P. Tempst (Paul); C.Y. Benard (Claire); S. Hekimi (Siegfried); S.F. Newbury (Sarah); T. Strachan (Tom)
2006-01-01
textabstractSaccharomyces cerevisiae Scc2 binds Scc4 to form an essential complex that loads cohesin onto chromosomes. The prevalence of Scc2 orthologs in eukaryotes emphasizes a conserved role in regulating sister chromatid cohesion, but homologs of Scc4 have not hitherto been identified outside
Energy Technology Data Exchange (ETDEWEB)
Finzel, Kati, E-mail: kati.finzel@liu.se [Linköpings University, IFM Department of Physics, 58183 Linköping (Sweden)
2016-01-21
The local conditions for the Pauli potential that are necessary in order to yield self-consistent electron densities from orbital-free calculations are investigated for approximations that are expressed with the help of a local position variable. It is shown that those local conditions also apply when the Pauli potential is given in terms of the electron density. An explicit formula for the Ne atom is given, preserving the local conditions during the iterative procedure. The resulting orbital-free electron density exhibits proper shell structure behavior and is in close agreement with the Kohn-Sham electron density. This study demonstrates that it is possible to obtain self-consistent orbital-free electron densities with proper atomic shell structure from simple one-point approximations for the Pauli potential at local density level.
International Nuclear Information System (INIS)
Hazeltine, R.D.
1988-12-01
The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig
Describing long-range charge-separation processes with subsystem density-functional theory
Energy Technology Data Exchange (ETDEWEB)
Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de [Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster (Germany); Pavanello, Michele, E-mail: m.pavanello@rutgers.edu [Department of Chemistry, Rutgers University, 73 Warren St., Newark, New Jersey 07102 (United States)
2014-04-28
Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants in Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.
Describing long-range charge-separation processes with subsystem density-functional theory
International Nuclear Information System (INIS)
Solovyeva, Alisa; Neugebauer, Johannes; Pavanello, Michele
2014-01-01
Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants in Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states
İnkaya, Ersin; Dinçer, Muharrem; Şahan, Emine; Yıldırım, İsmail
2013-10-01
In this paper, we will report a combined experimental and theoretical investigation of the molecular structure and spectroscopic parameters (FT-IR, 1H NMR, 13C NMR) of 5-benzoyl-4-phenyl-2-methylthio-1H-pyrimidine. The compound crystallizes in the triclinic space group P-1 with Z = 2. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311G(d,p) and 6-311++G(d,p) basis sets in ground state and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential (ESP). Also, non-linear optical properties of the title compound were performed at B3LYP/6-311++G(d,p) level. The theoretical results showed an excellent agreement with the experimental values.
Directory of Open Access Journals (Sweden)
Jürgen Geiser
2011-01-01
processes. In this paper we present a new model taken into account a self-consistent electrostatic-particle in cell model with low density Argon plasma. The collision model are based of Monte Carlo simulations is discussed for DC sputtering in lower pressure regimes. In order to simulate transport phenomena within sputtering processes realistically, a spatial and temporal knowledge of the plasma density and electrostatic field configuration is needed. Due to relatively low plasma densities, continuum fluid equations are not applicable. We propose instead a Particle-in-cell (PIC method, which allows the study of plasma behavior by computing the trajectories of finite-size particles under the action of an external and self-consistent electric field defined in a grid of points.
Transferable tight binding model for strained group IV and III-V heterostructures
Tan, Yaohua; Povolotskyi, Micheal; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard
Modern semiconductor devices have reached critical device dimensions in the range of several nanometers. For reliable prediction of device performance, it is critical to have a numerical efficient model that are transferable to material interfaces. In this work, we present an empirical tight binding (ETB) model with transferable parameters for strained IV and III-V group semiconductors. The ETB model is numerically highly efficient as it make use of an orthogonal sp3d5s* basis set with nearest neighbor inter-atomic interactions. The ETB parameters are generated from HSE06 hybrid functional calculations. Band structures of strained group IV and III-V materials by ETB model are in good agreement with corresponding HSE06 calculations. Furthermore, the ETB model is applied to strained superlattices which consist of group IV and III-V elements. The ETB model turns out to be transferable to nano-scale hetero-structure. The ETB band structures agree with the corresponding HSE06 results in the whole Brillouin zone. The ETB band gaps of superlattices with common cations or common anions have discrepancies within 0.05eV.
Correlations in charged bosons systems
International Nuclear Information System (INIS)
Almeida Caparica, A. de.
1985-02-01
The two and three-dimensional charge Bose gas have been studied. In the bidimensional case two different types of interaction were considered: l/r and l n(r). The method of self-consistent-field was applied to these systems, which takes into account the short range correlations between the bosons through a local-field correction. By using self-consistent numerical calculations, the structure factor S(k → ) was determined. The pair-correlation function, the ground-state energy, the pressure of the gas and the spectrum of elementary excitations were obtained from S (k → ). The screening density induced by a fixed charged impurity was calculated. In the high-density limit our calculations reproduce the results given by Bogoliubov's perturbation theory. In the intermediate-density region, corresponding to the strongly coupled systems, the results are in very good agreement with calculations based on HNC approximation as well as Monte Carlo method. The results are compared in several situations with RPA results showing that the self-consistent method is much more accurate. The two-dimensional systems showed to be more correlated than the three-dimensional systems showed to be more correlated than the three-dimensional one; the gas with interaction l/r is also more correlated than the logarithmic one at high densities, but it begins to be less correlated than this one in the low-density region. The thermodynamic functions of the two and three-dimensional systems at finite temperatures near absolute zero are calculated based upon the gas excitation spectra at zero temperature. (author)
Higher order alchemical derivatives from coupled perturbed self-consistent field theory.
Lesiuk, Michał; Balawender, Robert; Zachara, Janusz
2012-01-21
We present an analytical approach to treat higher order derivatives of Hartree-Fock (HF) and Kohn-Sham (KS) density functional theory energy in the Born-Oppenheimer approximation with respect to the nuclear charge distribution (so-called alchemical derivatives). Modified coupled perturbed self-consistent field theory is used to calculate molecular systems response to the applied perturbation. Working equations for the second and the third derivatives of HF/KS energy are derived. Similarly, analytical forms of the first and second derivatives of orbital energies are reported. The second derivative of Kohn-Sham energy and up to the third derivative of Hartree-Fock energy with respect to the nuclear charge distribution were calculated. Some issues of practical calculations, in particular the dependence of the basis set and Becke weighting functions on the perturbation, are considered. For selected series of isoelectronic molecules values of available alchemical derivatives were computed and Taylor series expansion was used to predict energies of the "surrounding" molecules. Predicted values of energies are in unexpectedly good agreement with the ones computed using HF/KS methods. Presented method allows one to predict orbital energies with the error less than 1% or even smaller for valence orbitals. © 2012 American Institute of Physics
Physics Colloquium - Tight-binding in a new light: Photons in optical lattices
Ecole de Physique - Université de Genève
2011-01-01
Geneva University Physics Department 24, Quai Ernest Ansermet CH-1211 Geneva 4 Lundi 21 mars 2011, 17h00 Ecole de Physique, Auditoire Stueckelberg Tight-binding in a new light: Photons in optical lattices Dr. Niels Madsen Department of Physics, Swansea University, Singleton Park, Swansea, United Kingdom Antihydrogen, the bound state of an antiproton and a positron, has been produced at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature's fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom, subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen co...
2012-08-01
Concrete is one of the most produced and utilized materials in the world. Due to : the labor intensive and time consuming nature of concrete construction, new and : innovative concrete mixes are being explored. Self-consolidating concrete (SCC) is on...
IrPd nanoalloys: simulations, from surface segregation to local electronic properties
Energy Technology Data Exchange (ETDEWEB)
Andriamiharintsoa, T. H. [Institut de Physique et Chimie des Matériaux de Strasbourg CNRS-UDS UMR 7504 (France); Rakotomahevitra, A. [Institut pour la Maîtrise de l’Énergie, Faculté des sciences d’Antananarivo (Madagascar); Piccolo, L. [Institut de Recherches sur la Catalyse et l’Environnement de Lyon IRCELYON, UMR 5256 CNRS and Université Lyon 1 (France); Goyhenex, C., E-mail: christine.goyhenex@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg CNRS-UDS UMR 7504 (France)
2015-05-15
Using semi-empirical modeling, namely tight-binding at different levels of accuracy, the chemical, crystallographic, and electronic structures of bimetallic IrPd nanoparticles are characterized. For the purpose, model cuboctahedral particles containing 561 atoms are considered. Atomistic simulations show that core–shell nanoparticles are highly stable, with a strong surface segregation of Pd, at least for one atomic shell thickness. Within self-consistent tight-binding calculations founded on the density functional theory, an accurate insight is given into the electronic structure of these materials which have a high potential as catalysts.
Panholzer, Martin; Gatti, Matteo; Reining, Lucia
2018-04-01
The charge-density response of extended materials is usually dominated by the collective oscillation of electrons, the plasmons. Beyond this feature, however, intriguing many-body effects are observed. They cannot be described by one of the most widely used approaches for the calculation of dielectric functions, which is time-dependent density functional theory (TDDFT) in the adiabatic local density approximation (ALDA). Here, we propose an approximation to the TDDFT exchange-correlation kernel which is nonadiabatic and nonlocal. It is extracted from correlated calculations in the homogeneous electron gas, where we have tabulated it for a wide range of wave vectors and frequencies. A simple mean density approximation allows one to use it in inhomogeneous materials where the density varies on a scale of 1.6 rs or faster. This kernel contains effects that are completely absent in the ALDA; in particular, it correctly describes the double plasmon in the dynamic structure factor of sodium, and it shows the characteristic low-energy peak that appears in systems with low electronic density. It also leads to an overall quantitative improvement of spectra.
Interplay of charge density wave and spin density wave in high-T{sub c} superconductors
Energy Technology Data Exchange (ETDEWEB)
Pradhan, B. [Government Science College, Malkangiri 764 048 (India)], E-mail: brunda@iopb.res.in; Raj, B.K. [B.J.B. College, Bhubaneswar 751 014 (India); Rout, G.C. [Condensed Matter Physics Group, P.G. Department of Applied Physics and Ballistics, F.M. University, Balasore 756 019 (India)], E-mail: gcr@iopb.res.in
2008-12-01
We present a mean-field theory theoretical model study for the coexistence of the two strongly interacting charge density wave (CDW) and spin density wave (SDW) for high-T{sub c} cuprates in the underdoped region before the onset of the superconductivity in the system. The analytic expressions for the temperature dependence of the CDW and SDW order parameters are derived and solved self-consistently. Their interplay is studied by varying their respective coupling constants. It is observed that in the interplay region both the gap parameters exhibit very strong dependence of their gap values for the coupling constants. Further, the electronic density of states (DOS) for the conduction electrons, which represents the scanning tunneling data, show two gap parameters in the interplay region from these experimental data. Our model can help to determine separately the CDW and SDW parameters.
The behavior of self-compacting concrete (SCC) with bagasse ash
Hanafiah, Saloma, Whardani, Putri Nurul Kusuma
2017-11-01
Self-Compacting Concrete (SCC) has the ability to flow and self-compacting. One of the benefit of SCC can reduced the construction time and labor cost. The materials to be used for see slightly different with the conventional concrete. Less coarse aggregate to be used up to 50%. The maximum size of coarse aggregate was also limited e.g. 10 mm. Other material was quartz sand with grain size of 50-650 µm. For reducing the around of cement, bagasse ash was used as partial replacement of cement. In this research, the variations of w/c to be used, e.g. 0.275, 0.300, 0.325 and the percentage of bagasse ash substitution were 10%, 15%, and 20%. EFNARC standard was conducted for slump flow test following the V-funnel test and L-box shape test. The maximum value of slump flow test was 75.75 cm, V-funnel test was 4.95 second, and L-box test was 1.000 yielded by mixture with w/c = 0.325 and 0% of bagasse ash. The minimum value of slump flow test was 61.50 cm, V-funnel test is 21.05 second, and L-box test was 0.743 yielded by mixture with w/c = 0.275 and 20% of bagasse ash. The maximum value of compressive strength was 67.239 MPa yielded by mixture with w/c = 0.275 and 15% of bagasse ash. And the minimum value of compressive strength was 41.813 MPa yielded by mixture with w/c = 0.325 and 20% bagasse ash.
Self-consistent Analysis of Three-dimensional Uniformly Charged Ellipsoid with Zero Emittance
International Nuclear Information System (INIS)
Batygin, Yuri K.
2001-01-01
A self-consistent treatment of a three-dimensional ellipsoid with negligible emittance in time-dependent external field is performed. Envelope equations describing the evolution of an ellipsoid boundary are discussed. For a complete model it is required that the initial particle momenta be a linear function of the coordinates. Numerical example and verification of the problem by a 3-dimensional particle-in-cell simulations are given
International Nuclear Information System (INIS)
Rasulova, M.Yu
1998-01-01
A study has been made of a system of charged particles and inhomogeneities randomly distributed in accordance with the same law in the neighborhoods of corresponding sites of a planar crystal lattice. The existence and uniqueness of the solution of the generalized Poisson-Boltzmann's equation for the average self-consistent potential and average density of surface charges are proved. (author)
Energy Technology Data Exchange (ETDEWEB)
Ekpunobi, A.J. [Department of Physics and Industrial Physics, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Anambra State (Nigeria)
2005-02-25
A recently reformulated tight binding method is used to calculate the valence band discontinuity at the CdTe/Hg {sub x}Cd{sub 1-x}Te interface in the s{sup 2}p{sup 2} configuration. The calculated valence band discontinuity of 0.31 eV at CdTe/HgTe interface is in good agreement with self-consistent calculation and accepted experimental value. Calculations were extended to alloy interfaces, which enabled the investigation of the band-offset problem at the transition point. Both valence band discontinuity ratio and conduction band discontinuity ratio show inflexions at the transition point.
Self consistent solution of the tJ model in the overdoped regime
Shastry, B. Sriram; Hansen, Daniel
2013-03-01
Detailed results from a recent microscopic theory of extremely correlated Fermi liquids, applied to the t-J model in two dimensions, are presented. The theory is to second order in a parameter λ, and is valid in the overdoped regime of the tJ model. The solution reported here is from Ref, where relevant equations given in Ref are self consistently solved for the square lattice. Thermodynamic variables and the resistivity are displayed at various densities and T for two sets of band parameters. The momentum distribution function and the renormalized electronic dispersion, its width and asymmetry are reported along principal directions of the zone. The optical conductivity is calculated. The electronic spectral function A (k , ω) probed in ARPES, is detailed with different elastic scattering parameters to account for the distinction between LASER and synchrotron ARPES. A high (binding) energy waterfall feature, sensitively dependent on the band hopping parameter t' is noted. This work was supported by DOE under Grant No. FG02-06ER46319.
Accurate core-electron binding energy shifts from density functional theory
International Nuclear Information System (INIS)
Takahata, Yuji; Marques, Alberto Dos Santos
2010-01-01
Current review covers description of density functional methods of calculation of accurate core-electron binding energy (CEBE) of second and third row atoms; applications of calculated CEBEs and CEBE shifts (ΔCEBEs) in elucidation of topics such as: hydrogen-bonding, peptide bond, polymers, DNA bases, Hammett substituent (σ) constants, inductive and resonance effects, quantitative structure activity relationship (QSAR), and solid state effect (WD). This review limits itself to works of mainly Chong and his coworkers for the period post-2002. It is not a fully comprehensive account of the current state of the art.
Do plasma proteins distinguish between liposomes of varying charge density?
Capriotti, Anna Laura
2012-03-01
Cationic liposomes (CLs) are one of the most employed nonviral nanovector systems in gene therapy. However, their transfection efficiency is strongly affected by interactions with plasma components, that lead to the formation of a "protein corona" onto CL surface. The interactions between nanoparticles entering the body and biomolecules have an essential role for their biodistribution. Because the knowledge of proteins adsorbed onto vector surface could be useful in the screening of new, more efficient and more biocompatible liposomal formulations, the behavior of three CLs with different membrane charge densities was investigated. The proteins of the three coronas were identified by nano-liquid chromatography-tandem mass spectrometry, and quantified with label-free spectral counting strategy. Fibrinogen displayed higher association with CLs with high membrane charge density, while apolipoproteins and C4b-binding protein with CLs with low membrane charge density. These results are discussed in terms of the different lipid compositions of CLs and may have a deep biological impact for in vivo applications. Surface charge of nanoparticles is emerging as a relevant factor determining the corona composition after interaction with plasma proteins. Remarkably, it is also shown that the charge of the protein corona formed around CLs is strongly related to their membrane charge density. © 2012 Elsevier B.V.
Energy Technology Data Exchange (ETDEWEB)
Rak, Zs.; Rost, C. M.; Lim, M.; Maria, J.-P.; Brenner, D. W. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907 (United States); Sarker, P.; Toher, C.; Curtarolo, S. [Department of Mechanical Engineering and Materials Science and Center for Materials Genomics, Duke University, Durham, North Carolina 27708 (United States)
2016-09-07
Density functional theory calculations were carried out for three entropic rocksalt oxides, (Mg{sub 0.1}Co{sub 0.1}Ni{sub 0.1}Cu{sub 0.1}Zn{sub 0.1})O{sub 0.5}, termed J14, and J14 + Li and J14 + Sc, to understand the role of charge neutrality and electronic states on their properties, and to probe whether simple expressions may exist that predict stability. The calculations predict that the average lattice constants of the ternary structures provide good approximations to that of the random structures. For J14, Bader charges are transferable between the binary, ternary, and random structures. For J14 + Sc and J14 + Li, average Bader charges in the entropic structures can be estimated from the ternary compositions. Addition of Sc to J14 reduces the majority of Cu, which show large displacements from ideal lattice sites, along with reduction of a few Co and Ni cations. Addition of Li to J14 reduces the lattice constant, consistent with experiment, and oxidizes some of Co as well as some of Ni and Cu. The Bader charges and spin-resolved density of states (DOS) for Co{sup +3} in J14 + Li are very different from Co{sup +2}, while for Cu and Ni the Bader charges form continuous distributions and the two DOS are similar for the two oxidation states. Experimental detection of different oxidation states may therefore be challenging for Cu and Ni compared to Co. Based on these results, empirical stability parameters for these entropic oxides may be more complicated than those for non-oxide entropic solids.
Nonlinear and self-consistent treatment of ECRH
Energy Technology Data Exchange (ETDEWEB)
Tsironis, C.; Vlahos, L.
2005-07-01
A self-consistent formulation for the nonlinear interaction of electromagnetic waves with relativistic magnetized electrons is applied for the description of the ECRH. In general, electron-cyclotron absorption is the result of resonances between the cyclotron harmonics and the Doppler-shifted waver frequency. The resonant interaction results to an intense wave-particle energy exchange and an electron acceleration, and for that reason it is widely applied in fusion experiments for plasma heating and current drive. The linear theory, for the wave absorption, as well as the quasilinear theory for the electron distribution function, are the most frequently-used tools for the study of wave-particle interactions. However, in many cases the validity of these theories is violated, namely cases where nonlinear effects, like, e. g. particle trapping in the wave field, are dominant in the particle phase-space. Our model consists of electrons streaming and gyrating in a tokamak plasma slab, which is finite in the directions perpendicular to the main magnetic field. The particles interact with an electromagnetic electron-cyclotron wave of the ordinary (O-) or the extraordinary (X-) mode. A set of nonlinear and relativistic equations is derived, which take into account the effects of the charged particle motions on the wave. These consist of the equations of motion for the plasma electrons in the slab, as well as the wave equation in terms of the vector potential. The effect of the electron motions on the temporal evolution of the wave is reflected in the current density source term. (Author)
Nonlinear and self-consistent treatment of ECRH
International Nuclear Information System (INIS)
Tsironis, C.; Vlahos, L.
2005-01-01
A self-consistent formulation for the nonlinear interaction of electromagnetic waves with relativistic magnetized electrons is applied for the description of the ECRH. In general, electron-cyclotron absorption is the result of resonances between the cyclotron harmonics and the Doppler-shifted waver frequency. The resonant interaction results to an intense wave-particle energy exchange and an electron acceleration, and for that reason it is widely applied in fusion experiments for plasma heating and current drive. The linear theory, for the wave absorption, as well as the quasilinear theory for the electron distribution function, are the most frequently-used tools for the study of wave-particle interactions. However, in many cases the validity of these theories is violated, namely cases where nonlinear effects, like, e. g. particle trapping in the wave field, are dominant in the particle phase-space. Our model consists of electrons streaming and gyrating in a tokamak plasma slab, which is finite in the directions perpendicular to the main magnetic field. The particles interact with an electromagnetic electron-cyclotron wave of the ordinary (O-) or the extraordinary (X-) mode. A set of nonlinear and relativistic equations is derived, which take into account the effects of the charged particle motions on the wave. These consist of the equations of motion for the plasma electrons in the slab, as well as the wave equation in terms of the vector potential. The effect of the electron motions on the temporal evolution of the wave is reflected in the current density source term. (Author)
Kurashige, Yuki; Yanai, Takeshi
2011-09-07
We present a second-order perturbation theory based on a density matrix renormalization group self-consistent field (DMRG-SCF) reference function. The method reproduces the solution of the complete active space with second-order perturbation theory (CASPT2) when the DMRG reference function is represented by a sufficiently large number of renormalized many-body basis, thereby being named DMRG-CASPT2 method. The DMRG-SCF is able to describe non-dynamical correlation with large active space that is insurmountable to the conventional CASSCF method, while the second-order perturbation theory provides an efficient description of dynamical correlation effects. The capability of our implementation is demonstrated for an application to the potential energy curve of the chromium dimer, which is one of the most demanding multireference systems that require best electronic structure treatment for non-dynamical and dynamical correlation as well as large basis sets. The DMRG-CASPT2/cc-pwCV5Z calculations were performed with a large (3d double-shell) active space consisting of 28 orbitals. Our approach using large-size DMRG reference addressed the problems of why the dissociation energy is largely overestimated by CASPT2 with the small active space consisting of 12 orbitals (3d4s), and also is oversensitive to the choice of the zeroth-order Hamiltonian. © 2011 American Institute of Physics
Directory of Open Access Journals (Sweden)
Soumya Rudra
Full Text Available The conserved family of cohesin proteins that mediate sister chromatid cohesion requires Scc2, Scc4 for chromatin-association and Eco1/Ctf7 for conversion to a tethering competent state. A popular model, based on the notion that cohesins form huge ring-like structures, is that Scc2, Scc4 function is essential only during G1 such that sister chromatid cohesion results simply from DNA replisome passage through pre-loaded cohesin rings. In such a scenario, cohesin deposition during G1 is temporally uncoupled from Eco1-dependent establishment reactions that occur during S-phase. Chl1 DNA helicase (homolog of human ChlR1/DDX11 and BACH1/BRIP1/FANCJ helicases implicated in Fanconi anemia, breast and ovarian cancer and Warsaw Breakage Syndrome plays a critical role in sister chromatid cohesion, however, the mechanism through which Chl1 promotes cohesion remains poorly understood. Here, we report that Chl1 promotes Scc2 loading unto DNA such that both Scc2 and cohesin enrichment to chromatin are defective in chl1 mutant cells. The results further show that both Chl1 expression and chromatin-recruitment are tightly regulated through the cell cycle, peaking during S-phase. Importantly, kinetic ChIP studies reveals that Chl1 is required for Scc2 chromatin-association specifically during S-phase, but not during G1. Despite normal chromatin enrichment of both Scc2 and cohesin during G1, chl1 mutant cells exhibit severe chromosome segregation and cohesion defects--revealing that G1-loaded cohesins is insufficient to promote cohesion. Based on these findings, we propose a new model wherein S-phase cohesin loading occurs during DNA replication and in concert with both cohesion establishment and chromatin assembly reactions--challenging the notion that DNA replication fork navigates through or around pre-loaded cohesin rings.
Quasi-Particle Self-Consistent GW for Molecules.
Kaplan, F; Harding, M E; Seiler, C; Weigend, F; Evers, F; van Setten, M J
2016-06-14
We present the formalism and implementation of quasi-particle self-consistent GW (qsGW) and eigenvalue only quasi-particle self-consistent GW (evGW) adapted to standard quantum chemistry packages. Our implementation is benchmarked against high-level quantum chemistry computations (coupled-cluster theory) and experimental results using a representative set of molecules. Furthermore, we compare the qsGW approach for five molecules relevant for organic photovoltaics to self-consistent GW results (scGW) and analyze the effects of the self-consistency on the ground state density by comparing calculated dipole moments to their experimental values. We show that qsGW makes a significant improvement over conventional G0W0 and that partially self-consistent flavors (in particular evGW) can be excellent alternatives.
Self-consistent modeling of electron cyclotron resonance ion sources
International Nuclear Information System (INIS)
Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lecot, C.
2004-01-01
In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally
Self-consistent modeling of electron cyclotron resonance ion sources
Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lécot, C.
2004-05-01
In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally.
International Nuclear Information System (INIS)
Schmidt, Tobias; Kümmel, Stephan; Kraisler, Eli; Makmal, Adi; Kronik, Leeor
2014-01-01
We present and test a new approximation for the exchange-correlation (xc) energy of Kohn-Sham density functional theory. It combines exact exchange with a compatible non-local correlation functional. The functional is by construction free of one-electron self-interaction, respects constraints derived from uniform coordinate scaling, and has the correct asymptotic behavior of the xc energy density. It contains one parameter that is not determined ab initio. We investigate whether it is possible to construct a functional that yields accurate binding energies and affords other advantages, specifically Kohn-Sham eigenvalues that reliably reflect ionization potentials. Tests for a set of atoms and small molecules show that within our local-hybrid form accurate binding energies can be achieved by proper optimization of the free parameter in our functional, along with an improvement in dissociation energy curves and in Kohn-Sham eigenvalues. However, the correspondence of the latter to experimental ionization potentials is not yet satisfactory, and if we choose to optimize their prediction, a rather different value of the functional's parameter is obtained. We put this finding in a larger context by discussing similar observations for other functionals and possible directions for further functional development that our findings suggest
Anguiano, M.; Lallena, A. M.; Co', G.; De Donno, V.
2014-02-01
In this work we test the validity of a Hartree-Fock plus Bardeen-Cooper-Schrieffer model in which a finite-range interaction is used in the two steps of the calculation by comparing the results obtained to those found in fully self-consistent Hartree-Fock-Bogoliubov calculations using the same interaction. Specifically, we consider the Gogny-type D1S and D1M forces. We study a wide range of spherical nuclei, far from the stability line, in various regions of the nuclear chart, from oxygen to tin isotopes. We calculate various quantities related to the ground state properties of these nuclei, such as binding energies, radii, charge and density distributions, and elastic electron scattering cross sections. The pairing effects are studied by direct comparison with the Hartree-Fock results. Despite its relative simplicity, in most cases, our model provides results very close to those of the Hartree-Fock-Bogoliubov calculations, and it reproduces the empirical evidence of pairing effects rather well in the nuclei investigated.
Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation
Energy Technology Data Exchange (ETDEWEB)
Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)
2016-09-01
The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.
Tight binding electronic band structure calculation of achiral boron nitride single wall nanotubes
International Nuclear Information System (INIS)
Saxena, Prapti; Sanyal, Sankar P
2006-01-01
In this paper we report the Tight-Binding method, for the electronic structure calculations of achiral single wall Boron Nitride nanotubes. We have used the contribution of π electron only to define the electronic band structure for the solid. The Zone-folding method is used for the Brillouin Zone definition. Calculation of tight binding model parameters is done by fitting them to available experimental results of two-dimensional hexagonal monolayers of Boron Nitride. It has been found that all the boron nitride nanotubes (both zigzag and armchair) are constant gap semiconductors with a band gap of 5.27eV. All zigzag BNNTs are found to be direct gap semiconductors while all armchair nanotubes are indirect gap semiconductors. (author)
Surface Passivation in Empirical Tight Binding
He, Yu; Tan, Yaohua; Jiang, Zhengping; Povolotskyi, Michael; Klimeck, Gerhard; Kubis, Tillmann
2016-03-01
Empirical Tight Binding (TB) methods are widely used in atomistic device simulations. Existing TB methods to passivate dangling bonds fall into two categories: 1) Method that explicitly includes passivation atoms is limited to passivation with atoms and small molecules only. 2) Method that implicitly incorporates passivation does not distinguish passivation atom types. This work introduces an implicit passivation method that is applicable to any passivation scenario with appropriate parameters. This method is applied to a Si quantum well and a Si ultra-thin body transistor oxidized with SiO2 in several oxidation configurations. Comparison with ab-initio results and experiments verifies the presented method. Oxidation configurations that severely hamper the transistor performance are identified. It is also shown that the commonly used implicit H atom passivation overestimates the transistor performance.
OLIFE: Tight Binding Code for Transmission Coefficient Calculation
Mijbil, Zainelabideen Yousif
2018-05-01
A new and human friendly transport calculation code has been developed. It requires a simple tight binding Hamiltonian as the only input file and uses a convenient graphical user interface to control calculations. The effect of magnetic field on junction has also been included. Furthermore the transmission coefficient can be calculated between any two points on the scatterer which ensures high flexibility to check the system. Therefore Olife can highly be recommended as an essential tool for pretesting studying and teaching electron transport in molecular devices that saves a lot of time and effort.
International Nuclear Information System (INIS)
Zhang, Bo; Ye, Xianggui; Edwards, Brian J.
2013-01-01
A combination of self-consistent field theory and density functional theory was used to examine the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Both neutral and interacting particles were examined, with and without favorable/unfavorable energetic potentials between the particles and the block segments. The phase diagrams of the various systems were constructed, allowing the identification of three types of ordered mesophases composed of lamellae, hexagonally packed cylinders, and spheroids. In particular, we examined the conditions under which the mesophases could be generated wherein the tethered particles were primarily located within the interface between the two blocks of the copolymer. Key factors influencing these properties were determined to be the particle position along the diblock chain, the interaction potentials of the blocks and particles, the block copolymer composition, and molecular weight of the copolymer
Energy Technology Data Exchange (ETDEWEB)
Dale, Stephen G., E-mail: sdale@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Johnson, Erin R., E-mail: erin.johnson@dal.ca [Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2 (Canada)
2015-11-14
Exploration of the solvated electron phenomena using density-functional theory (DFT) generally results in prediction of a localised electron within an induced solvent cavity. However, it is well known that DFT favours highly delocalised charges, rendering the localisation of a solvated electron unexpected. We explore the origins of this counterintuitive behaviour using a model Kevan-structure system. When a polarisable-continuum solvent model is included, it forces electron localisation by introducing a strong energetic bias that favours integer charges. This results in the formation of a large energetic barrier for charge-hopping and can cause the self-consistent field to become trapped in local minima thus converging to stable solutions that are higher in energy than the ground electronic state. Finally, since the bias towards integer charges is caused by the polarisable continuum, these findings will also apply to other classical polarisation corrections, as in combined quantum mechanics and molecular mechanics (QM/MM) methods. The implications for systems beyond the solvated electron, including cationic DNA bases, are discussed.
Yang, Bing
2014-12-04
Electronic delocalization effects have been proposed to play a key role in photocurrent generation in organic photovoltaic devices. Here, we study the role of charge delocalization on the nature of the charge-transfer (CT) states in the case of model complexes consisting of several pentacene molecules and one fullerene (C60) molecule, which are representative of donor/acceptor heterojunctions. The energies of the CT states are examined by means of time-dependent density functional theory (TD-DFT) using the long-range-corrected functional, ωB97X, with an optimized range-separation parameter, ω. We provide a general description of how the nature of the CT states is impacted by molecular packing (i.e., interfacial donor/acceptor orientations), system size, and intermolecular interactions, features of importance in the understanding of the charge-separation mechanism.
International Nuclear Information System (INIS)
Seddigi, Z.S.
2004-01-01
We found interesting results regarding some thermodynamical parameters (Delta H, Delta G and Delta S of the MTG Reaction and FTIR Spectra of methanol and dimethylether, using the Hartree-Fock method and Density Functional Theory (DFT) calculations at different computational levels. It is the aim of this paper to highlight these results. The GAUSSIAN 98 program was used to carry out the LCAO-MO-SCF calculations at the following levels: RHF/3-21g, RHF/6-31g and DFT/B3LYP/d95**. Calculations at the restricted Hartree-Fock levels (FHR/3-22 g and RHF/6-31g) were performed since they are expensive as other levels (DFT/B3LYP/d95**. In case of the HF method, working with larger basis set (6-31g) has improved the values slightly, which is as expected. We have noticed that performing calculations at higher levels (DFT/B3LY/D95**) than the Hartree-Fock method does not dramatically improve the situation. Indeed RHF is a reasonable approximation for many single gas phase molecular calculations. HF calculations at relatively small basis sets are adequate. The theoretical vibrational spectra of both methanol and dimethylether were compared with experimental results. (author)
Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko
2010-04-21
Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Ronald C. Davidson
2004-02-01
Full Text Available This paper describes a self-consistent kinetic model for the longitudinal dynamics of a long, coasting beam propagating in straight (linear geometry in the z direction in the smooth-focusing approximation. Starting with the three-dimensional Vlasov-Maxwell equations, and integrating over the phase-space (x_{⊥},p_{⊥} transverse to beam propagation, a closed system of equations is obtained for the nonlinear evolution of the longitudinal distribution function F_{b}(z,p_{z},t and average axial electric field ⟨E_{z}^{s}⟩(z,t. The primary assumptions in the present analysis are that the dependence on axial momentum p_{z} of the distribution function f_{b}(x,p,t is factorable, and that the transverse beam dynamics remains relatively quiescent (absence of transverse instability or beam mismatch. The analysis is carried out correct to order k_{z}^{2}r_{w}^{2} assuming slow axial spatial variations with k_{z}^{2}r_{w}^{2}≪1, where k_{z}∼∂/∂z is the inverse length scale of axial variation in the line density λ_{b}(z,t=∫dp_{z}F_{b}(z,p_{z},t, and r_{w} is the radius of the conducting wall (assumed perfectly conducting. A closed expression for the average longitudinal electric field ⟨E_{z}^{s}⟩(z,t in terms of geometric factors, the line density λ_{b}, and its derivatives ∂λ_{b}/∂z,… is obtained for the class of bell-shaped density profiles n_{b}(r,z,t=(λ_{b}/πr_{b}^{2}f(r/r_{b}, where the shape function f(r/r_{b} has the form specified by f(r/r_{b}=(n+1(1-r^{2}/r_{b}^{2}^{n} for 0≤r
Energy spectrum of two-dimensional tight-binding electrons in a spatially varying magnetic field
International Nuclear Information System (INIS)
Oh, G.Y.; Lee, M.H.
1996-01-01
The electronic energy spectrum of a two-dimensional lattice in a spatially varying magnetic field is studied within the framework of the tight-binding model by using the scheme of the transfer matrix. It is found that, in comparison with the case of a uniform magnetic field, the energy spectrum exhibits more complicated behavior; band broadening (or gap closing) and band splitting (or gap opening) occur depending on characteristic parameters of the lattice. The origin of these phenomena lies in the existence of direct touching and indirect overlapping between neighboring subbands. Dependence of direct touching and indirect overlapping, and thus the electronic band structure together with the density of states, on characteristic parameters of the lattice is elucidated in detail. copyright 1996 The American Physical Society
Self-consistent field theory for the interactions between keratin intermediate filaments
International Nuclear Information System (INIS)
Akinshina, Anna; Jambon-Puillet, Etienne; Warren, Patrick B; Noro, Massimo G
2013-01-01
Keratins are important structural proteins found in skin, hair and nails. Keratin Intermediate Filaments are major components of corneocytes, nonviable horny cells of the Stratum Corneum, the outermost layer of skin. It is considered that interactions between unstructured domains of Keratin Intermediate Filaments are the key factor in maintaining the elasticity of the skin. We have developed a model for the interactions between keratin intermediate filaments based on self-consistent field theory. The intermediate filaments are represented by charged surfaces, and the disordered terminal domains of the keratins are represented by charged heteropolymers grafted to these surfaces. We estimate the system is close to a charge compensation point where the heteropolymer grafting density is matched to the surface charge density. Using a protein model with amino acid resolution for the terminal domains, we find that the terminal chains can mediate a weak attraction between the keratin surfaces. The origin of the attraction is a combination of bridging and electrostatics. The attraction disappears when the system moves away from the charge compensation point, or when excess small ions and/or NMF-representing free amino acids are added. These results are in concordance with experimental observations, and support the idea that the interaction between keratin filaments, and ultimately in part the elastic properties of the keratin-containing tissue, is controlled by a combination of the physico-chemical properties of the disordered terminal domains and the composition of the medium in the inter-filament region
International Nuclear Information System (INIS)
Sundararaman, Ravishankar; Goddard, William A. III; Arias, Tomas A.
2017-01-01
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.
Sundararaman, Ravishankar; Goddard, William A.; Arias, Tomas A.
2017-03-01
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.
Ismail, Isham; Shahidan, Shahiron; Bahari, Nur Amira Afiza Saiful
2017-12-01
Waste materials from many industries are widely used in the production of sustainable green concrete. Utilizing asphalt dust waste (ADW) as a filler material in the development of self-compacting concrete (SCC) is one of the alternative solutions for reducing environmental waste. SCC is an innovative concrete that does not require vibration for placing and compaction. However, there is limited information on the effects of utilizing ADW in the development of SCC. Therefore, this research study examines the effects of various w/b ratios (0.2, 0.3 and 0.4) and differing amounts of ADW (0% to 50%) on the rheological properties of fresh state concrete. The compressive strength of the SCC was tested only for 7 and 28 days as preliminary studies. The results revealed that mixtures MD730, MD740 and MD750 showed satisfactory results for the slump flow, J-Ring, L-Box and V-Funnel test during the fresh state. The compressive strength values obtained after 28 days for MD730, MD740 and MD750 were 35.1 MPa, 36.8 MPa and 29.4 MPa respectively. In conclusion, the distribution of materials in mixtures has significant effect in achieving rheological properties and compressive strength of SCC.
Tight-Binding Parametrization for Photonic Band Gap Materials
International Nuclear Information System (INIS)
Lidorikis, E.; Sigalas, M.M.; Soukoulis, C.M.; Economou, E.N.; Soukoulis, C.M.
1998-01-01
The idea of the linear combination of atomic orbitals method, well known from the study of electrons, is extended to the classical wave case. The Mie resonances of the isolated scatterer in the classical wave case are analogous to the atomic orbitals in the electronic case. The matrix elements of the two-dimensional tight-binding (TB) Hamiltonian are obtained by fitting to ab initio results. The transferability of the TB model is tested by reproducing accurately the band structure of different 2D lattices, with and without defects, and at two different dielectric contrasts. copyright 1998 The American Physical Society
Self-consistent determination of quasiparticle properties in nuclear matter
International Nuclear Information System (INIS)
Oset, E.; Palanques-Mestre, A.
1981-01-01
The self-energy of nuclear matter is calculated by directing the attention to the energy and momentum dependent pieces which determine the quasiparticle properties. A microscopic approach is followed which starts from the boson exchange picture for the NN interaction, then the π-and p-mesons are shown to play a major role in the nucleon renormalization. The calculation is done self-consistently and the effective mass and pole strength determined as a function of the nuclear density and momentum. Particular emphasis is put on the non-static character of the interaction and its consequences. Finally a comparison is made with other calculations and with experimental results. The consequences of the nucleon renormalization in pion condensation are also examined with the result that the critical density is pushed up appreciably. (orig.)
Ismail, Isham; Shahidan, Shahiron; Bahari, Nur Amira Afiza Saiful
2017-12-01
Self-compacting concrete (SCC) mixtures are usually designed to have high workability during the fresh state through the influence of higher volumes of paste in concrete mixtures. Asphalt dust waste (ADW) is one of disposed materials obtained during the production of asphalt premix. These fine powder wastes contribute to environmental problems today. However, these waste materials can be utilized in the development of sustainable and economical SCC. This paper focuses on the preliminary evaluations of the fresh properties and compressive strength of developed SCC for 7 and 28 days only. 144 cube samples from 24 mixtures with varying water binder ratios (0.2, 0.3 and 0.4) and ADW volume (0% to 100%) were prepared. MD940 and MD950 showed a satisfactory performance for the slump flow, J-Ring, L-Box and V-Funnel tests at fresh state. The compressive strength after 28 days for MD940 and MD950 was 36.9 MPa and 28.0 MPa respectively. In conclusion, the use of ADW as paste volume should be limited and a higher water binder ratio will significantly reduce the compressive strength.
Beke-Somfai, Tamás
2010-01-26
Despite exhaustive chemical and crystal structure studies, the mechanistic details of how FoF1-ATP synthase can convert mechanical energy to chemical, producing ATP, are still not fully understood. On the basis of quantum mechanical calculations using a recent highresolution X-ray structure, we conclude that formation of the P-O bond may be achieved through a transition state (TS) with a planar PO3 - ion. Surprisingly, there is a more than 40 kJ/mol difference between barrier heights of the loose and tight binding sites of the enzyme. This indicates that even a relatively small change in active site conformation, induced by the γ-subunit rotation, may effectively block the back reaction in βTP and, thus, promote ATP. © 2009 American Chemical Society.
Study on the pressure self-adaptive water-tight junction box in underwater vehicle
Directory of Open Access Journals (Sweden)
Haocai Huang
2012-09-01
Full Text Available Underwater vehicles play a very important role in underwater engineering. Water-tight junction box (WJB is one of the key components in underwater vehicle. This paper puts forward a pressure self-adaptive water-tight junction box (PSAWJB which improves the reliability of the WJB significantly by solving the sealing and pressure problems in conventional WJB design. By redundancy design method, the pressure self-adaptive equalizer (PSAE is designed in such a way that it consists of a piston pressure-adaptive compensator (PPAC and a titanium film pressure-adaptive compensator (TFPAC. According to hydro-mechanical simulations, the operating volume of the PSAE is more than or equal to 11.6 % of the volume of WJB liquid system. Furthermore, the required operating volume of the PSAE also increases as the gas content of oil, hydrostatic pressure or temperature difference increases. The reliability of the PSAWJB is proved by hyperbaric chamber tests.
Density functional theory of the electrical double layer: the RFD functional
International Nuclear Information System (INIS)
Gillespie, Dirk; Valisko, Monika; Boda, Dezso
2005-01-01
Density functional theory (DFT) of electrolytes is applied to the electrical double layer under a wide range of conditions. The ions are charged, hard spheres of different size and valence, and the wall creating the double layer is uncharged, weakly charged, and strongly charged. Under all conditions, the density and electrostatic potential profiles calculated using the recently proposed RFD electrostatic functional (Gillespie et al 2002 J. Phys.: Condens. Matter 14 12129; 2003 Phys. Rev. E 68 031503) compare well to Monte Carlo simulations. When the wall is strongly charged, the RFD functional results agree with the results of a simpler perturbative electrostatic DFT, but the two functionals' results qualitatively disagree when the wall is uncharged or weakly charged. The RFD functional reproduces these phenomena of weakly charged double layers. It also reproduces bulk thermodynamic quantities calculated from pair correlation functions
Density functional theory of nuclei
International Nuclear Information System (INIS)
Terasaki, Jun
2008-01-01
The density functional theory of nuclei has come to draw attention of scientists in the field of nuclear structure because the theory is expected to provide reliable numerical data in wide range on the nuclear chart. This article is organized to present an overview of the theory to the people engaged in the theory of other fields as well as those people in the nuclear physics experiments. At first, the outline of the density functional theory widely used in the electronic systems (condensed matter, atoms, and molecules) was described starting from the Kohn-Sham equation derived on the variational principle. Then the theory used in the field of nuclear physics was presented. Hartree-Fock and Hartree-Fock-Bogolyubov approximation by using Skyrme interaction was explained. Comparison of the results of calculations and experiments of binding energies and ground state mean square charge radii of some magic number nuclei were shown. The similarity and dissimilarity between the two streams were summarized. Finally the activities of the international project of Universal Nuclear Energy Density Functional (UNEDF) which was started recently lead by US scientist was reported. This project is programmed for five years. One of the applications of the project is the calculation of the neutron capture cross section of nuclei on the r-process, which is absolutely necessary for the nucleosynthesis research. (S. Funahashi)
Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.
2015-11-01
The Fourier transform infrared (FT-IR) and FT-Raman spectra of Lornoxicam were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameters, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p) and 6-31++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the Vibrational modes calculated using Vibrational Energy Distribution Analysis (VEDA 4) program. The oscillator's strength calculated by TD-DFT and Lornoxicam is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis and the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like Entropy, Enthalpy, Specific heat capacity and zero vibrational energy have been calculated. Besides, molecular electrostatic potential (MEP) was investigated using theoretical calculations.
International Nuclear Information System (INIS)
Szasz, L.; Berrios-Pagan, I.; McGinn, G.
1975-01-01
A new Density-Functional formula is constructed for atoms. The kinetic energy of the electron is divided into two parts: the kinetic self-energy and the orthogonalization energy. Calculations were made for the total energies of neutral atoms, positive ions and for the He isoelectronic series. For neutral atoms the results match the Hartree-Fock energies within 1% for atoms with N 36 the results generally match the HF energies within 0.1%. For positive ions the results are fair; for the molecular applications a simplified model is developed in which the kinetic energy consists of the Weizsaecker term plus the Fermi energy reduced by a continuous function. (orig.) [de
Descriptions of carbon isotopes within the energy density functional theory
International Nuclear Information System (INIS)
Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana; Tammam, M.
2014-01-01
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in 15 C, 17 C and 19 C, and the two-neutron halo structures in 16 C and 22 C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations
Li, Peifang; Mei, Tingting; Lv, Linxia; Lu, Cheng; Wang, Weihua; Bao, Gang; Gutsev, Gennady L
2017-08-31
The geometrical structure and electronic properties of the neutral RhB n and singly negatively charged RhB n - clusters are obtained in the range of 3 ≤ n ≤ 10 using the unbiased CALYPSO structure search method and density functional theory (DFT). A combination of the PBE0 functional and the def2-TZVP basis set is used for determining global minima on potential energy surfaces of the Rh-doped B n clusters. The photoelectron spectra of the anions are simulated using the time-dependent density functional theory (TD-DFT) method. Good agreement between our simulated and experimentally obtained photoelectron spectra for RhB 9 - provides support to the validity of our theoretical method. The relative stabilities of the ground-state RhB n and RhB n - clusters are estimated using the calculated binding energies, second-order total energy differences, and HOMO-LUMO gaps. It is found that RhB 7 and RhB 8 - are the most stable species in the neutral and anionic series, respectively. The chemical bonding analysis reveals that the RhB 8 - cluster possesses two sets of delocalized σ and π bonds. In both cases, the Hückel 4N + 2 rule is fulfilled and this cluster possesses both σ and π aromaticities.
Glass fiber effect on mechanical properties of Eco-SCC
Prasad M. L., V.; Loksesh, G.; Ramanjaneyulu, B.; Venkatesh, S.; Mousumi, K.
2017-07-01
Sustainable Construction encouraging the use of recycled materials and implies adoption of fewer natural resources in buildings and other infrastructure. In this paper Quarry Dust (QD) is used as partial replacement for River Sand (RS) to make Self Compacting Concrete (SCC) of grade M40. Glass fiber is used as strengthening material to the developed concrete. The present study mainly focused to develop Eco-SCC using QD. In this study it was found that, for developing Eco-SCC, what is the optimum dosage of replacement of QD in RS. Fresh properties of SCC are satisfying the EFNARC specifications and also target strength is achieved. Further it is concluded that, with the glass fiber addition there is an improvement in the split and flexural strength values.
Di Pierro, M; Lu, R; Uzzau, S; Wang, W; Margaretten, K; Pazzani, C; Maimone, F; Fasano, A
2001-06-01
Zonula occludens toxin (Zot) is an enterotoxin elaborated by Vibrio cholerae that increases intestinal permeability by interacting with a mammalian cell receptor with subsequent activation of intracellular signaling leading to the disassembly of the intercellular tight junctions. Zot localizes in the bacterial outer membrane of V. cholerae with subsequent cleavage and secretion of a carboxyl-terminal fragment in the host intestinal milieu. To identify the Zot domain(s) directly involved in the protein permeating effect, several zot gene deletion mutants were constructed and tested for their biological activity in the Ussing chamber assay and their ability to bind to the target receptor on intestinal epithelial cell cultures. The Zot biologically active domain was localized toward the carboxyl terminus of the protein and coincided with the predicted cleavage product generated by V. cholerae. This domain shared a putative receptor-binding motif with zonulin, the Zot mammalian analogue involved in tight junction modulation. Amino acid comparison between the Zot active fragment and zonulin, combined with site-directed mutagenesis experiments, confirmed the presence of an octapeptide receptor-binding domain toward the amino terminus of the processed Zot.
Self-consistent simulation of the CSR effect
International Nuclear Information System (INIS)
Li, R.; Bohn, C.L.; Bisogano, J.J.
1998-01-01
When a microbunch with high charge traverses a curved trajectory, the curvature-induced bunch self-interaction, by way of coherent synchrotron radiation (CSR) and space-charge forces, may cause serious emittance degradation. In this paper, the authors present a self-consistent simulation for the study of the impact of CSR on beam optics. The dynamics of the bunch under the influence of the CSR forces is simulated using macroparticles, where the CSR force in turn depends on the history of bunch dynamics in accordance with causality. The simulation is benchmarked with analytical results obtained for a rigid-line bunch. Here they present the algorithm used in the simulation, along with the simulation results obtained for bending systems in the Jefferson Lab (JLab) free-electron-laser (FEL) lattice
Relativistic density functional for nuclear structure
2016-01-01
This book aims to provide a detailed introduction to the state-of-the-art covariant density functional theory, which follows the Lorentz invariance from the very beginning and is able to describe nuclear many-body quantum systems microscopically and self-consistently. Covariant density functional theory was introduced in nuclear physics in the 1970s and has since been developed and used to describe the diversity of nuclear properties and phenomena with great success. In order to provide an advanced and updated textbook of covariant density functional theory for graduate students and nuclear physics researchers, this book summarizes the enormous amount of material that has accumulated in the field of covariant density functional theory over the last few decades as well as the latest developments in this area. Moreover, the book contains enough details for readers to follow the formalism and theoretical results, and provides exhaustive references to explore the research literature.
Electron confinement in quantum nanostructures: Self-consistent Poisson-Schroedinger theory
International Nuclear Information System (INIS)
Luscombe, J.H.; Bouchard, A.M.; Luban, M.
1992-01-01
We compute the self-consistent electron states and confining potential, V(r,T), for laterally confined cylindrical quantum wires at a temperature T from a numerical solution of the coupled Poisson and Schroedinger (PS) equations. Finite-temperature effects are included in the electron density function, n(r,T), via the single-particle density matrix in the grand-canonical ensemble using the self-consistent bound states. We compare our results for a GaAs quantum wire with those obtained previously [J. H. Luscombe and M. Luban, Appl. Phys. Lett. 57, 61 (1990)] from a finite-temperature Thomas-Fermi (TF) approximation. We find that the TF results agree well with those of the more realistic, but also more computationally intensive PS theory, except for low temperatures or for cases where the quantum wire is almost, but not totally, depleted due to a combination of either small geometry, surface boundary conditions, or low doping concentrations. In the latter situations, the number of subbands that are populated is relatively small, and both n(r,T) and V(r,T) exhibit Friedel-type oscillations. Otherwise the TF theory, which is based on free-particle states, is remarkably accurate. We also present results for the partial electron density functions associated with the angular momentum quantum numbers, and discuss their role in populating the quantum wire
SCC with high volume of fly ash content
Directory of Open Access Journals (Sweden)
Bakhrakh Anton
2017-01-01
Full Text Available Self-compacting concrete is a very perspective building material. It provides great benefits during the construction of heavily reinforced buildings. SCC has outstanding properties such as high flowability, dense structure and high strength due to specific quality of aggregates, fillers, their proportion in mix, use of polycarboxylate-based superplasticizers. Main disadvantages of SCC are high price and the difficulty of obtaining a proper mix. Use of fillers, such as fly ash type F, is a way to make SCC cheaper by replacing part of cement. Fly ash also provides some technological and operating advantages. In this paper the influence of high volume (60% from cement fly ash type F on the properties of concrete mixture and hardened concrete is investigated. The result of the work shows the possibility of reduction the cost of SCC using ordinary fillers and high amount of fly ash. The investigated SCC has low speed of hardening (7-day compressive strength at the range of 41.8 MPa and high volume of entrained air content (3.5%.
Smith, J. A.; Froyd, K. D.; Toon, O. B.
2012-12-01
We construct tables of reaction enthalpies and entropies for the association reactions involving sulfuric acid vapor, water vapor, and the bisulfate ion. These tables are created from experimental measurements and quantum chemical calculations for molecular clusters and a classical thermodynamic model for larger clusters. These initial tables are not thermodynamically consistent. For example, the Gibbs free energy of associating a cluster consisting of one acid molecule and two water molecules depends on the order in which the cluster was assembled: add two waters and then the acid or add an acid and a water and then the second water. We adjust the values within the tables using the method of Lagrange multipliers to minimize the adjustments and produce self-consistent Gibbs free energy surfaces for the neutral clusters and the charged clusters. With the self-consistent Gibbs free energy surfaces, we calculate size distributions of neutral and charged clusters for a variety of atmospheric conditions. Depending on the conditions, nucleation can be dominated by growth along the neutral channel or growth along the ion channel followed by ion-ion recombination.
Charge dynamics of the antiferromagnetically ordered Mott insulator
International Nuclear Information System (INIS)
Han, Xing-Jie; Li, Xin; Chen, Jing; Liao, Hai-Jun; Xiang, Tao; Liu, Yu; Liu, Zhi-Yuan; Xie, Zhi-Yuan; Normand, B
2016-01-01
We introduce a slave-fermion formulation in which to study the charge dynamics of the half-filled Hubbard model on the square lattice. In this description, the charge degrees of freedom are represented by fermionic holons and doublons and the Mott-insulating characteristics of the ground state are the consequence of holon–doublon bound-state formation. The bosonic spin degrees of freedom are described by the antiferromagnetic Heisenberg model, yielding long-ranged (Néel) magnetic order at zero temperature. Within this framework and in the self-consistent Born approximation, we perform systematic calculations of the average double occupancy, the electronic density of states, the spectral function and the optical conductivity. Qualitatively, our method reproduces the lower and upper Hubbard bands, the spectral-weight transfer into a coherent quasiparticle band at their lower edges and the renormalisation of the Mott gap, which is associated with holon–doublon binding, due to the interactions of both quasiparticle species with the magnons. The zeros of the Green function at the chemical potential give the Luttinger volume, the poles of the self-energy reflect the underlying quasiparticle dispersion with a spin-renormalised hopping parameter and the optical gap is directly related to the Mott gap. Quantitatively, the square-lattice Hubbard model is one of the best-characterised problems in correlated condensed matter and many numerical calculations, all with different strengths and weaknesses, exist with which to benchmark our approach. From the semi-quantitative accuracy of our results for all but the weakest interaction strengths, we conclude that a self-consistent treatment of the spin-fluctuation effects on the charge degrees of freedom captures all the essential physics of the antiferromagnetic Mott–Hubbard insulator. We remark in addition that an analytical approximation with these properties serves a vital function in developing a full understanding of
Charge dynamics of the antiferromagnetically ordered Mott insulator
Han, Xing-Jie; Liu, Yu; Liu, Zhi-Yuan; Li, Xin; Chen, Jing; Liao, Hai-Jun; Xie, Zhi-Yuan; Normand, B.; Xiang, Tao
2016-10-01
We introduce a slave-fermion formulation in which to study the charge dynamics of the half-filled Hubbard model on the square lattice. In this description, the charge degrees of freedom are represented by fermionic holons and doublons and the Mott-insulating characteristics of the ground state are the consequence of holon-doublon bound-state formation. The bosonic spin degrees of freedom are described by the antiferromagnetic Heisenberg model, yielding long-ranged (Néel) magnetic order at zero temperature. Within this framework and in the self-consistent Born approximation, we perform systematic calculations of the average double occupancy, the electronic density of states, the spectral function and the optical conductivity. Qualitatively, our method reproduces the lower and upper Hubbard bands, the spectral-weight transfer into a coherent quasiparticle band at their lower edges and the renormalisation of the Mott gap, which is associated with holon-doublon binding, due to the interactions of both quasiparticle species with the magnons. The zeros of the Green function at the chemical potential give the Luttinger volume, the poles of the self-energy reflect the underlying quasiparticle dispersion with a spin-renormalised hopping parameter and the optical gap is directly related to the Mott gap. Quantitatively, the square-lattice Hubbard model is one of the best-characterised problems in correlated condensed matter and many numerical calculations, all with different strengths and weaknesses, exist with which to benchmark our approach. From the semi-quantitative accuracy of our results for all but the weakest interaction strengths, we conclude that a self-consistent treatment of the spin-fluctuation effects on the charge degrees of freedom captures all the essential physics of the antiferromagnetic Mott-Hubbard insulator. We remark in addition that an analytical approximation with these properties serves a vital function in developing a full understanding of the
International Nuclear Information System (INIS)
Jung, J.; Alvarellos, J.E.; Garcia-Gonzalez, P.; Godby, R.W.
2004-01-01
The complex nature of electron-electron correlations is made manifest in the very simple but nontrivial problem of two electrons confined within a sphere. The description of highly nonlocal correlation and self-interaction effects by widely used local and semilocal exchange-correlation energy density functionals is shown to be unsatisfactory in most cases. Even the best such functionals exhibit significant errors in the Kohn-Sham potentials and density profiles
Polyakov, Pavel D; Duval, Jérôme F L
2014-02-07
We report a comprehensive theory to evaluate the kinetics of complex formation between metal ions and charged spherical nanoparticles. The latter consist of an ion-impermeable core surrounded by a soft shell layer characterized by a discrete axisymmetric 2D distribution of charged sites that bind metal ions. The theory explicitly integrates the conductive diffusion of metal ions from bulk solution toward the respective locations of the reactive sites within the particle shell volume. The kinetic constant k for outer-sphere nanoparticle-metal association is obtained from the sum of the contributions stemming from all reactive sites, each evaluated from the corresponding incoming flux of metal ions derived from steady-state Poisson-Nernst-Planck equations. Illustrations are provided to capture the basic intertwined impacts of particle size, overall particle charge, spatial heterogeneity in site distribution, type of particle (hard, core-shell or porous) and concentration of the background electrolyte on k. As a limit, k converges with predictions from previously reported analytical expressions derived for porous particles with low and high charge density, cases that correspond to coulombic and mean-field (smeared-out) electrostatic treatments, respectively. The conditions underlying the applicability of these latter approaches are rigorously identified in terms of (i) the extent of overlap between electric double layers around charged neighbouring sites, and (ii) the magnitude of the intraparticulate metal concentration gradient. For the first time, the proposed theory integrates the differentiated impact of the local potential around the charged binding sites amidst the overall particle field, together with that of the so-far discarded intraparticulate flux of metal ions.
Gravity dual of spin and charge density waves
Jokela, Niko; Järvinen, Matti; Lippert, Matthew
2014-12-01
At high enough charge density, the homogeneous state of the D3-D7' model is unstable to fluctuations at nonzero momentum. We investigate the end point of this instability, finding a spatially modulated ground state, which is a charge and spin density wave. We analyze the phase structure of the model as a function of chemical potential and magnetic field and find the phase transition from the homogeneous state to be first order, with a second-order critical point at zero magnetic field.
Govindasamy, P.; Gunasekaran, S.; Ramkumaar, G. R.
2014-09-01
The Fourier transform infrared (FT-IR) and FT-Raman spectra of N-(4-hydroxy phenyl) acetamide (N4HPA) of painkiller agent were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameter, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p) and 6-311++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using Vibrational energy distribution analysis (VEDA 4) program. The oscillator’s strength calculated by TD-DFT and N4HPA is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The molecular electrostatic potential (MESP) and electron density surfaces of the molecule were constructed. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like entropy, heat capacity and zero vibrational energy have been calculated.
Peng, Bo; Yu, Yang-Xin
2009-10-07
The structural and thermodynamic properties for charge symmetric and asymmetric electrolytes as well as mixed electrolyte system inside a charged cylindrical nanopore are investigated using a partially perturbative density functional theory. The electrolytes are treated in the restricted primitive model and the internal surface of the cylindrical nanopore is considered to have a uniform charge density. The proposed theory is directly applicable to the arbitrary mixed electrolyte solution containing ions with the equal diameter and different valences. Large amount of simulation data for ion density distributions, separation factors, and exclusion coefficients are used to determine the range of validity of the partially perturbative density functional theory for monovalent and multivalent counterion systems. The proposed theory is found to be in good agreement with the simulations for both mono- and multivalent counterion systems. In contrast, the classical Poisson-Boltzmann equation only provides reasonable descriptions of monovalent counterion system at low bulk density, and is qualitatively and quantitatively wrong in the prediction for the multivalent counterion systems due to its neglect of the strong interionic correlations in these systems. The proposed density functional theory has also been applied to an electrolyte absorbed into a pore that is a model of the filter of a physiological calcium channel.
Otero-de-la-Roza, A; Johnson, Erin R; DiLabio, Gino A
2014-12-09
Halogen bonds are formed when a Lewis base interacts with a halogen atom in a different molecule, which acts as an electron acceptor. Due to its charge transfer component, halogen bonding is difficult to model using many common density-functional approximations because they spuriously overstabilize halogen-bonded dimers. It has been suggested that dispersion-corrected density functionals are inadequate to describe halogen bonding. In this work, we show that the exchange-hole dipole moment (XDM) dispersion correction coupled with functionals that minimize delocalization error (for instance, BH&HLYP, but also other half-and-half functionals) accurately model halogen-bonded interactions, with average errors similar to other noncovalent dimers with less charge-transfer effects. The performance of XDM is evaluated for three previously proposed benchmarks (XB18 and XB51 by Kozuch and Martin, and the set proposed by Bauzá et al.) spanning a range of binding energies up to ∼50 kcal/mol. The good performance of BH&HLYP-XDM is comparable to M06-2X, and extends to the "extreme" cases in the Bauzá set. This set contains anionic electron donors where charge transfer occurs even at infinite separation, as well as other charge transfer dimers belonging to the pnictogen and chalcogen bonding classes. We also show that functional delocalization error results in an overly delocalized electron density and exact-exchange hole. We propose intermolecular Bader delocalization indices as an indicator of both the donor-acceptor character of an intermolecular interaction and the delocalization error coming from the underlying functional.
Directory of Open Access Journals (Sweden)
Li Wan
2014-03-01
Full Text Available In this work, we treat the Poisson-Nernst-Planck (PNP equations as the basis for a consistent framework of the electrokinetic effects. The static limit of the PNP equations is shown to be the charge-conserving Poisson-Boltzmann (CCPB equation, with guaranteed charge neutrality within the computational domain. We propose a surface potential trap model that attributes an energy cost to the interfacial charge dissociation. In conjunction with the CCPB, the surface potential trap can cause a surface-specific adsorbed charge layer σ. By defining a chemical potential μ that arises from the charge neutrality constraint, a reformulated CCPB can be reduced to the form of the Poisson-Boltzmann equation, whose prediction of the Debye screening layer profile is in excellent agreement with that of the Poisson-Boltzmann equation when the channel width is much larger than the Debye length. However, important differences emerge when the channel width is small, so the Debye screening layers from the opposite sides of the channel overlap with each other. In particular, the theory automatically yields a variation of σ that is generally known as the “charge regulation” behavior, attendant with predictions of force variation as a function of nanoscale separation between two charged surfaces that are in good agreement with the experiments, with no adjustable or additional parameters. We give a generalized definition of the ζ potential that reflects the strength of the electrokinetic effect; its variations with the concentration of surface-specific and surface-nonspecific salt ions are shown to be in good agreement with the experiments. To delineate the behavior of the electro-osmotic (EO effect, the coupled PNP and Navier-Stokes equations are solved numerically under an applied electric field tangential to the fluid-solid interface. The EO effect is shown to exhibit an intrinsic time dependence that is noninertial in its origin. Under a step-function applied
Bieniek, Maciej; Korkusiński, Marek; Szulakowska, Ludmiła; Potasz, Paweł; Ozfidan, Isil; Hawrylak, Paweł
2018-02-01
We present here the minimal tight-binding model for a single layer of transition metal dichalcogenides (TMDCs) MX 2(M , metal; X , chalcogen) which illuminates the physics and captures band nesting, massive Dirac fermions, and valley Landé and Zeeman magnetic field effects. TMDCs share the hexagonal lattice with graphene but their electronic bands require much more complex atomic orbitals. Using symmetry arguments, a minimal basis consisting of three metal d orbitals and three chalcogen dimer p orbitals is constructed. The tunneling matrix elements between nearest-neighbor metal and chalcogen orbitals are explicitly derived at K ,-K , and Γ points of the Brillouin zone. The nearest-neighbor tunneling matrix elements connect specific metal and sulfur orbitals yielding an effective 6 ×6 Hamiltonian giving correct composition of metal and chalcogen orbitals but not the direct gap at K points. The direct gap at K , correct masses, and conduction band minima at Q points responsible for band nesting are obtained by inclusion of next-neighbor Mo-Mo tunneling. The parameters of the next-nearest-neighbor model are successfully fitted to MX 2(M =Mo ; X =S ) density functional ab initio calculations of the highest valence and lowest conduction band dispersion along K -Γ line in the Brillouin zone. The effective two-band massive Dirac Hamiltonian for MoS2, Landé g factors, and valley Zeeman splitting are obtained.
Charge density waves in solids
Gor'kov, LP
2012-01-01
The latest addition to this series covers a field which is commonly referred to as charge density wave dynamics.The most thoroughly investigated materials are inorganic linear chain compounds with highly anisotropic electronic properties. The volume opens with an examination of their structural properties and the essential features which allow charge density waves to develop.The behaviour of the charge density waves, where interesting phenomena are observed, is treated both from a theoretical and an experimental standpoint. The role of impurities in statics and dynamics is considered and an
Energy Technology Data Exchange (ETDEWEB)
Kleinsorge, Alexander
2008-06-23
For several years, the technological potential of self-organized grown quantum dots (QD) has been known. Their usage as an effective light source or memory requires the precise prediction of their electronic properties. Hence, this report will study InAs quantum dots at GaAs substrate. After relaxing the atomic positions with a many body potential of Abell-Tersoff type, I calculated the electronic structure using the Tight-Binding method which is reasonable for large systems. During the investigation of wavefunctions depend on the shape, size and temperature, the impact of strain showed up as the main reason for the p-splitting. Typically flat QDs (relative to lateral dimensions) are grown, therefore the energy of bound states depends mostly on their height. The crystal's orientation had a strong impact on the wavefunctions. Moreover, the understanding of STS experiments, which inspected the connection between shape and wavefunction, is better now. Because of the possible simultaneous occupation of semiconductor quantum dots with an electron and a hole, there is a dipole moment of the exciton (due to their different behaviour inside the QD). This is a further experimental access to inner details of the QD. I ascertained the interplay of composition profile and dipole moment. The force caused by additional potentials (piezoelectricity, outer homogeneous and inhomogeneous electrical fields) was also an subject of my inquiries. To conclude, I executed kMC simulations, to better apprehend the annealing experiments. I was able to explain the narrowing of the PL peak width better. Furthermore I showed a ramification of the strain field to the diffusion development (and the following electronic properties). (orig.)
Study on models of O2 binding to heme using density functional theory
Directory of Open Access Journals (Sweden)
Hovorun D. M.
2009-08-01
Full Text Available Aim. To study a mechanism of molecular oxygen binding to heme three models of geometry structure of the complex are considered: the axis of O2 molecule is situated perpendicularly to the porphin macrocycle, parallel, and angularly. Methods. The Fe(II porphin complexes with dioxygen are calculated by the quantum-chemical method of density functional theory with the UB3LYP/6-311G approximation. Results. The optimized geometry and electron structures as well as the absorption IR spectra of the complexes in the high-spin (septet state are described. Conclusions. It is shown that the main mechanism of spin-orbit coupling during the O2 binding to heme is connected with peculiarity of the O2 molecule electronic structure.
Charge transport properties of a twisted DNA molecule: A renormalization approach
Energy Technology Data Exchange (ETDEWEB)
Almeida, M.L. de; Ourique, G.S.; Fulco, U.L. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Albuquerque, E.L., E-mail: eudenilson@gmail.com [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Moura, F.A.B.F. de; Lyra, M.L. [Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil)
2016-10-20
In this work we study the charge transport properties of a nanodevice consisting of a finite segment of the DNA molecule sandwiched between two metallic electrodes. Our model takes into account a nearest-neighbor tight-binding Hamiltonian considering the nucleobases twist motion, whose solutions make use of a two-steps renormalization process to simplify the algebra, which can be otherwise quite involved. The resulting variations of the charge transport efficiency are analyzed by numerically computing the main features of the electron transmittance spectra as well as their I × V characteristic curves.
Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; Mundy, Chistopher J.
2017-10-01
Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.
Li, Yan; Harbola, Manoj K.; Krieger, J. B.; Sahni, Viraht
1989-11-01
The exchange-correlation potential of the Kohn-Sham density-functional theory has recently been interpreted as the work required to move an electron against the electric field of its Fermi-Coulomb hole charge distribution. In this paper we present self-consistent results for ground-state total energies and highest occupied eigenvalues of closed subshell atoms as obtained by this formalism in the exchange-only approximation. The total energies, which are an upper bound, lie within 50 ppm of Hartree-Fock theory for atoms heavier than Be. The highest occupied eigenvalues, as a consequence of this interpretation, approximate well the experimental ionization potentials. In addition, the self-consistently calculated exchange potentials are very close to those of Talman and co-workers [J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976); K. Aashamar, T. M. Luke, and J. D. Talman, At. Data Nucl. Data Tables 22, 443 (1978)].
Descriptions of carbon isotopes within the energy density functional theory
Energy Technology Data Exchange (ETDEWEB)
Ismail, Atef [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia and Department of Physics, Al-Azhar University, 71524 Assiut (Egypt); Cheong, Lee Yen; Yahya, Noorhana [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Tammam, M. [Department of Physics, Al-Azhar University, 71524 Assiut (Egypt)
2014-10-24
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.
Model many-body Stoner Hamiltonian for binary FeCr alloys
Nguyen-Manh, D.; Dudarev, S. L.
2009-09-01
We derive a model tight-binding many-body d -electron Stoner Hamiltonian for FeCr binary alloys and investigate the sensitivity of its mean-field solutions to the choice of hopping integrals and the Stoner exchange parameters. By applying the local charge-neutrality condition within a self-consistent treatment we show that the negative enthalpy-of-mixing anomaly characterizing the alloy in the low chromium concentration limit is due entirely to the presence of the on-site exchange Stoner terms and that the occurrence of this anomaly is not specifically related to the choice of hopping integrals describing conventional chemical bonding between atoms in the alloy. The Bain transformation pathway computed, using the proposed model Hamiltonian, for the Fe15Cr alloy configuration is in excellent agreement with ab initio total-energy calculations. Our investigation also shows how the parameters of a tight-binding many-body model Hamiltonian for a magnetic alloy can be derived from the comparison of its mean-field solutions with other, more accurate, mean-field approximations (e.g., density-functional calculations), hence stimulating the development of large-scale computational algorithms for modeling radiation damage effects in magnetic alloys and steels.
Mining for elastic constants of intermetallics from the charge density landscape
Energy Technology Data Exchange (ETDEWEB)
Kong, Chang Sun; Broderick, Scott R. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Jones, Travis E. [Molecular Theory Group, Colorado School of Mines, Golden, CO 80401 (United States); Loyola, Claudia [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Eberhart, Mark E. [Molecular Theory Group, Colorado School of Mines, Golden, CO 80401 (United States); Rajan, Krishna, E-mail: krajan@iastate.edu [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)
2015-02-01
There is a significant challenge in designing new materials for targeted properties based on their electronic structure. While in principle this goal can be met using knowledge of the electron charge density, the relationships between the density and properties are largely unknown. To help overcome this problem we develop a quantitative structure–property relationship (QSPR) between the charge density and the elastic constants for B2 intermetallics. Using a combination of informatics techniques for screening all the potentially relevant charge density descriptors, we find that C{sub 11} and C{sub 44} are determined solely from the magnitude of the charge density at its critical points, while C{sub 12} is determined by the shape of the charge density at its critical points. From this reduced charge density selection space, we develop models for predicting the elastic constants of an expanded number of intermetallic systems, which we then use to predict the mechanical stability of new systems. Having reduced the descriptors necessary for modeling elastic constants, statistical learning approaches may then be used to predict the reduced knowledge-based required as a function of the constituent characteristics.
Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory.
Ismail-Beigi, Sohrab
2017-09-27
The question of which non-interacting Green's function 'best' describes an interacting many-body electronic system is both of fundamental interest as well as of practical importance in describing electronic properties of materials in a realistic manner. Here, we study this question within the framework of Baym-Kadanoff theory, an approach where one locates the stationary point of a total energy functional of the one-particle Green's function in order to find the total ground-state energy as well as all one-particle properties such as the density matrix, chemical potential, or the quasiparticle energy spectrum and quasiparticle wave functions. For the case of the Klein functional, our basic finding is that minimizing the length of the gradient of the total energy functional over non-interacting Green's functions yields a set of self-consistent equations for quasiparticles that is identical to those of the quasiparticle self-consistent GW (QSGW) (van Schilfgaarde et al 2006 Phys. Rev. Lett. 96 226402-4) approach, thereby providing an a priori justification for such an approach to electronic structure calculations. In fact, this result is general, applies to any self-energy operator, and is not restricted to any particular approximation, e.g., the GW approximation for the self-energy. The approach also shows that, when working in the basis of quasiparticle states, solving the diagonal part of the self-consistent Dyson equation is of primary importance while the off-diagonals are of secondary importance, a common observation in the electronic structure literature of self-energy calculations. Finally, numerical tests and analytical arguments show that when the Dyson equation produces multiple quasiparticle solutions corresponding to a single non-interacting state, minimizing the length of the gradient translates into choosing the solution with largest quasiparticle weight.
Laboratory Density Functionals
Giraud, B. G.
2007-01-01
We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.
On the evolution of the density probability density function in strongly self-gravitating systems
International Nuclear Information System (INIS)
Girichidis, Philipp; Konstandin, Lukas; Klessen, Ralf S.; Whitworth, Anthony P.
2014-01-01
The time evolution of the probability density function (PDF) of the mass density is formulated and solved for systems in free-fall using a simple approximate function for the collapse of a sphere. We demonstrate that a pressure-free collapse results in a power-law tail on the high-density side of the PDF. The slope quickly asymptotes to the functional form P V (ρ)∝ρ –1.54 for the (volume-weighted) PDF and P M (ρ)∝ρ –0.54 for the corresponding mass-weighted distribution. From the simple approximation of the PDF we derive analytic descriptions for mass accretion, finding that dynamically quiet systems with narrow density PDFs lead to retarded star formation and low star formation rates (SFRs). Conversely, strong turbulent motions that broaden the PDF accelerate the collapse causing a bursting mode of star formation. Finally, we compare our theoretical work with observations. The measured SFRs are consistent with our model during the early phases of the collapse. Comparison of observed column density PDFs with those derived from our model suggests that observed star-forming cores are roughly in free-fall.
Energy Technology Data Exchange (ETDEWEB)
Negre, Christian Francisco Andres [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzales, Ivana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-20
Catalysts inhibition studies were performed to indisputably confirm the role of various metal, carbon, and nitrogen moieties in the individual steps of oxygen reduction reaction (ORR) on M-N-C catalysts. ORR activity was studied at University of New Mexico by rotating ring disk electrode method in the acidic electrolyte with the addition of Tris (tris(hydroxymethyl)-aminomethane) as inhibiting agent. To understand the interaction of Tris with different defects that exist in Fe-N-C materials and provide the support for the experimental data, we used density functional theory (DFT) and modeled the interaction of protonated Tris (TrisH) with Fe containingcenters (Fe-N_{4} and Fe-N_{2}C_{2}), pyridinic nitrogen, graphitic nitrogen, and pyrrolic nitrogen both as in plane and edge defects.
Rate concept and retarded master equations for dissipative tight-binding models
International Nuclear Information System (INIS)
Egger, R.; Mak, C.H.; Weiss, U.
1994-01-01
Employing a ''noninteracting-cluster approximation,'' the dynamics of multistate dissipative tight-binding models has been formulated in terms of a set of generalized retarded master equations. The rates for the various pathways are expressed as power series in the intersite couplings. We apply this to the superexchange mechanism, which is relevant for bacterial photosynthesis and bridged electron transfer systems. This approach provides a general and unified description of both incoherent and coherent transport
Directory of Open Access Journals (Sweden)
M. Payami
2003-12-01
Full Text Available In this work, we have shown the important role of the finite-size correction to the work function in predicting the correct position of the centroid of excess charge in positively charged simple metal clusters with different values . For this purpose, firstly we have calculated the self-consistent Kohn-Sham energies of neutral and singly-ionized clusters with sizes in the framework of local spin-density approximation and stabilized jellium model (SJM as well as simple jellium model (JM with rigid jellium. Secondly, we have fitted our results to the asymptotic ionization formulas both with and without the size correction to the work function. The results of fittings show that the formula containing the size correction predict a correct position of the centroid inside the jellium while the other predicts a false position, outside the jellium sphere.
Density functional and many-body theories of Hydrogen plasmas
International Nuclear Information System (INIS)
Perrot, F.; Dharma-Wardana, M.W.C.
1983-11-01
This work is an attempt to go beyond the standard description of hot condensed matter using the well-known ''average atom model''. The first part describes a static model using ''Density functional theory'' to calculate self-consistent coupled electron and ion density profiles of the plasma not restricted to a single average atomic sphere. In a second part, the results are used as ingredients for a many-body approach to electronic properties: the one-particle Green-function self-energy is calculated, from which shifted levels, populations and level-widths are deduced. Results for the Hydrogen plasma are reported, with emphasis on the 1s bound state
Elizondo-Aguilera, L. F.; Zubieta Rico, P. F.; Ruiz-Estrada, H.; Alarcón-Waess, O.
2014-11-01
A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, Fl m ,l m(k ,t ) and Flm ,l m S(k ,t ) , are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density nl m(k ,t ) and the translational (α =T ) and rotational (α =R ) current densities jlm α(k ,t ) . Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by Sl m ,l m(k ) . Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γT and γR, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.
Elizondo-Aguilera, L F; Zubieta Rico, P F; Ruiz-Estrada, H; Alarcón-Waess, O
2014-11-01
A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, F_{lm,lm}(k,t) and F_{lm,lm}^{S}(k,t), are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density n_{lm}(k,t) and the translational (α=T) and rotational (α=R) current densities j_{lm}^{α}(k,t). Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by S_{lm,lm}(k). Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γ_{T} and γ_{R}, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.
Multi-level molecular modelling for plasma medicine
International Nuclear Information System (INIS)
Bogaerts, Annemie; Khosravian, Narjes; Van der Paal, Jonas; Verlackt, Christof C W; Yusupov, Maksudbek; Kamaraj, Balu; Neyts, Erik C
2016-01-01
Modelling at the molecular or atomic scale can be very useful for obtaining a better insight in plasma medicine. This paper gives an overview of different atomic/molecular scale modelling approaches that can be used to study the direct interaction of plasma species with biomolecules or the consequences of these interactions for the biomolecules on a somewhat longer time-scale. These approaches include density functional theory (DFT), density functional based tight binding (DFTB), classical reactive and non-reactive molecular dynamics (MD) and united-atom or coarse-grained MD, as well as hybrid quantum mechanics/molecular mechanics (QM/MM) methods. Specific examples will be given for three important types of biomolecules, present in human cells, i.e. proteins, DNA and phospholipids found in the cell membrane. The results show that each of these modelling approaches has its specific strengths and limitations, and is particularly useful for certain applications. A multi-level approach is therefore most suitable for obtaining a global picture of the plasma–biomolecule interactions. (paper)
Tight-binding calculation of Ti-Rh--type phase diagram
International Nuclear Information System (INIS)
Sluiter, M.; Turchi, P.; Fu Zezhong; de Fontaine, D.
1988-01-01
Tight-binding electronic band-structure calculations were combined with a free-energy expression from a statistical mechanical method called the cluster-variation method. The effective pair interactions used in the cluster-variation calculation were evaluated by the generalized perturbation method. Only d orbitals were included and the numbers of d electrons per atom were taken to be three for the pure A element and eight for the pure B. A phase diagram was constructed incorporating, for the first time, both fcc and bcc lattices and their simple-ordered superstructures. The calculated diagram agreed reasonably well with those determined empirically for Ti-Rh or Ti-Ir
Hanafiah, Saloma, Victor, Amalina, Khoirunnisa Nur
2017-11-01
Self-Compacting Concrete (SCC) is a concrete that can flow and compact by itself without vibrator. The ability of SCC to flow by itself makes this concrete very suitable for construction that has very small reinforcement gaps. In this study, SCC was designed to get a compressive strength above 60 MPa at the age of 28 days. Sugarcane bagasse ash was used as substitution material for cement replacement. Percentages of sugarcane bagasse ash used were 10%, 15%, and 20%. There were three w/c values that vary from 0.275, 0.300, and 0.325. Testing standards referred to ASTM, EFNARC and ACI. The fresh concrete test was slump flow, L-box and V-funnel. The maximum compressive strength was in the mixture with the sugarcane bagasse ash composition of 15% and w/c=0.275 which was 67.24 MPa. The result of SEM test analysis found that the mixture composition with 15% sugarcane bagasse ash has solid CSH structure, small amount of pores, and smaller pore diameter than other mixtures.
Tight-binding calculation of radiation loss in photonic crystal CROW.
Ma, Jing; Martínez, Luis Javier; Fan, Shanhui; Povinelli, Michelle L
2013-01-28
The tight binding approximation (TBA) is used to relate the intrinsic, radiation loss of a coupled resonator optical waveguide (CROW) to that of a single constituent resonator within a light cone picture. We verify the validity of the TBA via direct, full-field simulation of CROWs based on the L2 photonic crystal cavity. The TBA predicts that the quality factor of the CROW increases with that of the isolated cavity. Moreover, our results provide a method to design CROWs with low intrinsic loss across the entire waveguide band.
International Nuclear Information System (INIS)
Payami, M.
2004-01-01
In this work, we have shown the important role of the finite-size correction to the work function in predicting the correct position of the centroid of excess charge in positively charged simple metal clusters with different r s values (2≤ r s ≥ 7). For this purpose, firstly we have calculated the self-consistent Kohn-Sham energies of neutral and singly-ionized clusters with sizes 2≤ N ≥100 in the framework of local spin-density approximation and stabilized jellium model as well as simple jellium model with rigid jellium. Secondly, we have fitted our results to the asymptotic ionization formulas both with and without the size correction to the work function. The results of fittings show that the formula containing the size correction predict a correct position of the centroid inside the jellium while the other predicts a false position, outside the jellium sphere
Makarewicz, Emilia; Gordon, Agnieszka J; Berski, Slawomir
2015-03-19
Topological analysis of the electron localization function (ELF) has been carried out for the AuNgX (Ng = Ar, Kr, Xe; X = F, Cl, Br, I) molecules using the wave function approximated by the CCSD, MP2, and DFT(B3LYP, M062X) methods including zero-order regular approximation (ZORA). In the Ng-F bond, the bonding disynaptic attractor V(Ng,F) is missing; therefore, there are no signs of the covalent binding. The nature of the Au-Ng bond depends on the computational method used. Analysis of the ELF carried out for the AuArF and AuXeF molecules, with the wave function approximated by the CCSD and MP2 methods, shows the V(Au,Ng) attractor possibly corresponding to a partially covalent binding between the gold and noble gas atom. However, its very small basin population (<1e) and a very large value of the variance of the basin population suggest that the Au-Ng bond has a very delocalized character. Such bond nature may be related to the charge shift concept with a resonance of the Au(-+)NgX, Au(+-)NgX hybrids. The weakest Au-Ng bond, in terms of the smallest amount of electron density for the V(Au,Ng) basin, is found for the AuKrF molecule with the CCSD method (0.13e). The MP2 method, however, does not yield any V(Au, Ng) population; hence, the covalent Au-Kr bond is not confirmed. Because the V(Au,Ng) attractor is also not observed with the DFT method, the proper characterization of the Au-Ng bond requires proper description of correlation effects. Additional studies on the Au2 and [AuXe](+) molecules, performed at the CCSD and B3LYP levels, exhibit no V(Au,Au) and V(Au,Xe) bonding basins either.
Self-consistent mean-field models for nuclear structure
International Nuclear Information System (INIS)
Bender, Michael; Heenen, Paul-Henri; Reinhard, Paul-Gerhard
2003-01-01
The authors review the present status of self-consistent mean-field (SCMF) models for describing nuclear structure and low-energy dynamics. These models are presented as effective energy-density functionals. The three most widely used variants of SCMF's based on a Skyrme energy functional, a Gogny force, and a relativistic mean-field Lagrangian are considered side by side. The crucial role of the treatment of pairing correlations is pointed out in each case. The authors discuss other related nuclear structure models and present several extensions beyond the mean-field model which are currently used. Phenomenological adjustment of the model parameters is discussed in detail. The performance quality of the SCMF model is demonstrated for a broad range of typical applications
International Nuclear Information System (INIS)
Yeh, M.; Kim, J.; Khan, F.S.
1995-01-01
We present a parallel decomposition of the tight-binding fictitious Lagrangian algorithm for the Intel iPSC/860 and the Intel Paragon parallel computers. We show that it is possible to perform long simulations, of the order of 10 000 time steps, on semiconducting clusters consisting of as many as 512 atoms, on a time scale of the order of 20 h or less. We have made a very careful timing analysis of all parts of our code, and have identified the bottlenecks. We have also derived formulas which can predict the timing of our code, based on the number of processors, message passing bandwidth, floating point performance of each node, and the set up time for message passing, appropriate to the machine being used. The time of the simulation scales as the square of the number of particles, if the number of processors is made to scale linearly with the number of particles. We show that for a system as large as 512 atoms, the main bottleneck of the computation is the orthogonalization of the wave functions, which consumes about 90% of the total time of the simulation
Density functional theory study of inter-layer coupling in bulk tin selenide
Song, Hong-Yue; Lü, Jing-Tao
2018-03-01
We study the inter-layer coupling in bulk tin selenide (SnSe) through density functional theory based calculations. Different approximations for the exchange-correlation functionals and the van der Waals interaction are employed. By performing comparison with graphite, MoS2 and black phosphorus, we analyze the inter-layer coupling from different points of view, including the binding energy, the low frequency inter-layer optical phonons, and the inter-layer charge transfer. We find that, there is a strong charge transfer between layers of SnSe, resulting in the strongest inter-layer coupling. Moreover, the charge transfer renders the inter-layer coupling in SnSe not of van der Waals type. Mechanical exfoliation has been used to fabricate mono- or few-layer graphene, MoS2 and black phosphorus. But, our results show that it may be difficult to apply similar technique to SnSe.
Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg
2017-05-09
A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.
Dochter, Alexandre; Garnier, Tony; Pardieu, Elodie; Chau, Nguyet Trang Thanh; Maerten, Clément; Senger, Bernard; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia
2015-09-22
The development of new surface functionalization methods that are easy to use, versatile, and allow local deposition represents a real scientific challenge. Overcoming this challenge, we present here a one-pot process that consists in self-assembling, by electrochemistry on an electrode, films made of oppositely charged macromolecules. This method relies on a charge-shifting polyanion, dimethylmaleic-modified poly(allylamine) (PAHd), that undergoes hydrolysis at acidic pH, leading to an overall switching of its charge. When a mixture of the two polyanions, PAHd and poly(styrenesulfonate) (PSS), is placed in contact with an electrode, where the pH is decreased locally by electrochemistry, the transformation of PAHd into a polycation (PAH) leads to the continuous self-assembly of a nanometric PAH/PSS film by electrostatic interactions. The pH decrease is obtained by the electrochemical oxidation of hydroquinone, which produces protons locally over nanometric distances. Using a negatively charged enzyme, alkaline phosphatase (AP), instead of PSS, this one-pot process allows the creation of enzymatically active films. Under mild conditions, self-assembled PAH/AP films have an enzymatic activity which is adjustable simply by controlling the self-assembly time. The selective functionalization of microelectrode arrays by PAH/AP was achieved, opening the route toward miniaturized biosensors.
Liang, Y Y; Chen, H; Mizuseki, H; Kawazoe, Y
2011-04-14
We use density functional theory based nonequilibrium Green's function to self-consistently study the current through the 1,4-benzenedithiol (BDT). The elastic and inelastic tunneling properties through this Au-BDT-Au molecular junction are simulated, respectively. For the elastic tunneling case, it is found that the current through the tilted molecule can be modulated effectively by the external gate field, which is perpendicular to the phenyl ring. The gate voltage amplification comes from the modulation of the interaction between the electrodes and the molecules in the junctions. For the inelastic case, the electron tunneling scattered by the molecular vibrational modes is considered within the self-consistent Born approximation scheme, and the inelastic electron tunneling spectrum is calculated.
Effective Area and Charge Density of Iridium Oxide Neural Electrodes
International Nuclear Information System (INIS)
Harris, Alexander R.; Paolini, Antonio G.; Wallace, Gordon G.
2017-01-01
The effective electrode area and charge density of iridium metal and anodically activated iridium has been measured by optical and electrochemical techniques. The degree of electrode activation could be assessed by changes in electrode colour. The reduction charge, activation charge, number of activation pulses and charge density were all strongly correlated. Activated iridium showed slow electron transfer kinetics for reduction of a dissolved redox species. At fast voltammetric scan rates the linear diffusion electroactive area was unaffected by iridium activation. At slow voltammetric scan rates, the steady state diffusion electroactive area was reduced by iridium activation. The steady state current was consistent with a ring electrode geometry, with lateral resistance reducing the electrode area. Slow electron transfer on activated iridium would require a larger overpotential to reduce or oxidise dissolved species in tissue, limiting the electrodes charge capacity but also reducing the likelihood of generating toxic species in vivo.
International Nuclear Information System (INIS)
Sapershtein, E.E.; Khodel', V.A.
1981-01-01
The problem of calculating the binding energy and self-consistent field of a nucleus in terms of the effective interaction of quasiparticles at the Fermi surface is solved. It is shown that for this one can go over from the system of N Fermi particles to a system of N interacting quasiparticles described by an effective quasiparticle Lagrangian L/sub q/. It is shown that the corresponding quasiparticle energy is equal to the ground-state energy of the system. The connection between the parameters of the effective Lagrangian and the constants of the quasiparticle interaction introduced in the theory of finite Fermi systems is established
Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua
2017-12-01
The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.
Density functional theory for polymeric systems in 2D
International Nuclear Information System (INIS)
Słyk, Edyta; Bryk, Paweł; Roth, Roland
2016-01-01
We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim’s first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys . 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT. (paper)
Density functional theory and parallel processing
International Nuclear Information System (INIS)
Ward, R.C.; Geist, G.A.; Butler, W.H.
1987-01-01
The authors demonstrate a method for obtaining the ground state energies and charge densities of a system of atoms described within density functional theory using simulated annealing on a parallel computer
Improving Charge Injection in Organic Electronic Devices Using Self-Assembled Monolayers
Campbell, I. H.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.
1997-03-01
Organic electronic devices consist of one or more insulating organic layers contacted by metallic conductors. The Schottky energy barrier between the metal and the organic material is determined by the work function of the metal contact as described in the ideal Schottky model. The magnitude of the metal/organic Schottky energy barrier controls charge injection from the metal into the organic layer. Previously, polar alkane-thiol based self-assembled monolayers (SAMs) were used to change the Schottky energy barrier between the metal and an organic film by more than 1 eV. In these SAMs, the large energy gap of the alkane molecules blocks charge injection into the organic layer despite the decrease of the Schottky energy barrier. Here, we demonstrate improved charge injection into the organic material by using conjugated self-assembled monolayers. The conjugated SAMs have modest energy gaps which allow improved charge injection into the organic layer. We present measurements of current-voltage characteristics and metal/organic Schottky energy barriers for device structures both with and without conjugated SAMs.
Prediction of the impact of flow induced inhomogeneities in Self Compacting Concrete (SCC)
DEFF Research Database (Denmark)
Spangenberg, Jon; Roussel, N.; Hattel, Jesper Henri
2010-01-01
SCC is nowadays a worldwide used construction material. However, heterogeneities induced by casting may lead to variations of local properties and hence to a potential decrease of the structure’s load carrying capacity. The heterogeneities in SCC are primarily caused by static and dynamic segrega...
Solitons in one-dimensional charge density wave systems
International Nuclear Information System (INIS)
Su, W.P.
1981-01-01
Theoretical research on one dimensional charge density wave systems is outlined. A simple coupled electron-photon Hamiltonian is studied including a Green's function approach, molecular dynamics, and Monte Carlo path integral method. As in superconductivity, the nonperturbative nature of the system makes the physical ground states and low energy excitations drastically different from the bare electrons and phonons. Solitons carry quantum numbers which are entirely different from those of the bare electrons and holes. The fractional charge character of the solitons is an example of this fact. Solitons are conveniently generated by doping material with donors or acceptors or by photon absorption. Most predictions of the theory are in qualitative agreement with experiments. The one dimensional charge density wave system has potential technological importance and a possible role in uncovering phenomena which might have implications in relativistic field theory and elementary particle physics
Self-Reference Acts as a Golden Thread in Binding.
Sui, Jie
2016-07-01
In a recent article in this journal, Glyn Humphreys and I proposed a model of how self-reference enhances binding in perception and cognition [1]. We showed that self-reference changes particular functional processes; notably, self-reference increases binding between the features of stimuli and between different stages of processing. Lane and colleagues [2] provide an interesting comment on our article that suggests our theory of self-reference is compatible with Dennett's philosophical perspective on the narrative nature of the self. Although the nature of the self has attracted the attention of both philosophers and scientists, the two disciplines have generated different perspectives on the functions of the self, largely due to their different methodologies. For example, Dennett argues that the self is constituted through human narration on experience [3]. By contrast, work from psychologists and cognitive neuroscientists focuses on the functional and neural mechanisms of self-reference. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mäckel, Helmut; MacKenzie, Roderick C. I.
2018-03-01
Charge-carrier mobility is a fundamental material parameter, which plays an important role in determining solar-cell efficiency. The higher the mobility, the less time a charge carrier will spend in a device and the less likely it is that it will be lost to recombination. Despite the importance of this physical property, it is notoriously difficult to measure accurately in disordered thin-film solar cells under operating conditions. We, therefore, investigate a method previously proposed in the literature for the determination of mobility as a function of current density. The method is based on a simple analytical model that relates the mobility to carrier density and transport resistance. By revising the theoretical background of the method, we clearly demonstrate what type of mobility can be extracted (constant mobility or effective mobility of electrons and holes). We generalize the method to any combination of measurements that is able to determine the mean electron and hole carrier density, and the transport resistance at a given current density. We explore the robustness of the method by simulating typical organic solar-cell structures with a variety of physical properties, including unbalanced mobilities, unbalanced carrier densities, and for high or low carrier trapping rates. The simulations reveal that near VOC and JSC , the method fails due to the limitation of determining the transport resistance. However, away from these regions (and, importantly, around the maximum power point), the method can accurately determine charge-carrier mobility. In the presence of strong carrier trapping, the method overestimates the effective mobility due to an underestimation of the carrier density.
The electronic density of states of disordered compounds
International Nuclear Information System (INIS)
Geertsma, W.; Dijkstra, J.
1984-11-01
Recently, the electronic properties of liquid alkali (Li, Na, K, Rb, Cs)-group IV (Si, Ge, Sn, Pb) alloys have been discussed by the present authors using a tight-binding model. Only anion orbitals (= group IV) are taken into account. Disorder is described by a pseudo lattice, which takes into account local coordination in one of the sublattices (cation or anion) only. In the first part of this paper it is shown that this approximation is consistent with the usual valence rules used by structural chemists for crystalline structures. In the second part of the paper the solutions for the density of states of the tight-binding Hamiltonian are studied for a number of pseudolattices. The infinite set of Green function equations is solved by using the effective transfer method, which replaces the famous Block condition. It is shown that such a model can explain the formation of bandgaps in disordered systems. By choosing the proper smallest cluster(s) of transfer loops to model the real structure by a pseudolattice, a density of states is obtained which represents properly that of the corresponding crystalline structure. Structures reminiscent to those caused by van Hove singularities already appear in the electronic density of states when relatively small cluster(s) of transfer loops are used. The approach outlined in this paper is capable of describing the electronic density of states due to various degrees of local order in a sublattice. Some of the peculiarities occurring in the solution of the density of states of certain pseudolattices, such as poles outside the band, are discussed in an appendix. (author)
International Nuclear Information System (INIS)
Jameson, R.A.
1994-01-01
Beam halos are formed via self-consistent motion of the beam particles. Interactions of single particles with time-varying density distributions of other particles are a major source of halo. Aspects of these interactions are studied for an initially equilibrium distribution in a radial, linear, continuous focusing system. When there is a mismatch, it is shown that in the self-consistent system, there is a threshold in space-charge and mismatch, above which a halo is formed that extends to ∼1.5 times the initial maximum mismatch radius. Tools are sought for characterizing the halo dynamics. Testing the particles against the width of the mismatch driving resonance is useful for finding a conservative estimate of the threshold. The exit, entering and transition times, and the time evolution of the halo, are also explored using this technique. Extension to higher dimensions is briefly discussed
Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces
Van Regemorter, Tanguy; Guillaume, Maxime; Sini, Gjergji; Sears, John S.; Geskin, Victor; Bré das, Jean-Luc; Beljonne, David; Cornil, Jé rô me
2012-01-01
In the field of organic electronics, a central issue is to assess how the frontier electronic levels of two adjacent organic layers align with respect to one another at the interface. This alignment can be driven by the presence of a partial charge transfer and the formation of an interface dipole; it plays a key role for instance in determining the rates of exciton dissociation or exciton formation in organic solar cells or light-emitting diodes, respectively. Reliably modeling the processes taking place at these interfaces remains a challenge for the computational chemistry community. Here, we review our recent theoretical work on the influence of the choice of density functional theory (DFT) methodology on the description of the charge-transfer character in the ground state of TTF/ TCNQ model complexes and interfaces. Starting with the electronic properties of the isolated TTF and TCNQ molecules and then considering the charge transfer and resulting interface dipole in TTF/TCNQ donor-acceptor stacks and bilayers, we examine the impact of the choice of DFT functional in describing the interfacial electronic structure. Finally, we employ computations based on periodic boundary conditions to highlight the impact of depolarization effects on the interfacial dipole moment. © Springer-Verlag 2012.
Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces
Van Regemorter, Tanguy
2012-09-15
In the field of organic electronics, a central issue is to assess how the frontier electronic levels of two adjacent organic layers align with respect to one another at the interface. This alignment can be driven by the presence of a partial charge transfer and the formation of an interface dipole; it plays a key role for instance in determining the rates of exciton dissociation or exciton formation in organic solar cells or light-emitting diodes, respectively. Reliably modeling the processes taking place at these interfaces remains a challenge for the computational chemistry community. Here, we review our recent theoretical work on the influence of the choice of density functional theory (DFT) methodology on the description of the charge-transfer character in the ground state of TTF/ TCNQ model complexes and interfaces. Starting with the electronic properties of the isolated TTF and TCNQ molecules and then considering the charge transfer and resulting interface dipole in TTF/TCNQ donor-acceptor stacks and bilayers, we examine the impact of the choice of DFT functional in describing the interfacial electronic structure. Finally, we employ computations based on periodic boundary conditions to highlight the impact of depolarization effects on the interfacial dipole moment. © Springer-Verlag 2012.
Lian, Cheng; Zhao, Shuangliang; Liu, Honglai; Wu, Jianzhong
2016-11-28
Understanding the charging kinetics of electric double layers is of fundamental importance for the design and development of novel electrochemical devices such as supercapacitors and field-effect transistors. In this work, we study the dynamic behavior of room-temperature ionic liquids using a classical time-dependent density functional theory that accounts for the molecular excluded volume effects, the electrostatic correlations, and the dispersion forces. While the conventional models predict a monotonic increase of the surface charge with time upon application of an electrode voltage, our results show that dispersion between ions results in a non-monotonic increase of the surface charge with the duration of charging. Furthermore, we investigate the effects of van der Waals attraction between electrode/ionic-liquid interactions on the charging processes.
International Nuclear Information System (INIS)
Li, J H; Dai, X D; Wang, T L; Liu, B X
2007-01-01
We propose a two-parameter binomial truncation function for the second-moment approximation of the tight-binding (TB-SMA) interatomic potential and illustrate in detail the procedure of constructing the potentials for binary and ternary transition metal systems. For the ternary Ni-Hf-Ti system, the lattice constants, cohesion energies, elastic constants and bulk moduli of six binary compounds, i.e. L1 2 Ni 3 Hf, NiHf 3 , Ni 3 Ti, NiTi 3 , Hf 3 Ti and HfTi 3 , are firstly acquired by ab initio calculations and then employed to derive the binomial-truncated TB-SMA Ni-Hf-Ti potential. Applying the ab initio derived Ni-Hf-Ti potential, the lattice constants, cohesive energy, elastic constants and bulk moduli of another six binary compounds, i.e. D0 3 NiHf 3 , NiTi 3 HfTi 3 , and B2 NiHf, NiTi, HfTi, and two ternary compounds, i.e. C1 b NiHfTi, L2 1 Ni 2 HfTi, are calculated, respectively. It is found that, for the eight binary compounds studied, the calculated lattice constants and cohesion energies are in excellent agreement with those directly acquired from ab initio calculations and that the elastic constants and bulk moduli calculated from the potential are also qualitatively consistent with the results from ab initio calculations
Multi-configuration time-dependent density-functional theory based on range separation
DEFF Research Database (Denmark)
Fromager, E.; Knecht, S.; Jensen, Hans Jørgen Aagaard
2013-01-01
Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration- Self-Consistent Field (MCSCF) treatment with an adiabatic short...... (srGGA) approximations. As expected, when modeling long-range interactions with the MCSCF model instead of the adiabatic Buijse-Baerends density-matrix functional as recently proposed by Pernal [J. Chem. Phys. 136, 184105 (2012)10.1063/1.4712019], the description of both the 1D doubly-excited state...
SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS
Energy Technology Data Exchange (ETDEWEB)
Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J
2010-12-20
We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.
Meng, Yan; Wu, Qi; Chen, Lei; Wangmo, Sonam; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin; Ding, Dajun; Niehaus, Thomas A; Frauenheim, Thomas
2013-12-21
To promote possible applications of graphene in molecular identification based on stacking effects, in particular in recognizing aromatic amino acids and even sequencing nucleobases in life sciences, we comprehensively study the interaction between graphene segments and different cyclic organic hydrocarbons including benzene (C6H6), cyclohexane (C6H12), benzyne (C6H4), cyclohexene (C6H10), 1,3-cyclohexadiene (C6H8(1)) and 1,4-cyclohexadiene (C6H8(2)), using the density-functional tight-binding (DFTB) method. Interestingly, we find obviously different characteristics in Raman vibrational and ultraviolet visible absorption spectra of the small molecules adsorbed on the graphene sheet. Specifically, we find that both spectra involve clearly different characteristic peaks, belonging to the different small molecules upon adsorption, with the ones of ionized molecules being more substantial. Further analysis shows that the adsorptions are almost all due to the presence of dispersion energy in neutral cases and involve charge transfer from the graphene to the small molecules. In contrast, the main binding force in the ionic adsorption systems is the electronic interaction. The results present clear signatures that can be used to recognize different kinds of aromatic hydrocarbon rings on graphene sheets. We expect that our findings will be helpful for designing molecular recognition devices using graphene.
International Nuclear Information System (INIS)
Engel, J.
2007-01-01
The Hohenberg-Kohn theorem and Kohn-Sham procedure are extended to functionals of the localized intrinsic density of a self-bound system such as a nucleus. After defining the intrinsic-density functional, we modify the usual Kohn-Sham procedure slightly to evaluate the mean-field approximation to the functional, and carefully describe the construction of the leading corrections for a system of fermions in one dimension with a spin-degeneracy equal to the number of particles N. Despite the fact that the corrections are complicated and nonlocal, we are able to construct a local Skyrme-like intrinsic-density functional that, while different from the exact functional, shares with it a minimum value equal to the exact ground-state energy at the exact ground-state intrinsic density, to next-to-leading order in 1/N. We briefly discuss implications for real Skyrme functionals
Energy vs. density on paths toward more exact density functionals.
Kepp, Kasper P
2018-03-14
Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a "path". Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness and "straying" from the "path" by separating errors in ρ and E[ρ]. A consistent path toward exactness involves minimizing both errors. Second, a suitably diverse test set of trial densities ρ' can be used to estimate the significance of errors in ρ without knowing the exact densities which are often inaccessible. To illustrate this, the systems previously studied by Medvedev et al., the first ionization energies of atoms with Z = 1 to 10, the ionization energy of water, and the bond dissociation energies of five diatomic molecules were investigated using CCSD(T)/aug-cc-pV5Z as benchmark at chemical accuracy. Four functionals of distinct designs was used: B3LYP, PBE, M06, and S-VWN. For atomic cations regardless of charge and compactness up to Z = 10, the energy effects of the different ρ are energy-wise insignificant. An interesting oscillating behavior in the density sensitivity is observed vs. Z, explained by orbital occupation effects. Finally, it is shown that even large "normal" problems such as the Co-C bond energy of cobalamins can use simpler (e.g. PBE) trial densities to drastically speed up computation by loss of a few kJ mol -1 in accuracy. The proposed method of using a test set of trial densities to estimate the sensitivity and significance of density errors of functionals may be useful for testing and designing new balanced functionals with more systematic improvement of densities and energies.
Charge Transport Along Phenylenevinylene Molecular Wires
2006-01-01
Abstract A model to calculate the mobility of charges along molecular wires is presented. The model is based on the tight-binding approximation and combines a quantum mechanical description of the charge with a classical description of the structural degrees of freedom. It is demonstrated that the average mobility of charge carriers along molecular wires can be obtained by time-propagation of states which are initially localised. The model is used to calculate the mobility of charg...
Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil
2011-07-01
The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.
Self-consistent field theory of polymer-ionic molecule complexation
Nakamura, Issei; Shi, An-Chang
2010-01-01
A self-consistent field theory is developed for polymers that are capable of binding small ionic molecules (adsorbates). The polymer-ionic molecule association is described by Ising-like binding variables, C_(i)^(a)(kΔ)(= 0 or 1), whose average determines the number of adsorbed molecules, nBI. Polymer gelation can occur through polymer-ionic molecule complexation in our model. For polymer-polymer cross-links through the ionic molecules, three types of solutions for nBI are obtained, depending...
Derivation of the density functional theory from the cluster expansion.
Hsu, J Y
2003-09-26
The density functional theory is derived from a cluster expansion by truncating the higher-order correlations in one and only one term in the kinetic energy. The formulation allows self-consistent calculation of the exchange correlation effect without imposing additional assumptions to generalize the local density approximation. The pair correlation is described as a two-body collision of bound-state electrons, and modifies the electron- electron interaction energy as well as the kinetic energy. The theory admits excited states, and has no self-interaction energy.
Christensen, Anders S; Kromann, Jimmy C; Jensen, Jan H; Cui, Qiang
2017-10-28
To facilitate further development of approximate quantum mechanical methods for condensed phase applications, we present a new benchmark dataset of intermolecular interaction energies in the solution phase for a set of 15 dimers, each containing one charged monomer. The reference interaction energy in solution is computed via a thermodynamic cycle that integrates dimer binding energy in the gas phase at the coupled cluster level and solute-solvent interaction with density functional theory; the estimated uncertainty of such calculated interaction energy is ±1.5 kcal/mol. The dataset is used to benchmark the performance of a set of semi-empirical quantum mechanical (SQM) methods that include DFTB3-D3, DFTB3/CPE-D3, OM2-D3, PM6-D3, PM6-D3H+, and PM7 as well as the HF-3c method. We find that while all tested SQM methods tend to underestimate binding energies in the gas phase with a root-mean-squared error (RMSE) of 2-5 kcal/mol, they overestimate binding energies in the solution phase with an RMSE of 3-4 kcal/mol, with the exception of DFTB3/CPE-D3 and OM2-D3, for which the systematic deviation is less pronounced. In addition, we find that HF-3c systematically overestimates binding energies in both gas and solution phases. As most approximate QM methods are parametrized and evaluated using data measured or calculated in the gas phase, the dataset represents an important first step toward calibrating QM based methods for application in the condensed phase where polarization and exchange repulsion need to be treated in a balanced fashion.
Christensen, Anders S.; Kromann, Jimmy C.; Jensen, Jan H.; Cui, Qiang
2017-10-01
To facilitate further development of approximate quantum mechanical methods for condensed phase applications, we present a new benchmark dataset of intermolecular interaction energies in the solution phase for a set of 15 dimers, each containing one charged monomer. The reference interaction energy in solution is computed via a thermodynamic cycle that integrates dimer binding energy in the gas phase at the coupled cluster level and solute-solvent interaction with density functional theory; the estimated uncertainty of such calculated interaction energy is ±1.5 kcal/mol. The dataset is used to benchmark the performance of a set of semi-empirical quantum mechanical (SQM) methods that include DFTB3-D3, DFTB3/CPE-D3, OM2-D3, PM6-D3, PM6-D3H+, and PM7 as well as the HF-3c method. We find that while all tested SQM methods tend to underestimate binding energies in the gas phase with a root-mean-squared error (RMSE) of 2-5 kcal/mol, they overestimate binding energies in the solution phase with an RMSE of 3-4 kcal/mol, with the exception of DFTB3/CPE-D3 and OM2-D3, for which the systematic deviation is less pronounced. In addition, we find that HF-3c systematically overestimates binding energies in both gas and solution phases. As most approximate QM methods are parametrized and evaluated using data measured or calculated in the gas phase, the dataset represents an important first step toward calibrating QM based methods for application in the condensed phase where polarization and exchange repulsion need to be treated in a balanced fashion.
Ma, Manman; Xu, Zhenli
2014-12-28
Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.
Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media
Energy Technology Data Exchange (ETDEWEB)
Ma, Manman, E-mail: mmm@sjtu.edu.cn; Xu, Zhenli, E-mail: xuzl@sjtu.edu.cn [Department of Mathematics, Institute of Natural Sciences, and MoE Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240 (China)
2014-12-28
Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.
Self-consistent electrostatic potential due to trapped plasma in the magnetosphere
International Nuclear Information System (INIS)
Miller, R.H.; Khazanov, G.V.
1993-01-01
The authors address the problem of the steady state confinement of plasma in a magnetic flux tube. They construct a steady state distribution function, under the assumption of no waves or collisions, using the kinematic constants of the motion, total energy and magnetic moment. The local particle densities are shown to be integrals over the equatorial distribution function for the particle of concern. The electric potential is determined by the imposition of quasineutrality. The authors show that their self consistent model produces potential drops which are consistent with the kinetic energy of the equatorially trapped particles. They comment on earlier work of Alfven and Faelthammar, and for a bi-Maxwellian distribution compare the results of the present model with the Alfven and Faelthammar model
Johnson, Erin R; Contreras-García, Julia
2011-08-28
We develop a new density-functional approach combining physical insight from chemical structure with treatment of multi-reference character by real-space modeling of the exchange-correlation hole. We are able to recover, for the first time, correct fractional-charge and fractional-spin behaviour for atoms of groups 1 and 2. Based on Becke's non-dynamical correlation functional [A. D. Becke, J. Chem. Phys. 119, 2972 (2003)] and explicitly accounting for core-valence separation and pairing effects, this method is able to accurately describe dissociation and strong correlation in s-shell many-electron systems. © 2011 American Institute of Physics
International Nuclear Information System (INIS)
Kim, Dong Youn
1986-01-01
To evaluate the performance characteristics of SCC RIV and the clinical significance of serum SCC Ag assay in patients with malignancy, serum SCC Ag levels were measured by SCC RIV kit in 40 normal controls and 35 percents with various untreated malignancy, who visited Chonju Presbyterian Medical Center. The results were as follows; 1. The SCC RIA was simple to perform and can be completed in two workday. And the standard curve and reproducibility were both good. 2. The mean serum SCC Ag level in normal controls was 1.64 ± 0.93 ng/mL and normal upper limit of serum SCC Ag was defined as 2.6 ng/mL. 3 out of 40 (7.5%) normal controls showed elevated SCC Ag levels above the normal upper limit. 3. In 35 patients with various untreated malignancy, 18 patients (51.4%) showed elevated serum SCC Ag levels, 59.1% of 22 patients with cervical cancer, 80% of 5 patients with lung cancer, 33% of 3 patients with esophageal cancer, 0% of 2 patients with rectal cancer and 0% of 3 patients with breast cancer showed elevated serum SCC Ag levels. Above results represent that SCC RIV is simple method to perform followed by good standard curve and reproducibility, and may be a useful indicator reflecting diagnostic data of patients with cervical cancer and lung cancer
Lu, Shuo; Zgurskaya, Helen I
2013-11-01
The Escherichia coli MacAB-TolC transporter has been implicated in efflux of macrolide antibiotics and secretion of enterotoxin STII. In this study, we found that purified MacA, a periplasmic membrane fusion protein, contains one tightly bound rough core lipopolysaccharide (R-LPS) molecule per MacA molecule. R-LPS was bound specifically to MacA protein with affinity exceeding that of polymyxin B. Sequence analyses showed that MacA contains two high-density clusters of positively charged amino acid residues located in the cytoplasmic N-terminal domain and the periplasmic C-terminal domain. Substitutions in the C-terminal cluster reducing the positive-charge density completely abolished binding of R-LPS. At the same time, these substitutions significantly reduced the functionality of MacA in the protection of E. coli against macrolides in vivo and in the in vitro MacB ATPase stimulation assays. Taken together, our results suggest that R-LPS or a similar glycolipid is a physiological substrate of MacAB-TolC.
Balachandran, V.; Parimala, K.
This study is a comparative analysis of FT-IR and FT-Raman spectra of vanillin (3-methoxy-4-hydroxybenzaldehyde) and isovanillin (3-hydroxy-4-methoxybenzaldehyde). The molecular structure, vibrational wavenumbers, infrared intensities, Raman scattering activities were calculated for both molecules using the B3LYP density functional theory (DFT) with the standard 6-311++G∗∗ basis set. The computed values of frequencies are scaled using multiple scaling factors to yield good coherence with the observed values. The calculated harmonic vibrational frequencies are compared with experimental FT-IR and FT-Raman spectra. The geometrical parameters and total energies of vanillin and isovanillin were obtained for all the eight conformers (a-h) from DFT/B3LYP method with 6-311++G∗∗ basis set. The computational results identified the most stable conformer of vanillin and isovanillin as in the "a" form. Non-linear properties such as electric dipole moment (μ), polarizability (α), and hyperpolarizability (β) values of the investigated molecules have been computed using B3LYP quantum chemical calculation. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecules.
Effect of nonuniform radial density distribution on the space charge dominated beam bunching
International Nuclear Information System (INIS)
Sing Babu, P.; Goswami, A.; Pandit, V. S.
2011-01-01
Beam dynamics of a space charge dominated beam during the bunch compression is studied self consistently for the case of fixed shape non-uniform bell shape and hollow shape density distributions in the transverse direction. We have used thick slices at different parts of the beam to account for variation in the beam radius in the study of the transverse dynamics. The longitudinal dynamics has been studied using the disc model. The axial variation of the radius of the slices and emittance growth arising from the phase dependence of the transverse rf forces are also included in the simulation. We have modified the beam envelope equation to take into account the longitudinal space charge effect on the transverse motion which arises due to the finite bunch size. To demonstrate the application of the theoretical formulations developed, we have studied a sinusoidal beam bunching system and presented detailed numerical results.
The band gap of II-Vi ternary alloys in a tight-binding description
Energy Technology Data Exchange (ETDEWEB)
Olguin, Daniel; Blanquero, Rafael [Instituto Politecnico Nacional, Mexico, D.F (Mexico); De Coss, Romeo [Instituto Politecnico Nacional, Yucatan (Mexico)
2001-02-01
We present tight-binding calculations for the band gap of II-Vi pseudobinary ternary alloys. We use an sp{sup 3} s* tight-binding Hamiltonian which include spin-orbit coupling. The band gap composition dependence is calculated using a extended version of the virtual crystal approximation, which introduce an empirical correction factor that takes into account the non-linear dependence of the band gap with the composition. The results compare quite well with the experimental data, both for the ternary alloys with wide band gap and for the narrow band gap ones. [Spanish] Presentamos el calculo de la banda de energia prohibida de aleaciones ternarias de compuestos II-VI. El calculo, que incluye interaccion espin-orbita, se hace con el metodo de enlace fuerte, utilizando una base ortogonal de cinco orbitales atomicos por atomo (sp{sup 3} s*), en conjunto con la aproximacion del cristal virtual. En la aproximacion del cristal virtual, incluimos un factor de correccion que toma en cuenta la no linealidad de la banda de energia prohibida como funcion de la concentracion. Con esta correccion nuestros resultados reproducen aceptablemente los datos experimentales hallados en la literatura.
Challenging chemical concepts through charge density of molecules and crystals
International Nuclear Information System (INIS)
Gatti, Carlo
2013-01-01
Narrating my scientific career, I show in this paper how, starting as a computational and theoretical chemist, I got naturally involved with x-ray crystallographers because of the common interest in charge density and in the study of chemical bonds based on such an observable. The tools I devised and the conceptual developments I made to facilitate a profitable encounter between x-ray charge density and computational chemistry researchers are illustrated, with a special focus on the proposal and applications of the Source Function concept. (comment)
Spectral function from Reduced Density Matrix Functional Theory
Romaniello, Pina; di Sabatino, Stefano; Berger, Jan A.; Reining, Lucia
2015-03-01
In this work we focus on the calculation of the spectral function, which determines, for example, photoemission spectra, from reduced density matrix functional theory. Starting from its definition in terms of the one-body Green's function we derive an expression for the spectral function that depends on the natural occupation numbers and on an effective energy which accounts for all the charged excitations. This effective energy depends on the two-body as well as higher-order density matrices. Various approximations to this expression are explored by using the exactly solvable Hubbard chains.
Pressure variation of the valence band width in Ge: A self-consistent GW study
DEFF Research Database (Denmark)
Modak, Paritosh; Svane, Axel; Christensen, Niels Egede
2009-01-01
. In the present work we report results of quasiparticle self-consistent GW (QSGW) band calculations for diamond- as well as β-tin-type Ge under pressure. For both phases we find that the band width increases with pressure. For β-tin Ge this agrees with experiment and density-functional theory, but for diamond Ge...
Pal, Amrita; Arabnejad, Saeid; Yamashita, Koichi; Manzhos, Sergei
2018-05-01
C60 and C60 based molecules are efficient acceptors and electron transport layers for planar perovskite solar cells. While properties of these molecules are well studied by ab initio methods, those of solid C60, specifically its optical absorption properties, are not. We present a combined density functional theory-Density Functional Tight Binding (DFTB) study of the effect of solid state packing on the band structure and optical absorption of C60. The valence and conduction band edge energies of solid C60 differ on the order of 0.1 eV from single molecule frontier orbital energies. We show that calculations of optical properties using linear response time dependent-DFT(B) or the imaginary part of the dielectric constant (dipole approximation) can result in unrealistically large redshifts in the presence of intermolecular interactions compared to available experimental data. We show that optical spectra computed from the frequency-dependent real polarizability can better reproduce the effect of C60 aggregation on optical absorption, specifically with a generalized gradient approximation functional, and may be more suited to study effects of molecular aggregation.
Lemloh, Marie-Louise; Altintoprak, Klara; Wege, Christina; Weiss, Ingrid M; Rothenstein, Dirk
2017-01-28
Proteins regulate diverse biological processes by the specific interaction with, e.g., nucleic acids, proteins and inorganic molecules. The generation of inorganic hybrid materials, such as shell formation in mollusks, is a protein-controlled mineralization process. Moreover, inorganic-binding peptides are attractive for the bioinspired mineralization of non-natural inorganic functional materials for technical applications. However, it is still challenging to identify mineral-binding peptide motifs from biological systems as well as for technical systems. Here, three complementary approaches were combined to analyze protein motifs consisting of alternating positively and negatively charged amino acids: (i) the screening of natural biomineralization proteins; (ii) the selection of inorganic-binding peptides derived from phage display; and (iii) the mineralization of tobacco mosaic virus (TMV)-based templates. A respective peptide motif displayed on the TMV surface had a major impact on the SiO₂ mineralization. In addition, similar motifs were found in zinc oxide- and zirconia-binding peptides indicating a general binding feature. The comparative analysis presented here raises new questions regarding whether or not there is a common design principle based on acidic and basic amino acids for peptides interacting with minerals.
Surface passivation for tight-binding calculations of covalent solids
International Nuclear Information System (INIS)
Bernstein, N
2007-01-01
Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp 3 hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system
Jaiyong, Panichakorn; Bryce, Richard A
2017-06-14
Noncovalent functionalization of graphene by carbohydrates such as β-cyclodextrin (βCD) has the potential to improve graphene dispersibility and its use in biomedical applications. Here we explore the ability of approximate quantum chemical methods to accurately model βCD conformation and its interaction with graphene. We find that DFTB3, SCC-DFTB and PM3CARB-1 methods provide the best agreement with density functional theory (DFT) in calculation of relative energetics of gas-phase βCD conformers; however, the remaining NDDO-based approaches we considered underestimate the stability of the trans,gauche vicinal diol conformation. This diol orientation, corresponding to a clockwise hydrogen bonding arrangement in the glucosyl residue of βCD, is present in the lowest energy βCD conformer. Consequently, for adsorption on graphene of clockwise or counterclockwise hydrogen bonded forms of βCD, calculated with respect to this unbound conformer, the DFTB3 method provides closer agreement with DFT values than PM7 and PM6-DH2 approaches. These findings suggest approximate quantum chemical methods as potentially useful tools to guide the design of carbohydrate-graphene interactions, but also highlights the specific challenge to NDDO-based methods in capturing the relative energetics of carbohydrate hydrogen bond networks.
C library for topological study of the electronic charge density.
Vega, David; Aray, Yosslen; Rodríguez, Jesús
2012-12-05
The topological study of the electronic charge density is useful to obtain information about the kinds of bonds (ionic or covalent) and the atom charges on a molecule or crystal. For this study, it is necessary to calculate, at every space point, the electronic density and its electronic density derivatives values up to second order. In this work, a grid-based method for these calculations is described. The library, implemented for three dimensions, is based on a multidimensional Lagrange interpolation in a regular grid; by differentiating the resulting polynomial, the gradient vector, the Hessian matrix and the Laplacian formulas were obtained for every space point. More complex functions such as the Newton-Raphson method (to find the critical points, where the gradient is null) and the Cash-Karp Runge-Kutta method (used to make the gradient paths) were programmed. As in some crystals, the unit cell has angles different from 90°, the described library includes linear transformations to correct the gradient and Hessian when the grid is distorted (inclined). Functions were also developed to handle grid containing files (grd from DMol® program, CUBE from Gaussian® program and CHGCAR from VASP® program). Each one of these files contains the data for a molecular or crystal electronic property (such as charge density, spin density, electrostatic potential, and others) in a three-dimensional (3D) grid. The library can be adapted to make the topological study in any regular 3D grid by modifying the code of these functions. Copyright © 2012 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Campagnoli, G.; Tosatti, E.
1981-08-01
In the present attempt we have considered a model ordered situation (a super-superlattice) where starting from a basic stoichiometry C 8 X, a fraction 1/3 of the molecules acquire one electron, the remaining 2/3 being left neutral. We have performed an electronic structure calculation using tight-binding plus electrostatic (Hartree) self-consistency
Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach
Energy Technology Data Exchange (ETDEWEB)
Lyutorovich, N.; Tselyaev, V. [Physical Faculty, St. Petersburg State University, RU-198504 St. Petersburg (Russian Federation); Speth, J., E-mail: J.Speth@fz-juelich.de [Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich (Germany); Krewald, S.; Grümmer, F. [Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich (Germany); Reinhard, P.-G. [Institut für Theoretische Physik II, Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany)
2015-10-07
We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree–Fock ground state and the excitation spectra within random-phase approximation (RPA) and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA). All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.
Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao
2017-09-21
To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.
International Nuclear Information System (INIS)
Baruah, Tunna; Garnica, Amanda; Paggen, Marina; Basurto, Luis; Zope, Rajendra R.
2016-01-01
We study the electronic structure of C 60 fullerenes functionalized with a thiophene-diketo-pyrrolopyrrole-thiophene based chromophore using density functional theory combined with large polarized basis sets. As the attached chromophore has electron donor character, the functionalization of the fullerene leads to a donor-acceptor (DA) system. We examine in detail the effect of the linker and the addition site on the electronic structure of the functionalized fullerenes. We further study the electronic structure of these DA complexes with a focus on the charge transfer excitations. Finally, we examine the interface of the functionalized fullerenes with the widely used poly(3-hexylthiophene-2,5-diyl) (P3HT) donor. Our results show that all functionalized fullerenes with an exception of the C 60 -pyrrolidine [6,6], where the pyrrolidine is attached at a [6,6] site, have larger electron affinities relative to the pristine C 60 fullerene. We also estimate the quasi-particle gap, lowest charge transfer excitation energy, and the exciton binding energies of the functionalized fullerene-P3MT model systems. Results show that the exciton binding energies in these model complexes are slightly smaller compared to a similarly prepared phenyl-C 61 -butyric acid methyl ester (PCBM)-P3MT complex.
Transition density of charge-exchange processes
International Nuclear Information System (INIS)
Lovas, R.G.
1983-01-01
The transition density between parent and analogue states is studied with special reference to its role in charge-exchange nuclear reactions. The structure of the target nucleus is described in a perturbative approach, in which the Coulomb and asymmetry potentials mix the eigenstates of a charge-independent single-particle Hamiltonian. In this model formulae are derived for the transition density, the Coulomb displacement energy and the neutron-proton density difference, and their relationship is used to estimate the transition density. This estimate shows that: the largest contribution comes from the density of the excess neutrons; the weight of the Coulomb-mixing effect is small up to excess neutron number 10, and grows rapidly beyond; the weight of the core polarization term induced by the excess neutrons is modest and is the same for all nuclei. It is indicated that the Coulomb effect may explain the departure from the Lane model of nucleon charge-exchange scattering found for heavy nuclei, whereas the core polarization may account for the observed anomalous dependence of the deg 0 pion charge-exchange cross section on the number of excess neutrons. (author)
SCC modification by use of amorphous nano-silica
Quercia Bianchi, G.; Spiesz, P.R.; Hüsken, G.; Brouwers, H.J.H.
2014-01-01
In this study two different types of nano-silica (nS) were applied in self-compacting concrete (SCC), both having similar particle size distributions (PSD), but produced through two different processes: fumed powder silica and precipitated silica in colloidal suspension. The influence of nano-silica
Dielectric constant of graphene-on-polarized substrate: A tight ...
Indian Academy of Sciences (India)
2017-06-24
Jun 24, 2017 ... We report here a microscopic tight-binding theoretical study of the dynamic dielectric response of graphene-on-polarizable substrate with impurity. The Hamiltonian consists of first, second and third nearest neighbour electron hopping interactions besides doping and substrate-induced effects on graphene.
Coupled Dyson-Schwinger equations and effects of self-consistency
International Nuclear Information System (INIS)
Wu, S.S.; Zhang, H.X.; Yao, Y.J.
2001-01-01
Using the σ-ω model as an effective tool, the effects of self-consistency are studied in some detail. A coupled set of Dyson-Schwinger equations for the renormalized baryon and meson propagators in the σ-ω model is solved self-consistently according to the dressed Hartree-Fock scheme, where the hadron propagators in both the baryon and meson self-energies are required to also satisfy this coupled set of equations. It is found that the self-consistency affects the baryon spectral function noticeably, if only the interaction with σ mesons is considered. However, there is a cancellation between the effects due to the σ and ω mesons and the additional contribution of ω mesons makes the above effect insignificant. In both the σ and σ-ω cases the effects of self-consistency on meson spectral function are perceptible, but they can nevertheless be taken account of without a self-consistent calculation. Our study indicates that to include the meson propagators in the self-consistency requirement is unnecessary and one can stop at an early step of an iteration procedure to obtain a good approximation to the fully self-consistent results of all the hadron propagators in the model, if an appropriate initial input is chosen. Vertex corrections and their effects on ghost poles are also studied
Comparison of self-consistent calculations of the static polarizability of atoms and molecules
International Nuclear Information System (INIS)
Moullet, I.; Martins, J.L.
1990-01-01
The static dipole polarizabilities and other ground-state properties of H, H 2 , He, Na, and Na 2 are calculated using five different self-consistent schemes: Hartree--Fock, local spin density approximation, Hartree--Fock plus local density correlation, self-interaction-corrected local spin density approximation, and Hartree--Fock plus self-interaction-corrected local density correlation. The inclusion of the self-interaction corrected local spin density approximation in the Hartree--Fock method improves dramatically the calculated dissociation energies of molecules but has a small effect on the calculated polarizabilities. Correcting the local spin density calculations for self-interaction effects improves the calculated polarizability in the cases where the local spin density results are mediocre, and has only a small effect in the cases where the local spin density values are in reasonable agreement with experiment
Bai, Zhengya; Hou, Shasha; Zhang, Shilei; Li, Zhongyan; Zhou, Peng
2017-04-24
Previously, we have reported a new biomolecular phenomenon spanning between protein folding and binding, termed as self-binding peptides (SBPs), where a short peptide segment in monomeric protein functions as a molecular switch by dynamically binding to/unbinding from its cognate domain in the monomer (Yang et al. J. Chem. Inf. 2015, 55, 329-342). Here, we attempt to raise the SBP as a new class of druggable targets to regulate the biological activity and function of proteins. A case study was performed on the proto-oncogene nonreceptor tyrosine kinase, c-Src, which contains two SBPs that bind separately to SH3 and SH2 domains of the kinase. State-of-the-art molecular dynamics (MD) simulations and post binding energetics analysis revealed that disrupting the kinase-intramolecular interactions of SH3 and SH2 domains with their cognate SBP ligands can result in totally different effects on the structural dynamics of c-Src kinase architecture; targeting the SH2 domain unlocks the autoinhibitory form of the kinase-this is very similar to the pTyr527 dephosphorylation that functionally activates the kinase, whereas targeting the SH3 domain can only release the domain from the tightly packed kinase but has a moderate effect on the kinase activity. Subsequently, based on the cognate SBP sequence we computationally designed a number of SH2-binding phosphopeptides using a motif grafting strategy. Fluorescence polarization (FP) assay observed that most of the designed phosphopeptides have higher binding affinity to SH2 domain as compared to the native SBP segment (K d = 53 nM). Kinase assay identified a typical dose-response relationship of phosphopeptides against kinase activation, substantiating that disruption of SH2-SBP interaction can mimic c-Src dephosphorylation and activate the kinase. Two rationally designed phosphopeptides, namely EPQpYEEIEN and EPQpYEELEN, were determined as strong binders of SH2 domain (K d = 8.3 and 15 nM, respectively) and potent activators of
International Nuclear Information System (INIS)
Filippov, A.V.; Dyatko, N.A.; Pal', A.F.; Starostin, A.N.
2003-01-01
A model of dust grain charging is constructed using the method of moments. The dust grain charging process in a weakly ionized helium plasma produced by a 100-keV electron beam at atmospheric pressure is studied theoretically. In simulations, the beam current density was varied from 1 to 10 6 μA/cm 2 . It is shown that, in a He plasma, dust grains of radius 5 μm and larger perturb the electron temperature only slightly, although the reduced electric field near the grain reaches 8 Td, the beam current density being 10 6 μA/cm 2 . It is found that, at distances from the grain that are up to several tens or hundreds of times larger than its radius, the electron and ion densities are lower than their equilibrium values. Conditions are determined under which the charging process may be described by a model with constant electron transport coefficients. The dust grain charge is shown to be weakly affected by secondary electron emission. In a beam-produced helium plasma, the dust grain potential calculated in the drift-diffusion model is shown to be close to that calculated in the orbit motion limited model. It is found that, in the vicinity of a body perturbing the plasma, there may be no quasineutral plasma presheath with an ambipolar diffusion of charged particles. The conditions for the onset of this presheath in a beam-produced plasma are determined
Directory of Open Access Journals (Sweden)
Brandon B. Dale
2017-05-01
Full Text Available Bare and guanine-complexed silver clusters Ag n z (n = 2-6; z = 0-2 are examined using density functional theory to elucidate the geometries and binding motifs that are present experimentally. Whereas the neutral systems remain planar in this size range, a 2D-3D transition occurs at Ag 5 + for the cationic system and at Ag 4 2 + for the dicationic system. Neutral silver clusters can bind with nitrogen 3 or with the pi system of the base. However, positively charged clusters interact with nitrogen 7 and the neighboring carbonyl group. Thus, the cationic silver-DNA clusters present experimentally may preferentially interact at these sites.
DEFF Research Database (Denmark)
Norman, Patrick; Bishop, David M.; Jensen, Hans Jørgen Aa
2001-01-01
Computationally tractable expressions for the evaluation of the linear response function in the multiconfigurational self-consistent field approximation were derived and implemented. The finite lifetime of the electronically excited states was considered and the linear response function was shown...... to be convergent in the whole frequency region. This was achieved through the incorporation of phenomenological damping factors that lead to complex response function values....
Investigation of the metal binding site in methionine aminopeptidase by density functional theory
DEFF Research Database (Denmark)
Jørgensen, Anne Techau; Norrby, Per-Ola; Liljefors, Tommy
2002-01-01
All methionine aminopeptidases exhibit the same conserved metal binding site. The structure of this site with either Co2+ ions or Zn2+ ions was investigated using density functional theory. The calculations showed that the structure of the site was not influenced by the identity of the metal ions....... This was the case for both of the systems studied; one based on the X-ray structure of the human methionine aminopeptidase type 2 (hMetAP-2) and the other based on the X-ray structure of the E. coli methionine aminopeptidase type 1 (eMetAP-1). Another important structural issue is the identity of the bridging...
Bryantsev, Vyacheslav S; Diallo, Mamadou S; van Duin, Adri C T; Goddard, William A
2009-04-14
In this paper we assess the accuracy of the B3LYP, X3LYP, and newly developed M06-L, M06-2X, and M06 functionals to predict the binding energies of neutral and charged water clusters including (H2O)n, n = 2-8, 20), H3O(+)(H2O)n, n = 1-6, and OH(-)(H2O)n, n = 1-6. We also compare the predicted energies of two ion hydration and neutralization reactions on the basis of the calculated binding energies. In all cases, we use as benchmarks calculated binding energies of water clusters extrapolated to the complete basis set limit of the second-order Møller-Plesset perturbation theory with the effects of higher order correlation estimated at the coupled-cluster theory with single, double, and perturbative triple excitations in the aug-cc-pVDZ basis set. We rank the accuracy of the functionals on the basis of the mean unsigned error (MUE) between calculated benchmark and density functional theory energies. The corresponding MUE (kcal/mol) for each functional is listed in parentheses. We find that M06-L (0.73) and M06 (0.84) give the most accurate binding energies using very extended basis sets such as aug-cc-pV5Z. For more affordable basis sets, the best methods for predicting the binding energies of water clusters are M06-L/aug-cc-pVTZ (1.24), B3LYP/6-311++G(2d,2p) (1.29), and M06/aug-cc-PVTZ (1.33). M06-L/aug-cc-pVTZ also gives more accurate energies for the neutralization reactions (1.38), whereas B3LYP/6-311++G(2d,2p) gives more accurate energies for the ion hydration reactions (1.69).
Electronic response and longitudinal phonons of a charge-density-wave distorted linear chain
International Nuclear Information System (INIS)
Giuliani, G.
1978-01-01
The longitudinal-phonon spectrum of an incommensurate charge-density-wave distorted linear chain at T = 0 K are calculated. This is done by direct numerical evaluation of the full static-electronic-response matrix. The electronic band structure assumed for this purpose is that of a mean-field theory 1-D Peierls insulator. The present results show how, within this simplified, but self-consistent picture, the phase and amplitude modes connect to, and interact with, the ordinary longitudinal-phonon branch. Effects due to our inclusion of (0,2ksub(F)) scattering along with the usual (-2ksub(F), 2ksub(F)) are also pointed out. An alternative approximate expression for the 1-D electronic-response matrix is also given. (author)
Extended screened exchange functional derived from transcorrelated density functional theory.
Umezawa, Naoto
2017-09-14
We propose a new formulation of the correlation energy functional derived from the transcorrelated method in use in density functional theory (TC-DFT). An effective Hamiltonian, H TC , is introduced by a similarity transformation of a many-body Hamiltonian, H, with respect to a complex function F: H TC =1FHF. It is proved that an expectation value of H TC for a normalized single Slater determinant, D n , corresponds to the total energy: E[n] = ⟨Ψ n |H|Ψ n ⟩/⟨Ψ n |Ψ n ⟩ = ⟨D n |H TC |D n ⟩ under the two assumptions: (1) The electron density nr associated with a trial wave function Ψ n = D n F is v-representable and (2) Ψ n and D n give rise to the same electron density nr. This formulation, therefore, provides an alternative expression of the total energy that is useful for the development of novel correlation energy functionals. By substituting a specific function for F, we successfully derived a model correlation energy functional, which resembles the functional form of the screened exchange method. The proposed functional, named the extended screened exchange (ESX) functional, is described within two-body integrals and is parametrized for a numerically exact correlation energy of the homogeneous electron gas. The ESX functional does not contain any ingredients of (semi-)local functionals and thus is totally free from self-interactions. The computational cost for solving the self-consistent-field equation is comparable to that of the Hartree-Fock method. We apply the ESX functional to electronic structure calculations for a solid silicon, H - ion, and small atoms. The results demonstrate that the TC-DFT formulation is promising for the systematic improvement of the correlation energy functional.
DEFF Research Database (Denmark)
Johnsen, Kristinn; Yngvason, Jakob
1996-01-01
We report on a numerical study of the density matrix functional introduced by Lieb, Solovej, and Yngvason for the investigation of heavy atoms in high magnetic fields. This functional describes exactly the quantum mechanical ground state of atoms and ions in the limit when the nuclear charge Z...... and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...... by other methods. For iron at B=1012 G the ground-state energy differs by less than 2% from the Hartree-Fock value. We have also studied the maximal negative ionization of heavy atoms in this model at various field strengths. In contrast to Thomas-Fermi type theories atoms can bind excess negative charge...
A study of the performance of tight-binding models for silicon and silicon-germanium alloys
Roberts, Amanda Killen
1998-11-01
An important challenge in achieving small-scale semiconductor devices is to confine dopants to small, well-defined regions because device performance depends on their accurate placement. However, semiconductor processing involves repeated annealing cycles which can cause dopants to diffuse away from their intended locations. For this reason, it is important to understand the basic physical processes of dopant diffusion on atomic length scales. Tight binding models offer the possibility of studying diffusion in larger systems and for longer time scales than is possible with current LDA methods. However, while a wide variety of tight binding models exist for silicon, these models are not necessarily suited for dynamical studies and they are rarely extended to elements which are dopants in silicon, or to multicomponent systems. This dissertation addresses these issues. We present the first systematic comparison of three parameterized, two-center, sp-based, tight binding models which, because of their simplicity, are suitable for dynamical studies. The models we considered are those by Goodwin et al. (GSP), Kwon et al., and Sawada. We evaluated these models for Si to determine their relative strengths and weaknesses in comparison to experimental and LDA results. Our results show that none of these models is outstanding over the others, and all give acceptable representations of the properties of Si which are of interest for dynamical studies. Having carefully investigated the fitting process to find simple ways to fit tight binding parameters, we have provided information as to the role of each of the GSP parameters in the fitting procedure. As a result, we have recorded a detailed prescription for fitting which can be followed by researchers wanting to extend the models to additional species. Based on our findings about the performance of the Si models, we extended the GSP model to second-nearest neighbors and produced new parameter sets for Si, Ge, and SiGe. This has
Structure and Stability of GeAun, n = 1-10 clusters: A Density Functional Study
International Nuclear Information System (INIS)
Priyanka,; Dharamvir, Keya; Sharma, Hitesh
2011-01-01
The structures of Germanium doped gold clusters GeAu n (n = 1-10) have been investigated using ab initio calculations based on density functional theory (DFT). We have obtained ground state geometries of GeAu n clusters and have it compared with Silicon doped gold clusters and pure gold clusters. The ground state geometries of the GeAu n clusters show patterns similar to silicon doped gold clusters except for n = 5, 6 and 9. The introduction of germanium atom increases the binding energy of gold clusters. The binding energy per atom of germanium doped cluster is smaller than the corresponding silicon doped gold cluster. The HUMO-LOMO gap for Au n Ge clusters have been found to vary between 0.46 eV-2.09 eV. The mullikan charge analysis indicates that charge of order of 0.1e always transfers from germanium atom to gold atom.
Quasiparticle self-consistent GW method: a short summary
International Nuclear Information System (INIS)
Kotani, Takao; Schilfgaarde, Mark van; Faleev, Sergey V; Chantis, Athanasios
2007-01-01
We have developed a quasiparticle self-consistent GW method (QSGW), which is a new self-consistent method to calculate the electronic structure within the GW approximation. The method is formulated based on the idea of a self-consistent perturbation; the non-interacting Green function G 0 , which is the starting point for GWA to obtain G, is determined self-consistently so as to minimize the perturbative correction generated by GWA. After self-consistency is attained, we have G 0 , W (the screened Coulomb interaction) and G self-consistently. This G 0 can be interpreted as the optimum non-interacting propagator for the quasiparticles. We will summarize some theoretical discussions to justify QSGW. Then we will survey results which have been obtained up to now: e.g., band gaps for normal semiconductors are predicted to a precision of 0.1-0.3 eV; the self-consistency including the off-diagonal part is required for NiO and MnO; and so on. There are still some remaining disagreements with experiments; however, they are very systematic, and can be explained from the neglect of excitonic effects
Self-Assembly of Protein Monolayers Engineered for Improved Monoclonal Immunoglobulin G Binding
Directory of Open Access Journals (Sweden)
Jeremy H. Lakey
2011-08-01
Full Text Available Bacterial outer membrane proteins, along with a filling lipid molecule can be modified to form stable self-assembled monolayers on gold. The transmembrane domain of Escherichia coli outer membrane protein A has been engineered to create a scaffold protein to which functional motifs can be fused. In earlier work we described the assembly and structure of an antibody-binding array where the Z domain of Staphylococcus aureus protein A was fused to the scaffold protein. Whilst the binding of rabbit polyclonal immunoglobulin G (IgG to the array is very strong, mouse monoclonal IgG dissociates from the array easily. This is a problem since many immunodiagnostic tests rely upon the use of mouse monoclonal antibodies. Here we describe a strategy to develop an antibody-binding array that will bind mouse monoclonal IgG with lowered dissociation from the array. A novel protein consisting of the scaffold protein fused to two pairs of Z domains separated by a long flexible linker was manufactured. Using surface plasmon resonance the self-assembly of the new protein on gold and the improved binding of mouse monoclonal IgG were demonstrated.
International Nuclear Information System (INIS)
Hashimoto, Y.; Marumori, T.; Sakata, F.
1987-01-01
With the purpose of clarifying characteristic difference of the optimum collective submanifolds in nonresonant and resonant cases, we develop an improved method of solving the basic equations of the self-consistent collective-coordinate (SCC) method for large-amplitude collective motion. It is shown that, in the resonant cases, there inevitably arise essential coupling terms which break the maximal-decoupling property of the collective motion, and we have to extend the optimum collective submanifold so as to properly treat the degrees of freedom which bring about the resonances
Energy Technology Data Exchange (ETDEWEB)
Bo, Maolin; Huang, Yongli; Zhang, Ting [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); Wang, Yan, E-mail: ywang8@hnust.edu.cn, E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Zhang, Xi [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ywang8@hnust.edu.cn, E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China)
2014-04-14
Consistency between x-ray photoelectron spectroscopy measurements and density-function theory calculations confirms our bond order-length-strength notation-incorporated tight-binding theory predictions on the quantum entrapment of Si solid skin and atomic clusters. It has been revealed that bond-order deficiency shortens and strengthens the Si-Si bond, which results in the local densification and quantum entrapment of the core and valence electrons. Unifying Si clusters and Si(001) and (111) skins, this mechanism has led to quantification of the 2p binding energy of 96.089 eV for an isolated Si atom, and their bulk shifts of 2.461 eV. Findings evidence the significance of atomic undercoordination that is of great importance to device performance.
Kutepov, A L
2015-08-12
Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ1 from the first-order perturbation theory, and the exact vertex Γ(E)). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. The results obtained with the exact vertex are directly related to the present open question-which approximation is more advantageous for future implementations, GW + DMFT or QPGW + DMFT. It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on perturbation theory (PT) systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.
Dielectric constant of graphene-on-polarized substrate: A tight ...
Indian Academy of Sciences (India)
Sivabrata Sahu
Corresponding author. E-mail: gcr@iopb.res.in. Published online 24 June 2017. Abstract. We report here a microscopic tight-binding theoretical study of the dynamic dielectric response of graphene-on-polarizable substrate with impurity. The Hamiltonian consists of first, second and third nearest- neighbour electron hopping ...
International Nuclear Information System (INIS)
Robin, Caroline
2014-01-01
This thesis project takes part in the development of the multiparticle-multi-hole configuration mixing method aiming to describe the structure of atomic nuclei. Based on a double variational principle, this approach allows to determine the expansion coefficients of the wave function and the single-particle states at the same time. In this work we apply for the first time the fully self-consistent formalism of the mp-mh method to the description of a few p- and sd-shell nuclei, using the D1S Gogny interaction. A first study of the 12 C nucleus is performed in order to test the doubly iterative convergence procedure when different types of truncation criteria are applied to select the many-body configurations included in the wave-function. A detailed analysis of the effect caused by the orbital optimization is conducted. In particular, its impact on the one-body density and on the fragmentation of the ground state wave function is analyzed. A systematic study of sd-shell nuclei is then performed. A careful analysis of the correlation content of the ground state is first conducted and observables quantities such as binding and separation energies, as well as charge radii are calculated and compared to experimental data. Satisfactory results are found. Spectroscopic properties are also studied. Excitation energies of low-lying states are found in very good agreement with experiment, and the study of magnetic dipole features are also satisfactory. Calculation of electric quadrupole properties, and in particular transition probabilities B(E2), however reveal a clear lack of collectivity of the wave function, due to the reduced valence space used to select the many-body configurations. Although the renormalization of orbitals leads to an important fragmentation of the ground state wave function, only little effect is observed on B(E2) probabilities. A tentative explanation is given. Finally, the structure description of nuclei provided by the multiparticle
International Nuclear Information System (INIS)
Chan, C.T.; Vanderbilt, D.; Louie, S.G.; Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720)
1986-01-01
We present a general self-consistency procedure formulated in momentum space for electronic structure and total-energy calculations of crystalline solids. It is shown that both the charge density and the change in the Hamiltonian matrix elements in each iteration can be calculated in a straight-forward fashion once a set of overlap matrices is computed. The present formulation has the merit of bringing the self-consistency problem for different basis sets to the same footing. The scheme is used to extend a first-principles pseudopotential linear combination of Gaussian orbitals method to full point-by-point self-consistency, without refitting of potentials. It is shown that the set of overlap matrices can be calculated very efficiently if we exploit the translational and space-group symmetries of the system under consideration. This scheme has been applied to study the structural and electronic properties of Si and W, prototypical systems of very different bonding properties. The results agree well with experiment and other calculations. The fully self-consistent results are compared with those obtained by a variational procedure [J. R. Chelikowsky and S. G. Louie, Phys. Rev. B 29, 3470 (1984)]. We find that the structural properties for bulk Si and W (both systems have no interatomic charge transfer) can be treated accurately by the variational procedure. However, full self-consistency is needed for an accurate description of the band energies
Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion.
Buyukdagli, Sahin; Achim, C V; Ala-Nissila, T
2012-09-14
Electrostatic correlation effects in inhomogeneous symmetric electrolytes are investigated within a previously developed electrostatic self-consistent theory [R. R. Netz and H. Orland, Eur. Phys. J. E 11, 301 (2003)]. To this aim, we introduce two computational approaches that allow to solve the self-consistent equations beyond the loop expansion. The first method is based on a perturbative Green's function technique, and the second one is an extension of a previously introduced semiclassical approximation for single dielectric interfaces to the case of slit nanopores. Both approaches can handle the case of dielectrically discontinuous boundaries where the one-loop theory is known to fail. By comparing the theoretical results obtained from these schemes with the results of the Monte Carlo simulations that we ran for ions at neutral single dielectric interfaces, we first show that the weak coupling Debye-Huckel theory remains quantitatively accurate up to the bulk ion density ρ(b) ≃ 0.01 M, whereas the self-consistent theory exhibits a good quantitative accuracy up to ρ(b) ≃ 0.2 M, thus improving the accuracy of the Debye-Huckel theory by one order of magnitude in ionic strength. Furthermore, we compare the predictions of the self-consistent theory with previous Monte Carlo simulation data for charged dielectric interfaces and show that the proposed approaches can also accurately handle the correlation effects induced by the surface charge in a parameter regime where the mean-field result significantly deviates from the Monte Carlo data. Then, we derive from the perturbative self-consistent scheme the one-loop theory of asymmetrically partitioned salt systems around a dielectrically homogeneous charged surface. It is shown that correlation effects originate in these systems from a competition between the salt screening loss at the interface driving the ions to the bulk region, and the interfacial counterion screening excess attracting them towards the surface
Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion
Buyukdagli, Sahin; Achim, C. V.; Ala-Nissila, T.
2012-09-01
Electrostatic correlation effects in inhomogeneous symmetric electrolytes are investigated within a previously developed electrostatic self-consistent theory [R. R. Netz and H. Orland, Eur. Phys. J. E 11, 301 (2003)], 10.1140/epje/i2002-10159-0. To this aim, we introduce two computational approaches that allow to solve the self-consistent equations beyond the loop expansion. The first method is based on a perturbative Green's function technique, and the second one is an extension of a previously introduced semiclassical approximation for single dielectric interfaces to the case of slit nanopores. Both approaches can handle the case of dielectrically discontinuous boundaries where the one-loop theory is known to fail. By comparing the theoretical results obtained from these schemes with the results of the Monte Carlo simulations that we ran for ions at neutral single dielectric interfaces, we first show that the weak coupling Debye-Huckel theory remains quantitatively accurate up to the bulk ion density ρb ≃ 0.01 M, whereas the self-consistent theory exhibits a good quantitative accuracy up to ρb ≃ 0.2 M, thus improving the accuracy of the Debye-Huckel theory by one order of magnitude in ionic strength. Furthermore, we compare the predictions of the self-consistent theory with previous Monte Carlo simulation data for charged dielectric interfaces and show that the proposed approaches can also accurately handle the correlation effects induced by the surface charge in a parameter regime where the mean-field result significantly deviates from the Monte Carlo data. Then, we derive from the perturbative self-consistent scheme the one-loop theory of asymmetrically partitioned salt systems around a dielectrically homogeneous charged surface. It is shown that correlation effects originate in these systems from a competition between the salt screening loss at the interface driving the ions to the bulk region, and the interfacial counterion screening excess attracting
Self-consistent electronic structure of the contracted tungsten (001) surface
International Nuclear Information System (INIS)
Posternak, M.; Krakauer, H.; Freeman, A.J.
1982-01-01
Self-consistent linearized-augmented-plane-wave energy-band studies using the warped muffin-tin approximation for a seven-layer W(001) single slab with the surface-layer separation contracted by 6% of the bulk interlayer spacing are reported. Surface electronic structure, local densities of states, generalized susceptibility for the surface, work function, and core-level shifts are found to have insignificant differences with corresponding results for the unrelaxed surface. Several differences in surface states between theory and recent angle-resolved photoemission experiments are discussed in the light of new proposed models of the actual unreconstructed surface structure at high temperatures
Directory of Open Access Journals (Sweden)
Zhao-Dong Liu
2017-08-01
Full Text Available This work was designed to understand the mechanisms of adsorption of copper (Cu and cadmium (Cd on roots of indica and japonica varieties of rice. Six varieties each of indica and japonica rice were grown in hydroponics and the chemical properties of the root surface were analyzed, including surface charges and functional groups (-COO- groups as measured by the streaming potential and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. Binding forms of heavy metals adsorbed on rice roots were identified using sequential extraction methods. In rice roots exposed to Cu and Cd solutions, Cu existed mainly in both exchangeable and complexed forms, whereas Cd existed mainly in the exchangeable form. The amounts of exchangeable Cu and Cd and total adsorbed metal cations on the roots of indica varieties were significantly greater than those on the roots of japonica varieties, and the higher negative charges and the larger number of functional groups on the roots of indica varieties were responsible for their higher adsorption capacity and greater binding strength for Cu and Cd. Surface charge and functional groups on roots play an important role in the adsorption of Cu and Cd on the rice roots.
Modeling of full-Heusler alloys within tight-binding approximation: Case study of Fe2MnAl
Azhar, A.; Majidi, M. A.; Nanto, D.
2017-07-01
Heusler alloys have been known for about a century, and predictions of magnetic moment values using Slater-Pauling rule have been successful for many such materials. However, such a simple counting rule has been found not to always work for all Heusler alloys. For instance, Fe2CuAl has been found to have magnetic moment of 3.30 µB per formula unit although the Slater-Pauling rule suggests the value of 2 µB. On the other hand, a recent experiment shows that a non-stoichiometric Heusler compound Fe2Mn0.5Cu0.5Al possesses magnetic moment of 4 µB, closer to the Slater-Pauling prediction for the stoichiometric compound. Such discrepancies signify that the theory to predict the magnetic moment of Heusler alloys in general is still far from being complete. Motivated by this issue, we propose to do a theoretical study on a full-Heusler alloy Fe2MnAl to understand the formation of magnetic moment microscopically. We model the system by constructing a density-functional-theory-based tight-binding Hamiltonian and incorporating Hubbard repulsive as well as spin-spin interactions for the electrons occupying the d-orbitals. Then, we solve the model using Green's function approach, and treat the interaction terms within the mean-field approximation. At this stage, we aim to formulate the computational algorithm for the overall calculation process. Our final goal is to compute the total magnetic moment per unit cell of this system and compare it with the experimental data.
Durability Indicators Comparison for SCC and CC in Tropical Coastal Environments.
Calado, Carlos; Camões, Aires; Monteiro, Eliana; Helene, Paulo; Barkokébas, Béda
2015-03-27
Self-compacting concrete (SCC) demands more studies of durability at higher temperatures when subjected to more aggressive environments in comparison to the conventional vibrated concrete (CC). This work aims at presenting results of durability indicators of SCC and CC, having the same water/binder relations and constituents. The applied methodologies were electrical resistivity, diffusion of chloride ions and accelerated carbonation experiments, among others, such as microstructure study, scanning electron microscope and microtomography experiments. The tests were performed in a research laboratory and at a construction site of the Pernambuco Arena. The obtained results shows that the SCC presents an average electrical resistivity 11.4% higher than CC; the average chloride ions diffusion was 63.3% of the CC; the average accelerated carbonation penetration was 45.8% of the CC; and the average open porosity was 55.6% of the CC. As the results demonstrated, the SCC can be more durable than CC, which contributes to elucidate the aspects related to its durability and consequent prolonged life cycle.
DIEHL, MANFRED; HAY, ELIZABETH L.
2011-01-01
This study focused on the identification of conceptually meaningful groups of individuals based on their joint self-concept differentiation (SCD) and self-concept clarity (SCC) scores. Notably, we examined whether membership in different SCD-SCC groups differed by age and also was associated with differences in psychological well-being (PWB). Cluster analysis revealed five distinct SCD-SCC groups: a self-assured, unencumbered, fragmented-only, confused-only, and fragmented and confused group. Individuals in the self-assured group had the highest mean scores for positive PWB and the lowest mean scores for negative PWB, whereas individuals in the fragmented and confused group showed the inverse pattern. Findings showed that it was psychologically advantageous to belong to the self-assured group at all ages. As hypothesized, older adults were more likely than young adults to be in the self-assured cluster, whereas young adults were more likely to be in the fragmented and confused cluster. Thus, consistent with extant theorizing, age was positively associated with psychologically adaptive self-concept profiles. This study examined whether conceptually meaningful subgroups of individuals can be identified based on their joint scores on self-concept differentiation (SCD) and self-concept clarity (SCC). Specifically, we considered whether individuals within such subgroups differed systematically from one another on measures of positive and negative psychological well-being (PWB). Of interest to us was also whether there were age differences in the distribution of adults across the SCD-SCC groups and whether age moderated the association between PWB and SCD-SCC grouping. PMID:22010361
International Nuclear Information System (INIS)
Rebelo, Tânia S.C.R.; Santos, C.; Costa-Rodrigues, J.; Fernandes, M.H.; Noronha, João P.; Sales, M. Goreti F.
2014-01-01
Graphical abstract: EF13-201, Novel Prostate Specific Antigen plastic antibody designed with charged binding sites for an improved protein binding and its application in a biosensor of potentiometric transduction. - Abstract: This work shows that the synthesis of protein plastic antibodies tailored with selected charged monomers around the binding site enhances protein binding. These charged receptor sites are placed over a neutral polymeric matrix, thus inducing a suitable orientation the protein reception to its site. This is confirmed by preparing control materials with neutral monomers and also with non-imprinted template. This concept has been applied here to Prostate Specific Antigen (PSA), the protein of choice for screening prostate cancer throughout the population, with serum levels >10 ng/mL pointing out a high probability of associated cancer. Protein Imprinted Materials with charged binding sites (C/PIM) have been produced by surface imprinting over graphene layers to which the protein was first covalently attached. Vinylbenzyl(trimethylammonium chloride) and vinyl benzoate were introduced as charged monomers labelling the binding site and were allowed to self-organize around the protein. The subsequent polymerization was made by radical polymerization of vinylbenzene. Neutral PIM (N/PIM) prepared without oriented charges and non imprinted materials (NIM) obtained without template were used as controls. These materials were used to develop simple and inexpensive potentiometric sensor for PSA. They were included as ionophores in plasticized PVC membranes, and tested over electrodes of solid or liquid conductive contacts, made of conductive carbon over a syringe or of inner reference solution over micropipette tips. The electrodes with charged monomers showed a more stable and sensitive response, with an average slope of -44.2 mV/decade and a detection limit of 5.8 × 10 −11 mol/L (2 ng/mL). The corresponding non-imprinted sensors showed lower
Zhang, Mingjia; Leng, Yandan; Huang, Jing; Yu, JiaoJiao; Lan, Zhenggang; Huang, Changshui
2017-12-01
We report the modulation of Raman scattering spectrum of chromophore/graphene hybrids by tunning the molecular polarization with different terminal groups (methyl, methoxy, nitrile, and two nitros). Based on the density functional theory, the specific dipole moment values of the chromophore molecules are calculated. An obvious surface-enhanced Raman scattering (SERS) was observed and the scattering intensity of molecule increases with enlarged dipole moment. According to the analysis of G band Raman shifts of graphene, the enhancement of the Raman signal can be attributed to strong electronic coupling between graphene and chromophore, which is closely related with the modulation of graphene Fermi surface by changing the dipole moment of the molecule. Besides, the optimization of the ground state geometry and the binding energy of the hybrids were also calculated with the Density Functional Based Tight Bonding (DFTB) method, which confirms that the enhanced Raman scattering of molecules on graphene arises from the improved energy level matching between graphene Fermi surface and molecular band, further providing a new way to design novel SERS devices.
BINDING OF IONIC SURFACTANTS ON OPPOSITELY CHARGED POLYELECTROLYTES OBSERVED BY FLUORESCENCE METHODS
Institute of Scientific and Technical Information of China (English)
Zhen Tong; Chao-yang Wang; Bi-ye Ren; Xin-xing Liu; Fang Zeng
2003-01-01
Our recent studies concerning the binding of ionic surfactants on oppositely charged polyelectrolytes observed with fluorescence techniques are reviewed. The cationic surfactants cetyltrimethylammonium bromide (CTAB),dodecyltrimethylammonium chloride (DTAC), and nonionic surfactant octaethylene glycol monododecyl ether (C12E8) were allowed to bind on anionic poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) and its pyrene and/or naphthalene labeled copolymers. The relative excimer emission intensity IE/IM of a cationic probe 1-pyrenemethylamine hydrochloride were chosen to monitor the binding process and the conformation change of surfactant-bound polyelectrolytes. The 1:1aggregation of polyelectrolyte-CTAB with respect to the charge was found as long as the CTAB concentration was slightly higher than its critical aggregation concentration (CAC). The intermolecular NRET indicated that the CTAB-bound polyelectrolytes aggregated together through the hydrophobic interaction between the CTAB tails. However, neither 1:1polyelectrolyte-DTAC aggregation nor intermolecular aggregation of DTAC-bound polyelectrolyte was observed owing to its weaker hydrophobicity of 12 carbon atoms in the tail, which is shorter than that of CTAB. As known from the fluorescence results, nonionic surfactant C12E8 did not bind on the anionic polyelectrolytes, but the presence of PAMPS promoted the micelle formation for C12E8 at the CAC slightly below its critical micelle concentration (CMC). The solid complex of dansyl labeled AMPS copolymer-surfactant exhibited a decrease in local polarity with increasing charge density of the polyelectrolyte or with alkane tail length of the surfactant. SAXS suggested a lamella structure for the AMPS copolymersurfactant solid complexes with a long period of 3.87 nm for CTAB and 3.04 nm for DTAC, respectively.
Bosons system with finite repulsive interaction: self-consistent field method
International Nuclear Information System (INIS)
Renatino, M.M.B.
1983-01-01
Some static properties of a boson system (T = zero degree Kelvin), under the action of a repulsive potential are studied. For the repulsive potential, a model was adopted consisting of a region where it is constant (r c ), and a decay as 1/r (r > r c ). The self-consistent field approximation used takes into account short range correlations through a local field corrections, which leads to an effective field. The static structure factor S(q-vector) and the effective potential ψ(q-vector) are obtained through a self-consistent calculation. The pair-correlation function g(r-vector) and the energy of the collective excitations E(q-vector) are also obtained, from the structure factor. The density of the system and the parameters of the repulsive potential, that is, its height and the size of the constant region were used as variables for the problem. The results obtained for S(q-vector), g(r-vector) and E(q-vector) for a fixed ratio r o /r c and a variable λ, indicates the raising of a system structure, which is more noticeable when the potential became more repulsive. (author)
Voufack, Ariste Bolivard; Claiser, Nicolas; Lecomte, Claude; Pillet, Sébastien; Pontillon, Yves; Gillon, Béatrice; Yan, Zeyin; Gillet, Jean Michel; Marazzi, Marco; Genoni, Alessandro; Souhassou, Mohamed
2017-08-01
Joint refinement of X-ray and polarized neutron diffraction data has been carried out in order to determine charge and spin density distributions simultaneously in the nitronyl nitroxide (NN) free radical Nit(SMe)Ph. For comparison purposes, density functional theory (DFT) and complete active-space self-consistent field (CASSCF) theoretical calculations were also performed. Experimentally derived charge and spin densities show significant differences between the two NO groups of the NN function that are not observed from DFT theoretical calculations. On the contrary, CASSCF calculations exhibit the same fine details as observed in spin-resolved joint refinement and a clear asymmetry between the two NO groups.
Generation of static solutions of self-consistent system of Einstein-Maxwell equations
International Nuclear Information System (INIS)
Anchikov, A.M.; Daishev, R.A.
1988-01-01
The theorem, according to which the static solution of the self-consistent system of the Einstein-Maxwell equations is assigned to energy static solution of the Einstein equations with the arbitrary energy-momentum tensor in the right part, is proved. As a consequence of this theorem, the way of the generation of the static solutions of the self-consistent system of the Einstein-Maxwell equations with charged dust as a source of the vacuum solutions of the Einstein equations is shown
Sakhawoth, Yasine; Michot, Laurent J; Levitz, Pierre; Malikova, Natalie
2017-10-06
Flocculation and its tuning are of utmost importance in the optimization of several industrial protocols in areas such as purification of waste water and civil engineering. Herein, we studied the polyelectrolyte-induced flocculation of clay colloids on a model system consisting of purified clay colloids of well-defined size fractions and ionene polyelectrolytes presenting regular and tunable chain charge density. To characterize ionene-induced clay flocculation, we turned to the combination of light absorbance (turbidity) and ζ-potential measurements, as well as adsorption isotherms. Our model system allowed us to identify the exact ratio of positive and negative charges in clay-ionene mixtures, the (c+/c-) ratio. For all samples studied, the onset of efficient flocculation occurred consistently at c+/c- ratios significantly below 1, which indicated the formation of highly ionene-deficient aggregates. At the same time, the ζ-potential measurements indicated an apparent zero charge on such aggregates. Thus, the ζ-potential values could not provide the stoichiometry inside the clay-ionene aggregates. The early onset of flocculation in clay-ionene mixtures is reminiscent of the behavior of multivalent salts and contrasts that of monovalent salts, for which a large excess amount of ions is necessary to achieve flocculation. Clear differences in the flocculation behavior are visible as a function of the ionene charge density, which governs the conformation of the ionene chains on the clay surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
How good are Hartree-Fock charge densities
International Nuclear Information System (INIS)
Campi, X.
1975-01-01
The principle characteristics of Hartree-Fock charge densities (mean square radius, surface thickness, quantum fluctuation) calculated using different effective interactions are discussed in terms of their nuclear matter properties (Fermi momentum, effective mass, incompressibility). A comparison with the experimental charge distributions is made. Differences between the charge densities of neighbouring nuclei (isotope and isotone shifts) are also considered and the main factors governing these effects are discussed [fr
Generalized nuclear Fukui functions in the framework of spin-polarized density-functional theory
International Nuclear Information System (INIS)
Chamorro, E.; Proft, F. de; Geerlings, P.
2005-01-01
An extension of Cohen's nuclear Fukui function is presented in the spin-polarized framework of density-functional theory (SP-DFT). The resulting new nuclear Fukui function indices Φ Nα and Φ Sα are intended to be the natural descriptors for the responses of the nuclei to changes involving charge transfer at constant multiplicity and also the spin polarization at constant number of electrons. These generalized quantities allow us to gain new insights within a perturbative scheme based on DFT. Calculations of the electronic and nuclear SP-DFT quantities are presented within a Kohn-Sham framework of chemical reactivity for a sample of molecules, including H 2 O, H 2 CO, and some simple nitrenes (NX) and phosphinidenes (PX), with X=H, Li, F, Cl, OH, SH, NH 2 , and PH 2 . Results have been interpreted in terms of chemical bonding in the context of Berlin's theorem, which provides a separation of the molecular space into binding and antibinding regions
Density functional studies: First principles and semiempirical calculations of clusters and surfaces
International Nuclear Information System (INIS)
Sinnott, S.B.
1993-01-01
In the research presented here, various theoretical electronic structure techniques are utilized to analyze widely different systems from silicon clusters to transition metal solids and surfaces. For the silicon clusters, first principles density functional methods are used to investigate Si N for N = 2-8. The goal is to understand the different types of bonding that can occur in such small clusters where the coordination of the atoms differs substantially from that of the stable bulk tetrahedral bonding. Such uncoordinated structures can provide a good test of more approximate theories that can be used eventually to model silicon surfaces, of obvious technological importance. For the transition metal systems, non-self-consistent electronic structure methods are used to provide an understanding of the driving force for surface relaxations. An in-depth analysis of the results is presented and the physical basis of surface relaxation within the theory is discussed. In addition, the limitations inherent in calculations of metal surface relaxation are addressed. Finally, in an effort to increase understanding of approximate methods, a novel non-self-consistent density functional electronic structure method is developed that is ∼1000 times faster computationally than more sophisticated methods. This new method is tested for a variety of systems including diatomics, mixed clusters, surfaces and bulk lattices. The strengths and weaknesses of the new theory are discussed in detail, leading to greater understanding of non-self-consistent density functional theories as a whole
A self-consistent theory of the magnetic polaron
International Nuclear Information System (INIS)
Marvakov, D.I.; Kuzemsky, A.L.; Vlahov, J.P.
1984-10-01
A finite temperature self-consistent theory of magnetic polaron in the s-f model of ferromagnetic semiconductors is developed. The calculations are based on the novel approach of the thermodynamic two-time Green function methods. This approach consists in the introduction of the ''irreducible'' Green functions (IGF) and derivation of the exact Dyson equation and exact self-energy operator. It is shown that IGF method gives a unified and natural approach for a calculation of the magnetic polaron states by taking explicitly into account the damping effects and finite lifetime. (author)
Helical patterns of magnetization and magnetic charge density in iron whiskers
Templeton, Terry L.; Hanham, Scott D.; Arrott, Anthony S.
2018-05-01
Studies with the (1 1 1) axis along the long axis of an iron whisker, 40 years ago, showed two phenomena that have remained unexplained: 1) In low fields, there are six peaks in the ac susceptibility, separated by 0.2 mT; 2) Bitter patterns showed striped domain patterns. Multipole columns of magnetic charge density distort to form helical patterns of the magnetization, accounting for the peaks in the susceptibility from the propagation of edge solitons along the intersections of the six sides of a (1 1 1) whisker. The stripes follow the helices. We report micromagnetic simulations in cylinders with various geometries for the cross-sections from rectangular, to hexagonal, to circular, with wide ranges of sizes and lengths, and different anisotropies, including (0 0 1) whiskers and the hypothetical case of no anisotropy. The helical patterns have been there in previous studies, but overlooked. The surface swirls and body helices are connected, but have their own individual behaviors. The magnetization patterns are more easily understood when viewed observing the scalar divergences of the magnetization as isosurfaces of magnetic charge density. The plus and minus charge densities form columns that interact with unlike charges attracting, but not annihilating as they are paid for by a decrease in exchange energy. Just as they start to form the helix, the columns are multipoles. If one could stretch the columns, the self-energy of the charges in a column would be diminished while making the attractive interactions of the unlike charges larger. The columns elongate by becoming helical. The visualization of 3-D magnetic charge distributions aids in the understanding of magnetization in soft magnetic materials.
Interplay of electronic and geometry shell effects in properties of neutral and charged Sr clusters
DEFF Research Database (Denmark)
Lyalin, Andrey; Solov'yov, Ilia; Solov'yov, Andrey V.
2007-01-01
that the size evolution of structural and electronic properties of strontium clusters is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters......The optimized structure and electronic properties of neutral, singly, and doubly charged strontium clusters have been investigated using ab initio theoretical methods based on density-functional theory. We have systematically calculated the optimized geometries of neutral, singly, and doubly...... charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, the gap between the highest occupied and the lowest unoccupied molecular orbitals, and spectra of the density of electronic states (DOS). It is demonstrated...
Energy Technology Data Exchange (ETDEWEB)
Greczynski, G., E-mail: grzgr@ifm.liu.se; Hultman, L.
2016-11-30
large spread, but in order to increase reliability of the extracted chemical information the requirement for both qualitative and quantitative self-consistency between component peaks belonging to the same chemical species is imposed across all core-level spectra (including often neglected O 1s and C 1s signals). The relative ratios between contributions from different chemical species vary as a function of T{sub v} presenting a self-consistency check for our model. We propose that the cross-peak self-consistency should be a prerequisite for reliable XPS peak modelling as it enhances credibility of obtained chemical information, while relying entirely on reference binding energy values introduces large ambiguity.
Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach
Directory of Open Access Journals (Sweden)
N. Lyutorovich
2015-10-01
Full Text Available We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree–Fock ground state and the excitation spectra within random-phase approximation (RPA and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA. All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.
2009-08-01
There are limited measurements documented in the literature related to long-term prestress losses in self-consolidated concrete (SCC) members. Recorded test data has shown variations in mechanical property behavior of SCC compared to conventional HSC...
Longitudinal halo in beam bunches with self-consistent 6-D distributions
International Nuclear Information System (INIS)
Gluckstern, R. L.; Fedotov, A. V.; Kurennoy, S. S.; Ryne, R. D.
1998-01-01
We have explored the formation of longitudinal and transverse halos in 3-D axisymmetric beam bunches by starting with a self-consistent 6-D phase space distribution. Stationary distributions allow us to study the halo development mechanism without being obscured by beam redistribution and its effect on halo formation. The beam is then mismatched longitudinally and/or transversely, and we explore the rate, intensity and spatial extent of the halos which form, as a function of the beam charge and the mismatches. We find that the longitudinal halo forms first because the longitudinal tune depression is more severe than the transverse one for elongated bunches and conclude that it plays a major role in halo formation
International Nuclear Information System (INIS)
Messud, Jeremie
2009-01-01
The stationary internal density functional theory (DFT) formalism and Kohn-Sham scheme are generalized to the time-dependent case. It is proven that, in the time-dependent case, the internal properties of a self-bound system (such as an atomic nuclei or a helium droplet) are all defined by the internal one-body density and the initial state. A time-dependent internal Kohn-Sham scheme is set up as a practical way to compute the internal density. The main difference from the traditional DFT formalism and Kohn-Sham scheme is the inclusion of the center-of-mass correlations in the functional.
The use of Wannier function in the calculations of band structure of covalent crystals
International Nuclear Information System (INIS)
Lu Dong; Yang Guang
1985-10-01
A variational procedure has been used to build up Wannier functions to study the energy bands of diamond, silicon and α-tin. For the case of silicon the Wannier function, density of charge and band structure are calculated self-consistently and a simple method in a non-self-consistent way has been used to compute the band structure of diamond, silicon and α-tin. The method seems to be effective to describe the electronic properties of covalent crystals. (author)
Comparison of ANN and RKS approaches to model SCC strength
Prakash, Aravind J.; Sathyan, Dhanya; Anand, K. B.; Aravind, N. R.
2018-02-01
Self compacting concrete (SCC) is a high performance concrete that has high flowability and can be used in heavily reinforced concrete members with minimal compaction segregation and bleeding. The mix proportioning of SCC is highly complex and large number of trials are required to get the mix with the desired properties resulting in the wastage of materials and time. The research on SCC has been highly empirical and no theoretical relationships have been developed between the mixture proportioning and engineering properties of SCC. In this work effectiveness of artificial neural network (ANN) and random kitchen sink algorithm(RKS) with regularized least square algorithm(RLS) in predicting the split tensile strength of the SCC is analysed. Random kitchen sink algorithm is used for mapping data to higher dimension and classification of this data is done using Regularized least square algorithm. The training and testing data for the algorithm was obtained experimentally using standard test procedures and materials available. Total of 40 trials were done which were used as the training and testing data. Trials were performed by varying the amount of fine aggregate, coarse aggregate, dosage and type of super plasticizer and water. Prediction accuracy of the ANN and RKS model is checked by comparing the RMSE value of both ANN and RKS. Analysis shows that eventhough the RKS model is good for large data set, its prediction accuracy is as good as conventional prediction method like ANN so the split tensile strength model developed by RKS can be used in industries for the proportioning of SCC with tailor made property.
Directory of Open Access Journals (Sweden)
Falko Schmidt
2017-01-01
Full Text Available We perform a comprehensive theoretical study of the structural and electronic properties of potassium niobate (KNbO3 in the cubic, tetragonal, orthorhombic, monoclinic, and rhombohedral phase, based on density-functional theory. The influence of different parametrizations of the exchange-correlation functional on the investigated properties is analyzed in detail, and the results are compared to available experimental data. We argue that the PBEsol and AM05 generalized gradient approximations as well as the RTPSS meta-generalized gradient approximation yield consistently accurate structural data for both the external and internal degrees of freedom and are overall superior to the local-density approximation or other conventional generalized gradient approximations for the structural characterization of KNbO3. Band-structure calculations using a HSE-type hybrid functional further indicate significant near degeneracies of band-edge states in all phases which are expected to be relevant for the optical response of the material.
Modeling self-consistent multi-class dynamic traffic flow
Cho, Hsun-Jung; Lo, Shih-Ching
2002-09-01
In this study, we present a systematic self-consistent multiclass multilane traffic model derived from the vehicular Boltzmann equation and the traffic dispersion model. The multilane domain is considered as a two-dimensional space and the interaction among vehicles in the domain is described by a dispersion model. The reason we consider a multilane domain as a two-dimensional space is that the driving behavior of road users may not be restricted by lanes, especially motorcyclists. The dispersion model, which is a nonlinear Poisson equation, is derived from the car-following theory and the equilibrium assumption. Under the concept that all kinds of users share the finite section, the density is distributed on a road by the dispersion model. In addition, the dynamic evolution of the traffic flow is determined by the systematic gas-kinetic model derived from the Boltzmann equation. Multiplying Boltzmann equation by the zeroth, first- and second-order moment functions, integrating both side of the equation and using chain rules, we can derive continuity, motion and variance equation, respectively. However, the second-order moment function, which is the square of the individual velocity, is employed by previous researches does not have physical meaning in traffic flow. Although the second-order expansion results in the velocity variance equation, additional terms may be generated. The velocity variance equation we propose is derived from multiplying Boltzmann equation by the individual velocity variance. It modifies the previous model and presents a new gas-kinetic traffic flow model. By coupling the gas-kinetic model and the dispersion model, a self-consistent system is presented.
Self-consistent equilibria in the pulsar magnetosphere
International Nuclear Information System (INIS)
Endean, V.G.
1976-01-01
For a 'collisionless' pulsar magnetosphere the self-consistent equilibrium particle distribution functions are functions of the constants of the motion ony. Reasons are given for concluding that to a good approximation they will be functions of the rotating frame Hamiltonian only. This is shown to result in a rigid rotation of the plasma, which therefore becomes trapped inside the velocity of light cylinder. The self-consistent field equations are derived, and a method of solving them is illustrated. The axial component of the magnetic field decays to zero at the plasma boundary. In practice, some streaming of particles into the wind zone may occur as a second-order effect. Acceleration of such particles to very high energies is expected when they approach the velocity of light cylinder, but they cannot be accelerated to very high energies near the star. (author)
Energy Technology Data Exchange (ETDEWEB)
Lin, Lin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Yang, Chao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division
2013-10-28
We discuss techniques for accelerating the self consistent field (SCF) iteration for solving the Kohn-Sham equations. These techniques are all based on constructing approximations to the inverse of the Jacobian associated with a fixed point map satisfied by the total potential. They can be viewed as preconditioners for a fixed point iteration. We point out different requirements for constructing preconditioners for insulating and metallic systems respectively, and discuss how to construct preconditioners to keep the convergence rate of the fixed point iteration independent of the size of the atomistic system. We propose a new preconditioner that can treat insulating and metallic system in a unified way. The new preconditioner, which we call an elliptic preconditioner, is constructed by solving an elliptic partial differential equation. The elliptic preconditioner is shown to be more effective in accelerating the convergence of a fixed point iteration than the existing approaches for large inhomogeneous systems at low temperature.
Balancing Exchange Mixing in Density-Functional Approximations for Iron Porphyrin.
Berryman, Victoria E J; Boyd, Russell J; Johnson, Erin R
2015-07-14
Predicting the correct ground-state multiplicity for iron(II) porphyrin, a high-spin quintet, remains a significant challenge for electronic-structure methods, including commonly employed density functionals. An even greater challenge for these methods is correctly predicting favorable binding of O2 to iron(II) porphyrin, due to the open-shell singlet character of the adduct. In this work, the performance of a modest set of contemporary density-functional approximations is assessed and the results interpreted using Bader delocalization indices. It is found that inclusion of greater proportions of Hartree-Fock exchange, in hybrid or range-separated hybrid functionals, has opposing effects; it improves the ability of the functional to identify the ground state but is detrimental to predicting favorable dioxygen binding. Because of the uncomplementary nature of these properties, accurate prediction of both the relative spin-state energies and the O2 binding enthalpy eludes conventional density-functional approximations.
International Nuclear Information System (INIS)
Hesse, M.; Birn, J.; Schindler, K.
1990-01-01
A self-consistent two-fluid theory that includes the magnetic field and shear patterns therein is developed to model stationary electrostatic structures with field-aligned potential drops. Shear flow is also included in the theory since this seems to be a prominent feature of the structures of interest. In addition, Ohmic dissipation, a Hall term and pressure gradients in a generalized Ohm's law, modified for cases without quasi-neutrality are included. In the analytic theory, the electrostatic force is balanced by field-aligned pressure gradients, i.e., thermal effects in the direction of the magnetic field, and by pressure gradients and magnetic stresses in the perpendicular direction. Within this theory simple examples of applications are presented to demonstrate the kind of solutions resulting from the model. The results show how the effects of charge separation and shear in the magnetic field and the velocity can be combined to form self-consistent structures such as are found to exist above the aurora, suggested also in association with solar flares
Self-similar structure in the distribution and density of the partition function zeros
International Nuclear Information System (INIS)
Huang, M.-C.; Luo, Y.-P.; Liaw, T.-M.
2003-01-01
Based on the knowledge of the partition function zeros for the cell-decorated triangular Ising model, we analyze the similar structures contained in the distribution pattern and density function of the zeros. The two own the same symmetries, and the arising of the similar structure in the road toward the infinite decoration-level is exhibited explicitly. The distinct features of the formation of the self-similar structure revealed from this model may be quite general
Generation of static solutions of the self-consistent system of Einstein-Maxwell equations
International Nuclear Information System (INIS)
Anchikov, A.M.; Daishev, R.A.
1988-01-01
A theorem is proved, according to which to each solution of the Einstein equations with an arbitrary momentum-energy tensor in the right hand side there corresponds a static solution of the self-consistent system of Einstein-Maxwell equations. As a consequence of this theorem, a method is established of generating static solutions of the self-consistent system of Einstein-Maxwell equations with a charged grain as a source of vacuum solutions of the Einstein equations
International Nuclear Information System (INIS)
Lu, P.C.
1977-01-01
The use of intense ion beams as a heating source for the fusion reaction in pellets of D-T appears to have several potential advantages over the use of electron beams. If ion bunching can be accomplished, then existing technology can be used to achieve the required power, energy and time scales for pellet fusion. A scheme to be considered is that of a pre-formed nonuniform plasma adjacent to a partially transparent anode through which a space charge limited electron beam is injected from the terminals of a convergent spherical geometry with a finite (or zero) rise-time. At the instant of beam injection, the virtual cathode is formed. Due to the space charge fields set up by the beam, the plasma ions are accelerated towards the region beyond the virtual cathode. A self-consistent transient analysis of the interactions between the electron beam and the background plasma is performed. The numerical calculations show that by specifying the target plasma for perfect bunching the ions can be made to bunch nearly perfectly. Also, by considering the depletion of initial plasma and accounting for the fact that the virtual anode-virtual cathode gap region is moving opposite to the direction of the ions, one can considerably enhance the instantaneous power delivered to the target over that which is injected at the terminals of the device, even with a finite rise-time on the current pulse
Harris functional and related methods for calculating total energies in density-functional theory
International Nuclear Information System (INIS)
Averill, F.W.; Painter, G.S.
1990-01-01
The simplified energy functional of Harris has given results of useful accuracy for systems well outside the limits of weakly interacting fragments for which the method was originally proposed. In the present study, we discuss the source of the frequent good agreement of the Harris energy with full Kohn-Sham self-consistent results. A procedure is described for extending the applicability of the scheme to more strongly interacting systems by going beyond the frozen-atom fragment approximation. A gradient-force expression is derived, based on the Harris functional, which accounts for errors in the fragment charge representation. Results are presented for some diatomic molecules, illustrating the points of this study
Electronic transport properties of copper and gold at atomic scale
Energy Technology Data Exchange (ETDEWEB)
Mohammadzadeh, Saeideh
2010-11-23
The factors governing electronic transport properties of copper and gold atomic-size contacts are theoretically examined in the present work. A two-terminal conductor using crystalline electrodes is adopted. The non-equilibrium Green's function combined with the density functional tight-binding method is employed via gDFTB simulation tool to calculate the transport at both equilibrium and non-equilibrium conditions. The crystalline orientation, length, and arrangement of electrodes have very weak influence on the electronic characteristics of the considered atomic wires. The wire width is found to be the most effective geometric aspect determining the number of conduction channels. The obtained conductance oscillation and linear current-voltage curves are interpreted. To analyze the conduction mechanism in detail, the transmission channels and their decomposition to the atomic orbitals are calculated in copper and gold single point contacts. The presented results offer a possible explanation for the relation between conduction and geometric structure. Furthermore, the results are in good agreement with available experimental and theoretical studies. (orig.)
Durability Indicators Comparison for SCC and CC in Tropical Coastal Environments
Directory of Open Access Journals (Sweden)
Carlos Calado
2015-03-01
Full Text Available Self-compacting concrete (SCC demands more studies of durability at higher temperatures when subjected to more aggressive environments in comparison to the conventional vibrated concrete (CC. This work aims at presenting results of durability indicators of SCC and CC, having the same water/binder relations and constituents. The applied methodologies were electrical resistivity, diffusion of chloride ions and accelerated carbonation experiments, among others, such as microstructure study, scanning electron microscope and microtomography experiments. The tests were performed in a research laboratory and at a construction site of the Pernambuco Arena. The obtained results shows that the SCC presents an average electrical resistivity 11.4% higher than CC; the average chloride ions diffusion was 63.3% of the CC; the average accelerated carbonation penetration was 45.8% of the CC; and the average open porosity was 55.6% of the CC. As the results demonstrated, the SCC can be more durable than CC, which contributes to elucidate the aspects related to its durability and consequent prolonged life cycle.
Energy Technology Data Exchange (ETDEWEB)
Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Bezerra de Mello, E.R. [Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Braganca, E. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Saharian, A.A. [Yerevan State University, Department of Physics, Yerevan (Armenia)
2016-06-15
We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even function of the chemical potential. The behavior of the expectation values in various asymptotic regions of the parameters are discussed in detail. In particular, we show that for points near the cone apex the vacuum parts dominate. For a massless field with zero chemical potential the fermion condensate and charge density vanish. Simple expressions are derived for the part in the total charge induced by the planar angle deficit and magnetic flux. Combining the results for separate irreducible representations, we also consider the fermion condensate, charge and current densities in parity and time-reversal symmetric models. Possible applications to graphitic nanocones are discussed. (orig.)
Kristiawan, S. A.; Sunarmasto; Tyas, G. P.
2016-02-01
Concrete is susceptible to a variety of chemical attacks. In the sulfuric acid environment, concrete is subjected to a combination of sulfuric and acid attack. This research is aimed to investigate the degradation of self-compacting concrete (SCC) due to sulfuric acid attack based on measurement of compressive strength loss and diameter change. Since the proportion of SCC contains higher cement than that of normal concrete, the vulnerability of this concrete to sulfuric acid attack could be reduced by partial replacement of cement with fly ash at high volume level. The effect of high volume fly ash at 50-70% cement replacement levels on the extent of degradation owing to sulfuric acid will be assessed in this study. It can be shown that an increase in the utilization of fly ash to partially replace cement tends to reduce the degradation as confirmed by less compressive strength loss and diameter change. The effect of fly ash to reduce the degradation of SCC is more pronounced at a later age.
Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.
Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura
2016-07-12
A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.
International Nuclear Information System (INIS)
Saperstein, E.E.
1992-01-01
The influence of the detailed behavior of the nuclear densities on the Glauber-theory description of hadron-nucleus scattering is discussed in connection with the problem of determination of elementary hadron-nucleon amplitudes from such analysis. Arguments are given in favor of using the self-consistent FFS nuclear densities for this purpose. 20 refs., 6 figs
Fast, kinetically self-consistent simulation of RF modulated plasma boundary sheaths
International Nuclear Information System (INIS)
Shihab, Mohammed; Ziegler, Dennis; Brinkmann, Ralf Peter
2012-01-01
A mathematical model is presented which enables the efficient, kinetically self-consistent simulation of RF modulated plasma boundary sheaths in all technically relevant discharge regimes. It is defined on a one-dimensional geometry where a Cartesian x-axis points from the electrode or wall at x E ≡ 0 towards the plasma bulk. An arbitrary endpoint x B is chosen ‘deep in the bulk’. The model consists of a set of kinetic equations for the ions, Boltzmann's relation for the electrons and Poisson's equation for the electrical field. Boundary conditions specify the ion flux at x B and a periodically—not necessarily harmonically—modulated sheath voltage V(t) or sheath charge Q(t). The equations are solved in a statistical sense. However, it is not the well-known particle-in-cell (PIC) scheme that is employed, but an alternative iterative algorithm termed ensemble-in-spacetime (EST). The basis of the scheme is a discretization of the spacetime, the product of the domain [x E , x B ] and the RF period [0, T]. Three modules are called in a sequence. A Monte Carlo module calculates the trajectories of a large set of ions from their start at x B until they reach the electrode at x E , utilizing the potential values on the nodes of the spatio-temporal grid. A harmonic analysis module reconstructs the Fourier modes n im (x) of the ion density n i (x, t) from the calculated trajectories. A field module finally solves the Boltzmann-Poisson equation with the calculated ion densities to generate an updated set of potential values for the spatio-temporal grid. The iteration is started with the potential values of a self-consistent fluid model and terminates when the updates become sufficiently small, i.e. when self-consistency is achieved. A subsequent post-processing determines important quantities, in particular the phase-resolved and phase-averaged values of the ion energy and angular distributions and the total energy flux at the electrode. A drastic reduction of the
Determination of critical density of charge
International Nuclear Information System (INIS)
Vila, F.
1992-11-01
In this work is given a full theoretically treatment of the problem how to determine the critical density of charge on nonconductive rectangular charged surfaces placed near a small spherical conductive and earthed surface. (author). 11 refs, 2 figs
Salas-Sarduy, Emir; Guerra, Yasel; Covaleda Cortés, Giovanni; Avilés, Francesc Xavier; Chávez Planes, María A.
2017-01-01
Natural products from marine origin constitute a very promising and underexplored source of interesting compounds for modern biotechnological and pharmaceutical industries. However, their evaluation is quite challenging and requires specifically designed assays to reliably identify the compounds of interest in a highly heterogeneous and interfering context. In the present study, we describe a general strategy for the confident identification of tight-binding protease inhibitors in the aqueous extracts of 62 Cuban marine invertebrates, using Plasmodium falciparum hemoglobinases Plasmepsin II and Falcipain 2 as model enzymes. To this end, we first developed a screening strategy that combined enzymatic with interaction-based assays and then validated screening conditions using five reference extracts. Interferences were evaluated and minimized. The results from the massive screening of such extracts, the validation of several hits by a variety of interaction-based assays and the purification and functional characterization of PhPI, a multifunctional and reversible tight-binding inhibitor for Plasmepsin II and Falcipain 2 from the gorgonian Plexaura homomalla, are presented. PMID:28430158
Contributions of charge-density research to medicinal chemistry
Directory of Open Access Journals (Sweden)
Birger Dittrich
2014-11-01
Full Text Available This article reviews efforts in accurate experimental charge-density studies with relevance to medicinal chemistry. Initially, classical charge-density studies that measure electron density distribution via least-squares refinement of aspherical-atom population parameters are summarized. Next, interaction density is discussed as an idealized situation resembling drug–receptor interactions. Scattering-factor databases play an increasing role in charge-density research, and they can be applied both to small-molecule and macromolecular structures in refinement and analysis; software development facilitates their use. Therefore combining both of these complementary branches of X-ray crystallography is recommended, and examples are given where such a combination already proved useful. On the side of the experiment, new pixel detectors are allowing rapid measurements, thereby enabling both high-throughput small-molecule studies and macromolecular structure determination to higher resolutions. Currently, the most ambitious studies compute intermolecular interaction energies of drug–receptor complexes, and it is recommended that future studies benefit from recent method developments. Selected new developments in theoretical charge-density studies are discussed with emphasis on its symbiotic relation to crystallography.
Central depression of nuclear charge density distribution
International Nuclear Information System (INIS)
Chu Yanyun; Ren Zhongzhou; Wang Zaijun; Dong Tiekuang
2010-01-01
The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of 46 Ar and 44 S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in 46 Ar and 44 S prefer to occupy the 1d 3/2 state rather than the 2s 1/2 state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of 46 Ar and 44 S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.
Doping strategies to control A-centres in silicon: Insights from hybrid density functional theory
Wang, Hao; Chroneos, Alexander I.; Londos, Charalampos A.; Sgourou, Efstratia N.; Schwingenschlö gl, Udo
2014-01-01
Hybrid density functional theory is used to gain insights into the interaction of intrinsic vacancies (V) and oxygen-vacancy pairs (VO, known as A-centres) with the dopants (D) germanium (Ge), tin (Sn), and lead (Pb) in silicon (Si). We determine the structures as well as binding and formation energies of the DVO and DV complexes. The results are discussed in terms of the density of states and in view of the potential of isovalent doping to control A-centres in Si. We argue that doping with Sn is the most efficient isovalent doping strategy to suppress A-centres by the formation of SnVO complexes, as these are charge neutral and strongly bound. © 2014 the Owner Societies.
Energy Technology Data Exchange (ETDEWEB)
Raigoza, Annette F.; Onyirioha, Kristeen; Webb, Lauren J., E-mail: lwebb@cm.utexas.edu
2017-02-28
Highlights: • Functional variety in SAMs control covalent binding of proteins to surfaces. • Peptide density on Au(111) surfaces controlled by SAM functional groups. • Affinity between biomolecule and SAM surface follows a Langmuir isotherm. • Surface chemistry can mimic functional group diversity in proteins and peptides. - Abstract: Reliably attaching a structured biomolecule to an inorganic substrate would enable the preparation of surfaces that incorporate both biological and inorganic functions and structures. To this end, we have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to well-ordered alkanethiol self-assembled monolayers (SAM) on a Au(111) surface, in which the SAM is composed of a mixture of methyl and azide termination. Proteins, however, are composed of many diverse functional groups, and this composition directly effects protein structure, interactions, and reactivity. Here, we explore the utility of mixed SAMs with alternative terminating functional groups to tune and direct the reactivity of the surface through noncovalent peptide-surface interactions. We study both polar surfaces (OH-terminated) and charged surfaces (COOH- and NH{sub 3}-terminated, which are negatively and positively charged, respectively, under our reaction conditions). Surfaces were functionalized with a bipolar peptide composed of Lys and Leu residues that could express different interactions through either hydrophilic and/or charge (Lys) or hydrophobic (Leu) influences. X-ray photoelectron spectroscopy (XPS) and surface infrared spectroscopy were used to characterize surfaces at all stages of the peptide functionalization procedure. This strategy resulted in a high density of surface-bound α-helices without aggregation. Mixed SAMs that included a positively charged alkanethiol along with the azide-terminated thiol resulted in a more efficient reaction and better
International Nuclear Information System (INIS)
Raigoza, Annette F.; Onyirioha, Kristeen; Webb, Lauren J.
2017-01-01
Highlights: • Functional variety in SAMs control covalent binding of proteins to surfaces. • Peptide density on Au(111) surfaces controlled by SAM functional groups. • Affinity between biomolecule and SAM surface follows a Langmuir isotherm. • Surface chemistry can mimic functional group diversity in proteins and peptides. - Abstract: Reliably attaching a structured biomolecule to an inorganic substrate would enable the preparation of surfaces that incorporate both biological and inorganic functions and structures. To this end, we have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to well-ordered alkanethiol self-assembled monolayers (SAM) on a Au(111) surface, in which the SAM is composed of a mixture of methyl and azide termination. Proteins, however, are composed of many diverse functional groups, and this composition directly effects protein structure, interactions, and reactivity. Here, we explore the utility of mixed SAMs with alternative terminating functional groups to tune and direct the reactivity of the surface through noncovalent peptide-surface interactions. We study both polar surfaces (OH-terminated) and charged surfaces (COOH- and NH_3-terminated, which are negatively and positively charged, respectively, under our reaction conditions). Surfaces were functionalized with a bipolar peptide composed of Lys and Leu residues that could express different interactions through either hydrophilic and/or charge (Lys) or hydrophobic (Leu) influences. X-ray photoelectron spectroscopy (XPS) and surface infrared spectroscopy were used to characterize surfaces at all stages of the peptide functionalization procedure. This strategy resulted in a high density of surface-bound α-helices without aggregation. Mixed SAMs that included a positively charged alkanethiol along with the azide-terminated thiol resulted in a more efficient reaction and better alignment
Self-consistent approximations beyond the CPA: Part II
International Nuclear Information System (INIS)
Kaplan, T.; Gray, L.J.
1982-01-01
This paper concentrates on a self-consistent approximation for random alloys developed by Kaplan, Leath, Gray, and Diehl. The construction of the augmented space formalism for a binary alloy is sketched, and the notation to be used derived. Using the operator methods of the augmented space, the self-consistent approximation is derived for the average Green's function, and for evaluating the self-energy, taking into account the scattering by clusters of excitations. The particular cluster approximation desired is derived by treating the scattering by the excitations with S /SUB T/ exactly. Fourier transforms on the disorder-space clustersite labels solve the self-consistent set of equations. Expansion to short range order in the alloy is also discussed. A method to reduce the problem to a computationally tractable form is described
Hofstadter's butterfly in a two-dimensional lattice consisting of two sublattices
International Nuclear Information System (INIS)
Vugalter, G A; Pastukhov, A S
2004-01-01
Harper's equations for simple and complex two-dimensional lattices subject to a magnetic field have been derived in the tight-binding approximation. In our derivation we do not neglect the influence of the magnetic field on the electron eigenfunctions and eigenvalues in isolated atoms. Using a variational procedure for finding eigenfunctions and eigenvalues, we have self-consistently obtained Hofstadter's butterflies. Even for a simple square lattice Hofstadter's butterfly differs from the butterfly obtained in the case in which the influence of the magnetic field on the electron eigenvalues and eigenfunctions in isolated atoms is not taken into account
Electron scattering by nuclei and transition charge densities
International Nuclear Information System (INIS)
Gul'karov, I.S.
1988-01-01
Transition charge densities for states of electric type, for nuclei with A≤40--50 as obtained from data on inelastic electron scattering, are studied. The formalism of electroexcitation of nuclei is considered, together with various models (macroscopic and microscopic) used to calculate form factors, transition charge densities, and the moments of these densities: B(Eλ) and R/sub λ/ . The macroscopic models are derived microscopically, and it is shown that the model-independent sum rules lead to the same transition densities as calculations based on various hydrodynamic models. The sum rules with and without allowance for the Skyrme exchange interaction are discussed. The results of the calculations are compared with the experimental form factors of electron scattering by nuclei from 12 C to 48 Ca with excitation in them of normal-parity states with I/sup π/ = 0 + , 1 - , 2 + , 3 - , 4 + , 5 - and T = 0. The model-independent transition charge densities for the weakly collectivized excitations differ strongly from the model-dependent densities. The influence of neutrons on the transition charge densities of the nuclear isotopes 16 /sup ,/ 18 O, 32 /sup ,/ 34 S, and 40 /sup ,/ 48 Ca is considered
Nucleic acid reactivity: challenges for next-generation semiempirical quantum models.
Huang, Ming; Giese, Timothy J; York, Darrin M
2015-07-05
Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical (QM)/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic differential overlap and self-consistent density-functional tight-binding semiempirical models are evaluated against high-level QM benchmark calculations for seven biologically important datasets. The datasets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling "modified divide-and-conquer" model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles for the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio substitutions often used experimentally as mechanistic
Charge density fluctuation of low frequency in a dusty plasma
Institute of Scientific and Technical Information of China (English)
李芳; 吕保维; O.Havnes
1997-01-01
The charge density fluctuation of low frequency in a dusty plasma, which is derived from the longitudinal dielectric permittivity of the dusty plasma, has been studied by kinetic theory. The results show that the P value, which describes the relative charge density on the dust in the plasma, and the charging frequency of a dust particle Ωc, which describes the ratio of charge changing of the dust particles, determine the character of the charge density fluctuation of low frequency. For a dusty plasma of P<<1, when the charging frequency Ωc is much smaller than the dusty plasma frequency wd, there is a strong charge density fluctuation which is of character of dust acoustic eigen wave. For a dusty plasma of P>>1, when the frequency Ωc, is much larger than wd there are weaker fluctuations with a wide spectrum. The results have been applied to the ionosphere and the range of radius and density of dust particles is found, where a strong charge density fluctuation of low frequency should exist.
Self-diffusion in MgO--a density functional study.
Runevall, Odd; Sandberg, Nils
2011-08-31
Density functional theory calculations have been performed to study self-diffusion in magnesium oxide, a model material for a wide range of ionic compounds. Formation energies and entropies of Schottky defects and divacancies were obtained by means of total energy and phonon calculations in supercell configurations. Transition state theory was used to estimate defect migration rates, with migration energies taken from static calculations, and the corresponding frequency factors estimated from the phonon spectrum. In all static calculations we corrected for image effects using either a multipole expansion or an extrapolation to the low concentration limit. It is shown that both methods give similar results. The results for self-diffusion of Mg and O confirm the previously established picture, namely that in materials of nominal purity, Mg diffuses extrinsically by a single vacancy mechanism, while O diffuses intrinsically by a divacancy mechanism. Quantitatively, the current results are in very good agreement with experiments concerning O diffusion, while for Mg the absolute diffusion rate is generally underestimated by a factor of 5-10. The reason for this discrepancy is discussed.
Reese, Chad E; Asher, Sanford A
2002-04-01
We have developed emulsifier-free, emulsion polymerization recipes for the synthesis of highly charged, monodisperse latex particles of diameters between 500 and 1100 nm. These latexes consist of poly[styrene-(co-2-hydroxyethyl methacrylate)] spherical particles whose surfaces are functionalized with sulfate and carboxylic acid groups. These highly charged, monodisperse particles readily self-assemble into robust, three-dimensionally ordered crystalline colloidal array photonic crystals that Bragg diffract light in the near infrared spectral region. By altering the particle number density, the diffraction wavelength can be tuned from approximately 1000 to approximately 4000 nm.
Rationale for switching to nonlocal functionals in density functional theory.
Lazić, P; Atodiresei, N; Caciuc, V; Brako, R; Gumhalter, B; Blügel, S
2012-10-24
Density functional theory (DFT) has been steadily improving over the past few decades, becoming the standard tool for electronic structure calculations. The early local functionals (LDA) were eventually replaced by more accurate semilocal functionals (GGA) which are in use today. A major persisting drawback is the lack of the nonlocal correlation which is at the core of dispersive (van der Waals) forces, so that a large and important class of systems remains outside the scope of DFT. The vdW-DF correlation functional of Langreth and Lundqvist, published in 2004, was the first nonlocal functional which could be easily implemented. Beyond expectations, the nonlocal functional has brought significant improvement to systems that were believed not to be sensitive to nonlocal correlations. In this paper, we use the example of graphene nanodomes growing on the Ir(111) surface, where with an increase of the size of the graphene islands the character of the bonding changes from strong chemisorption towards almost pure physisorption. We demonstrate how the seamless character of the vdW-DF functionals makes it possible to treat all regimes self-consistently, proving to be a systematic and consistent improvement of DFT regardless of the nature of bonding. We also discuss the typical surface science example of CO adsorption on (111) surfaces of metals, which shows that the nonlocal correlation may also be crucial for strongly chemisorbed systems. We briefly discuss open questions, in particular the choice of the most appropriate exchange part of the functional. As the vdW-DF begins to appear implemented self-consistently in a number of popular DFT codes, with numerical costs close to the GGA calculations, we draw the attention of the DFT community to the advantages and benefits of the adoption of this new class of functionals.
Rationale for switching to nonlocal functionals in density functional theory
International Nuclear Information System (INIS)
Lazić, P; Atodiresei, N; Caciuc, V; Blügel, S; Brako, R; Gumhalter, B
2012-01-01
Density functional theory (DFT) has been steadily improving over the past few decades, becoming the standard tool for electronic structure calculations. The early local functionals (LDA) were eventually replaced by more accurate semilocal functionals (GGA) which are in use today. A major persisting drawback is the lack of the nonlocal correlation which is at the core of dispersive (van der Waals) forces, so that a large and important class of systems remains outside the scope of DFT. The vdW-DF correlation functional of Langreth and Lundqvist, published in 2004, was the first nonlocal functional which could be easily implemented. Beyond expectations, the nonlocal functional has brought significant improvement to systems that were believed not to be sensitive to nonlocal correlations. In this paper, we use the example of graphene nanodomes growing on the Ir(111) surface, where with an increase of the size of the graphene islands the character of the bonding changes from strong chemisorption towards almost pure physisorption. We demonstrate how the seamless character of the vdW-DF functionals makes it possible to treat all regimes self-consistently, proving to be a systematic and consistent improvement of DFT regardless of the nature of bonding. We also discuss the typical surface science example of CO adsorption on (111) surfaces of metals, which shows that the nonlocal correlation may also be crucial for strongly chemisorbed systems. We briefly discuss open questions, in particular the choice of the most appropriate exchange part of the functional. As the vdW-DF begins to appear implemented self-consistently in a number of popular DFT codes, with numerical costs close to the GGA calculations, we draw the attention of the DFT community to the advantages and benefits of the adoption of this new class of functionals.
Modern charge-density analysis
Gatti, Carlo
2012-01-01
Focusing on developments from the past 10-15 years, this volume presents an objective overview of the research in charge density analysis. The most promising methodologies are included, in addition to powerful interpretative tools and a survey of important areas of research.
Rejection Sensitivity Moderates the Impact of Rejection on Self-Concept Clarity
Ayduk, Özlem; Gyurak, Anett; Luerssen, Anna
2014-01-01
Self-concept clarity (SCC) refers to the extent to which self-knowledge is clearly and confidently defined, internally consistent, and temporally stable. Research shows that SCC can be undermined by failures in valued goal domains. Because preventing rejection is an important self-relevant goal for people high in rejection sensitivity (RS), it is hypothesized here that failures to attain this goal would cause them to experience diminished SCC. Study 1, an experimental study, showed that high-RS people’s SCC was undermined following rejection but not following an aversive experience unrelated to rejection. Study 2, a daily diary study of couples in relationships, used occurrence of partner conflicts to operationalize rejection. Replicating the findings in Study 1, having a conflict on any given diary day predicted a greater reduction in the SCC of high- compared to low-RS people on the following day. The implications for understanding the conditions under which rejection negatively affects the self-concept are discussed. PMID:19713567
Stretched-exponential decay functions from a self-consistent model of dielectric relaxation
International Nuclear Information System (INIS)
Milovanov, A.V.; Rasmussen, J.J.; Rypdal, K.
2008-01-01
There are many materials whose dielectric properties are described by a stretched exponential, the so-called Kohlrausch-Williams-Watts (KWW) relaxation function. Its physical origin and statistical-mechanical foundation have been a matter of debate in the literature. In this Letter we suggest a model of dielectric relaxation, which naturally leads to a stretched exponential decay function. Some essential characteristics of the underlying charge conduction mechanisms are considered. A kinetic description of the relaxation and charge transport processes is proposed in terms of equations with time-fractional derivatives
Bayesian error estimation in density-functional theory
DEFF Research Database (Denmark)
Mortensen, Jens Jørgen; Kaasbjerg, Kristen; Frederiksen, Søren Lund
2005-01-01
We present a practical scheme for performing error estimates for density-functional theory calculations. The approach, which is based on ideas from Bayesian statistics, involves creating an ensemble of exchange-correlation functionals by comparing with an experimental database of binding energies...