WorldWideScience

Sample records for self-consistent relativistic qrpa

  1. Relativistic pn-QRPA to the double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Conti, Claudio de [Universidade Estadual Paulista (UNESP), Itapeva, SP (Brazil). Campus Experimental de Itapeva; Krmpotic, F. [Universidad Nacional de La Plata (Argentina). Facultad de Ciencias Astronomicas y Geofisicas; Carlson, Brett Vern [Centro Tecnico Aeroespacial (CTA/ITA), Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica. Dept. de Fisica

    2010-07-01

    Full text: In nature there are about 50 nuclear systems where the single beta-decay is energetically forbidden, and double- beta decay turns out to be only possible mode of disintegration. It is the nuclear pairing force which causes such an 'anomaly', by making the mass of the odd-odd isobar, (N - 1;Z + 1), to be greater than the masses of its even-even neighbors, (N;Z) and (N - 2;Z +2). The modes by which the double-beta decay can take place are connected with the neutrino and antineutrino distinction. In case the lepton number is strictly conserved the neutrino is a Dirac fermion and the two-neutrino mode is the only possible mode of disintegration. On the other hand, if this conservation is violated, the neutrino is a Majorana particle and neutrinoless double-beta decay also can occur. Both two-neutrino and neutrinoless double-beta decay processes have attracted much attention, because a comparison between experiment and theory for the first, provides a measure of confidence one may have in the nuclear wave function employed for extracting the unknown parameters from neutrinoless lifetime measurements. The proton-neutron (pn) quasiparticle random phase approximation (QRPA) has turned out be the most simple model for calculating the nuclear wave function involved in the double-beta decay transitions. In this work the transition matrix elements for 0{sup +} -> 0{sup +} double-beta decay are calculated for {sup 48}Ca, {sup 76}Ge, {sup 82}Se, {sup 100}Mo, {sup 128}Te and {sup 130}Te nuclei, using a relativistic pn-QRPA based on Hartree-Bogoliubov approximation to the single-particle motion. (author)

  2. Self-consistent, relativistic, ferromagnetic band structure of gadolinium

    International Nuclear Information System (INIS)

    Harmon, B.N.; Schirber, J.; Koelling, D.D.

    1977-01-01

    An initial self-consistent calculation of the ground state magnetic band structure of gadolinium is described. A linearized APW method was used which included all single particle relativistic effects except spin-orbit coupling. The spin polarized potential was obtained in the muffin-tin form using the local spin density approximation for exchange and correlation. The most striking and unorthodox aspect of the results is the position of the 4f spin-down ''bands'' which are required to float just on top of the Fermi level in order to obtain convergence. If the 4f states (l = 3 resonance) are removed from the occupied region of the conduction bands the magnetic moment is approximately .75 μ/sub B//atom; however, as the 4f spin-down states are allowed to find their own position they hybridize with the conduction bands at the Fermi level and the moment becomes smaller. Means of improving the calculation are discussed

  3. Analytical relativistic self-consistent-field calculations for atoms

    International Nuclear Information System (INIS)

    Barthelat, J.C.; Pelissier, M.; Durand, P.

    1980-01-01

    A new second-order representation of the Dirac equation is presented. This representation which is exact for a hydrogen atom is applied to approximate analytical self-consistent-field calculations for atoms. Results are given for the rare-gas atoms from helium to radon and for lead. The results compare favorably with numerical Dirac-Hartree-Fock solutions

  4. Relativistic four-component multiconfigurational self-consistent-field theory for molecules

    DEFF Research Database (Denmark)

    Jensen, Hans Jørgen Aa; Dyall, Kenneth G.; Saue, Trond

    1996-01-01

    A formalism for relativistic four-component multiconfigurational self-consistent-field calculations on molecules is presented. The formalism parallels a direct second-order restricted-step algorithm developed for nonrelativistic molecular calculations. The presentation here focuses on the differe......A formalism for relativistic four-component multiconfigurational self-consistent-field calculations on molecules is presented. The formalism parallels a direct second-order restricted-step algorithm developed for nonrelativistic molecular calculations. The presentation here focuses...

  5. Self-consistent relativistic Boltzmann-Uehling-Uhlenbeck equation for the Δ distribution function

    International Nuclear Information System (INIS)

    Mao, G.; Li, Z.; Zhuo, Y.

    1996-01-01

    We derive the self-consistent relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) equation for the delta distribution function within the framework which we have done for nucleon close-quote s. In our approach, the Δ isobars are treated in essentially the same way as nucleons. Both mean field and collision terms of Δ close-quote s RBUU equation are derived from the same effective Lagrangian and presented analytically. We calculate the in-medium NΔ elastic and inelastic scattering cross sections up to twice nuclear matter density and the results show that the in-medium cross sections deviate substantially from Cugnon close-quote s parametrization that is commonly used in the transport model. copyright 1996 The American Physical Society

  6. A self-consistent nonlinear theory of resistive-wall instability in a relativistic electron beam

    International Nuclear Information System (INIS)

    Uhm, H.S.

    1994-01-01

    A self-consistent nonlinear theory of resistive-wall instability is developed for a relativistic electron beam propagating through a grounded cylindrical resistive tube. The theory is based on the assumption that the frequency of the resistive-wall instability is lower than the cutoff frequency of the waveguide. The theory is concentrated on study of the beam current modulation directly related to the resistive-wall klystron, in which a relativistic electron beam is modulated at the first cavity and propagates downstream through the resistive wall. Because of the self-excitation of the space charge waves by the resistive-wall instability, a highly nonlinear current modulation of the electron beam is accomplished as the beam propagates downstream. A partial integrodifferential equation is obtained in terms of the initial energy modulation (ε), the self-field effects (h), and the resistive-wall effects (κ). Analytically investigating the partial integrodifferential equation, a scaling law of the propagation distance z m at which the maximum current modulation occurs is obtained. It is found in general that the self-field effects dominate over the resistive-wall effects at the beginning of the propagation. As the beam propagates farther downstream, the resistive-wall effects dominate. Because of a relatively large growth rate of the instability, the required tube length of the klystron is short for most applications

  7. A self-consistent, relativistic implementation of the LSDA+DMFT method

    Science.gov (United States)

    Minár, J.; Ebert, H.; Chioncel, L.

    2017-07-01

    In this review we report on developments and various applications of the combined Density Functional and Dynamical Mean-Field Theory, the so-called LSDA + DMFT method, as implemented within the fully relativistic KKR (Korringa-Kohn-Rostoker) band structure method. The KKR uses a description of the electronic structure in terms of the single-particle Green function, which allows to study correlation effects in ordered and disordered systems independently of its dimensionality (bulk, surfaces and nano-structures). We present self-consistent LSDA+DMFT results for the ground state and spectroscopic properties of transition metal elements and their compounds. In particular we discuss the spin-orbit induced orbital magnetic moments for FexNi1-x disordered alloys, the magnetic Compton profiles of fcc Ni and the angle-resolved photoemission spectroscopy (ARPES) spectra for gallium manganese arsenide dilute magnetic semiconductors. For the (GaMn)As system a direct comparison with the experimental ARPES spectra demonstrates the importance of matrix element effects, the presence of the semi-infinite surface and the inclusion of layer-dependent self-energies.

  8. A relativistic self-consistent model for studying enhancement of space charge limited emission due to counter-streaming ions

    Science.gov (United States)

    Lin, M. C.; Verboncoeur, J.

    2016-10-01

    A maximum electron current transmitted through a planar diode gap is limited by space charge of electrons dwelling across the gap region, the so called space charge limited (SCL) emission. By introducing a counter-streaming ion flow to neutralize the electron charge density, the SCL emission can be dramatically raised, so electron current transmission gets enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of maximum transmission by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a comparison for verification of simulation codes, as well as extension to higher dimensions.

  9. Self-consistency condition and high-density virial theorem in relativistic many-particle systems

    International Nuclear Information System (INIS)

    Kalman, G.; Canuto, V.; Datta, B.

    1976-01-01

    In order for the thermodynamic and kinetic definitions of the chemical potential and the pressure to lead to identical results a nontrivial self-consistency criterion has to be satisfied. This, in turn, leads to a virial-like theorem in the high-density limit

  10. A direct relativistic four-component multiconfiguration self-consistent-field method for molecules

    DEFF Research Database (Denmark)

    Thyssen, Jørn; Fleig, Timo; Jensen, Hans Jørgen Aagaard

    2008-01-01

    a fully variational KR-MCSCF implementation. The general implementation also allows for the use of molecular integrals from a two-component relativistic Hamiltonian as, for example, the Douglas-Kroll-Hess variants. Several sample applications concern the determination of spectroscopic properties of heavy......-element atoms and molecules, demonstrating the influence of spin-orbit coupling in MCSCF approaches to such systems and showing the potential of the new method....

  11. Self consistent propagation of hyperons and antikaons in nuclear matter based on relativistic chiral SU(3) dynamics

    International Nuclear Information System (INIS)

    Lutz, M.F.M.; Korpa, C.L.

    2001-05-01

    We evaluate the antikaon spectral density in isospin symmetric nuclear matter. The in-medium antikaon-nucleon scattering process and the antikaon propagation is treated in a self consistent and relativistic manner where a maximally scheme-independent formulation is derived by performing a partial density resummation in terms of the free-space antikaon-nucleon scattering amplitudes. The latter amplitudes are taken from a relativistic and chiral coupled-channel SU(3) approach which includes s-, p- and d-waves systematically. Particular care is taken on the proper evaluation of the in-medium mixing of the partial waves. Our analysis establishes a rich structure of the antikaon spectral function with considerable strength at small energies. At nuclear saturation density we predict attractive mass shifts for the Λ(1405), Σ(1385) and Λ(1520) of about 130 MeV, 60 MeV and 100 MeV respectively. The hyperon states are found to exhibit at the same time an increased decay width of about 150 MeV for the s-wave Λ(1405), 70 MeV for the p-wave Σ(1385) and 100 MeV for the d-wave Λ(1520) resonance. (orig.)

  12. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering Based on the Newly Developed Self-consistent RC/EMIC Waves Model by Khazanov et al. [2006

    Science.gov (United States)

    Khazanov, G. V.; Gallagher, D. L.; Gamayunov, K.

    2007-01-01

    It is well known that the effects of EMIC waves on RC ion and RB electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. Therefore, realistic characteristics of EMIC waves should be properly determined by modeling the RC-EMIC waves evolution self-consistently. Such a selfconsistent model progressively has been developing by Khaznnov et al. [2002-2006]. It solves a system of two coupled kinetic equations: one equation describes the RC ion dynamics and another equation describes the energy density evolution of EMIC waves. Using this model, we present the effectiveness of relativistic electron scattering and compare our results with previous work in this area of research.

  13. Some exploitations of the self-consistent QRPA approach with the Gogny force

    International Nuclear Information System (INIS)

    Péru, S.; Martini, M.; Dupuis, M.

    2012-01-01

    Fully consistent axially-symmetric-deformed quasiparticle random phase approximation calculations have been performed with the D1S Gogny force. Giant resonances in exotic nuclei as well as in deformed Mg and Si isotopes have been studied. Dipole responses have been calculated in Ne isotopes and N=16 isotones to study the existence of soft dipole modes in exotic nuclei. The same formalism has been used to describe multipole responses up to octupole in the deformed and heavy nucleus 238 U. Low energy spectroscopy of nickel isotopes has been studied, revealing 0 + states which display a particular structure.

  14. Self-consistent calculation of atomic structure for mixture

    International Nuclear Information System (INIS)

    Meng Xujun; Bai Yun; Sun Yongsheng; Zhang Jinglin; Zong Xiaoping

    2000-01-01

    Based on relativistic Hartree-Fock-Slater self-consistent average atomic model, atomic structure for mixture is studied by summing up component volumes in mixture. Algorithmic procedure for solving both the group of Thomas-Fermi equations and the self-consistent atomic structure is presented in detail, and, some numerical results are discussed

  15. Self-consistent quark bags

    International Nuclear Information System (INIS)

    Rafelski, J.

    1979-01-01

    After an introductory overview of the bag model the author uses the self-consistent solution of the coupled Dirac-meson fields to represent a bound state of strongly ineteracting fermions. In this framework he discusses the vivial approach to classical field equations. After a short description of the used numerical methods the properties of bound states of scalar self-consistent Fields and the solutions of a self-coupled Dirac field are considered. (HSI) [de

  16. Self-consistent radial sheath

    International Nuclear Information System (INIS)

    Hazeltine, R.D.

    1988-12-01

    The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig

  17. Linear augmented plane wave method for self-consistent calculations

    International Nuclear Information System (INIS)

    Takeda, T.; Kuebler, J.

    1979-01-01

    O.K. Andersen has recently introduced a linear augmented plane wave method (LAPW) for the calculation of electronic structure that was shown to be computationally fast. A more general formulation of an LAPW method is presented here. It makes use of a freely disposable number of eigenfunctions of the radial Schroedinger equation. These eigenfunctions can be selected in a self-consistent way. The present formulation also results in a computationally fast method. It is shown that Andersen's LAPW is obtained in a special limit from the present formulation. Self-consistent test calculations for copper show the present method to be remarkably accurate. As an application, scalar-relativistic self-consistent calculations are presented for the band structure of FCC lanthanum. (author)

  18. Translationally invariant self-consistent field theories

    International Nuclear Information System (INIS)

    Shakin, C.M.; Weiss, M.S.

    1977-01-01

    We present a self-consistent field theory which is translationally invariant. The equations obtained go over to the usual Hartree-Fock equations in the limit of large particle number. In addition to deriving the dynamic equations for the self-consistent amplitudes we discuss the calculation of form factors and various other observables

  19. Self-consistent asset pricing models

    Science.gov (United States)

    Malevergne, Y.; Sornette, D.

    2007-08-01

    We discuss the foundations of factor or regression models in the light of the self-consistency condition that the market portfolio (and more generally the risk factors) is (are) constituted of the assets whose returns it is (they are) supposed to explain. As already reported in several articles, self-consistency implies correlations between the return disturbances. As a consequence, the alphas and betas of the factor model are unobservable. Self-consistency leads to renormalized betas with zero effective alphas, which are observable with standard OLS regressions. When the conditions derived from internal consistency are not met, the model is necessarily incomplete, which means that some sources of risk cannot be replicated (or hedged) by a portfolio of stocks traded on the market, even for infinite economies. Analytical derivations and numerical simulations show that, for arbitrary choices of the proxy which are different from the true market portfolio, a modified linear regression holds with a non-zero value αi at the origin between an asset i's return and the proxy's return. Self-consistency also introduces “orthogonality” and “normality” conditions linking the betas, alphas (as well as the residuals) and the weights of the proxy portfolio. Two diagnostics based on these orthogonality and normality conditions are implemented on a basket of 323 assets which have been components of the S&P500 in the period from January 1990 to February 2005. These two diagnostics show interesting departures from dynamical self-consistency starting about 2 years before the end of the Internet bubble. Assuming that the CAPM holds with the self-consistency condition, the OLS method automatically obeys the resulting orthogonality and normality conditions and therefore provides a simple way to self-consistently assess the parameters of the model by using proxy portfolios made only of the assets which are used in the CAPM regressions. Finally, the factor decomposition with the

  20. Muon capture on Ni isotopes, projected QRPA, and CVC hypothesis

    International Nuclear Information System (INIS)

    Samana, Arturo R.; Sande, Danilo; Krmpotic, Francisco; Universidad Nacional de La Plata

    2011-01-01

    In recent years we have developed a novel formalism for the weak interaction processes, obtaining new expressions for the transition rates, which greatly facilitate numerical calculations, for both neutrino-nucleus reactions and muon capture, allowing us to use very large configuration spaces and to evaluate the quasielastic 12 C (ν, μ - ) 12 N cross section at energies of the order of 1 GeV, which are measured in the MiniBooNE experiment. Our formulation includes for the first time the consequences of the explicit violation of the conserved vector current (CVC) hypothesis by the Coulomb field. We have also shown that the particle number projection procedure within the quasiparticle random phase approximation (QRPA) is important in describing the exclusive (ground-state) properties of 12 B and 12 N as well as the muon capture rate and the neutrino nucleus cross section in 56 Fe. In this work, we analyze in a quantitative way the consequences of the CVC violation on the muon capture rates in Ni isotopes (for which are available the experimental data) using both the standard QRPA and the projected QRPA (PQRPA). The last one is the only RPA model that treats the Pauli Principle correctly, and we demonstrate that the number projection procedure is important not only for light nuclei but also for medium heavy ones that were studied here. (author)

  1. Multitier self-consistent G W +EDMFT

    Science.gov (United States)

    Nilsson, F.; Boehnke, L.; Werner, P.; Aryasetiawan, F.

    2017-09-01

    We discuss a parameter-free and computationally efficient ab initio simulation approach for moderately and strongly correlated materials, the multitier self-consistent G W +EDMFT method. This scheme treats different degrees of freedom, such as high-energy and low-energy bands, or local and nonlocal interactions, within appropriate levels of approximation, and provides a fully self-consistent description of correlation and screening effects in the solid. The ab initio input is provided by a one-shot G0W0 calculation, while the strong-correlation effects originating from narrow bands near the Fermi level are captured by a combined G W plus extended dynamical mean-field (EDMFT) treatment. We present the formalism and technical details of our implementation and discuss some general properties of the effective EDMFT impurity action. In particular, we show that the retarded impurity interactions can have noncausal features, while the physical observables, such as the screened interactions of the lattice system, remain causal. As a first application, we present ab initio simulation results for SrMoO3, which demonstrate the existence of prominent plasmon satellites in the spectral function not obtainable within LDA+DMFT, and provide further support for our recent reinterpretation of the satellite features in the related cubic perovskite SrVO3. We then turn to stretched sodium as a model system to explore the performance of the multitier self-consistent G W +EDMFT method in situations with different degrees of correlation. While the results for the physical lattice spacing a0 show that the scheme is not very accurate for electron-gas-like systems, because nonlocal corrections beyond G W are important, it does provide physically correct results in the intermediate correlation regime, and a Mott transition around a lattice spacing of 1.5 a0 . Remarkably, even though the Wannier functions in the stretched compound are less localized, and hence the bare interaction parameters

  2. Covariant density functional theory for decay of deformed proton emitters: A self-consistent approach

    Directory of Open Access Journals (Sweden)

    L.S. Ferreira

    2016-02-01

    Full Text Available Proton radioactivity from deformed nuclei is described for the first time by a self-consistent calculation based on covariant relativistic density functionals derived from meson exchange and point coupling models. The calculation provides an important new test to these interactions at the limits of stability, since the mixing of different angular momenta in the single particle wave functions is probed.

  3. Self-consistent treatment of quark-quark interaction in MIT bag model

    CERN Document Server

    Simonis, V

    1997-01-01

    Some features of the MlT bag model are discussed with particular emphasis on static, spherical cavity approximation to the model. A self-consistent procedure for obtaining wave functions and calculating gluon exchange effects is proposed. The equations derived are similar to state-dependent relativistic Hartree-Fock equations. (author)

  4. Self-consistent model of confinement

    International Nuclear Information System (INIS)

    Swift, A.R.

    1988-01-01

    A model of the large-spatial-distance, zero--three-momentum, limit of QCD is developed from the hypothesis that there is an infrared singularity. Single quarks and gluons do not propagate because they have infinite energy after renormalization. The Hamiltonian formulation of the path integral is used to quantize QCD with physical, nonpropagating fields. Perturbation theory in the infrared limit is simplified by the absence of self-energy insertions and by the suppression of large classes of diagrams due to vanishing propagators. Remaining terms in the perturbation series are resummed to produce a set of nonlinear, renormalizable integral equations which fix both the confining interaction and the physical propagators. Solutions demonstrate the self-consistency of the concepts of an infrared singularity and nonpropagating fields. The Wilson loop is calculated to provide a general proof of confinement. Bethe-Salpeter equations for quark-antiquark pairs and for two gluons have finite-energy solutions in the color-singlet channel. The choice of gauge is addressed in detail. Large classes of corrections to the model are discussed and shown to support self-consistency

  5. Non linear self consistency of microtearing modes

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.

    1987-01-01

    The self consistency of a microtearing turbulence is studied in non linear regimes where the ergodicity of the flux lines determines the electron response. The current which sustains the magnetic perturbation via the Ampere law results from the combines action of the radial electric field in the frame where the island chains are static and of the thermal electron diamagnetism. Numerical calculations show that at usual values of β pol in Tokamaks the turbulence can create a diffusion coefficient of order ν th p 2 i where p i is the ion larmor radius and ν th the electron ion collision frequency. On the other hand, collisionless regimes involving special profiles of each mode near the resonant surface seem possible

  6. Self-Consistent Scattering and Transport Calculations

    Science.gov (United States)

    Hansen, S. B.; Grabowski, P. E.

    2015-11-01

    An average-atom model with ion correlations provides a compact and complete description of atomic-scale physics in dense, finite-temperature plasmas. The self-consistent ionic and electronic distributions from the model enable calculation of x-ray scattering signals and conductivities for material across a wide range of temperatures and densities. We propose a definition for the bound electronic states that ensures smooth behavior of these measurable properties under pressure ionization and compare the predictions of this model with those of less consistent models for Be, C, Al, and Fe. SNL is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp, for the U.S. DoE NNSA under contract DE-AC04-94AL85000. This work was supported by DoE OFES Early Career grant FWP-14-017426.

  7. Self consistent field theory of virus assembly

    Science.gov (United States)

    Li, Siyu; Orland, Henri; Zandi, Roya

    2018-04-01

    The ground state dominance approximation (GSDA) has been extensively used to study the assembly of viral shells. In this work we employ the self-consistent field theory (SCFT) to investigate the adsorption of RNA onto positively charged spherical viral shells and examine the conditions when GSDA does not apply and SCFT has to be used to obtain a reliable solution. We find that there are two regimes in which GSDA does work. First, when the genomic RNA length is long enough compared to the capsid radius, and second, when the interaction between the genome and capsid is so strong that the genome is basically localized next to the wall. We find that for the case in which RNA is more or less distributed uniformly in the shell, regardless of the length of RNA, GSDA is not a good approximation. We observe that as the polymer–shell interaction becomes stronger, the energy gap between the ground state and first excited state increases and thus GSDA becomes a better approximation. We also present our results corresponding to the genome persistence length obtained through the tangent–tangent correlation length and show that it is zero in case of GSDA but is equal to the inverse of the energy gap when using SCFT.

  8. Self-consistent nuclear energy systems

    International Nuclear Information System (INIS)

    Shimizu, A.; Fujiie, Y.

    1995-01-01

    A concept of self-consistent energy systems (SCNES) has been proposed as an ultimate goal of the nuclear energy system in the coming centuries. SCNES should realize a stable and unlimited energy supply without endangering the human race and the global environment. It is defined as a system that realizes at least the following four objectives simultaneously: (a) energy generation -attain high efficiency in the utilization of fission energy; (b) fuel production - secure inexhaustible energy source: breeding of fissile material with the breeding ratio greater than one and complete burning of transuranium through recycling; (c) burning of radionuclides - zero release of radionuclides from the system: complete burning of transuranium and elimination of radioactive fission products by neutron capture reactions through recycling; (d) system safety - achieve system safety both for the public and experts: eliminate criticality-related safety issues by using natural laws and simple logic. This paper describes the concept of SCNES and discusses the feasibility of the system. Both ''neutron balance'' and ''energbalance'' of the system are introduced as the necessary conditions to be satisfied at least by SCNES. Evaluations made so far indicate that both the neutron balance and the energy balance can be realized by fast reactors but not by thermal reactors. Concerning the system safety, two safety concepts: ''self controllability'' and ''self-terminability'' are introduced to eliminate the criticality-related safety issues in fast reactors. (author)

  9. Many-body correlations of QRPA in nuclear matrix elements of double-beta decay

    International Nuclear Information System (INIS)

    Terasaki, J.

    2015-01-01

    We present two new ideas on the quasiparticle random-phase approximation (QRPA) approach for calculating nuclear matrix elements of double-beta decay. First, it is necessary to calculate overlaps of the QRPA states obtained on the basis of the ground states of different nuclei. We calculate this overlap using quasiboson vacua as the QRPA ground states. Second, we show that two-particle transfer paths are possible to use for the calculation under the closure approximation. A calculation is shown for 150 Nd→ 150 Sm using these two new ideas, and their implication is discussed

  10. The concept of coupling impedance in the self-consistent plasma wake field excitation

    International Nuclear Information System (INIS)

    Fedele, R.; Akhter, T.; De Nicola, S.; Migliorati, M.; Marocchino, A.; Massimo, F.; Palumbo, L.

    2016-01-01

    Within the framework of the Vlasov–Maxwell system of equations, we describe the self-consistent interaction of a relativistic charged-particle beam with the surroundings while propagating through a plasma-based acceleration device. This is done in terms of the concept of coupling (longitudinal) impedance in full analogy with the conventional accelerators. It is shown that also here the coupling impedance is a very useful tool for the Nyquist-type stability analysis. Examples of specific physical situations are finally illustrated.

  11. Self-consistent resummation scheme in scalar QED

    International Nuclear Information System (INIS)

    Carrington, M.E.

    1993-01-01

    In this paper we derive a resummation scheme that may be useful in the calculation of finite temperature processes that involve infrared-divergent diagrams. We discuss the inclusion of self-consistent vertices in calculations of diagrams with very soft external momenta. We work with scalar QED and show that the use of self-consistent vertices in the infrared limit of the retarded photon polarization tensor is equivalent to the resummation of dominant diagrams. To lowest order in an expansion about the parameter that is to be determined self-consistently, we find that the result is independent of this parameter and equal to the expression obtained with uncorrected lines and vertices. The motivation for this work is the hope that it will be possible to use this technique to perform self-consistent calculations beyond leading order

  12. Gamow-Teller strength distributions for beta beta-decaying nuclei within continuum QRPA

    NARCIS (Netherlands)

    Igashov, S. Yu.; Rodin, V. A.; Urin, M. H.; Faessler, A.

    A version of the pn continuum QRPA is outlined and applied to describe the Gamow-Teller strength distributions for beta beta-decaying open-shell nuclei. The calculation results obtained for the pairs of nuclei (116)Cd-Sn and (130)Te-Xe are compared with available experimental data.

  13. Self-consistent normal ordering of gauge field theories

    International Nuclear Information System (INIS)

    Ruehl, W.

    1987-01-01

    Mean-field theories with a real action of unconstrained fields can be self-consistently normal ordered. This leads to a considerable improvement over standard mean-field theory. This concept is applied to lattice gauge theories. First an appropriate real action mean-field theory is constructed. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean-field theory are derived. (author). 4 refs

  14. Time machines the principle of self-consistency as a consequence of the principle of minimal action

    CERN Document Server

    Carlini, A; Mensky, M B; Novikov, I D; Soleng, H H

    1995-01-01

    We consider the action principle to derive the classical, non-relativistic motion of a self-interacting particle in a 4-D Lorentzian spacetime containing a wormhole and which allows the existence of closed time-like curves. For the case of a `hard-sphere' self-interaction potential we show that the only possible trajectories (for a particle with fixed initial and final positions and which traverses the wormhole once) minimizing the classical action are those which are globally self-consistent, and that the `Principle of self-consistency' (originally introduced by Novikov) is thus a natural consequence of the `Principle of minimal action.'

  15. 0νββ-decay nuclear matrix elements with self-consistent short-range correlations

    International Nuclear Information System (INIS)

    Simkovic, Fedor; Faessler, Amand; Muether, Herbert; Rodin, Vadim; Stauf, Markus

    2009-01-01

    A self-consistent calculation of nuclear matrix elements of the neutrinoless double-beta decays (0νββ) of 76 Ge, 82 Se, 96 Zr, 100 Mo, 116 Cd, 128 Te, 130 Te, and 136 Xe is presented in the framework of the renormalized quasiparticle random phase approximation (RQRPA) and the standard QRPA. The pairing and residual interactions as well as the two-nucleon short-range correlations are for the first time derived from the same modern realistic nucleon-nucleon potentials, namely, from the charge-dependent Bonn potential (CD-Bonn) and the Argonne V18 potential. In a comparison with the traditional approach of using the Miller-Spencer Jastrow correlations, matrix elements for the 0νββ decay are obtained that are larger in magnitude. We analyze the differences among various two-nucleon correlations including those of the unitary correlation operator method (UCOM) and quantify the uncertainties in the calculated 0νββ-decay matrix elements.

  16. Self-consistent electrodynamic scattering in the symmetric Bragg case

    International Nuclear Information System (INIS)

    Campos, H.S.

    1988-01-01

    We have analyzed the symmetric Bragg case, introducing a model of self consistent scattering for two elliptically polarized beams. The crystal is taken as a set of mathematical planes, each of them defined by a surface density of dipoles. We have considered the mesofield and the epifield differently from that of the Ewald's theory and, we assumed a plane of dipoles and the associated fields as a self consistent scattering unit. The exact analytical treatment when applied to any two neighbouring planes, results in a general and self consistent Bragg's equation, in terms of the amplitude and phase variations. The generalized solution for the set of N planes was obtained after introducing an absorption factor in the incident radiation, in two ways: (i) the analytical one, through a rule of field similarity, which says that the incidence occurs in both faces of the all crystal planes and also, through a matricial development with the Chebyshev polynomials; (ii) using the numerical solution we calculated, iteratively, the reflectivity, the reflection phase, the transmissivity, the transmission phase and the energy. The results are showed through reflection and transmission curves, which are characteristics as from kinematical as dynamical theories. The conservation of the energy results from the Ewald's self consistency principle is used. In the absorption case, the results show that it is not the only cause for the asymmetric form in the reflection curves. The model contains basic elements for a unified, microscope, self consistent, vectorial and exact formulation for interpretating the X ray diffraction in perfect crystals. (author)

  17. Self-consistency and coherent effects in nonlinear resonances

    International Nuclear Information System (INIS)

    Hofmann, I.; Franchetti, G.; Qiang, J.; Ryne, R. D.

    2003-01-01

    The influence of space charge on emittance growth is studied in simulations of a coasting beam exposed to a strong octupolar perturbation in an otherwise linear lattice, and under stationary parameters. We explore the importance of self-consistency by comparing results with a non-self-consistent model, where the space charge electric field is kept 'frozen-in' to its initial values. For Gaussian distribution functions we find that the 'frozen-in' model results in a good approximation of the self-consistent model, hence coherent response is practically absent and the emittance growth is self-limiting due to space charge de-tuning. For KV or waterbag distributions, instead, strong coherent response is found, which we explain in terms of absence of Landau damping

  18. Turbulence and self-consistent fields in plasmas

    International Nuclear Information System (INIS)

    Pesme, D.; DuBois, D.

    1981-01-01

    This paper is concerned with the role of self-consistency of the electric field in 1-D plasma turbulence. We first show that in the non-self consistent electric field problem excellent agreement is found between numerical experiments and quasilinear theory whenever the imposed electric field Fourier components have random phase. A discrepancy is exhibited between quasilinear prediction and numerical simulations in the self-consistent electric field case. This discrepancy is explained by the creation of a long correlation time of the electric field resulting from a strong wave-particle interaction. A comparison is made between quasilinear and renormalized propagator theories, and the Dupree Clump theory. These three theories are found to be self-contradictory in the regime of strong wave-particle interaction because they make an a priori quasigaussian assumption for the electric field

  19. SOCIAL COMPARISON, SELF-CONSISTENCY AND THE PRESENTATION OF SELF.

    Science.gov (United States)

    MORSE, STANLEY J.; GERGEN, KENNETH J.

    TO DISCOVER HOW A PERSON'S (P) SELF-CONCEPT IS AFFECTED BY THE CHARACTERISTICS OF ANOTHER (O) WHO SUDDENLY APPEARS IN THE SAME SOCIAL ENVIRONMENT, SEVERAL QUESTIONNAIRES, INCLUDING THE GERGEN-MORSE (1967) SELF-CONSISTENCY SCALE AND HALF THE COOPERSMITH SELF-ESTEEM INVENTORY, WERE ADMINISTERED TO 78 UNDERGRADUATE MEN WHO HAD ANSWERED AN AD FOR WORK…

  20. Self consistent description of plasma equilibrium evolution in Tore Supra

    International Nuclear Information System (INIS)

    Blum, J.; Le Foll, J.; Leloup, C.

    1984-01-01

    A model is presented which describes in a self-consistent way the evolution of the plasma equilibrium in a Tokamak. Numerical simulations are presented for ohmic heating discharges, neutral beam injection, lower hybrid electron heating and current drive in Tore Supra. The various control systems (plasma current, shape and position, coil current sharing) are tested with the code. (author)

  1. Self-consistent modelling of resonant tunnelling structures

    DEFF Research Database (Denmark)

    Fiig, T.; Jauho, A.P.

    1992-01-01

    We report a comprehensive study of the effects of self-consistency on the I-V-characteristics of resonant tunnelling structures. The calculational method is based on a simultaneous solution of the effective-mass Schrödinger equation and the Poisson equation, and the current is evaluated...

  2. The main features of self-consistent pressure profile formation

    NARCIS (Netherlands)

    Razumova, K. A.; Andreev, V. F.; Dnestrovskij, A. Y.; Kislov, A. Y.; Kirneva, N. A.; Lysenko, S. E.; Pavlov, Y. D.; Poznyak, V. I.; Shafranov, T. V.; Trukhina, E. V.; Zhuravlev, V. A.; Donne, A. J. H.; Hogeweij, G. M. D.

    2008-01-01

    The self-organization of a tokamak plasma is a fundamental turbulent plasma phenomenon, which leads to the formation of a self-consistent pressure profile. This phenomenon has been investigated in the T-10 tokamak in different experiments, excluding profiles with pronounced transport barriers. It

  3. Final Report Fermionic Symmetries and Self consistent Shell Model

    International Nuclear Information System (INIS)

    Zamick, Larry

    2008-01-01

    In this final report in the field of theoretical nuclear physics we note important accomplishments.We were confronted with 'anomoulous' magnetic moments by the experimetalists and were able to expain them. We found unexpected partial dynamical symmetries--completely unknown before, and were able to a large extent to expain them. The importance of a self consistent shell model was emphasized.

  4. Self-consistent studies of magnetic thin film Ni (001)

    International Nuclear Information System (INIS)

    Wang, C.S.; Freeman, A.J.

    1979-01-01

    Advances in experimental methods for studying surface phenomena have provided the stimulus to develop theoretical methods capable of interpreting this wealth of new information. Of particular interest have been the relative roles of bulk and surface contributions since in several important cases agreement between experiment and bulk self-consistent (SC) calculations within the local spin density functional formalism (LSDF) is lacking. We discuss our recent extension of the (LSDF) approach to the study of thin films (slabs) and the role of surface effects on magnetic properties. Results are described for Ni (001) films using our new SC numerical basis set LCAO method. Self-consistency within the superposition of overlapping spherical atomic charge density model is obtained iteratively with the atomic configuration as the adjustable parameter. Results are presented for the electronic charge densities and local density of states. The origin and role of (magnetic) surface states is discussed by comparison with results of earlier bulk calculations

  5. Multiconfigurational self-consistent reaction field theory for nonequilibrium solvation

    DEFF Research Database (Denmark)

    Mikkelsen, Kurt V.; Cesar, Amary; Ågren, Hans

    1995-01-01

    We present multiconfigurational self-consistent reaction field theory and implementation for solvent effects on a solute molecular system that is not in equilibrium with the outer solvent. The approach incorporates two different polarization vectors for studying the influence of the solvent....... The solute, an atom, a molecule or a supermolecule, is assumed to be surrounded by a linear, homogeneous medium described by two polarization vector fields, the optical polarization vector and the inertial polarization vector fields. The optical polarization vector is always in equilibrium with the actual...... states influenced by the two types of polarization vectors. The general treatment of the correlation problem through the use of complete and restricted active space methodologies makes the present multiconfigurational self-consistent reaction field approach general in that it can handle any type of state...

  6. Self-consistent T-matrix theory of superconductivity

    Czech Academy of Sciences Publication Activity Database

    Šopík, B.; Lipavský, Pavel; Männel, M.; Morawetz, K.; Matlock, P.

    2011-01-01

    Roč. 84, č. 9 (2011), 094529/1-094529/13 ISSN 1098-0121 R&D Projects: GA ČR GAP204/10/0212; GA ČR(CZ) GAP204/11/0015 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * T-matrix * superconducting gap * restricted self-consistency Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  7. Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations

    DEFF Research Database (Denmark)

    Norman, Patrick; Bishop, David M.; Jensen, Hans Jørgen Aa

    2001-01-01

    Computationally tractable expressions for the evaluation of the linear response function in the multiconfigurational self-consistent field approximation were derived and implemented. The finite lifetime of the electronically excited states was considered and the linear response function was shown...... to be convergent in the whole frequency region. This was achieved through the incorporation of phenomenological damping factors that lead to complex response function values....

  8. Self-consistent potential variations in magnetic wells

    International Nuclear Information System (INIS)

    Kesner, J.; Knorr, G.; Nicholson, D.R.

    1981-01-01

    Self-consistent electrostatic potential variations are considered in a spatial region of weak magnetic field, as in the proposed tandem mirror thermal barriers (with no trapped ions). For some conditions, equivalent to ion distributions with a sufficiently high net drift speed along the magnetic field, the desired potential depressions are found. When the net drift speed is not high enough, potential depressions are found only in combination with strong electric fields on the boundaries of the system. These potential depressions are not directly related to the magnetic field depression. (author)

  9. Multiconfigurational self-consistent reaction field theory for nonequilibrium solvation

    DEFF Research Database (Denmark)

    Mikkelsen, Kurt V.; Cesar, Amary; Ågren, Hans

    1995-01-01

    We present multiconfigurational self-consistent reaction field theory and implementation for solvent effects on a solute molecular system that is not in equilibrium with the outer solvent. The approach incorporates two different polarization vectors for studying the influence of the solvent......, open-shell, excited, and transition states. We demonstrate the theory by computing solvatochromatic shifts in optical/UV spectra of some small molecules and electron ionization and electron detachment energies of the benzene molecule. It is shown that the dependency of the solvent induced affinity...

  10. Mean-field theory and self-consistent dynamo modeling

    International Nuclear Information System (INIS)

    Yoshizawa, Akira; Yokoi, Nobumitsu

    2001-12-01

    Mean-field theory of dynamo is discussed with emphasis on the statistical formulation of turbulence effects on the magnetohydrodynamic equations and the construction of a self-consistent dynamo model. The dynamo mechanism is sought in the combination of the turbulent residual-helicity and cross-helicity effects. On the basis of this mechanism, discussions are made on the generation of planetary magnetic fields such as geomagnetic field and sunspots and on the occurrence of flow by magnetic fields in planetary and fusion phenomena. (author)

  11. A self-consistent theory of the magnetic polaron

    International Nuclear Information System (INIS)

    Marvakov, D.I.; Kuzemsky, A.L.; Vlahov, J.P.

    1984-10-01

    A finite temperature self-consistent theory of magnetic polaron in the s-f model of ferromagnetic semiconductors is developed. The calculations are based on the novel approach of the thermodynamic two-time Green function methods. This approach consists in the introduction of the ''irreducible'' Green functions (IGF) and derivation of the exact Dyson equation and exact self-energy operator. It is shown that IGF method gives a unified and natural approach for a calculation of the magnetic polaron states by taking explicitly into account the damping effects and finite lifetime. (author)

  12. Self-consistent calculation of 208Pb spectrum

    International Nuclear Information System (INIS)

    Pal'chik, V.V.; Pyatov, N.I.; Fayans, S.A.

    1981-01-01

    The self-consistent model with exact accounting for one-particle continuum is applied to calculate all discrete particle-hole natural parity states with 2 208 Pb nucleus (up to the neutron emission threshold, 7.4 MeV). Contributions to the energy-weighted sum rules S(EL) of the first collective levels and total contributions of all discrete levels are evaluated. Most strongly the collectivization is manifested for octupole states. With multipolarity growth L contributions of discrete levels are sharply reduced. The results are compared with other models and the experimental data obtained in (e, e'), (p, p') reactions and other data [ru

  13. A Self-consistent Model of the Solar Tachocline

    Science.gov (United States)

    Wood, T. S.; Brummell, N. H.

    2018-02-01

    We present a local but fully nonlinear model of the solar tachocline, using three-dimensional direct numerical simulations. The tachocline forms naturally as a statistically steady balance between Coriolis, pressure, buoyancy, and Lorentz forces beneath a turbulent convection zone. Uniform rotation is maintained in the radiation zone by a primordial magnetic field, which is confined by meridional flows in the tachocline and convection zone. Such balanced dynamics has previously been found in idealized laminar models, but never in fully self-consistent numerical simulations.

  14. Applicability of self-consistent mean-field theory

    International Nuclear Information System (INIS)

    Guo Lu; Sakata, Fumihiko; Zhao Enguang

    2005-01-01

    Within the constrained Hartree-Fock (CHF) theory, an analytic condition is derived to estimate whether a concept of the self-consistent mean field is realized in the level repulsive region. The derived condition states that an iterative calculation of the CHF equation does not converge when the quantum fluctuations coming from two-body residual interaction and quadrupole deformation become larger than a single-particle energy difference between two avoided crossing orbits. By means of numerical calculation, it is shown that the analytic condition works well for a realistic case

  15. Renormalisation of a self-consistent scheme in quantum field theories at finite temperature

    International Nuclear Information System (INIS)

    Reinosa, Urko

    2003-01-01

    In this thesis, we study the renormalisation of a self-consistent technique in quantum field theory at finite temperature. The so-called two-particle-irreducible scheme is useful to deal with strongly interacting quantum systems where the fluctuations are however soft enough to distribute the main interactions among quasiparticle degrees of freedom. Numerous non-relativistic systems follow this quasiparticle picture but also relativistic ones such as the quark gluon plasma (high temperature phase of Quantum Chromodynamics). The success of such techniques stems essentially from the fact that these are non-perturbative methods. This is however the source of a certain number of difficulties in particular in the framework of quantum field theories since ultraviolet divergences have to be eliminated in a non-perturbative context. This thesis shows how to proceed with the renormalisation of this scheme in the case of a scalar theory with φ 4 interaction, at finite temperature. We also discuss the independence of the counterterms with respect to temperature, which is a crucial question when defining trustworthy physical quantities. (author) [fr

  16. Fully self-consistent GW calculations for molecules

    DEFF Research Database (Denmark)

    Rostgaard, Carsten; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2010-01-01

    We calculate single-particle excitation energies for a series of 34 molecules using fully self-consistent GW, one-shot G0W0, Hartree-Fock (HF), and hybrid density-functional theory (DFT). All calculations are performed within the projector-augmented wave method using a basis set of Wannier...... functions augmented by numerical atomic orbitals. The GW self-energy is calculated on the real frequency axis including its full frequency dependence and off-diagonal matrix elements. The mean absolute error of the ionization potential (IP) with respect to experiment is found to be 4.4, 2.6, 0.8, 0.4, and 0.......5 eV for DFT-PBE, DFT-PBE0, HF, G0W0[HF], and self-consistent GW, respectively. This shows that although electronic screening is weak in molecular systems, its inclusion at the GW level reduces the error in the IP by up to 50% relative to unscreened HF. In general GW overscreens the HF energies...

  17. Self-consistent viscous heating of rapidly compressed turbulence

    Science.gov (United States)

    Campos, Alejandro; Morgan, Brandon

    2017-11-01

    Given turbulence subjected to infinitely rapid deformations, linear terms representing interactions between the mean flow and the turbulence dictate the evolution of the flow, whereas non-linear terms corresponding to turbulence-turbulence interactions are safely ignored. For rapidly deformed flows where the turbulence Reynolds number is not sufficiently large, viscous effects can't be neglected and tend to play a prominent role, as shown in the study of Davidovits & Fisch (2016). For such a case, the rapid increase of viscosity in a plasma-as compared to the weaker scaling of viscosity in a fluid-leads to the sudden viscous dissipation of turbulent kinetic energy. As shown in Davidovits & Fisch, increases in temperature caused by the direct compression of the plasma drive sufficiently large values of viscosity. We report on numerical simulations of turbulence where the increase in temperature is the result of both the direct compression (an inviscid mechanism) and the self-consistent viscous transfer of energy from the turbulent scales towards the thermal energy. A comparison between implicit large-eddy simulations against well-resolved direct numerical simulations is included to asses the effect of the numerical and subgrid-scale dissipation on the self-consistent viscous This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Calculation of delayed-neutron energy spectra in a QRPA-Hauser-Feshbach model

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Los Alamos National Laboratory; Moller, Peter [Los Alamos National Laboratory; Wilson, William B [Los Alamos National Laboratory

    2008-01-01

    Theoretical {beta}-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after {beta} decay to the granddaughter residual are more accurately calculated than in previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra agree reasonably well with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors.

  19. Self-Consistent Green Function Method in Nuclear Matter

    Directory of Open Access Journals (Sweden)

    Khaled S. A. Hassaneen

    2013-01-01

    Full Text Available Symmetric nuclear matter is studied within the Brueckner-Hartree-Fock (BHF approach and is extending to the self-consistent Green’s function (SCGF approach. Both approximations are based on realistic nucleon-nucleon interaction; that is, CD-Bonn potential is chosen. The single-particle energy and the equation of state (EOS are studied. The Fermi energy at the saturation point fulfills the Hugenholtz-Van Hove theorem. In comparison to the BHF approach, the binding energy is reduced and the EOS is stiffer. Both the SCGF and BHF approaches do not reproduce the correct saturation point. A simple contact interaction should be added to SCGF and BHF approaches to reproduce the empirical saturation point.

  20. Self-Consistent Dynamical Model of the Broad Line Region

    International Nuclear Information System (INIS)

    Czerny, Bozena; Li, Yan-Rong; Sredzinska, Justyna; Hryniewicz, Krzysztof; Panda, Swayam; Wildy, Conor; Karas, Vladimir

    2017-01-01

    We develop a self-consistent description of the Broad Line Region based on the concept of a failed wind powered by radiation pressure acting on a dusty accretion disk atmosphere in Keplerian motion. The material raised high above the disk is illuminated, dust evaporates, and the matter falls back toward the disk. This material is the source of emission lines. The model predicts the inner and outer radius of the region, the cloud dynamics under the dust radiation pressure and, subsequently, the gravitational field of the central black hole, which results in asymmetry between the rise and fall. Knowledge of the dynamics allows us to predict the shapes of the emission lines as functions of the basic parameters of an active nucleus: black hole mass, accretion rate, black hole spin (or accretion efficiency) and the viewing angle with respect to the symmetry axis. Here we show preliminary results based on analytical approximations to the cloud motion.

  1. Self-consistent modeling of amorphous silicon devices

    International Nuclear Information System (INIS)

    Hack, M.

    1987-01-01

    The authors developed a computer model to describe the steady-state behaviour of a range of amorphous silicon devices. It is based on the complete set of transport equations and takes into account the important role played by the continuous distribution of localized states in the mobility gap of amorphous silicon. Using one set of parameters they have been able to self-consistently simulate the current-voltage characteristics of p-i-n (or n-i-p) solar cells under illumination, the dark behaviour of field-effect transistors, p-i-n diodes and n-i-n diodes in both the ohmic and space charge limited regimes. This model also describes the steady-state photoconductivity of amorphous silicon, in particular, its dependence on temperature, doping and illumination intensity

  2. Self-consistent Langmuir waves in resonantly driven thermal plasmas

    International Nuclear Information System (INIS)

    Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.

    2007-01-01

    The longitudinal dynamics of a resonantly driven Langmuir wave are analyzed in the limit that the growth of the electrostatic wave is slow compared to the bounce frequency. Using simple physical arguments, the nonlinear distribution function is shown to be nearly invariant in the canonical particle action, provided both a spatially uniform term and higher-order spatial harmonics are included along with the fundamental in the longitudinal electric field. Requirements of self-consistency with the electrostatic potential yield the basic properties of the nonlinear distribution function, including a frequency shift that agrees closely with driven, electrostatic particle simulations over a range of temperatures. This extends earlier work on nonlinear Langmuir waves by Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] and Dewar [R. L. Dewar, Phys. Plasmas 15, 712 (1972)], and could form the basis of a reduced kinetic treatment of plasma dynamics for accelerator applications or Raman backscatter

  3. Self-consistent simulation of the CSR effect

    International Nuclear Information System (INIS)

    Li, R.; Bohn, C.L.; Bisogano, J.J.

    1998-01-01

    When a microbunch with high charge traverses a curved trajectory, the curvature-induced bunch self-interaction, by way of coherent synchrotron radiation (CSR) and space-charge forces, may cause serious emittance degradation. In this paper, the authors present a self-consistent simulation for the study of the impact of CSR on beam optics. The dynamics of the bunch under the influence of the CSR forces is simulated using macroparticles, where the CSR force in turn depends on the history of bunch dynamics in accordance with causality. The simulation is benchmarked with analytical results obtained for a rigid-line bunch. Here they present the algorithm used in the simulation, along with the simulation results obtained for bending systems in the Jefferson Lab (JLab) free-electron-laser (FEL) lattice

  4. A self-consistent spin-diffusion model for micromagnetics

    KAUST Repository

    Abert, Claas

    2016-12-17

    We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.

  5. Self-Consistent Dynamical Model of the Broad Line Region

    Energy Technology Data Exchange (ETDEWEB)

    Czerny, Bozena [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland); Li, Yan-Rong [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Sredzinska, Justyna; Hryniewicz, Krzysztof [Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw (Poland); Panda, Swayam [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland); Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw (Poland); Wildy, Conor [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland); Karas, Vladimir, E-mail: bcz@cft.edu.pl [Astronomical Institute, Czech Academy of Sciences, Prague (Czech Republic)

    2017-06-22

    We develop a self-consistent description of the Broad Line Region based on the concept of a failed wind powered by radiation pressure acting on a dusty accretion disk atmosphere in Keplerian motion. The material raised high above the disk is illuminated, dust evaporates, and the matter falls back toward the disk. This material is the source of emission lines. The model predicts the inner and outer radius of the region, the cloud dynamics under the dust radiation pressure and, subsequently, the gravitational field of the central black hole, which results in asymmetry between the rise and fall. Knowledge of the dynamics allows us to predict the shapes of the emission lines as functions of the basic parameters of an active nucleus: black hole mass, accretion rate, black hole spin (or accretion efficiency) and the viewing angle with respect to the symmetry axis. Here we show preliminary results based on analytical approximations to the cloud motion.

  6. A new mixed self-consistent field procedure

    Science.gov (United States)

    Alvarez-Ibarra, A.; Köster, A. M.

    2015-10-01

    A new approach for the calculation of three-centre electronic repulsion integrals (ERIs) is developed, implemented and benchmarked in the framework of auxiliary density functional theory (ADFT). The so-called mixed self-consistent field (mixed SCF) divides the computationally costly ERIs in two sets: far-field and near-field. Far-field ERIs are calculated using the newly developed double asymptotic expansion as in the direct SCF scheme. Near-field ERIs are calculated only once prior to the SCF procedure and stored in memory, as in the conventional SCF scheme. Hence the name, mixed SCF. The implementation is particularly powerful when used in parallel architectures, since all RAM available are used for near-field ERI storage. In addition, the efficient distribution algorithm performs minimal intercommunication operations between processors, avoiding a potential bottleneck. One-, two- and three-dimensional systems are used for benchmarking, showing substantial time reduction in the ERI calculation for all of them. A Born-Oppenheimer molecular dynamics calculation for the Na+55 cluster is also shown in order to demonstrate the speed-up for small systems achievable with the mixed SCF. Dedicated to Sourav Pal on the occasion of his 60th birthday.

  7. First principles molecular dynamics without self-consistent field optimization

    International Nuclear Information System (INIS)

    Souvatzis, Petros; Niklasson, Anders M. N.

    2014-01-01

    We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations

  8. Self-consistent estimates of magnetic fields from reheating

    International Nuclear Information System (INIS)

    Calzetta, Esteban; Kandus, Alejandra

    2002-01-01

    We investigate the generation of primordial magnetic fields from stochastic currents created by the cosmological transition from inflation to reheating. We consider N charged scalar fields coupled to the electromagnetic field in a curved background and derive self-consistent equations for the evolution of the two point functions of the fields, which in the large-N limit give a decoupled set for the scalar and the electromagnetic functions. The main contribution to the electric current comes from the infrared portion of the spectrum of created particles, and in this limit the damping of the magnetic field is not due to normal conductivity but to London currents in the scalar field. For a given set of the physical parameters of the problem, we solved this equation numerically and found that, due to the fact that the London currents are oscillating, the field actually grows exponentially during the time interval in which our large-N limit equations are valid. Although for the chosen parameters the induced field is weak, the present uncertainties on their actual values leave open the possibility for higher intensities

  9. Relativistic effects in the Thomas--Fermi atom

    International Nuclear Information System (INIS)

    Waber, J.T.; Canfield, J.M.

    1975-01-01

    Two methods of applying relativistic corrections to the Thomas--Fermi atom are considered, and numerical calculations are discussed. Radial charge distributions calculated from a relativistic Thomas--Fermi equation agree in gross form with those from more complicated self-consistent calculations. Energy eigenvalues for mercury, as determined from the relativistic Thomas--Fermi solution, are compared with other calculated and experimental values

  10. Multielectron transitions following heavy ion excitation: a comparison of self-consistent field calculations with experiment

    International Nuclear Information System (INIS)

    Hodge, W.L. Jr.

    1976-01-01

    A multielectron transition is an atomic transition in which two or three electrons change their states and a single photon is emitted. Although the mechanism was postulated in the thirties and observed in optical spectra, little research has been done since then. Experiments using heavy ion accelerators have measured satellite lines lower in energy than the Kα 12 energy and higher in energy than the Kβ satellite structure. These transitions are multielectron transitions. Experimental spectra of x-ray transitions induced by heavy ion bombardment are presented, and the experimental energies are compared to Hartree-Fock transition energies. The transitions observed lower in energy than the Kα line are two electron--one photon radiative Auger and three electron--one photon radiative electron rearrangement transitions. Experimental data taken at other laboratories have measured satellite lines higher in energy than the Kβ satellite structure. Relativistic Dirac-Fock transition energies will be compared to the experimental energies and the transitions will be shown to be two electron--one photon x-ray transitions. Heavy ion bombardment creates multiple inner shell vacancies so numerous that the satellite lines can be more intense than the diagram lines. Theoretical transition energies from five different self-consistent field atomic physics computer programs will be compared to the Kα satellite and Kα hypersatellite transitions of calcium. Transition energies from Declaux's relativistic Dirac-Fock program will be compared to the diagram lines of uranium and to other theoretical K x-ray transition energies of Z = 120. A discussion of how to calculate the term energies of a given configuration using the Slater F and G integrals is included

  11. Self-consistent Modeling of Elastic Anisotropy in Shale

    Science.gov (United States)

    Kanitpanyacharoen, W.; Wenk, H.; Matthies, S.; Vasin, R.

    2012-12-01

    Elastic anisotropy in clay-rich sedimentary rocks has increasingly received attention because of significance for prospecting of petroleum deposits, as well as seals in the context of nuclear waste and CO2 sequestration. The orientation of component minerals and pores/fractures is a critical factor that influences elastic anisotropy. In this study, we investigate lattice and shape preferred orientation (LPO and SPO) of three shales from the North Sea in UK, the Qusaiba Formation in Saudi Arabia, and the Officer Basin in Australia (referred to as N1, Qu3, and L1905, respectively) to calculate elastic properties and compare them with experimental results. Synchrotron hard X-ray diffraction and microtomography experiments were performed to quantify LPO, weight proportions, and three-dimensional SPO of constituent minerals and pores. Our preliminary results show that the degree of LPO and total amount of clays are highest in Qu3 (3.3-6.5 m.r.d and 74vol%), moderately high in N1 (2.4-5.6 m.r.d. and 70vol%), and lowest in L1905 (2.3-2.5 m.r.d. and 42vol%). In addition, porosity in Qu3 is as low as 2% while it is up to 6% in L1605 and 8% in N1, respectively. Based on this information and single crystal elastic properties of mineral components, we apply a self-consistent averaging method to calculate macroscopic elastic properties and corresponding seismic velocities for different shales. The elastic model is then compared with measured acoustic velocities on the same samples. The P-wave velocities measured from Qu3 (4.1-5.3 km/s, 26.3%Ani.) are faster than those obtained from L1905 (3.9-4.7 km/s, 18.6%Ani.) and N1 (3.6-4.3 km/s, 17.7%Ani.). By making adjustments for pore structure (aspect ratio) and single crystal elastic properties of clay minerals, a good agreement between our calculation and the ultrasonic measurement is obtained.

  12. One-hundred-three compound band-structure benchmark of post-self-consistent spin-orbit coupling treatments in density functional theory

    Science.gov (United States)

    Huhn, William P.; Blum, Volker

    2017-08-01

    We quantify the accuracy of different non-self-consistent and self-consistent spin-orbit coupling (SOC) treatments in Kohn-Sham and hybrid density functional theory by providing a band-structure benchmark set for the valence and low-lying conduction energy bands of 103 inorganic compounds, covering chemical elements up to polonium. Reference energy band structures for the PBE density functional are obtained using the full-potential (linearized) augmented plane wave code wien2k, employing its self-consistent treatment of SOC including Dirac-type p1 /2 orbitals in the basis set. We use this benchmark set to benchmark a computationally simpler, non-self-consistent all-electron treatment of SOC based on scalar-relativistic orbitals and numeric atom-centered orbital basis functions. For elements up to Z ≈50 , both treatments agree virtually exactly. For the heaviest elements considered (Tl, Pb, Bi, Po), the band-structure changes due to SOC are captured with a relative deviation of 11% or less. For different density functionals (PBE versus the hybrid HSE06), we show that the effect of spin-orbit coupling is usually similar but can be dissimilar if the qualitative features of the predicted underlying scalar-relativistic band structures do not agree. All band structures considered in this work are available online via the NOMAD repository to aid in future benchmark studies and methods development.

  13. Flow harmonics from self-consistent particlization of a viscous fluid

    Science.gov (United States)

    Wolff, Zack; Molnar, Denes

    2017-10-01

    The quantitative extraction of quark-gluon plasma (QGP) properties from heavy-ion data, such as its specific shear viscosity η /s , typically requires comparison to viscous hydrodynamic or "hybrid" hydrodynamics + transport simulations. In either case, one has to convert the fluid to hadrons, yet without additional theory input the conversion is ambiguous for dissipative fluids. Here, shear viscous phase-space corrections calculated using linearized transport theory are applied in Cooper-Frye freeze-out to quantify the effects on anisotropic flow coefficients vn(pT) at the energies available at both the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider. Expanding upon our previous flow harmonics studies [D. Molnar and Z. Wolff, Phys. Rev. C 95, 024903 (2017), 10.1103/PhysRevC.95.024903; Z. Wolff and D. Molnar, J. Phys.: Conf. Ser. 535, 012020 (2014), 10.1088/1742-6596/535/1/012020], we calculate pion and proton v2(pT) , v4(pT) , and v6(pT) , but here we incorporate a hadron gas that is chemically frozen below a temperature of 175 MeV and use hypersurfaces from realistic viscous hydrodynamic simulations. For additive quark model cross sections and relative phase-space corrections with p3 /2 momentum dependence rather than the quadratic Grad form, we find at moderately high transverse momentum noticeably higher v4(pT) and v6(pT) for protons than for pions. In addition, the value of η /s deduced from elliptic flow data differs by nearly 50% from the value extracted using the naive "democratic Grad" form of freeze-out distributions. To facilitate the use of the self-consistent viscous corrections calculated here in hydrodynamic and hybrid calculations, we also present convenient parametrizations of the corrections for the various hadron species.

  14. Self-consistent Pauli corrections in Brueckner-Hartree-Fock calculations

    Science.gov (United States)

    Braley, R. C.; Ford, W. F.

    1972-01-01

    A scheme is introduced which makes it feasible to make completely self-consistent Brueckner-Hartree-Fock (BHF) and renormalized BHF calculations for spherical, closed-shell and axially-symmetric deformed nuclei. The usual requirement or orbital self-consistency has been imposed, as well as self-consistency in the starting energies and occupation probabilities. Previously, only approximate forms were used for the Pauli operator. This approximation is removed and a method for making the necessary Pauli corrections to the reaction matrix during the approach to self-consistency is presented. A discussion of the symmetries which reduce the problem to one of manageable proportions is included.

  15. Relativistic fluid formulation and theory of intense relativistic electron beams

    International Nuclear Information System (INIS)

    Siambis, J.G.

    1984-01-01

    A new general relativistic fluid formulation has been obtained for intense relativistic electron beams (IREB) with arbitrarily high relativistic mass factor γ. This theory is valid for confined IREB equilibria such as those found inside high energy accelerators as well as in the pinched and ion-focused regimes of beam propagation in plasma channels. The new relativistic fluid formulation is based on the covariant relativistic fluid formulation of Newcomb with the parameter lambda identical to 1, in order to allow for realistic confined equilibria. The resulting equilibrium constraints require that the beam has a slow rotational velocity around its direction of propagation and that the off-diagonal thermal stress element, associated with these two directions of motion, be nonzero. The effective betatron oscillation frequency of the fluid elements of the beam is modified by the radial gradient and anisotropies in the thermal stress elements of the beam fluid. The wave equation, for sausage, hose and filamentation excitations on the relativistic fluid beam, is found to be formally identical to that obtained from the Vlasov equation approach, hence phase-mixing damping is a generic and self-consistent correlate of the new relativistic fluid formulation

  16. Conservation laws for a super G-J hierarchy with self-consistent sources

    Science.gov (United States)

    Wang, Hui; Xia, Tie-cheng

    2012-02-01

    Based on a well known super Lie algebra, a super integrable system is presented. Then, the super G-J hierarchy with self-consistent sources are obtained. Furthermore, we establish the infinitely many conservation laws for the integrable super G-J hierarchy. The methods derived by us can be generalized to other nonlinear equations hierarchies with self-consistent sources.

  17. A self-consistent semiclassical sum rule approach to the average properties of giant resonances

    International Nuclear Information System (INIS)

    Li Guoqiang; Xu Gongou

    1990-01-01

    The average energies of isovector giant resonances and the widths of isoscalar giant resonances are evaluated with the help of a self-consistent semiclassical Sum rule approach. The comparison of the present results with the experimental ones justifies the self-consistent semiclassical sum rule approach to the average properties of giant resonances

  18. Self-consistent tight-binding model of B and N doping in graphene

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Pedersen, Jesper Goor

    2013-01-01

    . The impurity potential depends sensitively on the impurity occupancy, leading to a self-consistency requirement. We solve this problem using the impurity Green's function and determine the self-consistent local density of states at the impurity site and, thereby, identify acceptor and donor energy resonances.......Boron and nitrogen substitutional impurities in graphene are analyzed using a self-consistent tight-binding approach. An analytical result for the impurity Green's function is derived taking broken electron-hole symmetry into account and validated by comparison to numerical diagonalization...

  19. KdV Equation with Self-consistent Sources in Non-uniform Media

    International Nuclear Information System (INIS)

    Hao Honghai; Zhang Dajun; Wang Guangsheng

    2009-01-01

    Two non-isospectral KdV equations with self-consistent sources are derived. Gauge transformation between the first non-isospectral KdV equation with self-consistent sources (corresponding to λ t = -2aλ) and its isospectral counterpart is given, from which exact solutions for the first non-isospectral KdV equation with self-consistent sources is easily listed. Besides, the soliton solutions for the two equations are obtained by means of Hirota's method and Wronskian technique, respectively. Meanwhile, the dynamical properties for these solutions are investigated. (general)

  20. Holographic Aspects of a Relativistic Nonconformal Theory

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2013-01-01

    Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.

  1. Self-consistent solution of the Schwinger-Dyson equations for the nucleon and meson propagators

    International Nuclear Information System (INIS)

    Bracco, M.S.; Eiras, A.

    1995-01-01

    The Schwinger-Dyson equations for the nucleon and meson propagators are solved self-consistently in an approximation that goes beyond the Hartree-Fock approximation. The traditional approach consists in solving the nucleon Schwinger-Dyson equation with bare meson propagators and bare meson-nucleon vertices; the corrections to the meson propagators are calculated using the bare nucleon propagator and bare nucleon-meson vertices. It is known that such an approximation scheme produces Schwinger-Dyson equations for the nucleon and the meson propagators are solved self-consistently including vertex corrections. The interplay of self-consistency and vertex corrections on the ghosts problem are investigated. It is found that the self-consistency does not affect significantly the spectral properties of the propagators. (author)

  2. Self-consistent solution of the Schwinger-Dyson equation for the nucleon and meson propagators

    International Nuclear Information System (INIS)

    Bracco, M.E.; Eiras, A.; Krein, G.; Wilets, L.

    1995-01-01

    The Schwinger-Dyson equations for the nucleon and meson propagators are solved self-consistently in an approximation that goes beyond the Hartree-Fock approximation. The traditional approach consists in solving the nucleon Schwinger-Dyson equation with bare meson propagators and bare meson-nucleon vertices; the corrections to the meson propagators are calculated using the bare nucleon propagator and bare nucleon-meson vertices. It is known that such an approximation sc heme produces the appearance of ghost poles in the propagators. In this paper the coupled system of Schwinger-Dyson equations for the nucleon and the meson propagators are solved self-consistently including vertex corrections. The interplay of self-consistency and vertex corrections on the ghosts problem is investigated. It is found that the self-consistency does not affect significantly the spectral properties of the propagators. In particular, it does not affect the appearance of the ghost poles in the propagators. (author)

  3. The iterative self-consistent reaction-field method: The refractive index of pure water

    DEFF Research Database (Denmark)

    Sylvester-Hvid, Kristian O.; Mikkelsen, K. V.; Ratner, M.A.

    2011-01-01

    We present different microscopic models for describing electromagnetic properties of condensed phases and the models involve iterative self-consistent procedures for calculating the properties. We report calculations of the frequency-dependent refractive index of pure water. We investigate...

  4. Self-consistent approach to the eletronic problem in disordered solids

    International Nuclear Information System (INIS)

    Taguena-Martinez, J.; Barrio, R.A.; Martinez, E.; Yndurain, F.

    1984-01-01

    It is developed a simple formalism which allows us to perform a self consistent non-parametrized calculation in a non-periodic system, by finding out the thermodynamically averaged Green's function of a cluster Bethe lattice system. (Author) [pt

  5. Development of a Kohn-Sham like potential in the Self-Consistent Atomic Deformation Model

    OpenAIRE

    Mehl, M. J.; Boyer, L. L.; Stokes, H. T.

    1996-01-01

    This is a brief description of how to derive the local ``atomic'' potentials from the Self-Consistent Atomic Deformation (SCAD) model density function. Particular attention is paid to the spherically averaged case.

  6. Self-consistent theory of a harmonic gyroklystron with a minimum Q cavity

    International Nuclear Information System (INIS)

    Tran, T.M.; Kreischer, K.E.; Temkin, R.J.

    1986-01-01

    In this paper, the energy extraction stage of the gyroklystron [in Advances in Electronics and Electron Physics, edited by C. Marton (Academic, New York, 1979), Vol. 1, pp. 1--54], with a minimum Q cavity is investigated by using a self-consistent radio-frequency (rf) field model. In the low-field, low-current limit, expressions for the self-consistent field and the resulting energy extraction efficiency are derived analytically for an arbitrary cyclotron harmonic number. To our knowledge, these are the first analytic results for the self-consistent field structure and efficiency of a gyrotron device. The large signal regime analysis is carried out by numerically integrating the coupled self-consistent equations. Several examples in this regime are presented

  7. Remembering and telling self-consistent and self-discrepant memories.

    Science.gov (United States)

    Mutlutürk, Aysu; Tekcan, Ali I

    2016-01-01

    It has been argued that memories that are inconsistent with one's self would differ from those that are consistent with the self. The present study addresses retrieval, phenomenology, rehearsal and narrative characteristics of autobiographical memories that are consistent versus discrepant with one's self. One hundred participants were asked to recall one self-consistent and one self-discrepant memory as well as an episode of telling these memories to others. They also filled out the Autobiographical Memory Questionnaire and the Centrality of Event Scale for each memory. Results showed no difference between self-consistent and self-discrepant memories in retrieval time, specificity or phenomenology. However, self-discrepant memory narratives contained more meaning-making statements and less autonomy than self-consistent memories. Compared to self-consistent memories, self-discrepant memories were told to fewer people, and listener responses were more negative when they were told. Results are discussed in relation to the functions these memories serve.

  8. Relativistic description of deformed nuclei

    International Nuclear Information System (INIS)

    Price, C.E.

    1988-01-01

    The author has shown that relativistic Hartree calculations using parameters that have been fit to the properties of nuclear matter can provide a good description of both spherical and axially deformed nuclei. The quantitative agreement with experiment is equivalent to that which was obtained in non-relativistic calculations using Skyrme interactions. The equilibrium deformation is strongly correlated with the size of the spin-orbit splitting, and that parameter sets which give roughly the correct value for this splitting provide the best agreement with the quadrupole moments in the s-d shell. Finally, for closed shell +/- 1 nuclei, it was shown that the self-consistent calculations are able to reproduce the experimental magnetic moments. This was not possible in relativistic calculations which include only the effects of the valence orbital

  9. Renormalization of self-consistent approximation schemes at finite temperature II: applications to the sunset diagram

    International Nuclear Information System (INIS)

    Hees, H. van; Knoll, J.

    2001-01-01

    The theoretical concepts for the renormalization of self-consistent Dyson resummations, deviced in the first paper of this series, are applied to first example cases for the φ 4 -theory. Besides the tadpole (Hartree) approximation as a novel part the numerical solutions are presented which includes the sunset self-energy diagram into the self-consistent scheme based on the Φ-derivable approximation or 2PI effective action concept. (orig.)

  10. The self-consistent field method in the study of many-body problems

    International Nuclear Information System (INIS)

    Campos, V.B.F. de.

    1976-01-01

    Properties of many-body systems in special quantum liquids (T=O 0 K), utilizing the self-consistent field method (SCFM) are calculated. The SCFM is applied to quantum systems compounds by neutral and charged (electrons) particles, studying the generalized susceptibility of the system. Thus, properties as the structure factor, pair correlation function, excitation energy spectra, sound velocity, etc are obtained self-consistently (L.C.) [pt

  11. Renormalization of self-consistent approximation schemes at finite temperature. II. Applications to the sunset diagram

    International Nuclear Information System (INIS)

    Hees, Hendrik van; Knoll, Joern

    2002-01-01

    The theoretical concepts for the renormalization of self-consistent Dyson resummations, devised in the first paper of this series, are applied to first example cases of φ 4 theory. In addition to the tadpole (Hartree) approximation, as a novel part the numerical solutions are presented, which include the sunset self-energy diagram into the self-consistent scheme based on the Φ-derivable approximation or the two-particle irreducible effective action concept

  12. Mean fields and self consistent normal ordering of lattice spin and gauge field theories

    International Nuclear Information System (INIS)

    Ruehl, W.

    1986-01-01

    Classical Heisenberg spin models on lattices possess mean field theories that are well defined real field theories on finite lattices. These mean field theories can be self consistently normal ordered. This leads to a considerable improvement over standard mean field theory. This concept is carried over to lattice gauge theories. We construct first an appropriate real mean field theory. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean field theory are derived. (orig.)

  13. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  14. Doubly self-consistent field theory of grafted polymers under simple shear in steady state.

    Science.gov (United States)

    Suo, Tongchuan; Whitmore, Mark D

    2014-03-21

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkman equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.

  15. Doubly self-consistent field theory of grafted polymers under simple shear in steady state

    International Nuclear Information System (INIS)

    Suo, Tongchuan; Whitmore, Mark D.

    2014-01-01

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkman equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities

  16. The influence of thermodynamic self-consistency on the phase behaviour of symmetric binary mixtures

    CERN Document Server

    Scholl-Paschinger, E; Kahl, G

    2004-01-01

    We have investigated the phase behaviour of a symmetric binary mixture with particles interacting via hard-core Yukawa potentials. To calculate the thermodynamic properties we have used the mean spherical approximation (MSA), a conventional liquid state theory, and the closely related self-consistent Ornstein-Zernike approximation which is defined via an MSA-type closure relation, requiring, in addition, thermodynamic self-consistency between the compressibility and the energy-route. We investigate on a quantitative level the effect of the self-consistency requirement on the phase diagram and on the critical behaviour and confirm the existence of three archetypes of phase diagram, which originate from the competition between the first order liquid/vapour transition and the second order demixing transition.

  17. Characterisation of gunshot residue particles using self-consistent ion beam analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, M.J. [University of Surrey Ion Beam Centre, Guildford, GU2 7XH (United Kingdom)], E-mail: m.bailey@surrey.ac.uk; Jeynes, C. [University of Surrey Ion Beam Centre, Guildford, GU2 7XH (United Kingdom)

    2009-06-15

    Individual particles of gunshot residue were studied with particle-induced X-ray emission and backscattering spectrometry using a 2.5 MeV H{sup +} beam focussed to {approx}4 {mu}m and self-consistent fitting of the data. The geometry of these spherical particles was considered in order to accurately fit the corresponding particle spectrum and therefore to quantify the trace element composition of these particles. The demonstrable self-consistency of this method allows the compositions of most residue particles to be determined unambiguously and with a higher sensitivity to trace elements than conventional methods.

  18. A self-consistent theory of radial transport of field-aligned current by microturbulence

    International Nuclear Information System (INIS)

    Terry, P.W.

    1990-02-01

    The radial transport of field-aligned current due to collisionless microturbulence is examined self-consistently. The self-consistent treatment of mode coupling shown to constrain the transport in such a way that the relaxation of current gradients is regulated solely by electrostatic fluctuations which couple to ion dissipation, even in the presence of temperature gradients and temperature anisotropy. As a consequence, the radial flux of parallel current induced by collisionless microinstabilities is insufficient to account for the dynamo in reversed field pinch plasmas. 26 refs

  19. Self-consistent descriptions of vector mesons in hot matter reexamined

    International Nuclear Information System (INIS)

    Riek, Felix; Knoll, Joern

    2010-01-01

    Technical concepts are presented that improve the self-consistent treatment of vector mesons in a hot and dense medium. First applications concern an interacting gas of pions and ρ mesons. As an extension of earlier studies, we thereby include random-phase-approximation-type vertex corrections and further use dispersion relations to calculate the real part of the vector-meson self-energy. An improved projection method preserves the four transversality of the vector-meson polarization tensor throughout the self-consistent calculations, thereby keeping the scheme void of kinematical singularities.

  20. The self-consistent calculation of the edge states in bilayer quantum Hall bar

    International Nuclear Information System (INIS)

    Kavruk, A E; Orzturk, T; Orzturk, A; Atav, U; Yuksel, H

    2011-01-01

    In this study, we present the spatial distributions of the edge channels for each layer in bilayer quantum Hall bar geometry for a wide range of applied magnetic fields. For this purpose, we employ a self-consistent Thomas-Fermi-Poisson approach to obtain the electron density distributions and related screened potential distributions. In order to have a more realistic description of the system we solve three dimensional Poisson equation numerically in each iteration step to obtain self consistency in the Thomas-Fermi-Poisson approach instead of employing a 'frozen gate' approximation.

  1. Self-consistent study of local and nonlocal magnetoresistance in a YIG/Pt bilayer

    Science.gov (United States)

    Wang, Xi-guang; Zhou, Zhen-wei; Nie, Yao-zhuang; Xia, Qing-lin; Guo, Guang-hua

    2018-03-01

    We present a self-consistent study of the local spin Hall magnetoresistance (SMR) and nonlocal magnon-mediated magnetoresistance (MMR) in a heavy-metal/magnetic-insulator heterostructure at finite temperature. We find that the thermal fluctuation of magnetization significantly affects the SMR. It appears unidirectional with respect to the direction of electrical current (or magnetization). The unidirectionality of SMR originates from the asymmetry of creation or annihilation of thermal magnons induced by the spin Hall torque. Also, a self-consistent model can well describe the features of MMR.

  2. Self-consistent Green’s-function technique for surfaces and interfaces

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1991-01-01

    We have implemented an efficient self-consistent Green’s-function technique for calculating ground-state properties of surfaces and interfaces, based on the linear-muffin-tin-orbitals method within the tight-binding representation. In this approach the interlayer interaction is extremely short...... ranged, and only a few layers close to the interface need be treated self-consistently via a Dyson equation. For semi-infinite jellium, the technique gives work functions and surface energies that are in excellent agreement with earlier calculations. For the bcc(110) surface of the alkali metals, we find...

  3. Conservation laws and self-consistent sources for a super-CKdV equation hierarchy

    Science.gov (United States)

    Li, Li

    2011-03-01

    From the super-matrix Lie algebras, we consider a super-extension of the CKdV equation hierarchy in the present Letter, and propose the super-CKdV hierarchy with self-consistent sources. Furthermore, we establish the infinitely many conservation laws for the integrable super-CKdV hierarchy.

  4. Self-consistent field modeling of linear non-ionic micelles

    NARCIS (Netherlands)

    Jodar-Reyes, A.B.; Leermakers, F.A.M.

    2006-01-01

    A self-consistent field theory is used to predict structural, mechanical, and thermodynamical properties of linear micelles of selected nonionic surfactants of the type CnEm. Upon increase in surfactant concentration the sudden micelle shape transition from spherical to cylindrical (second critical

  5. Bending rigidities of surfactant bilayers using self-consistent field theory

    NARCIS (Netherlands)

    Leermakers, F.A.M.

    2013-01-01

    Self-consistent field (SCF) theory is used to find bending moduli of surfactant and lipid bilayers. Recently, we successfully applied low-memory search methods to solve the SCF equations. Using these we are now able to directly evaluate the Gaussian bending modulus for molecularly detailed models of

  6. Example of a self-consistent solution for a fermion on domain wall

    International Nuclear Information System (INIS)

    Gani, V. A.; Ksenzov, V. G.; Kudryavtsev, A. E.

    2010-01-01

    A self-consistent solution for a fermion coupled to static scalar field in the form of a kink (domain wall) is discussed. In particular, the case when the fermion occupies an excited nonzero frequency level in the presence of the domain-wall field is studied. The effect of the domain-wall profile distortion is calculated analytically.

  7. Renormalization of self-consistent Schwinger-Dyson equations at finite temperature

    International Nuclear Information System (INIS)

    Hees, H. van; Knoll, J.

    2002-01-01

    We show that Dyson resummation schemes based on Baym's Φ-derivable approximations can be renormalized with counter term structures solely defined on the vacuum level. First applications to the self-consistent solution of the sunset self-energy in φ 4 -theory are presented. (orig.)

  8. Total energy calculation of perovskite, BaTiO3, by self-consistent ...

    Indian Academy of Sciences (India)

    We present results of numerical computation on some characteristics of BaTiO3 such as total energy, lattice constant, density of states, band structure etc using self-consistent tight binding method. Besides strong Ti–O bond between 3 on titanium and 2 orbital on oxygen states, we also include weak hybridization ...

  9. Self-consistent embedding of density-matrix renormalization group wavefunctions in a density functional environment.

    Science.gov (United States)

    Dresselhaus, Thomas; Neugebauer, Johannes; Knecht, Stefan; Keller, Sebastian; Ma, Yingjin; Reiher, Markus

    2015-01-28

    We present the first implementation of a density matrix renormalization group algorithm embedded in an environment described by density functional theory. The frozen density embedding scheme is used with a freeze-and-thaw strategy for a self-consistent polarization of the orbital-optimized wavefunction and the environmental densities with respect to each other.

  10. A self-consistent kinetic modeling of a 1-D, bounded, plasma in ...

    Indian Academy of Sciences (India)

    Abstract. A self-consistent kinetic treatment is presented here, where the Boltzmann equation is solved for a particle ... This paper reports on the findings of a kinetic code that retains col- lisions and sources, models ..... was used in the runs reported in this paper, the source of particles is modified from the explicit source Л(Ъ).

  11. Self-organization of polyurethane pre-polymers as studied by self-consistent field theory

    NARCIS (Netherlands)

    Li, Feng; Tuinier, Remco; Casteren, Van Ilse; Tennebroek, Ronald; Overbeek, Ad; Leermakers, F.A.M.

    2016-01-01

    Using self-consistent field (SCF) theory, we studied the self-assembly characteristics of polyurethane pre-polymer dispersions in aqueous solutions. With a molecularly detailed model implementing the Scheutjens-Fleer discretization scheme, it is shown how the stability, equilibrium size, and

  12. Enriching Elementary Quantum Mechanics with the Computer: Self-Consistent Field Problems in One Dimension

    Science.gov (United States)

    Bolemon, Jay S.; Etzold, David J.

    1974-01-01

    Discusses the use of a small computer to solve self-consistent field problems of one-dimensional systems of two or more interacting particles in an elementary quantum mechanics course. Indicates that the calculation can serve as a useful introduction to the iterative technique. (CC)

  13. Self-consistent β functions and emittances of round colliding beams

    Directory of Open Access Journals (Sweden)

    A. V. Otboyev

    1999-10-01

    Full Text Available The flip-flop effect with the linearized beam-beam force is formulated through self-consistent β functions and equilibrium emittances which are both affected by collision. We give the results of two models of emittance dependence. The effect of finite bunch length is also discussed.

  14. Spontaneous symmetry breaking and self-consistent equations for the free-energy

    International Nuclear Information System (INIS)

    Lovesey, S.W.

    1980-03-01

    A variational procedure for the free-energy is used to derive self-consistent equations that allow for spontaneous symmetry breaking. For an N-component phi 4 -model the equations are identical to those obtained by summing all loops to order 1/N. (author)

  15. Total energy calculation of perovskite, BaTiO3, by self-consistent

    Indian Academy of Sciences (India)

    Unknown

    rgy, lattice constant, density of states, band structure etc using self-consistent tight binding method. ... share the paraelectric simple-cubic perovskite structure .... of neighbouring ions. In order to find the ground state, we solve the variation problem, minimizing Etot with respect to the coefficients, .*,λµ ic. The final equation is.

  16. Structure of disordered alloys - II: self-consistent CCPA calculations for III-V semiconducting alloys

    International Nuclear Information System (INIS)

    Mookerjee, A.; Chaudhry, V.

    1980-09-01

    Using the chemical pseudopotential approach of Anderson and Bullett we have generated from first principles pseudo-Hamiltonians for heteropolar alloys. The one-electron density of states has been generated for Gasub(x)Insub(1-x)As using a self-consistent cluster CPA introduced earlier by one of us. Off-diagonal disorder has also been incorporated. (author)

  17. Conservation laws and self-consistent sources for a super-CKdV equation hierarchy

    International Nuclear Information System (INIS)

    Li Li

    2011-01-01

    From the super-matrix Lie algebras, we consider a super-extension of the CKdV equation hierarchy in the present Letter, and propose the super-CKdV hierarchy with self-consistent sources. Furthermore, we establish the infinitely many conservation laws for the integrable super-CKdV hierarchy.

  18. A parameter study of self-consistent disk models around Herbig AeBe stars

    NARCIS (Netherlands)

    Meijer, J.; Dominik, C.; de Koter, A.; Dullemond, C.P.; van Boekel, R.; Waters, L.B.F.M.

    2008-01-01

    We present a parameter study of self-consistent models of protoplanetary disks around Herbig AeBe stars. We use the code developed by Dullemond and Dominik, which solves the 2D radiative transfer problem including an iteration for the vertical hydrostatic structure of the disk. This grid of models

  19. Total energy calculation of perovskite, BaTiO 3 , by self-consistent ...

    Indian Academy of Sciences (India)

    We present results of numerical computation on some characteristics of BaTiO3 such as total energy, lattice constant, density of states, band structure etc using self-consistent tight binding method. Besides strong Ti–O bond between 3 on titanium and 2 orbital on oxygen states, we also include weak hybridization ...

  20. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling

    NARCIS (Netherlands)

    Pera, H.; Kleijn, J.M.; Leermakers, F.A.M.

    2014-01-01

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus k c and k ¯ and

  1. Radiation Belt Data-Assimilation Using Self-Consistent Storm-Time Magnetic Fields

    Science.gov (United States)

    Henderson, M. G.; Koller, J.; Chen, Y.; Zaharia, S.; Jordanova, V.; Reeves, G. D.

    2008-12-01

    The lack of suitably realistic magnetic field models for use in radiation belt data assimilation remains a critical unresolved problem in space weather specification and prediction. Although the high-energy radiation belt particles themselves do not significantly alter the magnetic fields in which they drift, the lower-energy ring current populations do. And the deviation (especially during storms) of the real magnetic field from that computed even with the best of the presently available empirical models can be very large. To overcome this problem, the LANL DREAM code has been modified to use magnetic fields that are self-consistently maintained in force balance with the plasma. We compare second and third adiabatic invariants computed from the self-consistent fields to those obtained with empirical B-field models, and we utilize a phase-space density matching technique in order to test the various field models. Finally, the PSD at constant mu and K in a data-assimilation model obtained with the self-consistent and non-self-consistent magnetic field models will be compared.

  2. Nonstatic, self-consistent πN t matrix in nuclear matter

    International Nuclear Information System (INIS)

    Van Orden, J.W.

    1984-01-01

    In a recent paper, a calculation of the self-consistent πN t matrix in nuclear matter was presented. In this calculation the driving term of the self-consistent equation was chosen to be a static approximation to the free πN t matrix. In the present work, the earlier calculation is extended by using a nonstatic, fully-off-shell free πN t matrix as a starting point. Right-hand pole and cut contributions to the P-wave πN amplitudes are derived using a Low expansion and include effects due to recoil of the interacting πN system as well as the transformation from the πN c.m. frame to the nuclear rest frame. The self-consistent t-matrix equation is rewritten as two integral equations which modify the pole and cut contributions to the t matrix separately. The self-consistent πN t matrix is calculated in nuclear matter and a nonlocal optical potential is constructed from it. The resonant contribution to the optical potential is found to be broadened by 20% to 50% depending on pion momentum and is shifted upward in energy by approximately 10 MeV in comparison to the first-order optical potential. Modifications to the nucleon pole contribution are found to be negligible

  3. Renormalized perturbation theories of Anderson localization: Self-consistent two-particle vertices

    Czech Academy of Sciences Publication Activity Database

    Janiš, Václav; Pokorný, Vladislav

    2011-01-01

    Roč. 523, 8-9 (2011), s. 715-723 ISSN 0003-3804 Institutional research plan: CEZ:AV0Z10100520 Keywords : diagrammatic expansion * self-consistent renormalizations * electron-hole symmetry Subject RIV: BE - Theoretical Physics Impact factor: 0.841, year: 2011

  4. Self-consistency constraints on turbulent magnetic transport and relaxation in collisionless plasma

    International Nuclear Information System (INIS)

    Terry, P.W.; Diamond, P.H.; Hahm, T.S.

    1985-10-01

    Novel constraints on collisionless relaxation and transport in drift-Alfven turbulence are reported. These constraints arise due to the consideration of mode coupling and incoherent fluctuations and the proper application of self-consistency conditions. The result that electrostatic fluctuations alone regulate transport in drift-Alfven turbulence follows directly. Quasilinear transport predictions are discussed in light of these constraints

  5. Self-consistent field modeling of adsorption from polymer/surfactant mixtures

    NARCIS (Netherlands)

    Postmus, B.R.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2008-01-01

    We report on the development of a self-consistent field model that describes the competitive adsorption of nonionic alkyl-(ethylene oxide) surfactants and nonionic polymer poly(ethylene oxide) (PEO) from aqueous solutions onto silica. The model explicitly describes the response to the pH and the

  6. A new self-consistent model for thermodynamics of binary solutions

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Shan, Y. V.; Fischer, F. D.

    2015-01-01

    Roč. 108, NOV (2015), s. 27-30 ISSN 1359-6462 R&D Projects: GA ČR(CZ) GA14-24252S Institutional support: RVO:68081723 Keywords : Thermodynamics * Analytical methods * CALPHAD * Phase diagram * Self-consistent model Subject RIV: BJ - Thermodynamics Impact factor: 3.305, year: 2015

  7. Self-consistent-field calculations of proteinlike incorporations in polyelectrolyte complex micelles

    NARCIS (Netherlands)

    Lindhoud, Saskia; Cohen Stuart, Martinus Abraham; Norde, Willem; Leermakers, Frans A.M.

    2009-01-01

    Self-consistent field theory is applied to model the structure and stability of polyelectrolyte complex micelles with incorporated protein (molten globule) molecules in the core. The electrostatic interactions that drive the micelle formation are mimicked by nearest-neighbor interactions using

  8. Plasma Processes: A self-consistent kinetic modeling of a 1-D ...

    Indian Academy of Sciences (India)

    A self-consistent kinetic treatment is presented here, where the Boltzmann equation is solved for a particle conserving Krook collision operator. The resulting equations have been implemented numerically. The treatment solves for the entire quasineutral column, making no assumptions about mfp/, where mfp is the ...

  9. Predicting intragranular misorientation distributions in polycrystalline metals using the viscoplastic self-consistent formulation

    DEFF Research Database (Denmark)

    Zecevic, Miroslav; Pantleon, Wolfgang; Lebensohn, Ricardo A.

    2017-01-01

    In a recent paper, we reported the methodology to calculate intragranular fluctuations in the instantaneous lattice rotation rates in polycrystalline materials within the mean-field viscoplastic self-consistent (VPSC) model. This paper is concerned with the time integration and subsequent use of ...

  10. Conservation laws and self-consistent sources for a super-CKdV equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Li Li, E-mail: li07099@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2011-03-14

    From the super-matrix Lie algebras, we consider a super-extension of the CKdV equation hierarchy in the present Letter, and propose the super-CKdV hierarchy with self-consistent sources. Furthermore, we establish the infinitely many conservation laws for the integrable super-CKdV hierarchy.

  11. Double Relativistic Electron Accelerating Mirror

    Directory of Open Access Journals (Sweden)

    Saltanat Sadykova

    2013-02-01

    Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.

  12. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Richard Anantua

    2018-03-01

    Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.

  13. Self-consistent beam halo studies ampersand halo diagnostic development in a continuous linear focusing channel

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1994-01-01

    Beam halos are formed via self-consistent motion of the beam particles. Interactions of single particles with time-varying density distributions of other particles are a major source of halo. Aspects of these interactions are studied for an initially equilibrium distribution in a radial, linear, continuous focusing system. When there is a mismatch, it is shown that in the self-consistent system, there is a threshold in space-charge and mismatch, above which a halo is formed that extends to ∼1.5 times the initial maximum mismatch radius. Tools are sought for characterizing the halo dynamics. Testing the particles against the width of the mismatch driving resonance is useful for finding a conservative estimate of the threshold. The exit, entering and transition times, and the time evolution of the halo, are also explored using this technique. Extension to higher dimensions is briefly discussed

  14. Self-consistent approach for Bose-condensed atoms in optical lattices

    Directory of Open Access Journals (Sweden)

    V.I. Yukalov

    2013-06-01

    Full Text Available Bose atoms in optical lattices are considered at low temperatures and weak interactions, when Bose-Einstein condensate is formed. A self-consistent approach, based on the use of a representative statistical ensemble, is employed, guaranteeing a gapless spectrum of collective excitations and the validity of conservation laws. In order to show that the approach is applicable to both weak and tight binding, the problem is treated in the Bloch as well as in the Wannier representations. Both these ways result in similar expressions that are compared for the self-consistent Hartree-Fock-Bogolubov approximation. A convenient general formula for the superfluid fraction of atoms in an optical lattice is derived.

  15. Self-consistent hole motion and spin excitations in a quantum antiferromagnet

    International Nuclear Information System (INIS)

    Su, Z.B.; Yu, L.; Li, Y.M.; Lai, W.Y.

    1989-12-01

    A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes and spin excitations in a quantum antiferromagnet within the generalized t-J model. On the one hand, the effects of local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing to obtain the hole wave function and its spectrum, as well as the effective mass for a propagating hole. On the other hand, the change of the spin excitation spectrum and the spin correlations due to the presence of dynamical holes are studied within the same adiabatic approximation. The stability of the hole states with respect to such changes justifies the self-consistency of the proposed formalism. (author). 25 refs, 6 figs, 1 tab

  16. Application of self-consistent field theory to self-assembled bilayer membranes

    International Nuclear Information System (INIS)

    Zhang Ping-Wen; Shi An-Chang

    2015-01-01

    Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants, and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depend crucially on their mechanical properties such as surface tension, bending moduli, and line tension. Understanding how the molecular properties of the amphiphiles determine the structure and mechanics of the self-assembled bilayers requires a molecularly detailed theoretical framework. The self-consistent field theory provides such a theoretical framework, which is capable of accurately predicting the mechanical parameters of self-assembled bilayer membranes. In this mini review we summarize the formulation of the self-consistent field theory, as exemplified by a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents, and its application to the study of self-assembled bilayer membranes. (topical review)

  17. Self-consistent theory of finite Fermi systems and radii of nuclei

    International Nuclear Information System (INIS)

    Saperstein, E. E.; Tolokonnikov, S. V.

    2011-01-01

    Present-day self-consistent approaches in nuclear theory were analyzed from the point of view of describing distributions of nuclear densities. The generalized method of the energy density functional due to Fayans and his coauthors (this is the most successful version of the self-consistent theory of finite Fermi systems) was the first among the approaches under comparison. The second was the most successful version of the Skyrme-Hartree-Fock method with the HFB-17 functional due to Goriely and his coauthors. Charge radii of spherical nuclei were analyzed in detail. Several isotopic chains of deformed nuclei were also considered. Charge-density distributions ρ ch (r) were calculated for several spherical nuclei. They were compared with model-independent data extracted from an analysis of elastic electron scattering on nuclei.

  18. More than skin deep: a self-consistency approach to the psychology of cosmetic surgery.

    Science.gov (United States)

    Burk, J; Zelen, S L; Terino, E O

    1985-08-01

    Underlying attitudes about the general self and the specific body part operated on in cosmetic surgery were investigated. It was hypothesized that female cosmetic surgery patients would feel less favorably toward their noses, faces, or breasts than toward their overall self. These marked inconsistencies would cause "normal" individuals to seek practical solutions of enhancing the esteem of the particular body part, to make it consistent with their general view of themselves. Forty female cosmetic surgery patients were tested before and 2 and 4 months after surgery. In all, 12 hypotheses were made within the general self-consistency framework and 11 were upheld at levels ranging from 0.02 to 0.001. Self-consistency theory accurately represents the female cosmetic surgery patient as a normal woman in terms of self-esteem who is attempting to remediate a consciously felt inconsistency between general and specific body-part esteem. Cosmetic surgery seems to reduce this inconsistency.

  19. Self-consistent perturbation expansion for Bose-Einstein condensates satisfying Goldstone's theorem and conservation laws

    International Nuclear Information System (INIS)

    Kita, Takafumi

    2009-01-01

    Quantum-field-theoretic descriptions of interacting condensed bosons have suffered from the lack of self-consistent approximation schemes satisfying Goldstone's theorem and dynamical conservation laws simultaneously. We present a procedure to construct such approximations systematically by using either an exact relation for the interaction energy or the Hugenholtz-Pines relation to express the thermodynamic potential in a Luttinger-Ward form. Inspection of the self-consistent perturbation expansion up to the third order with respect to the interaction shows that the two relations yield a unique identical result at each order, reproducing the conserving-gapless mean-field theory [T. Kita, J. Phys. Soc. Jpn. 74, 1891 (2005)] as the lowest-order approximation. The uniqueness implies that the series becomes exact when infinite terms are retained. We also derive useful expressions for the entropy and superfluid density in terms of Green's function and a set of real-time dynamical equations to describe thermalization of the condensate.

  20. Real-space Kerker method for self-consistent calculation using non-orthogonal basis functions

    International Nuclear Information System (INIS)

    Shiihara, Yoshinori; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2008-01-01

    We have proposed the real-space Kerker method for fast self-consistent-field calculations in real-space approaches using non-orthogonal basis functions. In large-scale systems with many atoms, the Kerker method is a very efficient way to prevent charge sloshing, which induces numerical instability during the self-consistent iterations. We construct the Kerker preconditioning matrix with non-orthogonal basis functions and the preconditioning is performed by solving linear equations. The proposed real-space Kerker method is identical to the method in reciprocal space, with the following two advantages: (i) the method is suitable for massively parallel computation since it does not use the fast Fourier transform. (ii) The preconditioning is performed in an acceptable computational time since time-consuming integration, including the exponential kernel, need not be performed, unlike the method used by Manninen et al (1975 Phys. Rev. B 12 4012)

  1. Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport

    OpenAIRE

    Estève , D. ,; Sarazin , Y.; Garbet , X.; Grandgirard , V.; Breton , S. ,; Donnel , P. ,; Asahi , Y. ,; Bourdelle , C.; Dif-Pradalier , G; Ehrlacher , C.; Emeriau , C.; Ghendrih , Ph; Gillot , C.; Latu , G.; Passeron , C.

    2018-01-01

    International audience; Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code [V. Grandgirard et al., Comp. Phys. Commun. 207, 35 (2016)]. A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime likely relevant for tungsten, the standard expression of the neoclassical impurity flux is shown t...

  2. Self-consistent quasi-particle RPA for the description of superfluid Fermi systems

    CERN Document Server

    Rahbi, A; Chanfray, G; Schuck, P

    2002-01-01

    Self-Consistent Quasi-Particle RPA (SCQRPA) is for the first time applied to a more level pairing case. Various filling situation and values for the coupling constant are considered. Very encouraging results in comparison with the exact solution of the model are obtaining. The nature of the low lying mode in SCQRPA is identified. The strong reduction of the number fluctuation in SCQRPA vs BCS is pointed out. The transition from superfluidity to the normal fluid case is carefully investigated.

  3. Comparative study of ring current development using empirical, dipolar, and self-consistent magnetic field simulations

    Science.gov (United States)

    Jordanova, V. K.; Zaharia, S.; Welling, D. T.

    2010-12-01

    The effects of nondipolar magnetic field configuration and the feedback of a self-consistently computed magnetic field on ring current dynamics are investigated during a double-dip storm with minima SYM-H = -90 nT at ˜2000 UT, 20 November, and SYM-H = -127 nT at ˜1000 UT, 21 November 2002. We use our kinetic ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB) to study the redistribution of plasma in the inner magnetosphere after its fresh injection from the plasma sheet. The kinetic model is fully extended to nondipolar magnetic (B) field geometry and two-way coupled with an Euler-potential-based equilibrium model that calculates self-consistently the three-dimensional magnetic field in force balance with the anisotropic ring current distributions. The ring current source population is inferred from LANL geosynchronous satellite data; a superdense plasma sheet observed during the second storm main phase contributes significantly to ring current buildup. We find that the bounce-averaged velocities increase while the bounce-averaged geocoronal hydrogen densities decrease on the nightside when a nondipolar B field is used. A depression of the ring current fluxes and a confinement of the ring current close to Earth are thus observed on the nightside as geomagnetic activity increases. In contrast to the dipolar case, the proton anisotropy increases considerably in the postnoon sector, and the nondipolar simulations predict the excitation of intense EMIC waves at large L shells. The total ring current energy and ∣Dst∣ index calculated with the self-consistent B field are in best agreement with observations, being smaller compared to the dipolar calculations but larger than the empirical B field predictions.

  4. Self-consistent calculation of electron density distribution in metals in HNC approximation

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, H.; Boronski, E.; Banach, G. [Polska Akademia Nauk, Wroclaw (Poland). Inst. Niskich Temperatur i Badan Strukturalnych

    1997-12-01

    A nonlinear integro-differential equation is introduced for density amplitude of conduction electrons in simple metals as a consequence of the results obtained within the theory of liquids. The simplicity of this equation in comparison with the usual Kohn-Sham approach gives the possibility to determine the self- consistent density of conduction electrons without assuming a muffin-tin lattice potential. Calculations have been performed for lithium. Perspectives connected with this approach are discussed. (author). 8 refs, 2 figs.

  5. Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent zonal flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  6. Simulations of Tokamak Edge Turbulence Including Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent zonal flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  7. Calculations of molecular ionization energies using a self-consistent-charge Hartree-Fock-Slater method

    Science.gov (United States)

    Rosen, A.; Ellis, D. E.; Adachi, H.; Averill, F. W.

    1976-01-01

    A numerical-variational method for performing self-consistent molecular calculations in the Hartree-Fock-Slater (HFS) model is presented. Molecular wavefunctions are expanded in terms of basis sets constructed from numerical HFS solutions of selected one-center atomlike problems. Binding energies and wavefunctions for the molecules are generated using a discrete variational method for a given molecular potential. In the self-consistent-charge (SCC) approximation to the complete self-consistent-field (SCF) method, results of a Mulliken population analysis of the molecular eigenfunctions are used in each iteration to produce 'atomic' occupation numbers. The simplest SCC potential is then obtained from overlapping spherical atomlike charge distributions. Molecular ionization energies are calculated using the transition-state procedure; results are given for CO, H2O, H2S, AlCl, InCl, and the Ni5O surface complex. Agreement between experimental and theoretical ionization energies for the free-molecule valence levels is generally within 1 eV. The simple SCC procedure gives a reasonably good approximation to the molecular potential, as shown by comparison with experiment, and with complete SCF calculations for CO, H2O, and H2S.

  8. Calculation of the self-consistent current distribution and coupling of an RF antenna array

    International Nuclear Information System (INIS)

    Ballico, M.; Puri, S.

    1993-10-01

    A self-consistent calculation of the antenna current distribution and fields in an axisymmetric cylindrical geometry for the ICRH antenna-plasma coupling problem is presented. Several features distinguish this calculation from other codes presently available. 1. Variational form: The formulation of the self consistent antenna current problem in a variational form allows good convergence and stability of the algorithm. 2. Multiple straps: Allows modelling of (a) the current distribution across the width of the strap (by dividing it up into sub straps) (b) side limiters and septum (c) antenna cross-coupling. 3. Analytic calculation of the antenna field and calculation of the antenna self-consistent current distribution, (given the surface impedance matrix) gives rapid calculation. 4. Framed for parallel computation on several different parallel architectures (as well as serial) gives a large speed improvement to the user. Results are presented for both Alfven wave heating and current drive antenna arrays, showing the optimal coupling to be achieved for toroidal mode numbers 8< n<10 for typical ASDEX upgrade plasmas. Simulations of the ASDEX upgrade antenna show the importance of the current distribution across the antenna and of image currents flowing in the side limiters, and an analysis of a proposed asymmetric ITER antenna is presented. (orig.)

  9. Two-particle irreducible effective actions versus resummation: Analytic properties and self-consistency

    Directory of Open Access Journals (Sweden)

    Michael Brown

    2015-11-01

    Full Text Available Approximations based on two-particle irreducible (2PI effective actions (also known as Φ-derivable, Cornwall–Jackiw–Tomboulis or Luttinger–Ward functionals depending on context have been widely used in condensed matter and non-equilibrium quantum/statistical field theory because this formalism gives a robust, self-consistent, non-perturbative and systematically improvable approach which avoids problems with secular time evolution. The strengths of 2PI approximations are often described in terms of a selective resummation of Feynman diagrams to infinite order. However, the Feynman diagram series is asymptotic and summation is at best a dangerous procedure. Here we show that, at least in the context of a toy model where exact results are available, the true strength of 2PI approximations derives from their self-consistency rather than any resummation. This self-consistency allows truncated 2PI approximations to capture the branch points of physical amplitudes where adjustments of coupling constants can trigger an instability of the vacuum. This, in effect, turns Dyson's argument for the failure of perturbation theory on its head. As a result we find that 2PI approximations perform better than Padé approximation and are competitive with Borel–Padé resummation. Finally, we introduce a hybrid 2PI–Padé method.

  10. Equilibrium properties of polymers from the Langevin equation: Gaussian self-consistent approach

    International Nuclear Information System (INIS)

    Timoshenko, E.G.; Dawson, K.A.

    1995-01-01

    We investigate here the dynamics of polymers at equilibrium by means of a self-consistent approximation that can be applied to arbitrary Hamiltonians. In particular we show that for the case of two-and three-body excluded volume effects, and the Oseen hydrodynamic interaction, the Gaussian self-consistent approach can recapture what we believe to be the essential features across the collapse transition. This method is based on the approximation of the complete Langevin equation by a Gaussian stochastic ensemble obeying a linear equation of motion with some unknown effective potential ΔV q (t) and friction. Self-consistency equations for this potential are derived and studied in a variety of regimes across the collapse transition. Here we have calculated the friction ζ q scaling behavior. The results of a simple power counting analysis of the equations, applicable for sufficiently large polymers, confirm the expected law ζ q ∝N ν q 1-ν , and give exponent values ν=3/5 for the Flory coil, ν=1/2 for so-called θ point, and ν=1/3 for the collapsed globule phase. Further applications of the method for various experimental observables of interest, e.g., the dynamic structure factor of light scattering, are presented, and again simple applications are discussed

  11. Self-consistent calculation of particle-hole diagrams on the Matsubara frequency: FLEX approximation

    International Nuclear Information System (INIS)

    Rodriguez-Nunez, J.J.

    1997-01-01

    We implement the numerical method of summing Green function diagrams on the Matsubara frequency axis for the fluctuation exchange (FLEX) approximation. Our method has previously been applied to the attractive Hubbard model for low density. Here we apply our numerical algorithm to the Hubbard model close to half filling (ρ=0.40), and for T/t = 0.03, in order to study the dynamics of one- and two-particle Green functions. For the values of the chosen parameters we see the formation of three branches which we associate with the a two-peak structure in the imaginary part of the self-energy. We have compared our fully self-consistent FLEX solutions with a lower order approximation where the internal Green functions are approximated by free Green functions. These two approaches the fully self consistent and the non-self consistent ones give different results for the parameters considered here. However, they have similar global results for small densities. (author)

  12. Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport

    Science.gov (United States)

    Estève, D.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Breton, S.; Donnel, P.; Asahi, Y.; Bourdelle, C.; Dif-Pradalier, G.; Ehrlacher, C.; Emeriau, C.; Ghendrih, Ph.; Gillot, C.; Latu, G.; Passeron, C.

    2018-03-01

    Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code (Grandgirard et al 2016 Comput. Phys. Commun. 207 35). A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime that is probably relevant for tungsten, the standard expression for the neoclassical impurity flux is shown to be recovered from gyrokinetics with the employed collision operator. Purely neoclassical simulations of deuterium plasma with trace impurities of helium, carbon and tungsten lead to impurity diffusion coefficients, inward pinch velocities due to density peaking, and thermo-diffusion terms which quantitatively agree with neoclassical predictions and NEO simulations (Belli et al 2012 Plasma Phys. Control. Fusion 54 015015). The thermal screening factor appears to be less than predicted analytically in the Pfirsch-Schlüter regime, which can be detrimental to fusion performance. Finally, self-consistent nonlinear simulations have revealed that the tungsten impurity flux is not the sum of turbulent and neoclassical fluxes computed separately, as is usually assumed. The synergy partly results from the turbulence-driven in-out poloidal asymmetry of tungsten density. This result suggests the need for self-consistent simulations of impurity transport, i.e. including both turbulence and neoclassical physics, in view of quantitative predictions for ITER.

  13. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  14. Integrable couplings of C-KdV equations hierarchy with self-consistent sources associated with sl-tilde(4)

    Energy Technology Data Exchange (ETDEWEB)

    Yu Fajun [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)], E-mail: yfajun@163.com; Li Li [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2009-04-20

    We present a kind of integrable couplings of soliton equations hierarchy with self-consistent sources by using of loop algebra sl-tilde(4). As an application, a hierarchy of C-KdV equations with self-consistent sources is derived through loop algebra sl-tilde(2). Furthermore, we construct a new integrable couplings of the C-KdV soliton hierarchy with self-consistent sources by using of the enlarged loop algebra sl-tilde(4)

  15. Calculation of Beta Decay Half-Lives and Delayed Neutron Branching Ratio of Fission Fragments with Skyrme-QRPA

    Directory of Open Access Journals (Sweden)

    Minato Futoshi

    2016-01-01

    Full Text Available Nuclear β-decay and delayed neutron (DN emission is important for the r-process nucleosynthesis after the freeze-out, and stable and safe operation of nuclear reactors. Even though radioactive beam facilities have enabled us to measure β-decay and branching ratio of neutron-rich nuclei apart from the stability line in the nuclear chart, there are still a lot of nuclei which one cannot investigate experimentally. In particular, information on DN is rather scarce than that of T1/2. To predict T1/2 and the branching ratios of DN for next JENDL decay data, we have developed a method which comprises the quasiparticle-random-phase-approximation (QRPA and the Hauser-Feshbach statistical model (HFSM. In this work, we calculate fission fragments with T1/2 ≤ 50 sec. We obtain the rms deviation from experimental half-life of 3:71. Although the result is still worse than GT2 which has been adopted in JENDL decay data, DN spectra are newly calculated. We also discuss further subjects to be done in future for improving the present approach and making next generation of JENDL decay data.

  16. Self-consistent Hartree energy band calculation for manganese oxide (MnO)

    International Nuclear Information System (INIS)

    Bakhshai, A.

    1982-01-01

    A self-consistent Hartree energy band calculation was done for the MnO crystal using the linear combination of atomic orbitals (LCAO) method. Gaussian type atomic orbitals were used in the LCAO method. This calculation was done for paramagnetic MnO with the NaCl lattice structure. The results show that the energy bands around the Fermi level of MnO are unusually flat, meaning that the electrons in this region are strongly localized. Therefore short range correlation was added to the results of this band calculation. The short range correlation effects were added by calculating atomic type corrections to the original band structure. The results of this correlation calculation show that a large amount of energy is required to excite an electron from the Mn 3d band. Therefore the lowest excitation (the one that requires the least energy) is an excitation from the top of the O 2p band to the Fermi level. This yields a fundamental band gap of 4.8 eV which is in good agreement with optical absorption experiments. This fundamental band gap of 4.8 eV implies that MnO is an insulator, in agreement with conductivity experiments. The Hartree results for the valence bands of MnO agree very well with the results of photoemission experiments. In comparison to the photoemission data, the results of the self-consistent Hartree calculation are an order of magnitude better than the results of the only other band calculation for MnO. Comparison with band calculations for other transition metal oxides (other than MnO) imply that with a good self-consistent Hartree energy band calculation for MnO can be superior

  17. Effect of self-consistency group intervention for adolescents with schizophrenia: An inpatient randomized controlled trial.

    Science.gov (United States)

    She, Pan; Zeng, Hongling; Yang, Bingxiang

    2016-02-01

    The aim of the study was to explore the efficacy of structural group therapy on the self-consistency and congruence of inpatient adolescents with a diagnosis of schizophrenia. Sixty inpatient adolescents with schizophrenia were randomly assigned to an intervention group (n = 30) and a control group (n = 30). The intervention group was provided with a 12-session structural group therapy program for six weeks (1 h, two times per week), while the control group participated in a handicraft group. All patients were assessed with the Self-Consistency and Congruence Scale (SCCS) and the Positive and Negative Syndrome Scale (PANSS) at pretest, posttest, three-month and one-year follow-up. The results were analyzed using t-test and repeated measures ANOVA. The two groups had no significant difference at the pre-test of outcome measures (p > 0.05). Significant differences existed between the two groups in ego-dystonic, self-flexibility, SCCS scores, positive syndrome, general psychopathology and PANSS scores after the intervention (p < 0.05). At the three-month follow-up, ego-dystonic, self-flexibility and PANSS scores were also found to be significantly different between the two groups (p < 0.05). But the outcome measures were not significantly different between the two groups at the one-year follow-up. Structural group therapy in a mental health setting had a positive effect on improving self-consistency and congruence, positive symptoms and general psychopathology of inpatient adolescents with a diagnosis of schizophrenia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Relativistic diffusion.

    Science.gov (United States)

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  19. Relativistic cosmology

    International Nuclear Information System (INIS)

    Bastero-Gil, M.

    2015-01-01

    Relativistic cosmology is nothing but the study of the evolution of our universe expanding from the General Theory of Relativity, which describes the gravitational interaction at any scale and given its character far-reaching is the force that dominate the evolution of the universe. (Author)

  20. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  1. Self-consistent Hartree-Fock approach for interacting bosons in optical lattices

    Science.gov (United States)

    Lü, Qin-Qin; Patton, Kelly R.; Sheehy, Daniel E.

    2014-12-01

    A theoretical study of interacting bosons in a periodic optical lattice is presented. Instead of the commonly used tight-binding approach (applicable near the Mott-insulating regime of the phase diagram), the present work starts from the exact single-particle states of bosons in a cubic optical lattice, satisfying the Mathieu equation, an approach that can be particularly useful at large boson fillings. The effects of short-range interactions are incorporated using a self-consistent Hartree-Fock approximation, and predictions for experimental observables such as the superfluid transition temperature, condensate fraction, and boson momentum distribution are presented.

  2. Self-consistent geodesic equation and quantum tunneling from charged AdS black holes

    Science.gov (United States)

    Deng, Gao-Ming

    2017-12-01

    Some urgent shortcomings in previous derivations of geodesic equations are remedied in this paper. In contrast to the unnatural and awkward treatment in previous works, here we derive the geodesic equations of massive and massless particles in a unified and self- consistent manner. Furthermore, we extend to investigate the Hawking radiation via tunneling from charged black holes in the context of AdS spacetime. Of special interest, the application of the first law of black hole thermodynamics in tunneling integration manifestly simplifies the calculation.

  3. Self-consistent electronic structure of the contracted tungsten (001) surface

    International Nuclear Information System (INIS)

    Posternak, M.; Krakauer, H.; Freeman, A.J.

    1982-01-01

    Self-consistent linearized-augmented-plane-wave energy-band studies using the warped muffin-tin approximation for a seven-layer W(001) single slab with the surface-layer separation contracted by 6% of the bulk interlayer spacing are reported. Surface electronic structure, local densities of states, generalized susceptibility for the surface, work function, and core-level shifts are found to have insignificant differences with corresponding results for the unrelaxed surface. Several differences in surface states between theory and recent angle-resolved photoemission experiments are discussed in the light of new proposed models of the actual unreconstructed surface structure at high temperatures

  4. Interstellar turbulence model : A self-consistent coupling of plasma and neutral fluids

    International Nuclear Information System (INIS)

    Shaikh, Dastgeer; Zank, Gary P.; Pogorelov, Nikolai

    2006-01-01

    We present results of a preliminary investigation of interstellar turbulence based on a self-consistent two-dimensional fluid simulation model. Our model describes a partially ionized magnetofluid interstellar medium (ISM) that couples a neutral hydrogen fluid to a plasma through charge exchange interactions and assumes that the ISM turbulent correlation scales are much bigger than the shock characteristic length-scales, but smaller than the charge exchange mean free path length-scales. The shocks have no influence on the ISM turbulent fluctuations. We find that nonlinear interactions in coupled plasma-neutral ISM turbulence are influenced substantially by charge exchange processes

  5. Self-consistent particle distribution of a bunched beam in RF field

    CERN Document Server

    Batygin, Y K

    2002-01-01

    An analytical solution for the self-consistent particle equilibrium distribution in an RF field with transverse focusing is found. The solution is attained in the approximation of a high brightness beam. The distribution function in phase space is determined as a stationary function of the energy integral. Equipartitioning of the beam distribution between degrees of freedom follows directly from the choice of the stationary distribution function. Analytical expressions for r-z equilibrium beam profile and maximum beam current in RF field are obtained.

  6. Self-consistency in the phonon space of the particle-phonon coupling model

    Science.gov (United States)

    Tselyaev, V.; Lyutorovich, N.; Speth, J.; Reinhard, P.-G.

    2018-04-01

    In the paper the nonlinear generalization of the time blocking approximation (TBA) is presented. The TBA is one of the versions of the extended random-phase approximation (RPA) developed within the Green-function method and the particle-phonon coupling model. In the generalized version of the TBA the self-consistency principle is extended onto the phonon space of the model. The numerical examples show that this nonlinear version of the TBA leads to the convergence of results with respect to enlarging the phonon space of the model.

  7. Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions

    DEFF Research Database (Denmark)

    Strange, M.; Rostgaard, Carsten; Hakkinen, H.

    2011-01-01

    of benzenedithiol and benzenediamine is one-fifth that predicted by standard density functional theory (DFT), in very good agreement with experiments. In contrast, the widely studied benzenedithiolate structure is found to have a significantly higher conductance due to the unsaturated sulfur bonds. These findings...... (exchange) on the molecule and dynamical screening at the metal-molecule interface. The main effect of the GW self-energy is to renormalize the level positions; however, its influence on the shape of molecular resonances also affects the conductance. Non-self-consistent G(0)W(0) calculations, starting from...

  8. Self-consistent removal of sawtooth oscillations from transient plasma data by generalized singular value decomposition

    International Nuclear Information System (INIS)

    Erba, M.; Mattioli, M.; Segui, J.L.

    1997-10-01

    This paper addresses the problem of removing sawtooth oscillations from multichannel plasma data in a self-consistent way, thereby preserving transients that have a different physical origin. The technique which does this is called the Generalized Singular Value Decomposition (GSVD), and its properties are discussed. Using the GSVD, we analyze spatially resolved electron temperature measurements from the Tore Supra tokamak, made in transient regimes that are perturbed either by the laser blow-off injection of impurities or by pellet injection. Non-local transport issues are briefly discussed. (author)

  9. Alfven-wave particle interaction in finite-dimensional self-consistent field model

    International Nuclear Information System (INIS)

    Padhye, N.; Horton, W.

    1998-01-01

    A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth's geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons

  10. Self-consistent orbital evolution of a particle around a Schwarzschild black hole.

    Science.gov (United States)

    Diener, Peter; Vega, Ian; Wardell, Barry; Detweiler, Steven

    2012-05-11

    The motion of a charged particle is influenced by the self-force arising from the particle's interaction with its own field. In a curved spacetime, this self-force depends on the entire past history of the particle and is difficult to evaluate. As a result, all existing self-force evaluations in curved spacetime are for particles moving along a fixed trajectory. Here, for the first time, we overcome this long-standing limitation and present fully self-consistent orbits and waveforms of a scalar charged particle around a Schwarzschild black hole.

  11. Self-consistent Capacitance-Voltage Characterization of Gate-all-around Graded Nanowire Transistor

    OpenAIRE

    Khan, Saeed Uz Zaman; Hossain, Md. Shafayat; Hossen, Md. Obaidul; Rahman, Fahim Ur; Zaman, Rifat; Khosru, Quazi D. M.

    2014-01-01

    This paper presents a self-consistent numerical model for calculating the charge profile and gate capacitance and therefore obtaining C-V characterization for a gate-all-around graded nanowire MOSFET with a high mobility axially graded In0.75Ga0.25As + In0.53Ga0.47As channel incorporating strain and atomic layer deposited Al2O3/20nm Ti gate. C-V characteristics with introduction and variation of In-composition grading and also grading in doping concentration are explored.Finite element method...

  12. Optical absorption of dilute nitride alloys using self-consistent Green’s function method

    OpenAIRE

    Seifikar, Masoud; O’Reilly, Eoin P; Fahy, Stephen

    2014-01-01

    We have calculated the optical absorption for InGaNAs and GaNSb using the band anticrossing (BAC) model and a self-consistent Green’s function (SCGF) method. In the BAC model, we include the interaction of isolated and pair N levels with the host matrix conduction and valence bands. In the SCGF approach, we include a full distribution of N states, with non-parabolic conduction and light-hole bands, and parabolic heavy-hole and spin-split-off bands. The comparison with experiments shows that t...

  13. Self-consistent treatment of spin and magnetization dynamic effect in spin transfer switching

    International Nuclear Information System (INIS)

    Guo Jie; Tan, Seng Ghee; Jalil, Mansoor Bin Abdul; Koh, Dax Enshan; Han, Guchang; Meng, Hao

    2011-01-01

    The effect of itinerant spin moment (m) dynamic in spin transfer switching has been ignored in most previous theoretical studies of the magnetization (M) dynamics. Thus in this paper, we proposed a more refined micromagnetic model of spin transfer switching that takes into account in a self-consistent manner of the coupled m and M dynamics. The numerical results obtained from this model further shed insight on the switching profiles of m and M, both of which show particular sensitivity to parameters such as the anisotropy field, the spin torque field, and the initial deviation between m and M.

  14. Self-consistent assessment of Englert-Schwinger model on atomic properties.

    Science.gov (United States)

    Lehtomäki, Jouko; Lopez-Acevedo, Olga

    2017-12-21

    Our manuscript investigates a self-consistent solution of the statistical atom model proposed by Berthold-Georg Englert and Julian Schwinger (the ES model) and benchmarks it against atomic Kohn-Sham and two orbital-free models of the Thomas-Fermi-Dirac (TFD)-λvW family. Results show that the ES model generally offers the same accuracy as the well-known TFD-15vW model; however, the ES model corrects the failure in the Pauli potential near-nucleus region. We also point to the inability of describing low-Z atoms as the foremost concern in improving the present model.

  15. Self-consistent steady state and dust-ion-acoustic soliton propagation in inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Li Yangfang; Ma, J.X.

    2005-01-01

    The steady state of an inhomogeneous collisional dusty plasma is formulated self-consistently and the dust-ion-acoustic soliton propagation in such a plasma is studied by using the reductive perturbation method. The steady state is governed by the ambipolar diffusion theory, which includes the spatially varying collisions of electrons and ions with dust grains and is solved numerically with the boundary value problem. The effects of the nonuniformity of the equilibrium quantities on the solitons are considered. It is shown that the property of the solitons, especially the characteristic width, are sensitive to the variations of the steady state

  16. Locally self-consistent Green’s function approach to the electronic structure problem

    DEFF Research Database (Denmark)

    Abrikosov, I.A.; Simak, S.I.; Johansson, B.

    1997-01-01

    The locally self-consistent Green's function (LSGF) method is an order-N method for calculation of the electronic structure of systems with an arbitrary distribution of atoms of different kinds on an underlying crystal lattice. For each atom Dyson's equation is used to solve the electronic multiple...... scattering problem in a local interaction zone (LIZ) embedded in an effective medium judiciously chosen to minimize the size of the, LIZ. The excellent real-space convergence of the LSGF calculations and the reliability of its results are demonstrated for a broad spectrum of metallic alloys with different...

  17. Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals

    DEFF Research Database (Denmark)

    Ruud, Kenneth; Helgaker, Trygve; Kobayashi, Rika

    1994-01-01

    to corresponding individual gauges for localized orbitals (IGLO) results. The London results show better basis set convergence than IGLO, especially for heavier atoms. It is shown that the choice of active space is crucial for determination of accurate nuclear shielding constants.......Nuclear shielding calculations are presented for multiconfigurational self-consistent field wave functions using London atomic orbitals (gauge invariant atomic orbitals). Calculations of nuclear shieldings for eight molecules (H2O, H2S, CH4, N2, CO, HF, F2, and SO2) are presented and compared...

  18. Pathological behavior of the open-shell restricted self-consistent-field equations

    Energy Technology Data Exchange (ETDEWEB)

    Moscardo, F.; Alvarez-Collado, J.R.

    1979-02-01

    The possible solutions of open-shell restricted self-consistent-field equations for a doublet are studied for Li and Na atoms, according to the values of the parameters implied in those equations. A similar behavior, characterized by the presence of several variational solutions is observed in both atoms. Some of these solutions can be assigned to excited configurations. Excitation energies are in good agreement with experimental data. Doublet stability for the solutions obtained has been studied, discussing the saddle-point character present in those solutions associated to excited configurations.

  19. Self-consistent nonlinearly polarizable shell-model dynamics for ferroelectric materials

    International Nuclear Information System (INIS)

    Mkam Tchouobiap, S.E.; Kofane, T.C.; Ngabireng, C.M.

    2002-11-01

    We investigate the dynamical properties of the polarizable shellmodel with a symmetric double Morse-type electron-ion interaction in one ionic species. A variational calculation based on the Self-Consistent Einstein Model (SCEM) shows that a theoretical ferroelectric (FE) transition temperature can be derive which demonstrates the presence of a first-order phase transition for the potassium selenate (K 2 SeO 4 ) crystal around Tc 91.5 K. Comparison of the model calculation with the experimental critical temperature yields satisfactory agreement. (author)

  20. A self-consistent model for thermodynamics of multicomponent solid solutions

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.

    2016-01-01

    The self-consistent concept recently published in this journal (108, 27–30, 2015) is extended from a binary to a multicomponent system. This is possible by exploiting the trapping concept as basis for including the interaction of atoms in terms of pairs (e.g. A–A, B–B, C–C…) and couples (e.g. A–B, B–C, …) in a multicomponent system with A as solvent and B, C, … as dilute solutes. The model results in a formulation of Gibbs-energy, which can be minimized. Examples show that the couple and pair formation may influence the equilibrium Gibbs energy markedly.

  1. A self-consistency check for unitary propagation of Hawking quanta

    Science.gov (United States)

    Baker, Daniel; Kodwani, Darsh; Pen, Ue-Li; Yang, I.-Sheng

    2017-11-01

    The black hole information paradox presumes that quantum field theory in curved space-time can provide unitary propagation from a near-horizon mode to an asymptotic Hawking quantum. Instead of invoking conjectural quantum-gravity effects to modify such an assumption, we propose a self-consistency check. We establish an analogy to Feynman’s analysis of a double-slit experiment. Feynman showed that unitary propagation of the interfering particles, namely ignoring the entanglement with the double-slit, becomes an arbitrarily reliable assumption when the screen upon which the interference pattern is projected is infinitely far away. We argue for an analogous self-consistency check for quantum field theory in curved space-time. We apply it to the propagation of Hawking quanta and test whether ignoring the entanglement with the geometry also becomes arbitrarily reliable in the limit of a large black hole. We present curious results to suggest a negative answer, and we discuss how this loss of naive unitarity in QFT might be related to a solution of the paradox based on the soft-hair-memory effect.

  2. Validation study of the magnetically self-consistent inner magnetosphere model RAM-SCB

    Science.gov (United States)

    Yu, Yiqun; Jordanova, Vania; Zaharia, Sorin; Koller, Josef; Zhang, Jichun; Kistler, Lynn M.

    2012-03-01

    The validation of the magnetically self-consistent inner magnetospheric model RAM-SCB developed at Los Alamos National Laboratory is presented here. The model consists of two codes: a kinetic ring current-atmosphere interaction model (RAM) and a 3-D equilibrium magnetic field code (SCB). The validation is conducted by simulating two magnetic storm events and then comparing the model results against a variety of satellite in situ observations, including the magnetic field from Cluster and Polar spacecraft, ion differential flux from the Cluster/CODIF (Composition and Distribution Function) analyzer, and the ground-based SYM-H index. The model prediction of the magnetic field is in good agreement with observations, which indicates the model's capability of representing well the inner magnetospheric field configuration. This provides confidence for the RAM-SCB model to be utilized for field line and drift shell tracing, which are needed in radiation belt studies. While the SYM-H index, which reflects the total ring current energy content, is generally reasonably reproduced by the model using the Weimer electric field model, the modeled ion differential flux clearly depends on the electric field strength, local time, and magnetic activity level. A self-consistent electric field approach may be needed to improve the model performance in this regard.

  3. Bosons system with finite repulsive interaction: self-consistent field method

    International Nuclear Information System (INIS)

    Renatino, M.M.B.

    1983-01-01

    Some static properties of a boson system (T = zero degree Kelvin), under the action of a repulsive potential are studied. For the repulsive potential, a model was adopted consisting of a region where it is constant (r c ), and a decay as 1/r (r > r c ). The self-consistent field approximation used takes into account short range correlations through a local field corrections, which leads to an effective field. The static structure factor S(q-vector) and the effective potential ψ(q-vector) are obtained through a self-consistent calculation. The pair-correlation function g(r-vector) and the energy of the collective excitations E(q-vector) are also obtained, from the structure factor. The density of the system and the parameters of the repulsive potential, that is, its height and the size of the constant region were used as variables for the problem. The results obtained for S(q-vector), g(r-vector) and E(q-vector) for a fixed ratio r o /r c and a variable λ, indicates the raising of a system structure, which is more noticeable when the potential became more repulsive. (author)

  4. Effects of self-consistency in a Green's function description of saturation in nuclear matter

    International Nuclear Information System (INIS)

    Dewulf, Y.; Neck, D. van; Waroquier, M.

    2002-01-01

    The binding energy in nuclear matter is evaluated within the framework of self-consistent Green's function theory, using a realistic nucleon-nucleon interaction. The two-body dynamics is solved at the level of summing particle-particle and hole-hole ladders. We go beyond the on-shell approximation and use intermediary propagators with a discrete-pole structure. A three-pole approximation is used, which provides a good representation of the quasiparticle excitations, as well as reproducing the zeroth- and first-order energy-weighted moments in both the nucleon removal and addition domains of the spectral function. Results for the binding energy are practically independent of the details of the discretization scheme. The main effect of the increased self-consistency is to introduce an additional density dependence, which causes a shift towards lower densities and smaller binding energies, as compared to a (continuous choice) Brueckner calculation with the same interaction. Particle number conservation and the Hugenholz-Van Hove theorem are satisfied with reasonable accuracy

  5. Self-consistent theory of finite Fermi systems and Skyrme–Hartree–Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Saperstein, E. E., E-mail: saper@mbslab.kiae.ru; Tolokonnikov, S. V. [National Research Center Kurchatov Institute (Russian Federation)

    2016-11-15

    Recent results obtained on the basis of the self-consistent theory of finite Fermi systems by employing the energy density functional proposed by Fayans and his coauthors are surveyed. These results are compared with the predictions of Skyrme–Hartree–Fock theory involving several popular versions of the Skyrme energy density functional. Spherical nuclei are predominantly considered. The charge radii of even and odd nuclei and features of low-lying 2{sup +} excitations in semimagic nuclei are discussed briefly. The single-particle energies ofmagic nuclei are examined inmore detail with allowance for corrections to mean-field theory that are induced by particle coupling to low-lying collective surface excitations (phonons). The importance of taking into account, in this problem, nonpole (tadpole) diagrams, which are usually disregarded, is emphasized. The spectroscopic factors of magic and semimagic nuclei are also considered. In this problem, only the surface term stemming from the energy dependence induced in the mass operator by the exchange of surface phonons is usually taken into account. The volume contribution associated with the energy dependence initially present in the mass operator within the self-consistent theory of finite Fermi systems because of the exchange of high-lying particle–hole excitations is also included in the spectroscopic factor. The results of the first studies that employed the Fayans energy density functional for deformed nuclei are also presented.

  6. The self-consistent field model for Fermi systems with account of three-body interactions

    Directory of Open Access Journals (Sweden)

    Yu.M. Poluektov

    2015-12-01

    Full Text Available On the basis of a microscopic model of self-consistent field, the thermodynamics of the many-particle Fermi system at finite temperatures with account of three-body interactions is built and the quasiparticle equations of motion are obtained. It is shown that the delta-like three-body interaction gives no contribution into the self-consistent field, and the description of three-body forces requires their nonlocality to be taken into account. The spatially uniform system is considered in detail, and on the basis of the developed microscopic approach general formulas are derived for the fermion's effective mass and the system's equation of state with account of contribution from three-body forces. The effective mass and pressure are numerically calculated for the potential of "semi-transparent sphere" type at zero temperature. Expansions of the effective mass and pressure in powers of density are obtained. It is shown that, with account of only pair forces, the interaction of repulsive character reduces the quasiparticle effective mass relative to the mass of a free particle, and the attractive interaction raises the effective mass. The question of thermodynamic stability of the Fermi system is considered and the three-body repulsive interaction is shown to extend the region of stability of the system with the interparticle pair attraction. The quasiparticle energy spectrum is calculated with account of three-body forces.

  7. Self-consistent modeling of plasma response to impurity spreading from intense localized source

    International Nuclear Information System (INIS)

    Koltunov, Mikhail

    2012-07-01

    Non-hydrogen impurities unavoidably exist in hot plasmas of present fusion devices. They enter it intrinsically, due to plasma interaction with the wall of vacuum vessel, as well as are seeded for various purposes deliberately. Normally, the spots where injected particles enter the plasma are much smaller than its total surface. Under such conditions one has to expect a significant modification of local plasma parameters through various physical mechanisms, which, in turn, affect the impurity spreading. Self-consistent modeling of interaction between impurity and plasma is, therefore, not possible with linear approaches. A model based on the fluid description of electrons, main and impurity ions, and taking into account the plasma quasi-neutrality, Coulomb collisions of background and impurity charged particles, radiation losses, particle transport to bounding surfaces, is elaborated in this work. To describe the impurity spreading and the plasma response self-consistently, fluid equations for the particle, momentum and energy balances of various plasma components are solved by reducing them to ordinary differential equations for the time evolution of several parameters characterizing the solution in principal details: the magnitudes of plasma density and plasma temperatures in the regions of impurity localization and the spatial scales of these regions. The results of calculations for plasma conditions typical in tokamak experiments with impurity injection are presented. A new mechanism for the condensation phenomenon and formation of cold dense plasma structures is proposed.

  8. An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method

    Science.gov (United States)

    Ding, Kun; Chan, C. T.

    2018-02-01

    Plasmonics has attracted much attention not only because it has useful properties such as strong field enhancement, but also because it reveals the quantum nature of matter. To handle quantum plasmonics effects, ab initio packages or empirical Feibelman d-parameters have been used to explore the quantum correction of plasmonic resonances. However, most of these methods are formulated within the quasi-static framework. The self-consistent hydrodynamics model offers a reliable approach to study quantum plasmonics because it can incorporate the quantum effect of the electron gas into classical electrodynamics in a consistent manner. Instead of the standard scattering method, we formulate the self-consistent hydrodynamics method as an eigenvalue problem to study quantum plasmonics with electrons and photons treated on the same footing. We find that the eigenvalue approach must involve a global operator, which originates from the energy functional of the electron gas. This manifests the intrinsic nonlocality of the response of quantum plasmonic resonances. Our model gives the analytical forms of quantum corrections to plasmonic modes, incorporating quantum electron spill-out effects and electrodynamical retardation. We apply our method to study the quantum surface plasmon polariton for a single flat interface.

  9. A pedestal temperature model with self-consistent calculation of safety factor and magnetic shear

    International Nuclear Information System (INIS)

    Onjun, T; Siriburanon, T; Onjun, O

    2008-01-01

    A pedestal model based on theory-motivated models for the pedestal width and the pedestal pressure gradient is developed for the temperature at the top of the H-mode pedestal. The pedestal width model based on magnetic shear and flow shear stabilization is used in this study, where the pedestal pressure gradient is assumed to be limited by first stability of infinite n ballooning mode instability. This pedestal model is implemented in the 1.5D BALDUR integrated predictive modeling code, where the safety factor and magnetic shear are solved self-consistently in both core and pedestal regions. With the self-consistently approach for calculating safety factor and magnetic shear, the effect of bootstrap current can be correctly included in the pedestal model. The pedestal model is used to provide the boundary conditions in the simulations and the Multi-mode core transport model is used to describe the core transport. This new integrated modeling procedure of the BALDUR code is used to predict the temperature and density profiles of 26 H-mode discharges. Simulations are carried out for 13 discharges in the Joint European Torus and 13 discharges in the DIII-D tokamak. The average root-mean-square deviation between experimental data and the predicted profiles of the temperature and the density, normalized by their central values, is found to be about 14%

  10. Development of a self-consistent lightning NOx simulation in large-scale 3-D models

    Science.gov (United States)

    Luo, Chao; Wang, Yuhang; Koshak, William J.

    2017-03-01

    We seek to develop a self-consistent representation of lightning NOx (LNOx) simulation in a large-scale 3-D model. Lightning flash rates are parameterized functions of meteorological variables related to convection. We examine a suite of such variables and find that convective available potential energy and cloud top height give the best estimates compared to July 2010 observations from ground-based lightning observation networks. Previous models often use lightning NOx vertical profiles derived from cloud-resolving model simulations. An implicit assumption of such an approach is that the postconvection lightning NOx vertical distribution is the same for all deep convection, regardless of geographic location, time of year, or meteorological environment. Detailed observations of the lightning channel segment altitude distribution derived from the NASA Lightning Nitrogen Oxides Model can be used to obtain the LNOx emission profile. Coupling such a profile with model convective transport leads to a more self-consistent lightning distribution compared to using prescribed postconvection profiles. We find that convective redistribution appears to be a more important factor than preconvection LNOx profile selection, providing another reason for linking the strength of convective transport to LNOx distribution.

  11. Self-consistent nonlinear transmission line model of standing wave effects in a capacitive discharge

    International Nuclear Information System (INIS)

    Chabert, P.; Raimbault, J.L.; Rax, J.M.; Lieberman, M.A.

    2004-01-01

    It has been shown previously [Lieberman et al., Plasma Sources Sci. Technol. 11, 283 (2002)], using a non-self-consistent model based on solutions of Maxwell's equations, that several electromagnetic effects may compromise capacitive discharge uniformity. Among these, the standing wave effect dominates at low and moderate electron densities when the driving frequency is significantly greater than the usual 13.56 MHz. In the present work, two different global discharge models have been coupled to a transmission line model and used to obtain the self-consistent characteristics of the standing wave effect. An analytical solution for the wavelength λ was derived for the lossless case and compared to the numerical results. For typical plasma etching conditions (pressure 10-100 mTorr), a good approximation of the wavelength is λ/λ 0 ≅40 V 0 1/10 l -1/2 f -2/5 , where λ 0 is the wavelength in vacuum, V 0 is the rf voltage magnitude in volts at the discharge center, l is the electrode spacing in meters, and f the driving frequency in hertz

  12. The multi-configuration self-consistent field method within a polarizable embedded framework

    Science.gov (United States)

    Hedegârd, Erik Donovan; List, Nanna H.; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob

    2013-07-01

    We present a detailed derivation of Multi-Configuration Self-Consistent Field (MCSCF) optimization and linear response equations within the polarizable embedding scheme: PE-MCSCF. The MCSCF model enables a proper description of multiconfigurational effects in reaction paths, spin systems, excited states, and other properties which cannot be described adequately with current implementations of polarizable embedding in density functional or coupled cluster theories. In the PE-MCSCF scheme the environment surrounding the central quantum mechanical system is represented by distributed multipole moments and anisotropic dipole-dipole polarizabilities. The PE-MCSCF model has been implemented in DALTON. As a preliminary application, the low lying valence states of acetone and uracil in water has been calculated using Complete Active Space Self-Consistent Field (CASSCF) wave functions. The dynamics of the water environment have been simulated using a series of snapshots generated from classical Molecular Dynamics. The calculated shifts from gas-phase to water display between good and excellent correlation with experiment and previous calculations. As an illustration of another area of potential applications we present calculations of electronic transitions in the transition metal complex, [Fe(NO)(CN)5]2 - in a micro-solvated environment. This system is highly multiconfigurational and the influence of solvation is significant.

  13. Self-consistent modeling of laminar electrohydrodynamic plumes from ultra-sharp needles in cyclohexane

    Science.gov (United States)

    Becerra, Marley; Frid, Henrik; Vázquez, Pedro A.

    2017-12-01

    This paper presents a self-consistent model of electrohydrodynamic (EHD) laminar plumes produced by electron injection from ultra-sharp needle tips in cyclohexane. Since the density of electrons injected into the liquid is well described by the Fowler-Nordheim field emission theory, the injection law is not assumed. Furthermore, the generation of electrons in cyclohexane and their conversion into negative ions is included in the analysis. Detailed steady-state characteristics of EHD plumes under weak injection and space-charge limited injection are studied. It is found that the plume characteristics far from both electrodes and under weak injection can be accurately described with an asymptotic simplified solution proposed by Vazquez et al. ["Dynamics of electrohydrodynamic laminar plumes: Scaling analysis and integral model," Phys. Fluids 12, 2809 (2000)] when the correct longitudinal electric field distribution and liquid velocity radial profile are used as input. However, this asymptotic solution deviates from the self-consistently calculated plume parameters under space-charge limited injection since it neglects the radial variations of the electric field produced by a high-density charged core. In addition, no significant differences in the model estimates of the plume are found when the simulations are obtained either with the finite element method or with a diffusion-free particle method. It is shown that the model also enables the calculation of the current-voltage characteristic of EHD laminar plumes produced by electron field emission, with good agreement with measured values reported in the literature.

  14. Computation of the bluff-body sound generation by a self-consistent mean flow formulation

    Science.gov (United States)

    Fani, A.; Citro, V.; Giannetti, F.; Auteri, F.

    2018-03-01

    The sound generated by the flow around a circular cylinder is numerically investigated by using a finite-element method. In particular, we study the acoustic emissions generated by the flow past the bluff body at low Mach and Reynolds numbers. We perform a global stability analysis by using the compressible linearized Navier-Stokes equations. The resulting direct global mode provides detailed information related to the underlying hydrodynamic instability and data on the acoustic field generated. In order to recover the intensity of the produced sound, we apply the self-consistent model for non-linear saturation proposed by Mantič-Lugo, Arratia, and Gallaire ["Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake," Phys. Rev. Lett. 113, 084501 (2014)]. The application of this model allows us to compute the amplitude of the resulting linear mode and the effects of saturation on the mode structure and acoustic field. Our results show excellent agreement with those obtained by a full compressible simulation direct numerical simulation and those derived by the application of classical acoustic analogy formulations.

  15. Self-consistent separable random-phase approximation for Skyrme forces: Giant resonances in axial nuclei

    International Nuclear Information System (INIS)

    Nesterenko, V. O.; Dolci, D. S.; Kleinig, W.; Kvasil, J.; Vesely, P.; Reinhard, P.-G.

    2006-01-01

    We formulate the self-consistent separable random phase approximation (SRPA) method and specify it for Skyrme forces with pairing for the case of axially symmetric deformed nuclei. The factorization of the residual interaction allows diagonalization of high-ranking RPA matrices to be avoided, which dramatically reduces the computational expense. This advantage is crucial for the systems with a huge configuration space, first of all for deformed nuclei. SRPA self-consistently takes into account the contributions of both time-even and time-odd Skyrme terms as well as of the Coulomb force and pairing. The method is implemented to describe isovector E1 and isoscalar E2 giant resonances in a representative set of deformed nuclei: 154 Sm, 238 U, and 254 No. Four different Skyrme parameterizations (SkT6, SkM*, SLy6, and SkI3) are employed to explore the dependence of the strength distributions on some basic characteristics of the Skyrme functional and nuclear matter. In particular, we discuss the role of isoscalar and isovector effective masses and their relation to time-odd contributions. The high sensitivity of the right flank of E1 resonance to different Skyrme forces and the related artificial structure effects are analyzed

  16. An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method.

    Science.gov (United States)

    Ding, Kun; Chan, C T

    2018-02-28

    Plasmonics has attracted much attention not only because it has useful properties such as strong field enhancement, but also because it reveals the quantum nature of matter. To handle quantum plasmonics effects, ab initio packages or empirical Feibelman d-parameters have been used to explore the quantum correction of plasmonic resonances. However, most of these methods are formulated within the quasi-static framework. The self-consistent hydrodynamics model offers a reliable approach to study quantum plasmonics because it can incorporate the quantum effect of the electron gas into classical electrodynamics in a consistent manner. Instead of the standard scattering method, we formulate the self-consistent hydrodynamics method as an eigenvalue problem to study quantum plasmonics with electrons and photons treated on the same footing. We find that the eigenvalue approach must involve a global operator, which originates from the energy functional of the electron gas. This manifests the intrinsic nonlocality of the response of quantum plasmonic resonances. Our model gives the analytical forms of quantum corrections to plasmonic modes, incorporating quantum electron spill-out effects and electrodynamical retardation. We apply our method to study the quantum surface plasmon polariton for a single flat interface.

  17. Self-Consistent Hybrid Functional Calculations: Implications for Structural, Electronic, and Optical Properties of Oxide Semiconductors

    Science.gov (United States)

    Fritsch, Daniel; Morgan, Benjamin J.; Walsh, Aron

    2017-01-01

    The development of new exchange-correlation functionals within density functional theory means that increasingly accurate information is accessible at moderate computational cost. Recently, a newly developed self-consistent hybrid functional has been proposed (Skone et al., Phys. Rev. B 89:195112, 2014), which allows for a reliable and accurate calculation of material properties using a fully ab initio procedure. Here, we apply this new functional to wurtzite ZnO, rutile SnO2, and rocksalt MgO. We present calculated structural, electronic, and optical properties, which we compare to results obtained with the PBE and PBE0 functionals. For all semiconductors considered here, the self-consistent hybrid approach gives improved agreement with experimental structural data relative to the PBE0 hybrid functional for a moderate increase in computational cost, while avoiding the empiricism common to conventional hybrid functionals. The electronic properties are improved for ZnO and MgO, whereas for SnO2 the PBE0 hybrid functional gives the best agreement with experimental data.

  18. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xufen [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, 230026 (China); Wang, Yougang [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Feix, Martin [CNRS, UMR 7095 and UPMC, Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, F-75014 Paris (France); Zhao, HongSheng, E-mail: xufenwu@ustc.edu.cn [School of Physics and Astronomy, University of St Andrews, North Haugh, Fife, KY16 9SS (United Kingdom)

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N -body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.

  19. Rotating relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K.

    1991-07-21

    Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.

  20. Relativistic klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Azuma, O.; Callin, R.S.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs

  1. Self-consistent multidimensional electron kinetic model for inductively coupled plasma sources

    Science.gov (United States)

    Dai, Fa Foster

    Inductively coupled plasma (ICP) sources have received increasing interest in microelectronics fabrication and lighting industry. In 2-D configuration space (r, z) and 2-D velocity domain (νθ,νz), a self- consistent electron kinetic analytic model is developed for various ICP sources. The electromagnetic (EM) model is established based on modal analysis, while the kinetic analysis gives the perturbed Maxwellian distribution of electrons by solving Boltzmann-Vlasov equation. The self- consistent algorithm combines the EM model and the kinetic analysis by updating their results consistently until the solution converges. The closed-form solutions in the analytical model provide rigorous and fast computing for the EM fields and the electron kinetic behavior. The kinetic analysis shows that the RF energy in an ICP source is extracted by a collisionless dissipation mechanism, if the electron thermovelocity is close to the RF phase velocities. A criterion for collisionless damping is thus given based on the analytic solutions. To achieve uniformly distributed plasma for plasma processing, we propose a novel discharge structure with both planar and vertical coil excitations. The theoretical results demonstrate improved uniformity for the excited azimuthal E-field in the chamber. Non-monotonic spatial decay in electric field and space current distributions was recently observed in weakly- collisional plasmas. The anomalous skin effect is found to be responsible for this phenomenon. The proposed model successfully models the non-monotonic spatial decay effect and achieves good agreements with the measurements for different applied RF powers. The proposed analytical model is compared with other theoretical models and different experimental measurements. The developed model is also applied to two kinds of ICP discharges used for electrodeless light sources. One structure uses a vertical internal coil antenna to excite plasmas and another has a metal shield to prevent the

  2. Self-consistent clustering analysis: an efficient multiscale scheme for inelastic heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.; Bessa, M. A.; Liu, W.K.

    2017-10-25

    A predictive computational theory is shown for modeling complex, hierarchical materials ranging from metal alloys to polymer nanocomposites. The theory can capture complex mechanisms such as plasticity and failure that span across multiple length scales. This general multiscale material modeling theory relies on sound principles of mathematics and mechanics, and a cutting-edge reduced order modeling method named self-consistent clustering analysis (SCA) [Zeliang Liu, M.A. Bessa, Wing Kam Liu, “Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials,” Comput. Methods Appl. Mech. Engrg. 306 (2016) 319–341]. SCA reduces by several orders of magnitude the computational cost of micromechanical and concurrent multiscale simulations, while retaining the microstructure information. This remarkable increase in efficiency is achieved with a data-driven clustering method. Computationally expensive operations are performed in the so-called offline stage, where degrees of freedom (DOFs) are agglomerated into clusters. The interaction tensor of these clusters is computed. In the online or predictive stage, the Lippmann-Schwinger integral equation is solved cluster-wise using a self-consistent scheme to ensure solution accuracy and avoid path dependence. To construct a concurrent multiscale model, this scheme is applied at each material point in a macroscale structure, replacing a conventional constitutive model with the average response computed from the microscale model using just the SCA online stage. A regularized damage theory is incorporated in the microscale that avoids the mesh and RVE size dependence that commonly plagues microscale damage calculations. The SCA method is illustrated with two cases: a carbon fiber reinforced polymer (CFRP) structure with the concurrent multiscale model and an application to fatigue prediction for additively manufactured metals. For the CFRP problem, a speed up estimated to be about

  3. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  4. Relativistic Astrophysics

    Science.gov (United States)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  5. Self-consistent model of the Rayleigh--Taylor instability in ablatively accelerated laser plasma

    International Nuclear Information System (INIS)

    Bychkov, V.V.; Golberg, S.M.; Liberman, M.A.

    1994-01-01

    A self-consistent approach to the problem of the growth rate of the Rayleigh--Taylor instability in laser accelerated targets is developed. The analytical solution of the problem is obtained by solving the complete system of the hydrodynamical equations which include both thermal conductivity and energy release due to absorption of the laser light. The developed theory provides a rigorous justification for the supplementary boundary condition in the limiting case of the discontinuity model. An analysis of the suppression of the Rayleigh--Taylor instability by the ablation flow is done and it is found that there is a good agreement between the obtained solution and the approximate formula σ = 0.9√gk - 3u 1 k, where g is the acceleration, u 1 is the ablation velocity. This paper discusses different regimes of the ablative stabilization and compares them with previous analytical and numerical works

  6. Multifractality and quantum diffusion from self-consistent theory of localization

    Energy Technology Data Exchange (ETDEWEB)

    Suslov, I. M., E-mail: suslov@kapitza.ras.ru [Kapitza Institute for Physical Problems (Russian Federation)

    2015-11-15

    Multifractal properties of wave functions in a disordered system can be derived from self-consistent theory of localization by Vollhardt and Wölfle. A diagrammatic interpretation of results allows to obtain all scaling relations used in numerical experiments. The arguments are given that the one-loop Wegner result for a space dimension d = 2 + ϵ is exact, so the multifractal spectrum is strictly parabolical. The σ-models are shown to be deficient at the four-loop level and the possible reasons of that are discussed. The extremely slow convergence to the thermodynamic limit is demonstrated. The open question on the relation between multifractality and a spatial dispersion of the diffusion coefficient D(ω, q) is resolved in the compromise manner due to ambiguity of the D(ω, q) definition. Comparison is made with the extensive numerical material.

  7. Studies of self-consistent field structure in a quasi-optical gyrotron

    International Nuclear Information System (INIS)

    Antonsen, T.M. Jr.

    1993-04-01

    The presence of an electron beam in a quasi-optical gyrotron cavity alters the structure of the fields from that of the empty cavity. A computer code has been written which calculates this alteration for either an electron beam or a thin dielectric tube placed in the cavity. Experiments measuring the quality factor of such a cavity performed for the case of a dielectric tube and the results agree with the predictions of the code. Simulations of the case of an electron beam indicate that self-consistent effects can be made small in that almost all the power leaves the cavity in a symmetric gaussian-like mode provided the resonator parameters are chosen carefully. (author) 6 figs., 1 tab., 13 refs

  8. Fast vibrational configuration interaction using generalized curvilinear coordinates and self-consistent basis.

    Science.gov (United States)

    Scribano, Yohann; Lauvergnat, David M; Benoit, David M

    2010-09-07

    In this paper, we couple a numerical kinetic-energy operator approach to the direct-vibrational self-consistent field (VSCF)/vibrational configuration interaction (VCI) method for the calculation of vibrational anharmonic frequencies. By combining this with fast-VSCF, an efficient direct evaluation of the ab initio potential-energy surface (PES), we introduce a general formalism for the computation of vibrational bound states of molecular systems exhibiting large-amplitude motion such as methyl-group torsion. We validate our approach on an analytical two-dimensional model and apply it to the methanol molecule. We show that curvilinear coordinates lead to a significant improvement in the VSCF/VCI description of the torsional frequency in methanol, even for a simple two-mode coupling expansion of the PES. Moreover, we demonstrate that a curvilinear formulation of the fast-VSCF/VCI scheme improves its speed by a factor of two and its accuracy by a factor of 3.

  9. Finite volume method for self-consistent field theory of polymers: Material conservation and application

    Science.gov (United States)

    Yong, Daeseong; Kim, Jaeup U.

    2017-12-01

    For the purpose of checking material conservation of various numerical algorithms used in the self-consistent-field theory (SCFT) of polymeric systems, we develop an algebraic method using matrix and bra-ket notation, which traces the Hermiticity of the product of the volume and evolution matrices. Algebraic tests for material conservation reveal that the popular pseudospectral method in the Cartesian grid conserves material perfectly, while the finite-volume method (FVM) is the proper tool when real-space SCFT with the Crank-Nicolson method is adopted in orthogonal coordinate systems. We also find that alternating direction implicit methods combined with the FVM exhibit small mass errors in the SCFT calculation. By introducing fractional cells in the FVM formulation, accurate SCFT calculations are performed for systems with irregular geometries and the results are consistent with previous experimental and theoretical works.

  10. Self-Consistent Multiscale Theory of Internal Wave, Mean-Flow Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Holm, D.D.; Aceves, A.; Allen, J.S.; Alber, M.; Camassa, R.; Cendra, H.; Chen, S.; Duan, J.; Fabijonas, B.; Foias, C.; Fringer, O.; Gent, P.R.; Jordan, R.; Kouranbaeva, S.; Kovacic, G.; Levermore, C.D.; Lythe, G.; Lifschitz, A.; Marsden, J.E.; Margolin, L.; Newberger, P.; Olson, E.; Ratiu, T.; Shkoller, S.; Timofeyev, I.; Titi, E.S.; Wynn, S.

    1999-06-03

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The research reported here produced new effective ways to solve multiscale problems in nonlinear fluid dynamics, such as turbulent flow and global ocean circulation. This was accomplished by first developing new methods for averaging over random or rapidly varying phases in nonlinear systems at multiple scales. We then used these methods to derive new equations for analyzing the mean behavior of fluctuation processes coupled self consistently to nonlinear fluid dynamics. This project extends a technology base relevant to a variety of multiscale problems in fluid dynamics of interest to the Laboratory and applies this technology to those problems. The project's theoretical and mathematical developments also help advance our understanding of the scientific principles underlying the control of complex behavior in fluid dynamical systems with strong spatial and temporal internal variability.

  11. Non local thermodynamic equilibrium self-consistent average atom model for plasma physics

    International Nuclear Information System (INIS)

    Faussurier, G.; Blancard, Ch.; Berthier, E.

    2000-01-01

    A time-dependent collisional-radiative average-atom model is presented to study statistical properties of highly-charged ion plasmas in off-equilibrium conditions. Atomic structure is described either with a screened-hydrogenic model including l-splitting, or by calculating one electron states in a self-consistent average-atom potential. Collisional and radiative excitation/deexcitation and ionization/recombination rats, as well as auto-ionization and dielectronic recombination rates, are formulated within the average-configuration framework. A good agreement with experiment is found for the charge-state distribution of a gold plasma at electron and density temperature equal to 6 x 10 20 cm -3 and 2200 eV. (author)

  12. Dynamical self-consistent description of exotic structures in nuclear matter at subnuclear densities

    CERN Document Server

    de la Mota, Virginia; Figerou, Sébastien

    2010-01-01

    We investigate the occurrence of exotic structures in nuclear matter at subnuclear densities within the framework of the dywan model. This approach, developed ab initio for the description of nuclear collisions, is a microscopic dynamical approach in which the numerical treatment makes use of wavelet representation techniques. Before tackling the effects of multi-particle correlations on the overall dynamics, we focused the present work on the study of cold matter within a pure mean field description. Starting from inhomogeneous initial conditions provided by an arrangement of nuclei located on an initial crystalline lattice, the exotic structures result from the dynamical self-consistent evolution. The nuclear system can freely self-organize, it can modify or even break the lattice structure and the initial symmetries of matter distribution. This approach goes beyond the Wigner-Seitz approximation and no assumption of final shapes of matter is made. In this framework, different effects, as the sensitivity of...

  13. A self-consistent model for polycrystal deformation. Description and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B.; Lorentzen, T.

    1997-04-01

    This report is a manual for the ANSI C implementation of an incremental elastic-plastic rate-insensitive self-consistent polycrystal deformation model based on (Hutchinson 1970). The model is furthermore described in the Ph.D. thesis by Clausen (Clausen 1997). The structure of the main program, sc{sub m}odel.c, and its subroutines are described with flow-charts. Likewise the pre-processor, sc{sub i}ni.c, is described with a flowchart. Default values of all the input parameters are given in the pre-processor, but the user is able to select from other pre-defined values or enter new values. A sample calculation is made and the results are presented as plots and examples of the output files are shown. (au) 4 tabs., 28 ills., 17 refs.

  14. Self-consistent RPA and the time-dependent density matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Schuck, P. [Institut de Physique Nucleaire, Orsay (France); CNRS et Universite Joseph Fourier, Laboratoire de Physique et Modelisation des Milieux Condenses, Grenoble (France); Tohyama, M. [Kyorin University School of Medicine, Mitaka, Tokyo (Japan)

    2016-10-15

    The time-dependent density matrix (TDDM) or BBGKY (Bogoliubov, Born, Green, Kirkwood, Yvon) approach is decoupled and closed at the three-body level in finding a natural representation of the latter in terms of a quadratic form of two-body correlation functions. In the small amplitude limit an extended RPA coupled to an also extended second RPA is obtained. Since including two-body correlations means that the ground state cannot be a Hartree-Fock state, naturally the corresponding RPA is upgraded to Self-Consistent RPA (SCRPA) which was introduced independently earlier and which is built on a correlated ground state. SCRPA conserves all the properties of standard RPA. Applications to the exactly solvable Lipkin and the 1D Hubbard models show good performances of SCRPA and TDDM. (orig.)

  15. Self-consistent Hartree-Fock RPA calculations in 208Pb

    Science.gov (United States)

    Taqi, Ali H.; Ali, Mohammed S.

    2018-01-01

    The nuclear structure of 208Pb is studied in the framework of the self-consistent random phase approximation (SCRPA). The Hartree-Fock mean field and single particle states are used to implement a completely SCRPA with Skyrme-type interactions. The Hamiltonian is diagonalised within a model space using five Skyrme parameter sets, namely LNS, SkI3, SkO, SkP and SLy4. In view of the huge number of the existing Skyrme-force parameterizations, the question remains which of them provide the best description of data. The approach attempts to accurately describe the structure of the spherical even-even nucleus 208Pb. To illustrate our approach, we compared the binding energy, charge density distribution, excitation energy levels scheme with the available experimental data. Moreover, we calculated isoscalar and isovector monopole, dipole, and quadrupole transition densities and strength functions.

  16. Dipole response in neutron-rich nuclei within self-consistent approaches using realistic potentials

    Directory of Open Access Journals (Sweden)

    Lo Iudice N.

    2015-01-01

    Full Text Available A nucleon-nucleon chiral potential with a corrective density dependent term simulating a three-body force is used in a self-consistent calculation of the dipole strength distribution in neutron-rich nuclei, with special attention to the low-lying spectra associated to the pygmy resonance. A Hartree-Fock-Bogoliubov basis is generated and adopted in Tamm-Dancoff and random-phase approximations and, then, in an equation of motion approach which includes a basis of two-phonon states. The direct use of the mentioned chiral potential improves the description of both giant and pygmy dipole modes with respect to other realistic interactions. Moreover, the inclusion of the two-phonon states induces a pronounced fragmentation of the giant resonance and enhances the density of the low-lying levels in the pygmy region in agreement with recent experiments.

  17. Optimization of nanowire DNA sensor sensitivity using self-consistent simulation

    KAUST Repository

    Baumgartner, S

    2011-09-26

    In order to facilitate the rational design and the characterization of nanowire field-effect sensors, we have developed a model based on self-consistent charge-transport equations combined with interface conditions for the description of the biofunctionalized surface layer at the semiconductor/electrolyte interface. Crucial processes at the interface, such as the screening of the partial charges of the DNA strands and the influence of the angle of the DNA strands with respect to the nanowire, are computed by a Metropolis Monte Carlo algorithm for charged molecules at interfaces. In order to investigate the sensing mechanism of the device, we have computed the current-voltage characteristics, the electrostatic potential and the concentrations of electrons and holes. Very good agreement with measurements has been found and optimal device parameters have been identified. Our approach provides the capability to study the device sensitivity, which is of fundamental importance for reliable sensing. © IOP Publishing Ltd.

  18. Simultaneous determination of electron beam profile and material response using self-consistent iterative method

    Science.gov (United States)

    Kandel, Yudhishthir; Denbeaux, Gregory

    2016-08-01

    We develop a novel iterative method to accurately measure electron beam shape (current density distribution) and monotonic material response as a function of position. A common method is to scan an electron beam across a knife edge along many angles to give an approximate measure of the beam profile, however such scans are not easy to obtain in all systems. The present work uses only an electron beam and multiple exposed regions of a thin film of photoresist to measure the complete beam profile for any beam shape, where the material response is characterized externally. This simplifies the setup of new experimental tools. We solve for self-consistent photoresist thickness loss response to dose and the electron beam profile simultaneously by optimizing a novel functional iteratively. We also show the successful implementation of the method in a real world data set corrupted by noise and other experimental variabilities.

  19. SELF-CONSISTENT LANGEVIN SIMULATION OF COULOMB COLLISIONS IN CHARGED-PARTICLE BEAMS

    International Nuclear Information System (INIS)

    QIANG, J.; RYNE, R.; HABIB, S.

    2000-01-01

    In many plasma physics and charged-particle beam dynamics problems, Coulomb collisions are modeled by a Fokker-Planck equation. In order to incorporate these collisions, we present a three-dimensional parallel Langevin simulation method using a Particle-In-Cell (PIC) approach implemented on high-performance parallel computers. We perform, for the first time, a fully self-consistent simulation, in which the FR-iction and diffusion coefficients are computed FR-om first principles. We employ a two-dimensional domain decomposition approach within a message passing programming paradigm along with dynamic load balancing. Object oriented programming is used to encapsulate details of the communication syntax as well as to enhance reusability and extensibility. Performance tests on the SGI Origin 2000 and the Cray T3E-900 have demonstrated good scalability. Work is in progress to apply our technique to intrabeam scattering in accelerators

  20. Self-Consistent Electron-Cloud Simulation for Long Proton Bunches

    CERN Document Server

    Shishlo, Andrei P; Danilov, Viatcheslav V; Henderson, Stuart; Holmes, Jeffrey Alan; Lee, Shyh-Yuan; Macek, Robert J; Sato, Yoichi

    2005-01-01

    The results of numerical electron-cloud simulations for long-bunch proton beams in accumulator rings are presented and compared with data from the Proton Storage Ring at LANL. The frequency spectra and growth rate of proton-bunch transverse instabilities are studied as functions of the RF cavity voltage, external magnetic fields, beam pipe surface properties, and other factors. We used the recently developed electron-cloud module in the ORBIT code. The model includes a fully self-consistent coupled treatment of the "proton bunch - electron-cloud" dynamics and the multipacting process with a realistic secondary emission surface model. Realistic lattices and proton bunch distributions are used. The efficiency of electron-cloud instability suppression has also been studied using a new ORBIT model.

  1. Similarities between Prescott Lecky's theory of self-consistency and Carl Rogers' self-theory.

    Science.gov (United States)

    Merenda, Peter F

    2010-10-01

    The teachings of Prescott Lecky on the self-concept at Columbia University in the 1920s and 1930s and the posthumous publications of his book on self-consistency beginning in 1945 are compared with the many publications of Carl Rogers on the self-concept beginning in the early 1940s. Given that Rogers was a graduate student at Columbia in the 1920s and 1930s, the striking similarities between these two theorists, as well as claims attributed to Rogers by Rogers' biographers and writers who have quoted Rogers on his works relating to self-theory, strongly suggest that Rogers borrowed from Lecky without giving him the proper credit. Much of Rogers' writings on the self-concept included not only terms and concepts which were original with Lecky, but at times these were actually identical.

  2. Self-consistent Cooper-Frye freeze-out of a viscous fluid to particles

    Science.gov (United States)

    Wolff, Zack; Molnar, Denes

    2014-09-01

    Comparing hydrodynamic simulations to heavy-ion data inevitably requires the conversion of the fluid to particles. This conversion, typically done in the Cooper-Frye formalism, is ambiguous for viscous fluids. We compute self-consistent phase space corrections by solving the linearized Boltzmann equation and contrast the solutions to those obtained using the ad-hoc "democratic Grad" ansatz typically employed in the literature where coefficients are independent of particle dynamics. Solutions are calculated analytically for a massless gas and numerically for both a pion-nucleon gas and for the general case of a hadron resonance gas. We find that the momentum dependence of the corrections in all systems investigated is best fit by a power close to 3/2 rather than the typically used quadratic ansatz. The effects on harmonic flow coefficients v2 and v4 are substantial, and should be taken into account when extracting medium properties from experimental data.

  3. Representation independent algorithms for molecular response calculations in time-dependent self-consistent field theories

    Energy Technology Data Exchange (ETDEWEB)

    Tretiak, Sergei [Los Alamos National Laboratory

    2008-01-01

    Four different numerical algorithms suitable for a linear scaling implementation of time-dependent Hartree-Fock and Kohn-Sham self-consistent field theories are examined. We compare the performance of modified Lanczos, Arooldi, Davidson, and Rayleigh quotient iterative procedures to solve the random-phase approximation (RPA) (non-Hermitian) and Tamm-Dancoff approximation (TDA) (Hermitian) eigenvalue equations in the molecular orbital-free framework. Semiempirical Hamiltonian models are used to numerically benchmark algorithms for the computation of excited states of realistic molecular systems (conjugated polymers and carbon nanotubes). Convergence behavior and stability are tested with respect to a numerical noise imposed to simulate linear scaling conditions. The results single out the most suitable procedures for linear scaling large-scale time-dependent perturbation theory calculations of electronic excitations.

  4. Multiconfiguration self-consistent field method based on superposition of singly excited configurations

    International Nuclear Information System (INIS)

    Malykhanov, Yu.B.; Bochkova, R.V.

    1986-01-01

    The LCAO approximation has been used in deriving the equations in the multiconfiguration self-consistent field method, in which the function is taken as the superposition of the ground configuration and a singly excited singlet one (the MCSCF CI method). In the energy functional, one can vary not only the configurational factors and the molecular orbitals (LCAO coefficients) but also parameters governing the basis functions in a nonlinear fashion. The formulation in density-matrix terms enables one to overlook the individual configurational factors and LCAO coefficients and to operate with entire matrices constructed from them. There is a discussion of possible ways of solving the equations iteratively and of the area of application

  5. A self-consistent TB-LMTO-augmented space recursion method for disordered binary alloys

    Science.gov (United States)

    Chakrabarti, A.; Mookerjee, A.

    2005-03-01

    We developed a complete self-consistent TB-LMTO-Augmented space recursion (ASR) method for calculating configurational average properties of substitutionally disordered binary alloys. We applied our method to fcc based Cu-Ni, Ag-Pd for different concentrations of constituent elements and body-centered cubic based ferromagnetic Fe-V (50-50) alloy. For this systems we investigated the convergence of total energy and l-dependent potential parameters, charges, magnetic moment, energy moments of density of states with the number of iterations. Our results show good agreement with the existing calculations and also with the experimental results where it is available. The Madelung energy correction due to the charge transfer has also been included by the method developed by Ruban et al.

  6. Elastoplastic properties of duplex steel determined using neutron diffraction and self-consistent model

    International Nuclear Information System (INIS)

    Baczmanski, A.; Braham, C.

    2004-01-01

    A new method for determining the parameters characterising elastoplastic deformation of two-phase material is proposed. The method is based on the results of neutron diffraction and mechanical experiments, which are analysed using the self-consistent rate-independent model of elastoplastic deformation. The neutron diffraction method has been applied to determine the lattice strains and diffraction peak broadening in two-phase austeno-ferritic steel during uniaxial tensile test. The elastoplastic model was used to predict evolution of internal stresses and critical resolved shear stresses. Calculations based on this model were successfully compared with experimental results and the parameters characterising elastoplastic deformation were determined for both phases of duplex steel

  7. Study of stress localisation in polycrystalline grains using self-consistent modelling and neutron diffraction

    Science.gov (United States)

    Baczmański, A.; Gaj, A.; Le Joncour, L.; Wroński, S.; François, M.; Panicaud, B.; Braham, C.; Paradowska, A. M.

    2012-08-01

    The time-of-flight neutron diffraction technique and the elastoplastic self-consistent model were used to study the behaviour of single and multi-phase materials. Critical resolved shear stresses and hardening parameters in austenitic and austenitic-ferritic steels were found by analysing the evolution of the lattice strains measured during tensile tests. Special attention was paid to the changes of the grain stresses occurring due to transition from elastic to plastic deformation. Using a new method of data analysis, the variation of the stress localisation tensor as a function of macrostress was measured. The experimental results were successfully compared with model predictions for both phases of the duplex steel and also for the austenitic sample.

  8. Self-consistent depth profiling and imaging of GaN-based transistors using ion microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Redondo-Cubero, A., E-mail: andres.redondo@uam.es [IPFN, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Universidade de Lisboa, 2686-953 Bobadela (Portugal); Departamento de Física Aplicada y Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Corregidor, V. [IPFN, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Universidade de Lisboa, 2686-953 Bobadela (Portugal); Vázquez, L. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid (Spain); Alves, L.C. [C2TN, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Universidade de Lisboa, 2686-953 Bobadela (Portugal)

    2015-04-01

    Using an ion microprobe, a comprehensive lateral and in-depth characterization of a single GaN-based high electron mobility transistor is carried out by means of Rutherford backscattering spectrometry (RBS) in combination with particle induced X-ray emission (PIXE). Elemental distribution was obtained for every individual section of the device (wafer, gate and source contact), identifying the basic constituents of the transistor (including the detection of the passivant layer) and checking its homogeneity. A self-consistent analysis of each individual regions of the transistor was carried out with a simultaneous fit of RBS and PIXE spectra with two different beam conditions. Following this approach, the quantification of the atomic content and the layer thicknesses was successfully achieved overcoming the mass-depth ambiguity of certain elements.

  9. Self-consistence equations for extended Feynman rules in quantum chromodynamics

    International Nuclear Information System (INIS)

    Wielenberg, A.

    2005-01-01

    In this thesis improved solutions for Green's functions are obtained. First the for this thesis essential techniques and concepts of QCD as euclidean field theory are presented. After a discussion of the foundations of the extended approach for the Feynman rules of QCD with a systematic approach for the 4-gluon vertex a modified renormalization scheme for the extended approach is developed. Thereafter the resummation of the Dyson-Schwinger equations (DSE) by the appropriately modified Bethe-Salpeter equation is discussed. Then the leading divergences for the 1-loop graphs of the resummed DSE are determined. Thereafter the equation-of-motion condensate is defined as result of an operator-product expansion. Then the self-consistency equations for the extended approaches are defined and numerically solved. (HSI)

  10. Comparison of self-consistent calculations of the static polarizability of atoms and molecules

    International Nuclear Information System (INIS)

    Moullet, I.; Martins, J.L.

    1990-01-01

    The static dipole polarizabilities and other ground-state properties of H, H 2 , He, Na, and Na 2 are calculated using five different self-consistent schemes: Hartree--Fock, local spin density approximation, Hartree--Fock plus local density correlation, self-interaction-corrected local spin density approximation, and Hartree--Fock plus self-interaction-corrected local density correlation. The inclusion of the self-interaction corrected local spin density approximation in the Hartree--Fock method improves dramatically the calculated dissociation energies of molecules but has a small effect on the calculated polarizabilities. Correcting the local spin density calculations for self-interaction effects improves the calculated polarizability in the cases where the local spin density results are mediocre, and has only a small effect in the cases where the local spin density values are in reasonable agreement with experiment

  11. Self-consistent density functional calculation of the image potential at a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Alvarellos, J E [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Chacon, E [Instituto de Ciencias de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, E-28049 Madrid (Spain); GarcIa-Gonzalez, P [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain)

    2007-07-04

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z{sub 0}), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z{sub 0}, and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description.

  12. Self-consistent langevin simulation of coulomb collisions in charged-particle beams

    CERN Document Server

    Qiang, J; Ryne, Robert D

    2000-01-01

    In many plasma physics and charged-particle beam dynamics problems, Coulomb collisions are modeled by a Fokker-Planck equation. In order to incorporate these collisions, we present a three-dimensional parallel Langevin simulation method using a Particle-In-Cell (PIC) approach implemented on high-performance parallel computers. We perform, for the first time, a fully self-consistent simulation, in which the FR-iction and diffusion coefficients are computed FR-om first principles. We employ a two-dimensional domain decomposition approach within a message passing programming paradigm along with dynamic load balancing. Object oriented programming is used to encapsulate details of the communication syntax as well as to enhance reusability and extensibility. Performance tests on the SGI Origin 2000 and the Cray T3E-900 have demonstrated good scalability. Work is in progress to apply our technique to intrabeam scattering in accelerators.

  13. Self-consistent density functional calculation of the image potential at a metal surface

    International Nuclear Information System (INIS)

    Jung, J; Alvarellos, J E; Chacon, E; GarcIa-Gonzalez, P

    2007-01-01

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z 0 ), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z 0 , and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description

  14. Self-consistent field theory of block copolymers on a general curved surface.

    Science.gov (United States)

    Li, Jianfeng; Zhang, Hongdong; Qiu, Feng

    2014-03-01

    In this work, we propose a theoretical framework based on the self-consistent field theory (SCFT) for the study of self-assembling block copolymers on a general curved surface. Relevant numerical algorithms are also developed. To demonstrate the power of the approach, we calculate the self-assembled patterns of diblock copolymers on three distinct curved surfaces with different genus. We specially study the geometrical effects of curved surfaces on the conformation of polymer chains as well as on the pattern formation of block copolymers. By carefully examining the diffusion equation of the propagator on curved surfaces, it is predicted that Gaussian chains are completely unaware of the extrinsic curvature but that they will respond to the intrinsic curvature of the surface. This theoretical assertion is consistent with our SCFT simulations of block copolymers on general curved surfaces.

  15. Wetting of polymer liquids: Monte Carlo simulations and self-consistent field calculations

    CERN Document Server

    Müller, M

    2003-01-01

    Using Monte Carlo simulations and self-consistent field (SCF) theory we study the surface and interface properties of a coarse grained off-lattice model. In the simulations we employ the grand canonical ensemble together with a reweighting scheme in order to measure surface and interface free energies and discuss various methods for accurately locating the wetting transition. In the SCF theory, we use a partial enumeration scheme to incorporate single-chain properties on all length scales and use a weighted density functional for the excess free energy. The results of various forms of the density functional are compared quantitatively to the simulation results. For the theory to be accurate, it is important to decompose the free energy functional into a repulsive and an attractive part, with different approximations for the two parts. Measuring the effective interface potential for our coarse grained model we explore routes for controlling the equilibrium wetting properties. (i) Coating of the substrate by an...

  16. Self-consistent analysis of collisional loss in a spatially varying magnetic mirror

    International Nuclear Information System (INIS)

    Sato, Kunihiro.

    1982-05-01

    Expressions for the particle and energy loss fluxes of a plasma in a realistic mirror configuration are obtained using self-consistent analytic solutions of a linearized Fokker-Planck equation for ions and electrons. A magnetic field variation along field lines is taken into account, and both interactions between ions and electrons and effects of the ambipolar potential are included in the analysis. The present results show that a value of n-bar tau sub(n) (n-bar: volume-averaged particle density, tau sub(n): particle confinement time) decreases due to effects of the magnetic-field variation by a factor of two as compared with the value for the magnetic square-well and the total energy confinement time is almost equal to the particle confinement time. (author)

  17. Concept of grouping in partitioning of HLW for self-consistent fuel cycle

    International Nuclear Information System (INIS)

    Kitamoto, A.; Mulyanto

    1993-01-01

    A concept of grouping for partitioning of HLW has been developed in order to examine the possibility of a self-consistent fuel recycle. The concept of grouping of radionuclides is proposed herein, such as Group MA1 (MA below Cm), Group MA2 (Cm and higher MA), Group A ( 99 Tc and I), Group B (Cs and Sr) and Group R (the partitioned remain of HLW). Group B is difficult to be transmuted by neutron reaction, so a radiation application in an industrial scale should be developed in the future. Group A and Group MA1 can be burned by a thermal reactor, on the other hand Group MA2 should be burned by a fast reactor. P-T treatment can be optimized for the in-core and out-core system, respectively

  18. Self-consistent study of space-charge-dominated beams in a misaligned transport system

    International Nuclear Information System (INIS)

    Sing Babu, P.; Goswami, A.; Pandit, V.S.

    2013-01-01

    A self-consistent particle-in-cell (PIC) simulation method is developed to investigate the dynamics of space-charge-dominated beams through a misaligned solenoid based transport system. Evolution of beam centroid, beam envelope and emittance is studied as a function of misalignment parameters for various types of beam distributions. Simulation results performed up to 40 mA of proton beam indicate that centroid oscillations induced by the displacement and rotational misalignments of solenoids do not depend of the beam distribution. It is shown that the beam envelope around the centroid is independent of the centroid motion for small centroid oscillation. In addition, we have estimated the loss of beam during the transport caused by the misalignment for various beam distributions

  19. Self-Consistent Generation of Primordial Continental Crust in Global Mantle Convection Models

    Science.gov (United States)

    Jain, C.; Rozel, A.; Tackley, P. J.

    2017-12-01

    We present the generation of primordial continental crust (TTG rocks) using self-consistent and evolutionary thermochemical mantle convection models (Tackley, PEPI 2008). Numerical modelling commonly shows that mantle convection and continents have strong feedbacks on each other. However in most studies, continents are inserted a priori while basaltic (oceanic) crust is generated self-consistently in some models (Lourenco et al., EPSL 2016). Formation of primordial continental crust happened by fractional melting and crystallisation in episodes of relatively rapid growth from late Archean to late Proterozoic eras (3-1 Ga) (Hawkesworth & Kemp, Nature 2006) and it has also been linked to the onset of plate tectonics around 3 Ga. It takes several stages of differentiation to generate Tonalite-Trondhjemite-Granodiorite (TTG) rocks or proto-continents. First, the basaltic magma is extracted from the pyrolitic mantle which is both erupted at the surface and intruded at the base of the crust. Second, it goes through eclogitic transformation and then partially melts to form TTGs (Rudnick, Nature 1995; Herzberg & Rudnick, Lithos 2012). TTGs account for the majority of the Archean continental crust. Based on the melting conditions proposed by Moyen (Lithos 2011), the feasibility of generating TTG rocks in numerical simulations has already been demonstrated by Rozel et al. (Nature, 2017). Here, we have developed the code further by parameterising TTG formation. We vary the ratio of intrusive (plutonic) and extrusive (volcanic) magmatism (Crisp, Volcanol. Geotherm. 1984) to study the relative volumes of three petrological TTG compositions as reported from field data (Moyen, Lithos 2011). Furthermore, we systematically vary parameters such as friction coefficient, initial core temperature and composition-dependent viscosity to investigate the global tectonic regime of early Earth. Continental crust can also be destroyed by subduction or delamination. We will investigate

  20. Self-consistent Maxwell-Bloch theory of quantum-dot-population switching in photonic crystals

    International Nuclear Information System (INIS)

    Takeda, Hiroyuki; John, Sajeev

    2011-01-01

    We theoretically demonstrate the population switching of quantum dots (QD's), modeled as two-level atoms in idealized one-dimensional (1D) and two-dimensional (2D) photonic crystals (PC's) by self-consistent solution of the Maxwell-Bloch equations. In our semiclassical theory, energy states of the electron are quantized, and electron dynamics is described by the atomic Bloch equation, while electromagnetic waves satisfy the classical Maxwell equations. Near a waveguide cutoff in a photonic band gap, the local electromagnetic density of states (LDOS) and spontaneous emission rates exhibit abrupt changes with frequency, enabling large QD population inversion driven by both continuous and pulsed optical fields. We recapture and generalize this ultrafast population switching using the Maxwell-Bloch equations. Radiative emission from the QD is obtained directly from the surrounding PC geometry using finite-difference time-domain simulation of the electromagnetic field. The atomic Bloch equations provide a source term for the electromagnetic field. The total electromagnetic field, consisting of the external input and radiated field, drives the polarization components of the atomic Bloch vector. We also include a microscopic model for phonon dephasing of the atomic polarization and nonradiative decay caused by damped phonons. Our self-consistent theory captures stimulated emission and coherent feedback effects of the atomic Mollow sidebands, neglected in earlier treatments. This leads to remarkable high-contrast QD-population switching with relatively modest (factor of 10) jump discontinuities in the electromagnetic LDOS. Switching is demonstrated in three separate models of QD's placed (i) in the vicinity of a band edge of a 1D PC, (ii) near a cutoff frequency in a bimodal waveguide channel of a 2D PC, and (iii) in the vicinity of a localized defect mode side coupled to a single-mode waveguide channel in a 2D PC.

  1. Self-consistent imbedding and the ellipsoidal model model for porous rocks

    International Nuclear Information System (INIS)

    Korringa, J.; Brown, R.J.S.; Thompson, D.D.; Runge, R.J.

    1979-01-01

    Equations are obtained for the effective elastic moduli for a model of an isotropic, heterogeneous, porous medium. The mathematical model used for computation is abstract in that it is not simply a rigorous computation for a composite medium of some idealized geometry, although the computation contains individual steps which are just that. Both the solid part and pore space are represented by ellipsoidal or spherical 'grains' or 'pores' of various sizes and shapes. The strain of each grain, caused by external forces applied to the medium, is calculated in a self-consistent imbedding (SCI) approximation, which replaces the true surrounding of any given grain or pore by an isotropic medium defined by the effective moduli to be computed. The ellipsoidal nature of the shapes allows us to use Eshelby's theoretical treatment of a single ellipsoidal inclusion in an infiinte homogeneous medium. Results are compared with the literature, and discrepancies are found with all published accounts of this problem. Deviations from the work of Wu, of Walsh, and of O'Connell and Budiansky are attributed to a substitution made by these authors which though an identity for the exact quantities involved, is only approximate in the SCI calculation. This reduces the validity of the equations to first-order effects only. Differences with the results of Kuster and Toksoez are attributed to the fact that the computation of these authors is not self-consistent in the sense used here. A result seems to be the stiffening of the medium as if the pores are held apart. For spherical grains and pores, their calculated moduli are those given by the Hashin-Shtrikman upper bounds. Our calculation reproduces, in the case of spheres, an early result of Budiansky. An additional feature of our work is that the algebra is simpler than in earlier work. We also incorporate into the theory the possibility that fluid-filled pores are interconnected

  2. Self-consistent treatment of electrostatics in molecular DNA braiding through external forces.

    Science.gov (United States)

    Lee, Dominic J

    2014-06-01

    In this paper we consider a physical system in which two DNA molecules braid about each other. The distance between the two molecular ends, on either side of the braid, is held at a distance much larger than supercoiling radius of the braid. The system is subjected to an external pulling force, and a moment that induces the braiding. In a model, developed for understanding such a system, we assume that each molecule can be divided into a braided and unbraided section. We also suppose that the DNA is nicked so that there is no constraint of the individual linking numbers of the molecules. Included in the model are steric and electrostatic interactions, thermal fluctuations of the braided and unbraided sections of the molecule, as well as the constraint on the braid linking (catenation) number. We compare two approximations used in estimating the free energy of the braided section. One is where the amplitude of undulations of one molecule with respect to the other is determined only by steric interactions. The other is a self-consistent determination of the mean-squared amplitude of these undulations. In this second approximation electrostatics should play an important role in determining this quantity, as suggested by physical arguments. We see that if the electrostatic interaction is sufficiently large there are indeed notable differences between the two approximations. We go on to test the self-consistent approximation-included in the full model-against experimental data for such a system, and we find good agreement. However, there seems to be a slight left-right-handed braid asymmetry in some of the experimental results. We discuss what might be the origin of this small asymmetry.

  3. Towards a Self-Consistent Simulation Capability of Catastrophic Solar Energetic Particle Events

    Science.gov (United States)

    Sokolov, I.; Gombosi, T. I.; Bindi, V.; Borovikov, D.; Kota, J.; Giacalone, J.

    2016-12-01

    Space weather refers to variations in the space environment that can affect technologies or endanger human life and health. Solar energetic particle (SEP) events can affect communications and airline safety. Satellites are affected by radiation damage to electronics and to components that produce power and provide images. Sun and star sensors are blinded during large SEP events. Protons of ≳30 MeV penetrate spacesuits and spacecraft walls. Events, like that of August 4, 1972, would have been fatal to moon-walking astronauts. Catastrophic events typically are characterized by hard particle energy spectra potentially containing large fluxes of hundreds of MeV-GeV type particles. These super-energetic particles can penetrate even into the "safest" areas of spacecraft and produce induced radioactivity. We describe several technologies which are to be combined into a physics-based, self consistent model to understand and forecast the origin and evolution of SEP events: The Alfvén Wave Solar-wind Model (AWSoM) simulates the chromosphere-to-Earth system using separate electron and ion temperatures and separate parallel and perpendicular temperatures. It solves the energy equations including thermal conduction and coronal heating by Alfvén wave turbulence. It uses adaptive mesh refinement (AMR), which allows us to cover a broad range of spacial scales. The Eruptive Event Generator using the Gibson-Low flux-rope model (EEGGL) allows the user to select an active region on the sun, select the polarity inversion line where the eruption is observed, and insert a Gibson-Low flux-rope to produce eruption. The Multiple-Field-Lines-Advection Model for Particle Acceleration (M-FLAMPA) solves the particle transport equation along a multitude of interplanetary magnetic field lines originating from the Sun, using time-dependent parameters for the shock and magnetic field obtained from the MHD simulation. It includes a self-consistent coupling of Alfvén wave turbulence to the SEPs

  4. Self-Consistent Model of Magnetospheric Electric Field, Ring Current, Plasmasphere, and Electromagnetic Ion Cyclotron Waves: Initial Results

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.

    2009-01-01

    Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.

  5. Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling

    Science.gov (United States)

    Shi, Nan; Chan, Vincent S.; Jian, Xiang; Li, Guoqiang; Chen, Jiale; Gao, Xiang; Shi, Shengyu; Kong, Defeng; Liu, Xiaoju; Mao, Shifeng; Xu, Guoliang

    2017-12-01

    Impurity effects on fusion performance of China fusion engineering test reactor (CFETR) due to extrinsic seeding are investigated. An integrated 1.5D modeling workflow evolves plasma equilibrium and all transport channels to steady state. The one modeling framework for integrated tasks framework is used to couple the transport solver, MHD equilibrium solver, and source and sink calculations. A self-consistent impurity profile constructed using a steady-state background plasma, which satisfies quasi-neutrality and true steady state, is presented for the first time. Studies are performed based on an optimized fully non-inductive scenario with varying concentrations of Argon (Ar) seeding. It is found that fusion performance improves before dropping off with increasing {{Z}\\text{eff}} , while the confinement remains at high level. Further analysis of transport for these plasmas shows that low-k ion temperature gradient modes dominate the turbulence. The decrease in linear growth rate and resultant fluxes of all channels with increasing {{Z}\\text{eff}} can be traced to impurity profile change by transport. The improvement in confinement levels off at higher {{Z}\\text{eff}} . Over the regime of study there is a competition between the suppressed transport and increasing radiation that leads to a peak in the fusion performance at {{Z}\\text{eff}} (~2.78 for CFETR). Extrinsic impurity seeding to control divertor heat load will need to be optimized around this value for best fusion performance.

  6. Self-consistent simulation study on magnetized inductively coupled plasma for 450 mm semiconductor wafer processing

    International Nuclear Information System (INIS)

    Lee, Ho-Jun; Kim, Yun-Gi

    2012-01-01

    The characteristics of weakly magnetized inductively coupled plasma (MICP) are investigated using a self-consistent simulation based on the drift–diffusion approximation with anisotropic transport coefficients. MICP is a plasma source utilizing the cavity mode of the low-frequency branch of the right-hand circularly polarized wave. The model system is 700 mm in diameter and has a 250 mm gap between the radio-frequency window and wafer holder. The model chamber size is chosen to verify the applicability of this type of plasma source to the 450 mm wafer process. The effects of electron density distribution and external axial magnetic field on the propagation properties of the plasma wave, including the wavelength modulation and refraction toward the high-density region, are demonstrated. The restricted electron transport and thermal conductivity in the radial direction due to the magnetic field result in small temperature gradient along the field lines and off-axis peak density profile. The calculated impedance seen from the antenna terminal shows that MICP has a resistance component that is two to threefold higher than that of ICP. This property is practically important for large-size, low-pressure plasma sources because high resistance corresponds to high power-transfer efficiency and stable impedance matching characteristics. For the 0.665 Pa argon plasma, MICP shows a radial density uniformity of 6% within 450 mm diameter, which is much better than that of nonmagnetized ICP.

  7. Self-consistent simulation of the CSR effect on beam emittance

    International Nuclear Information System (INIS)

    Li, R.

    1999-01-01

    When a microbunch with high charge traverses a curved trajectory, the curvature-induced Coherent Synchrotron Radiation (CSR) and space-charge forces may cause serious emittance degradation. Earlier analyses based on rigid-line charge model are helpful in understanding the mechanism of this curvature-induced bunch self-interaction. In reality, however, the bunch has finite transverse size and its dynamics respond to the CSR force. In this paper, we present the first self-consistent simulation for the study of the impact of CSR on beam optics. With the bunch represented by a set of macroparticles, the dynamics of the bunch under the influence of the CSR force are simulated, where the CSR force in turn depends on the history of bunch charge distribution and current density in accordance to causality. This simulation is bench-marked with previous analytical results for a rigid-line bunch. The algorithm applied in the simulation will be presented, along with the simulation results obtained for bending systems in the Jefferson Lab FEL lattice

  8. Large multiconfiguration self-consistent-field wave functions for the ozone molecule

    International Nuclear Information System (INIS)

    Laidig, W.D.; Schaefer, H.F. III

    1981-01-01

    The electronic structure of the ozone molecule is of particular interest in light of Goddard's characterization of the ground state as a biradical. Rigorously optimized multiconfiguration self-consistent-field (MCSCF) wave functions of varying size have been determined here for ozone via newly developed techniques utilizing the unitary group approach. The largest of these ab initio MCSCF wave functions includes 13 413 configurations, i.e., all singly- and doubly excited configurations relative to the two reference configurations required for the biradical description of ozone. The convergence of the MCSCF procedures is discussed, as well as the structure of the MCSCF wave functions, and the effectiveness of different orbital transformations. There is a significant energy difference (0.034 hartrees) between the MCSCF wave functions involving one and two reference configurations. This gives emphasis to the fact that orbital optimization alone cannot compensate for the exclusion from the wave function of important classes of configurations. A simple test for the determination of the fraction biradical character of systems such as ozone suggests 23% biradical character for 0 3 at its equilibrium geometry

  9. From hawks and doves to self-consistent games of territorial behavior.

    Science.gov (United States)

    Kokko, Hanna; Lopez-Sepulcre, Andrés; Morrell, Lesley J

    2006-06-01

    Explaining the "prior-residence effect" (automatic owner status of individuals who arrived first in an area) was one of the very first applications of game theory in animal behavior. These models, however, predict paradoxical solutions where intruders always win, with no satisfactory explanation for the absence of such cases in nature. We propose a solution based on new developments in evolutionary game theory. A self-consistent model with feedbacks between individual behavior and population dynamics produces qualitatively different frequency-dependent selection on intruders (floaters) than on territory owners. Starting with an ancestral population with no respect for ownership, the most likely evolutionary end point is complete or partial respect. Conventional rules of conflict resolution thus can rely on "uncorrelated asymmetries" without differences in resource-holding power or territory value, although they will be strengthened by such differences. We also review the empirical literature on animal contests, testing whether asymmetries in resource-holding power are required to explain the observations. Despite much empirical effort, results remain inconclusive, because experiments are often unable to distinguish between the motivation of individuals to fight and the behavioral outcome of a contest. To help arrive at conclusive answers, we suggest a standardized empirical approach to quantify prior-residence effects.

  10. The self-consistent effective medium approximation (SEMA): New tricks from an old dog

    International Nuclear Information System (INIS)

    Bergman, David J.

    2007-01-01

    The fact that the self-consistent effective medium approximation (SEMA) leads to incorrect values for the percolation threshold, as well as for the critical exponents which characterize that threshold, has led to a decline in using that approximation. In this article I argue that SEMA has the unique capability, which is lacking in other approximation schemes for macroscopic response of composite media, of leading to the discovery or prediction of new critical points. This is due to the fact that SEMA can often lead to explicit equations for the macroscopic response of a composite medium, even when that medium has a rather complicated character. In such cases, the SEMA equations are usually coupled and nonlinear, often even transcendental in character. Thus there is no question of finding exact solutions. Nevertheless, a useful ansatz, leading to a closed form asymptotic solution, can often be made. In this way, singularities in the macroscopic response can be identified from a theoretical or mathematical treatment of the physical problem. This is demonstrated for two problems of magneto-transport in a composite medium, where the SEMA equations are solved using asymptotic analysis, leading to new types of critical points and critical behavior

  11. Multi-component Self-Consistent Nuclear Energy System: On proliferation resistance aspect

    International Nuclear Information System (INIS)

    Shmelev, A.; Saito, M; Artisyuk, V.

    2000-01-01

    Self-Consistent Nuclear Energy System (SCNES) that simultaneously meets four requirements: energy production, fuel production, burning of radionuclides and safety is targeted at harmonization of nuclear energy technology with human environment. The main bulk of SCNES studies focus on a potential of fast reactor (FR) in generating neutron excess to keep suitable neutron balance. Proliferation resistance was implicitly anticipated in a fuel cycle with co-processing of Pu, minor actinides (MA) and some relatively short-lived fission products (FP). In a contrast to such a mono-component system, the present paper advertises advantage of incorporating accelerator and fusion driven neutron sources which could drastically improve characteristics of nuclear waste incineration. What important is that they could help in creating advanced Np and Pa containing fuels with double protection against uncontrolled proliferation. The first level of protection deals with possibility to approach long life core (LLC) in fission reactors. Extending the core life-time to reactor-time is beneficial from the proliferation resistance viewpoint since LLC would not necessarily require fuel management at energy producing site, with potential advantage of being moved to vendor site for spent fuel refabrication. Second level is provided by the presence of substantial amounts of 238 Pu and 232 U in these fuels that makes fissile nuclides in them isotopically protected. All this reveals an important advantage of a multi-component SCNES that could draw in developing countries without elaborated technological infrastructure. (author)

  12. Self-Consistent simulations of High-Intensity Beams and E-Clouds with WARP POSINST

    International Nuclear Information System (INIS)

    Vay, J.-L.; Friendman, A.; Grote, D.P.

    2006-01-01

    We have developed a new, comprehensive set of simulation tools aimed at modeling the interaction of intense ion beams and electron clouds (e-clouds). The set contains the 3-D accelerator PIC codeWARP and the 2-D ''slice'' ecloud code POSINST, as well as a merger of the two, augmented by new modules for impact ionization and neutral gas generation. The new capability runs on workstations or parallel supercomputers and contains advanced features such as mesh refinement, disparate adaptive time stepping, and a new ''drift-Lorentz'' particle mover for tracking charged particles in magnetic fields using large time steps. It is being applied to the modeling of ion beams (1 MeV, 180 mA, K+) for heavy ion inertial fusion and warm dense matter studies, as they interact with electron clouds in the High-Current Experiment (HCX). In earlier papers, we described the capabilities and presented recent simulation results with detailed comparisons against the HCX experiment, as well as their application (in a different regime) to the modeling of e-clouds in the Large Hadron Collider (LHC). We concentrate here on the description of the implementation of the ''quasi-static'' mode of operation, for comparison with other codes, and introduce a new consideration on the estimate of computing time between the quasi-static and the fully self-consistent modes

  13. Self-consistent Study of Fast Particle Redistribution by Alfven Eigenmodes During Ion Cyclotron Resonance Heating

    International Nuclear Information System (INIS)

    Bergkvist, T.; Hellsten, T.; Johnson, T.

    2006-01-01

    Alfven eigenmodes (AEs) excited by fusion born α particles can degrade the heating efficiency of a burning plasma and throw out αs. To experimentally study the effects of excitation of AEs and the redistribution of the fast ions, ion cyclotron resonance heating (ICRH) is often used. The distribution function of thermonuclear αs in a reactor is expected to be isotropic and constantly renewed through DT reactions. The distribution function of cyclotron heated ions is strongly anisotropic, and the ICRH do not only renew the distribution function but also provide a strong decorrelation mechanism between the fast ions and the AE. Because of the sensitivity of the AE dynamics on the details of the distribution function, the location of the resonance surfaces in phase space and the extent of the overlapping resonant regions for different AEs, a self-consistent treatment of the AE excitation and the ICRH is necessary. Interactions of fast ions with AEs during ICRH has been implemented in the SELFO code. Simulations are in good agreement with the experimentally observer pitch-fork splitting and rapid damping of the AE as ICRH is turned off. The redistribution of fast ions have been studied in the presence of several driven AEs. (author)

  14. Self-consistent model of a solid for the description of lattice and magnetic properties

    International Nuclear Information System (INIS)

    Balcerzak, T.; Szałowski, K.; Jaščur, M.

    2017-01-01

    In the paper a self-consistent theoretical description of the lattice and magnetic properties of a model system with magnetoelastic interaction is presented. The dependence of magnetic exchange integrals on the distance between interacting spins is assumed, which couples the magnetic and the lattice subsystem. The framework is based on summation of the Gibbs free energies for the lattice subsystem and magnetic subsystem. On the basis of minimization principle for the Gibbs energy, a set of equations of state for the system is derived. These equations of state combine the parameters describing the elastic properties (relative volume deformation) and the magnetic properties (magnetization changes). The formalism is extensively illustrated with the numerical calculations performed for a system of ferromagnetically coupled spins S=1/2 localized at the sites of simple cubic lattice. In particular, the significant influence of the magnetic subsystem on the elastic properties is demonstrated. It manifests itself in significant modification of such quantities as the relative volume deformation, thermal expansion coefficient or isothermal compressibility, in particular, in the vicinity of the magnetic phase transition. On the other hand, the influence of lattice subsystem on the magnetic one is also evident. It takes, for example, the form of dependence of the critical (Curie) temperature and magnetization itself on the external pressure, which is thoroughly investigated.

  15. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling.

    Science.gov (United States)

    Pera, H; Kleijn, J M; Leermakers, F A M

    2014-02-14

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus kc and k̄ and the preferred monolayer curvature J(0)(m), and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of kc and the area compression modulus kA are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k̄ and J(0)(m) can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k̄ and J(0)(m) change sign with relevant parameter changes. Although typically k̄ 0, especially at low ionic strengths. We anticipate that these changes lead to unstable membranes as these become vulnerable to pore formation or disintegration into lipid disks.

  16. Self-consistent evolution models for slow CMEs up to 1 AU

    Science.gov (United States)

    Poedts, S.; Pomoell, J.; Zuccarello, F. P.

    2016-02-01

    Our 2.5D (axi-symmetric) self-consistent numerical magneto-hydrodynamics (MHD) models for the onset of CMEs under solar minimum conditions and for their interaction with coronal streamers and subsequent evolution up to 1 AU, are presented and discussed. The CMEs are initiated by magnetic flux emergence/cancellation and/or by shearing the magnetic foot points of a magnetic arcade which is positioned above or below the equatorial plane and embedded in a larger helmet streamer. The overlying magnetic streamer field then deflects the CMEs towards the equator, and the deflection path is dependent on the driving velocity. The core of the CME, created during the onset process, contains a magnetic flux rope and the synthetic white light images often show the typical three-part CME structure. The resulting CMEs propagate only slightly faster than the background solar wind, but this small excess speed is high enough to create a fast MHD shock wave from a distance of 0.25 AU onwards. At 1 AU, the plasma shows the typical characteristics of a magnetic cloud, and the simulated data are in good agreement with the (ACE) observations.

  17. Self-consistent second-order Green’s function perturbation theory for periodic systems

    International Nuclear Information System (INIS)

    Rusakov, Alexander A.; Zgid, Dominika

    2016-01-01

    Despite recent advances, systematic quantitative treatment of the electron correlation problem in extended systems remains a formidable task. Systematically improvable Green’s function methods capable of quantitatively describing weak and at least qualitatively strong correlations appear as promising candidates for computational treatment of periodic systems. We present a periodic implementation of temperature-dependent self-consistent 2nd-order Green’s function (GF2) method, where the self-energy is evaluated in the basis of atomic orbitals. Evaluating the real-space self-energy in atomic orbitals and solving the Dyson equation in k-space are the key components of a computationally feasible algorithm. We apply this technique to the one-dimensional hydrogen lattice — a prototypical crystalline system with a realistic Hamiltonian. By analyzing the behavior of the spectral functions, natural occupations, and self-energies, we claim that GF2 is able to recover metallic, band insulating, and at least qualitatively Mott regimes. We observe that the iterative nature of GF2 is essential to the emergence of the metallic and Mott phases

  18. A feasibility study on FP transmutation for Self-Consistent Nuclear Energy System (SCNES)

    International Nuclear Information System (INIS)

    Fujita, Reiko; Kawashima, Masatoshi; Ueda, Hiroaki; Takagi, Ryuzo; Matsuura, Haruaki; Fujii-e, Yoichi

    1997-01-01

    A fast reactor core/fuel cycle concept is discussed for the future 'Self-Consistent Nuclear Energy System (SCNES)' concept. The present study mainly discussed long-lived fission products (LLFPs) burning capability and recycle scheme in the framework of metallic fuel fast reactor cycle, aiming at the goals for fuel breeding capability and confinement for TRU and radio-active FPs within the system. In present paper, burning capability for Cs135 and Zr93 is mainly discussed from neutronic and chemical view points, assuming metallic fuel cycle system. The recent experimental results indicate that Cs can be separable along with the pyroprocess for metal fuel recycle system, as previously designed for a candidate fuel cycle system. Combining neutron spectrum-shift for target sub-assemblies and isotope separation using tunable laser, LLFP burning capability is enhanced. This result indicates that major LLFPs can be treated in the additional recycle schemes to avoid LLFP accumulation along with energy production. In total, the proposed fuel cycle is an candidate for realizing SCNES concept. (author)

  19. From virtual clustering analysis to self-consistent clustering analysis: a mathematical study

    Science.gov (United States)

    Tang, Shaoqiang; Zhang, Lei; Liu, Wing Kam

    2018-03-01

    In this paper, we propose a new homogenization algorithm, virtual clustering analysis (VCA), as well as provide a mathematical framework for the recently proposed self-consistent clustering analysis (SCA) (Liu et al. in Comput Methods Appl Mech Eng 306:319-341, 2016). In the mathematical theory, we clarify the key assumptions and ideas of VCA and SCA, and derive the continuous and discrete Lippmann-Schwinger equations. Based on a key postulation of "once response similarly, always response similarly", clustering is performed in an offline stage by machine learning techniques (k-means and SOM), and facilitates substantial reduction of computational complexity in an online predictive stage. The clear mathematical setup allows for the first time a convergence study of clustering refinement in one space dimension. Convergence is proved rigorously, and found to be of second order from numerical investigations. Furthermore, we propose to suitably enlarge the domain in VCA, such that the boundary terms may be neglected in the Lippmann-Schwinger equation, by virtue of the Saint-Venant's principle. In contrast, they were not obtained in the original SCA paper, and we discover these terms may well be responsible for the numerical dependency on the choice of reference material property. Since VCA enhances the accuracy by overcoming the modeling error, and reduce the numerical cost by avoiding an outer loop iteration for attaining the material property consistency in SCA, its efficiency is expected even higher than the recently proposed SCA algorithm.

  20. Semi-holography for heavy ion collisions: self-consistency and first numerical tests

    Science.gov (United States)

    Mukhopadhyay, Ayan; Preis, Florian; Rebhan, Anton; Stricker, Stefan A.

    2016-05-01

    We present an extended version of a recently proposed semi-holographic model for heavy-ion collisions, which includes self-consistent couplings between the Yang-Mills fields of the Color Glass Condensate framework and an infrared AdS/CFT sector, such as to guarantee the existence of a conserved energy-momentum tensor for the combined system that is local in space and time, which we also construct explicitly. Moreover, we include a coupling of the topological charge density in the glasma to the same of the holographic infrared CFT. The semi-holographic approach makes it possible to combine CGC initial conditions and weak-coupling glasma field equations with a simultaneous evolution of a strongly coupled infrared sector describing the soft gluons radiated by hard partons. As a first numerical test of the semi-holographic model we study the dynamics of fluctuating homogeneous color-spin-locked Yang-Mills fields when coupled to a homogeneous and isotropic energy-momentum tensor of the holographic IR-CFT, and we find rapid convergence of the iterative numerical procedure suggested earlier.

  1. Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach

    Directory of Open Access Journals (Sweden)

    N. Lyutorovich

    2015-10-01

    Full Text Available We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree–Fock ground state and the excitation spectra within random-phase approximation (RPA and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA. All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.

  2. Generalized molecular orbital theory: a limited multiconfiguration self-consistent-field-theory

    International Nuclear Information System (INIS)

    Hall, M.B.

    1981-01-01

    The generalized molecular orbital (GMO) approach is a limited type of multiconfiguration self-consistent-field (MCSCF) calculation which divides the orbitals of a closed shell molecule into four shells: doubly occupied, strongly occupied, weakly occupied, and unoccupied. The orbitals within each shell have the same occupation number and are associated with the same Fock operator. Thus, the orbital optimization is ideally suited to solution via a coupling operator. The determination of the orbitals is followed by a configuration interaction (CI) calculation within the strongly and weakly occupied shells. Results for BH 3 show a striking similarity between the GMO's and the natural orbitals (NO's) from an all singles and doubles CI calculation. Although the GMO approach would not be accurate for an entire potential surface, results for spectroscopic constants of N 2 show that it is suitable near the equilibrium geometry. This paper describes the use of the GMO technique to determine the primary orbital space, but a potentially important application may be in the determination of a secondary orbital space following a more accurate MCSCF determination of the primary space

  3. Magy: Time dependent, multifrequency, self-consistent code for modeling electron beam devices

    International Nuclear Information System (INIS)

    Botton, M.; Antonsen, T.M.; Levush, B.

    1997-01-01

    A new MAGY code is being developed for three dimensional modeling of electron beam devices. The code includes a time dependent multifrequency description of the electromagnetic fields and a self consistent analysis of the electrons. The equations of motion are solved with the electromagnetic fields as driving forces and the resulting trajectories are used as current sources for the fields. The calculations of the electromagnetic fields are based on the waveguide modal representation, which allows the solution of relatively small number of coupled one dimensional partial differential equations for the amplitudes of the modes, instead of the full solution of Maxwell close-quote s equations. Moreover, the basic time scale for updating the electromagnetic fields is the cavity fill time and not the high frequency of the fields. In MAGY, the coupling among the various modes is determined by the waveguide non-uniformity, finite conductivity of the walls, and the sources due to the electron beam. The equations of motion of the electrons are solved assuming that all the electrons traverse the cavity in less than the cavity fill time. Therefore, at each time step, a set of trajectories are calculated with the high frequency and other external fields as the driving forces. The code includes a verity of diagnostics for both electromagnetic fields and particles trajectories. It is simple to operate and requires modest computing resources, thus expected to serve as a design tool. copyright 1997 American Institute of Physics

  4. A fully kinetic, self-consistent particle simulation model of the collisionless plasma--sheath region

    International Nuclear Information System (INIS)

    Procassini, R.J.; Birdsall, C.K.; Morse, E.C.

    1990-01-01

    A fully kinetic particle-in-cell (PIC) model is used to self-consistently determine the steady-state potential profile in a collisionless plasma that contacts a floating, absorbing boundary. To balance the flow of particles to the wall, a distributed source region is used to inject particles into the one-dimensional system. The effect of the particle source distribution function on the source region and collector sheath potential drops, and particle velocity distributions is investigated. The ion source functions proposed by Emmert et al. [Phys. Fluids 23, 803 (1980)] and Bissell and Johnson [Phys. Fluids 30, 779 (1987)] (and various combinations of these) are used for the injection of both ions and electrons. The values of the potential drops obtained from the PIC simulations are compared to those from the theories of Emmert et al., Bissell and Johnson, and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)], all of which assume that the electron density is related to the plasma potential via the Boltzmann relation. The values of the source region and total potential drop are found to depend on the choice of the electron source function, as well as the ion source function. The question of an infinite electric field at the plasma--sheath interface, which arises in the analyses of Bissell and Johnson and Scheuer and Emmert, is also addressed

  5. Self-consistent spectral function for non-degenerate Coulomb systems and analytic scaling behaviour

    International Nuclear Information System (INIS)

    Fortmann, Carsten

    2008-01-01

    Novel results for the self-consistent single-particle spectral function and self-energy are presented for non-degenerate one-component Coulomb systems at various densities and temperatures. The GW (0) -method for the dynamical self-energy is used to include many-particle correlations beyond the quasi-particle approximation. The self-energy is analysed over a broad range of densities and temperatures (n = 10 17 cm -3 -10 27 cm -3 , T = 10 2 eV/k B -10 4 eV/k B ). The spectral function shows a systematic behaviour, which is determined by collective plasma modes at small wavenumbers and converges towards a quasi-particle resonance at higher wavenumbers. In the low density limit, the numerical results comply with an analytic scaling law that is presented for the first time. It predicts a power-law behaviour of the imaginary part of the self-energy, ImΣ ∼ -n 1/4 . This resolves a long time problem of the quasi-particle approximation which yields a finite self-energy at vanishing density

  6. Neutron excess generation by fusion neutron source for self-consistency of nuclear energy system

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, V.; Chmelev, A.

    1999-01-01

    The present day fission energy technology faces with the problem of transmutation of dangerous radionuclides that requires neutron excess generation. Nuclear energy system based on fission reactors needs fuel breeding and, therefore, suffers from lack of neutron excess to apply large-scale transmutation option including elimination of fission products. Fusion neutron source (FNS) was proposed to improve neutron balance in the nuclear energy system. Energy associated with the performance of FNS should be small enough to keep the position of neutron excess generator, thus, leaving the role of dominant energy producers to fission reactors. The present paper deals with development of general methodology to estimate the effect of neutron excess generation by FNS on the performance of nuclear energy system as a whole. Multiplication of fusion neutrons in both non-fissionable and fissionable multipliers was considered. Based on the present methodology it was concluded that neutron self-consistency with respect to fuel breeding and transmutation of fission products can be attained with small fraction of energy associated with innovated fusion facilities. (author)

  7. Neural-network accelerated fusion simulation with self-consistent core-pedestal coupling

    Science.gov (United States)

    Meneghini, O.; Candy, J.; Snyder, P. B.; Staebler, G.; Belli, E.

    2016-10-01

    Practical fusion Whole Device Modeling (WDM) simulations require the ability to perform predictions that are fast, but yet account for the sensitivity of the fusion performance to the boundary constraint that is imposed by the pedestal structure of H-mode plasmas due to the stiff core transport models. This poster presents the development of a set of neural-network (NN) models for the pedestal structure (as predicted by the EPED model), and the neoclassical and turbulent transport fluxes (as predicted by the NEO and TGLF codes, respectively), and their self-consistent coupling within the TGYRO transport code. The results are benchmarked with the ones obtained via the coupling scheme described in [Meneghini PoP 2016]. By substituting the most demanding codes with their NN-accelerated versions, the solution can be found at a fraction of the computation cost of the original coupling scheme, thereby combining the accuracy of a high-fidelity model with the fast turnaround time of a reduced model. Work supported by U.S. DOE DE-FC02-04ER54698 and DE-FG02-95ER54309.

  8. Comparison of squashing and self-consistent input-output models of quantum feedback

    Science.gov (United States)

    Peřinová, V.; Lukš, A.; Křepelka, J.

    2018-03-01

    The paper (Yanagisawa and Hope, 2010) opens with two ways of analysis of a measurement-based quantum feedback. The scheme of the feedback includes, along with the homodyne detector, a modulator and a beamsplitter, which does not enable one to extract the nonclassical field. In the present scheme, the beamsplitter is replaced by the quantum noise evader, which makes it possible to extract the nonclassical field. We re-approach the comparison of two models related to the same scheme. The first one admits that in the feedback loop between the photon annihilation and creation operators, unusual commutation relations hold. As a consequence, in the feedback loop, squashing of the light occurs. In the second one, the description arrives at the feedback loop via unitary transformations. But it is obvious that the unitary transformation which describes the modulator changes even the annihilation operator of the mode which passes by the modulator which is not natural. The first model could be called "squashing model" and the second one could be named "self-consistent model". Although the predictions of the two models differ only a little and both the ways of analysis have their advantages, they have also their drawbacks and further investigation is possible.

  9. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling

    International Nuclear Information System (INIS)

    Pera, H.; Kleijn, J. M.; Leermakers, F. A. M.

    2014-01-01

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus k c and k ¯ and the preferred monolayer curvature J 0 m , and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of k c and the area compression modulus k A are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k ¯ and J 0 m can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k ¯ and J 0 m change sign with relevant parameter changes. Although typically k ¯ 0 m ≫0, especially at low ionic strengths. We anticipate that these changes lead to unstable membranes as these become vulnerable to pore formation or disintegration into lipid disks

  10. Two-dimensional self-consistent microwave argon plasma simulations with experimental verification

    International Nuclear Information System (INIS)

    Li, Y.; Gordon, M.H.; Roe, L.A.; Hassouni, K.; Grotjohn, T.

    2003-01-01

    Optical emission spectroscopy (OES), absorption measurements, and thermal energy rate analysis were used in tandem with numerical models to characterize microwave argon plasmas. A WAVEMAT (model MPDR-3135) microwave diamond deposition system was used to generate argon plasmas at 5 Torr. Three excited state number densities (4p, 5p, and 5d) were obtained from the OES measurements, and a fourth excited state number density (4s) was obtained from the absorption measurements. Further, power absorbed in the substrate was monitored. A self-consistent two-dimensional argon model coupled with an electromagnetic field model and a 25-level two-dimensional (2D)-collisional-radiative model (CRM) was developed and validated with the experimental measurements. The 2D model provides the gas and electron temperature distributions, and the electron, ion, and 4s state number densities, which are then iteratively fed into the electromagnetic and CRM models. Both the numerically predicted thermal energy rates and excited state densities agreed, within the experimental and numerical uncertainties, with the experimental results

  11. Charge transfer from first principles: self-consistent GW applied to donor-acceptor systems

    Science.gov (United States)

    Atalla, Viktor; Caruso, Fabio; Rubio, Angel; Scheffler, Matthias; Rinke, Patrick

    2015-03-01

    Charge transfer in donor-acceptor systems (DAS) is determined by the relative alignment between the frontier orbitals of the donor and the acceptor. Semi-local approximations to density functional theory (DFT) may give a qualitatively wrong level alignment in DAS, leading to unphysical fractional electron transfer in weakly bound donor-acceptor pairs. GW calculations based on first-order perturbation theory (G0W0) correct the level alignment, but leave unaffected the electron density. We demonstrate that self-consistent GW (sc GW) provides an ideal framework for the description of charge transfer in DAS. Moreover, sc GW seamlessly accounts for many-body correlations and van der Waals interactions. As in G0W0 , the sc GW level alignment is in agreement with experimental reference data. However in sc GW , also the electron density is treated at the GW level and, therefore, it is consistent with the level alignment between donor and acceptor leading to a qualitatively correct description of charge-transfer properties.

  12. Self-consistent model of a solid for the description of lattice and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, T., E-mail: t_balcerzak@uni.lodz.pl [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, ulica Pomorska 149/153, 90-236 Łódź (Poland); Szałowski, K., E-mail: kszalowski@uni.lodz.pl [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, ulica Pomorska 149/153, 90-236 Łódź (Poland); Jaščur, M. [Department of Theoretical Physics and Astrophysics, Faculty of Science, P. J. Šáfárik University, Park Angelinum 9, 041 54 Košice (Slovakia)

    2017-03-15

    In the paper a self-consistent theoretical description of the lattice and magnetic properties of a model system with magnetoelastic interaction is presented. The dependence of magnetic exchange integrals on the distance between interacting spins is assumed, which couples the magnetic and the lattice subsystem. The framework is based on summation of the Gibbs free energies for the lattice subsystem and magnetic subsystem. On the basis of minimization principle for the Gibbs energy, a set of equations of state for the system is derived. These equations of state combine the parameters describing the elastic properties (relative volume deformation) and the magnetic properties (magnetization changes). The formalism is extensively illustrated with the numerical calculations performed for a system of ferromagnetically coupled spins S=1/2 localized at the sites of simple cubic lattice. In particular, the significant influence of the magnetic subsystem on the elastic properties is demonstrated. It manifests itself in significant modification of such quantities as the relative volume deformation, thermal expansion coefficient or isothermal compressibility, in particular, in the vicinity of the magnetic phase transition. On the other hand, the influence of lattice subsystem on the magnetic one is also evident. It takes, for example, the form of dependence of the critical (Curie) temperature and magnetization itself on the external pressure, which is thoroughly investigated.

  13. Self-Consistent Atmosphere Models of the Most Extreme Hot Jupiters

    Science.gov (United States)

    Lothringer, Joshua; Barman, Travis

    2018-01-01

    We present a detailed look at self-consistent PHOENIX atmosphere models of the most highly irradiated hot Jupiters known to exist. These hot Jupiters typically have equilibrium temperatures approaching and sometimes exceeding 3000 K, orbiting A, F, and early-G type stars on orbits less than 0.03 AU (10x closer than Mercury is to the Sun). The most extreme example, KELT-9b, is the hottest known hot Jupiter with a measured dayside temperature of 4600 K. Many of the planets we model have recently attracted attention with high profile discoveries, including temperature inversions in WASP-33b and WASP-121, changing phase curve offsets possibly caused by magnetohydrodymanic effects in HAT-P-7b, and TiO in WASP-19b. Our modeling provides a look at the a priori expectations for these planets and helps us understand these recent discoveries. We show that, in the hottest cases, all molecules are dissociated down to relatively high pressures. These planets may have detectable temperature inversions, more akin to thermospheres than stratospheres in that an optical absorber like TiO or VO is not needed. Instead, the inversions are created by a lack of cooling in the IR combined with heating from atoms and ions at UV and blue optical wavelengths. We also reevaluate some of the assumptions that have been made in retrieval analyses of these planets.

  14. Deconvolution of experimental data of aggregates using self-consistent polycrystal models

    International Nuclear Information System (INIS)

    Tome, C.N.; Christodoulou, N.; Holt, R.; Woo, C.H.; Lebensohn, R.A.; Turner, P.A.

    1994-01-01

    We present in this work an overview of self-consistent polycrystal models, together with a comprehensive body of work where those models are used to characterize the response of zirconium alloy aggregates under several deformation regimes. In particular, we address here: evolution of internal stresses associated with heat treatments (thermo-elastic regime) and small deformations (elasto-plastic regime); dimensional changes induced by creep and growth during neutron irradiation (visco-elastic regime); texture development associated with forming operations (visco-plastic regime). In each case we emphasize the effect of texture and internal stresses in the observed response of the aggregate, and from the comparison of the predictions with experimental evidence we determine the single crystal properties from the macroscopic response of the polycrystal. The latter approach is particularly useful in the case of zirconium alloys, a material for which it is not possible to grow single crystals and thus directly measure their single crystal properties. Specifically, we infer information concerning: the stress-free lattice parameters and thermal coefficients of the hexagonal crystals; the irradiation creep compliances and growth coefficients; the crystallographic deformation modes and their associated critical stresses. (au) (38 refs.)

  15. Ion-acoustic envelope modes in a degenerate relativistic electron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    McKerr, M.; Kourakis, I. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN Belfast, Northern Ireland (United Kingdom); Haas, F. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS (Brazil)

    2016-05-15

    A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schrödinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case—in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.

  16. Toward self-consistent tectono-magmatic numerical model of rift-to-ridge transition

    Science.gov (United States)

    Gerya, Taras; Bercovici, David; Liao, Jie

    2017-04-01

    Natural data from modern and ancient lithospheric extension systems suggest three-dimensional (3D) character of deformation and complex relationship between magmatism and tectonics during the entire rift-to-ridge transition. Therefore, self-consistent high-resolution 3D magmatic-thermomechanical numerical approaches stand as a minimum complexity requirement for modeling and understanding of this transition. Here we present results from our new high-resolution 3D finite-difference marker-in-cell rift-to-ridge models, which account for magmatic accretion of the crust and use non-linear strain-weakened visco-plastic rheology of rocks that couples brittle/plastic failure and ductile damage caused by grain size reduction. Numerical experiments suggest that nucleation of rifting and ridge-transform patterns are decoupled in both space and time. At intermediate stages, two patterns can coexist and interact, which triggers development of detachment faults, failed rift arms, hyper-extended margins and oblique proto-transforms. En echelon rift patterns typically develop in the brittle upper-middle crust whereas proto-ridge and proto-transform structures nucleate in the lithospheric mantle. These deep proto-structures propagate upward, inter-connect and rotate toward a mature orthogonal ridge-transform patterns on the timescale of millions years during incipient thermal-magmatic accretion of the new oceanic-like lithosphere. Ductile damage of the extending lithospheric mantle caused by grain size reduction assisted by Zenner pinning plays critical role in rift-to-ridge transition by stabilizing detachment faults and transform structures. Numerical results compare well with observations from incipient spreading regions and passive continental margins.

  17. Generic Schemes for Single-Molecule Kinetics. 3: Self-Consistent Pathway Solutions for Nonrenewal Processes.

    Science.gov (United States)

    Piephoff, D Evan; Cao, Jianshu

    2018-04-23

    We recently developed a pathway analysis framework (paper 1) for describing single-molecule kinetics for renewal (i.e., memoryless) processes based on the decomposition of a kinetic scheme into generic structures. In our approach, waiting time distribution functions corresponding to such structures are expressed in terms of self-consistent pathway solutions and concatenated to form measurable probability distribution functions (PDFs), affording a simple way to decompose and recombine a network. Here, we extend this framework to nonrenewal processes, which involve correlations between events, and employ it to formulate waiting time PDFs, including the first-passage time PDF, for a general kinetic network model. Our technique does not require the assumption of Poissonian kinetics, permitting a more general kinetic description than the usual rate approach, with minimal topological restrictiveness. To demonstrate the usefulness of this technique, we provide explicit calculations for our general model, which we adapt to two generic schemes for single-enzyme turnover with conformational interconversion. For each generic scheme, wherein the intermediate state(s) need not undergo Poissonian decay, the functional dependence of the mean first-passage time on the concentration of an external substrate is analyzed. When conformational detailed balance is satisfied, the enzyme turnover rate (related to the mean first-passage time) reduces to the celebrated Michaelis-Menten functional form, consistent with our previous work involving a similar scheme with all rate processes, thereby establishing further generality to this intriguing result. Our framework affords a general and intuitive approach for evaluating measurable waiting time PDFs and their moments, making it a potentially useful kinetic tool for a wide variety of single-molecule processes.

  18. Self-Consistent Field Theories for the Role of Large Length-Scale Architecture in Polymers

    Science.gov (United States)

    Wu, David

    At large length-scales, the architecture of polymers can be described by a coarse-grained specification of the distribution of branch points and monomer types within a molecule. This includes molecular topology (e.g., cyclic or branched) as well as distances between branch points or chain ends. Design of large length-scale molecular architecture is appealing because it offers a universal strategy, independent of monomer chemistry, to tune properties. Non-linear analogs of linear chains differ in molecular-scale properties, such as mobility, entanglements, and surface segregation in blends that are well-known to impact rheological, dynamical, thermodynamic and surface properties including adhesion and wetting. We have used Self-Consistent Field (SCF) theories to describe a number of phenomena associated with large length-scale polymer architecture. We have predicted the surface composition profiles of non-linear chains in blends with linear chains. These predictions are in good agreement with experimental results, including from neutron scattering, on a range of well-controlled branched (star, pom-pom and end-branched) and cyclic polymer architectures. Moreover, the theory allows explanation of the segregation and conformations of branched polymers in terms of effective surface potentials acting on the end and branch groups. However, for cyclic chains, which have no end or junction points, a qualitatively different topological mechanism based on conformational entropy drives cyclic chains to a surface, consistent with recent neutron reflectivity experiments. We have also used SCF theory to calculate intramolecular and intermolecular correlations for polymer chains in the bulk, dilute solution, and trapped at a liquid-liquid interface. Predictions of chain swelling in dilute star polymer solutions compare favorably with existing PRISM theory and swelling at an interface helps explain recent measurements of chain mobility at an oil-water interface. In collaboration

  19. Linearized self-consistent quasiparticle GW method: Application to semiconductors and simple metals

    Science.gov (United States)

    Kutepov, A. L.; Oudovenko, V. S.; Kotliar, G.

    2017-10-01

    We present a code implementing the linearized quasiparticle self-consistent GW method (LQSGW) in the LAPW basis. Our approach is based on the linearization of the self-energy around zero frequency which differs it from the existing implementations of the QSGW method. The linearization allows us to use Matsubara frequencies instead of working on the real axis. This results in efficiency gains by switching to the imaginary time representation in the same way as in the space time method. The all electron LAPW basis set eliminates the need for pseudopotentials. We discuss the advantages of our approach, such as its N3 scaling with the system size N, as well as its shortcomings. We apply our approach to study the electronic properties of selected semiconductors, insulators, and simple metals and show that our code produces the results very close to the previously published QSGW data. Our implementation is a good platform for further many body diagrammatic resummations such as the vertex-corrected GW approach and the GW+DMFT method. Program Files doi:http://dx.doi.org/10.17632/cpchkfty4w.1 Licensing provisions: GNU General Public License Programming language: Fortran 90 External routines/libraries: BLAS, LAPACK, MPI (optional) Nature of problem: Direct implementation of the GW method scales as N4 with the system size, which quickly becomes prohibitively time consuming even in the modern computers. Solution method: We implemented the GW approach using a method that switches between real space and momentum space representations. Some operations are faster in real space, whereas others are more computationally efficient in the reciprocal space. This makes our approach scale as N3. Restrictions: The limiting factor is usually the memory available in a computer. Using 10 GB/core of memory allows us to study the systems up to 15 atoms per unit cell.

  20. Self-consistent field modeling of adsorption from polymer/surfactant mixtures.

    Science.gov (United States)

    Postmus, Bart R; Leermakers, Frans A M; Cohen Stuart, Martien A

    2008-06-01

    We report on the development of a self-consistent field model that describes the competitive adsorption of nonionic alkyl-(ethylene oxide) surfactants and nonionic polymer poly(ethylene oxide) (PEO) from aqueous solutions onto silica. The model explicitly describes the response to the pH and the ionic strength. On an inorganic oxide surface such as silica, the dissociation of the surface depends on the pH. However, salt ions can screen charges on the surface, and hence, the number of dissociated groups also depends on the ionic strength. Furthermore, the solvent quality for the EO groups is a function of the ionic strength. Using our model, we can compute bulk parameters such as the average size of the polymer coil and the surfactant CMC. We can make predictions on the adsorption behavior of either polymers or surfactants, and we have made adsorption isotherms, i.e., calculated the relationship between the surface excess and its corresponding bulk concentration. When we add both polymer and surfactant to our mixture, we can find a surfactant concentration (or, more precisely, a surfactant chemical potential) below which only the polymer will adsorb and above which only the surfactant will adsorb. The corresponding surfactant concentration is called the CSAC. In a first-order approximation, the surfactant chemical potential has the CMC as its upper bound. We can find conditions for which CMC model is to understand the experimental data from one of our previous articles. We managed to explain most, but unfortunately not all, of the experimental trends. At the end of the article we discuss the possibilities for improving the model.

  1. The Devil in the Dark: A Fully Self-Consistent Seismic Model for Venus

    Science.gov (United States)

    Unterborn, C. T.; Schmerr, N. C.; Irving, J. C. E.

    2017-12-01

    The bulk composition and structure of Venus is unknown despite accounting for 40% of the mass of all the terrestrial planets in our Solar System. As we expand the scope of planetary science to include those planets around other stars, the lack of measurements of basic planetary properties such as moment of inertia, core-size and thermal profile for Venus hinders our ability to compare the potential uniqueness of the Earth and our Solar System to other planetary systems. Here we present fully self-consistent, whole-planet density and seismic velocity profiles calculated using the ExoPlex and BurnMan software packages for various potential Venusian compositions. Using these models, we explore the seismological implications of the different thermal and compositional initial conditions, taking into account phase transitions due to changes in pressure, temperature as well as composition. Using mass-radius constraints, we examine both the centre frequencies of normal mode oscillations and the waveforms and travel times of body waves. Seismic phases which interact with the core, phase transitions in the mantle, and shallower parts of Venus are considered. We also consider the detectability and transmission of these seismic waves from within the dense atmosphere of Venus. Our work provides coupled compositional-seismological reference models for the terrestrial planet in our Solar System of which we know the least. Furthermore, these results point to the potential wealth of fundamental scientific insights into Venus and Earth, as well as exoplanets, which could be gained by including a seismometer on future planetary exploration missions to Venus, the devil in the dark.

  2. Time-dependent restricted-active-space self-consistent-field theory with space partition

    Science.gov (United States)

    Miyagi, Haruhide; Madsen, Lars Bojer

    2017-02-01

    Aiming at efficient numerical analysis of time-dependent (TD) many-electron dynamics of atoms involving multielectron continua, the TD restricted-active-space self-consistent-field theory with space partition (TD-RASSCF-SP) is presented. The TD-RASSCF-SP wave function is expanded in terms of TD configuration-interaction coefficients with Slater determinants composed of two kinds of TD orbitals: M ̂ orbitals are defined to be nonvanishing in the inner region (V ̂), a small volume around the atomic nucleus, and M ˇ orbitals are nonvanishing in the large outer region (V ˇ). For detailed discussion of the SP strategy, the equations of motion are derived by two different formalisms for comparison. To ensure continuous differentiability of the wave function across the two regions, one of the formalisms makes use of the property of the finite-element discrete-variable-representation (FEDVR) functions and introduces additional time-independent orbitals. The other formalism is more general and is based on the Bloch operator as in the R -matrix theory, but turns out to be less practical for numerical applications. Hence, using the FEDVR-based formalism, the numerical performance is tested by computing double-ionization dynamics of atomic beryllium in intense light fields. To achieve high accuracy, M ̂ should be set large to take into account the strong many-electron correlation around the nucleus. On the other hand, M ˇ can be set much smaller than M ̂ for capturing the weaker correlation between the two outgoing photoelectrons. As a result, compared with more accurate multiconfigurational TD Hartree-Fock (MCTDHF) method, the TD-RASSCF-SP method may achieve comparable accuracy in the description of the double-ionization dynamics. There are, however, difficulties related to the stiffness of the equations of motion of the TD-RASSCF-SP method, which makes the required time step for this method smaller than the one needed for the MCTDHF approach.

  3. Bicontinuous Phases in Diblock Copolymer/Homopolymer Blends: Simulation and Self-Consistent Field Theory

    KAUST Repository

    Martínez-Veracoechea, Francisco J.

    2009-03-10

    A combination of particle-based simulations and self-consistent field theory (SCFT) is used to study the stabilization of multiple ordered bicontinuous phases in blends of a diblock copolymer (DBC) and a homopolymer. The double-diamond phase (DD) and plumber\\'s nightmare phase (P) were spontaneously formed in the range of homopolymer volume fraction simulated via coarse-grained molecular dynamics. To the best of our knowledge, this is the first time that such phases have been obtained in continuum-space molecular simulations of DBC systems. Though tentative phase boundaries were delineated via free-energy calculations, macrophase separation could not be satisfactorily assessed within the framework of particle-based simulations. Therefore, SCFT was used to explore the DBC/homopolymer phase diagram in more detail, showing that although in many cases two-phase coexistence of a DBC-rich phase and a homopolymer-rich phase does precede the stability of complex bicontinuous phases the DD phase can be stable in a relatively wide region of the phase diagram. Whereas the P phase was always metastable with respect to macrophase separation under the thermodynamic conditions explored with SCFT, it was sometimes nearly stable, suggesting that full stability could be achieved in other unexplored regions of parameter space. Moreover, even the predicted DD- and P-phase metastability regions were located significantly far from the spinodal line, suggesting that these phases could be observed in experiments as "long-lived" metastable phases under those conditions. This conjecture is also consistent with large-system molecular dynamics simulations that showed that the time scale of mesophase formation is much faster than that of macrophase separation. © 2009 American Chemical Society.

  4. Relativistic Astronomy

    Science.gov (United States)

    Zhang, Bing; Li, Kunyang

    2018-02-01

    The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.

  5. Relativistic brachistochrone

    Science.gov (United States)

    Goldstein, Harris F.; Bender, Carl M.

    1986-02-01

    The trajectory joining two points a1 and a2, which minimizes the transit time for a particle, initially at rest, to fall in a uniform gravitational field from a1 to a2, is called the brachistochrone. Johann Bernoulli was the first to find an analytical form for the brachistochrone; in 1696, he discovered that the trajectory is a cycloid. In this paper the relativistic generalization of this classic problem is presented. Four separate curves are actually identified: a particle falling in both a uniform electric and uniform gravitational field is considered. The curves that minimize the times of flight measured by an observer in a laboratory in which a1 and a2 are fixed and also the curves that minimize the proper times of flight are found.

  6. Bounds and self-consistent estimates for elastic constants of polycrystals composed of orthorhombics or crystals with higher symmetries.

    Science.gov (United States)

    Berryman, James G

    2011-04-01

    Methods for computing Hashin-Shtrikman bounds and related self-consistent estimates of elastic constants for polycrystals composed of crystals having orthorhombic symmetry have been known for about three decades. However, these methods are underutilized, perhaps because of some perceived difficulties with implementing the necessary computational procedures. Several simplifications of these techniques are introduced, thereby reducing the overall computational burden, as well as the complications inherent in mapping out the Hashin-Shtrikman bounding curves. The self-consistent estimates of the effective elastic constants are very robust, involving a quickly converging iteration procedure. Once these self-consistent values are known, they may then be used to speed up the computations of the Hashin-Shtrikman bounds themselves. It is shown furthermore that the resulting orthorhombic polycrystal code can be used as well to compute both bounds and self-consistent estimates for polycrystals of higher-symmetry tetragonal, hexagonal, and cubic (but not trigonal) materials. The self-consistent results found this way are shown to be the same as those obtained using the earlier methods, specifically those methods designed specially for each individual symmetry type. But the Hashin-Shtrikman bounds found using the orthorhombic code are either the same or (more typically) tighter than those found previously for these special cases (i.e., tetragonal, hexagonal, and cubic). The improvement in the Hashin-Shtrikman bounds is presumably due to the additional degrees of freedom introduced into the available search space.

  7. Bounds and self-consistent estimates for elastic constants of granular polycrystals composed of orthorhombics or crystal with higher symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J. G.

    2011-02-01

    Methods for computing Hashin-Shtrikman bounds and related self-consistent estimates of elastic constants for polycrystals composed of crystals having orthorhombic symmetry have been known for about three decades. However, these methods are underutilized, perhaps because of some perceived difficulties with implementing the necessary computational procedures. Several simplifications of these techniques are introduced, thereby reducing the overall computational burden, as well as the complications inherent in mapping out the Hashin-Shtrikman bounding curves. The self-consistent estimates of the effective elastic constants are very robust, involving a quickly converging iteration procedure. Once these self-consistent values are known, they may then be used to speed up the computations of the Hashin-Shtrikman bounds themselves. It is shown furthermore that the resulting orthorhombic polycrystal code can be used as well to compute both bounds and self-consistent estimates for polycrystals of higher-symmetry tetragonal, hexagonal, and cubic (but not trigonal) materials. The self-consistent results found this way are shown to be the same as those obtained using the earlier methods, specifically those methods designed specially for each individual symmetry type. But the Hashin-Shtrikman bounds found using the orthorhombic code are either the same or (more typically) tighter than those found previously for these special cases (i.e., tetragonal, hexagonal, and cubic). The improvement in the Hashin-Shtrikman bounds is presumably due to the additional degrees of freedom introduced into the available search space.

  8. Self-consistent Vlasov-Maxwell description of the longitudinal dynamics of intense charged particle beams

    Directory of Open Access Journals (Sweden)

    Ronald C. Davidson

    2004-02-01

    Full Text Available This paper describes a self-consistent kinetic model for the longitudinal dynamics of a long, coasting beam propagating in straight (linear geometry in the z direction in the smooth-focusing approximation. Starting with the three-dimensional Vlasov-Maxwell equations, and integrating over the phase-space (x_{⊥},p_{⊥} transverse to beam propagation, a closed system of equations is obtained for the nonlinear evolution of the longitudinal distribution function F_{b}(z,p_{z},t and average axial electric field ⟨E_{z}^{s}⟩(z,t. The primary assumptions in the present analysis are that the dependence on axial momentum p_{z} of the distribution function f_{b}(x,p,t is factorable, and that the transverse beam dynamics remains relatively quiescent (absence of transverse instability or beam mismatch. The analysis is carried out correct to order k_{z}^{2}r_{w}^{2} assuming slow axial spatial variations with k_{z}^{2}r_{w}^{2}≪1, where k_{z}∼∂/∂z is the inverse length scale of axial variation in the line density λ_{b}(z,t=∫dp_{z}F_{b}(z,p_{z},t, and r_{w} is the radius of the conducting wall (assumed perfectly conducting. A closed expression for the average longitudinal electric field ⟨E_{z}^{s}⟩(z,t in terms of geometric factors, the line density λ_{b}, and its derivatives ∂λ_{b}/∂z,… is obtained for the class of bell-shaped density profiles n_{b}(r,z,t=(λ_{b}/πr_{b}^{2}f(r/r_{b}, where the shape function f(r/r_{b} has the form specified by f(r/r_{b}=(n+1(1-r^{2}/r_{b}^{2}^{n} for 0≤r

  9. Self-Consistent Scheme for Spike-Train Power Spectra in Heterogeneous Sparse Networks.

    Science.gov (United States)

    Pena, Rodrigo F O; Vellmer, Sebastian; Bernardi, Davide; Roque, Antonio C; Lindner, Benjamin

    2018-01-01

    Recurrent networks of spiking neurons can be in an asynchronous state characterized by low or absent cross-correlations and spike statistics which resemble those of cortical neurons. Although spatial correlations are negligible in this state, neurons can show pronounced temporal correlations in their spike trains that can be quantified by the autocorrelation function or the spike-train power spectrum. Depending on cellular and network parameters, correlations display diverse patterns (ranging from simple refractory-period effects and stochastic oscillations to slow fluctuations) and it is generally not well-understood how these dependencies come about. Previous work has explored how the single-cell correlations in a homogeneous network (excitatory and inhibitory integrate-and-fire neurons with nearly balanced mean recurrent input) can be determined numerically from an iterative single-neuron simulation. Such a scheme is based on the fact that every neuron is driven by the network noise (i.e., the input currents from all its presynaptic partners) but also contributes to the network noise, leading to a self-consistency condition for the input and output spectra. Here we first extend this scheme to homogeneous networks with strong recurrent inhibition and a synaptic filter, in which instabilities of the previous scheme are avoided by an averaging procedure. We then extend the scheme to heterogeneous networks in which (i) different neural subpopulations (e.g., excitatory and inhibitory neurons) have different cellular or connectivity parameters; (ii) the number and strength of the input connections are random (Erdős-Rényi topology) and thus different among neurons. In all heterogeneous cases, neurons are lumped in different classes each of which is represented by a single neuron in the iterative scheme; in addition, we make a Gaussian approximation of the input current to the neuron. These approximations seem to be justified over a broad range of parameters as

  10. Symmetry breaking in frustrated XY models: Results from new self-consistent fluctuation approach and simulations

    Science.gov (United States)

    Behzadi, Azad Esmailov

    1999-10-01

    The critical behavior of the fully frustrated XY model has remained controversial in spite of almost two decades of related research. In this study, we have developed a new method inspired by Netz and Berker's hard-spin mean- field theory. Our approach for XY models yields results consistent with Monte Carlo simulations as the ratio of antiferromagnetic to ferromagnetic interactions is varied. The method captures two phase transitions clearly separated in temperature for ratios of 0.5, 0.6, and 1.5, with these transitions moving closer together in temperature as the interaction ratio approaches 1.0, the fully frustrated case. From the system's chirality as a function of temperature in the critical region, we calculate the critical exponent β in agreement with an Ising transition for all of the interaction ratios studied, including 1.0. This result provides support for the view that there are two transitions, rather than one transition in a new universality class, occurring in the fully frustrated XY model. Finite size effects in this model can be essentially eliminated by rescaling the local magnetization, the quantity retained self- consistently in our computations. This rescaling scheme also shows excellent results when tested on the two- dimensional Ising model, and the method, as generalized, provides a framework for an analytical approach to complex systems. Monte Carlo simulations of the fully frustrated XY model in a magnetic field provide further evidence of two transitions. The magnetic field breaks the rotational symmetry of the model, but the two-fold chiral degeneracy of the ground state persists in the field. This lower degeneracy with the field present makes Monte Carlo simulations converge more rapidly. The critical exponent δ determined from the sublattice magnetizations as a function of field agrees with the value expected for a Kosterlitz-Thouless transition. Further, the zero-field specific heat obtained by extrapolation from simulations in a

  11. Self-consistent kinetic simulations of lower hybrid drift instability resulting in electron current driven by fusion products in tokamak plasmas

    International Nuclear Information System (INIS)

    Cook, J W S; Chapman, S C; Dendy, R O; Brady, C S

    2011-01-01

    We present particle-in-cell (PIC) simulations of minority energetic protons in deuterium plasmas, which demonstrate a collective instability responsible for emission near the lower hybrid frequency and its harmonics. The simulations capture the lower hybrid drift instability in a parameter regime motivated by tokamak fusion plasma conditions, and show further that the excited electromagnetic fields collectively and collisionlessly couple free energy from the protons to directed electron motion. This results in an asymmetric tail antiparallel to the magnetic field. We focus on obliquely propagating modes excited by energetic ions, whose ring-beam distribution is motivated by population inversions related to ion cyclotron emission, in a background plasma with a temperature similar to that of the core of a large tokamak plasma. A fully self-consistent electromagnetic relativistic PIC code representing all vector field quantities and particle velocities in three dimensions as functions of a single spatial dimension is used to model this situation, by evolving the initial antiparallel travelling ring-beam distribution of 3 MeV protons in a background 10 keV Maxwellian deuterium plasma with realistic ion-electron mass ratio. These simulations provide a proof-of-principle for a key plasma physics process that may be exploited in future alpha channelling scenarios for magnetically confined burning plasmas.

  12. Relativistic conformal magneto-hydrodynamics from holography

    International Nuclear Information System (INIS)

    Buchbinder, Evgeny I.; Buchel, Alex

    2009-01-01

    We use the AdS/CFT correspondence to study first-order relativistic viscous magneto-hydrodynamics of (2+1)-dimensional conformal magnetic fluids. It is shown that the first order magneto-hydrodynamics constructed following Landau and Lifshitz from the positivity of the entropy production is inconsistent. We propose additional contributions to the entropy motivated dissipative current and, correspondingly, new dissipative transport coefficients. We use the strongly coupled M2-brane plasma in external magnetic field to show that the new magneto-hydrodynamics leads to self-consistent results in the shear and sound wave channels.

  13. Self-consistent collisional-radiative model for hydrogen atoms: Atom–atom interaction and radiation transport

    International Nuclear Information System (INIS)

    Colonna, G.; Pietanza, L.D.; D’Ammando, G.

    2012-01-01

    Graphical abstract: Self-consistent coupling between radiation, state-to-state kinetics, electron kinetics and fluid dynamics. Highlight: ► A CR model of shock-wave in hydrogen plasma has been presented. ► All equations have been coupled self-consistently. ► Non-equilibrium electron and level distributions are obtained. ► The results show non-local effects and non-equilibrium radiation. - Abstract: A collisional-radiative model for hydrogen atom, coupled self-consistently with the Boltzmann equation for free electrons, has been applied to model a shock tube. The kinetic model has been completed considering atom–atom collisions and the vibrational kinetics of the ground state of hydrogen molecules. The atomic level kinetics has been also coupled with a radiative transport equation to determine the effective adsorption and emission coefficients and non-local energy transfer.

  14. The exact solution of self-consistent equations in the scanning near-field optic microscopy problem

    DEFF Research Database (Denmark)

    Lozovski, Valeri; Bozhevolnyi, Sergey I.

    1999-01-01

    for solving the self-consistent integral equation. The method developed is applied to calculations of near-field optical images obtained in illumination mode. It is assumed that the system under consideration consists of an object illuminated by the field scattered by a small probe. This assumption allows us...... to consider multiple scattering between a (point-like) probe and an extended object as well as inside the object. The exact solution for the self-consistent field is then obtained in terms of effective susceptibility of the probe-object system. Application of our method to the description of orientation...

  15. The exact solution of self-consistent equations in the scanning near-field optic microscopy problem

    DEFF Research Database (Denmark)

    Lozovski, Valeri; Bozhevolnyi, Sergey I.

    1999-01-01

    The macroscopic approach that allows one to obtain an exact solution of the self-consistent equation of the Lippmann-Schwinger type is developed. The main idea of our method consist in usage of diagram technque for exact summation of the infinite series corresponding to the iteration procedure fo...

  16. Self-consistent field modeling of non-ionic surfactants at the silica-water interface: Incorporating molecular detail

    NARCIS (Netherlands)

    Postmus, B.R.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2008-01-01

    We have constructed a model to predict the properties of non-ionic (alkyl-ethylene oxide) (C(n)E(m)) surfactants, both in aqueous solutions and near a silica surface, based upon the self-consistent field theory using the Scheutjens-Fleer discretisation scheme. The system has the pH and the ionic

  17. Gamow-Teller strength distributions in 76Ge, 76,82Se, and 90,92Zr by the deformed proton-neutron QRPA

    Science.gov (United States)

    Ha, Eunja; Cheoun, Myung-Ki

    2015-02-01

    The deformed proton-neutron quasiparticle random phase approximation (QRPA) has been developed and applied to evaluate Gamow-Teller (GT) transition strength distributions, including high-lying excited states. The data of high-lying excited states are recently available beyond one or two nucleon threshold by charge exchange reactions using hundreds of MeV projectiles. Our calculations started with single-particle states calculated using a deformed, axially symmetric Woods-Saxon potential. The neutron-neutron and proton-proton pairing correlations are explicitly taken into account at the deformed Bardeen-Cooper-Schriffer theory. Additionally, the ground state correlations and two-particle and two-hole mixing states were included in the deformed QRPA. In this work, we used a realistic two-body interaction, given by the Brueckner G-matrix based on the CD Bonn potential to reduce the ambiguity on the nucleon-nucleon interactions inside nuclei. We applied our formalism to the GT transition strengths for 76Ge, 76,82Se, and 90,92Zr, and compared the results with the available experimental data. The GT strength distributions were sensitive to the deformation parameter as well as its sign, i.e., oblate or prolate. The Ikeda sum rule, which is usually thought to be satisfied under the one-body current approximation, regardless of nucleon models, was used to test our numerical calculations and shown to be satisfied without introducing the quenching factor, if high-lying GT excited states were properly taken into account. Most of the GT strength distributions of the nuclei considered in this work have the high-lying GT excited states beyond one-nucleon threshold, which are shown to be consistent with the available experimental data.

  18. Quark-Parton Model and Relativistic Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Kostenko Boris

    2018-01-01

    Full Text Available An attempt to treat the asymptotic freedom and the quark confinement as a self-consistent problem in the framework of relativistic quantum mechanics is realized. It is shown that the confinement of quarks induces a change of their helicities together with a simultaneous alteration of orbital momenta, so that the total angular momentum of each quark is conserved. This observation may cast light on the so-called proton spin puzzle after some additional numerical estimations.

  19. Systematics of light nuclei in a relativistic model

    International Nuclear Information System (INIS)

    Price, C.E.

    1988-01-01

    The results of relativistic mean field calculations for non-spherical nuclei are presented and discussed. The need for non-linear scalar meson self-couplings in order to describe the properties of s-d shell nuclei is emphasized along with the importance of self-consistency in calculations of magnetic moments of odd-mass nuclei. 16 refs., 3 figs., 2 tabs

  20. THE ELECTRONIC-STRUCTURE OF THE PTH MOLECULE - FULLY RELATIVISTIC CONFIGURATION-INTERACTION CALCULATIONS OF THE GROUND AND EXCITED-STATES

    NARCIS (Netherlands)

    VISSCHER, L; SAUE, T; NIEUWPOORT, WC; FAEGRI, K; GROPEN, O

    1993-01-01

    Fully relativistic all-electron self-consistent field calculations based on the Dirac-Coulomb Hamiltonian have been performed on the three lowest lying states of the PtH molecule. The resulting four-component Dirac-Hartree-Fock (DHF) molecular spinors are subsequently used in relativistic

  1. Relativistic Fluid Dynamics

    CERN Document Server

    Cattaneo, Carlo

    2011-01-01

    This title includes: Pham Mau Quam: Problemes mathematiques en hydrodynamique relativiste; A. Lichnerowicz: Ondes de choc, ondes infinitesimales et rayons en hydrodynamique et magnetohydrodynamique relativistes; A.H. Taub: Variational principles in general relativity; J. Ehlers: General relativistic kinetic theory of gases; K. Marathe: Abstract Minkowski spaces as fibre bundles; and, G. Boillat: Sur la propagation de la chaleur en relativite.

  2. The Plumber’s Nightmare Phase in Diblock Copolymer/Homopolymer Blends. A Self-Consistent Field Theory Study.

    KAUST Repository

    Martinez-Veracoechea, Francisco J.

    2009-11-24

    Using self-consistent field theory, the Plumber\\'s Nightmare and the double diamond phases are predicted to be stable in a finite region of phase diagrams for blends of AB diblock copolymer (DBC) and A-component homopolymer. To the best of our knowledge, this is the first time that the P phase has been predicted to be stable using self-consistent field theory. The stabilization is achieved by tuning the composition or conformational asymmetry of the DBC chain, and the architecture or length of the homopolymer. The basic features of the phase diagrams are the same in all cases studied, suggesting a general type of behavior for these systems. Finally, it is noted that the homopolymer length should be a convenient variable to stabilize bicontinuous phases in experiments. © 2009 American Chemical Society.

  3. Longitudinal motion in high current ion beams: a self-consistent phase space distribution with an envelope equation

    International Nuclear Information System (INIS)

    Neuffer, D.

    1979-03-01

    Many applications of particle acceleration, such as heavy ion fusion, require longitudinal bunching of a high intensity particle beam to extremely high particle currents with correspondingly high space charge forces. This requires a precise analysis of longitudinal motion including stability analysis. Previous papers have treated the longitudinal space charge force as strictly linear, and have not been self-consistent; that is, they have not displayed a phase space distribution consistent with this linear force so that the transport of the phase space distribution could be followed, and departures from linearity could be analyzed. This is unlike the situation for transverse phase space where the Kapchinskij--Vladimirskij (K--V) distribution can be used as the basis of an analysis of transverse motion. In this paper a self-consistent particle distribution in longitudinal phase space is derived which is a solution of the Vlasov equation and an envelope equation for this solution is derived

  4. 1ST-ORDER NONADIABATIC COUPLING MATRIX-ELEMENTS FROM MULTICONFIGURATIONAL SELF-CONSISTENT-FIELD RESPONSE THEORY

    DEFF Research Database (Denmark)

    Bak, Keld L.; Jørgensen, Poul; Jensen, H.J.A.

    1992-01-01

    A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response of a ref......A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response...... electrons many correlating orbitals are required in the MCSCF reference state calculation to accurately describe the FO-NACME. FO-NACME between various states of H-2, MgH2, and BH are presented. These calculations show that the method is capable of giving quantitatively correct results that converge...

  5. Self-consistent analysis of radial electric field and fast ion losses in CHS Torsatron/Heliotron

    International Nuclear Information System (INIS)

    Sanuki, H.; Itoh, K.; Itoh, S.

    1992-09-01

    A self-consistent analysis is developed to determine the radial electric field and loss cone boundary in Torsatron/Heliotron plasmas under the influence of non-classical ion losses such as the loss cone loss ans charge exchange loss of fast ions with neutrals. Analysis is applied to the NBI heated plasmas in the Compact Helical System (CHS) device. Comparison is made between theoretical results and experimental observations. The increased ion particle losses caused by the orbit loss and charge exchange loss with neutrals make the radial electric field more negative than the value of purely neoclassical calculation. The partition of the injection energy among the shine through, direct orbit loss, change exchange loss and bulk heating is evaluated by using the self-consistent electric field profile. On-going experiments in the CHS device are briefly introduced. (author)

  6. Time-dependent restricted-active-space self-consistent-field theory for bosonic many-body systems

    International Nuclear Information System (INIS)

    Lévêque, Camille; Madsen, Lars Bojer

    2017-01-01

    We develop an ab initio time-dependent wavefunction based theory for the description of a many-body system of cold interacting bosons. Like the multi-configurational time-dependent Hartree method for bosons (MCTDHB), the theory is based on a configurational interaction Ansatz for the many-body wavefunction with time-dependent self-consistent-field orbitals. The theory generalizes the MCTDHB method by incorporating restrictions on the active space of the orbital excitations. The restrictions are specified based on the physical situation at hand. The equations of motion of this time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory are derived. The similarity between the formal development of the theory for bosons and fermions is discussed. The restrictions on the active space allow the theory to be evaluated under conditions where other wavefunction based methods due to exponential scaling in the numerical effort cannot, and to clearly identify the excitations that are important for an accurate description, significantly beyond the mean-field approach. For ground state calculations we find it to be important to allow a few particles to have the freedom to move in many orbitals, an insight facilitated by the flexibility of the restricted-active-space Ansatz . Moreover, we find that a high accuracy can be obtained by including only even excitations in the many-body self-consistent-field wavefunction. Time-dependent simulations of harmonically trapped bosons subject to a quenching of their noncontact interaction, show failure of the mean-field Gross-Pitaevskii approach within a fraction of a harmonic oscillation period. The TD-RASSCF theory remains accurate at much reduced computational cost compared to the MCTDHB method. Exploring the effect of changes of the restricted-active-space allows us to identify that even self-consistent-field excitations are mainly responsible for the accuracy of the method. (paper)

  7. A Simulation Model for Drift Resistive Ballooning Turbulence Examining the Influence of Self-consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim; Joseph, Ilon

    2015-11-01

    Progress is reported on including self-consistent zonal flows in simulations of drift-resistive ballooning turbulence using the BOUT + + framework. Previous published work addressed the simulation of L-mode edge turbulence in realistic single-null tokamak geometry using the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations. The effects of imposed sheared ExB poloidal rotation were included, with a static radial electric field fitted to experimental data. In new work our goal is to include the self-consistent effects on the radial electric field driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We describe a model for including self-consistent zonal flows and an algorithm for maintaining underlying plasma profiles to enable the simulation of steady-state turbulence. We examine the role of Braginskii viscous forces in providing necessary dissipation when including axisymmetric perturbations. We also report on some of the numerical difficulties associated with including the axisymmetric component of the fluctuating fields. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory (LLNL-ABS-674950).

  8. Self-consistent treatment of nuclear collective motion with an application to the giant-dipole resonance

    International Nuclear Information System (INIS)

    Liran, S.; Technion-Israel Inst. of Tech., Haifa. Dept. of Physics)

    1977-01-01

    This paper extends the recent theory of Liran, Scheefer, Scheid and Greiner on non-adiabatic cranking and nuclear collective motion. In the present work we show the self-consistency conditions for the collective motion, which are indicated by appropriate time-dependent Lagrange multipliers, can be treated explicitly. The energy conservation and the self-consistency condition in the case of one collective degree of freedom are expressed in differential form. This leads to a set of coupled differential equations in time for the many-body wave function, for the collective variable and for the Lagrange multiplier. An iteration procedure similar to that of the previous work is also presented. As an illustrative example, we investigate Brink's single-particle description of the giant-dipole resonance. In this case, the important role played by non-adiabaticity and self-consistency in determining the collective motion is demonstrated and discussed. We also consider the fact that in this example of a fast collective motion, the adiabatic cranking model of Inglis gives the correct mass parameter. (orig.) [de

  9. Particle Acceleration and Associated Emission from Relativistic Shocks

    Science.gov (United States)

    Nishkawa, Ken-Ichi

    2009-01-01

    Five talks consist of a research program consisting of numerical simulations and theoretical development designed to provide an understanding of the emission from accelerated particles in relativistic shocks. The goal of this lecture is to discuss the particle acceleration, magnetic field generation, and radiation along with the microphysics of the shock process in a self-consistent manner. The discussion involves the collisionless shocks that produce emission from gamma-ray bursts and their afterglows, and producing emission from supernova remnants and AGN relativistic jets. Recent particle-in-cell simulation studies have shown that the Weibel (mixed mode two-stream filamentation) instability is responsible for particle (electron, positron, and ion) acceleration and magnetic field generation in relativistic collisionless shocks. 3-D RPIC code parallelized with MPI has been used to investigate the dynamics of collisionless shocks in electron-ion and electron-positron plasmas with and without initial ambient magnetic fields. In this lecture we will present brief tutorials of RPIC simulations and RMHD simulations, a brief summary of recent RPIC simulations, mechanisms of particle acceleration in relativistic shocks, and calculation of synchrotron radiation by tracing particles. We will discuss on emission from the collisionless shocks, which will be calculated during the simulation by tracing particle acceleration self-consistently in the inhomogeneous magnetic fields generated in the shocks. In particular, we will discuss the differences between standard synchrotron radiation and the jitter radiation that arises in turbulent magnetic fields.

  10. Electromagnetic dipole and Gamow-Teller responses of even and odd {sup 90-94}{sub 40}Zr isotopes in QRPA calculations with the D1M Gogny force

    Energy Technology Data Exchange (ETDEWEB)

    Deloncle, I. [CSNSM, CNRS et Universite Paris-Sud, Orsay (France); CEA, DAM, DIF, Arpajon (France); Peru, S. [CEA, DAM, DIF, Arpajon (France); Martini, M. [ESNT, CEA-Saclay, DSM, Irfu, Service de Physique Nucleaire, Gif-sur-Yvette (France)

    2017-08-15

    In this paper we present theoretical results on the dipole response in the proton spin-saturated {sup 90-94}Zr isotopes. The electric and magnetic dipole excitations are obtained in Hartree-Fock-Bogolyubov plus Quasi-particle Random Phase Approximation (QRPA) calculations performed with the D1M Gogny force. A pnQRPA charge exchange code is used to study the Gamow-Teller response. The results on the pygmy, the giant dipole resonances as well as those on the magnetic nuclear spin-flip excitation and the Gamow-Teller transitions are compared with available experimental or theoretical information. In our approach, the proton pairing plays a role in the phonon excitations, in particular in the M1 nuclear spin-flip resonance. (orig.)

  11. On the time delay between ultra-relativistic particles

    Directory of Open Access Journals (Sweden)

    Pierre Fleury

    2016-09-01

    Full Text Available The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.

  12. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  13. Self-Consistant Numerical Modeling of E-Cloud Driven Instability of a Bunch Train in the CERN SPS

    International Nuclear Information System (INIS)

    Vay, J.-L.; Furman, M.A.; Secondo, R.; Venturini, M.; Fox, J.D.; Rivetta, C.H.

    2010-01-01

    The simulation package WARP-POSINST was recently upgraded for handling multiple bunches and modeling concurrently the electron cloud buildup and its effect on the beam, allowing for direct self-consistent simulation of bunch trains generating, and interacting with, electron clouds. We have used the WARP-POSINST package on massively parallel supercomputers to study the growth rate and frequency patterns in space-time of the electron cloud driven transverse instability for a proton bunch train in the CERN SPS accelerator. Results suggest that a positive feedback mechanism exists between the electron buildup and the e-cloud driven transverse instability, leading to a net increase in predicted electron density. Comparisons to selected experimental data are also given. Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS and other accelerators. So far, simulations of electron cloud buildup and their effects on beam dynamics have been performed separately. This is a consequence of the large computational cost of the combined calculation due to large space and time scale disparities between the two processes. We have presented the latest improvements of the simulation package WARP-POSINST for the simulation of self-consistent ecloud effects, including mesh refinement, and generation of electrons from gas ionization and impact at the pipe walls. We also presented simulations of two consecutive bunches interacting with electrons clouds in the SPS, which included generation of secondary electrons. The distribution of electrons in front of the first beam was initialized from a dump taken from a preceding buildup calculation using the POSINST code. In this paper, we present an extension of this work where one full batch of 72 bunches is simulated in the SPS, including the entire buildup calculation and the self-consistent interaction between the bunches and the electrons. Comparisons to experimental data are also given.

  14. A new six-component super soliton hierarchy and its self-consistent sources and conservation laws

    Science.gov (United States)

    Han-yu, Wei; Tie-cheng, Xia

    2016-01-01

    A new six-component super soliton hierarchy is obtained based on matrix Lie super algebras. Super trace identity is used to furnish the super Hamiltonian structures for the resulting nonlinear super integrable hierarchy. After that, the self-consistent sources of the new six-component super soliton hierarchy are presented. Furthermore, we establish the infinitely many conservation laws for the integrable super soliton hierarchy. Project supported by the National Natural Science Foundation of China (Grant Nos. 11547175, 11271008 and 61072147), the First-class Discipline of University in Shanghai, China, and the Science and Technology Department of Henan Province, China (Grant No. 152300410230).

  15. Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics

    DEFF Research Database (Denmark)

    Miyagi, Haruhide; Madsen, Lars Bojer

    2013-01-01

    We present the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory as a framework for the time-dependent many-electron problem. The theory generalizes the multiconfigurational time-dependent Hartree-Fock (MCTDHF) theory by incorporating the restricted-active-space scheme...... well known in time-independent quantum chemistry. Optimization of the orbitals as well as the expansion coefficients at each time step makes it possible to construct the wave function accurately while using only a relatively small number of electronic configurations. In numerical calculations of high...

  16. An improved algorithm for the polycrystal viscoplastic self-consistent model and its integration with implicit finite element schemes

    International Nuclear Information System (INIS)

    Galán, J; Verleysen, P; Lebensohn, R A

    2014-01-01

    A new algorithm for the solution of the deformation of a polycrystalline material using a self-consistent scheme, and its integration as part of the finite element software Abaqus/Standard are presented. The method is based on the original VPSC formulation by Lebensohn and Tomé and its integration with Abaqus/Standard by Segurado et al. The new algorithm has been implemented as a set of Fortran 90 modules, to be used either from a standalone program or from Abaqus subroutines. The new implementation yields the same results as VPSC7, but with a significantly better performance, especially when used in multicore computers. (paper)

  17. Hubbard-U corrected Hamiltonians for non-self-consistent random-phase approximation total-energy calculations

    DEFF Research Database (Denmark)

    Patrick, Christopher; Thygesen, Kristian Sommer

    2016-01-01

    In non-self-consistent calculations of the total energy within the random-phase approximation (RPA) for electronic correlation, it is necessary to choose a single-particle Hamiltonian whose solutions are used to construct the electronic density and noninteracting response function. Here we...... in the underlying electronic structure. We further demonstrate that the non-selfconsistent RPA total energies of these materials have minima at nonzero U. Our RPA calculations find the rutile phase of TiO2 to be more stable than anatase independent of U, a result which is consistent with experiments...

  18. Communication: The description of strong correlation within self-consistent Green's function second-order perturbation theory

    International Nuclear Information System (INIS)

    Phillips, Jordan J.; Zgid, Dominika

    2014-01-01

    We report an implementation of self-consistent Green's function many-body theory within a second-order approximation (GF2) for application with molecular systems. This is done by iterative solution of the Dyson equation expressed in matrix form in an atomic orbital basis, where the Green's function and self-energy are built on the imaginary frequency and imaginary time domain, respectively, and fast Fourier transform is used to efficiently transform these quantities as needed. We apply this method to several archetypical examples of strong correlation, such as a H 32 finite lattice that displays a highly multireference electronic ground state even at equilibrium lattice spacing. In all cases, GF2 gives a physically meaningful description of the metal to insulator transition in these systems, without resorting to spin-symmetry breaking. Our results show that self-consistent Green's function many-body theory offers a viable route to describing strong correlations while remaining within a computationally tractable single-particle formalism

  19. A Self-consistent Cloud Model for Brown Dwarfs and Young Giant Exoplanets: Comparison with Photometric and Spectroscopic Observations

    Science.gov (United States)

    Charnay, B.; Bézard, B.; Baudino, J.-L.; Bonnefoy, M.; Boccaletti, A.; Galicher, R.

    2018-02-01

    We developed a simple, physical, and self-consistent cloud model for brown dwarfs and young giant exoplanets. We compared different parametrizations for the cloud particle size, by fixing either particle radii or the mixing efficiency (parameter f sed), or by estimating particle radii from simple microphysics. The cloud scheme with simple microphysics appears to be the best parametrization by successfully reproducing the observed photometry and spectra of brown dwarfs and young giant exoplanets. In particular, it reproduces the L–T transition, due to the condensation of silicate and iron clouds below the visible/near-IR photosphere. It also reproduces the reddening observed for low-gravity objects, due to an increase of cloud optical depth for low gravity. In addition, we found that the cloud greenhouse effect shifts chemical equilibrium, increasing the abundances of species stable at high temperature. This effect should significantly contribute to the strong variation of methane abundance at the L–T transition and to the methane depletion observed on young exoplanets. Finally, we predict the existence of a continuum of brown dwarfs and exoplanets for absolute J magnitude = 15–18 and J-K color = 0–3, due to the evolution of the L–T transition with gravity. This self-consistent model therefore provides a general framework to understand the effects of clouds and appears well-suited for atmospheric retrievals.

  20. Calculation of Self-consistent Radial Electric Field in Presence of Convective Electron Transport in a Stellarator

    International Nuclear Information System (INIS)

    Kernbichler, W.; Heyn, M.F.; Kasilov, S.V.

    2003-01-01

    Convective transport of supra-thermal electrons can play a significant role in the energy balance of stellarators in case of high power electron cyclotron heating. Here, together with neoclassical thermal particle fluxes also the supra-thermal electron flux should be taken into account in the flux ambipolarity condition, which defines the self-consistent radial electric field. Since neoclassical particle fluxes are non-linear functions of the radial electric field, one needs an iterative procedure to solve the ambipolarity condition, where the supra-thermal electron flux has to be calculated for each iteration. A conventional Monte-Carlo method used earlier for evaluation of supra-thermal electron fluxes is rather slow for performing the iterations in reasonable computer time. In the present report, the Stochastic Mapping Technique (SMT), which is more effective than the conventional Monte Carlo method, is used instead. Here, the problem with a local monoenergetic supra-thermal particle source is considered and the effect of supra-thermal electron fluxes on both, the self-consistent radial electric field and the formation of different roots of the ambipolarity condition are studied

  1. Self-consistency for low self-esteem in dissonance processes: the role of self-standards.

    Science.gov (United States)

    Stone, Jeff

    2003-07-01

    The self-consistency revision of cognitive dissonance theory predicts that people with low self-esteem are less likely to experience dissonance arousal compared to people with high self-esteem. Two experiments investigated how the accessibility of different self-standards in the context of a dissonant act activates the consistency role of self-esteem in the process of cognitive dissonance arousal. In Experiment I, after participants wrote a counter-attitudinal essay, priming personal self-standards caused more attitude change for those with high compared to low self-esteem, whereas priming no standards or priming normative self-standards caused the same level of attitude change among both self-esteem groups. Experiment 2 showed that the self-consistency effect for low self-esteem participants only occurred among those who were high in self-certainty when personal self-standards were primed. The importance of self-standards for understanding the role of self-esteem in dissonance processes is discussed.

  2. Comparison of bootstrap current and plasma conductivity models applied in a self-consistent equilibrium calculation for Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Maria Celia Ramos; Ludwig, Gerson Otto [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: mcr@plasma.inpe.br

    2004-07-01

    Different bootstrap current formulations are implemented in a self-consistent equilibrium calculation obtained from a direct variational technique in fixed boundary tokamak plasmas. The total plasma current profile is supposed to have contributions of the diamagnetic, Pfirsch-Schlueter, and the neoclassical Ohmic and bootstrap currents. The Ohmic component is calculated in terms of the neoclassical conductivity, compared here among different expressions, and the loop voltage determined consistently in order to give the prescribed value of the total plasma current. A comparison among several bootstrap current models for different viscosity coefficient calculations and distinct forms for the Coulomb collision operator is performed for a variety of plasma parameters of the small aspect ratio tokamak ETE (Experimento Tokamak Esferico) at the Associated Plasma Laboratory of INPE, in Brazil. We have performed this comparison for the ETE tokamak so that the differences among all the models reported here, mainly regarding plasma collisionality, can be better illustrated. The dependence of the bootstrap current ratio upon some plasma parameters in the frame of the self-consistent calculation is also analysed. We emphasize in this paper what we call the Hirshman-Sigmar/Shaing model, valid for all collisionality regimes and aspect ratios, and a fitted formulation proposed by Sauter, which has the same range of validity but is faster to compute than the previous one. The advantages or possible limitations of all these different formulations for the bootstrap current estimate are analysed throughout this work. (author)

  3. Self-consistent Non-LTE Model of Infrared Molecular Emissions and Oxygen Dayglows in the Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Feofilov, Artem G.; Yankovsky, Valentine A.; Pesnell, William D.; Kutepov, Alexander A.; Goldberg, Richard A.; Mauilova, Rada O.

    2007-01-01

    We present the new version of the ALI-ARMS (for Accelerated Lambda Iterations for Atmospheric Radiation and Molecular Spectra) model. The model allows simultaneous self-consistent calculating the non-LTE populations of the electronic-vibrational levels of the O3 and O2 photolysis products and vibrational level populations of CO2, N2,O2, O3, H2O, CO and other molecules with detailed accounting for the variety of the electronic-vibrational, vibrational-vibrational and vibrational-translational energy exchange processes. The model was used as the reference one for modeling the O2 dayglows and infrared molecular emissions for self-consistent diagnostics of the multi-channel space observations of MLT in the SABER experiment It also allows reevaluating the thermalization efficiency of the absorbed solar ultraviolet energy and infrared radiative cooling/heating of MLT by detailed accounting of the electronic-vibrational relaxation of excited photolysis products via the complex chain of collisional energy conversion processes down to the vibrational energy of optically active trace gas molecules.

  4. 1ST-ORDER NONADIABATIC COUPLING MATRIX-ELEMENTS FROM MULTICONFIGURATIONAL SELF-CONSISTENT-FIELD RESPONSE THEORY

    DEFF Research Database (Denmark)

    Bak, Keld L.; Jørgensen, Poul; Jensen, H.J.A.

    1992-01-01

    A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response of a ref......A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response...... of a reference MCSCF wave function and the excitation vectors of response theory. Advantages of the method are that the reference state is fully optimized and that the excited states, represented by the excitation vectors, are strictly orthogonal to each other and to the reference state. In a single calculation...... electrons many correlating orbitals are required in the MCSCF reference state calculation to accurately describe the FO-NACME. FO-NACME between various states of H-2, MgH2, and BH are presented. These calculations show that the method is capable of giving quantitatively correct results that converge...

  5. First-row diatomics: Calculation of the geometry and energetics using self-consistent gradient-functional approximations

    International Nuclear Information System (INIS)

    Kutzler, F.W.; Painter, G.S.

    1992-01-01

    A fully self-consistent series of nonlocal (gradient) density-functional calculations has been carried out using the augmented-Gaussian-orbital method to determine the magnitude of gradient corrections to the potential-energy curves of the first-row diatomics, Li 2 through F 2 . Both the Langreth-Mehl-Hu and the Perdew-Wang gradient-density functionals were used in calculations of the binding energy, bond length, and vibrational frequency for each dimer. Comparison with results obtained in the local-spin-density approximation (LSDA) using the Vosko-Wilk-Nusair functional, and with experiment, reveals that bond lengths and vibrational frequencies are rather insensitive to details of the gradient functionals, including self-consistency effects, but the gradient corrections reduce the overbinding commonly observed in the LSDA calculations of first-row diatomics (with the exception of Li 2 , the gradient-functional binding-energy error is only 50--12 % of the LSDA error). The improved binding energies result from a large differential energy lowering, which occurs in open-shell atoms relative to the diatomics. The stabilization of the atom arises from the use of nonspherical charge and spin densities in the gradient-functional calculations. This stabilization is negligibly small in LSDA calculations performed with nonspherical densities

  6. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  7. Toward a Quantitative Understanding of the Electric Field in Thermal Metal Oxidation and a Self-Consistent Wagner Theory.

    Science.gov (United States)

    Cheng, Tian-Le; Wen, You-Hai

    2014-07-03

    The electric field in the growing oxide film is important to the kinetics and mechanism of metal oxidation. However, understanding of the essential characteristics of the electric field during oxidation remains insufficient. A special-case analytical model is presented that provides a unified understanding for the electric field from the viewpoints of kinetics and thermodynamics. More general cases are studied by computer simulations that show similar characteristics in the electric field. In particular, simulations indicate that in many situations, the electrostatic potential drop across the bulk oxide is limited to ∼kBT/e, which means that the total electrostatic potential drop across the oxide film, if on the order of 1 V by rough estimation, should have contributions mostly from the electrified interfaces. Finally, regarding the Gibbs-Duhem relation, the commonly used isobaric assumption for the diffusing species is refuted. The results contained herein also provide a self-consistent understanding of Wagner's oxidation theory.

  8. Direct configuration interaction and multiconfigurational self-consistent-field method for multiple active spaces with variable occupations. I. Method

    Science.gov (United States)

    Ivanic, Joseph

    2003-11-01

    In order to reduce the number of ineffective configurations in a priori generated configuration spaces, a direct configuration interaction method has been developed which limits the electron occupations of orbital groups making up a total active space. A wave function is specified by first partitioning an active space into an unrestricted number of orbital groups and second by providing limiting values, in the form of minima and maxima, for the electron occupancies of each group. The configuration interaction problem corresponding to all possible determinants satisfying these conditions is solved in a fully direct manner by the use of Slater-Condon expressions in conjunction with single and double replacements. This configuration interaction approach, termed occupation restricted multiple active space-configuration interaction, has also been linked with orbital optimization programs to produce the occupation restricted multiple active space-self consistent field method.

  9. A self-consistent model for the electronic structure of the u-center in alkali-halides

    International Nuclear Information System (INIS)

    Koiller, B.; Brandi, H.S.

    1978-01-01

    A simple one-orbital per site model Hamiltonian for the U center in alkali-halides with rock-salt structure where correlation effects are introduced via an Anderson type Hamiltonian is presented. The Cluster-Bethe lattice method is used to determine the local density of states, yielding both localized and extended states. A one-electron approximation is assumed and the problem is solved self consistently in the Hartree-Fock scheme. The optical excitation energy is in fair agreement with experiment. The present approach is compared with other models previously used to describe this center and the results indicate that is adequately incorporates the relevant features of the system indicating the possibility of its application to other physical situations [pt

  10. Self-consistent tight-binding investigation of chemical trends for native defects in III-V semiconductors

    International Nuclear Information System (INIS)

    Kuehn, W.; Strehlow, R.; Hanke, M.

    1987-01-01

    Using the recently developed charge self-consistent version of the empirical tight-binding method (ETBM) in conjunction with the Koster-Slater scattering-theoretic approach the electronic properties induced by the substitutional native point defects (anion and cation antisite defect, anion and cation vacancy) in the six III-V semiconductors GaP, GaAs, GaSb, InP, InAs, and InSb are investigated. The calculations include the neutral and possible charged states of the defects. Chemical trends in the energetic position of gap states, the orbital composition, and the localization of the defect wave function are discussed and compared with other theoretical and experimental findings. (author)

  11. Optical forces, torques, and force densities calculated at a microscopic level using a self-consistent hydrodynamics method

    Science.gov (United States)

    Ding, Kun; Chan, C. T.

    2018-04-01

    The calculation of optical force density distribution inside a material is challenging at the nanoscale, where quantum and nonlocal effects emerge and macroscopic parameters such as permittivity become ill-defined. We demonstrate that the microscopic optical force density of nanoplasmonic systems can be defined and calculated using the microscopic fields generated using a self-consistent hydrodynamics model that includes quantum, nonlocal, and retardation effects. We demonstrate this technique by calculating the microscopic optical force density distributions and the optical binding force induced by external light on nanoplasmonic dimers. This approach works even in the limit when the nanoparticles are close enough to each other so that electron tunneling occurs, a regime in which classical electromagnetic approach fails completely. We discover that an uneven distribution of optical force density can lead to a light-induced spinning torque acting on individual particles. The hydrodynamics method offers us an accurate and efficient approach to study optomechanical behavior for plasmonic systems at the nanoscale.

  12. Self-consistent mean field theory studies of the thermodynamics and quantum spin dynamics of magnetic Skyrmions.

    Science.gov (United States)

    Wieser, R

    2017-05-04

    A self-consistent mean field theory is introduced and used to investigate the thermodynamics and spin dynamics of an S  =  1 quantum spin system with a magnetic Skyrmion. The temperature dependence of the Skyrmion profile as well as the phase diagram are calculated. In addition, the spin dynamics of a magnetic Skyrmion is described by solving the time dependent Schrödinger equation with additional damping term. The Skyrmion annihilation process driven by an electric field is used to compare the trajectories of the quantum mechanical simulation with a semi-classical description for the spin expectation values using a differential equation similar to the classical Landau-Lifshitz-Gilbert equation.

  13. Aharonov-Casher effect and quantum transport in graphene based nano rings: A self-consistent Born approximation

    Science.gov (United States)

    Ghaderzadeh, A.; Rahbari, S. H. Ebrahimnazhad; Phirouznia, A.

    2018-03-01

    In this study, Rashba coupling induced Aharonov-Casher effect in a graphene based nano ring is investigated theoretically. The graphene based nano ring is considered as a central device connected to semi-infinite graphene nano ribbons. In the presence of the Rashba spin-orbit interaction, two armchair shaped edge nano ribbons are considered as semi-infinite leads. The non-equilibrium Green's function approach is utilized to obtain the quantum transport characteristics of the system. The relaxation and dephasing mechanisms within the self-consistent Born approximation is scrutinized. The Lopez-Sancho method is also applied to obtain the self-energy of the leads. We unveil that the non-equilibrium current of the system possesses measurable Aharonov-Casher oscillations with respect to the Rashba coupling strength. In addition, we have observed the same oscillations in dilute impurity regimes in which amplitude of the oscillations is shown to be suppressed as a result of the relaxations.

  14. Applicability of Kerker preconditioning scheme to the self-consistent density functional theory calculations of inhomogeneous systems

    Science.gov (United States)

    Zhou, Yuzhi; Wang, Han; Liu, Yu; Gao, Xingyu; Song, Haifeng

    2018-03-01

    The Kerker preconditioner, based on the dielectric function of homogeneous electron gas, is designed to accelerate the self-consistent field (SCF) iteration in the density functional theory calculations. However, a question still remains regarding its applicability to the inhomogeneous systems. We develop a modified Kerker preconditioning scheme which captures the long-range screening behavior of inhomogeneous systems and thus improves the SCF convergence. The effectiveness and efficiency is shown by the tests on long-z slabs of metals, insulators, and metal-insulator contacts. For situations without a priori knowledge of the system, we design the a posteriori indicator to monitor if the preconditioner has suppressed charge sloshing during the iterations. Based on the a posteriori indicator, we demonstrate two schemes of the self-adaptive configuration for the SCF iteration.

  15. A self-consistent field study of diblock copolymer/charged particle system morphologies for nanofiltration membranes

    International Nuclear Information System (INIS)

    Zhang, Bo; Ye, Xianggui; Edwards, Brian J.

    2013-01-01

    A combination of self-consistent field theory and density functional theory was used to examine the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Both neutral and interacting particles were examined, with and without favorable/unfavorable energetic potentials between the particles and the block segments. The phase diagrams of the various systems were constructed, allowing the identification of three types of ordered mesophases composed of lamellae, hexagonally packed cylinders, and spheroids. In particular, we examined the conditions under which the mesophases could be generated wherein the tethered particles were primarily located within the interface between the two blocks of the copolymer. Key factors influencing these properties were determined to be the particle position along the diblock chain, the interaction potentials of the blocks and particles, the block copolymer composition, and molecular weight of the copolymer

  16. Influence of self-consistent screening and polarizability contractions on interlayer sliding behavior of hexagonal boron nitride

    Science.gov (United States)

    Gong, Wenbin; Zhang, Wei; Wang, Chengbin; Yao, Yagang; Lu, Weibang

    2017-11-01

    The interlayer sliding behaviors of hexagonal boron nitride (h -BN) were investigated via a density functional theory approach with dispersion interaction included. It was found that the self-consistent screening effect (SCS) and the polarizability contractions had significant influences on London dispersion forces, which are responsible for not only the stacking modes but also for the sliding behaviors of h -BN. In consideration of the ionic characteristics of h -BN, surprisingly, the calculated dispersion force was found to dominate the electrostatic interaction along a minimum-energy sliding pathway and make a pronounced contribution (˜35 %) to the barrier during the constrained sliding. This study demonstrates that the SCS and polarizability contractions play important roles in the sliding behaviors of h -BN and that the long-range dispersion interaction should be carefully treated, even in systems with ionic characteristics.

  17. Possible improvements to the self-consistent-charges density-functional tight-binding method within the second order

    Energy Technology Data Exchange (ETDEWEB)

    Bodrog, Zoltan; Aradi, Balint [Bremen Center for Computational Materials Science, University of Bremen (Germany)

    2012-02-15

    Improving the precision of self-consistent-charges density-functional tight-binding method (SCC-DFTB) without losing its computational efficiency is primarily thought and hoped to be possible, if possible at all, by moving beyond its current two-centre-approximative tight-binding structure and the second-order nature of SCC. In this paper, however, we point out that there may still be possibilities of making it more precise without such an extension. Two improvements within the very second-order SCC are proposed here. First, inclusion of a multipole expansion of interacting atomic charge fluctuations, and second, a semi-empirical refinement of their interaction potential profiles and their self-interaction energies. Besides showing in detail what is to be improved with respect to the current SCC-DFTB realizations, we fully derive the respective new formulas ready to implement. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Initial Self-Consistent 3D Electron-Cloud Simulations of the LHC Beam with the Code WARP+POSINST

    International Nuclear Information System (INIS)

    Vay, J; Furman, M A; Cohen, R H; Friedman, A; Grote, D P

    2005-01-01

    We present initial results for the self-consistent beam-cloud dynamics simulations for a sample LHC beam, using a newly developed set of modeling capability based on a merge [1] of the three-dimensional parallel Particle-In-Cell (PIC) accelerator code WARP [2] and the electron-cloud code POSINST [3]. Although the storage ring model we use as a test bed to contain the beam is much simpler and shorter than the LHC, its lattice elements are realistically modeled, as is the beam and the electron cloud dynamics. The simulated mechanisms for generation and absorption of the electrons at the walls are based on previously validated models available in POSINST [3, 4

  19. Quasiparticle self-consistent GW theory of III-V nitride semiconductors: Bands, gap bowing, and effective masses

    DEFF Research Database (Denmark)

    Svane, Axel; Christensen, Niels Egede; Gorczyca, I.

    2010-01-01

    The electronic band structures of InN, GaN, and a hypothetical ordered InGaN2 compound, all in the wurtzite crystal structure, are calculated using the quasiparticle self-consistent GW approximation. This approach leads to band gaps which are significantly improved compared to gaps calculated...... on the basis of the local approximation to density functional theory, although generally overestimated by 0.2–0.3 eV in comparison with experimental gap values. Details of the electronic energies and the effective masses including their pressure dependence are compared with available experimental information....... The band gap of InGaN2 is considerably smaller than what would be expected by linear interpolation implying a significant band gap bowing in InGaN alloys....

  20. Elliptic Preconditioner for Accelerating the Self-Consistent Field Iteration in Kohn--Sham Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Lin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Yang, Chao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division

    2013-10-28

    We discuss techniques for accelerating the self consistent field (SCF) iteration for solving the Kohn-Sham equations. These techniques are all based on constructing approximations to the inverse of the Jacobian associated with a fixed point map satisfied by the total potential. They can be viewed as preconditioners for a fixed point iteration. We point out different requirements for constructing preconditioners for insulating and metallic systems respectively, and discuss how to construct preconditioners to keep the convergence rate of the fixed point iteration independent of the size of the atomistic system. We propose a new preconditioner that can treat insulating and metallic system in a unified way. The new preconditioner, which we call an elliptic preconditioner, is constructed by solving an elliptic partial differential equation. The elliptic preconditioner is shown to be more effective in accelerating the convergence of a fixed point iteration than the existing approaches for large inhomogeneous systems at low temperature.

  1. Multiconfiguration time-dependent self-consistent field approximations in the numerical solution of quantum dynamical problems

    International Nuclear Information System (INIS)

    Kotler, Z.; Neria, E.; Nitzan, A.

    1991-01-01

    The use of the time-dependent self-consistent field approximation (TDSCF) in the numerical solution of quantum curve crossing and tunneling dynamical problems is investigated. Particular emphasis is given to multiconfiguration TDSCF (MCTDSCF) approximations, which are shown to perform considerably better with only a small increase in computational effort. We investigate a number of simple models in which a 'system' characterized by two electronic potential surfaces evolves while interacting with a 'bath' mode described by an harmonic oscillator, and compare exact numerical solutions to one- and two-configuration TDSCF approximations. We also introduce and investigate a semiclassical approximation in which the 'bath' mode is described by semiclassical wavepackets (one for each electronic state) and show that for all models investigated this scheme works very well in comparison with the fully quantum MCTDSCF approximation. This provides a potentially very useful method to simulate strongly quantum systems coupled to an essentially classical environment. (orig.)

  2. Self-consistent vertical transport calculations in AlxGa1-xN/GaN based resonant tunneling diode

    Science.gov (United States)

    Rached, A.; Bhouri, A.; Sakr, S.; Lazzari, J.-L.; Belmabrouk, H.

    2016-03-01

    The formation of two-dimensional electron gases (2DEGs) at AlxGa1-xN/GaN hexagonal double-barriers (DB) resonant tunneling diodes (RTD) is investigated by numerical self-consistent (SC) solutions of the coupled Schrödinger and Poisson equations. Spontaneous and piezoelectric effects across the material interfaces are rigorously taken into account. Conduction band profiles, band edges and corresponding envelope functions are calculated in the AlxGa1-xN/GaN structures and likened to those where no polarization effects are included. The combined effect of the polarization-induced bound charge and conduction band offsets between the hexagonal AlGaN and GaN results in the formation of 2DEGs on one side of the DB and a depletion region on the other side. Using the transfer matrix formalism, the vertical transport (J-V characteristics) in AlGaN/GaN RTDs is calculated with a fully SC calculation in the ballistic regime. Compared to standard calculations where the voltage drop along the structure is supposed to be linear, the SC method leads to strong quantitative changes in the J-V characteristics showing that the applied electric field varies significantly in the active region of the structure. The influences of the aluminum composition and the GaN(AlGaN) thickness layers on the evolution of the current characteristics are also self-consistently investigated and discussed. We show that the electrical characteristics are very sensitive to the potential barrier due to the interplay between the potential symmetry and the barrier height and width. More interestingly, we demonstrate that the figures of merit namely the peak-to-valley ratio (PVR) of GaN/AlGaN RTDs can be optimized by increasing the quantum well width.

  3. Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: Applications to aluminum

    International Nuclear Information System (INIS)

    Shiles, E.; Sasaki, T.; Inokuti, M.; Smith, D.Y.

    1980-01-01

    An iterative, self-consistent procedure for the Kramers-Kronig analysis of data from reflectance, ellipsometric, transmission, and electron-energy-loss measurements is presented. This procedure has been developed for practical dispersion analysis since experimentally no single optical function can be readily measured over the entire range of frequencies as required by the Kramers-Kronig relations. The present technique is applied to metallic aluminum as an example. The results are then examined for internal consistency and for systematic errors by various optical sum rules. The present procedure affords a systematic means of preparing a self-consistent set of optical functions provided some optical or energy-loss data are available in all important spectral regions. The analysis of aluminum discloses that currently available data exhibit an excess oscillator strength, apparently in the vicinity of the L edge. A possible explanation is a systematic experimental error in the absorption-coefficient measurements resulting from surface layers: possibly oxides: present in thin-film transmission samples. A revised set of optical functions has been prepared by an ad hoc reduction of the reported absorption coefficient above the L edge by 14%. These revised data lead to a total oscillator strength consistent with the known electron density and are in agreement with dc-conductivity and stopping-power measurements as well as with absorption coefficients inferred from the cross sections of neighboring elements in the periodic table. The optical functions resulting from this study show evidence for both the redistribution of oscillator strength between energy levels and the effects on real transitions of the shielding of conduction electrons by virtual processes in the core states

  4. A simple and self-consistent geostrophic-force-balance model of the thermohaline circulation with boundary mixing

    Directory of Open Access Journals (Sweden)

    J. Callies

    2012-01-01

    Full Text Available A simple model of the thermohaline circulation (THC is formulated, with the objective to represent explicitly the geostrophic force balance of the basinwide THC. The model comprises advective-diffusive density balances in two meridional-vertical planes located at the eastern and the western walls of a hemispheric sector basin. Boundary mixing constrains vertical motion to lateral boundary layers along these walls. Interior, along-boundary, and zonally integrated meridional flows are in thermal-wind balance. Rossby waves and the absence of interior mixing render isopycnals zonally flat except near the western boundary, constraining meridional flow to the western boundary layer. The model is forced by a prescribed meridional surface density profile.

    This two-plane model reproduces both steady-state density and steady-state THC structures of a primitive-equation model. The solution shows narrow deep sinking at the eastern high latitudes, distributed upwelling at both boundaries, and a western boundary current with poleward surface and equatorward deep flow. The overturning strength has a 2/3-power-law dependence on vertical diffusivity and a 1/3-power-law dependence on the imposed meridional surface density difference. Convective mixing plays an essential role in the two-plane model, ensuring that deep sinking is located at high latitudes. This role of convective mixing is consistent with that in three-dimensional models and marks a sharp contrast with previous two-dimensional models.

    Overall, the two-plane model reproduces crucial features of the THC as simulated in simple-geometry three-dimensional models. At the same time, the model self-consistently makes quantitative a conceptual picture of the three-dimensional THC that hitherto has been expressed either purely qualitatively or not self-consistently.

  5. Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity.

    Science.gov (United States)

    Dummer, Benjamin; Wieland, Stefan; Lindner, Benjamin

    2014-01-01

    A major source of random variability in cortical networks is the quasi-random arrival of presynaptic action potentials from many other cells. In network studies as well as in the study of the response properties of single cells embedded in a network, synaptic background input is often approximated by Poissonian spike trains. However, the output statistics of the cells is in most cases far from being Poisson. This is inconsistent with the assumption of similar spike-train statistics for pre- and postsynaptic cells in a recurrent network. Here we tackle this problem for the popular class of integrate-and-fire neurons and study a self-consistent statistics of input and output spectra of neural spike trains. Instead of actually using a large network, we use an iterative scheme, in which we simulate a single neuron over several generations. In each of these generations, the neuron is stimulated with surrogate stochastic input that has a similar statistics as the output of the previous generation. For the surrogate input, we employ two distinct approximations: (i) a superposition of renewal spike trains with the same interspike interval density as observed in the previous generation and (ii) a Gaussian current with a power spectrum proportional to that observed in the previous generation. For input parameters that correspond to balanced input in the network, both the renewal and the Gaussian iteration procedure converge quickly and yield comparable results for the self-consistent spike-train power spectrum. We compare our results to large-scale simulations of a random sparsely connected network of leaky integrate-and-fire neurons (Brunel, 2000) and show that in the asynchronous regime close to a state of balanced synaptic input from the network, our iterative schemes provide an excellent approximations to the autocorrelation of spike trains in the recurrent network.

  6. Self-consistent GW0 results for the electron gas: Fixed screened potential W0 within the random-phase approximation

    International Nuclear Information System (INIS)

    von Barth, U.; Holm, B.

    1996-01-01

    With the aim of properly understanding the basis for and the utility of many-body perturbation theory as applied to extended metallic systems, we have calculated the electronic self-energy of the homogeneous electron gas within the GW approximation. The calculation has been carried out in a self-consistent way; i.e., the one-electron Green function obtained from Dyson close-quote s equation is the same as that used to calculate the self-energy. The self-consistency is restricted in the sense that the screened interaction W is kept fixed and equal to that of the random-phase approximation for the gas. We have found that the final results are marginally affected by the broadening of the quasiparticles, and that their self-consistent energies are still close to their free-electron counterparts as they are in non-self-consistent calculations. The reduction in strength of the quasiparticles and the development of satellite structure (plasmons) gives, however, a markedly smaller dynamical self-energy leading to, e.g., a smaller reduction in the quasiparticle strength as compared to non-self-consistent results. The relatively bad description of plasmon structure within the non-self-consistent GW approximation is marginally improved. A first attempt at including W in the self-consistency cycle leads to an even broader and structureless satellite spectrum in disagreement with experiment. copyright 1996 The American Physical Society

  7. Asymptotic analysis of ultra-relativistic charge

    International Nuclear Information System (INIS)

    Burton, D.A.; Gratus, J.; Tucker, R.W.

    2007-01-01

    This article offers a new approach for analysing the dynamic behaviour of distributions of charged particles in an electromagnetic field. After discussing the limitations inherent in the Lorentz-Dirac equation for a single point particle a simple model is proposed for a charged continuum interacting self-consistently with the Maxwell field in vacuo. The model is developed using intrinsic tensor field theory and exploits to the full the symmetry and light-cone structure of Minkowski spacetime. This permits the construction of a regular stress-energy tensor whose vanishing divergence determines a system of non-linear partial differential equations for the velocity and self-fields of accelerated charge. Within this covariant framework a particular perturbation scheme is motivated by an exact class of solutions to this system describing the evolution of a charged fluid under the combined effects of both self and external electromagnetic fields. The scheme yields an asymptotic approximation in terms of inhomogeneous linear equations for the self-consistent Maxwell field, charge current and time-like velocity field of the charged fluid and is defined as an ultra-relativistic configuration. To facilitate comparisons with existing accounts of beam dynamics an appendix translates the tensor formulation of the perturbation scheme into the language involving electric and magnetic fields observed in a laboratory (inertial) frame

  8. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  9. Relativistic Length Agony Continued

    Science.gov (United States)

    Redzic, D. V.

    2014-06-01

    We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.

  10. Relativistic GLONASS and geodesy

    Science.gov (United States)

    Mazurova, E. M.; Kopeikin, S. M.; Karpik, A. P.

    2016-12-01

    GNSS technology is playing a major role in applications to civil, industrial and scientific areas. Nowadays, there are two fully functional GNSS: American GPS and Russian GLONASS. Their data processing algorithms have been historically based on the Newtonian theory of space and time with only a few relativistic effects taken into account as small corrections preventing the system from degradation on a fairly long time. Continuously growing accuracy of geodetic measurements and atomic clocks suggests reconsidering the overall approach to the GNSS theoretical model based on the Einstein theory of general relativity. This is essentially more challenging but fundamentally consistent theoretical approach to relativistic space geodesy. In this paper, we overview the basic principles of the relativistic GNSS model and explain the advantages of such a system for GLONASS and other positioning systems. Keywords: relativistic GLONASS, Einstein theory of general relativity.

  11. Weakly relativistic plasma expansion

    Energy Technology Data Exchange (ETDEWEB)

    Fermous, Rachid, E-mail: rfermous@usthb.dz; Djebli, Mourad, E-mail: mdjebli@usthb.dz [Theoretical Physics Laboratory, Faculty of Physics, USTHB, B.P. 32 Bab-Ezzouar, 16079 Algiers (Algeria)

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  12. Self-Consistent MUSIC: An approach to the localization of true brain interactions from EEG/MEG data.

    Science.gov (United States)

    Shahbazi, Forooz; Ewald, Arne; Nolte, Guido

    2015-05-15

    MUltiple SIgnal Classification (MUSIC) is a standard localization method which is based on the idea of dividing the vector space of the data into two subspaces: signal subspace and noise subspace. The brain, divided into several grid points, is scanned entirely and the grid point with the maximum consistency with the signal subspace is considered as the source location. In one of the MUSIC variants called Recursively Applied and Projected MUSIC (RAP-MUSIC), multiple iterations are proposed in order to decrease the location estimation uncertainties introduced by subspace estimation errors. In this paper, we suggest a new method called Self-Consistent MUSIC (SC-MUSIC) which extends RAP-MUSIC to a self-consistent algorithm. This method, SC-MUSIC, is based on the idea that the presence of several sources has a bias on the localization of each source. This bias can be reduced by projecting out all other sources mutually rather than iteratively. While the new method is applicable in all situations when MUSIC is applicable we will study here the localization of interacting sources using the imaginary part of the cross-spectrum due to the robustness of this measure to the artifacts of volume conduction. For an odd number of sources this matrix is rank deficient similar to covariance matrices of fully correlated sources. In such cases MUSIC and RAP-MUSIC fail completely while the new method accurately localizes all sources. We present results of the method using simulations of odd and even number of interacting sources in the presence of different noise levels. We compare the method with three other source localization methods: RAP-MUSIC, dipole fit and MOCA (combined with minimum norm estimate) through simulations. SC-MUSIC shows substantial improvement in the localization accuracy compared to these methods. We also show results for real MEG data of a single subject in the resting state. Four sources are localized in the sensorimotor area at f=11Hz which is the expected

  13. The self-consistent energy system with an enhanced non-proliferated core concept for global nuclear energy utilization

    International Nuclear Information System (INIS)

    Kawashima, Masatoshi; Arie, Kazuo; Araki, Yoshio; Sato, Mitsuyoshi; Mori, Kenji; Nakayama, Yoshiyuki; Nakazono, Ryuichi; Kuroda, Yuji; Ishiguma, Kazuo; Fujii-e, Yoichi

    2008-01-01

    A sustainable nuclear energy system was developed based on the concept of Self-Consistent Nuclear Energy System (SCNES). Our study that trans-uranium (TRU) metallic fuel fast reactor cycle coupled with recycling of five long-lived fission products (LLFP) as well as actinides is the most promising system for the sustainable nuclear utilization. Efficient utilization of uranium-238 through the SCNES concept opens the doors to prolong the lifetime of nuclear energy systems towards several tens of thousand years. Recent evolution of the concept revealed compatibility of fuel sustainability, minor actinide (MA) minimization and non-proliferation aspects for peaceful use of nuclear energy systems through the discussion. As for those TRU compositions stabilized under fast neutron spectra, plutonium isotope fractions are remained in the range of reactor grade classification with high fraction of Pu240 isotope. Recent evolution of the SCNES concept has revealed that TRU recycling can cope with enhancing non-proliferation efforts in peaceful use with the 'no-blanket and multi-zoning core' concept. Therefore, the realization of SCNES is most important. In addition, along the process to the goals, a three-step approach is proposed to solve concurrent problems raised in the LWR systems. We discussed possible roles and contribution to the near future demand along worldwide expansion of LWR capacities by applying the 1st generation SCNES. MA fractions in TRU are more than 10% from LWR discharged fuels and even higher up to 20% in fuels from long interim storages. TRU recycling in the 1st generation SCNES system can reduce the MA fractions down to 4-5% in a few decades. This capability significantly releases 'MA' pressures in down-stream of LWR systems. Current efforts for enhancing capabilities for energy generation by LWR systems are efficient against the global warming crisis. In parallel to those movements, early realization of the SCNES concept can be the most viable decision

  14. The vortex-like self-consistent electron fluid model by the applied-B ion diode: equilibrium and instability

    International Nuclear Information System (INIS)

    Gordeev, A.V.

    1996-01-01

    The electron inertia effects in the one-dimensional model of the applied-B ion diode for the relativistic diode potential eU/m e c 2 ≥ 1 were investigated, where the magnetic Debye length r B is of the order of the collisionless electron skin depth c/ω pe . For this, an analytical relation between the magnetic field and the electric potential was developed, owing to which the second order eigenvalue problem can be reduced to a system of algebraic equations. Instabilities inside the vacuum gap and in the near-anode emitting plasma are considered. In the near-anode Hall plasma, the instability with two ion species was obtained; this can can contribute to the ion angle divergence. (author). 10 refs

  15. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  16. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  17. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  18. Relativistic quasiparticle random phase approximation in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pena Arteaga, D.

    2007-06-25

    Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogolyubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of the Goldstone modes. This allows the microscopic investigation of Pygmy and scissor resonances in electric and magnetic dipole fields. Excellent agreement with recent experiments is found and new types of modes are predicted for deformed systems with large neutron excess. (orig.)

  19. Nonlinear dynamics of electromagnetic pulses in cold relativistic plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Pakter, R.; Rizzato, F.B. [Universidade Federal do Rio Grande do Sul, Instituto de Fisica, Rio Grande do Sul (Brazil)

    2004-07-01

    The propagation of intense electromagnetic pulses in plasmas is a subject of current interest particularly for particle acceleration and laser fusion.In the present analysis we study the self consistent propagation of nonlinear electromagnetic pulses in a one dimensional relativistic electron-ion plasma, from the perspective of nonlinear dynamics. We show how a series of Hamiltonian bifurcations give rise to the electric fields which are of relevance in the subject of particle acceleration. Connections between these bifurcated solutions and results of earlier analysis are made. (authors)

  20. Electric dipole strength and dipole polarizability in 48Ca within a fully self-consistent second random–phase approximation

    Directory of Open Access Journals (Sweden)

    D. Gambacurta

    2018-02-01

    Full Text Available The second random–phase–approximation model corrected by a subtraction procedure designed to cure double counting, instabilities, and ultraviolet divergences, is employed for the first time to analyze the dipole strength and polarizability in 48Ca. All the terms of the residual interaction are included, leading to a fully self-consistent scheme. Results are illustrated with two Skyrme parametrizations, SGII and SLy4. Those obtained with the SGII interaction are particularly satisfactory. In this case, the low-lying strength below the neutron threshold is well reproduced and the giant dipole resonance is described in a very satisfactory way especially in its spreading and fragmentation. Spreading and fragmentation are produced in a natural way within such a theoretical model by the coupling of 1 particle-1 hole and 2 particle-2 hole configurations. Owing to this feature, we may provide for the electric polarizability as a function of the excitation energy a curve with a similar slope around the centroid energy of the giant resonance compared to the corresponding experimental results. This represents a considerable improvement with respect to previous theoretical predictions obtained with the random–phase approximation or with several ab-initio models. In such cases, the spreading width of the excitation cannot be reproduced and the polarizability as a function of the excitation energy displays a stiff increase around the predicted centroid energy of the giant resonance.

  1. Spectropolarimetric forward modelling of the lines of the Lyman-series using a self-consistent, global, solar coronal model

    Science.gov (United States)

    Khan, A.; Belluzzi, L.; Landi Degl'Innocenti, E.; Fineschi, S.; Romoli, M.

    2011-05-01

    Context. The presence and importance of the coronal magnetic field is illustrated by a wide range of phenomena, such as the abnormally high temperatures of the coronal plasma, the existence of a slow and fast solar wind, the triggering of explosive events such as flares and CMEs. Aims: We investigate the possibility of using the Hanle effect to diagnose the coronal magnetic field by analysing its influence on the linear polarisation, i.e. the rotation of the plane of polarisation and depolarisation. Methods: We analyse the polarisation characteristics of the first three lines of the hydrogen Lyman-series using an axisymmetric, self-consistent, minimum-corona MHD model with relatively low values of the magnetic field (a few Gauss). Results: We find that the Hanle effect in the above-mentioned lines indeed seems to be a valuable tool for analysing the coronal magnetic field. However, great care must be taken when analysing the spectropolarimetry of the Lα line, given that a non-radial solar wind and active regions on the solar disk can mimic the effects of the magnetic field, and, in some cases, even mask them. Similar drawbacks are not found for the Lβ and Lγ lines because they are more sensitive to the magnetic field. We also briefly consider the instrumental requirements needed to perform polarimetric observations for diagnosing the coronal magnetic fields. Conclusions: The combined analysis of the three aforementioned lines could provide an important step towards better constrainting the value of solar coronal magnetic fields.

  2. Dancing to CHANGA: a self-consistent prediction for close SMBH pair formation time-scales following galaxy mergers

    Science.gov (United States)

    Tremmel, M.; Governato, F.; Volonteri, M.; Quinn, T. R.; Pontzen, A.

    2018-04-01

    We present the first self-consistent prediction for the distribution of formation time-scales for close supermassive black hole (SMBH) pairs following galaxy mergers. Using ROMULUS25, the first large-scale cosmological simulation to accurately track the orbital evolution of SMBHs within their host galaxies down to sub-kpc scales, we predict an average formation rate density of close SMBH pairs of 0.013 cMpc-3 Gyr-1. We find that it is relatively rare for galaxy mergers to result in the formation of close SMBH pairs with sub-kpc separation and those that do form are often the result of Gyr of orbital evolution following the galaxy merger. The likelihood and time-scale to form a close SMBH pair depends strongly on the mass ratio of the merging galaxies, as well as the presence of dense stellar cores. Low stellar mass ratio mergers with galaxies that lack a dense stellar core are more likely to become tidally disrupted and deposit their SMBH at large radii without any stellar core to aid in their orbital decay, resulting in a population of long-lived `wandering' SMBHs. Conversely, SMBHs in galaxies that remain embedded within a stellar core form close pairs in much shorter time-scales on average. This time-scale is a crucial, though often ignored or very simplified, ingredient to models predicting SMBH mergers rates and the connection between SMBH and star formation activity.

  3. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhaoquan, E-mail: zqchen@aust.edu.cn [Faculty of Physics, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001 (China); Yin, Zhixiang, E-mail: zxyin66@163.com; Chen, Minggong; Hong, Lingli; Hu, Yelin; Huang, Yourui [College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001 (China); Xia, Guangqing; Liu, Minghai [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Kudryavtsev, A. A. [Faculty of Physics, St. Petersburg State University, St. Petersburg 198504 (Russian Federation)

    2014-10-21

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  4. A study of self-consistent Hartree-Fock plus Bardeen-Cooper-Schrieffer calculations with finite-range interactions

    Science.gov (United States)

    Anguiano, M.; Lallena, A. M.; Co', G.; De Donno, V.

    2014-02-01

    In this work we test the validity of a Hartree-Fock plus Bardeen-Cooper-Schrieffer model in which a finite-range interaction is used in the two steps of the calculation by comparing the results obtained to those found in fully self-consistent Hartree-Fock-Bogoliubov calculations using the same interaction. Specifically, we consider the Gogny-type D1S and D1M forces. We study a wide range of spherical nuclei, far from the stability line, in various regions of the nuclear chart, from oxygen to tin isotopes. We calculate various quantities related to the ground state properties of these nuclei, such as binding energies, radii, charge and density distributions, and elastic electron scattering cross sections. The pairing effects are studied by direct comparison with the Hartree-Fock results. Despite its relative simplicity, in most cases, our model provides results very close to those of the Hartree-Fock-Bogoliubov calculations, and it reproduces the empirical evidence of pairing effects rather well in the nuclei investigated.

  5. Study of self-consistent particle flows in a plasma blob with particle-in-cell simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Hiroki, E-mail: hasegawa.hiroki@nifs.ac.jp; Ishiguro, Seiji [Department of Helical Plasma Research, National Institute for Fusion Science, Toki 509-5292 (Japan); Department of Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan)

    2015-10-15

    The self-consistent particle flows in a filamentary coherent structure along the magnetic field line in scrape-off layer (SOL) plasma (plasma blob) have been investigated by means of a three-dimensional electrostatic particle-in-cell simulation code. The presence of the spiral current system composed of the diamagnetic and parallel currents in a blob is confirmed by the particle simulation without any assumed sheath boundary models. Furthermore, the observation of the electron and ion parallel velocity distributions in a blob shows that those distributions are far from Maxwellian due to modification with the sheath formation and that the electron temperature on the higher potential side in a blob is higher than that on the lower potential side. Also, it is found that the ions on the higher potential side are accelerated more intensively along the magnetic field line than those on the lower potential side near the edge. This study indicates that particle simulations are able to provide an exact current closure to analysis of blob dynamics and will bring more accurate prediction of plasma transport in the SOL without any empirical assumptions.

  6. Self-consistent 3J coupling analysis for the joint calibration of Karplus coefficients and evaluation of torsion angles

    International Nuclear Information System (INIS)

    Schmidt, Juergen M.; Bluemel, Markus; Loehr, Frank; Rueterjans, Heinz

    1999-01-01

    The concept of self-consistent J coupling evaluation exploits redundant structure information inherent in large sets of 3J coupling constants. Application to the protein Desulfovibrio vulgaris flavodoxin demonstrates the simultaneous refinement of torsion-angle values and related Karplus coefficients. The experimental basis includes quantitative coupling constants related to the polypeptide backbone φ torsion originating from a variety of heteronuclear 2D and 3D NMR correlation experiments, totalling 124 3J(HN,Hα), 129 3J(HN,C'), 121 3J(HN,Cβ), 128 3J(C'i-1,Hαi), 121 3J(C'i-1,C'i), and 122 3J(C'i-1,Cβi). Without prior knowledge from either X-ray crystallography or NMR data, such as NOE distance constraints, accurate φ dihedral angles are specified for 122 non-glycine and non-proline residues out of a total of 147 amino acids. Different models of molecular internal mobility are considered. The Karplus coefficients obtained are applicable to the conformational analysis of φ torsions in other polypeptides

  7. Thermodynamics of a Compressible Maier-Saupe Model Based on the Self-Consistent Field Theory of Wormlike Polymer

    Directory of Open Access Journals (Sweden)

    Ying Jiang

    2017-02-01

    Full Text Available This paper presents a theoretical formalism for describing systems of semiflexible polymers, which can have density variations due to finite compressibility and exhibit an isotropic-nematic transition. The molecular architecture of the semiflexible polymers is described by a continuum wormlike-chain model. The non-bonded interactions are described through a functional of two collective variables, the local density and local segmental orientation tensor. In particular, the functional depends quadratically on local density-variations and includes a Maier–Saupe-type term to deal with the orientational ordering. The specified density-dependence stems from a free energy expansion, where the free energy of an isotropic and homogeneous homopolymer melt at some fixed density serves as a reference state. Using this framework, a self-consistent field theory is developed, which produces a Helmholtz free energy that can be used for the calculation of the thermodynamics of the system. The thermodynamic properties are analysed as functions of the compressibility of the model, for values of the compressibility realizable in mesoscopic simulations with soft interactions and in actual polymeric materials.

  8. Evolution of helium stars: a self-consistent determination of the boundary of a helium burning convective core

    International Nuclear Information System (INIS)

    Savonije, G.J.; Takens, R.J.

    1976-01-01

    A generalization of the Henyey-scheme is given that introduces the mass of the convective core and the density at the outer edge of the convective core boundary as unknowns which have to be solved simultaneously with the other unknowns. As a result, this boundary is determined in a physically self-consistent way for expanding as well as contracting cores, i.e. during the Henyey iterative cycle; its position becomes consistent with the overall physical structure of the star, including the run of the chemical abundances throughout the star. Using this scheme, the evolution of helium stars was followed up to carbon ignition for a number of stellar masses. As compared with some earlier investigations, the calculations show a rather large increase in mass of the convective cores during core helium burning. Evolutionary calculations for a 2M(sun) helium star show that the critical mass for which a helium star ignites carbon non-degenerately lies near 2M(sun). (orig.) [de

  9. Self-consistent QM/MM methodologies for structural refinement of photosystem II and other macromolecules of biological interest

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Enrique R [Los Alamos National Laboratory; Sproviero, Eduardo M [YALE UNIV; Newcomer, Michael [YALE UNIV; Gascon, Jose A [YALE UNIV; Batista, Victor S [YALE UNIV

    2008-01-01

    The combination of quantum mechanics and molecular mechanics (QM/MM) is one of the most promising approaches to study the structure, function, and properties of proteins and nucleic acids. However, there some instances in which the limitations of either the MM (lack of a proper electronic description) or QM (limited to a few number of atoms) methods prevent a proper description of the system. To address this issue, we review here our approach to fine-tune the structure of biological systems using post-QM/MM refinements. These protocols are based on spectroscopy data, and/or partitioning of the system to extend the QM description to a larger region of a protein. We illustrate these methodologies through applications to several biomolecules, which were pre-optimized at the QM/MM level and then further refined using postQM/MM refinement methodologies: mod(QM/MM), which refines the atomic charges of the residues included in the MM region accounting for polarization effects; mod(QM/MM)-opt that partition the MM region in smaller parts and optimizes each part in an iterative. self-consistent way, and the Polarized-Extended X-Ray Absorption Fine Structure (P-EXAFS) fitting procedure, which fine-tune the atomic coordinates to reproduce experimental polarized EXAFS spectra. The first two techniques were applied to the guanine quadruplex. while the P-EXAFS refinement was applied to the oxygen evolving complex of photosystem II.

  10. Geometry of the self-consistent collective-coordinate method for the large-amplitude collective motion

    International Nuclear Information System (INIS)

    Sakata, Fumihiko; Marumori, Toshio; Hashimoto, Yukio; Une, Tsutomu.

    1983-05-01

    The geometry of the self-consistent collective-coordinate (SCC) method formulated within the framework of the time-dependent Hartree-Fock (TDHF) theory is investigated by associating the variational parameters with a symplectic manifold (a TDHF manifold). With the use of a canonical-variables parametrization, it is shown that the TDHF equation is equivalent to the canonical equations of motion in classical mechanics in the TDHF manifold. This enables us to investigate geometrical structure of the SCC method in the language of the classical mechanics. The SCC method turns out to give a prescription how to dynamically extract a ''maximally-decoupled'' collective submanifold (hypersurface) out of the TDHF manifold, in such a way that a certain kind of trajectories corresponding to the large-amplitude collective motion under consideration can be reproduced on the hypersurface as precisely as possible. The stability of the hypersurface at each point on it is investigated, in order to see whether the hypersurface obtained by the SCC method is really an approximate integral surface in the TDHF manifold or not. (author)

  11. The energy levels and oscillator strength of a complex atom--Au50+ in a self-consistent potential

    International Nuclear Information System (INIS)

    Feng Rong; Zou Yu; Fang Quanyu

    1998-01-01

    The effects of free electrons in a plasma on a complex atom are discussed, here the authors are interested in the target ion--Au 50+ in inertia confined fusion (ICF). The results are compared with those in the case of hydrogenic ions. Accurate numerical solutions have been obtained for Schroedinger's equation through Debye screened Hartree-Fock-Slater self-consistent potential. Solutions have been computed for 28 eigenstates, 1s through n =3D 7, l =3D 6, yielding the energy eigenvalues for a wide range of Debye screening length Λ. As in the case of hydrogenic ions, under screening, all energy levels are shifted away from their unscreened values toward the continuum, that is, the ionization limits are shifted downward. Conclusions have been made that when Λ>5a 0 , that is, in the weak screening cases, Debye screening has little effect on oscillator strength, average orbital radius, transition matrix elements, etc., of Au 50+ . For each (n,l) eigenstate, there is a finite value of screening length Λ 0 (n,l), for which the energy becomes zero. When Λ is sufficiently small, level crossing appears at high n states. Optical oscillator strength for Au 50+ has also been calculated, the results are compared with those under unscreened potential

  12. Self-consistent field theoretic simulations of amphiphilic triblock copolymer solutions: Polymer concentration and chain length effects

    Directory of Open Access Journals (Sweden)

    X.-G. Han

    2014-06-01

    Full Text Available Using the self-consistent field lattice model, polymer concentration φP and chain length N (keeping the length ratio of hydrophobic to hydrophilic blocks constant the effects on temperature-dependent behavior of micelles are studied, in amphiphilic symmetric ABA triblock copolymer solutions. When chain length is increased, at fixed φP, micelles occur at higher temperature. The variations of average volume fraction of stickers φcos and the lattice site numbers Ncols at the micellar cores with temperature are dependent on N and φP, which demonstrates that the aggregation of micelles depends on N and φP. Moreover, when φP is increased, firstly a peak appears on the curve of specific heat CV for unimer-micelle transition, and then in addition a primary peak, the secondary peak, which results from the remicellization, is observed on the curve of CV. For a long chain, in intermediate and high concentration regimes, the shape of specific heat peak markedly changes, and the peak tends to be a more broad peak. Finally, the aggregation behavior of micelles is explained by the aggregation way of amphiphilic triblock copolymer. The obtained results are helpful in understanding the micellar aggregation process.

  13. Self-consistent modelling of lattice strains during the in-situ tensile loading of twinning induced plasticity steel

    International Nuclear Information System (INIS)

    Saleh, Ahmed A.; Pereloma, Elena V.; Clausen, Bjørn; Brown, Donald W.; Tomé, Carlos N.; Gazder, Azdiar A.

    2014-01-01

    The evolution of lattice strains in a fully recrystallised Fe–24Mn–3Al–2Si–1Ni–0.06C TWinning Induced Plasticity (TWIP) steel subjected to uniaxial tensile loading up to a true strain of ∼35% was investigated via in-situ neutron diffraction. Typical of fcc elastic and plastic anisotropy, the {111} and {200} grain families record the lowest and highest lattice strains, respectively. Using modelling cases with and without latent hardening, the recently extended Elasto-Plastic Self-Consistent model successfully predicted the macroscopic stress–strain response, the evolution of lattice strains and the development of crystallographic texture. Compared to the isotropic hardening case, latent hardening did not have a significant effect on lattice strains and returned a relatively faster development of a stronger 〈111〉 and a weaker 〈100〉 double fibre parallel to the tensile axis. Close correspondence between the experimental lattice strains and those predicted using particular orientations embedded within a random aggregate was obtained. The result suggests that the exact orientations of the surrounding aggregate have a weak influence on the lattice strain evolution

  14. Characterization of paint layers by simultaneous self-consistent fitting of RBS/PIXE spectra using simulated annealing

    International Nuclear Information System (INIS)

    Beck, L.; Jeynes, C.; Barradas, N.P.

    2008-01-01

    Particle induced X-ray emission (PIXE) is now routinely used for analyzing paint layers. Various setups have been developed to investigate the elemental composition of samples or wood/canvas paintings. However, the characterisation of paint layers is difficult due to their layered structure and due to the presence of organic binders. Also, standard PIXE codes do not support the quantitation of depth profiles in the general case. Elastic backscattering (both Rutherford and non-Rutherford) is usually used in ion beam analysis to determine depth profiles. However, traditional data processing using iteration between standard PIXE codes and particle scattering simulation codes is very time consuming and does not always give satisfactory results. Using two PIXE detectors and one particle detector recording simultaneously in an external beam geometry, we have applied a global minimisation code to all three spectra to solve these depth profiles self-consistently. This data treatment was applied to various different cases of paint layers and we demonstrate that the structures can be solved unambiguously, assuming that roughness effects do not introduce ambiguity

  15. Geometry and magnetic structure variation in manganese-oxide clusters determined by a self-consistent, LCAO method

    Science.gov (United States)

    Williams, Kristen; Hooper, Joseph

    2013-03-01

    Ab initio simulations are used to study the variation in geometry and magnetic structure in MnxOy (x = 3,4; y = 1,2) clusters. The groundstate wavefunctions for clusters with different magnetic coupling (ferromagnetic, ferrimagnetic and antiferromagnetic) are modeled with linear combinations of atomic orbitals (LCAOs). Self-consistent energies for different spin isomers are calculated by constraining the magnetic moments of Mn atoms constituting each basis AO. The ferrimagnetic and antiferromagnetic ground-state structures of MnxOy are 0.16-1.20 eV lower in energy than their ferromagnetic isomers. The presence of oxygen thus stabilizes low-spin isomers relative to the preferred high-spin ordering of bare Mn3 and Mn4. Each cluster has a preferred overall magnetic moment, and no evidence is seen of competing states with different spin multiplicities. However, non-degenerate isomags (clusters that possess the same spin multiplicity but different arrangements of local moments) do contribute to peak broadening observed in negative-ion photoelectron spectra. Proper accounting for all possible isomags is shown to be critical for accurate comparison with experimental spectra. Research was conducted at Naval Surface Warfare Center, Indian Head, MD and supported by the ONR NREIP program.

  16. Development of a Self-Consistent Model of Plutonium Sorption: Quantification of Sorption Enthalpy and Ligand-Promoted Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Brian [Clemson Univ., SC (United States); Kaplan, Daniel I [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Arai, Yuji [Univ. of Illinois, Urbana-Champaign, IL (United States); Becker, Udo [Univ. of Michigan, Ann Arbor, MI (United States); Ewing, Rod [Stanford Univ., CA (United States)

    2016-12-29

    This university lead SBR project is a collaboration lead by Dr. Brian Powell (Clemson University) with co-principal investigators Dan Kaplan (Savannah River National Laboratory), Yuji Arai (presently at the University of Illinois), Udo Becker (U of Michigan) and Rod Ewing (presently at Stanford University). Hypothesis: The underlying hypothesis of this work is that strong interactions of plutonium with mineral surfaces are due to formation of inner sphere complexes with a limited number of high-energy surface sites, which results in sorption hysteresis where Pu(IV) is the predominant sorbed oxidation state. The energetic favorability of the Pu(IV) surface complex is strongly influenced by positive sorption entropies, which are mechanistically driven by displacement of solvating water molecules from the actinide and mineral surface during sorption. Objectives: The overarching objective of this work is to examine Pu(IV) and Pu(V) sorption to pure metal (oxyhydr)oxide minerals and sediments using variable temperature batch sorption, X-ray absorption spectroscopy, electron microscopy, and quantum-mechanical and empirical-potential calculations. The data will be compiled into a self-consistent surface complexation model. The novelty of this effort lies largely in the manner the information from these measurements and calculations will be combined into a model that will be used to evaluate the thermodynamics of plutonium sorption reactions as well as predict sorption of plutonium to sediments from DOE sites using a component additivity approach.

  17. Time-dependent restricted-active-space self-consistent-field theory for bosonic many-body systems

    Science.gov (United States)

    Leveque, Camille; Madsen, Lars Bojer

    2017-04-01

    We have developed an ab-initio time-dependent wavefunction based theory for the description of many-body systems of bosons. The theory is based on a configurational interaction Ansatz for the many-body wavefunction with time-dependent self-consistent-field orbitals. The active space of the orbital excitations is subject to restrictions to be specified based on the physical situation at hand. The restrictions on the active space allow the theory to be evaluated under conditions where other wavefunction based methods, due to exponential scaling in the numerical efforts, cannot. The restrictions also allow us to clearly identify the excitations that are important for an accurate description, significantly beyond the mean-field approach. We first apply this theory to compute the ground-state energy of tens of trapped bosons, and second to simulate the dynamics following an instantaneous quenching of a non-contact interaction. The method provides accurate results and its computational cost is largely reduced compared with other wavefunction based many-body methods thanks to the restriction of the active orbital space. The important excitations are clearly identified and the method provides a new way to gain insight in correlation effects. This work was supported by the ERC-StG (Project No. 277767-TDMET) and the VKR center of excellence, QUSCOPE.

  18. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory

    International Nuclear Information System (INIS)

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter S.; Shirley, Eric L.; Prendergast, David

    2017-01-01

    Constrained-occupancy delta-self-consistent-field (ΔSCF) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The ΔSCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle ΔSCF approach can be rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.

  19. A self-consistent model of a thermally balanced quiescent prominence in magnetostatic equilibrium in a uniform gravitational field

    International Nuclear Information System (INIS)

    Lerche, I.; Low, B.C.

    1977-01-01

    A theoretical model of quiescent prominences in the form of an infinite vertical sheet is presented. Self-consistent solutions are obtained by integrating simultaneously the set of nonlinear equations of magnetostatic equilibrium and thermal balance. The basic features of the models are: (1) The prominence matter is confined to a sheet and supported against gravity by a bowed magnetic field. (2) The thermal flux is channelled along magnetic field lines. (3) The thermal flux is everywhere balanced by Low's (1975) hypothetical heat sink which is proportional to the local density. (4) A constant component of the magnetic field along the length of the prominence shields the cool plasma from the hot surrounding. It is assumed that the prominence plasma emits more radiation than it absorbes from the radiation fields of the photosphere, chromosphere and corona, and the above hypothetical heat sink is interpreted to represent the amount of radiative loss that must be balanced by a nonradiative energy input. Using a central density and temperature of 10 11 particles cm -3 and 5000 K respectively, a magnetic field strength between 2 to 10 gauss and a thermal conductivity that varies linearly with temperature, the physical properties implied by the model are discussed. The analytic treatment can also be carried out for a class of more complex thermal conductivities. These models provide a useful starting point for investigating the combined requirements of magnetostatic equilibrium and thermal balance in the quiescent prominence. (Auth.)

  20. Electronic structure of PrBa2Cu3O7 within LSDA+U: Different self-consistent solutions

    Directory of Open Access Journals (Sweden)

    M R Mohammadizadeh

    2009-08-01

    Full Text Available  Based on the density functional theory and using the full-potential linearized augmented-plane-waves method the electronic structure of PrBa2Cu3O7 (Pr123 system was calculated. The rotationally invariant local spin density approximation plus Hubbard parameter U was employed for Pr(4f orbitals. One self-consistent solution more stable than the previous solution, which has been proposed by Liechtenstein and Mazin (LM, was found. In contrast to the LM solution, it can explain the results of the 17O NMR spectroscopy study of nonsuperconducting Pr123 samples. This new solution favors the suggestion that the pure Pr123 samples should be intrinsically superconductor and metal similar to the other RBa2Cu3O7 (R=Y or a rare earth element samples. The imperfections cause the superconducting holes are transferred to the nonsuperconducting hole states around the high-symmetry (π/a, π/b, kz line in the Brillouin zone and so, superconductivity is suppressed in the conventional samples. It predicts that the superconducting 2pσ holes in the O2 sites of nonsuperconducting Pr123 samples should be depleted and the ones in the O3 sites should be almost unchanged .

  1. An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction

    Science.gov (United States)

    Albaugh, Alex; Demerdash, Omar; Head-Gordon, Teresa

    2015-11-01

    We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the course of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well.

  2. Dielectric function and plasmons in graphene: A self-consistent-field calculation within a Markovian master equation formalism

    Science.gov (United States)

    Karimi, F.; Davoody, A. H.; Knezevic, I.

    2016-05-01

    We introduce a method for calculating the dielectric function of nanostructures with an arbitrary band dispersion and Bloch wave functions. The linear response of a dissipative electronic system to an external electromagnetic field is calculated by a self-consistent-field approach within a Markovian master-equation formalism (SCF-MMEF) coupled with full-wave electromagnetic equations. The SCF-MMEF accurately accounts for several concurrent scattering mechanisms. The method captures interband electron-hole-pair generation, as well as the interband and intraband electron scattering with phonons and impurities. We employ the SCF-MMEF to calculate the dielectric function, complex conductivity, and loss function for supported graphene. From the loss-function maximum, we obtain plasmon dispersion and propagation length for different substrate types [nonpolar diamondlike carbon (DLC) and polar SiO2 and hBN], impurity densities, carrier densities, and temperatures. Plasmons on the two polar substrates are suppressed below the highest surface phonon energy, while the spectrum is broad on the nonpolar DLC. Plasmon propagation lengths are comparable on polar and nonpolar substrates and are on the order of tens of nanometers, considerably shorter than previously reported. They improve with fewer impurities, at lower temperatures, and at higher carrier densities.

  3. Electric dipole strength and dipole polarizability in 48Ca within a fully self-consistent second random-phase approximation

    Science.gov (United States)

    Gambacurta, D.; Grasso, M.; Vasseur, O.

    2018-02-01

    The second random-phase-approximation model corrected by a subtraction procedure designed to cure double counting, instabilities, and ultraviolet divergences, is employed for the first time to analyze the dipole strength and polarizability in 48Ca. All the terms of the residual interaction are included, leading to a fully self-consistent scheme. Results are illustrated with two Skyrme parametrizations, SGII and SLy4. Those obtained with the SGII interaction are particularly satisfactory. In this case, the low-lying strength below the neutron threshold is well reproduced and the giant dipole resonance is described in a very satisfactory way especially in its spreading and fragmentation. Spreading and fragmentation are produced in a natural way within such a theoretical model by the coupling of 1 particle-1 hole and 2 particle-2 hole configurations. Owing to this feature, we may provide for the electric polarizability as a function of the excitation energy a curve with a similar slope around the centroid energy of the giant resonance compared to the corresponding experimental results. This represents a considerable improvement with respect to previous theoretical predictions obtained with the random-phase approximation or with several ab-initio models. In such cases, the spreading width of the excitation cannot be reproduced and the polarizability as a function of the excitation energy displays a stiff increase around the predicted centroid energy of the giant resonance.

  4. ATMOSPHERIC CHEMISTRY FOR ASTROPHYSICISTS: A SELF-CONSISTENT FORMALISM AND ANALYTICAL SOLUTIONS FOR ARBITRARY C/O

    International Nuclear Information System (INIS)

    Heng, Kevin; Tsai, Shang-Min; Lyons, James R.

    2016-01-01

    We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets from the viewpoint of an astrophysicist. Starting from the first law of thermodynamics, we demonstrate that the van’t Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients), and procedures associated with the Gibbs free energy (minimization, rescaling) have a common physical and mathematical origin. We address an ambiguity associated with the equilibrium constant, which is used to relate the forward and reverse rate coefficients, and restate its two definitions. By necessity, one of the equilibrium constants must be dimensionless and equate to an exponential function involving the Gibbs free energy, while the other is a ratio of rate coefficients and must therefore possess physical units. We demonstrate that the Arrhenius equation takes on a functional form that is more general than previously stated without recourse to tagging on ad hoc functional forms. Finally, we derive analytical models of chemical systems, in equilibrium, with carbon, hydrogen, and oxygen. We include acetylene and are able to reproduce several key trends, versus temperature and carbon-to-oxygen ratio, published in the literature. The rich variety of behavior that mixing ratios exhibit as a function of the carbon-to-oxygen ratio is merely the outcome of stoichiometric book-keeping and not the direct consequence of temperature or pressure variations

  5. Modelling early stages of relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Ruggieri M.

    2016-01-01

    Full Text Available In this study we model early time dynamics of relativistic heavy ion collisions by an initial color-electric field which then decays to a plasma by the Schwinger mechanism. The dynamics of the many particles system produced by the decay is described by relativistic kinetic theory, taking into account the backreaction on the color field by solving self-consistently the kinetic and the field equations. Our main results concern isotropization and thermalization for a 1+1D expanding geometry. In case of small η/s (η/s ≲ 0.3 we find τisotropization ≈ 0.8 fm/c and τthermalization ≈ 1 fm/c in agreement with the common lore of hydrodynamics.

  6. RADIATION SPECTRAL SYNTHESIS OF RELATIVISTIC FILAMENTATION

    International Nuclear Information System (INIS)

    Frederiksen, Jacob Trier; Haugboelle, Troels; Medvedev, Mikhail V.; Nordlund, Ake

    2010-01-01

    Radiation from many astrophysical sources, e.g., gamma-ray bursts and active galactic nuclei, is believed to arise from relativistically shocked collisionless plasmas. Such sources often exhibit highly transient spectra evolving rapidly compared with source lifetimes. Radiation emitted from these sources is typically associated with nonlinear plasma physics, complex field topologies, and non-thermal particle distributions. In such circumstances, a standard synchrotron paradigm may fail to produce accurate conclusions regarding the underlying physics. Simulating spectral emission and spectral evolution numerically in various relativistic shock scenarios is then the only viable method to determine the detailed physical origin of the emitted spectra. In this Letter, we present synthetic radiation spectra representing the early stage development of the filamentation (streaming) instability of an initially unmagnetized plasma, which is relevant for both collisionless shock formation and reconnection dynamics in relativistic astrophysical outflows as well as for laboratory astrophysics experiments. Results were obtained using a highly efficient in situ diagnostics method, based on detailed particle-in-cell modeling of collisionless plasmas. The synthetic spectra obtained here are compared with those predicted by a semi-analytical model for jitter radiation from the filamentation instability, the latter including self-consistent generated field topologies and particle distributions obtained from the simulations reported upon here. Spectra exhibit dependence on the presence-or the absence-of an inert plasma constituent, when comparing baryonic plasmas (i.e., containing protons) with pair plasmas. The results also illustrate that considerable care should be taken when using lower-dimensional models to obtain information about the astrophysical phenomena generating observed spectra.

  7. Self-Consistent Kinetic Approach for Low Frequency and Quasi-static Electromagnetic Perturbations in Magnetic-Mirror Confined Plasmas

    Science.gov (United States)

    Pellat, Rene; Le Contel, Olivier; Roux, Alain; Perraut, Sylvaine; Hurricane, Omar; Coroniti, Ferdinand V.

    We describe a new self-consistent kinetic approach of collisionless plasmas. The basic equations are obtained from a linearization of the cyclotron and bounce averaged Vlasov and Maxwell equations. In the low frequency limit the Gauss equation is shown to be equivalent to the Quasi-Neutrality Condition (QNC). First we describe the work of Hurricane et al., 1995b, who investigated the effect of stochasticity on the stability of ballooning modes. An expression for the energy principle is obtained in the stochastic case, with comparisons with the adiabatic case. Notably, we show how the non adiabaticity of ions allows to recover a MHD-like theory with a modification of the polytropic index, for waves with frequencies smaller than the bounce frequency of protons. The stochasticity of protons can be due, in the far plasma sheet (beyond 10-12 RE, RE being the Earth radius), to the development of thin Current Sheet (CS) with a curvature radius that becomes smaller than the ion Larmor radius. Conversely the near Earth plasma sheet (6-8 RE), where the curvature radius is larger, is expected to be in the adiabatic regime. We give a description of slowly evolving (quasi-static) magnetic configurations, during the formation of high altitudes CS's, for instance during substorm growth phase in the Earth magnetosphere, and tentatively during the formation of CS's in the solar corona. Thanks to the use of a simple equilibrium magnetic field, a 2D dipole, the linear electromagnetic perturbations are computed analytically as functions of a forcing electrical current. The QNC, which is valid for long perpendicular wavelength electromagnetic perturbations (kλD1 where λD is the Debye length), is developed via an expansion in the small parameter Te/Ti. To the lowest order in Te/Ti (Te/Ti->0) we find that the enforcement of the QNC implies the presence of an electrostatic potential which is constant along the field line, but varies across it. The corresponding potential electric field

  8. Maier-Saupe model of polymer nematics: Comparing free energies calculated with Self Consistent Field theory and Monte Carlo simulations.

    Science.gov (United States)

    Greco, Cristina; Jiang, Ying; Chen, Jeff Z Y; Kremer, Kurt; Daoulas, Kostas Ch

    2016-11-14

    Self Consistent Field (SCF) theory serves as an efficient tool for studying mesoscale structure and thermodynamics of polymeric liquid crystals (LC). We investigate how some of the intrinsic approximations of SCF affect the description of the thermodynamics of polymeric LC, using a coarse-grained model. Polymer nematics are represented as discrete worm-like chains (WLC) where non-bonded interactions are defined combining an isotropic repulsive and an anisotropic attractive Maier-Saupe (MS) potential. The range of the potentials, σ, controls the strength of correlations due to non-bonded interactions. Increasing σ (which can be seen as an increase of coarse-graining) while preserving the integrated strength of the potentials reduces correlations. The model is studied with particle-based Monte Carlo (MC) simulations and SCF theory which uses partial enumeration to describe discrete WLC. In MC simulations the Helmholtz free energy is calculated as a function of strength of MS interactions to obtain reference thermodynamic data. To calculate the free energy of the nematic branch with respect to the disordered melt, we employ a special thermodynamic integration (TI) scheme invoking an external field to bypass the first-order isotropic-nematic transition. Methodological aspects which have not been discussed in earlier implementations of the TI to LC are considered. Special attention is given to the rotational Goldstone mode. The free-energy landscape in MC and SCF is directly compared. For moderate σ the differences highlight the importance of local non-bonded orientation correlations between segments, which SCF neglects. Simple renormalization of parameters in SCF cannot compensate the missing correlations. Increasing σ reduces correlations and SCF reproduces well the free energy in MC simulations.

  9. Self-consistent quasiparticle formulation of a multiphonon method and its application to the neutron-rich O20 nucleus

    Science.gov (United States)

    De Gregorio, G.; Knapp, F.; Lo Iudice, N.; Vesely, P.

    2016-04-01

    A Bogoliubov quasiparticle formulation of an equation-of-motion phonon method, suited for open-shell nuclei, is derived. Like its particle-hole version, it consists of deriving a set of equations of motions whose iterative solution generates an orthonormal basis of n -phonon states (n =0 ,1 ,2 ,... ), built of quasiparticle Tamm-Dancoff phonons, which simplifies the solution of the eigenvalue problem. The method is applied to the open-shell neutron-rich O20 for illustrative purposes. A Hartree-Fock-Bogoliubov canonical basis, derived from an intrinsic two-body optimized chiral Hamiltonian, is used to derive and solve the eigenvalue equations in a space encompassing a truncated two-phonon basis. The spurious admixtures induced by the violation of the particle number and the center-of-mass motion are eliminated to a large extent by a Gram-Schmidt orthogonalization procedure. The calculation takes into account the Pauli principle, is self-consistent, and is parameter free except for the energy cutoff used to truncate the two-phonon basis, which induces an increasing depression of the ground state through its strong coupling to the quasiparticle vacuum. Such a cutoff is fixed so as to reproduce the first 1- level. The two-phonon states are shown to enhance the level density of the low-energy spectrum, consistently with the data, and to induce a fragmentation of the E 1 strength which, while accounting for the very low E 1 transitions, is not sufficient to reproduce the experimental cross section in the intermediate energy region. This and other discrepancies suggest the need of including the three-phonon states. These are also expected to offset the action of the two phonons on the quasiparticle vacuum and, therefore, free the calculation from any parameter.

  10. Shingle 2.0: generalising self-consistent and automated domain discretisation for multi-scale geophysical models

    Directory of Open Access Journals (Sweden)

    A. S. Candy

    2018-01-01

    Full Text Available The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model- or application-specific, and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale, anisotropic, fully unstructured meshes where a relatively large number of heterogeneous parameters are required to constrain their full description. As a consequence, it can be difficult to reproduce simulations, to ensure a provenance in model data handling and initialisation, and a challenge to conduct model intercomparisons rigorously. This paper takes a novel approach to spatial discretisation, considering it much like a numerical simulation model problem of its own. It introduces a generalised, extensible, self-documenting approach to carefully describe, and necessarily fully, the constraints over the heterogeneous parameter space that determine how a domain is spatially discretised. This additionally provides a method to accurately record these constraints, using high-level natural language based abstractions that enable full accounts of provenance, sharing, and distribution. Together with this description, a generalised consistent approach to unstructured mesh generation for geophysical models is developed that is automated, robust and repeatable, quick-to-draft, rigorously verified, and consistent with the source data throughout. This interprets the description above to execute a self-consistent spatial discretisation process, which is automatically validated to expected discrete characteristics and metrics. Library code, verification tests, and examples available in the repository at https://github.com/shingleproject/Shingle. Further details of the project presented at http://shingleproject.org.

  11. A SELF-CONSISTENT MODEL OF THE CIRCUMSTELLAR DEBRIS CREATED BY A GIANT HYPERVELOCITY IMPACT IN THE HD 172555 SYSTEM

    International Nuclear Information System (INIS)

    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10 19 kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at ∼6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that ∼10 47 molecules of SiO vapor are needed to explain an emission feature at ∼8 μm in the Spitzer IRS spectrum of HD 172555. We find that unless there are ∼10 48 atoms or 0.05 M ⊕ of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the ∼8 μm feature can be emission from solid SiO, which naturally occurs in submicron silicate ''smokes'' created by quickly condensing vaporized silicate.

  12. PROGENITOR-DEPENDENT EXPLOSION DYNAMICS IN SELF-CONSISTENT, AXISYMMETRIC SIMULATIONS OF NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Summa, Alexander; Hanke, Florian; Janka, Hans-Thomas; Melson, Tobias [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Marek, Andreas [Max Planck Computing and Data Facility (MPCDF), Gießenbachstr. 2, D-85748 Garching (Germany); Müller, Bernhard, E-mail: asumma@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom)

    2016-07-01

    We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11–28 M {sub ⊙}, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si–O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si–O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.

  13. Effective charges of ionic liquid determined self-consistently through combination of molecular dynamics simulation and density-functional theory.

    Science.gov (United States)

    Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2017-11-15

    A self-consistent scheme combining the molecular dynamics (MD) simulation and density functional theory (DFT) was recently proposed to incorporate the effects of the charge transfer and polarization of ions into non-poralizable force fields of ionic liquids for improved description of energetics and dynamics. The purpose of the present work is to analyze the detailed setups of the MD/DFT scheme by focusing on how the basis set, exchange-correlation (XC) functional, charge-fitting method or force field for the intramolecular and Lennard-Jones interactions affects the MD/DFT results of 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ( [C1mim][NTf2]) and 1-ethyl-3-methylimidazolium glycinate ( [C2mim][Gly]). It was found that the double-zeta valence polarized or larger size of basis set is required for the convergence of the effective charge of the ion. The choice of the XC functional was further not influential as far as the generalized gradient approximation is used. The charge-fitting method and force field govern the accuracy of the MD/DFT scheme, on the other hand. We examined the charge-fitting methods of Blöchl, the iterative Hirshfeld (Hirshfeld-I), and REPEAT in combination with Lopes et al.'s force field and general AMBER force field. There is no single combination of charge fitting and force field that provides good agreements with the experiments, while the MD/DFT scheme reduces the effective charges of the ions and leads to better description of energetics and dynamics compared to the original force field with unit charges. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Open-ended formulation of self-consistent field response theory with the polarizable continuum model for solvation.

    Science.gov (United States)

    Di Remigio, Roberto; Beerepoot, Maarten T P; Cornaton, Yann; Ringholm, Magnus; Steindal, Arnfinn Hykkerud; Ruud, Kenneth; Frediani, Luca

    2016-12-21

    The study of high-order absorption properties of molecules is a field of growing importance. Quantum-chemical studies can help design chromophores with desirable characteristics. Given that most experiments are performed in solution, it is important to devise a cost-effective strategy to include solvation effects in quantum-chemical studies of these properties. We here present an open-ended formulation of self-consistent field (SCF) response theory for a molecular solute coupled to a polarizable continuum model (PCM) description of the solvent. Our formulation relies on the open-ended, density matrix-based quasienergy formulation of SCF response theory of Thorvaldsen, et al., [J. Chem. Phys., 2008, 129, 214108] and the variational formulation of the PCM, as presented by Lipparini et al., [J. Chem. Phys., 2010, 133, 014106]. Within the PCM approach to solvation, the mutual solute-solvent polarization is represented by means of an apparent surface charge (ASC) spread over the molecular cavity defining the solute-solvent boundary. In the variational formulation, the ASC is an independent, variational degree of freedom. This allows us to formulate response theory for molecular solutes in the fixed-cavity approximation up to arbitrary order and with arbitrary perturbation operators. For electric dipole perturbations, pole and residue analyses of the response functions naturally lead to the identification of excitation energies and transition moments. We document the implementation of this approach in the Dalton program package using a recently developed open-ended response code and the PCMSolver libraries and present results for one-, two-, three-, four- and five-photon absorption processes of three small molecules in solution.

  15. A SELF-CONSISTENT MODEL OF THE CIRCUMSTELLAR DEBRIS CREATED BY A GIANT HYPERVELOCITY IMPACT IN THE HD 172555 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B. C.; Melosh, H. J. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Lisse, C. M. [JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Chen, C. H. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Wyatt, M. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Thebault, P. [LESIA, Observatoire de Paris, F-92195 Meudon Principal Cedex (France); Henning, W. G. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Gaidos, E. [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Elkins-Tanton, L. T. [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States); Bridges, J. C. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Morlok, A., E-mail: johns477@purdue.edu [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2012-12-10

    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10{sup 19} kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at {approx}6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that {approx}10{sup 47} molecules of SiO vapor are needed to explain an emission feature at {approx}8 {mu}m in the Spitzer IRS spectrum of HD 172555. We find that unless there are {approx}10{sup 48} atoms or 0.05 M{sub Circled-Plus} of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the {approx}8 {mu}m feature can be emission from solid SiO, which naturally occurs in submicron silicate ''smokes'' created by quickly condensing vaporized silicate.

  16. Shingle 2.0: generalising self-consistent and automated domain discretisation for multi-scale geophysical models

    Science.gov (United States)

    Candy, Adam S.; Pietrzak, Julie D.

    2018-01-01

    The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model- or application-specific, and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale, anisotropic, fully unstructured meshes where a relatively large number of heterogeneous parameters are required to constrain their full description. As a consequence, it can be difficult to reproduce simulations, to ensure a provenance in model data handling and initialisation, and a challenge to conduct model intercomparisons rigorously. This paper takes a novel approach to spatial discretisation, considering it much like a numerical simulation model problem of its own. It introduces a generalised, extensible, self-documenting approach to carefully describe, and necessarily fully, the constraints over the heterogeneous parameter space that determine how a domain is spatially discretised. This additionally provides a method to accurately record these constraints, using high-level natural language based abstractions that enable full accounts of provenance, sharing, and distribution. Together with this description, a generalised consistent approach to unstructured mesh generation for geophysical models is developed that is automated, robust and repeatable, quick-to-draft, rigorously verified, and consistent with the source data throughout. This interprets the description above to execute a self-consistent spatial discretisation process, which is automatically validated to expected discrete characteristics and metrics. Library code, verification tests, and examples available in the repository at https://github.com/shingleproject/Shingle. Further details of the project presented at http://shingleproject.org.

  17. The relativistic feedback discharge model of terrestrial gamma ray flashes

    Science.gov (United States)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  18. Time as a Quantum Observable, Canonically Conjugated to Energy, and Foundations of Self-Consistent Time Analysis of Quantum Processes

    Directory of Open Access Journals (Sweden)

    V. S. Olkhovsky

    2009-01-01

    Full Text Available Recent developments are reviewed and some new results are presented in the study of time in quantum mechanics and quantum electrodynamics as an observable, canonically conjugate to energy. This paper deals with the maximal Hermitian (but nonself-adjoint operator for time which appears in nonrelativistic quantum mechanics and in quantum electrodynamics for systems with continuous energy spectra and also, briefly, with the four-momentum and four-position operators, for relativistic spin-zero particles. Two measures of averaging over time and connection between them are analyzed. The results of the study of time as a quantum observable in the cases of the discrete energy spectra are also presented, and in this case the quasi-self-adjoint time operator appears. Then, the general foundations of time analysis of quantum processes (collisions and decays are developed on the base of time operator with the proper measures of averaging over time. Finally, some applications of time analysis of quantum processes (concretely, tunneling phenomena and nuclear processes are reviewed.

  19. Relativistic and non-relativistic studies of nuclear matter

    NARCIS (Netherlands)

    Banerjee, MK; Tjon, JA

    2002-01-01

    We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic

  20. Relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Wolschin, Georg

    2016-01-01

    This course is a concise introduction to the foundations of relativistic quantum mechanics. It is concipated as one-semester, two-hour arrangement for bachelor and master students; some of the advanced parts can be also of interest or promovings. Primary adressates are studyings from the fourth semester upwards, which have already worked out the basic course of quantum mechanics and want beyond to get to know relativistic wave equations. In the introduction I draw first the development, the result of which was the establishment of Lorentz-invariant relativistic wave equations by Schroedinger, Klein, Gordon, and Dirac. After a chapter about the connection to the Galilei-invariant nonrelativistic quantum mechanics follow the presentations of the Klein-Gordon and Dirac and the study of the Dirac theory in view of invariances concerning parity, charge conjugation, ant time-reversal transformation. A short introduction to the principles of quantum field theory, especially quantum electrodynamics, follows.

  1. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  2. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  3. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  4. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  5. Application of a general self-consistency scheme in the linear combination of atomic orbitals formalism to the electronic and structural properties of Si and W

    International Nuclear Information System (INIS)

    Chan, C.T.; Vanderbilt, D.; Louie, S.G.; Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720)

    1986-01-01

    We present a general self-consistency procedure formulated in momentum space for electronic structure and total-energy calculations of crystalline solids. It is shown that both the charge density and the change in the Hamiltonian matrix elements in each iteration can be calculated in a straight-forward fashion once a set of overlap matrices is computed. The present formulation has the merit of bringing the self-consistency problem for different basis sets to the same footing. The scheme is used to extend a first-principles pseudopotential linear combination of Gaussian orbitals method to full point-by-point self-consistency, without refitting of potentials. It is shown that the set of overlap matrices can be calculated very efficiently if we exploit the translational and space-group symmetries of the system under consideration. This scheme has been applied to study the structural and electronic properties of Si and W, prototypical systems of very different bonding properties. The results agree well with experiment and other calculations. The fully self-consistent results are compared with those obtained by a variational procedure [J. R. Chelikowsky and S. G. Louie, Phys. Rev. B 29, 3470 (1984)]. We find that the structural properties for bulk Si and W (both systems have no interatomic charge transfer) can be treated accurately by the variational procedure. However, full self-consistency is needed for an accurate description of the band energies

  6. Biquaternions and relativistic kinematics

    International Nuclear Information System (INIS)

    Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.

    1979-01-01

    The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles

  7. Fully self-consistent multiparticle-multi-hole configuration mixing method - Applications to a few light nuclei

    International Nuclear Information System (INIS)

    Robin, Caroline

    2014-01-01

    This thesis project takes part in the development of the multiparticle-multi-hole configuration mixing method aiming to describe the structure of atomic nuclei. Based on a double variational principle, this approach allows to determine the expansion coefficients of the wave function and the single-particle states at the same time. In this work we apply for the first time the fully self-consistent formalism of the mp-mh method to the description of a few p- and sd-shell nuclei, using the D1S Gogny interaction. A first study of the 12 C nucleus is performed in order to test the doubly iterative convergence procedure when different types of truncation criteria are applied to select the many-body configurations included in the wave-function. A detailed analysis of the effect caused by the orbital optimization is conducted. In particular, its impact on the one-body density and on the fragmentation of the ground state wave function is analyzed. A systematic study of sd-shell nuclei is then performed. A careful analysis of the correlation content of the ground state is first conducted and observables quantities such as binding and separation energies, as well as charge radii are calculated and compared to experimental data. Satisfactory results are found. Spectroscopic properties are also studied. Excitation energies of low-lying states are found in very good agreement with experiment, and the study of magnetic dipole features are also satisfactory. Calculation of electric quadrupole properties, and in particular transition probabilities B(E2), however reveal a clear lack of collectivity of the wave function, due to the reduced valence space used to select the many-body configurations. Although the renormalization of orbitals leads to an important fragmentation of the ground state wave function, only little effect is observed on B(E2) probabilities. A tentative explanation is given. Finally, the structure description of nuclei provided by the multiparticle

  8. The nuclear N-body problem and the effective interaction in self-consistent mean-field methods

    International Nuclear Information System (INIS)

    Duguet, Thomas

    2002-01-01

    This work deals with two aspects of mean-field type methods extensively used in low-energy nuclear structure. The first study is at the mean-field level. The link between the wave-function describing an even-even nucleus and the odd-even neighbor is revisited. To get a coherent description as a function of the pairing intensity in the system, the utility of the formalization of this link through a two steps process is demonstrated. This two-steps process allows to identify the role played by different channels of the force when a nucleon is added in the system. In particular, perturbative formula evaluating the contribution of time-odd components of the functional to the nucleon separation energy are derived for zero and realistic pairing intensities. Self-consistent calculations validate the developed scheme as well as the derived perturbative formula. This first study ends up with an extended analysis of the odd-even mass staggering in nuclei. The new scheme allows to identify the contribution to this observable coming from different channels of the force. The necessity of a better understanding of time-odd terms in order to decide which odd-even mass formulae extracts the pairing gap the most properly is identified. These terms being nowadays more or less out of control, extended studies are needed to make precise the fit of a pairing force through the comparison of theoretical and experimental odd-even mass differences. The second study deals with beyond mean-field methods taking care of the correlations associated with large amplitude oscillations in nuclei. Their effects are usually incorporated through the GCM or the projected mean-field method. We derive a perturbation theory motivating such variational calculations from a diagrammatic point of view for the first time. Resuming two-body correlations in the energy expansion, we obtain an effective interaction removing the hard-core problem in the context of configuration mixing calculations. Proceeding to a

  9. Relativistic configuration interaction approach

    Indian Academy of Sciences (India)

    (and requirement for) ab-initio calculation of electronic structure providing a high level of reliability and accuracy in accounting for both relativistic and correlation effects associated with these properties has gained importance. In this paper, we will compute one of the P, T-odd interaction constants, the so-called Wd, which is.

  10. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  11. Non-relativistic supersymmetry

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1984-01-01

    The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)

  12. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  13. Relativistic elementary atoms

    International Nuclear Information System (INIS)

    Mrowczynski, S.

    1989-01-01

    The physics of relativistic elementary atoms,i.e. of Coulomb bound states of elementary particles, like positronium, pionium or an atom of μ + π - , is presented. The atom lifetimes and processes, in which the atoms are produced, are discussed. The interaction of the atoms with matter is also described. A simple derivation of most results is given. 33 refs. (author)

  14. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  15. Two Kinds of Darboux-Bäcklund Transformations for the q-Deformed KdV Hierarchy with Self-Consistent Sources

    Directory of Open Access Journals (Sweden)

    Hongxia Wu

    2016-01-01

    Full Text Available Two kinds of Darboux-Bäcklund transformations (DBTs are constructed for the q-deformed Nth KdV hierarchy with self-consistent sources (q-NKdVHSCS by using the q-deformed pseudodifferential operators. Note that one of the DBTs provides a nonauto Bäcklund transformation for two q-deformed Nth KdV equations with self-consistent sources (q-NKdVESCS with different degree. In addition, the soliton solution to the first nontrivial equation of q-KdVHSCS is also obtained.

  16. Relativistic effects on plasma expansion

    Energy Technology Data Exchange (ETDEWEB)

    Benkhelifa, El-Amine; Djebli, Mourad, E-mail: mdjebli@usthb.dz [USTHB, Faculty of Physics, Theoretical Physics Laboratory, B.P. 32 Bab-Ezzouar, 16079 Algiers (Algeria)

    2014-07-15

    The expansion of electron-ion plasma is studied through a fully relativistic multi-fluids plasma model which includes thermal pressure, ambipolar electrostatic potential, and internal energy conversion. Numerical investigation, based on quasi-neutral assumption, is performed for three different regimes: nonrelativistic, weakly relativistic, and relativistic. Ions' front in weakly relativistic regime exhibits spiky structure associated with a break-down of quasi-neutrality at the expanding front. In the relativistic regime, ion velocity is found to reach a saturation limit which occurs at earlier stages of the expansion. This limit is enhanced by higher electron velocity.

  17. Fitting Analysis using Differential evolution Optimization (FADO):. Spectral population synthesis through genetic optimization under self-consistency boundary conditions

    Science.gov (United States)

    Gomes, J. M.; Papaderos, P.

    2017-07-01

    The goal of population spectral synthesis (pss; also referred to as inverse, semi-empirical evolutionary- or fossil record approach) is to decipher from the spectrum of a galaxy the mass, age and metallicity of its constituent stellar populations. This technique, which is the reverse of but complementary to evolutionary synthesis, has been established as fundamental tool in extragalactic research. It has been extensively applied to large spectroscopic data sets, notably the SDSS, leading to important insights into the galaxy assembly history. However, despite significant improvements over the past decade, all current pss codes suffer from two major deficiencies that inhibit us from gaining sharp insights into the star-formation history (SFH) of galaxies and potentially introduce substantial biases in studies of their physical properties (e.g., stellar mass, mass-weighted stellar age and specific star formation rate). These are I) the neglect of nebular emission in spectral fits, consequently; II) the lack of a mechanism that ensures consistency between the best-fitting SFH and the observed nebular emission characteristics of a star-forming (SF) galaxy (e.g., hydrogen Balmer-line luminosities and equivalent widths-EWs, shape of the continuum in the region around the Balmer and Paschen jump). In this article, we present fado (Fitting Analysis using Differential evolution Optimization) - a conceptually novel, publicly available pss tool with the distinctive capability of permitting identification of the SFH that reproduces the observed nebular characteristics of a SF galaxy. This so-far unique self-consistency concept allows us to significantly alleviate degeneracies in current spectral synthesis, thereby opening a new avenue to the exploration of the assembly history of galaxies. The innovative character of fado is further augmented by its mathematical foundation: fado is the first pss code employing genetic differential evolution optimization. This, in conjunction

  18. Self-consistent-field analysis of the micellization of carboxy-modified poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers

    NARCIS (Netherlands)

    Lauw, Y.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2006-01-01

    The micellization properties of carboxy-modified Pluronics P85 (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers) are investigated by means of a molecularly realistic self-consistent-field theory. We consider the, so-called, carboxylic acid

  19. Electronic structure of disordered alloys - I: self-consistent cluster CPA incorporating off-diagonal disorder and short-range order

    International Nuclear Information System (INIS)

    Kumar, V.; Mookerjee, A.; Srivastava, V.K.

    1980-09-01

    We have developed here a self-consistent coherent potential approximation generalized to take into account effect of clusters. Off-diagonal disorder and short-range order are taken into account. A graphical method married to the recursion technique, enables us to work on realistic three-dimensional lattices. Calculations are shown for a binary alloy on a diamond lattice. (author)

  20. Branch-based model for the diameters of the pulmonary airways: accounting for departures from self-consistency and registration errors.

    Science.gov (United States)

    Neradilek, Moni B; Polissar, Nayak L; Einstein, Daniel R; Glenny, Robb W; Minard, Kevin R; Carson, James P; Jiao, Xiangmin; Jacob, Richard E; Cox, Timothy C; Postlethwait, Edward M; Corley, Richard A

    2012-06-01

    We examine a previously published branch-based approach for modeling airway diameters that is predicated on the assumption of self-consistency across all levels of the tree. We mathematically formulate this assumption, propose a method to test it and develop a more general model to be used when the assumption is violated. We discuss the effect of measurement error on the estimated models and propose methods that take account of error. The methods are illustrated on data from MRI and CT images of silicone casts of two rats, two normal monkeys, and one ozone-exposed monkey. Our results showed substantial departures from self-consistency in all five subjects. When departures from self-consistency exist, we do not recommend using the self-consistency model, even as an approximation, as we have shown that it may likely lead to an incorrect representation of the diameter geometry. The new variance model can be used instead. Measurement error has an important impact on the estimated morphometry models and needs to be addressed in the analysis. Copyright © 2012 Wiley Periodicals, Inc.

  1. Characterisation of poly(lactic acid): poly(ethyleneoxide) (PLA:PEG) nanoparticles using the self-consistent theory modelling approach

    NARCIS (Netherlands)

    Heald, C.R.; Stolnik, S.; Matteis, De C.; Garnett, M.C.; Illum, L.; Davis, S.S.; Leermakers, F.A.M.

    2003-01-01

    Self-consistent field (SCF) modelling studies can be used to predict the properties of poly(lactic acid):poly(ethyleneoxide) (PLA:PEG) nanoparticles using the theory developed by Scheutjens and Fleer. Good agreement in the results between experimental and modelled data has been observed previously

  2. Impact of technology scaling in SOI back-channel total dose tolerance. A 2-D numerical study using a self-consistent oxide code

    International Nuclear Information System (INIS)

    Leray, J.L.; Paillet, Ph.; Ferlet-Cavrois, V.; Tavernier, C.; Belhaddad, K.; Penzin, O.

    1999-01-01

    A new 2-D and 3-D self-consistent code has been developed and is applied to understanding the charge trapping in SOI buried oxide causing back-channel MOS leakage in SOI transistors. Clear indications on scaling trends are obtained with respect to supply voltage and oxide thickness. (authors)

  3. The relativistic gravity train

    Science.gov (United States)

    Seel, Max

    2018-05-01

    The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.

  4. Relativistic studies in actinides

    International Nuclear Information System (INIS)

    Weinberger, P.; Gonis, A.

    1987-01-01

    In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs

  5. Relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs

  6. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  7. Relativistic tidal disruption events

    Directory of Open Access Journals (Sweden)

    Levan A.

    2012-12-01

    Full Text Available In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s−1 at peak, rapid X-ray variability (factors of >100 on timescales of 100 seconds and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ∼ 2 − 5, created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  8. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  9. Relativistic continuum random phase approximation in spherical nuclei

    International Nuclear Information System (INIS)

    Daoutidis, Ioannis

    2009-01-01

    Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)

  10. Relativistic continuum random phase approximation in spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Daoutidis, Ioannis

    2009-10-01

    Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)

  11. Relativistic soliton-like collisionless ionization wave

    Science.gov (United States)

    Arefiev, Alexey; McCormick, Matthew; Quevedo, Hernan; Bengtson, Roger; Ditmire, Todd

    2014-10-01

    It has been observed in recent experiments with laser-irradiated gas jets that a plasma filament produced by the laser and containing energetic electrons can launch a relativistic ionization wave into ambient gas. Here we present a self-consistent theory that explains how a collisionless ionization wave can propagate in a self-sustaining regime. A population of hot electrons necessarily generates a sheath electric field at the plasma boundary. This field penetrates the ambient gas, ionizing the gas atoms and thus causing the plasma boundary to expand. We show that the motion of the newly generated electrons can form a potential well adjacent to the plasma boundary. The outwards motion of the well causes a bunch of energetic electrons to become trapped, while allowing the newly generated electrons to escape into the plasma without retaining much energy. The resulting soliton-like ionizing field structure propagates outwards with a bunch of hot electrons that maintain a strong sheath field despite significant plasma expansion. We also present 1D and 2D particle-in-cell simulations that illustrate the described mechanism. The simulations were performed using HPC resources provided by the Texas Advanced Computing Center. This work was supported by NNSA Contract No. DE-FC52-08NA28512 and U.S. DOE Contract No. DE-FG02-04ER54742.

  12. Perpendicular relativistic shocks in magnetized pair plasma

    Science.gov (United States)

    Plotnikov, Illya; Grassi, Anna; Grech, Mickael

    2018-04-01

    Perpendicular relativistic (γ0 = 10) shocks in magnetized pair plasmas are investigated using two dimensional Particle-in-Cell simulations. A systematic survey, from unmagnetized to strongly magnetized shocks, is presented accurately capturing the transition from Weibel-mediated to magnetic-reflection-shaped shocks. This transition is found to occur for upstream flow magnetizations 10-3 10-2, it leaves place to a purely electromagnetic precursor following from the strong emission of electromagnetic waves at the shock front. Particle acceleration is found to be efficient in weakly magnetized perpendicular shocks in agreement with previous works, and is fully suppressed for σ > 10-2. Diffusive Shock Acceleration is observed only in weakly magnetized shocks, while a dominant contribution of Shock Drift Acceleration is evidenced at intermediate magnetizations. The spatial diffusion coefficients are extracted from the simulations allowing for a deeper insight into the self-consistent particle kinematics and scale with the square of the particle energy in weakly magnetized shocks. These results have implications for particle acceleration in the internal shocks of AGN jets and in the termination shocks of Pulsar Wind Nebulae.

  13. Plasmoid statistics in relativistic magnetic reconnection

    Science.gov (United States)

    Petropoulou, M.; Christie, I. M.; Sironi, L.; Giannios, D.

    2018-04-01

    Plasmoids, overdense blobs of plasma containing magnetic fields and high-energy particles, are a self-consistent outcome of the reconnection process in the relativistic regime. Recent two-dimensional particle-in-cell (PIC) simulations have shown that plasmoids can undergo a variety of processes (e.g. mergers, bulk acceleration, growth, and advection) within the reconnection layer. We developed a Monte Carlo code, benchmarked with the recent PIC simulations, to examine the effects of these processes on the steady-state size and momentum distributions of the plasmoid chain. The differential plasmoid size distribution is shown to be a power law, ranging from a few plasma skin depths to ˜0.1 of the reconnection layer's length. The power-law slope is shown to be linearly dependent upon the ratio of the plasmoid acceleration and growth rates, which slightly decreases with increasing plasma magnetization. We perform a detailed comparison of our results with those of recent PIC simulations and briefly discuss the astrophysical implications of our findings through the representative case of flaring events from blazar jets.

  14. Ab initio LCAO-MO cluster-type calculation of the self-consistent electronic screening charge density around a single hydrogen impurity in a nickel crystal

    International Nuclear Information System (INIS)

    Simpson, R.W.; Lane, N.F.; Chaney, R.C.

    1978-01-01

    The electronic structure for a Ni atom cluster embedded in bulk Ni by use of a spin-averaged local exchange SCF Ni crystal potential is calculated with an ab initio LCAO-Mo variational method. A single hydrogen impurity is added at the cluster center (fcc octahedral interstitial site) and the electronic structure computed iteratively until the change in electron density from the pure Ni cluster density is self-consistent. The H-Ni 6 self-consistent density change is compared to the charge density around a free hydrogen atom and to the initial-response density change in H-Ni 14 and H-Ni 38 clusters. 14 references

  15. Plasma and BIAS Modeling: Self-Consistent Electrostatic Particle-in-Cell with Low-Density Argon Plasma for TiC

    Directory of Open Access Journals (Sweden)

    Jürgen Geiser

    2011-01-01

    processes. In this paper we present a new model taken into account a self-consistent electrostatic-particle in cell model with low density Argon plasma. The collision model are based of Monte Carlo simulations is discussed for DC sputtering in lower pressure regimes. In order to simulate transport phenomena within sputtering processes realistically, a spatial and temporal knowledge of the plasma density and electrostatic field configuration is needed. Due to relatively low plasma densities, continuum fluid equations are not applicable. We propose instead a Particle-in-cell (PIC method, which allows the study of plasma behavior by computing the trajectories of finite-size particles under the action of an external and self-consistent electric field defined in a grid of points.

  16. Systematic study of electric-dipole excitations with fully self-consistent Skyrme HF plus RPA from light-to-medium-mass deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Inakura, T. [University of Tsukuba, Institute for Physics, Tsukuba (Japan); Nakatsukasa, T. [RIKEN Nishina Center, Theoretical Nuclear Physics Laboratory, Wako (Japan); Yabana, K. [University of Tsukuba, Institute for Physics, Tsukuba (Japan); University of Tsukuba, Center for Computational Sciences, Tsukuba (Japan)

    2009-12-15

    We undertake a systematic calculation on electric-dipole responses of even-even nuclei for a wide mass region employing a fully self-consistent Hartree-Fock plus RPA approach. For an easy implementation of the fully self-consistent calculation, the finite-amplitude method which we have proposed recently is employed. We calculated dipole responses in Cartesian mesh representation, which can deal with deformed nuclei but do not include pairing correlation. The systematic calculation has reached Nickel isotopes. The calculated results show reasonable agreement for heavy nuclei while the average excitation energies are underestimated for light nuclei. We show a systematic comparison of the splitting of the peak energy with the ground-state deformation. (orig.)

  17. A symmetry-conserving description of odd nuclei with the Gogny force. Particle number and angular-momentum projection with self-consistent blocking

    Energy Technology Data Exchange (ETDEWEB)

    Borrajo, M.; Egido, J.L. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain)

    2016-09-15

    We present an approach for the calculation of odd nuclei with exact self-consistent blocking and particle number and angular-momentum projection with the finite-range density-dependent Gogny force. As an application we calculate the nucleus {sup 31}Mg at the border of the N = 20 inversion island. We evaluate the ground-state properties, the excited states and the transition probabilities. In general we obtain a good description of the measured observables. (orig.)

  18. Electronic structure of thin films by the self-consistent numerical-basis-set linear combination of atomic orbitals method: Ni(001)

    International Nuclear Information System (INIS)

    Wang, C.S.; Freeman, A.J.

    1979-01-01

    We present the self-consistent numerical-basis-set linear combination of atomic orbitals (LCAO) discrete variational method for treating the electronic structure of thin films. As in the case of bulk solids, this method provides for thin films accurate solutions of the one-particle local density equations with a non-muffin-tin potential. Hamiltonian and overlap matrix elements are evaluated accurately by means of a three-dimensional numerical Diophantine integration scheme. Application of this method is made to the self-consistent solution of one-, three-, and five-layer Ni(001) unsupported films. The LCAO Bloch basis set consists of valence orbitals (3d, 4s, and 4p states for transition metals) orthogonalized to the frozen-core wave functions. The self-consistent potential is obtained iteratively within the superposition of overlapping spherical atomic charge density model with the atomic configurations treated as adjustable parameters. Thus the crystal Coulomb potential is constructed as a superposition of overlapping spherically symmetric atomic potentials and, correspondingly, the local density Kohn-Sham (α = 2/3) potential is determined from a superposition of atomic charge densities. At each iteration in the self-consistency procedure, the crystal charge density is evaluated using a sampling of 15 independent k points in (1/8)th of the irreducible two-dimensional Brillouin zone. The total density of states (DOS) and projected local DOS (by layer plane) are calculated using an analytic linear energy triangle method (presented as an Appendix) generalized from the tetrahedron scheme for bulk systems. Distinct differences are obtained between the surface and central plane local DOS. The central plane DOS is found to converge rapidly to the DOS of bulk paramagnetic Ni obtained by Wang and Callaway. Only a very small surplus charge (0.03 electron/atom) is found on the surface planes, in agreement with jellium model calculations

  19. Simultaneous use and self-consistent analyses of μ-PIXE and μ-EBS for the characterization of corrosion layers grown on ancient coins

    Science.gov (United States)

    Cruz, J.; Corregidor, V.; Alves, L. C.

    2017-09-01

    The study of corrosion products in two XVI century coins through the simultaneous and self-consistent μ-PIXE and μ-EBS spectra analyses is presented in this work. The fitted spectra give consistent results, showing the feasibility of this approach to determine in a fast and non-destructive way the elemental composition and concentration depth profiles of the corrosion layers.


  20. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  1. Proton relativistic model

    International Nuclear Information System (INIS)

    Araujo, Wilson Roberto Barbosa de

    1995-01-01

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)

  2. Relativistic approach to nuclear structure

    International Nuclear Information System (INIS)

    Nguyen Van Giai; Bouyssy, A.

    1987-03-01

    Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined

  3. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  4. 'Antigravity' Propulsion and Relativistic Hyperdrive

    OpenAIRE

    Felber, Franklin S.

    2006-01-01

    Exact payload trajectories in the strong gravitational fields of compact masses moving with constant relativistic velocities are calculated. The strong field of a suitable driver mass at relativistic speeds can quickly propel a heavy payload from rest to a speed significantly faster than the driver, a condition called hyperdrive. Hyperdrive thresholds and maxima are calculated as functions of driver mass and velocity.

  5. Relativistic centrifugal instability

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  6. Relativistic ring models

    Energy Technology Data Exchange (ETDEWEB)

    Ujevic, Maximiliano [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Letelier, Patricio S.; Vogt, Daniel [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Matematica, Estatistica e Computacao Cientifica. Dept. de Matematica Aplicada

    2011-07-01

    Full text: Relativistic thick ring models are constructed using previously found analytical Newtonian potential-density pairs for flat rings and toroidal structures obtained from Kuzmin-Toomre family of discs. This was achieved by inflating previously constructed Newtonian ring potentials using the transformation |z|{yields}{radical}z{sup 2} + b{sup 2}, and then finding their relativistic analog. The models presented have infinite extension but the physical quantities decays very fast with the distance, and in principle, one could make a cut-off radius to consider it finite. In particular, we present systems with one ring, two rings and a disc with a ring. Also, the circular velocity of a test particle and its stability when performing circular orbits are presented in all these models. Using the Rayleigh criterion of stability of a fluid at rest in a gravitational field, we find that the different systems studied present a region of non-stability that appears in the intersection of the disc and the ring, and between the rings when they become thinner. (author)

  7. Relativistic Planck-scale polymer

    Directory of Open Access Journals (Sweden)

    Giovanni Amelino-Camelia

    2017-12-01

    Full Text Available Polymer quantum mechanics has been studied as a simplified picture that reflects some of the key properties of Loop Quantum Gravity; however, while the fate of relativistic symmetries in Loop Quantum Gravity is still not established, it is usually assumed that the discrete polymer structure should lead to a breakdown of relativistic symmetries. We here focus for simplicity on a one-spatial-dimension polymer model and show that relativistic symmetries are deformed, rather than being broken. The specific type of deformed relativistic symmetries which we uncover appears to be closely related to analogous descriptions of relativistic symmetries in some noncommutative spacetimes. This also contributes to an ongoing effort attempting to establish whether the “quantum-Minkowski limit” of Loop Quantum Gravity is a noncommutative spacetime.

  8. On general-relativistic and gauge field theories

    Energy Technology Data Exchange (ETDEWEB)

    Treder, H.; Yourgrau, W.

    1978-09-01

    The fundamental open questions of general relativity theory are the unification of the gravitational field with other fields, aiming at a unifield geometrization of physics, as well as the renormalization of relativistic gravitational theory in order to obtain their self-consistent solutions. These solutions are to furnish field-theoretic particle models: a problem first discussed by Einstein. In addition, we are confronted with the issue of a coupling between gravitational and matter fields determined (not only) by Einstein's principle of equivalence, and also with the question of the geometric meaning of a gravitational quantum theory. In our view, all these problems are so closely related that they warrant a general solution. We treat mainly the concepts suggested by Einstein and Weyl.

  9. Relativistic hydrodynamics of spinless particles in gauge fields

    International Nuclear Information System (INIS)

    Gaertner, P.

    1985-01-01

    The aim of this thesis is to derive a relativistic hydrodynamic formulation for an interacting system of particles and gauge fields from the quantum mechanical equations of motion of the particles. Thereby the following fundamental approximations are made: a) Starting point of the studies is a classical Lagrangian density. The massive particles which shall be described by hydrodynamics are assumed as first-quantized and described by a field (namely the particle wave function) which satisfies a wave equation. The massless gauge bosons are treated classically, i.e. they are described by potentials which satisfy generalized Maxwell equations. b) The spin is neglected. So Kleon-Gordon particles are considered. c) The interaction between the particles is reduced by a Hartree-approximation to the interaction with the self-consistently calculated gauge fields. (orig./HSI) [de

  10. Non-relativistic and relativistic quantum kinetic equations in nuclear physics

    International Nuclear Information System (INIS)

    Botermans, W.M.M.

    1989-01-01

    In this thesis an attempt is made to draw up a quantummechanical tranport equation for the explicit calculation oof collision processes between two (heavy) ions, by making proper approaches of the exact equations (non-rel.: N-particles Schroedinger equation; rel.: Euler-Lagrange field equations.). An important starting point in the drag-up of the theory is the behaviour of nuclear matter in equilibrium which is determined by individual as well as collective effects. The central point in this theory is the effective interaction between two nucleons both surrounded by other nucleons. In the derivation of the tranport equations use is made of the green's function formalism as developed by Schwinger and Keldys. For the Green's function kinematic equations are drawn up and are solved by choosing a proper factorization of three- and four-particle Green's functions in terms of one- and two-particle Green's functions. The necessary boundary condition is obtained by explicitly making use of Boltzmann's assumption that colliding particles are statistically uncorrelated. Finally a transport equation is obtained in which the mean field as well as the nucleon-nucleon collisions are given by the same (medium dependent) interaction. This interaction is the non-equilibrium extension of the interaction as given in the Brueckner theory of nuclear matter. Together, kinetic equation and interaction, form a self-consistent set of equations for the case of a non-relativistic as well as for the case of a relativistic starting point. (H.W.) 148 refs.; 6 figs.; 411 schemes

  11. Dynamical electron-phonon coupling, G W self-consistency, and vertex effect on the electronic band gap of ice and liquid water

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2017-06-01

    We study the impact of dynamical electron-phonon (el-ph) effects on the electronic band gap of ice and liquid water by accounting for frequency-dependent Fan contributions in the el-ph mediated self-energy within the many-body perturbation theory (MBPT). We find that the dynamical el-ph coupling effects greatly reduce the static el-ph band-gap correction of the hydrogen-rich molecular ice crystal from-2.46 to -0.23 eV in great contrast to the result of Monserrat et al. [Phys. Rev. B 92, 140302 (2015), 10.1103/PhysRevB.92.140302]. This is of particular importance as otherwise the static el-ph gap correction would considerably reduce the electronic band gap, leading to considerable underestimation of the intense peaks of optical absorption spectra of ice which would be in great disagreement to experimental references. By contrast, the static el-ph gap correction of liquid water is very moderate (-0.32 eV), and inclusion of dynamical effects slightly reduces the gap correction to -0.19 eV. Further, we determine the diverse sensitivity of ice and liquid water to the G W self-consistency and show that the energy-only self-consistent approach (GnWn ) exhibits large implicit vertex character in comparison to the quasiparticle self-consistent approach, for which an explicit calculation of vertex corrections is necessary for good agreement with experiment.

  12. Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry, magnetorelaxometry and magnetic particle spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Frank; Remmer, Hilke; Kuhlmann, Christian; Wawrzik, Thilo [Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, Hans-Sommer-Str. 66, D-38106 Braunschweig (Germany); Arami, Hamed; Ferguson, R. Mathew [Department of Materials Science and Engineering Box 352120, University of Washington, Seattle, WA 98195 (United States); Krishnan, Kannan M., E-mail: kannanmk@uw.edu [Department of Materials Science and Engineering Box 352120, University of Washington, Seattle, WA 98195 (United States)

    2014-06-01

    Sensitivity and spatial resolution in magnetic particle imaging are affected by magnetic properties of the nanoparticle tracers used during imaging. Here, we have carried out a comprehensive magnetic characterization of single-core iron oxide nanoparticles that were designed for MPI. We used ac susceptometry, fluxgate magnetorelaxometry, and magnetic particle spectroscopy to evaluate the tracer's magnetic core size, hydrodynamic size, and magnetic anisotropy. Our results present a self-consistent set of magnetic and structural parameters for the tracers that is consistent with direct measurements of size using transmission electron microscopy and dynamic light scattering and that can be used to better understand their MPI performance.

  13. On self-consistent ray-tracing and Fokker-Planck modeling of the hard X-ray emission during lower-hybrid current driven in Tokamaks

    International Nuclear Information System (INIS)

    Bizarro, J.P.; Peysson, Y.; Bonoli, P.T.; Carrasco, J.; Dudok de Wit, T.; Fuchs, V.; Hoang, G.T.; Litaudon, X.; Moreau, D.; Pocheau, C.; Shkarofsky, I.P.

    1993-04-01

    A detailed investigation is presented on the ability of combined ray-tracing and Fokker-Planck calculations to predict the hard x-ray (HXR) emission during lower-hybrid (LH) current drive in tokamaks when toroidally induced-ray-stochasticity is important. A large number of rays is used and the electron distribution function is obtained by self-consistently iterating the appropriate LH power deposition and Fokker-Planck calculations. Most of the experimentally observed features of the HXR emission are correctly predicted. It is found that corrections due to radial diffusion of suprathermal electrons and to radiation scattering by the inner wall can be significant

  14. Time-dependent restricted-active-space self-consistent eld theory: Formulation and application to laser-driven many-electron dynamics

    DEFF Research Database (Denmark)

    Miyagi, Haruhide; Madsen, Lars Bojer

    We have developed a new theoretical framework for time-dependent many-electron problems named time-dependent restricted-active-space self-consistent field (TD-RASSCF) theory. The theory generalizes the multicongurational time-dependent Hartree-Fock (MCTDHF) theory by truncating the expansion...... at a specific excitation level. In a numerical application to laser-driven electron dynamics of the one-dimensional beryllium atom, the TD-RASSCF method performs accurately while largely reducing the computational complexity compared to the MCTDHF method....

  15. Computing the sensitivity of drag and lift in flow past a circular cylinder: Time-stepping versus self-consistent analysis

    Science.gov (United States)

    Meliga, Philippe

    2017-07-01

    We provide in-depth scrutiny of two methods making use of adjoint-based gradients to compute the sensitivity of drag in the two-dimensional, periodic flow past a circular cylinder (Re≲189 ): first, the time-stepping analysis used in Meliga et al. [Phys. Fluids 26, 104101 (2014), 10.1063/1.4896941] that relies on classical Navier-Stokes modeling and determines the sensitivity to any generic control force from time-dependent adjoint equations marched backwards in time; and, second, a self-consistent approach building on the model of Mantič-Lugo et al. [Phys. Rev. Lett. 113, 084501 (2014), 10.1103/PhysRevLett.113.084501] to compute semilinear approximations of the sensitivity to the mean and fluctuating components of the force. Both approaches are applied to open-loop control by a small secondary cylinder and allow identifying the sensitive regions without knowledge of the controlled states. The theoretical predictions obtained by time-stepping analysis reproduce well the results obtained by direct numerical simulation of the two-cylinder system. So do the predictions obtained by self-consistent analysis, which corroborates the relevance of the approach as a guideline for efficient and systematic control design in the attempt to reduce drag, even though the Reynolds number is not close to the instability threshold and the oscillation amplitude is not small. This is because, unlike simpler approaches relying on linear stability analysis to predict the main features of the flow unsteadiness, the semilinear framework encompasses rigorously the effect of the control on the mean flow, as well as on the finite-amplitude fluctuation that feeds back nonlinearly onto the mean flow via the formation of Reynolds stresses. Such results are especially promising as the self-consistent approach determines the sensitivity from time-independent equations that can be solved iteratively, which makes it generally less computationally demanding. We ultimately discuss the extent to

  16. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1993-01-01

    This is a progress report for the period May 1992 through April 1993. The first section, entitled ''Purpose and Trends, gives background on the recent trends in the research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled ''Physics Research Progress'', is divided into four parts: participation in the program to develop a large detector named PHENIX for the RHIC accelerator; joining E864 at the AGS accelerator and the role in that experiment; progress made in the study of electromagnetic dissociation highlight of this endeavor is an experiment carried out with the 197 Au beam from the AGS accelerator in April 1992; progress in completion of the nuclear structure studies. In the final section a list of publications, invited talks, and contributed talks is given

  17. Relativistic thermodynamics of fluids

    International Nuclear Information System (INIS)

    Souriau, J.-M.

    1977-05-01

    The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr

  18. Elementary relativistic atoms

    International Nuclear Information System (INIS)

    Nemenov, L.

    2001-01-01

    The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state

  19. Relativistic Light Sails

    Energy Technology Data Exchange (ETDEWEB)

    Kipping, David, E-mail: dkipping@astro.columbia.edu [Department of Astronomy, Columbia University, 550 W. 120th St., New York, NY 10027 (United States)

    2017-06-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  20. Relativistic Light Sails

    Science.gov (United States)

    Kipping, David

    2017-06-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot, we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  1. Lattice Boltzmann scheme for relativistic fluids

    OpenAIRE

    Mendoza, M.; Boghosian, B.; Herrmann, H. J.; Succi, S.

    2009-01-01

    A Lattice Boltzmann formulation for relativistic fluids is presented and numerically verified through quantitative comparison with recent hydrodynamic simulations of relativistic shock-wave propagation in viscous quark-gluon plasmas. This formulation opens up the possibility of exporting the main advantages of Lattice Boltzmann methods to the relativistic context, which seems particularly useful for the simulation of relativistic fluids in complicated geometries.

  2. Generic stability of dissipative non-relativistic and relativistic fluids

    International Nuclear Information System (INIS)

    Ván, Peter

    2009-01-01

    The linear stability of the homogeneous equilibrium of non-relativistic fluids with mass flux and special relativistic fluids with the absolute value of the energy vector as internal energy is investigated. It is proved that the equilibrium is asymptotically stable in both cases due to purely thermodynamic restrictions; the only requirements are the thermodynamic stability and the non-negativity of the transport coefficients

  3. Using self-consistent Gibbs free energy surfaces to calculate size distributions of neutral and charged clusters for the sulfuric acid-water binary system

    Science.gov (United States)

    Smith, J. A.; Froyd, K. D.; Toon, O. B.

    2012-12-01

    We construct tables of reaction enthalpies and entropies for the association reactions involving sulfuric acid vapor, water vapor, and the bisulfate ion. These tables are created from experimental measurements and quantum chemical calculations for molecular clusters and a classical thermodynamic model for larger clusters. These initial tables are not thermodynamically consistent. For example, the Gibbs free energy of associating a cluster consisting of one acid molecule and two water molecules depends on the order in which the cluster was assembled: add two waters and then the acid or add an acid and a water and then the second water. We adjust the values within the tables using the method of Lagrange multipliers to minimize the adjustments and produce self-consistent Gibbs free energy surfaces for the neutral clusters and the charged clusters. With the self-consistent Gibbs free energy surfaces, we calculate size distributions of neutral and charged clusters for a variety of atmospheric conditions. Depending on the conditions, nucleation can be dominated by growth along the neutral channel or growth along the ion channel followed by ion-ion recombination.

  4. Electronic states and nature of bonding in the molecule YC by all electron ab initio multiconfiguration self-consistent-field calculations and mass spectrometric equilibrium experiments

    DEFF Research Database (Denmark)

    Shim, Irene; Pelino, Mario; Gingerich, Karl A.

    1992-01-01

    In the present work we present results of all electron ab initio multiconfiguration self-consistent-field calculations of eight electronic states of the molecule YC. Also reported are the calculated spectroscopic constants. The predicted electronic ground state is 4PI, but this state is found to ...... in the dissociation energy D0-degrees = 414.2 +/- 14 kJ mol-1 for YC(g), and a standard heat of formation DELTAH(f,298.15)-degrees = 708.1 +/- 16 kJ mol-1.......In the present work we present results of all electron ab initio multiconfiguration self-consistent-field calculations of eight electronic states of the molecule YC. Also reported are the calculated spectroscopic constants. The predicted electronic ground state is 4PI, but this state is found...... to be separated from a 2PI state by only 225 cm-1, and by 1393 cm-1 from a 2SIGMA+ state. The chemical bond in the 4PI ground state is mainly due to the formation of a bonding molecular orbital composed of the 4dpi of Y and the 2ppi on C. The 5s electrons of Y are partly transferred to the 2psigma orbital on C...

  5. Conductivity of a relativistic plasma

    International Nuclear Information System (INIS)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab

  6. Conductivity of a relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.

  7. Numerical magneto-hydrodynamics for relativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Inghirami, Gabriele [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe-Universitaet, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Forschungszentrum Juelich, John von Neumann Institute for Computing, Juelich (Germany); Del Zanna, Luca [Universita di Firenze, Dipartimento di Fisica e Astronomia, Firenze (Italy); INAF - Osservatorio Astrofisico di Arcetri, Firenze (Italy); INFN - Sezione di Firenze, Firenze (Italy); Beraudo, Andrea [INFN - Sezione di Torino, Torino (Italy); Moghaddam, Mohsen Haddadi [INFN - Sezione di Torino, Torino (Italy); Hakim Sabzevari University, Department of Physics, P. O. Box 397, Sabzevar (Iran, Islamic Republic of); Becattini, Francesco [Universita di Firenze, Dipartimento di Fisica e Astronomia, Firenze (Italy); INFN - Sezione di Firenze, Firenze (Italy); Bleicher, Marcus [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe-Universitaet, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Forschungszentrum Juelich, John von Neumann Institute for Computing, Juelich (Germany)

    2016-12-15

    We present an improved version of the ECHO-QGP numerical code, which self-consistently includes for the first time the effects of electromagnetic fields within the framework of relativistic magneto-hydrodynamics (RMHD). We discuss results of its application in relativistic heavy-ion collisions in the limit of infinite electrical conductivity of the plasma. After reviewing the relevant covariant 3 + 1 formalisms, we illustrate the implementation of the evolution equations in the code and show the results of several tests aimed at assessing the accuracy and robustness of the implementation. After providing some estimates of the magnetic fields arising in non-central high-energy nuclear collisions, we perform full RMHD simulations of the evolution of the quark-gluon plasma in the presence of electromagnetic fields and discuss the results. In our ideal RMHD setup we find that the magnetic field developing in non-central collisions does not significantly modify the elliptic flow of the final hadrons. However, since there are uncertainties in the description of the pre-equilibrium phase and also in the properties of the medium, a more extensive survey of the possible initial conditions as well as the inclusion of dissipative effects are indeed necessary to validate this preliminary result. (orig.)

  8. Relativistic calculations of screening parameters and atomic radii of neutral atoms

    Science.gov (United States)

    Guerra, M.; Amaro, P.; Santos, J. P.; Indelicato, P.

    2017-09-01

    Calculations of the effective nuclear charge for elements with 1 ≤ Z ≤ 118 have been performed in a Dirac-Fock approach including all relativistic effects as well as contributions from quantum electrodynamics. Maximum charge density for every subshell of every element in the periodic table was also computed in the same framework as well as atomic radii based on the total charge density. Results were compared with the extensively cited works of Clementi et al., obtained in the 1960s with Roothan's self-consistent-field method.

  9. Combining floating continents and a free surface in a 3D spherical mantle convection model with self-consistent plate tectonics

    Science.gov (United States)

    Rolf, T.; Crameri, F.; Tackley, P. J.

    2012-04-01

    The dynamics of the Earth's lithosphere and mantle are strongly influenced by its upper mechanical boundary condition. For instance, our previous work has shown that a necessity for the evolution of Earth-like, single-sided subduction is a free surface, which allows for vertical movement of the two converging plates, i.e. the development of surface topography [Crameri et al (2012), in press]. Single-sided subduction has an important effect on the evolution of self-consistent plate tectonics, e.g. by shaping subduction trenches. However, due to the usage of a homogeneous, i.e. purely oceanic, lithosphere these models tend to favour the rigid lid mode of plate tectonics for a realistic strength of the lithosphere, which is in contradiction to the present-day Earth. In contrast, our previous work with a pre-existing heterogeneous structure of the lithosphere has shown that the presence of continents floating at the top of the mantle may play an important role in the evolution of plate tectonics. Convective stresses may be focussed at the rheological boundary between continent and ocean, which facilitates the formation of plate boundaries and makes the Earth-like, mobile lid mode of plate tectonics easier to observe [Rolf & Tackley (2011)]. However, in these models subduction is single-sided when one oceanic and one continental plate converge, but double-sided in the case of two converging oceanic plates. Taking the previous findings as a motivation, we now combine both ingredients: the free surface and the heterogeneous lithosphere, in one self-consistent model. We approximate the free surface by using a "sticky air" layer [Schmeling et al, 2008; Crameri et al., submitted] and the continents by strong Archaean cratons, which can resist recycling on long timescales [Rolf & Tackley (2011)]. Such a model might produce single-sided subduction that is continuously evolving supported by the presence of continents. Performing global-scale self-consistent mantle convection

  10. Relativistic multiwave Cerenkov generator

    Science.gov (United States)

    Bugaev, S. P.; Kanavets, V. I.; Klimov, A. I.; Koshelev, V. I.; Cherepenin, V. A.

    1983-11-01

    The design and operation of a multiwave Cerenkov generator using a relativistic electron beam are reported. The device comprises a 3-cm-radius tubular graphite cathode fed with a 1-microsec 1-2.5-MW pulse from a Marx generator; a 5.6-cm-radius anode; an increasing 14-32-kG magnetic field; a 3.4-cm-aperture-radius graphite collimating iris; a stainless-steel semitoroidal-iris-loaded slow-wave structure of maximum length 48.6 cm, inside radius 4.2 cm, iris aperture radius 3.0 cm, iris minor radius 3 mm, and period 1.5 cm; a stainless-steel cone collector; and a vacuum-tight 60-cm-radius window. At 2.5 MV and 21 kG, output power at wavelength 3.15 + or - 0.1 cm is measured as about 5 GW, with baseline pulse length 30-50 nsec and efficiency up to about 10 percent.

  11. Practical Relativistic Bit Commitment.

    Science.gov (United States)

    Lunghi, T; Kaniewski, J; Bussières, F; Houlmann, R; Tomamichel, M; Wehner, S; Zbinden, H

    2015-07-17

    Bit commitment is a fundamental cryptographic primitive in which Alice wishes to commit a secret bit to Bob. Perfectly secure bit commitment between two mistrustful parties is impossible through an asynchronous exchange of quantum information. Perfect security is, however, possible when Alice and Bob each split into several agents exchanging classical information at times and locations suitably chosen to satisfy specific relativistic constraints. In this Letter we first revisit a previously proposed scheme [C. Crépeau et al., Lect. Notes Comput. Sci. 7073, 407 (2011)] that realizes bit commitment using only classical communication. We prove that the protocol is secure against quantum adversaries for a duration limited by the light-speed communication time between the locations of the agents. We then propose a novel multiround scheme based on finite-field arithmetic that extends the commitment time beyond this limit, and we prove its security against classical attacks. Finally, we present an implementation of these protocols using dedicated hardware and we demonstrate a 2 ms-long bit commitment over a distance of 131 km. By positioning the agents on antipodal points on the surface of Earth, the commitment time could possibly be extended to 212 ms.

  12. Parallel implementation of a relativistic semi-Lagrangian Vlasov-Maxwell solver

    Science.gov (United States)

    Sarrat, Mathieu; Ghizzo, Alain; Del Sarto, Daniele; Serrat, Laurent

    2017-11-01

    We describe the parallel implementation of a semi-Lagrangian relativistic VLasov ElectroMagnetic (VLEM) code for the numerical investigation of the dynamics of charged particle distribution in their self-consistent electromagnetic fields. This paper introduces the numerical solution of the Vlasov-Maxwell system in two spatial dimensions, and two or three momentum dimensions. Accuracy, stability, efficiency properties and the implementation of a new algorithm of charge conservation when solving Maxwell equations are discussed. The performances of the code are tested by studying the evolution of Weibel-type instabilities in the relativistic regime. Application to the coupling between Current Filamentation (CFI) and Two-Stream (TSI) instabilities is presented showing the importance of pair-wise vortex merging scenario in the saturation mechanism.

  13. Quasilinear analysis of loss-cone driven weakly relativistic electron cyclotron maser instability

    International Nuclear Information System (INIS)

    Ziebell, L.F.; Yoon, P.H.

    1995-01-01

    This paper presents a quasilinear analysis of the relativistic electron cyclotron maser instability. Two electron populations are assumed: a low-temperature background component and a more energetic loss-cone population. The dispersion relation is valid for any ratio of the energetic to cold populations, and includes thermal and relativistic effects. The quasilinear analysis is based upon an efficient kinetic moment method, in which various moment equations are derived from the particle kinetic equation. A model time-dependent loss-cone electron distribution function is assumed, which allows one to evaluate the instantaneous linear growth rate as well as the moment kinetic equations. These moment equations along with the wave kinetic equation form a fully self-consistent set of equations which governs the evolution of the particles as well as unstable waves. This set of equations is solved with physical parameters typical of the earth's auroral zone plasma. copyright 1995 American Institute of Physics

  14. Modeling intra- and intermolecular correlations for linear and branched polymers using a modified test-chain self-consistent field theory.

    Science.gov (United States)

    Hu, Renfeng; Wu, David T; Wang, Dapeng

    2017-04-01

    A modified test-chain self-consistent field theory (SCFT) is presented to study the intra- and intermolecular correlations of linear and branched polymers in various solutions and melts. The key to the test-chain SCFT is to break the the translational symmetry by fixing a monomer at the origin of a coordinate. This theory successfully describes the crossover from self-avoiding walk at short distances to screened random walk at long distances in a semidilute solution or melt. The calculations indicated that branching enhances the swelling of polymers in melts and influences stretching at short distances. The test-chain SCFT calculations show good agreement with experiments and classic polymer theories. We highlight that the theory presented here provides a solution to interpret the polymer conformation and behavior under various conditions within the framework of one theory.

  15. Quasiparticle self-consistent GW calculations for PbS, PbSe, and PbTe: Band structure and pressure coefficients

    DEFF Research Database (Denmark)

    Svane, Axel; Christensen, Niels Egede; Cardona,, M.

    2010-01-01

    The electronic band structures of PbS, PbSe, and PbTe in the rocksalt structure are calculated with the quasiparticle self-consistent GW (QSGW) approach with spin-orbit coupling included. The semiconducting gaps and their deformation potentials as well as the effective masses are obtained. The GW...... approximation provides a correct description of the electronic structure around the gap, in contrast to the local-density approximation, which leads to inverted gaps in the lead chalcogenides. The QSGW calculations are in good quantitative agreement with experimental values of the gaps and masses. At moderate...... hole doping a complex filamental Fermi-surface structure develops with ensuing large density of states. The pressure-induced gap closure leads to linear (Dirac-type) band dispersions around the L point....

  16. A new 2D climate model with chemistry and self consistent eddy-parameterization. The impact of airplane NO{sub x} on the chemistry of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gepraegs, R.; Schmitz, G.; Peters, D. [Institut fuer Atmosphaerenphysik, Kuehlungsborn (Germany)

    1997-12-31

    A 2D version of the ECHAM T21 climate model has been developed. The new model includes an efficient spectral transport scheme with implicit diffusion. Furthermore, photodissociation and chemistry of the NCAR 2D model have been incorporated. A self consistent parametrization scheme is used for eddy heat- and momentum flux in the troposphere. It is based on the heat flux parametrization of Branscome and mixing-length formulation for quasi-geostrophic vorticity. Above 150 hPa the mixing-coefficient K{sub yy} is prescribed. Some of the model results are discussed, concerning especially the impact of aircraft NO{sub x} emission on the model chemistry. (author) 6 refs.

  17. Application of discrete solvent reaction field model with self-consistent atomic charges and atomic polarizabilities to calculate the χ(1) and χ(2) of organic molecular crystals

    Science.gov (United States)

    Lu, Shih-I.

    2018-01-01

    We use the discrete solvent reaction field model to evaluate the linear and second-order nonlinear optical susceptibilities of 3-methyl-4-nitropyridine-1-oxyde crystal. In this approach, crystal environment is created by supercell architecture. A self-consistent procedure is used to obtain charges and polarizabilities for environmental atoms. Impact of atomic polarizabilities on the properties of interest is highlighted. This approach is shown to give the second-order nonlinear optical susceptibilities within error bar of experiment as well as the linear optical susceptibilities in the same order as experiment. Similar quality of calculations are also applied to both 4-N,N-dimethylamino-3-acetamidonitrobenzene and 2-methyl-4-nitroaniline crystals.

  18. Multiscale methods framework: self-consistent coupling of molecular theory of solvation with quantum chemistry, molecular simulations, and dissipative particle dynamics.

    Science.gov (United States)

    Kovalenko, Andriy; Gusarov, Sergey

    2018-01-31

    In this work, we will address different aspects of self-consistent field coupling of computational chemistry methods at different time and length scales in modern materials and biomolecular science. Multiscale methods framework yields dramatically improved accuracy, efficiency, and applicability by coupling models and methods on different scales. This field benefits many areas of research and applications by providing fundamental understanding and predictions. It could also play a particular role in commercialization by guiding new developments and by allowing quick evaluation of prospective research projects. We employ molecular theory of solvation which allows us to accurately introduce the effect of the environment on complex nano-, macro-, and biomolecular systems. The uniqueness of this method is that it can be naturally coupled with the whole range of computational chemistry approaches, including QM, MM, and coarse graining.

  19. Self-consistent calculations of energy band structure and thermomechanical properties of some transition metals and their refractory carbides by LMTO-ASA method

    International Nuclear Information System (INIS)

    Zhukov, V.P.; Yarlborg, T.; Gubanov, V.A.; Shvejkin, G.P.

    1985-01-01

    Self-consistent band structure calculations of V, Nb, VC, NbC, WC are carried out by the methods of LMTO and canonical Anderson zones with account for hybridization. The presence of an abnormally wide the 2pC-5dW-band and band of the 5d-states of tungsten below the Fermi level, predominantly, is found for WC. The crystal lattice constants, moduli of volume elasticity and sound velocities, Debye temperatures and melting temperatures are calculated. The results mainly correspond to the trends observed in the experiements. It is shown that a high VC elasticity is, basically, determined by hybridization of the metal s- and p-states with the carbon 2s- and 2p-states, while hybridization of the 5d-W- and 2pC-, 2sC-states makes the greatest contribution to the extreme elasticity

  20. Equivalence between fractional exclusion statistics and self-consistent mean-field theory in interacting-particle systems in any number of dimensions.

    Science.gov (United States)

    Anghel, D V; Nemnes, G A; Gulminelli, F

    2013-10-01

    We describe a mean field interacting particle system in any number of dimensions and in a generic external potential as an ideal gas with fractional exclusion statistics (FES). We define the FES quasiparticle energies, we calculate the FES parameters of the system and we deduce the equations for the equilibrium particle populations. The FES gas is "ideal," in the sense that the quasiparticle energies do not depend on the other quasiparticle levels' populations and the sum of the quasiparticle energies is equal to the total energy of the system. We prove that the FES formalism is equivalent to the semiclassical or Thomas Fermi limit of the self-consistent mean-field theory and the FES quasiparticle populations may be calculated from the Landau quasiparticle populations by making the correspondence between the FES and the Landau quasiparticle energies. The FES provides a natural semiclassical ideal gas description of the interacting particle gas.

  1. The self-consistent method in calculating the ratio by using the structure functions and EMC ratios for 3He and 3H

    Directory of Open Access Journals (Sweden)

    M Modarres

    2007-06-01

    Full Text Available By using the convolution formalism which consists of Fermi motion and binding effect, we investigate the deep inelastic electron scattering from A=3 mirror in the deep-valence region. The initial valence quark input is taken from the GRVs (Gluck, Reya and Vogt fitting procedure and the next-to-leading order QCD evolution on FP2 (x,Q2 which gives very good fit to the available data in the (x,Q2-plane. It is shown that the free neutron to proton structure function ratios can be extracted from the corresponding EMC ratios for 3He and 3H mirror nuclei using the self - consistent iteration procedure and the results are in good agreement with other theoretical models as well as the current available experimental data and especially the projected data expected from the proposed 11GeV Jefferson Laboratory in near future.

  2. Statistical mechanics of stochastic neural networks: Relationship between the self-consistent signal-to-noise analysis, Thouless-Anderson-Palmer equation, and replica symmetric calculation approaches

    Science.gov (United States)

    Shiino, Masatoshi; Yamana, Michiko

    2004-01-01

    We study the statistical mechanical aspects of stochastic analog neural network models for associative memory with correlation type learning. We take three approaches to derive the set of the order parameter equations for investigating statistical properties of retrieval states: the self-consistent signal-to-noise analysis (SCSNA), the Thouless-Anderson-Palmer (TAP) equation, and the replica symmetric calculation. On the basis of the cavity method the SCSNA can be generalized to deal with stochastic networks. We establish the close connection between the TAP equation and the SCSNA to elucidate the relationship between the Onsager reaction term of the TAP equation and the output proportional term of the SCSNA that appear in the expressions for the local fields.

  3. THERMODYNAMIC DEPRESSION OF IONIZATION POTENTIALS IN NONIDEAL PLASMAS: GENERALIZED SELF-CONSISTENCY CRITERION AND A BACKWARD SCHEME FOR DERIVING THE EXCESS FREE ENERGY

    International Nuclear Information System (INIS)

    Zaghloul, Mofreh R.

    2009-01-01

    Accurate and consistent prediction of thermodynamic properties is of great importance in high-energy density physics and in modeling stellar atmospheres and interiors as well. Modern descriptions of thermodynamic properties of such nonideal plasma systems are sophisticated and/or full of pitfalls that make it difficult, if not impossible, to reproduce. The use of the Saha equation modified at high densities by incorporating simple expressions for depression of ionization potentials is very convenient in that context. However, as it is commonly known, the incorporation of ad hoc or empirical expressions for the depression of ionization potentials in the Saha equation leads to thermodynamic inconsistencies. The problem of thermodynamic consistency of ionization potentials depression in nonideal plasmas is investigated and a criterion is derived, which shows immediately, whether a particular model for the ionization potential depression is self-consistent, that is, whether it can be directly related to a modification of the free-energy function, or not. A backward scheme is introduced which can be utilized to derive nonideality corrections to the free-energy function from formulas of ionization potentials depression derived from plasma microfields or in ad hoc or empirical fashion provided that the aforementioned self-consistency criterion is satisfied. The value and usefulness of such a backward method are pointed out and discussed. The above-mentioned criterion is applied to investigate the thermodynamic consistency of some historic models in the literature and an optional routine is introduced to recover their thermodynamic consistencies while maintaining the same functional dependence on the species densities as in the original models. Sample computational problems showing the effect of the proposed modifications on the computed plasma composition are worked out and presented.

  4. Next generation of the self-consistent and environment-dependent Hamiltonian: Applications to various boron allotropes from zero- to three-dimensional structures.

    Science.gov (United States)

    Tandy, P; Yu, Ming; Leahy, C; Jayanthi, C S; Wu, S Y

    2015-03-28

    An upgrade of the previous self-consistent and environment-dependent linear combination of atomic orbitals Hamiltonian (referred as SCED-LCAO) has been developed. This improved version of the semi-empirical SCED-LCAO Hamiltonian, in addition to the inclusion of self-consistent determination of charge redistribution, multi-center interactions, and modeling of electron-electron correlation, has taken into account the effect excited on the orbitals due to the atomic aggregation. This important upgrade has been subjected to a stringent test, the construction of the SCED-LCAO Hamiltonian for boron. It was shown that the Hamiltonian for boron has successfully characterized the electron deficiency of boron and captured the complex chemical bonding in various boron allotropes, including the planar and quasi-planar, the convex, the ring, the icosahedral, and the fullerene-like clusters, the two-dimensional monolayer sheets, and the bulk alpha boron, demonstrating its transferability, robustness, reliability, and predictive power. The molecular dynamics simulation scheme based on the Hamiltonian has been applied to explore the existence and the energetics of ∼230 compact boron clusters BN with N in the range from ∼100 to 768, including the random, the rhombohedral, and the spherical icosahedral structures. It was found that, energetically, clusters containing whole icosahedral B12 units are more stable for boron clusters of larger size (N > 200). The ease with which the simulations both at 0 K and finite temperatures were completed is a demonstration of the efficiency of the SCED-LCAO Hamiltonian.

  5. Next generation of the self-consistent and environment-dependent Hamiltonian: Applications to various boron allotropes from zero- to three-dimensional structures

    Energy Technology Data Exchange (ETDEWEB)

    Tandy, P.; Yu, Ming; Leahy, C.; Jayanthi, C. S.; Wu, S. Y. [Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky 40292 (United States)

    2015-03-28

    An upgrade of the previous self-consistent and environment-dependent linear combination of atomic orbitals Hamiltonian (referred as SCED-LCAO) has been developed. This improved version of the semi-empirical SCED-LCAO Hamiltonian, in addition to the inclusion of self-consistent determination of charge redistribution, multi-center interactions, and modeling of electron-electron correlation, has taken into account the effect excited on the orbitals due to the atomic aggregation. This important upgrade has been subjected to a stringent test, the construction of the SCED-LCAO Hamiltonian for boron. It was shown that the Hamiltonian for boron has successfully characterized the electron deficiency of boron and captured the complex chemical bonding in various boron allotropes, including the planar and quasi-planar, the convex, the ring, the icosahedral, and the fullerene-like clusters, the two-dimensional monolayer sheets, and the bulk alpha boron, demonstrating its transferability, robustness, reliability, and predictive power. The molecular dynamics simulation scheme based on the Hamiltonian has been applied to explore the existence and the energetics of ∼230 compact boron clusters B{sub N} with N in the range from ∼100 to 768, including the random, the rhombohedral, and the spherical icosahedral structures. It was found that, energetically, clusters containing whole icosahedral B{sub 12} units are more stable for boron clusters of larger size (N > 200). The ease with which the simulations both at 0 K and finite temperatures were completed is a demonstration of the efficiency of the SCED-LCAO Hamiltonian.

  6. Next generation of the self-consistent and environment-dependent Hamiltonian: Applications to various boron allotropes from zero- to three-dimensional structures

    International Nuclear Information System (INIS)

    Tandy, P.; Yu, Ming; Leahy, C.; Jayanthi, C. S.; Wu, S. Y.

    2015-01-01

    An upgrade of the previous self-consistent and environment-dependent linear combination of atomic orbitals Hamiltonian (referred as SCED-LCAO) has been developed. This improved version of the semi-empirical SCED-LCAO Hamiltonian, in addition to the inclusion of self-consistent determination of charge redistribution, multi-center interactions, and modeling of electron-electron correlation, has taken into account the effect excited on the orbitals due to the atomic aggregation. This important upgrade has been subjected to a stringent test, the construction of the SCED-LCAO Hamiltonian for boron. It was shown that the Hamiltonian for boron has successfully characterized the electron deficiency of boron and captured the complex chemical bonding in various boron allotropes, including the planar and quasi-planar, the convex, the ring, the icosahedral, and the fullerene-like clusters, the two-dimensional monolayer sheets, and the bulk alpha boron, demonstrating its transferability, robustness, reliability, and predictive power. The molecular dynamics simulation scheme based on the Hamiltonian has been applied to explore the existence and the energetics of ∼230 compact boron clusters B N with N in the range from ∼100 to 768, including the random, the rhombohedral, and the spherical icosahedral structures. It was found that, energetically, clusters containing whole icosahedral B 12 units are more stable for boron clusters of larger size (N > 200). The ease with which the simulations both at 0 K and finite temperatures were completed is a demonstration of the efficiency of the SCED-LCAO Hamiltonian

  7. VEBA relativistic electron accelerator

    International Nuclear Information System (INIS)

    Parker, R.K.; Ury, M.

    1975-01-01

    The VEBA high-current, relativistic electron accelerator was designed and constructed at NRL for applications in the study of high-power microwave sources. To meet the requirements of this study, the accelerator was designed for operation in either a short (60 nsec) or long (2.2 μsec) pulse mode. The short-pulse mode has been in operation for nearly two years and has proven to be an extremely reliable design. The design of the long-pulse mode is now complete and component fabrication will soon be underway. The pulse-forming network in the short-pulse mode is an unbalanced, water Blumlein with an output impedance of 9.2 Ω. The Blumlein is pulse charged by a 17 stage Marx generator which has a series capacitance of 29.4 nF. By transmission along a tapered coaxial line, the output pulse is transformed to 20 Ω, and the voltage developed across a matched load increases to a maximum of 2.3 MV. The proposed conversion to the long-pulse mode will require the Blumlein and transformer sections be removed and the diode assembly be attached directly to the oversized Marx tank. The direct coupling between the Marx and the Blumlein will then be replaced by two nested water capacitors, which are shunted by spiral inductors. When coupled in series with the Marx, this output filter will form a three-section, voltage-fed, Guillemin (type A), pulse-forming network with a characteristic impedance of 40 Ω and a maximum output voltage of 0.9 MV. (auth)

  8. Relativistic theory of gravity

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1985-01-01

    This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes

  9. Scattering in relativistic particle mechanics

    International Nuclear Information System (INIS)

    De Bievre, S.

    1986-01-01

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed

  10. Non-Relativistic Superstring Theories

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bom Soo

    2007-12-14

    We construct a supersymmetric version of the 'critical' non-relativistic bosonic string theory [1] with its manifest global symmetry. We introduce the anticommuting bc CFT which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of Type IIB superstring theory. There is one notable difference: the fermions are non-chiral. We further consider 'noncritical' generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical non-relativistic string theory and the lightlike Linear Dilaton theory.

  11. Frontiers in relativistic celestial mechanics

    CERN Document Server

    2014-01-01

    Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.

  12. SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)

    2016-12-20

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  13. Special Relativistic Hydrodynamics with Gravitation

    Science.gov (United States)

    Hwang, Jai-chan; Noh, Hyerim

    2016-12-01

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  14. Multibaryon interactions at relativistic energies

    International Nuclear Information System (INIS)

    Baldin, A.M.

    1980-01-01

    Having discussed the basic notions and quantities used when considering multibaryon interactions in the relativistic range, attention is focussed on particle production in the region of limiting fragmentation of nuclei which is kinematically forbidden for one-nucleon collisions (the cumulative region). Multibaryon configurations responsible for the cumulative effect are examined with especial reference to the possible existence of metastable multiquark systems, for example of dibaryons. Finally the present status and perspectives of studies in the field of relativistic nuclear physics at the Joint Institute for Nuclear Research are discussed. (UK)

  15. Methods in relativistic nuclear physics

    International Nuclear Information System (INIS)

    Danos, M.; Gillet, V.; Cauvin, M.

    1984-01-01

    This book is intended to provide the methods and tools for performing actual calculations for finite many-body systems of bound relativistic constituent particles. The aim is to cover thoroughly the methodological aspects of the relativistic many-body problem for bound states while avoiding the presentation of specific models. The many examples contained in the later part of the work are meant to give concrete illustrations of how to actually apply the methods which are given in the first part. The basic framework of the approach is the lagrangian field theory solved in the time-independent Schroedinger picture. (Auth.)

  16. General-relativistic celestial mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Treder, H.-J.

    1980-01-01

    The fundamental principles of general relativistic dynamics are deduced from Einstein's field equations and one- and two-particle problems in relativistic celestial mechanics are considered. Different opinions as to the physical meaning of calculations of gravitational radiation for double stars are discussed. It is shown that these different opinions are based on different interpretations of Einstein's gravitational equations as generally covariant determinations of the space-time metric and as gauge-invariant tensor field equations in a given space-time background.

  17. Self-consistent residual dipolar coupling based model-free analysis for the robust determination of nanosecond to microsecond protein dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lakomek, Nils-Alexander; Walter, Korvin F. A.; Fares, Christophe [Max-Planck Institute for Biophysical Chemistry, Department for NMR-based Structural Biology (Germany); Lange, Oliver F.; Groot, Bert L. de; Grubmueller, Helmut [Max-Planck Institute for Biophysical Chemistry, Department for Theoretical and Computational Biophysics (Germany); Brueschweiler, Rafael [Florida State University, NHFML (United States); Munk, Axel [University of Goettingen, Institut for Mathematical Stochastics (Germany); Becker, Stefan [Max-Planck Institute for Biophysical Chemistry, Department for NMR-based Structural Biology (Germany); Meiler, Jens [Vanderbilt University, Department of Chemistry, Center of Structural Biology (United States); Griesinger, Christian [Max-Planck Institute for Biophysical Chemistry, Department for NMR-based Structural Biology (Germany)], E-mail: cigr@nmr.mpibpc.mpg.de

    2008-07-15

    Residual dipolar couplings (RDCs) provide information about the dynamic average orientation of inter-nuclear vectors and amplitudes of motion up to milliseconds. They complement relaxation methods, especially on a time-scale window that we have called supra-{tau}{sub c} ({tau}{sub c} < supra-{tau}{sub c} < 50 {mu}s). Here we present a robust approach called Self-Consistent RDC-based Model-free analysis (SCRM) that delivers RDC-based order parameters-independent of the details of the structure used for alignment tensor calculation-as well as the dynamic average orientation of the inter-nuclear vectors in the protein structure in a self-consistent manner. For ubiquitin, the SCRM analysis yields an average RDC-derived order parameter of the NH vectors = 0.72 {+-} 0.02 compared to = 0.778 {+-} 0.003 for the Lipari-Szabo order parameters, indicating that the inclusion of the supra-{tau}{sub c} window increases the averaged amplitude of mobility observed in the sub-{tau}{sub c} window by about 34%. For the {beta}-strand spanned by residues Lys48 to Leu50, an alternating pattern of backbone NH RDC order parameter S{sub rdc}{sup 2} (NH) = (0.59, 0.72, 0.59) was extracted. The backbone of Lys48, whose side chain is known to be involved in the poly-ubiquitylation process that leads to protein degradation, is very mobile on the supra-{tau}{sub c} time scale (S{sub rdc}{sup 2} (NH) = 0.59 {+-} 0.03), while it is inconspicuous (S{sub LS}{sup 2} (NH) = 0.82) on the sub-{tau}{sub c} as well as on {mu}s-ms relaxation dispersion time scales. The results of this work differ from previous RDC dynamics studies of ubiquitin in the sense that the results are essentially independent of structural noise providing a much more robust assessment of dynamic effects that underlie the RDC data.

  18. Transport models for relativistic heavy-ion collisions at Relativistic ...

    Indian Academy of Sciences (India)

    2015-04-29

    Apr 29, 2015 ... We review the transport models that are widely used to study the properties of the quark-gluon plasma formed in relativistic heavy-ion collisions at RHIC and LHC. We show that transport model analysis of two important and complementary observables, the anisotropic flow of bulk hadrons and suppression ...

  19. Radiatively-driven general relativistic jets

    Indian Academy of Sciences (India)

    Mukesh K. Vyas

    2018-02-10

    Feb 10, 2018 ... Abstract. We use moment formalism of relativistic radiation hydrodynamics to obtain equations of motion of radial jets and solve them using polytropic equation of state of the relativistic gas. We consider curved space- time around black holes and obtain jets with moderately relativistic terminal speeds.

  20. Relativistic generalization of strong plasma turbulence

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1982-01-01

    Two fundamental electrostatic modes of an unmagnetized plasma, namely, ion acoustic mode and Langumir mode are studied. Previous theories are generalized to include the effect of relativistic mass variations. The existence of relativistic ion acoustic solitons is demonstrated. In addition, it is shown that simple, relativistic Langumir solitons do not exist in a infinite plasma. (L.C.) [pt