WorldWideScience

Sample records for self-consistent many-body perturbation

  1. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory.

    Science.gov (United States)

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter S; Shirley, Eric L; Prendergast, David

    2017-03-03

    Constrained-occupancy delta-self-consistent-field (ΔSCF) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The ΔSCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle ΔSCF approach can be rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.

  2. Self-consistent many-body perturbation theory in range-separated density-functional theory

    DEFF Research Database (Denmark)

    Fromager, Emmanuel; Jensen, Hans Jørgen Aagaard

    2008-01-01

    effects adequately which, on the other hand, can be described by many-body perturbation theory MBPT. It is therefore of interest to develop a hybrid model which combines the best of both the MBPT and DFT approaches. This can be achieved by splitting the two-electron interaction into long-range and short...

  3. Modified potentials in many-body perturbation theory

    International Nuclear Information System (INIS)

    Silver, D.M.; Bartlett, R.J.

    1976-01-01

    Many-body perturbation-theory calculations of the pair-correlation energy within the regime of various finite expansions in two-center Slater-type basis sets are performed using a wide variety of modified potentials for the determination of unoccupied orbitals. To achieve meaningful convergence, it appears that the perturbation series must be carried through third order, using shifted denominators to include contributions from various higher-order diagrams. Moreover, certain denominator shifts are found necessary to ensure that a negative-definite resolvent accompanies the perturbation scheme when an arbitrary modified potential is employed. Through third order with denominator shifts, well-behaved modified potentials are found to give results that are equivalent, within 1 kcal/mole, to those obtained for pair-correlation energies with the standard self-consistent-field-V/sup N/ potential

  4. Relativistic many-body perturbation-theory calculations based on Dirac-Fock-Breit wave functions

    International Nuclear Information System (INIS)

    Ishikawa, Y.; Quiney, H.M.

    1993-01-01

    A relativistic many-body perturbation theory based on the Dirac-Fock-Breit wave functions has been developed and implemented by employing analytic basis sets of Gaussian-type functions. The instantaneous Coulomb and low-frequency Breit interactions are treated using a unified formalism in both the construction of the Dirac-Fock-Breit self-consistent-field atomic potential and in the evaluation of many-body perturbation-theory diagrams. The relativistic many-body perturbation-theory calculations have been performed on the helium atom and ions of the helium isoelectronic sequence up to Z=50. The contribution of the low-frequency Breit interaction to the relativistic correlation energy is examined for the helium isoelectronic sequence

  5. Self-consistent RPA based on a many-body vacuum

    International Nuclear Information System (INIS)

    Jemaï, M.; Schuck, P.

    2011-01-01

    Self-Consistent RPA is extended in a way so that it is compatible with a variational ansatz for the ground-state wave function as a fermionic many-body vacuum. Employing the usual equation-of-motion technique, we arrive at extended RPA equations of the Self-Consistent RPA structure. In principle the Pauli principle is, therefore, fully respected. However, the correlation functions entering the RPA matrix can only be obtained from a systematic expansion in powers of some combinations of RPA amplitudes. We demonstrate for a model case that this expansion may converge rapidly.

  6. General variational many-body theory with complete self-consistency for trapped bosonic systems

    International Nuclear Information System (INIS)

    Streltsov, Alexej I.; Alon, Ofir E.; Cederbaum, Lorenz S.

    2006-01-01

    In this work we develop a complete variational many-body theory for a system of N trapped bosons interacting via a general two-body potential. The many-body solution of this system is expanded over orthogonal many-body basis functions (configurations). In this theory both the many-body basis functions and the respective expansion coefficients are treated as variational parameters. The optimal variational parameters are obtained self-consistently by solving a coupled system of noneigenvalue--generally integro-differential--equations to get the one-particle functions and by diagonalizing the secular matrix problem to find the expansion coefficients. We call this theory multiconfigurational Hartree theory for bosons or MCHB(M), where M specifies explicitly the number of one-particle functions used to construct the configurations. General rules for evaluating the matrix elements of one- and two-particle operators are derived and applied to construct the secular Hamiltonian matrix. We discuss properties of the derived equations. We show that in the limiting cases of one configuration the theory boils down to the well-known Gross-Pitaevskii and the recently developed multi-orbital mean fields. The invariance of the complete solution with respect to unitary transformations of the one-particle functions is utilized to find the solution with the minimal number of contributing configurations. In the second part of our work we implement and apply the developed theory. It is demonstrated that for any practical computation where the configurational space is restricted, the description of trapped bosonic systems strongly depends on the choice of the many-body basis set used, i.e., self-consistency is of great relevance. As illustrative examples we consider bosonic systems trapped in one- and two-dimensional symmetric and asymmetric double well potentials. We demonstrate that self-consistency has great impact on the predicted physical properties of the ground and excited states

  7. Time-dependent restricted-active-space self-consistent-field theory for bosonic many-body systems

    International Nuclear Information System (INIS)

    Lévêque, Camille; Madsen, Lars Bojer

    2017-01-01

    We develop an ab initio time-dependent wavefunction based theory for the description of a many-body system of cold interacting bosons. Like the multi-configurational time-dependent Hartree method for bosons (MCTDHB), the theory is based on a configurational interaction Ansatz for the many-body wavefunction with time-dependent self-consistent-field orbitals. The theory generalizes the MCTDHB method by incorporating restrictions on the active space of the orbital excitations. The restrictions are specified based on the physical situation at hand. The equations of motion of this time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory are derived. The similarity between the formal development of the theory for bosons and fermions is discussed. The restrictions on the active space allow the theory to be evaluated under conditions where other wavefunction based methods due to exponential scaling in the numerical effort cannot, and to clearly identify the excitations that are important for an accurate description, significantly beyond the mean-field approach. For ground state calculations we find it to be important to allow a few particles to have the freedom to move in many orbitals, an insight facilitated by the flexibility of the restricted-active-space Ansatz . Moreover, we find that a high accuracy can be obtained by including only even excitations in the many-body self-consistent-field wavefunction. Time-dependent simulations of harmonically trapped bosons subject to a quenching of their noncontact interaction, show failure of the mean-field Gross-Pitaevskii approach within a fraction of a harmonic oscillation period. The TD-RASSCF theory remains accurate at much reduced computational cost compared to the MCTDHB method. Exploring the effect of changes of the restricted-active-space allows us to identify that even self-consistent-field excitations are mainly responsible for the accuracy of the method. (paper)

  8. Many-body perturbation theory for ab initio nuclear structure

    International Nuclear Information System (INIS)

    Tichai, Alexander

    2017-01-01

    The solution of the quantum many-body problem for medium-mass nuclei using realistic nuclear interactions poses a superbe challenge for nuclear structure research. Because an exact solution can only be provided for the lightest nuclei, one has to rely on approximate solutions when proceeding to heavier systems. Over the past years, tremendous progress has been made in the development and application of systematically improvable expansion methods and an accurate description of nuclear observables has become viable up to mass number A ∼ 100. While closed-shell systems are consistently described via a plethora of different many-body methods, the extension to genuine open-shell systems still remains a major challenge and up to now there is no ab initio many-body method which applies equally well to systems with even and odd mass numbers. The goal of this thesis is the development and implementation of innovative perturbative approaches with genuine open-shell capabilities. This requires the extension of well-known single-reference approaches to more general vacua. In this work we choose two complementary routes for the usage of generalized reference states. First, we derive a new ab initio approach based on multi-configurational reference states that are conveniently derived from a prior no-core shell model calculation. Perturbative corrections are derived via second-order many-body perturbation theory, thus, merging configuration interaction and many-body perturbation theory. The generality of this ansatz enables for a treatment of medium-mass systems with arbitrary mass number, as well as the extension to low-lying excited states such that ground and excited states are treated on an equal footing. In a complementary approach, we use reference states that break a symmetry of the underlying Hamiltonian. In the simplest case this corresponds to the expansion around a particle-number-broken Hartree-Fock-Bogolyubov vacuum which is obtained from a mean-field calculation

  9. Stochastic many-body perturbation theory for anharmonic molecular vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Matthew R. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2014-08-28

    A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm{sup −1} and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.

  10. Many body perturbation calculations of photoionization

    International Nuclear Information System (INIS)

    Kelly, H.P.

    1979-01-01

    The application of many body perturbation theory to the calculation of atomic photoionization cross sections is reviewed. The choice of appropriate potential for the single-particle state is discussed and results are presented for several atoms including resonance structure. In addition to single photoionization, the process of double photoionization is considered and is found to be significant. (Auth.)

  11. Probing ionization potential, electron affinity and self-energy effect on the spectral shape and exciton binding energy of quantum liquid water with self-consistent many-body perturbation theory and the Bethe–Salpeter equation

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2018-05-01

    An accurate theoretical prediction of ionization potential (IP) and electron affinity (EA) is key in understanding complex photochemical processes in aqueous environments. There have been numerous efforts in literature to accurately predict IP and EA of liquid water, however with often conflicting results depending on the level of theory and the underlying water structures. In a recent study based on hybrid-non-self-consistent many-body perturbation theory (MBPT) Gaiduk et al (2018 Nat. Commun. 9 247) predicted an IP of 10.2 eV and EA of 0.2 eV, resulting in an electronic band gap (i.e. electronic gap (IP-EA) as measured by photoelectron spectroscopy) of about 10 eV, redefining the widely cited experimental gap of 8.7 eV in literature. In the present work, we show that GW self-consistency and an implicit vertex correction in MBPT considerably affect recently reported EA values by Gaiduk et al (2018 Nat. Commun. 9 247) by about 1 eV. Furthermore, the choice of pseudo-potential is critical for an accurate determination of the absolute band positions. Consequently, the self-consistent GW approach with an implicit vertex correction based on projector augmented wave (PAW) method on top of quantum water structures predicts an IP of 10.2, an EA of 1.1, a fundamental gap of 9.1 eV and an exciton binding (Eb) energy of 0.9 eV for the first absorption band of liquid water via the Bethe–Salpeter equation (BSE). Only within such a self-consistent approach a simultanously accurate prediction of IP, EA, Eg, Eb is possible.

  12. Photoionization cross sections and Auger rates calculated by many-body perturbation theory

    International Nuclear Information System (INIS)

    Kelly, H.P.

    1976-01-01

    Methods for applying the many body perturbation theory to atomic calculations are discussed with particular emphasis on calculation of photoionization cross sections and Auger rates. Topics covered include: Rayleigh--Schroedinger theory; many body perturbation theory; calculations of photoionization cross sections; and Auger rates

  13. On the acceleration of convergence of many-body perturbation theory. Pt. 2

    International Nuclear Information System (INIS)

    Dietz, K.; Schmidt, C.; Warken, M.; Hess, B.A.

    1992-07-01

    We employ the method developed in a previous paper to small systems-Be, LiH, H 2 -where full CI-calculations are available for monitoring convergence of many-body perturbation theory. It is shown that divergent series, in particular for excited states, can be transformed into fast converging ones. In essence our method consists in performing infinite subsummations of perturbation series in order to improve convergence: coupling constants are redefined such that singularities are incorporated in a non-perturbative manner and remaining correlations can be expanded in a larger domain of the complex coupling constant plane. It is in this way that the notion of 'improved convergence' has a well defined meaning. (orig.)

  14. Many-body perturbation theory using the density-functional concept: beyond the GW approximation.

    Science.gov (United States)

    Bruneval, Fabien; Sottile, Francesco; Olevano, Valerio; Del Sole, Rodolfo; Reining, Lucia

    2005-05-13

    We propose an alternative formulation of many-body perturbation theory that uses the density-functional concept. Instead of the usual four-point integral equation for the polarizability, we obtain a two-point one, which leads to excellent optical absorption and energy-loss spectra. The corresponding three-point vertex function and self-energy are then simply calculated via an integration, for any level of approximation. Moreover, we show the direct impact of this formulation on the time-dependent density-functional theory. Numerical results for the band gap of bulk silicon and solid argon illustrate corrections beyond the GW approximation for the self-energy.

  15. Communication: Random phase approximation renormalized many-body perturbation theory

    International Nuclear Information System (INIS)

    Bates, Jefferson E.; Furche, Filipp

    2013-01-01

    We derive a renormalized many-body perturbation theory (MBPT) starting from the random phase approximation (RPA). This RPA-renormalized perturbation theory extends the scope of single-reference MBPT methods to small-gap systems without significantly increasing the computational cost. The leading correction to RPA, termed the approximate exchange kernel (AXK), substantially improves upon RPA atomization energies and ionization potentials without affecting other properties such as barrier heights where RPA is already accurate. Thus, AXK is more balanced than second-order screened exchange [A. Grüneis et al., J. Chem. Phys. 131, 154115 (2009)], which tends to overcorrect RPA for systems with stronger static correlation. Similarly, AXK avoids the divergence of second-order Møller-Plesset (MP2) theory for small gap systems and delivers a much more consistent performance than MP2 across the periodic table at comparable cost. RPA+AXK thus is an accurate, non-empirical, and robust tool to assess and improve semi-local density functional theory for a wide range of systems previously inaccessible to first-principles electronic structure calculations

  16. Many-body perturbation theory using the density-functional concept: beyond the GW approximation

    OpenAIRE

    Bruneval, Fabien; Sottile, Francesco; Olevano, Valerio; Del Sole, Rodolfo; Reining, Lucia

    2005-01-01

    We propose an alternative formulation of Many-Body Perturbation Theory that uses the density-functional concept. Instead of the usual four-point integral equation for the polarizability, we obtain a two-point one, that leads to excellent optical absorption and energy loss spectra. The corresponding three-point vertex function and self-energy are then simply calculated via an integration, for any level of approximation. Moreover, we show the direct impact of this formulation on the time-depend...

  17. Diagrammatic many-body perturbation expansion for atoms and molecules. Pt. 6

    International Nuclear Information System (INIS)

    Moncrieff, D.; Baker, D.J.; Wilson, S.

    1989-01-01

    The efficient evaluation of the second-order expression in the many-body perturbation theory expansion for the correlation energy on vector processing and parallel processing computers is discussed. It is argued that the linked diagram theorem not only leads to the well known theoretical advantages of the many-body perturbation theory approach which allows the calculation of correlation energies for large (i.e. extended molecules or species containing heavy atoms) systems but also decouples the many-electron problem allowing efficient implementation on parallel processing machines. Furthermore, the computation associated with each of the resulting subproblems is very well suited to vector processing machines. Timing tests are reported for the CRAY 1 and CDC Cyber 205 vector processors, for a 1 processor implementation on the CRAY X-MP/48 and the ETA-10E, and for a 4 processor implementation on the Cray X-MP/48. (orig.)

  18. Self-consistent gravitational self-force

    International Nuclear Information System (INIS)

    Pound, Adam

    2010-01-01

    I review the problem of motion for small bodies in general relativity, with an emphasis on developing a self-consistent treatment of the gravitational self-force. An analysis of the various derivations extant in the literature leads me to formulate an asymptotic expansion in which the metric is expanded while a representative worldline is held fixed. I discuss the utility of this expansion for both exact point particles and asymptotically small bodies, contrasting it with a regular expansion in which both the metric and the worldline are expanded. Based on these preliminary analyses, I present a general method of deriving self-consistent equations of motion for arbitrarily structured (sufficiently compact) small bodies. My method utilizes two expansions: an inner expansion that keeps the size of the body fixed, and an outer expansion that lets the body shrink while holding its worldline fixed. By imposing the Lorenz gauge, I express the global solution to the Einstein equation in the outer expansion in terms of an integral over a worldtube of small radius surrounding the body. Appropriate boundary data on the tube are determined from a local-in-space expansion in a buffer region where both the inner and outer expansions are valid. This buffer-region expansion also results in an expression for the self-force in terms of irreducible pieces of the metric perturbation on the worldline. Based on the global solution, these pieces of the perturbation can be written in terms of a tail integral over the body's past history. This approach can be applied at any order to obtain a self-consistent approximation that is valid on long time scales, both near and far from the small body. I conclude by discussing possible extensions of my method and comparing it to alternative approaches.

  19. Self-consistent perturbed equilibrium with neoclassical toroidal torque in tokamaks

    International Nuclear Information System (INIS)

    Park, Jong-Kyu; Logan, Nikolas C.

    2017-01-01

    Toroidal torque is one of the most important consequences of non-axisymmetric fields in tokamaks. The well-known neoclassical toroidal viscosity (NTV) is due to the second-order toroidal force from anisotropic pressure tensor in the presence of these asymmetries. This work shows that the first-order toroidal force originating from the same anisotropic pressure tensor, despite having no flux surface average, can significantly modify the local perturbed force balance and thus must be included in perturbed equilibrium self-consistent with NTV. The force operator with an anisotropic pressure tensor is not self-adjoint when the NTV torque is finite and thus is solved directly for each component. This approach yields a modified, non-self-adjoint Euler-Lagrange equation that can be solved using a variety of common drift-kinetic models in generalized tokamak geometry. The resulting energy and torque integral provides a unique way to construct a torque response matrix, which contains all the information of self-consistent NTV torque profiles obtainable by applying non-axisymmetric fields to the plasma. This torque response matrix can then be used to systematically optimize non-axisymmetric field distributions for desired NTV profiles. Published by AIP Publishing.

  20. Relativistic Dirac-Fock and many-body perturbation calculations on He, He-like ions, Ne, and Ar

    International Nuclear Information System (INIS)

    Ishikawa, Y.

    1990-01-01

    Relativistic Dirac-Fock and diagrammatic many-body perturbation-theory calculations have been performed on He, several He-like ions, Ne, and Ar. The no-pair Dirac-Coulomb Hamiltonian is taken as the starting point. A solution of the Dirac-Fock equations is obtained by analytic expansion in basis sets of Gaussian-type functions. Many-body perturbation improvements of Coulomb correlation are done to third order

  1. Many body calculations in atomic physics

    International Nuclear Information System (INIS)

    Kelly, H.P.

    1985-01-01

    The use of the many-body perturbation theory for atomic calculations are reviewed. The major emphasis is on the use of the linked-cluster many-body perturbation theory derived by Brueckner and Goldstone. Applications of many-body theory to calculations of hyperfine structure are examined. Auger rates and parity violation are discussed. Photoionization is reviewed, and the authors show how many-body perturbation theory can be applied to problems ranging from structural properties such as correlation energies and hyperfine structure to dynamical properties such as transitions induced by weak neutral currents and photoionization cross sections

  2. Many-body-localization: strong disorder perturbative approach for the local integrals of motion

    Science.gov (United States)

    Monthus, Cécile

    2018-05-01

    For random quantum spin models, the strong disorder perturbative expansion of the local integrals of motion around the real-spin operators is revisited. The emphasis is on the links with other properties of the many-body-localized phase, in particular the memory in the dynamics of the local magnetizations and the statistics of matrix elements of local operators in the eigenstate basis. Finally, this approach is applied to analyze the many-body-localization transition in a toy model studied previously from the point of view of the entanglement entropy.

  3. Theoretical approaches to many-body perturbation theory and the challenges

    International Nuclear Information System (INIS)

    Barrett, Bruce R

    2005-01-01

    A brief review of the history of many-body perturbation theory (MBPT) and its applications in nuclear physics is given. Problems regarding its application to nuclear-structure calculations are discussed and analysed. It is concluded that the usefulness of nuclear MBPT in terms of an expansion in the nuclear reaction matrix G for the calculation of effective interactions in shell-model investigations is severely challenged and restricted by the problems and uncertainties connected with this approach. New methods based on unitary transformation approaches have proven to be more accurate and reliable, particularly for light nuclei

  4. Hartree–Fock many-body perturbation theory for nuclear ground-states

    Directory of Open Access Journals (Sweden)

    Alexander Tichai

    2016-05-01

    Full Text Available We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree–Fock solution for the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to the divergent MBPT series obtained with a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation is not feasible, we perform third-order calculations and compare to advanced ab initio coupled-cluster results for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into the tin isotopic chain in excellent agreement with the best available coupled-cluster calculations at a fraction of the computational cost.

  5. Hartree–Fock many-body perturbation theory for nuclear ground-states

    Energy Technology Data Exchange (ETDEWEB)

    Tichai, Alexander, E-mail: alexander.tichai@physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Langhammer, Joachim [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Binder, Sven [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Roth, Robert, E-mail: robert.roth@physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany)

    2016-05-10

    We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT) as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree–Fock solution for the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to the divergent MBPT series obtained with a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation is not feasible, we perform third-order calculations and compare to advanced ab initio coupled-cluster results for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into the tin isotopic chain in excellent agreement with the best available coupled-cluster calculations at a fraction of the computational cost.

  6. Quasiparticle self-consistent GW method for the spectral properties of complex materials.

    Science.gov (United States)

    Bruneval, Fabien; Gatti, Matteo

    2014-01-01

    The GW approximation to the formally exact many-body perturbation theory has been applied successfully to materials for several decades. Since the practical calculations are extremely cumbersome, the GW self-energy is most commonly evaluated using a first-order perturbative approach: This is the so-called G 0 W 0 scheme. However, the G 0 W 0 approximation depends heavily on the mean-field theory that is employed as a basis for the perturbation theory. Recently, a procedure to reach a kind of self-consistency within the GW framework has been proposed. The quasiparticle self-consistent GW (QSGW) approximation retains some positive aspects of a self-consistent approach, but circumvents the intricacies of the complete GW theory, which is inconveniently based on a non-Hermitian and dynamical self-energy. This new scheme allows one to surmount most of the flaws of the usual G 0 W 0 at a moderate calculation cost and at a reasonable implementation burden. In particular, the issues of small band gap semiconductors, of large band gap insulators, and of some transition metal oxides are then cured. The QSGW method broadens the range of materials for which the spectral properties can be predicted with confidence.

  7. Bond breaking and bond formation: how electron correlation is captured in many-body perturbation theory and density-functional theory.

    Science.gov (United States)

    Caruso, Fabio; Rohr, Daniel R; Hellgren, Maria; Ren, Xinguo; Rinke, Patrick; Rubio, Angel; Scheffler, Matthias

    2013-04-05

    For the paradigmatic case of H(2) dissociation, we compare state-of-the-art many-body perturbation theory in the GW approximation and density-functional theory in the exact-exchange plus random-phase approximation (RPA) for the correlation energy. For an unbiased comparison and to prevent spurious starting point effects, both approaches are iterated to full self-consistency (i.e., sc-RPA and sc-GW). The exchange-correlation diagrams in both approaches are topologically identical, but in sc-RPA they are evaluated with noninteracting and in sc-GW with interacting Green functions. This has a profound consequence for the dissociation region, where sc-RPA is superior to sc-GW. We argue that for a given diagrammatic expansion, sc-RPA outperforms sc-GW when it comes to bond breaking. We attribute this to the difference in the correlation energy rather than the treatment of the kinetic energy.

  8. Analysis of self-consistency effects in range-separated density-functional theory with Møller-Plesset perturbation theory

    DEFF Research Database (Denmark)

    Fromager, Emmanuel; Jensen, Hans Jørgen Aagaard

    2011-01-01

    Range-separated density-functional theory combines wave function theory for the long-range part of the two-electron interaction with density-functional theory for the short-range part. When describing the long-range interaction with non-variational methods, such as perturbation or coupled......-cluster theories, self-consistency effects are introduced in the density functional part, which for an exact solution requires iterations. They are generally assumed to be small but no detailed study has been performed so far. Here, the authors analyze self-consistency when using Møller-Plesset-type (MP......) perturbation theory for the long range interaction. The lowest-order self-consistency corrections to the wave function and the energy, that enter the perturbation expansions at the second and fourth order, respectively, are both expressed in terms of the one-electron reduced density matrix. The computational...

  9. Stochastic evaluation of second-order many-body perturbation energies.

    Science.gov (United States)

    Willow, Soohaeng Yoo; Kim, Kwang S; Hirata, So

    2012-11-28

    With the aid of the Laplace transform, the canonical expression of the second-order many-body perturbation correction to an electronic energy is converted into the sum of two 13-dimensional integrals, the 12-dimensional parts of which are evaluated by Monte Carlo integration. Weight functions are identified that are analytically normalizable, are finite and non-negative everywhere, and share the same singularities as the integrands. They thus generate appropriate distributions of four-electron walkers via the Metropolis algorithm, yielding correlation energies of small molecules within a few mE(h) of the correct values after 10(8) Monte Carlo steps. This algorithm does away with the integral transformation as the hotspot of the usual algorithms, has a far superior size dependence of cost, does not suffer from the sign problem of some quantum Monte Carlo methods, and potentially easily parallelizable and extensible to other more complex electron-correlation theories.

  10. Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer.

    Science.gov (United States)

    Kurashige, Yuki; Yanai, Takeshi

    2011-09-07

    We present a second-order perturbation theory based on a density matrix renormalization group self-consistent field (DMRG-SCF) reference function. The method reproduces the solution of the complete active space with second-order perturbation theory (CASPT2) when the DMRG reference function is represented by a sufficiently large number of renormalized many-body basis, thereby being named DMRG-CASPT2 method. The DMRG-SCF is able to describe non-dynamical correlation with large active space that is insurmountable to the conventional CASSCF method, while the second-order perturbation theory provides an efficient description of dynamical correlation effects. The capability of our implementation is demonstrated for an application to the potential energy curve of the chromium dimer, which is one of the most demanding multireference systems that require best electronic structure treatment for non-dynamical and dynamical correlation as well as large basis sets. The DMRG-CASPT2/cc-pwCV5Z calculations were performed with a large (3d double-shell) active space consisting of 28 orbitals. Our approach using large-size DMRG reference addressed the problems of why the dissociation energy is largely overestimated by CASPT2 with the small active space consisting of 12 orbitals (3d4s), and also is oversensitive to the choice of the zeroth-order Hamiltonian. © 2011 American Institute of Physics

  11. Configuration-interaction relativistic-many-body-perturbation-theory calculations of photoionization cross sections from quasicontinuum oscillator strengths

    International Nuclear Information System (INIS)

    Savukov, I. M.; Filin, D. V.

    2014-01-01

    Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreement with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. As a result, the demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions

  12. Equilibrium and nonequilibrium many-body perturbation theory: a unified framework based on the Martin-Schwinger hierarchy

    International Nuclear Information System (INIS)

    Van Leeuwen, Robert; Stefanucci, Gianluca

    2013-01-01

    We present a unified framework for equilibrium and nonequilibrium many-body perturbation theory. The most general nonequilibrium many-body theory valid for general initial states is based on a time-contour originally introduced by Konstantinov and Perel'. The various other well-known formalisms of Keldysh, Matsubara and the zero-temperature formalism are then derived as special cases that arise under different assumptions. We further present a single simple proof of Wick's theorem that is at the same time valid in all these flavors of many-body theory. It arises simply as a solution of the equations of the Martin-Schwinger hierarchy for the noninteracting many-particle Green's function with appropriate boundary conditions. We further discuss a generalized Wick theorem for general initial states on the Keldysh contour and derive how the formalisms based on the Keldysh and Konstantinov-Perel'-contours are related for the case of general initial states.

  13. Nuclear many-body problem with repulsive hard core interactions

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, L M

    1965-07-01

    The nuclear many-body problem is considered using the perturbation-theoretic approach of Brueckner and collaborators. This approach is outlined with particular attention paid to the graphical representation of the terms in the perturbation expansion. The problem is transformed to centre-of-mass coordinates in configuration space and difficulties involved in ordinary methods of solution of the resulting equation are discussed. A new technique, the 'reference spectrum method', devised by Bethe, Brandow and Petschek in an attempt to simplify the numerical work in presented. The basic equations are derived in this approximation and considering the repulsive hard core part of the interaction only, the effective mass is calculated at high momentum (using the same energy spectrum for both 'particle' and 'hole' states). The result of 0.87m is in agreement with that of Bethe et al. A more complete treatment using the reference spectrum method in introduced and a self-consistent set of equations is established for the reference spectrum parameters again for the case of hard core repulsions. (author)

  14. Higher order alchemical derivatives from coupled perturbed self-consistent field theory.

    Science.gov (United States)

    Lesiuk, Michał; Balawender, Robert; Zachara, Janusz

    2012-01-21

    We present an analytical approach to treat higher order derivatives of Hartree-Fock (HF) and Kohn-Sham (KS) density functional theory energy in the Born-Oppenheimer approximation with respect to the nuclear charge distribution (so-called alchemical derivatives). Modified coupled perturbed self-consistent field theory is used to calculate molecular systems response to the applied perturbation. Working equations for the second and the third derivatives of HF/KS energy are derived. Similarly, analytical forms of the first and second derivatives of orbital energies are reported. The second derivative of Kohn-Sham energy and up to the third derivative of Hartree-Fock energy with respect to the nuclear charge distribution were calculated. Some issues of practical calculations, in particular the dependence of the basis set and Becke weighting functions on the perturbation, are considered. For selected series of isoelectronic molecules values of available alchemical derivatives were computed and Taylor series expansion was used to predict energies of the "surrounding" molecules. Predicted values of energies are in unexpectedly good agreement with the ones computed using HF/KS methods. Presented method allows one to predict orbital energies with the error less than 1% or even smaller for valence orbitals. © 2012 American Institute of Physics

  15. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.

    Science.gov (United States)

    Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura

    2016-07-12

    A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.

  16. Bethe-salpeter equation from many-body perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Sander, Tobias; Starke, Ronald; Kresse, Georg [Computational Materials Physics, University of Vienna, Sensengasse 8/12, 1090 Vienna (Austria)

    2013-07-01

    The Green function formalism is a powerful tool to calculate not only electronic structure within the quasi-particle (QP) picture, but it also gives access to optical absorption spectra. Starting from QP energies within the GW method, the polarizability, as central quantity, is calculated from the solution of a Bethe-Salpeter-like equation (BSE). It is usually solved within the Tamm-Dancoff Approximation (TDA) which neglects the coupling of resonant (positive frequency branch) and anti-resonant (negative frequency branch) excitations. In this work we solve the full BSE (beyond TDA) based on self-consistently calculated QP orbitals and energies for typical systems. The dielectric function is averaged over many low dimensional shifted k-meshes to obtain k-point converged results. We compare the results to recently introduced approximation to the BSE kernel. Additionally, the time-evolution ansatz is employed to calculate the polarizability, which avoids the direct solution of the BSE.

  17. Review of many-body calculations

    International Nuclear Information System (INIS)

    Kelly, H.P.

    1981-01-01

    A brief review is given of many-body perturbation theory and its application to atomic physics. Particular attention is given to the choice of single-particle potential used to generate excited states. Applications to many atomic properties are discussed including hyperfine structure, photoabsorption including multiple processes, and parity non-conserving transitions in heavy atoms

  18. The self-consistent field model for Fermi systems with account of three-body interactions

    Directory of Open Access Journals (Sweden)

    Yu.M. Poluektov

    2015-12-01

    Full Text Available On the basis of a microscopic model of self-consistent field, the thermodynamics of the many-particle Fermi system at finite temperatures with account of three-body interactions is built and the quasiparticle equations of motion are obtained. It is shown that the delta-like three-body interaction gives no contribution into the self-consistent field, and the description of three-body forces requires their nonlocality to be taken into account. The spatially uniform system is considered in detail, and on the basis of the developed microscopic approach general formulas are derived for the fermion's effective mass and the system's equation of state with account of contribution from three-body forces. The effective mass and pressure are numerically calculated for the potential of "semi-transparent sphere" type at zero temperature. Expansions of the effective mass and pressure in powers of density are obtained. It is shown that, with account of only pair forces, the interaction of repulsive character reduces the quasiparticle effective mass relative to the mass of a free particle, and the attractive interaction raises the effective mass. The question of thermodynamic stability of the Fermi system is considered and the three-body repulsive interaction is shown to extend the region of stability of the system with the interparticle pair attraction. The quasiparticle energy spectrum is calculated with account of three-body forces.

  19. Probing the electronic structure of liquid water with many-body perturbation theory

    Science.gov (United States)

    Pham, Tuan Anh; Zhang, Cui; Schwegler, Eric; Galli, Giulia

    2014-03-01

    We present a first-principles investigation of the electronic structure of liquid water based on many-body perturbation theory (MBPT), within the G0W0 approximation. The liquid quasiparticle band gap and the position of its valence band maximum and conduction band minimum with respect to vacuum were computed and it is shown that the use of MBPT is crucial to obtain results that are in good agreement with experiment. We found that the level of theory chosen to generate molecular dynamics trajectories may substantially affect the electronic structure of the liquid, in particular, the relative position of its band edges and redox potentials. Our results represent an essential step in establishing a predictive framework for computing the relative position of water redox potentials and the band edges of semiconductors and insulators. Work supported by DOE/BES (Grant No. DE-SC0008938). Work at LLNL was performed under Contract DE-AC52-07NA27344.

  20. Graphene-induced band gap renormalization in polythiophene: a many-body perturbation study

    Science.gov (United States)

    Marsusi, F.; Fedorov, I. A.; Gerivani, S.

    2018-01-01

    Density functional theory and many-body perturbation theory at the G0W0 level are employed to study the electronic properties of polythiophene (PT) adsorbed on the graphene surface. Analysis of the charge density difference shows that substrate-adsorbate interaction leads to a strong physisorption and interfacial electric dipole moment formation. The electrostatic potential displays a  -0.19 eV shift in the graphene work function from its initial value of 4.53 eV, as the result of the interaction. The LDA band gap of the polymer does not show any change. However, the band structure exhibits weak orbital hybridizations resulting from slight overlapping between the polymer and graphene states wave functions. The interfacial polarization effects on the band gap and levels alignment are investigated at the G0W0 level and show a notable reduction of PT band gap compared to that of the isolated chain.

  1. Scalar trace anomaly and anti-gravitational interaction in a perturbative approach to self-consistent cosmologies

    International Nuclear Information System (INIS)

    Gunzig, E.; Nardone, P.

    1984-01-01

    We present a perturbative approach to the equations controlling the behavior of the recently proposed self-consistent, causal, singularity-free cosmologies. This approach sheds a new light on the threshold mass which governs both the (in)stability of empty Minkowski space and the existence of these cosmologies. An unexpected fact arises at the lower order of this perturbative scheme: the mass of the massive (scalar) field coupled non-minimally to gravitation is completely absorbed in a rescaling of the gravitational constant. The latter becomes negative, thereby causing an effective anti-gravitational interaction when the corresponding mass exceeds the minkowskian instability threshold. Moreover, the source of this effective antigravitational interaction is the usual scalar trace anomaly associated with the residual massless part of the matter field. (orig.)

  2. Quantum theory of many-body systems techniques and applications

    CERN Document Server

    Zagoskin, Alexandre

    2014-01-01

    This text presents a self-contained treatment of the physics of many-body systems from the point of view of condensed matter. The approach, quite traditionally, uses the mathematical formalism of quasiparticles and Green’s functions. In particular, it covers all the important diagram techniques for normal and superconducting systems, including the zero-temperature perturbation theory and the Matsubara, Keldysh and Nambu-Gor'kov formalism, as well as an introduction to Feynman path integrals. This new edition contains an introduction to the methods of theory of one-dimensional systems (bosonization and conformal field theory) and their applications to many-body problems.   Intended for graduate students in physics and related fields, the aim is not to be exhaustive, but to present enough detail to enable the student to follow the current research literature, or to apply the techniques to new problems. Many of the examples are drawn from mesoscopic physics, which deals with systems small enough that quantum...

  3. Self-consistent perturbation expansion for Bose-Einstein condensates satisfying Goldstone's theorem and conservation laws

    International Nuclear Information System (INIS)

    Kita, Takafumi

    2009-01-01

    Quantum-field-theoretic descriptions of interacting condensed bosons have suffered from the lack of self-consistent approximation schemes satisfying Goldstone's theorem and dynamical conservation laws simultaneously. We present a procedure to construct such approximations systematically by using either an exact relation for the interaction energy or the Hugenholtz-Pines relation to express the thermodynamic potential in a Luttinger-Ward form. Inspection of the self-consistent perturbation expansion up to the third order with respect to the interaction shows that the two relations yield a unique identical result at each order, reproducing the conserving-gapless mean-field theory [T. Kita, J. Phys. Soc. Jpn. 74, 1891 (2005)] as the lowest-order approximation. The uniqueness implies that the series becomes exact when infinite terms are retained. We also derive useful expressions for the entropy and superfluid density in terms of Green's function and a set of real-time dynamical equations to describe thermalization of the condensate.

  4. Relativistic Many-Body Theory A New Field-Theoretical Approach

    CERN Document Server

    Lindgren, Ingvar

    2011-01-01

    Relativistic Many-Body Theory treats — for the first time — the combination of relativistic atomic many-body theory with quantum-electrodynamics (QED) in a unified manner. This book can be regarded as a continuation of the book by Lindgren and Morrison, Atomic Many-Body Theory (Springer 1986), which deals with the non-relativistic theory of many-electron systems, describing several means of treating the electron correlation to essentially all orders of perturbation theory. The treatment of the present book is based upon quantum-field theory, and demonstrates that when the procedure is carried to all orders of perturbation theory, two-particle systems are fully compatible with the relativistically covariant Bethe-Salpeter equation. This procedure can be applied to arbitrary open-shell systems, in analogy with the standard many-body theory, and it is also applicable to systems with more than two particles. Presently existing theoretical procedures for treating atomic systems are, in several cases, insuffici...

  5. Theory of many-body radiative heat transfer without the constraint of reciprocity

    Science.gov (United States)

    Zhu, Linxiao; Guo, Yu; Fan, Shanhui

    2018-03-01

    Using a self-consistent scattered field approach based on fluctuational electrodynamics, we develop compact formulas for radiative heat transfer in many-body systems without the constraint of reciprocity. The formulas allow for efficient numerical calculation for a system consisting of a large number of bodies, and are in principle exact. As a demonstration, for a nonreciprocal many-body system, we investigate persistent heat current at thermal equilibrium and directional heat transfer when the system is away from thermal equilibrium.

  6. Many-body Green’s function theory for electron-phonon interactions: Ground state properties of the Holstein dimer

    International Nuclear Information System (INIS)

    Säkkinen, Niko; Leeuwen, Robert van; Peng, Yang; Appel, Heiko

    2015-01-01

    We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing equations are shown to exhibit multiple solutions when the electron-phonon interaction is sufficiently strong, whereas at smaller interactions, only a single solution is found. The additional solutions at larger electron-phonon couplings correspond to symmetry-broken states with inhomogeneous electron densities. A comparison to exact results indicates that this symmetry breaking is strongly correlated with the formation of a bipolaron state in which the two electrons prefer to reside on the same molecule. The results further show that the Hartree and partially self-consistent Born solutions obtained by enforcing symmetry do not compare well with exact energetics, while the fully self-consistent Born approximation improves the qualitative and quantitative agreement with exact results in the same symmetric case. This together with a presented natural occupation number analysis supports the conclusion that the fully self-consistent approximation describes partially the bipolaron crossover. These results contribute to better understanding how these approximations cope with the strong localizing effect of the electron-phonon interaction

  7. Large-Scale Quantum Many-Body Perturbation on Spin and Charge Separation in the Excited States of the Synthesized Donor-Acceptor Hybrid PBI-Macrocycle Complex.

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2017-03-17

    The reliable calculation of the excited states of charge-transfer (CT) compounds poses a major challenge to the ab initio community because the frequently employed method, time-dependent density functional theory (TD-DFT), massively relies on the underlying density functional, resulting in heavily Hartree-Fock (HF) exchange-dependent excited-state energies. By applying the highly sophisticated many-body perturbation approach, we address the encountered unreliabilities and inconsistencies of not optimally tuned (standard) TD-DFT regarding photo-excited CT phenomena, and present results concerning accurate vertical transition energies and the correct energetic ordering of the CT and the first visible singlet state of a recently synthesized thermodynamically stable large hybrid perylene bisimide-macrocycle complex. This is a large-scale application of the quantum many-body perturbation approach to a chemically relevant CT system, demonstrating the system-size independence of the quality of the many-body-based excitation energies. Furthermore, an optimal tuning of the ωB97X hybrid functional can well reproduce the many-body results, making TD-DFT a suitable choice but at the expense of introducing a range-separation parameter, which needs to be optimally tuned. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Quasiparticle self-consistent GW method: a short summary

    International Nuclear Information System (INIS)

    Kotani, Takao; Schilfgaarde, Mark van; Faleev, Sergey V; Chantis, Athanasios

    2007-01-01

    We have developed a quasiparticle self-consistent GW method (QSGW), which is a new self-consistent method to calculate the electronic structure within the GW approximation. The method is formulated based on the idea of a self-consistent perturbation; the non-interacting Green function G 0 , which is the starting point for GWA to obtain G, is determined self-consistently so as to minimize the perturbative correction generated by GWA. After self-consistency is attained, we have G 0 , W (the screened Coulomb interaction) and G self-consistently. This G 0 can be interpreted as the optimum non-interacting propagator for the quasiparticles. We will summarize some theoretical discussions to justify QSGW. Then we will survey results which have been obtained up to now: e.g., band gaps for normal semiconductors are predicted to a precision of 0.1-0.3 eV; the self-consistency including the off-diagonal part is required for NiO and MnO; and so on. There are still some remaining disagreements with experiments; however, they are very systematic, and can be explained from the neglect of excitonic effects

  9. Communication: electronic band gaps of semiconducting zig-zag carbon nanotubes from many-body perturbation theory calculations.

    Science.gov (United States)

    Umari, P; Petrenko, O; Taioli, S; De Souza, M M

    2012-05-14

    Electronic band gaps for optically allowed transitions are calculated for a series of semiconducting single-walled zig-zag carbon nanotubes of increasing diameter within the many-body perturbation theory GW method. The dependence of the evaluated gaps with respect to tube diameters is then compared with those found from previous experimental data for optical gaps combined with theoretical estimations of exciton binding energies. We find that our GW gaps confirm the behavior inferred from experiment. The relationship between the electronic gap and the diameter extrapolated from the GW values is also in excellent agreement with a direct measurement recently performed through scanning tunneling spectroscopy.

  10. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: exactly solvable two-site Hubbard model.

    Science.gov (United States)

    Kutepov, A L

    2015-08-12

    Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ1 from the first-order perturbation theory, and the exact vertex Γ(E)). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. The results obtained with the exact vertex are directly related to the present open question-which approximation is more advantageous for future implementations, GW + DMFT or QPGW + DMFT. It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on perturbation theory (PT) systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.

  11. Self-consistent areas law in QCD

    International Nuclear Information System (INIS)

    Makeenko, Yu.M.; Migdal, A.A.

    1980-01-01

    The problem of obtaining the self-consistent areas law in quantum chromodynamics (QCD) is considered from the point of view of the quark confinement. The exact equation for the loop average in multicolor QCD is reduced to a bootstrap form. Its iterations yield new manifestly gauge invariant perturbation theory in the loop space, reproducing asymptotic freedom. For large loops, the areas law apprears to be a self-consistent solution

  12. Self-consistent model of confinement

    International Nuclear Information System (INIS)

    Swift, A.R.

    1988-01-01

    A model of the large-spatial-distance, zero--three-momentum, limit of QCD is developed from the hypothesis that there is an infrared singularity. Single quarks and gluons do not propagate because they have infinite energy after renormalization. The Hamiltonian formulation of the path integral is used to quantize QCD with physical, nonpropagating fields. Perturbation theory in the infrared limit is simplified by the absence of self-energy insertions and by the suppression of large classes of diagrams due to vanishing propagators. Remaining terms in the perturbation series are resummed to produce a set of nonlinear, renormalizable integral equations which fix both the confining interaction and the physical propagators. Solutions demonstrate the self-consistency of the concepts of an infrared singularity and nonpropagating fields. The Wilson loop is calculated to provide a general proof of confinement. Bethe-Salpeter equations for quark-antiquark pairs and for two gluons have finite-energy solutions in the color-singlet channel. The choice of gauge is addressed in detail. Large classes of corrections to the model are discussed and shown to support self-consistency

  13. Quasiparticle many-body dynamics of the Anderson model

    International Nuclear Information System (INIS)

    Kuzemskij, A.L.

    1996-01-01

    The paper addresses the many-body quasiparticle dynamics of the Anderson impurity model at finite temperatures in the framework of the equation-of-motion method. We find a new exact identity relating the one-particle and many-particle Green's Functions. Using this identity we present a consistent and general scheme for a construction of generalised mean fields (elastic scattering corrections) and self-energy (inelastic scattering) in terms of the Dyson equation. A new approach for the complex expansion for the single-particle propagator in terms of the Coulomb repulsion U and hybridization V is proposed. Using the exact identity, the essentially new many-body dynamical solution of SIAM has been derived. This approach offers a new way for the systematic construction of the approximative interpolating dynamical solutions of the strongly correlated electron systems. 47 refs

  14. Self-consistent GW0 results for the electron gas: Fixed screened potential W0 within the random-phase approximation

    International Nuclear Information System (INIS)

    von Barth, U.; Holm, B.

    1996-01-01

    With the aim of properly understanding the basis for and the utility of many-body perturbation theory as applied to extended metallic systems, we have calculated the electronic self-energy of the homogeneous electron gas within the GW approximation. The calculation has been carried out in a self-consistent way; i.e., the one-electron Green function obtained from Dyson close-quote s equation is the same as that used to calculate the self-energy. The self-consistency is restricted in the sense that the screened interaction W is kept fixed and equal to that of the random-phase approximation for the gas. We have found that the final results are marginally affected by the broadening of the quasiparticles, and that their self-consistent energies are still close to their free-electron counterparts as they are in non-self-consistent calculations. The reduction in strength of the quasiparticles and the development of satellite structure (plasmons) gives, however, a markedly smaller dynamical self-energy leading to, e.g., a smaller reduction in the quasiparticle strength as compared to non-self-consistent results. The relatively bad description of plasmon structure within the non-self-consistent GW approximation is marginally improved. A first attempt at including W in the self-consistency cycle leads to an even broader and structureless satellite spectrum in disagreement with experiment. copyright 1996 The American Physical Society

  15. Particle linear theory on a self-gravitating perturbed cubic Bravais lattice

    International Nuclear Information System (INIS)

    Marcos, B.

    2008-01-01

    Discreteness effects are a source of uncontrolled systematic errors of N-body simulations, which are used to compute the evolution of a self-gravitating fluid. We have already developed the so-called ''particle linear theory''(PLT), which describes the evolution of the position of self-gravitating particles located on a perturbed simple cubic lattice. It is the discrete analogue of the well-known (Lagrangian) linear theory of a self-gravitating fluid. Comparing both theories permits us to quantify precisely discreteness effects in the linear regime. It is useful to develop the PLT also for other perturbed lattices because they represent different discretizations of the same continuous system. In this paper we detail how to implement the PLT for perturbed cubic Bravais lattices (simple, body, and face-centered) in a cubic simulation box. As an application, we will study the discreteness effects--in the linear regime--of N-body simulations for which initial conditions have been set up using these different lattices.

  16. Many body quantum physics at the condensed matter

    International Nuclear Information System (INIS)

    Llano, M. de

    1981-01-01

    The non-relativistic, continuous (as opposed to spin) many-body problem as it relates to condensed matter at absolute zero temperature is reviewed in simple, non-technical terms, mainly from the standpoint of infinite order perturbation theory, for physical systems where all the particles have the same mass but which otherwise interact with arbitrary short- or long-ranged two-body forces. (author)

  17. One-particle many-body Green's function theory: Algebraic recursive definitions, linked-diagram theorem, irreducible-diagram theorem, and general-order algorithms.

    Science.gov (United States)

    Hirata, So; Doran, Alexander E; Knowles, Peter J; Ortiz, J V

    2017-07-28

    A thorough analytical and numerical characterization of the whole perturbation series of one-particle many-body Green's function (MBGF) theory is presented in a pedagogical manner. Three distinct but equivalent algebraic (first-quantized) recursive definitions of the perturbation series of the Green's function are derived, which can be combined with the well-known recursion for the self-energy. Six general-order algorithms of MBGF are developed, each implementing one of the three recursions, the ΔMPn method (where n is the perturbation order) [S. Hirata et al., J. Chem. Theory Comput. 11, 1595 (2015)], the automatic generation and interpretation of diagrams, or the numerical differentiation of the exact Green's function with a perturbation-scaled Hamiltonian. They all display the identical, nondivergent perturbation series except ΔMPn, which agrees with MBGF in the diagonal and frequency-independent approximations at 1≤n≤3 but converges at the full-configuration-interaction (FCI) limit at n=∞ (unless it diverges). Numerical data of the perturbation series are presented for Koopmans and non-Koopmans states to quantify the rate of convergence towards the FCI limit and the impact of the diagonal, frequency-independent, or ΔMPn approximation. The diagrammatic linkedness and thus size-consistency of the one-particle Green's function and self-energy are demonstrated at any perturbation order on the basis of the algebraic recursions in an entirely time-independent (frequency-domain) framework. The trimming of external lines in a one-particle Green's function to expose a self-energy diagram and the removal of reducible diagrams are also justified mathematically using the factorization theorem of Frantz and Mills. Equivalence of ΔMPn and MBGF in the diagonal and frequency-independent approximations at 1≤n≤3 is algebraically proven, also ascribing the differences at n = 4 to the so-called semi-reducible and linked-disconnected diagrams.

  18. Relativistic multireference many-body perturbation theory calculations on F-, Ne-, Na-, Mg-, Al-, Si- and P-like xenon ions

    International Nuclear Information System (INIS)

    Vilkas, Marius J; Ishikawa, Yasuyuki; Traebert, Elmar

    2006-01-01

    Many-body perturbation theory (MBPT) has been employed to calculate with high wavelength accuracy the extreme ultraviolet (EUV) spectra of F-like to P-like Xe ions. We discuss the reliability of the new calculations using the example of EUV beam-foil spectra of Xe, in which n = 3, Δn = 0 transitions of Na-, Mg-, Al- and Si-like ions have been found to dominate. A further comparison is made with spectra from an electron beam ion trap, that is, from a device with a very different (low density) excitation balance

  19. Self-consistency corrections in effective-interaction calculations

    International Nuclear Information System (INIS)

    Starkand, Y.; Kirson, M.W.

    1975-01-01

    Large-matrix extended-shell-model calculations are used to compute self-consistency corrections to the effective interaction and to the linked-cluster effective interaction. The corrections are found to be numerically significant and to affect the rate of convergence of the corresponding perturbation series. The influence of various partial corrections is tested. It is concluded that self-consistency is an important effect in determining the effective interaction and improving the rate of convergence. (author)

  20. Atomic many-body theory of giant resonances

    International Nuclear Information System (INIS)

    Kelly, H.P.; Altun, Z.

    1987-01-01

    In this paper the use of many-body perturbation theory (MBPT) to include effects of electron correlations is discussed. The various physical processes contributing to the broad photoionization cross sections of the rare gases are studied in terms of the relevant many-body diagrams. Use of the random phase approximation with exchange (RPAE) is discussed by Amusia and Cherepkov. Calculations using the relativistic RPAE are reviewed by Johnson. In addition, many-body perturbation theory (MBPT) is used to study resonances which are due to excitation of bound states degenerate with the continuum. Very interesting giant resonance structure can occur when an inner shell electron is excited into a vacant open-shell orbital of the same principal quantum number. A particular example which is studied is the neutral manganese atom 3p 6 3d 5 4s 2 ( 6 S), in which the spins of the five 3d electrons are aligned. A very large resonance occurs in the 3d and 4s cross sections due to 3p → 3d excitation near 51 eV, and calculations of this resonance by MBPT and RPAE are discussed. A second example of this type of resonance occurs in open-shell rare-earth atoms with configurations 4d 10 4f/sup n/5s 2 5p 6 s 2 . Calculations and experimental results will be discussed for the case of europium with a half-filled sub-shell 4f 7 . 71 references, 15 figures

  1. Mathematical methods of many-body quantum field theory

    CERN Document Server

    Lehmann, Detlef

    2004-01-01

    Mathematical Methods of Many-Body Quantum Field Theory offers a comprehensive, mathematically rigorous treatment of many-body physics. It develops the mathematical tools for describing quantum many-body systems and applies them to the many-electron system. These tools include the formalism of second quantization, field theoretical perturbation theory, functional integral methods, bosonic and fermionic, and estimation and summation techniques for Feynman diagrams. Among the physical effects discussed in this context are BCS superconductivity, s-wave and higher l-wave, and the fractional quantum Hall effect. While the presentation is mathematically rigorous, the author does not focus solely on precise definitions and proofs, but also shows how to actually perform the computations.Presenting many recent advances and clarifying difficult concepts, this book provides the background, results, and detail needed to further explore the issue of when the standard approximation schemes in this field actually work and wh...

  2. Effects of molecular packing in organic crystals on singlet fission with ab initio many body perturbation theory

    Science.gov (United States)

    Haber, Jonah; Refaely-Abramson, Sivan; da Jornada, Felipe H.; Louie, Steven G.; Neaton, Jeffrey B.

    Multi-exciton generation processes, in which multiple charge carriers are generated from a single photon, are mechanisms of significant interest for achieving efficiencies beyond the Shockley-Queisser limit of conventional p-n junction solar cells. One well-studied multiexciton process is singlet fission, whereby a singlet decays into two spin-correlated triplet excitons. Here, we use a newly developed computational approach to calculate singlet-fission coupling terms and rates with an ab initio Green's function formalism based on many-body perturbation theory (MBPT) within the GW approximation and the Bethe-Salpeter equation approach. We compare results for crystalline pentacene and TIPS-pentacene and explore the effect of molecular packing on the singlet fission mechanism. This work is supported by the Department of Energy.

  3. Self-consistent hybrid functionals for solids: a fully-automated implementation

    Science.gov (United States)

    Erba, A.

    2017-08-01

    A fully-automated algorithm for the determination of the system-specific optimal fraction of exact exchange in self-consistent hybrid functionals of the density-functional-theory is illustrated, as implemented into the public Crystal program. The exchange fraction of this new class of functionals is self-consistently updated proportionally to the inverse of the dielectric response of the system within an iterative procedure (Skone et al 2014 Phys. Rev. B 89, 195112). Each iteration of the present scheme, in turn, implies convergence of a self-consistent-field (SCF) and a coupled-perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) procedure. The present implementation, beside improving the user-friendliness of self-consistent hybrids, exploits the unperturbed and electric-field perturbed density matrices from previous iterations as guesses for subsequent SCF and CPHF/KS iterations, which is documented to reduce the overall computational cost of the whole process by a factor of 2.

  4. Exact self-energy of the many-body problem from conserving approximations

    International Nuclear Information System (INIS)

    Takada, Y.

    1995-01-01

    A procedure is proposed to obtain the exact self-energy in the many-body problem. This algorithm is based on the formal analysis to reach the exact theory by repeated applications of an operator F to an arbitrarily chosen input self-energy represented as a functional of the dressed Green's function. The operator F is so defined that the microscopic conservation law for particle number is satisfied. The rigorous self-energy is obtained by the solution of an eigenfunction of F. Particular attention is paid to the relation between the present procedure and the Baym-Kadanoff framework of conserving approximations. By simplifying the procedure in F with use of the generalized Ward identity, we suggest a practical method to implement this algorithm rather easily in actual systems. In order to suggest future directions to improve on this practical method, the recently developed mean-field theory for the Hubbard model in the limit of high spatial dimensions is also discussed in the context of our theory

  5. Electron correlation in molecules: concurrent computation Many-Body Perturbation Theory (ccMBPT) calculations using macrotasking on the NEC SX-3/44 computer

    International Nuclear Information System (INIS)

    Moncrieff, D.; Wilson, S.

    1992-06-01

    The ab initio determination of the electronic structure of molecules is a many-fermion problem involving the approximate description of the motion of the electrons in the field of fixed nuclei. It is an area of research which demands considerable computational resources but having enormous potential in fields as diverse as interstellar chemistry and drug design, catalysis and solid state chemistry, molecular biology and environmental chemistry. Electronic structure calculations almost invariably divide into two main stages: the approximate solution of an independent electron model, in which each electron moves in the average field created by the other electrons in the system, and then, the more computationally demanding determination of a series of corrections to this model, the electron correlation effects. The many-body perturbation theory expansion affords a systematic description of correlation effects, which leads directly to algorithms which are suitable for concurrent computation. We term this concurrent computation Many-Body Perturbation Theory (ccMBPT). The use of a dynamic load balancing technique on the NEC SX-3/44 computer in electron correlation calculations is investigated for the calculation of the most demanding energy component in the most accurate of contemporary ab initio studies. An application to the ground state of the nitrogen molecule is described. We also briefly discuss the extent to which the calculation of the dominant corrections to such studies can be rendered computationally tractable by exploiting both the vector processing and parallel processor capabilities of the NEC SX-3/44 computer. (author)

  6. Many-Body Potentials For Binary Immiscible liquid Metal Alloys

    International Nuclear Information System (INIS)

    Karaguelle, H.

    2004-01-01

    The modified analytic embedded atom method (MAEAM) type many- body potentials have been constructed for three binary liquid immiscible alloy systems: Al-Pb, Ag-Ni, Ag- Cu. The MAEAM potential functions are fitted to both solid and liquid state properties for only liquid pure metals which consist the immiscible alloy. In order to test the reliability of the constructed MAEAM effective potentials, partial structure factors and pair distribution functions of these binary liquid metal alloys have been calculated using the thermodynamically self-consistent variational modified hypernetted chain (VMHNC) theory of liquids. A good agreement with the available experimental data for structure has

  7. A semiclassical approach to many-body interference in Fock-space

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Thomas

    2015-11-01

    Many-body systems draw ever more physicists' attention. Such an increase of interest often comes along with the development of new theoretical methods. In this thesis, a non-perturbative semiclassical approach is developed, which allows to analytically study many-body interference effects both in bosonic and fermionic Fock space and is expected to be applicable to many research areas in physics ranging from Quantum Optics and Ultracold Atoms to Solid State Theory and maybe even High Energy Physics. After the derivation of the semiclassical approximation, which is valid in the limit of large total number of particles, first applications manifesting the presence of many-body interference effects are shown. Some of them are confirmed numerically thus verifying the semiclassical predictions. Among these results are coherent back-/forward-scattering in bosonic and fermionic Fock space as well as a many-body spin echo, to name only the two most important ones.

  8. Density functional and many-body theories of Hydrogen plasmas

    International Nuclear Information System (INIS)

    Perrot, F.; Dharma-Wardana, M.W.C.

    1983-11-01

    This work is an attempt to go beyond the standard description of hot condensed matter using the well-known ''average atom model''. The first part describes a static model using ''Density functional theory'' to calculate self-consistent coupled electron and ion density profiles of the plasma not restricted to a single average atomic sphere. In a second part, the results are used as ingredients for a many-body approach to electronic properties: the one-particle Green-function self-energy is calculated, from which shifted levels, populations and level-widths are deduced. Results for the Hydrogen plasma are reported, with emphasis on the 1s bound state

  9. Screening of Coulomb interaction and many-body perturbation theory in atoms

    International Nuclear Information System (INIS)

    Dzyuba, V.A.; Flambaum, V.V.; Sil'vestrov, P.G.; Sushkov, O.P.

    1988-01-01

    Taking into account the electron Coulomb interaction screening considerably improves the convergence of perturbation theory in residual interaction. The developed technique allows to take into account screening diagrams in all orders of perturbation theory. Calculation of the correlation corrections to the thallium energy levels is carried out as an example

  10. Off-shell effects and consistency of many-body treatments of dense matter

    International Nuclear Information System (INIS)

    Krippa, Boris; Birse, Michael C.; McGovern, Judith A.; Walet, Niels R.

    2003-01-01

    Effective field theory requires all observables to be independent of the representation used for the quantum field operators. It means that off-shell properties of the interactions should not lead to any observable effects. We analyze this issue in the context of many-body approaches to nuclear matter, where it should be possible to shift the contributions of lowest order in purely off-shell two-body interactions into three-body forces. We show that none of the commonly used truncations of the two-body scattering amplitude such as the ladder, Brueckner-Hartree-Fock, or parquet approximations respect this requirement

  11. Density functional approach to many-body effects in the optical response of atoms

    International Nuclear Information System (INIS)

    Zangwill, A.

    1981-01-01

    The purpose of this work is to present a new method for calculating the optical response of finite electronic system which is accurate, computationally simple, and lends itself to a ready physical interpretation of the results. This work is concerned with the so-called many-body effects which render an independent particle calculation inappropriate for comparison with experimental photoabsorption and photoemission cross sections. Polarization effects are included which describe the response of the system to an external probe and self-energy effects, which describe the dynamics and decay of a single particle state. This work, which essentially reintroduces the residual Coulomb interactions among the electrons, is confined to atoms. The method is a time-dependent local density approximation (TDLDA) and represents a natural generalization of the usual local density approximation to the ground state properties of a many electron system. Using standard first-order time-dependent perturbation theory, a self-consistent mean field theory is derived for an effective field which replaces the external field in the dipole matrix elements of the Golden Rule for photoabsorption. This effective field includes a contribution from an induced classical Coulomb field as well as an induced exchange-correlation field. This work successfully demonstrates the applicability of time-dependent generalization of the local density approximation to the practical calculation of the photo-response of atoms. For the rare gases, barium, cerium and copper are obtained cross sections in quantitative agreement with recent experiments

  12. Thermalization dynamics in a quenched many-body state

    Science.gov (United States)

    Kaufman, Adam; Preiss, Philipp; Tai, Eric; Lukin, Alex; Rispoli, Matthew; Schittko, Robert; Greiner, Markus

    2016-05-01

    Quantum and classical many-body systems appear to have disparate behavior due to the different mechanisms that govern their evolution. The dynamics of a classical many-body system equilibrate to maximally entropic states and quickly re-thermalize when perturbed. The assumptions of ergodicity and unbiased configurations lead to a successful framework of describing classical systems by a sampling of thermal ensembles that are blind to the system's microscopic details. By contrast, an isolated quantum many-body system is governed by unitary evolution: the system retains memory of past dynamics and constant global entropy. However, even with differing characteristics, the long-term behavior for local observables in quenched, non-integrable quantum systems are often well described by the same thermal framework. We explore the onset of this convergence in a many-body system of bosonic atoms in an optical lattice. Our system's finite size allows us to verify full state purity and measure local observables. We observe rapid growth and saturation of the entanglement entropy with constant global purity. The combination of global purity and thermalized local observables agree with the Eigenstate Thermalization Hypothesis in the presence of a near-volume law in the entanglement entropy.

  13. Self-consistency and coherent effects in nonlinear resonances

    International Nuclear Information System (INIS)

    Hofmann, I.; Franchetti, G.; Qiang, J.; Ryne, R. D.

    2003-01-01

    The influence of space charge on emittance growth is studied in simulations of a coasting beam exposed to a strong octupolar perturbation in an otherwise linear lattice, and under stationary parameters. We explore the importance of self-consistency by comparing results with a non-self-consistent model, where the space charge electric field is kept 'frozen-in' to its initial values. For Gaussian distribution functions we find that the 'frozen-in' model results in a good approximation of the self-consistent model, hence coherent response is practically absent and the emittance growth is self-limiting due to space charge de-tuning. For KV or waterbag distributions, instead, strong coherent response is found, which we explain in terms of absence of Landau damping

  14. Perturbation approach to the self-energy of non-S hydrogenic states

    International Nuclear Information System (INIS)

    Le Bigot, Eric-Olivier; Jentschura, Ulrich D.; Mohr, Peter J.; Indelicato, Paul; Soff, Gerhard

    2003-01-01

    We present results on the self-energy correction to the energy levels of hydrogen and hydrogenlike ions. The self-energy represents the largest QED correction to the relativistic (Dirac-Coulomb) energy of a bound electron. We focus on the perturbation expansion of the self-energy of non-S states, and provide estimates of the so-called A 60 perturbation coefficient, which can be viewed as a relativistic Bethe logarithm. Precise values of A 60 are given for many P, D, F, and G states, while estimates are given for other states. These results can be used in high-precision spectroscopy experiments in hydrogen and hydrogenlike ions. They yield the best available estimate of the self-energy correction of many atomic states

  15. The nuclear N-body problem and the effective interaction in self-consistent mean-field methods

    International Nuclear Information System (INIS)

    Duguet, Thomas

    2002-01-01

    This work deals with two aspects of mean-field type methods extensively used in low-energy nuclear structure. The first study is at the mean-field level. The link between the wave-function describing an even-even nucleus and the odd-even neighbor is revisited. To get a coherent description as a function of the pairing intensity in the system, the utility of the formalization of this link through a two steps process is demonstrated. This two-steps process allows to identify the role played by different channels of the force when a nucleon is added in the system. In particular, perturbative formula evaluating the contribution of time-odd components of the functional to the nucleon separation energy are derived for zero and realistic pairing intensities. Self-consistent calculations validate the developed scheme as well as the derived perturbative formula. This first study ends up with an extended analysis of the odd-even mass staggering in nuclei. The new scheme allows to identify the contribution to this observable coming from different channels of the force. The necessity of a better understanding of time-odd terms in order to decide which odd-even mass formulae extracts the pairing gap the most properly is identified. These terms being nowadays more or less out of control, extended studies are needed to make precise the fit of a pairing force through the comparison of theoretical and experimental odd-even mass differences. The second study deals with beyond mean-field methods taking care of the correlations associated with large amplitude oscillations in nuclei. Their effects are usually incorporated through the GCM or the projected mean-field method. We derive a perturbation theory motivating such variational calculations from a diagrammatic point of view for the first time. Resuming two-body correlations in the energy expansion, we obtain an effective interaction removing the hard-core problem in the context of configuration mixing calculations. Proceeding to a

  16. Supersymmetric many-body systems from partial symmetries — integrability, localization and scrambling

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, Pramod [Fields, Gravity & Strings, CTPU, Institute for Basic Science,Daejeon 34037 (Korea, Republic of); Rey, Soo-Jong [Fields, Gravity & Strings, CTPU, Institute for Basic Science,Daejeon 34037 (Korea, Republic of); School of Physics and Astronomy & Center for Theoretical Physics, Seoul National University,Seoul 06544 (Korea, Republic of); Department of Basic Sciences, University of Science and Technology, Daejeon 34113 (Korea, Republic of); Teixeira, Daniel; Trancanelli, Diego [Institute of Physics, University of São Paulo, 05314-970 São Paulo (Brazil)

    2017-05-25

    Partial symmetries are described by generalized group structures known as symmetric inverse semigroups. We use the algebras arising from these structures to realize supersymmetry in (0+1) dimensions and to build many-body quantum systems on a chain. This construction consists in associating appropriate supercharges to chain sites, in analogy to what is done in spin chains. For simple enough choices of supercharges, we show that the resulting states have a finite non-zero Witten index, which is invariant under perturbations, therefore defining supersymmetric phases of matter protected by the index. The Hamiltonians we obtain are integrable and display a spectrum containing both product and entangled states. By introducing disorder and studying the out-of-time-ordered correlators (OTOC), we find that these systems are in the many-body localized phase and do not thermalize. Finally, we reformulate a theorem relating the growth of the second Rényi entropy to the OTOC on a thermal state in terms of partial symmetries.

  17. Nucleon many-body problem using quantum-mechanical few-body technique

    International Nuclear Information System (INIS)

    Horiuchi, Wataru

    2016-01-01

    A nucleus is treated as a quantum-mechanical many-body system consisting of protons and neutrons that interact with each other by nuclear force. This paper explains the variational calculation using the correlated basis function as a powerful technique for obtaining the precise solution of Schroedinger equation of many-body, and tries to understand the nucleon many-body system from the viewpoint of a few-body through the application cases of various nuclear systems. It describes the important correlation that characterizes the nucleon many-body system such as the mean field, cluster, and tensor of bound state, and shows that non-bound state is also describable. Since such precise theory is mantic, it is essential for explaining the nature of unknown unstable nuclei, and for determining the nuclear reaction rate under the environment of the stars difficult for experiment. The method is general and flexible, and can be applied to various quantum-mechanical many-body problems. For example, the multi-body calculation of atoms and molecules, hypernuclei, and hadron spectroscopy can be carried out only by changing the potential and particles. (A.O.)

  18. Time-dependent restricted-active-space self-consistent eld theory: Formulation and application to laser-driven many-electron dynamics

    DEFF Research Database (Denmark)

    Miyagi, Haruhide; Madsen, Lars Bojer

    We have developed a new theoretical framework for time-dependent many-electron problems named time-dependent restricted-active-space self-consistent field (TD-RASSCF) theory. The theory generalizes the multicongurational time-dependent Hartree-Fock (MCTDHF) theory by truncating the expansion...

  19. Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics

    DEFF Research Database (Denmark)

    Miyagi, Haruhide; Madsen, Lars Bojer

    2013-01-01

    We present the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory as a framework for the time-dependent many-electron problem. The theory generalizes the multiconfigurational time-dependent Hartree-Fock (MCTDHF) theory by incorporating the restricted-active-space scheme...... well known in time-independent quantum chemistry. Optimization of the orbitals as well as the expansion coefficients at each time step makes it possible to construct the wave function accurately while using only a relatively small number of electronic configurations. In numerical calculations of high...

  20. Quantum many-body effects in x-ray spectra efficiently computed using a basic graph algorithm

    Science.gov (United States)

    Liang, Yufeng; Prendergast, David

    2018-05-01

    The growing interest in using x-ray spectroscopy for refined materials characterization calls for an accurate electronic-structure theory to interpret the x-ray near-edge fine structure. In this work, we propose an efficient and unified framework to describe all the many-electron processes in a Fermi liquid after a sudden perturbation (such as a core hole). This problem has been visited by the Mahan-Noziéres-De Dominicis (MND) theory, but it is intractable to implement various Feynman diagrams within first-principles calculations. Here, we adopt a nondiagrammatic approach and treat all the many-electron processes in the MND theory on an equal footing. Starting from a recently introduced determinant formalism [Phys. Rev. Lett. 118, 096402 (2017), 10.1103/PhysRevLett.118.096402], we exploit the linear dependence of determinants describing different final states involved in the spectral calculations. An elementary graph algorithm, breadth-first search, can be used to quickly identify the important determinants for shaping the spectrum, which avoids the need to evaluate a great number of vanishingly small terms. This search algorithm is performed over the tree-structure of the many-body expansion, which mimics a path-finding process. We demonstrate that the determinantal approach is computationally inexpensive even for obtaining x-ray spectra of extended systems. Using Kohn-Sham orbitals from two self-consistent fields (ground and core-excited state) as input for constructing the determinants, the calculated x-ray spectra for a number of transition metal oxides are in good agreement with experiments. Many-electron aspects beyond the Bethe-Salpeter equation, as captured by this approach, are also discussed, such as shakeup excitations and many-body wave function overlap considered in Anderson's orthogonality catastrophe.

  1. Many-body approaches to nuclear physics

    International Nuclear Information System (INIS)

    Hjorth-Jensen, M.

    1993-10-01

    This thesis deals with applications of perturbative many-body theories to selected nuclear systems at low and intermediate energies. Examples are the properties of neutron stars, the calculation of shell-model effective interactions and the microscopic derivation of the optical-model potential for finite nuclei. The line of research leans on the microscopic approach, i.e. an approach which aims at describing nuclear properties from the underlying free interaction between the various hadrons where parameters like meson coupling constants define the Lagrangians. The emphasis is on the behavior of the various components of the free interaction in different nuclear media in order to understand how these components are affected by the studied nuclear correlations. 159 refs

  2. Many-body theory of effective mass in degenerate semiconductors

    Science.gov (United States)

    Tripathi, G. S.; Shadangi, S. K.

    2018-03-01

    We derive the many-body theory of the effective mass in the effective mass representation (EMR). In the EMR, we need to solve the equation of motion of an electron in the presence of electron-electron interactions, where the wavefunction is expanded over a complete set of Luttinger-Kohn wavefunctions. We use the Luttinger-Ward thermodynamic potential and the Green’s function perturbation to derive an expression for the band effective mass by taking into account the electron-electron interactions. Both quasi-particle and the correlation contributions are considered. We show that had we considered only the quasi-particle contribution, we would have missed important cancellations. Thus the correlated motion of electrons has important effects in the renormalization of the effective mass. Considering the exchange self-energy in the band model, we derive a tractable expression for the band effective mass. We apply the theory to n-type degenerate semiconductors, PbTe and SnTe, and analyze the impact of the theory on the anisotropic effective mass of the conduction bands in these systems.

  3. Relativistic many-body theory a new field-theoretical approach

    CERN Document Server

    Lindgren, Ingvar

    2016-01-01

    This revised second edition of the author’s classic text offers readers a comprehensively updated review of relativistic atomic many-body theory, covering the many developments in the field since the publication of the original title.  In particular, a new final section extends the scope to cover the evaluation of QED effects for dynamical processes. The treatment of the book is based upon quantum-field theory, and demonstrates that when the procedure is carried to all orders of perturbation theory, two-particle systems are fully compatible with the relativistically covariant Bethe-Salpeter equation. This procedure can be applied to arbitrary open-shell systems, in analogy with the standard many-body theory, and it is also applicable to systems with more than two particles. Presently existing theoretical procedures for treating atomic systems are, in several cases, insufficient to explain the accurate experimental data recently obtained, particularly for highly charged ions. The main text is divided into...

  4. Dynamical stability of a many-body Kapitza pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Citro, Roberta, E-mail: citro@sa.infn.it [Dipartimento di Fisica “E. R. Caianiello” and Spin-CNR, Universita’ degli Studi di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (Italy); Dalla Torre, Emanuele G., E-mail: emanuele.dalla-torre@biu.ac.il [Department of Physics, Bar Ilan University, Ramat Gan 5290002 (Israel); Department of Physics, Harvard University, Cambridge, MA 02138 (United States); D’Alessio, Luca [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Physics, Boston University, Boston, MA 02215 (United States); Polkovnikov, Anatoli [Department of Physics, Boston University, Boston, MA 02215 (United States); Babadi, Mehrtash [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125 (United States); Oka, Takashi [Department of Applied Physics, University of Tokyo, Tokyo, 113-8656 (Japan); Demler, Eugene [Department of Physics, Harvard University, Cambridge, MA 02138 (United States)

    2015-09-15

    We consider a many-body generalization of the Kapitza pendulum: the periodically-driven sine–Gordon model. We show that this interacting system is dynamically stable to periodic drives with finite frequency and amplitude. This finding is in contrast to the common belief that periodically-driven unbounded interacting systems should always tend to an absorbing infinite-temperature state. The transition to an unstable absorbing state is described by a change in the sign of the kinetic term in the Floquet Hamiltonian and controlled by the short-wavelength degrees of freedom. We investigate the stability phase diagram through an analytic high-frequency expansion, a self-consistent variational approach, and a numeric semiclassical calculation. Classical and quantum experiments are proposed to verify the validity of our results.

  5. Self-consistency in Capital Markets

    Science.gov (United States)

    Benbrahim, Hamid

    2013-03-01

    Capital Markets are considered, at least in theory, information engines whereby traders contribute to price formation with their diverse perspectives. Regardless whether one believes in efficient market theory on not, actions by individual traders influence prices of securities, which in turn influence actions by other traders. This influence is exerted through a number of mechanisms including portfolio balancing, margin maintenance, trend following, and sentiment. As a result market behaviors emerge from a number of mechanisms ranging from self-consistency due to wisdom of the crowds and self-fulfilling prophecies, to more chaotic behavior resulting from dynamics similar to the three body system, namely the interplay between equities, options, and futures. This talk will address questions and findings regarding the search for self-consistency in capital markets.

  6. Anyonic self-induced disorder in a stabilizer code: Quasi many-body localization in a translational invariant model

    Science.gov (United States)

    Yarloo, H.; Langari, A.; Vaezi, A.

    2018-02-01

    We enquire into the quasi many-body localization in topologically ordered states of matter, revolving around the case of Kitaev toric code on the ladder geometry, where different types of anyonic defects carry different masses induced by environmental errors. Our study verifies that the presence of anyons generates a complex energy landscape solely through braiding statistics, which suffices to suppress the diffusion of defects in such clean, multicomponent anyonic liquid. This nonergodic dynamics suggests a promising scenario for investigation of quasi many-body localization. Computing standard diagnostics evidences that a typical initial inhomogeneity of anyons gives birth to a glassy dynamics with an exponentially diverging time scale of the full relaxation. Our results unveil how self-generated disorder ameliorates the vulnerability of topological order away from equilibrium. This setting provides a new platform which paves the way toward impeding logical errors by self-localization of anyons in a generic, high energy state, originated exclusively in their exotic statistics.

  7. In-Medium Similarity Renormalization Group Approach to the Nuclear Many-Body Problem

    Science.gov (United States)

    Hergert, Heiko; Bogner, Scott K.; Lietz, Justin G.; Morris, Titus D.; Novario, Samuel J.; Parzuchowski, Nathan M.; Yuan, Fei

    We present a pedagogical discussion of Similarity Renormalization Group (SRG) methods, in particular the In-Medium SRG (IMSRG) approach for solving the nuclear many-body problem. These methods use continuous unitary transformations to evolve the nuclear Hamiltonian to a desired shape. The IMSRG, in particular, is used to decouple the ground state from all excitations and solve the many-body Schrödinger equation. We discuss the IMSRG formalism as well as its numerical implementation, and use the method to study the pairing model and infinite neutron matter. We compare our results with those of Coupled cluster theory (Chap. 8), Configuration-Interaction Monte Carlo (Chap. 9), and the Self-Consistent Green's Function approach discussed in Chap. 11 The chapter concludes with an expanded overview of current research directions, and a look ahead at upcoming developments.

  8. Tensor contraction engine: Abstraction and automated parallel implementation of configuration-interaction, coupled-cluster, and many-body perturbation theories

    International Nuclear Information System (INIS)

    Hirata, So

    2003-01-01

    We develop a symbolic manipulation program and program generator (Tensor Contraction Engine or TCE) that automatically derives the working equations of a well-defined model of second-quantized many-electron theories and synthesizes efficient parallel computer programs on the basis of these equations. Provided an ansatz of a many-electron theory model, TCE performs valid contractions of creation and annihilation operators according to Wick's theorem, consolidates identical terms, and reduces the expressions into the form of multiple tensor contractions acted by permutation operators. Subsequently, it determines the binary contraction order for each multiple tensor contraction with the minimal operation and memory cost, factorizes common binary contractions (defines intermediate tensors), and identifies reusable intermediates. The resulting ordered list of binary tensor contractions, additions, and index permutations is translated into an optimized program that is combined with the NWChem and UTChem computational chemistry software packages. The programs synthesized by TCE take advantage of spin symmetry, Abelian point-group symmetry, and index permutation symmetry at every stage of calculations to minimize the number of arithmetic operations and storage requirement, adjust the peak local memory usage by index range tiling, and support parallel I/O interfaces and dynamic load balancing for parallel executions. We demonstrate the utility of TCE through automatic derivation and implementation of parallel programs for various models of configuration-interaction theory (CISD, CISDT, CISDTQ), many-body perturbation theory[MBPT(2), MBPT(3), MBPT(4)], and coupled-cluster theory (LCCD, CCD, LCCSD, CCSD, QCISD, CCSDT, and CCSDTQ)

  9. Many-body formalism for fermions: The partition function

    Science.gov (United States)

    Watson, D. K.

    2017-09-01

    The partition function, a fundamental tenet in statistical thermodynamics, contains in principle all thermodynamic information about a system. It encapsulates both microscopic information through the quantum energy levels and statistical information from the partitioning of the particles among the available energy levels. For identical particles, this statistical accounting is complicated by the symmetry requirements of the allowed quantum states. In particular, for Fermi systems, the enforcement of the Pauli principle is typically a numerically demanding task, responsible for much of the cost of the calculations. The interplay of these three elements—the structure of the many-body spectrum, the statistical partitioning of the N particles among the available levels, and the enforcement of the Pauli principle—drives the behavior of mesoscopic and macroscopic Fermi systems. In this paper, we develop an approach for the determination of the partition function, a numerically difficult task, for systems of strongly interacting identical fermions and apply it to a model system of harmonically confined, harmonically interacting fermions. This approach uses a recently introduced many-body method that is an extension of the symmetry-invariant perturbation method (SPT) originally developed for bosons. It uses group theory and graphical techniques to avoid the heavy computational demands of conventional many-body methods which typically scale exponentially with the number of particles. The SPT application of the Pauli principle is trivial to implement since it is done "on paper" by imposing restrictions on the normal-mode quantum numbers at first order in the perturbation. The method is applied through first order and represents an extension of the SPT method to excited states. Our method of determining the partition function and various thermodynamic quantities is accurate and efficient and has the potential to yield interesting insight into the role played by the Pauli

  10. Perturbation theory of effective Hamiltonians

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1975-01-01

    This paper constitutes a review of the many papers which have used perturbation theory to derive ''effective'' or ''model'' Hamiltonians. It begins with a brief review of nondegenerate and non-many-body perturbation theory, and then considers the degenerate but non-many-body problem in some detail. It turns out that the degenerate perturbation problem is not uniquely defined, but there are some practical criteria for choosing among the various possibilities. Finally, the literature dealing with the linked-cluster aspects of open-shell many-body systems is reviewed. (U.S.)

  11. Dynamical electron-phonon coupling, G W self-consistency, and vertex effect on the electronic band gap of ice and liquid water

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2017-06-01

    We study the impact of dynamical electron-phonon (el-ph) effects on the electronic band gap of ice and liquid water by accounting for frequency-dependent Fan contributions in the el-ph mediated self-energy within the many-body perturbation theory (MBPT). We find that the dynamical el-ph coupling effects greatly reduce the static el-ph band-gap correction of the hydrogen-rich molecular ice crystal from-2.46 to -0.23 eV in great contrast to the result of Monserrat et al. [Phys. Rev. B 92, 140302 (2015), 10.1103/PhysRevB.92.140302]. This is of particular importance as otherwise the static el-ph gap correction would considerably reduce the electronic band gap, leading to considerable underestimation of the intense peaks of optical absorption spectra of ice which would be in great disagreement to experimental references. By contrast, the static el-ph gap correction of liquid water is very moderate (-0.32 eV), and inclusion of dynamical effects slightly reduces the gap correction to -0.19 eV. Further, we determine the diverse sensitivity of ice and liquid water to the G W self-consistency and show that the energy-only self-consistent approach (GnWn ) exhibits large implicit vertex character in comparison to the quasiparticle self-consistent approach, for which an explicit calculation of vertex corrections is necessary for good agreement with experiment.

  12. Local conservation laws and the structure of the many-body localized states.

    Science.gov (United States)

    Serbyn, Maksym; Papić, Z; Abanin, Dmitry A

    2013-09-20

    We construct a complete set of local integrals of motion that characterize the many-body localized (MBL) phase. Our approach relies on the assumption that local perturbations act locally on the eigenstates in the MBL phase, which is supported by numerical simulations of the random-field XXZ spin chain. We describe the structure of the eigenstates in the MBL phase and discuss the implications of local conservation laws for its nonequilibrium quantum dynamics. We argue that the many-body localization can be used to protect coherence in the system by suppressing relaxation between eigenstates with different local integrals of motion.

  13. A Study of Single- and Double-Averaged Second-Order Models to Evaluate Third-Body Perturbation Considering Elliptic Orbits for the Perturbing Body

    Directory of Open Access Journals (Sweden)

    R. C. Domingos

    2013-01-01

    Full Text Available The equations for the variations of the Keplerian elements of the orbit of a spacecraft perturbed by a third body are developed using a single average over the motion of the spacecraft, considering an elliptic orbit for the disturbing body. A comparison is made between this approach and the more used double averaged technique, as well as with the full elliptic restricted three-body problem. The disturbing function is expanded in Legendre polynomials up to the second order in both cases. The equations of motion are obtained from the planetary equations, and several numerical simulations are made to show the evolution of the orbit of the spacecraft. Some characteristics known from the circular perturbing body are studied: circular, elliptic equatorial, and frozen orbits. Different initial eccentricities for the perturbed body are considered, since the effect of this variable is one of the goals of the present study. The results show the impact of this parameter as well as the differences between both models compared to the full elliptic restricted three-body problem. Regions below, near, and above the critical angle of the third-body perturbation are considered, as well as different altitudes for the orbit of the spacecraft.

  14. Calculation of the hyperfine interaction using an effective-operator form of many-body theory

    International Nuclear Information System (INIS)

    Garpman, S.; Lindgren, I.; Lindgren, J.; Morrison, J.

    1975-01-01

    The effective-operator form of many-body theory is reviewed and applied to the calculation of the hyperfine structure. Numerical results are given for the 2p, 3p, and 4p excited states of Li and the 3p state of Na. This is the first complete calculation of the hyperfine structure using an effective-operator form of perturbation theory. As in the Brueckner-Goldstone form of many-body theory, the various terms in the perturbation expansion are represented by Feynman diagrams which correspond to basic physical processes. The angular part of the perturbation diagrams are evaluated by taking advantage of the formal analogy between the Feynman diagrams and the angular-momentum diagrams, introduced by Jucys et al. The radial part of the diagrams is calculated by solving one- and two-particle equations for the particular linear combination of excited states that contribute to the Feynman diagrams. In this way all second- and third-order effects are accurately evaluated without explicitly constructing the excited orbitals. For the 2p state of Li our results are in agreement with the calculations of Nesbet and of Hameed and Foley. However, our quadrupole calculation disagrees with the work of Das and co-workers. The many-body results for Li and Na are compared with semiempirical methods for evaluating the quadrupole moment from the hyperfine interaction, and a new quadrupole moment of 23 Na is given

  15. Non-equilibrium many body dynamics

    International Nuclear Information System (INIS)

    Creutz, M.; Gyulassy, M.

    1997-01-01

    This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop

  16. Non-equilibrium many body dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, M.; Gyulassy, M.

    1997-09-22

    This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop.

  17. On the hydrodynamic limit of self-consistent field equations

    International Nuclear Information System (INIS)

    Pauli, H.C.

    1980-01-01

    As an approximation to the nuclear many-body problem, the hydrodynamical limit of self-consistent field equations is worked out and applied to the treatment of vibrational and rotational motion. Its validity is coupled to the value of a smallness parameter, behaving as 20Asup(-2/3) with the number of nucleons. For finite nuclei, this number is not small enough as compared to 1, and indeed one observes a discrepancy of roughly a factor of 5 between the hydrodynamic frequencies and the relevant experimental numbers. (orig.)

  18. The self-consistent multiparticle-multihole configuration mixing. Motivations, state of the art and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Pillet, N.; Dupuis, M.; Hupin, G.; Berger, J.F. [DAM, CEA, Arpajon (France); Robin, C. [Western Michigan University, Department of Physics, Kalamazoo, MI (United States)

    2017-03-15

    The main objective of this paper is to review the state of the art of the multiparticle-multihole configuration mixing approach which was proposed and implemented using the Gogny interaction ∝ 10 years ago. Various theoretical aspects are re-analyzed when a Hamiltonian description is chosen: the link with exact many-body theories, the impact of truncations in the multiconfigurational space, the importance of defining single-particle orbitals which are consistent with the correlations introduced in the many-body wave function, the role of the self-consistency, and more practically the numerical convergence algorithm. Several applications done with the phenomenological effective Gogny interaction are discussed. Finally, future directions to extend and generalize the method are discussed. (orig.)

  19. The self-consistent multiparticle-multihole configuration mixing. Motivations, state of the art and perspectives

    Science.gov (United States)

    Pillet, N.; Robin, C.; Dupuis, M.; Hupin, G.; Berger, J.-F.

    2017-03-01

    The main objective of this paper is to review the state of the art of the multiparticle-multihole configuration mixing approach which was proposed and implemented using the Gogny interaction ˜ 10 years ago. Various theoretical aspects are re-analyzed when a Hamiltonian description is chosen: the link with exact many-body theories, the impact of truncations in the multiconfigurational space, the importance of defining single-particle orbitals which are consistent with the correlations introduced in the many-body wave function, the role of the self-consistency, and more practically the numerical convergence algorithm. Several applications done with the phenomenological effective Gogny interaction are discussed. Finally, future directions to extend and generalize the method are discussed.

  20. The self-consistent multiparticle-multihole configuration mixing. Motivations, state of the art and perspectives

    International Nuclear Information System (INIS)

    Pillet, N.; Dupuis, M.; Hupin, G.; Berger, J.F.; Robin, C.

    2017-01-01

    The main objective of this paper is to review the state of the art of the multiparticle-multihole configuration mixing approach which was proposed and implemented using the Gogny interaction ∝ 10 years ago. Various theoretical aspects are re-analyzed when a Hamiltonian description is chosen: the link with exact many-body theories, the impact of truncations in the multiconfigurational space, the importance of defining single-particle orbitals which are consistent with the correlations introduced in the many-body wave function, the role of the self-consistency, and more practically the numerical convergence algorithm. Several applications done with the phenomenological effective Gogny interaction are discussed. Finally, future directions to extend and generalize the method are discussed. (orig.)

  1. Self-powered in-core neutron detector assembly with uniform perturbation characteristics

    International Nuclear Information System (INIS)

    1981-01-01

    An in-core neutron detector assembly consisting of a number of longitudinally extending self-powered detectors is described. The uniform mechanical structures and materials are placed symmetrically at each active detector portion thus ensuring that local perturbation factors are uniform. (U.K.)

  2. Renormalization in self-consistent approximation schemes at finite temperature I: theory

    International Nuclear Information System (INIS)

    Hees, H. van; Knoll, J.

    2001-07-01

    Within finite temperature field theory, we show that truncated non-perturbative self-consistent Dyson resummation schemes can be renormalized with local counter-terms defined at the vacuum level. The requirements are that the underlying theory is renormalizable and that the self-consistent scheme follows Baym's Φ-derivable concept. The scheme generates both, the renormalized self-consistent equations of motion and the closed equations for the infinite set of counter terms. At the same time the corresponding 2PI-generating functional and the thermodynamic potential can be renormalized, in consistency with the equations of motion. This guarantees the standard Φ-derivable properties like thermodynamic consistency and exact conservation laws also for the renormalized approximation scheme to hold. The proof uses the techniques of BPHZ-renormalization to cope with the explicit and the hidden overlapping vacuum divergences. (orig.)

  3. Singular perturbation techniques in the gravitational self-force problem

    International Nuclear Information System (INIS)

    Pound, Adam

    2010-01-01

    Much of the progress in the gravitational self-force problem has involved the use of singular perturbation techniques. Yet the formalism underlying these techniques is not widely known. I remedy this situation by explicating the foundations and geometrical structure of singular perturbation theory in general relativity. Within that context, I sketch precise formulations of the methods used in the self-force problem: dual expansions (including matched asymptotic expansions), for which I identify precise matching conditions, one of which is a weak condition arising only when multiple coordinate systems are used; multiscale expansions, for which I provide a covariant formulation; and a self-consistent expansion with a fixed worldline, for which I provide a precise statement of the exact problem and its approximation. I then present a detailed analysis of matched asymptotic expansions as they have been utilized in calculating the self-force. Typically, the method has relied on a weak matching condition, which I show cannot determine a unique equation of motion. I formulate a refined condition that is sufficient to determine such an equation. However, I conclude that the method yields significantly weaker results than do alternative methods.

  4. Self-consistency condition and high-density virial theorem in relativistic many-particle systems

    International Nuclear Information System (INIS)

    Kalman, G.; Canuto, V.; Datta, B.

    1976-01-01

    In order for the thermodynamic and kinetic definitions of the chemical potential and the pressure to lead to identical results a nontrivial self-consistency criterion has to be satisfied. This, in turn, leads to a virial-like theorem in the high-density limit

  5. Many-body effects in the mesoscopic x-ray edge problem

    International Nuclear Information System (INIS)

    Hentschel, Martina; Roeder, Georg; Ullmo, Denis

    2007-01-01

    Many-body phenomena, a key interest in the investigation of bulk solid state systems, are studied here in the context of the x-ray edge problem for mesoscopic systems. We investigate the many-body effects associated with the sudden perturbation following the x-ray exciton of a core electron into the conduction band. For small systems with dimensions at the nanoscale we find considerable deviations from the well-understood metallic case where Anderson orthogonality catastrophe and the Mahan-Nozieres-DeDominicis response cause characteristic deviations of the photoabsorption cross section from the naive expectation. Whereas the K-edge is typically rounded in metallic systems, we find a slightly peaked K-edge in generic mesoscopic systems with chaotic-coherent electron dynamics. Thus the behavior of the photoabsorption cross section at threshold depends on the system size and is different for the metallic and the mesoscopic case. (author)

  6. Two-body perturbation theory versus first order perturbation theory: A comparison based on the square-well fluid.

    Science.gov (United States)

    Mercier Franco, Luís Fernando; Castier, Marcelo; Economou, Ioannis G

    2017-12-07

    We show that the Zwanzig first-order perturbation theory can be obtained directly from a truncated Taylor series expansion of a two-body perturbation theory and that such truncation provides a more accurate prediction of thermodynamic properties than the full two-body perturbation theory. This unexpected result is explained by the quality of the resulting approximation for the fluid radial distribution function. We prove that the first-order and the two-body perturbation theories are based on different approximations for the fluid radial distribution function. To illustrate the calculations, the square-well fluid is adopted. We develop an analytical expression for the two-body perturbed Helmholtz free energy for the square-well fluid. The equation of state obtained using such an expression is compared to the equation of state obtained from the first-order approximation. The vapor-liquid coexistence curve and the supercritical compressibility factor of a square-well fluid are calculated using both equations of state and compared to Monte Carlo simulation data. Finally, we show that the approximation for the fluid radial distribution function given by the first-order perturbation theory provides closer values to the ones calculated via Monte Carlo simulations. This explains why such theory gives a better description of the fluid thermodynamic behavior.

  7. Model many-body Stoner Hamiltonian for binary FeCr alloys

    Science.gov (United States)

    Nguyen-Manh, D.; Dudarev, S. L.

    2009-09-01

    We derive a model tight-binding many-body d -electron Stoner Hamiltonian for FeCr binary alloys and investigate the sensitivity of its mean-field solutions to the choice of hopping integrals and the Stoner exchange parameters. By applying the local charge-neutrality condition within a self-consistent treatment we show that the negative enthalpy-of-mixing anomaly characterizing the alloy in the low chromium concentration limit is due entirely to the presence of the on-site exchange Stoner terms and that the occurrence of this anomaly is not specifically related to the choice of hopping integrals describing conventional chemical bonding between atoms in the alloy. The Bain transformation pathway computed, using the proposed model Hamiltonian, for the Fe15Cr alloy configuration is in excellent agreement with ab initio total-energy calculations. Our investigation also shows how the parameters of a tight-binding many-body model Hamiltonian for a magnetic alloy can be derived from the comparison of its mean-field solutions with other, more accurate, mean-field approximations (e.g., density-functional calculations), hence stimulating the development of large-scale computational algorithms for modeling radiation damage effects in magnetic alloys and steels.

  8. Perturbation theory of a superconducting 0 - π impurity quantum phase transition.

    Science.gov (United States)

    Žonda, M; Pokorný, V; Janiš, V; Novotný, T

    2015-03-06

    A single-level quantum dot with Coulomb repulsion attached to two superconducting leads is studied via the perturbation expansion in the interaction strength. We use the Nambu formalism and the standard many-body diagrammatic representation of the impurity Green functions to formulate the Matsubara self-consistent perturbation expansion. We show that at zero temperature second order of the expansion in its spin-symmetric version yields a nearly perfect agreement with the numerically exact calculations for the position of the 0 - π phase boundary at which the Andreev bound states reach the Fermi energy as well as for the values of single-particle quantities in the 0-phase. We present results for phase diagrams, level occupation, induced local superconducting gap, Josephson current, and energy of the Andreev bound states with the precision surpassing any (semi)analytical approaches employed thus far.

  9. First order normalization in the perturbed restricted three–body ...

    African Journals Online (AJOL)

    This paper performs the first order normalization that will be employed in the study of the nonlinear stability of triangular points of the perturbed restricted three – body problem with variable mass. The problem is perturbed in the sense that small perturbations are given in the coriolis and centrifugal forces. It is with variable ...

  10. Two-particle irreducible effective actions versus resummation: Analytic properties and self-consistency

    Directory of Open Access Journals (Sweden)

    Michael Brown

    2015-11-01

    Full Text Available Approximations based on two-particle irreducible (2PI effective actions (also known as Φ-derivable, Cornwall–Jackiw–Tomboulis or Luttinger–Ward functionals depending on context have been widely used in condensed matter and non-equilibrium quantum/statistical field theory because this formalism gives a robust, self-consistent, non-perturbative and systematically improvable approach which avoids problems with secular time evolution. The strengths of 2PI approximations are often described in terms of a selective resummation of Feynman diagrams to infinite order. However, the Feynman diagram series is asymptotic and summation is at best a dangerous procedure. Here we show that, at least in the context of a toy model where exact results are available, the true strength of 2PI approximations derives from their self-consistency rather than any resummation. This self-consistency allows truncated 2PI approximations to capture the branch points of physical amplitudes where adjustments of coupling constants can trigger an instability of the vacuum. This, in effect, turns Dyson's argument for the failure of perturbation theory on its head. As a result we find that 2PI approximations perform better than Padé approximation and are competitive with Borel–Padé resummation. Finally, we introduce a hybrid 2PI–Padé method.

  11. Relationship between body satisfaction with self esteemand unhealthy body weight management

    OpenAIRE

    Daniali, Shahrbanoo; Azadbakht, Leila; Mostafavi, Firoozeh

    2013-01-01

    Introduction: A favorable or unfavorable attitude about self was named self esteem. According to Maslow theory to achieve quality of life and happiness, one must reach the gradual fulfillment of human needs, including a high degree of own self-esteem. Body dissatisfaction is a negative distortion of one's body which is especially mentioned by the women. Many studies have shown links between self esteem, body dissatisfaction, health and behaviors. this study intends to determine relationship b...

  12. Forecasting with the Standardized Self-Perturbed Kalman Filter

    DEFF Research Database (Denmark)

    Grassi, Stefano; Nonejad, Nima; Santucci de Magistris, Paolo

    We propose and study the finite-sample properties of a modified version of the self-perturbed Kalman filter of Park and Jun (1992) for the on-line estimation of models subject to parameter instability. The perturbation term in the updating equation of the state covariance matrix is now weighted...... compared to other on-line, classical and Bayesian methods. The standardized self-perturbed Kalman filter is adopted to forecast the equity premium on the S&P500 index under several model specifications, and to investigate to what extent and how realized variance can be exploited to predict excess returns....

  13. Nonlinear gravitational self-force: Field outside a small body

    Science.gov (United States)

    Pound, Adam

    2012-10-01

    A small extended body moving through an external spacetime gαβ creates a metric perturbation hαβ, which forces the body away from geodesic motion in gαβ. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances r from a representative worldline. Given only a specification of the body’s multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in r to numerically implement a second-order puncture scheme, including effects of the body’s spin. I also define nth-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.

  14. Perturbation theory

    International Nuclear Information System (INIS)

    Bartlett, R.; Kirtman, B.; Davidson, E.R.

    1978-01-01

    After noting some advantages of using perturbation theory some of the various types are related on a chart and described, including many-body nonlinear summations, quartic force-field fit for geometry, fourth-order correlation approximations, and a survey of some recent work. Alternative initial approximations in perturbation theory are also discussed. 25 references

  15. The partition function of an interacting many body system

    International Nuclear Information System (INIS)

    Rummel, C.; Ankerhold, J.

    2002-01-01

    Based on the path integral approach the partition function of a many body system with separable two body interaction is calculated in the sense of a semiclassical approximation. The commonly used Gaussian type of approximation, known as the perturbed static path approximation (PSPA), breaks down near a crossover temperature due to instabilities of the classical mean field solution. It is shown how the PSPA is systematically improved within the crossover region by taking into account large non-Gaussian fluctuation and an approximation applicable down to very low temperatures is carried out. These findings are tested against exact results for the archetypical cases of a particle moving in a one dimensional double well and the exactly solvable Lipkin-Meshkov-Glick model. The extensions should have applications in finite systems at low temperatures as in nuclear physics and mesoscopic systems, e. g. for gap fluctuations in nano-scale superconducting devices previously studied within a PSPA type of approximation. (author)

  16. Dynamic simulations of many-body electrostatic self-assembly

    Science.gov (United States)

    Lindgren, Eric B.; Stamm, Benjamin; Maday, Yvon; Besley, Elena; Stace, A. J.

    2018-03-01

    Two experimental studies relating to electrostatic self-assembly have been the subject of dynamic computer simulations, where the consequences of changing the charge and the dielectric constant of the materials concerned have been explored. One series of calculations relates to experiments on the assembly of polymer particles that have been subjected to tribocharging and the simulations successfully reproduce many of the observed patterns of behaviour. A second study explores events observed following collisions between single particles and small clusters composed of charged particles derived from a metal oxide composite. As before, observations recorded during the course of the experiments are reproduced by the calculations. One study in particular reveals how particle polarizability can influence the assembly process. This article is part of the theme issue `Modern theoretical chemistry'.

  17. Assessing Many-Body Effects of Water Self-Ions. I: OH-(H2O) n Clusters.

    Science.gov (United States)

    Egan, Colin K; Paesani, Francesco

    2018-04-10

    The importance of many-body effects in the hydration of the hydroxide ion (OH - ) is investigated through a systematic analysis of the many-body expansion of the interaction energy carried out at the CCSD(T) level of theory, extrapolated to the complete basis set limit, for the low-lying isomers of OH - (H 2 O) n clusters, with n = 1-5. This is accomplished by partitioning individual fragments extracted from the whole clusters into "groups" that are classified by both the number of OH - and water molecules and the hydrogen bonding connectivity within each fragment. With the aid of the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method, this structure-based partitioning is found to largely correlate with the character of different many-body interactions, such as cooperative and anticooperative hydrogen bonding, within each fragment. This analysis emphasizes the importance of a many-body representation of inductive electrostatics and charge transfer in modeling OH - hydration. Furthermore, the rapid convergence of the many-body expansion of the interaction energy also suggests a rigorous path for the development of analytical potential energy functions capable of describing individual OH - -water many-body terms, with chemical accuracy. Finally, a comparison between the reference CCSD(T) many-body interaction terms with the corresponding values obtained with various exchange-correlation functionals demonstrates that range-separated, dispersion-corrected, hybrid functionals exhibit the highest accuracy, while GGA functionals, with or without dispersion corrections, are inadequate to describe OH - -water interactions.

  18. Aspects of Strongly Correlated Many-Body Fermi Systems

    Science.gov (United States)

    Porter, William J., III

    A, by now, well-known signal-to-noise problem plagues Monte Carlo calculations of quantum-information-theoretic observables in systems of interacting fermions, particularly the Renyi entanglement entropies Sn, even in many cases where the infamous sign problem does not appear. Several methods have been put forward to circumvent this affliction including ensemble-switching techniques using auxiliary partition-function ratios. This dissertation presents an algorithm that modifies the recently proposed free-fermion decomposition in an essential way: we incorporate the entanglement-sensitive correlations directly into the probability measure in a natural way. Implementing this algorithm, we demonstrate that it is compatible with the hybrid Monte Carlo algorithm, the workhorse of the lattice quantum chromodynamics community and an essential tool for studying gauge theories that contain dynamical fermions. By studying a simple one-dimensional Hubbard model, we demonstrate that our method does not exhibit the same debilitating numerical difficulties that naive attempts to study entanglement often encounter. Following that, we illustrate some key probabilistic insights, using intuition derived from the previous method and its successes to construct a simpler, better behaved, and more elegant algorithm. Using this method, in combination with new identities which allow us to avoid seemingly necessary numerical difficulties, the inversion of the restricted one-body density matrices, we compute high order Renyi entropies and perform a thorough comparison to this new algorithm's predecessor using the Hubbard model mentioned before. Finally, we characterize non-perturbatively the Renyi entropies of degree n = 2,3,4, and 5 of three-dimensional, strongly coupled many-fermion systems in the scale-invariant regime of short interaction range and large scattering length, i.e. in the unitary limit using the algorithms detailed herein. We also detail an exact, few-body projective method

  19. Two-particle self-consistent approach to unconventional superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Otsuki, Junya [Department of Physics, Tohoku University, Sendai (Japan); Theoretische Physik III, Zentrum fuer Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany)

    2013-07-01

    A non-perturbative approach to unconventional superconductivity is developed based on the idea of the two-particle self-consistent (TPSC) theory. An exact sum-rule which the momentum-dependent pairing susceptibility satisfies is derived. Effective pairing interactions between quasiparticles are determined so that an approximate susceptibility should fulfill this sum-rule, in which fluctuations belonging to different symmetries mix at finite momentum. The mixing leads to a suppression of the d{sub x{sup 2}-y{sup 2}} pairing close to the half-filling, resulting in a maximum of T{sub c} away from half-filling.

  20. Liouvillian propagator technique for perturbed wave functions, level shifts and broadenings of composite particles in a many-body medium

    International Nuclear Information System (INIS)

    Girardeau, M.D.; Oregon Univ., Eugene

    1981-01-01

    Many problems in several areas of physics and chemistry involve many-body systems of interacting composite particles, in regimes where their internal transitions and/or reactive collisions (breakup, recombination, rearrangement) are important. Standard many-body Green's function and quantum field theoretic techniques are not well adapted to such situations. I discuss generalized representations which allow application of standard techniques to more complicated systems of interacting composite particles and their constituents. (orig./HSI)

  1. Three-body interactions in many-body effective field theory

    International Nuclear Information System (INIS)

    Furnstahl, R.J.

    2004-01-01

    This contribution is an advertisement for applying effective field theory (EFT) to many-body problems, including nuclei and cold atomic gases. Examples involving three-body interactions are used to illustrate how EFT's quantify and systematically eliminate model dependence, and how they make many-body calculations simpler and more powerful

  2. Band structure and thermoelectric properties of half-Heusler semiconductors from many-body perturbation theory

    Science.gov (United States)

    Zahedifar, Maedeh; Kratzer, Peter

    2018-01-01

    Various ab initio approaches to the band structure of A NiSn and A CoSb half-Heusler compounds (A = Ti, Zr, Hf) are compared and their consequences for the prediction of thermoelectric properties are explored. Density functional theory with the generalized-gradient approximation (GGA), as well as the hybrid density functional HSE06 and ab initio many-body perturbation theory in the form of the G W0 approach, are employed. The G W0 calculations confirm the trend of a smaller band gap (0.75 to 1.05 eV) in A NiSn compared to the A CoSb compounds (1.13 to 1.44 eV) already expected from the GGA calculations. While in A NiSn materials the G W0 band gap is 20% to 50% larger than in HSE06, the fundamental gap of A CoSb materials is smaller in G W0 compared to HSE06. This is because G W0 , similar to PBE, locates the valence band maximum at the L point of the Brillouin zone, whereas it is at the Γ point in the HSE06 calculations. The differences are attributed to the observation that the relative positions of the d levels of the transition metal atoms vary among the different methods. Using the calculated band structures and scattering rates taking into account the band effective masses at the extrema, the Seebeck coefficients, thermoelectric power factors, and figures of merit Z T are predicted for all six half-Heusler compounds. Comparable performance is predicted for the n -type A NiSn materials, whereas clear differences are found for the p -type A CoSb materials. Using the most reliable G W0 electronic structure, ZrCoSb is predicted to be the most efficient material with a power factor of up to 0.07 W/(K2 m) at a temperature of 600 K. We find strong variations among the different ab initio methods not only in the prediction of the maximum power factor and Z T value of a given material, but also in comparing different materials to each other, in particular in the p -type thermoelectric materials. Thus we conclude that the most elaborate, but also most costly G W0

  3. Bootstrapping gravity: A consistent approach to energy-momentum self-coupling

    International Nuclear Information System (INIS)

    Butcher, Luke M.; Hobson, Michael; Lasenby, Anthony

    2009-01-01

    It is generally believed that coupling the graviton (a classical Fierz-Pauli massless spin-2 field) to its own energy-momentum tensor successfully recreates the dynamics of the Einstein field equations order by order; however the validity of this idea has recently been brought into doubt [T. Padmanabhan, Int. J. Mod. Phys. D 17, 367 (2008).]. Motivated by this, we present a graviton action for which energy-momentum self-coupling is indeed consistent with the Einstein field equations. The Hilbert energy-momentum tensor for this graviton is calculated explicitly and shown to supply the correct second-order term in the field equations; in contrast, the Fierz-Pauli action fails to supply the correct term. A formalism for perturbative expansions of metric-based gravitational theories is then developed, and these techniques employed to demonstrate that our graviton action is a starting point for a straightforward energy-momentum self-coupling procedure that, order by order, generates the Einstein-Hilbert action (up to a classically irrelevant surface term). The perturbative formalism is extended to include matter and a cosmological constant, and interactions between perturbations of a free matter field and the gravitational field are studied in a vacuum background. Finally, the effect of a nonvacuum background is examined, and the graviton is found to develop a nonvanishing 'mass-term' in the action.

  4. Loop corrections and other many-body effects in relativistic field theories

    International Nuclear Information System (INIS)

    Ainsworth, T.L.; Brown, G.E.; Prakash, M.; Weise, W.

    1988-01-01

    Incorporation of effective masses into negative energy states (nucleon loop corrections) gives rise to repulsive many-body forces, as has been known for some time. Rather than renormalizing away the three- and four-body terms, we introduce medium corrections into the effective σ-exchange, which roughly cancel the nucleon loop terms for densities ρ ≅ ρ nm , where ρ nm is nuclear matter density. Going to higher densities, the repulsive contributions tend to saturate whereas the attractive ones keep on growing in magnitude. The latter is achieved through use of a density-dependent effective mass for the σ-particle, m σ = m σ (ρ), such that m σ (ρ) decreases with increasing density. Such a behavior is seen e.g. in the Nambu-Jona-Lasinio model. It is argued that a smooth transition to chiral restoration implies a similar behavior. The resulting nuclear equation of state is, because of the self-consistency in the problem, immensely insensitive to changes in the mass or coupling constant of the σ-particle. (orig.)

  5. Non linear self consistency of microtearing modes

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.

    1987-01-01

    The self consistency of a microtearing turbulence is studied in non linear regimes where the ergodicity of the flux lines determines the electron response. The current which sustains the magnetic perturbation via the Ampere law results from the combines action of the radial electric field in the frame where the island chains are static and of the thermal electron diamagnetism. Numerical calculations show that at usual values of β pol in Tokamaks the turbulence can create a diffusion coefficient of order ν th p 2 i where p i is the ion larmor radius and ν th the electron ion collision frequency. On the other hand, collisionless regimes involving special profiles of each mode near the resonant surface seem possible

  6. Many-body theory of electrical, thermal and optical response of molecular heterojunctions

    Science.gov (United States)

    Bergfield, Justin Phillip

    In this work, we develop a many-body theory of electronic transport through single molecule junctions based on nonequilibrium Green's functions (NEGFs). The central quantity of this theory is the Coulomb self-energy matrix of the junction SigmaC. SigmaC is evaluated exactly in the sequential-tunneling limit, and the correction due to finite lead-molecule tunneling is evaluated using a conserving approximation based on diagrammatic perturbation theory on the Keldysh contour. In this way, tunneling processes are included to infinite order, meaning that any approximation utilized is a truncation in the physical processes considered rather than in the order of those processes. Our theory reproduces the key features of both the Coulomb blockade and coherent transport regimes simultaneously in a single unified theory. Nonperturbative effects of intramolecular correlations are included, which are necessary to accurately describe the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap, essential for a quantitative theory of transport. This work covers four major topics related to transport in single-molecule junctions. First, we use our many-body theory to calculate the nonlinear electrical response of the archetypal Au-1,4-benzenedithiol-Au junction and find irregularly shaped 'molecular diamonds' which have been experimentally observed in some larger molecules but which are inaccessible to existing theoretical approaches. Next, we extend our theory to include heat transport and develop an exact expression for the heat current in an interacting nanostructure. Using this result, we discover that quantum coherence can strongly enhance the thermoelectric response of a device, a result with a number of technological applications. We then develop the formalism to include multi-orbital lead-molecule contacts and multi-channel leads, both of which strongly affect the observable transport. Lastly, we include a dynamic screening correction to

  7. Introduction to many-body physics

    CERN Document Server

    Coleman, Piers

    2015-01-01

    A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.

  8. From few- to many-body quantum systems

    OpenAIRE

    Schiulaz, Mauro; Távora, Marco; Santos, Lea F.

    2018-01-01

    How many particles are necessary to make a many-body quantum system? To answer this question, we take as reference for the many-body limit a quantum system at half-filling and compare its properties with those of a system with $N$ particles, gradually increasing $N$ from 1. We show that the convergence of the static properties of the system with few particles to the many-body limit is fast. For $N \\gtrsim 4$, the density of states is already very close to Gaussian and signatures of many-body ...

  9. Geometry and time scales of self-consistent orbits in a modified SU(2) model

    International Nuclear Information System (INIS)

    Jezek, D.M.; Hernandez, E.S.; Solari, H.G.

    1986-01-01

    We investigate the time-dependent Hartree-Fock flow pattern of a two-level many fermion system interacting via a two-body interaction which does not preserve the parity symmetry of standard SU(2) models. The geometrical features of the time-dependent Hartree-Fock energy surface are analyzed and a phase instability is clearly recognized. The time evolution of one-body observables along self-consistent and exact trajectories are examined together with the overlaps between both orbits. Typical time scales for the determinantal motion can be set and the validity of the time-dependent Hartree-Fock approach in the various regions of quasispin phase space is discussed

  10. Detecting many-body-localization lengths with cold atoms

    Science.gov (United States)

    Guo, Xuefei; Li, Xiaopeng

    2018-03-01

    Considering ultracold atoms in optical lattices, we propose experimental protocols to study many-body-localization (MBL) length and criticality in quench dynamics. Through numerical simulations with exact diagonalization, we show that in the MBL phase the perturbed density profile following a local quench remains exponentially localized in postquench dynamics. The size of this density profile after long-time-dynamics defines a localization length, which tends to diverge at the MBL-to-ergodic transition as we increase the system size. The determined localization transition point agrees with previous exact diagonalization calculations using other diagnostics. Our numerical results provide evidence for violation of the Harris-Chayes bound for the MBL criticality. The critical exponent ν can be extracted from our proposed dynamical procedure, which can then be used directly in experiments to determine whether the Harris-Chayes-bound holds for the MBL transition. These proposed protocols to detect localization criticality are justified by benchmarking to the well-established results for the noninteracting three-dimensional Anderson localization.

  11. Odd-parity perturbations of the self-similar LTB spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Emily M; Nolan, Brien C, E-mail: emilymargaret.duffy27@mail.dcu.ie, E-mail: brien.nolan@dcu.ie [School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2011-05-21

    We consider the behaviour of odd-parity perturbations of those self-similar LemaItre-Tolman-Bondi spacetimes which admit a naked singularity. We find that a perturbation which evolves from initially regular data remains finite on the Cauchy horizon. Finiteness is demonstrated by considering the behaviour of suitable energy norms of the perturbation (and pointwise values of these quantities) on natural spacelike hypersurfaces. This result holds for a general choice of initial data and initial data surface. Finally, we examine the perturbed Weyl scalars in order to provide a physical interpretation of our results. Taken on its own, this result does not support cosmic censorship; however, a full perturbation of this spacetime would include even-parity perturbations, so we cannot conclude that this spacetime is stable to all linear perturbations.

  12. Time-dependent quantum many-body theory of identical bosons in a double well: Early-time ballistic interferences of fragmented and number entangled states

    International Nuclear Information System (INIS)

    Masiello, David J.; Reinhardt, William P.

    2007-01-01

    A time-dependent multiconfigurational self-consistent field theory is presented to describe the many-body dynamics of a gas of identical bosonic atoms confined to an external trapping potential at zero temperature from first principles. A set of generalized evolution equations are developed, through the time-dependent variational principle, which account for the complete and self-consistent coupling between the expansion coefficients of each configuration and the underlying one-body wave functions within a restricted two state Fock space basis that includes the full effects of the condensate's mean field as well as atomic correlation. The resulting dynamical equations are a classical Hamiltonian system and, by construction, form a well-defined initial value problem. They are implemented in an efficient numerical algorithm. An example is presented, highlighting the generality of the theory, in which the ballistic expansion of a fragmented condensate ground state is compared to that of a macroscopic quantum superposition state, taken here to be a highly entangled number state, upon releasing the external trapping potential. Strikingly different many-body matter-wave dynamics emerge in each case, accentuating the role of both atomic correlation and mean-field effects in the two condensate states

  13. Harmonically trapped cold atom systems: Few-body dynamics and application to many-body thermodynamics

    Science.gov (United States)

    Daily, Kevin Michael

    Underlying the many-body effects of ultracold atomic gases are the few-body dynamics and interparticle interactions. Moreover, the study of few-body systems on their own has accelerated due to confining few atoms in each well of a deep optical lattice or in a single microtrap. This thesis studies the microscopic properties of few-body systems under external spherically symmetric harmonic confinement and how the few-body properties translate to the many-body system. Bosonic and fermionic few-body systems are considered and the dependence of the energetics and other quantities are investigated as functions of the s-wave scattering length, the mass ratio and the temperature. It is found that the condensate fraction of a weakly-interacting trapped Bose gas depletes quadratically with the s-wave scattering length. The next order term in the depletion depends not only, as might be expected naively, on the s-wave scattering length and the effective range but additionally on a two-body parameter that is not needed to reproduce the energy of weakly-interacting trapped Bose gases. This finding has important implications for effective field theory treatments of the system. Weakly-interacting atomic and molecular two-component Fermi gases with equal masses are described using perturbative approaches. The energy shifts are tabulated and interpreted, and a measure of the molecular condensate fraction is developed. We develop a measure of the molecular condensate fraction using the two-body density matrix and we develop a model of the spherical component of the momentum distribution that agrees well with stochastic variational calculations. We establish the existence of intersystem degeneracies for equal mass two-component Fermi gases with zero-range interactions, where the eigen energies of the spin-imbalanced system are degenerate with a subset of the eigen energies of the more spin-balanced system and the same total number of fermions. For unequal mass two-component Fermi

  14. Self-consistent treatment of nuclear collective motion with an application to the giant-dipole resonance

    International Nuclear Information System (INIS)

    Liran, S.; Technion-Israel Inst. of Tech., Haifa. Dept. of Physics)

    1977-01-01

    This paper extends the recent theory of Liran, Scheefer, Scheid and Greiner on non-adiabatic cranking and nuclear collective motion. In the present work we show the self-consistency conditions for the collective motion, which are indicated by appropriate time-dependent Lagrange multipliers, can be treated explicitly. The energy conservation and the self-consistency condition in the case of one collective degree of freedom are expressed in differential form. This leads to a set of coupled differential equations in time for the many-body wave function, for the collective variable and for the Lagrange multiplier. An iteration procedure similar to that of the previous work is also presented. As an illustrative example, we investigate Brink's single-particle description of the giant-dipole resonance. In this case, the important role played by non-adiabaticity and self-consistency in determining the collective motion is demonstrated and discussed. We also consider the fact that in this example of a fast collective motion, the adiabatic cranking model of Inglis gives the correct mass parameter. (orig.) [de

  15. Many-body theory

    International Nuclear Information System (INIS)

    Hubbard, J.

    1980-01-01

    The evolution of the discipline of many-body theory during the past 25 years is outlined and the developments originated in the Theoretical Physics Division, AERE, are discussed. Topics considered include; the connection between plasma oscillations and the dielectric properties of an electron gas, superconductivity, Fermi levels, ferromagnetism in metals, phase transformations, scaling laws, and quasi-one-dimensional solids. (UK)

  16. Self-consistent quark bags

    International Nuclear Information System (INIS)

    Rafelski, J.

    1979-01-01

    After an introductory overview of the bag model the author uses the self-consistent solution of the coupled Dirac-meson fields to represent a bound state of strongly ineteracting fermions. In this framework he discusses the vivial approach to classical field equations. After a short description of the used numerical methods the properties of bound states of scalar self-consistent Fields and the solutions of a self-coupled Dirac field are considered. (HSI) [de

  17. Background history and cosmic perturbations for a general system of self-conserved dynamical dark energy and matter

    International Nuclear Information System (INIS)

    Gómez-Valent, Adrià; Karimkhani, Elahe; Solà, Joan

    2015-01-01

    We determine the Hubble expansion and the general cosmic perturbation equations for a general system consisting of self-conserved matter, ρ m , and self-conserved dark energy (DE), ρ D . While at the background level the two components are non-interacting, they do interact at the perturbations level. We show that the coupled system of matter and DE perturbations can be transformed into a single, third order, matter perturbation equation, which reduces to the (derivative of the) standard one in the case that the DE is just a cosmological constant. As a nontrivial application we analyze a class of dynamical models whose DE density ρ D (H) consists of a constant term, C 0 , and a series of powers of the Hubble rate. These models were previously analyzed from the point of view of dynamical vacuum models, but here we treat them as self-conserved DE models with a dynamical equation of state. We fit them to the wealth of expansion history and linear structure formation data and compare their fit quality with that of the concordance ΛCDM model. Those with C 0 =0 include the so-called ''entropic-force'' and ''QCD-ghost'' DE models, as well as the pure linear model ρ D ∼H, all of which appear strongly disfavored. The models with C 0 ≠0 , in contrast, emerge as promising dynamical DE candidates whose phenomenological performance is highly competitive with the rigid Λ-term inherent to the ΛCDM

  18. Background history and cosmic perturbations for a general system of self-conserved dynamical dark energy and matter

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Valent, Adrià; Karimkhani, Elahe; Solà, Joan, E-mail: adriagova@ecm.ub.edu, E-mail: e.karimkhani91@basu.ac.ir, E-mail: sola@ecm.ub.edu [High Energy Physics Group, Dept. ECM, and Institut de Ciències del Cosmos (ICC), Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona, Catalonia (Spain)

    2015-12-01

    We determine the Hubble expansion and the general cosmic perturbation equations for a general system consisting of self-conserved matter, ρ{sub m}, and self-conserved dark energy (DE), ρ{sub D}. While at the background level the two components are non-interacting, they do interact at the perturbations level. We show that the coupled system of matter and DE perturbations can be transformed into a single, third order, matter perturbation equation, which reduces to the (derivative of the) standard one in the case that the DE is just a cosmological constant. As a nontrivial application we analyze a class of dynamical models whose DE density ρ{sub D}(H) consists of a constant term, C{sub 0}, and a series of powers of the Hubble rate. These models were previously analyzed from the point of view of dynamical vacuum models, but here we treat them as self-conserved DE models with a dynamical equation of state. We fit them to the wealth of expansion history and linear structure formation data and compare their fit quality with that of the concordance ΛCDM model. Those with C{sub 0}=0 include the so-called ''entropic-force'' and ''QCD-ghost'' DE models, as well as the pure linear model ρ{sub D}∼H, all of which appear strongly disfavored. The models with C{sub 0}≠0 , in contrast, emerge as promising dynamical DE candidates whose phenomenological performance is highly competitive with the rigid Λ-term inherent to the ΛCDM.

  19. Few-body correlations in many-body physics

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Marcus

    2015-12-01

    In this thesis, various systems are analyzed in parameter regimes where the few-body aspects are dominant over the many-body behavior. Using the Operator Product Expansion from Quantum Field Theory, exact relations for observables of the electron gas as well as two-dimensional Fermi gases are derived. In addition, properties of both two-dimensional and three-dimensional cold quantum gases at small to moderate degeneracy are determined by means of a diagrammatic virial expansion.

  20. Nuclear collision theory with many-body correlations, 1

    International Nuclear Information System (INIS)

    Kurihara, Yukio.

    1984-11-01

    A generalized many-body correlation operator is introduced, following the Feshbach's formalism. Especially, the many-body correlation induced by the strong repulsion and attraction of the realistic NN interaction is concerned and the Feshbach's formalism is reformulated to describe such a many-body correlation well. And a method to estimate the many-body correlation operator is given from the multiple-scattering picture. The present formalism is compared with the resonating-group method. (author)

  1. Status of many-body theory

    International Nuclear Information System (INIS)

    Brueckner, K.A.

    1980-01-01

    This paper reviews the major steps in the development of many-body theory since the early 1950's. Very few systems permit an exact solution by selective diagram summation or by exact solution of a truncated Hamiltonian. Formal methods have usually had little success for real physical systems. Examples are all the quantum liquids such as nuclear matter, liquid He 3 , liquid He 4 , superconductors and metallic conductors. Atomic and molecular systems and finite nuclei present additional problems. Many-body theory has probably had its greatest success in the application to atomic properties and the development in recent years is reviewed. (Auth.)

  2. Optical to ultraviolet spectra of sandwiches of benzene and transition metal atoms: Time dependent density functional theory and many-body calculations

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; García Lastra, Juan Maria; Lopez, M. J.

    2010-01-01

    The optical spectra of sandwich clusters formed by transition metal atoms (titanium, vanadium, and chromium) intercalated between parallel benzene molecules have been studied by time-dependent density functional theory (TDDFT) and many-body perturbation theory. Sandwiches with different number...

  3. Consistency between Self-Reported and Recorded Values for Clinical Measures

    OpenAIRE

    III, Joseph Thomas; Paulet, Mindy; Rajpura, Jigar R.

    2016-01-01

    Objectives. This study evaluated consistency between self-reported values for clinical measures and recorded clinical measures. Methods. Self-reported values were collected for the clinical measures: systolic blood pressure, diastolic blood pressure, glucose level, height, weight, and cholesterol from health risk assessments completed by enrollees in a privately insured cohort. Body mass index (BMI) was computed from reported height and weight. Practitioner recorded values for the clinical me...

  4. Relativistic many-body calculations of magnetic dipole transitions in Be-like ions

    International Nuclear Information System (INIS)

    Safronova, U.I.; Johnson, W.R.; Derevianko, A.

    1999-01-01

    Reduced matrix elements and transition rates are calculated for all magnetic dipole (M1) transitions within 2l2l' configurations and for some 2l3l'-2l2l' transitions in Be-like ions with nuclear charges ranging from Z = 4 to 100. Many-body perturbation theory (MBPT), including the Breit interaction, is used to evaluate retarded M1 matrix elements. The calculations start with a (1s) 2 Dirac-Fock potential and include all possible n = 2 configurations, leading to 4 odd-parity and 6 even-parity states, and some n = 3 configurations. First-order perturbation theory is used to obtain intermediate coupling coefficients. Second-order MBPT is used to determine the matrix elements, which are evaluated for all 11 M1 transitions within 2l2l' configurations and for 35 M1 transitions between 2l3l' and 2l2l' states. The transition energies used in the calculation of oscillator strengths and transition rates are obtained from second-order MBPT. The importance of negative-energy contributions to M1 transition amplitudes is discussed. (orig.)

  5. Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory.

    Science.gov (United States)

    Ismail-Beigi, Sohrab

    2017-09-27

    The question of which non-interacting Green's function 'best' describes an interacting many-body electronic system is both of fundamental interest as well as of practical importance in describing electronic properties of materials in a realistic manner. Here, we study this question within the framework of Baym-Kadanoff theory, an approach where one locates the stationary point of a total energy functional of the one-particle Green's function in order to find the total ground-state energy as well as all one-particle properties such as the density matrix, chemical potential, or the quasiparticle energy spectrum and quasiparticle wave functions. For the case of the Klein functional, our basic finding is that minimizing the length of the gradient of the total energy functional over non-interacting Green's functions yields a set of self-consistent equations for quasiparticles that is identical to those of the quasiparticle self-consistent GW (QSGW) (van Schilfgaarde et al 2006 Phys. Rev. Lett. 96 226402-4) approach, thereby providing an a priori justification for such an approach to electronic structure calculations. In fact, this result is general, applies to any self-energy operator, and is not restricted to any particular approximation, e.g., the GW approximation for the self-energy. The approach also shows that, when working in the basis of quasiparticle states, solving the diagonal part of the self-consistent Dyson equation is of primary importance while the off-diagonals are of secondary importance, a common observation in the electronic structure literature of self-energy calculations. Finally, numerical tests and analytical arguments show that when the Dyson equation produces multiple quasiparticle solutions corresponding to a single non-interacting state, minimizing the length of the gradient translates into choosing the solution with largest quasiparticle weight.

  6. Many-body orthogonal polynomial systems

    International Nuclear Information System (INIS)

    Witte, N.S.

    1997-03-01

    The fundamental methods employed in the moment problem, involving orthogonal polynomial systems, the Lanczos algorithm, continued fraction analysis and Pade approximants has been combined with a cumulant approach and applied to the extensive many-body problem in physics. This has yielded many new exact results for many-body systems in the thermodynamic limit - for the ground state energy, for excited state gaps, for arbitrary ground state avenges - and are of a nonperturbative nature. These results flow from a confluence property of the three-term recurrence coefficients arising and define a general class of many-body orthogonal polynomials. These theorems constitute an analytical solution to the Lanczos algorithm in that they are expressed in terms of the three-term recurrence coefficients α and β. These results can also be applied approximately for non-solvable models in the form of an expansion, in a descending series of the system size. The zeroth order order this expansion is just the manifestation of the central limit theorem in which a Gaussian measure and hermite polynomials arise. The first order represents the first non-trivial order, in which classical distribution functions like the binomial distributions arise and the associated class of orthogonal polynomials are Meixner polynomials. Amongst examples of systems which have infinite order in the expansion are q-orthogonal polynomials where q depends on the system size in a particular way. (author)

  7. 1ST-ORDER NONADIABATIC COUPLING MATRIX-ELEMENTS FROM MULTICONFIGURATIONAL SELF-CONSISTENT-FIELD RESPONSE THEORY

    DEFF Research Database (Denmark)

    Bak, Keld L.; Jørgensen, Poul; Jensen, H.J.A.

    1992-01-01

    A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response of a ref......A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response...... to the full configuration interaction limit. Comparisons are made with state-averaged MCSCF results for MgH2 and finite-difference configuration interaction by perturbation with multiconfigurational zeroth-order wave function reflected by interactive process (CIPSI) results for BH....

  8. Self-compassion moderates body comparison and appearance self-worth's inverse relationships with body appreciation.

    Science.gov (United States)

    Homan, Kristin J; Tylka, Tracy L

    2015-09-01

    Although research on positive body image has increased, little research has explored which variables protect body appreciation during body-related threats. Self-compassion may be one such variable. Individuals high in self-compassion are mindful, kind, and nurturing toward themselves during situations that threaten their adequacy, while recognizing that being imperfect is part of "being human." In this study, we investigated whether two body-related threats (i.e., body comparison and appearance contingent self-worth) were more weakly related to body appreciation when self-compassion was high among an online sample of 263 women (Mage=35.26, SD=12.42). Results indicated that self-compassion moderated the inverse relationships between body related threats and body appreciation. Specifically, when self-compassion was very high, body comparison and appearance contingent self-worth were unrelated to body appreciation. However, when self-compassion was low, these relationships were strong. Self-compassion, then, may help preserve women's body appreciation during body-related threats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Self-consistent asset pricing models

    Science.gov (United States)

    Malevergne, Y.; Sornette, D.

    2007-08-01

    We discuss the foundations of factor or regression models in the light of the self-consistency condition that the market portfolio (and more generally the risk factors) is (are) constituted of the assets whose returns it is (they are) supposed to explain. As already reported in several articles, self-consistency implies correlations between the return disturbances. As a consequence, the alphas and betas of the factor model are unobservable. Self-consistency leads to renormalized betas with zero effective alphas, which are observable with standard OLS regressions. When the conditions derived from internal consistency are not met, the model is necessarily incomplete, which means that some sources of risk cannot be replicated (or hedged) by a portfolio of stocks traded on the market, even for infinite economies. Analytical derivations and numerical simulations show that, for arbitrary choices of the proxy which are different from the true market portfolio, a modified linear regression holds with a non-zero value αi at the origin between an asset i's return and the proxy's return. Self-consistency also introduces “orthogonality” and “normality” conditions linking the betas, alphas (as well as the residuals) and the weights of the proxy portfolio. Two diagnostics based on these orthogonality and normality conditions are implemented on a basket of 323 assets which have been components of the S&P500 in the period from January 1990 to February 2005. These two diagnostics show interesting departures from dynamical self-consistency starting about 2 years before the end of the Internet bubble. Assuming that the CAPM holds with the self-consistency condition, the OLS method automatically obeys the resulting orthogonality and normality conditions and therefore provides a simple way to self-consistently assess the parameters of the model by using proxy portfolios made only of the assets which are used in the CAPM regressions. Finally, the factor decomposition with the

  10. Understanding the many-body expansion for large systems. III. Critical role of four-body terms, counterpoise corrections, and cutoffs

    Science.gov (United States)

    Liu, Kuan-Yu; Herbert, John M.

    2017-10-01

    Papers I and II in this series [R. M. Richard et al., J. Chem. Phys. 141, 014108 (2014); K. U. Lao et al., ibid. 144, 164105 (2016)] have attempted to shed light on precision and accuracy issues affecting the many-body expansion (MBE), which only manifest in larger systems and thus have received scant attention in the literature. Many-body counterpoise (CP) corrections are shown to accelerate convergence of the MBE, which otherwise suffers from a mismatch between how basis-set superposition error affects subsystem versus supersystem calculations. In water clusters ranging in size up to (H2O)37, four-body terms prove necessary to achieve accurate results for both total interaction energies and relative isomer energies, but the sheer number of tetramers makes the use of cutoff schemes essential. To predict relative energies of (H2O)20 isomers, two approximations based on a lower level of theory are introduced and an ONIOM-type procedure is found to be very well converged with respect to the appropriate MBE benchmark, namely, a CP-corrected supersystem calculation at the same level of theory. Results using an energy-based cutoff scheme suggest that if reasonable approximations to the subsystem energies are available (based on classical multipoles, say), then the number of requisite subsystem calculations can be reduced even more dramatically than when distance-based thresholds are employed. The end result is several accurate four-body methods that do not require charge embedding, and which are stable in large basis sets such as aug-cc-pVTZ that have sometimes proven problematic for fragment-based quantum chemistry methods. Even with aggressive thresholding, however, the four-body approach at the self-consistent field level still requires roughly ten times more processors to outmatch the performance of the corresponding supersystem calculation, in test cases involving 1500-1800 basis functions.

  11. Understanding the many-body expansion for large systems. III. Critical role of four-body terms, counterpoise corrections, and cutoffs.

    Science.gov (United States)

    Liu, Kuan-Yu; Herbert, John M

    2017-10-28

    Papers I and II in this series [R. M. Richard et al., J. Chem. Phys. 141, 014108 (2014); K. U. Lao et al., ibid. 144, 164105 (2016)] have attempted to shed light on precision and accuracy issues affecting the many-body expansion (MBE), which only manifest in larger systems and thus have received scant attention in the literature. Many-body counterpoise (CP) corrections are shown to accelerate convergence of the MBE, which otherwise suffers from a mismatch between how basis-set superposition error affects subsystem versus supersystem calculations. In water clusters ranging in size up to (H 2 O) 37 , four-body terms prove necessary to achieve accurate results for both total interaction energies and relative isomer energies, but the sheer number of tetramers makes the use of cutoff schemes essential. To predict relative energies of (H 2 O) 20 isomers, two approximations based on a lower level of theory are introduced and an ONIOM-type procedure is found to be very well converged with respect to the appropriate MBE benchmark, namely, a CP-corrected supersystem calculation at the same level of theory. Results using an energy-based cutoff scheme suggest that if reasonable approximations to the subsystem energies are available (based on classical multipoles, say), then the number of requisite subsystem calculations can be reduced even more dramatically than when distance-based thresholds are employed. The end result is several accurate four-body methods that do not require charge embedding, and which are stable in large basis sets such as aug-cc-pVTZ that have sometimes proven problematic for fragment-based quantum chemistry methods. Even with aggressive thresholding, however, the four-body approach at the self-consistent field level still requires roughly ten times more processors to outmatch the performance of the corresponding supersystem calculation, in test cases involving 1500-1800 basis functions.

  12. Vortex matter stabilized by many-body interactions

    Science.gov (United States)

    Wolf, S.; Vagov, A.; Shanenko, A. A.; Axt, V. M.; Aguiar, J. Albino

    2017-10-01

    This work investigates interactions of vortices in superconducting materials between standard types I and II, in the domain of the so-called intertype (IT) superconductivity. Contrary to common expectations, the many-body (many-vortex) contribution is not a correction to the pair-vortex interaction here but plays a crucial role in the formation of the IT vortex matter. In particular, the many-body interactions stabilize vortex clusters that otherwise could not exist. Furthermore, clusters with large numbers of vortices become more stable when approaching the boundary between the intertype domain and type I. This indicates that IT superconductors develop a peculiar unconventional type of the vortex matter governed by the many-body interactions of vortices.

  13. Dynamically induced many-body localization

    Science.gov (United States)

    Choi, Soonwon; Abanin, Dmitry A.; Lukin, Mikhail D.

    2018-03-01

    We show that a quantum phase transition from ergodic to many-body localized (MBL) phases can be induced via periodic pulsed manipulation of spin systems. Such a transition is enabled by the interplay between weak disorder and slow heating rates. Specifically, we demonstrate that the Hamiltonian of a weakly disordered ergodic spin system can be effectively engineered, by using sufficiently fast coherent controls, to yield a stable MBL phase, which in turn completely suppresses the energy absorption from external control field. Our results imply that a broad class of existing many-body systems can be used to probe nonequilibrium phases of matter for a long time, limited only by coupling to external environment.

  14. Many-body forces in nuclear shell-model

    International Nuclear Information System (INIS)

    Rath, P.K.

    1985-01-01

    In the microscopic derivation of the effective Hamiltonian for the nuclear shell model many-body forces between the valence nucleons occur. These many-body forces can be discriminated in ''real'' many-body forces, which can be related to mesonic and internal degrees of freedom of the nucleons, and ''effective'' many-body forces, which arise by the confinement of the nucleonic Hilbert space to the finite-dimension shell-model space. In the present thesis the influences of such three-body forces on the spectra of sd-shell nuclei are studied. For this the two common techniques for shell-model calculations (Oak Ridge-Rochester and Glasgow representation) are extended in such way that a general three-body term in the Hamiltonian can be regarded. The studies show that the repulsive contributions of the considered three-nucleon forces become more important with increasing number of valence nucleons. By this the particle-number dependence of empirical two-nucleon forces can be qualitatively explained. A special kind of effective many-body force occurs in the folded diagram expansion of the energy-dependent effective Hamiltonian for the shell model. Thereby it is shown that the contributions of the folded diagrams with three nucleons are just as important as those with two nucleons. Thus it is to be suspected that the folded diagram expansion contains many-particle terms with arbitrary particle number. The present studies however show that four nucleon effects are neglegible so that the folded diagram expansion can be confined to two- and three-particle terms. In shell-model calculations which extend over several main shells the influences of the spurious center-of-mass motion must be regarded. A procedure is discussed by which these spurious degrees of freedom can be exactly separated. (orig.) [de

  15. Effect of the nonlocal exchange on the performance of the orbital-dependent correlation functionals from second-order perturbation theory.

    Science.gov (United States)

    Schweigert, Igor V; Bartlett, Rodney J

    2008-09-28

    Adding a fraction of the nonlocal exchange operator to the local orbital-dependent exchange potential improves the many-body perturbation expansion based on the Kohn-Sham determinant. The effect of such a hybrid scheme on the performance of the orbital-dependent correlation functional from the second-order perturbation theory (PT2H) is investigated numerically. A small fraction of the nonlocal exchange is often sufficient to ensure the existence of the self-consistent solution for the PT2H potential. In the He and Be atoms, including 37% of the nonlocal exchange leads to the correlation energies and electronic densities that are very close to the exact ones. In molecules, varying the fraction of the nonlocal exchange may result in the PT2H energy closely reproducing the CCSD(T) value; however such a fraction depends on the system and does not always result in an accurate electronic density. We also numerically verify that the "semicanonical" perturbation series includes most of the beneficial effects of the nonlocal exchange without sacrificing the locality of the exchange potential.

  16. Applicability of self-consistent mean-field theory

    International Nuclear Information System (INIS)

    Guo Lu; Sakata, Fumihiko; Zhao Enguang

    2005-01-01

    Within the constrained Hartree-Fock (CHF) theory, an analytic condition is derived to estimate whether a concept of the self-consistent mean field is realized in the level repulsive region. The derived condition states that an iterative calculation of the CHF equation does not converge when the quantum fluctuations coming from two-body residual interaction and quadrupole deformation become larger than a single-particle energy difference between two avoided crossing orbits. By means of numerical calculation, it is shown that the analytic condition works well for a realistic case

  17. Rotation of quantum impurities in the presence of a many-body environment

    Science.gov (United States)

    Lemeshko, Mikhail; Schmidt, Richard

    2015-05-01

    Pioneered by the seminal works of Wigner and Racah, the quantum theory of angular momentum evolved into a powerful machinery, commonly used to classify the states of isolated quantum systems and perturbations to their structure due to electromagnetic or crystalline fields. In ``realistic'' experiments, however, quantum systems are almost inevitably coupled to a many-particle environment and a field of elementary excitations associated with it, which is capable of fundamentally altering the physics of the system. We present the first systematic treatment of quantum rotation coupled to a many-particle environment. By using a series of canonical transformations on a generic microscopic Hamiltonian, we single out the conserved quantities of the problem. Using a variational ansatz accounting for an infinite number of many-body excitations, we characterize the spectrum of angular momentum eigenstates and identify the regions of instability, accompanied by emission of angular Cerenkov radiation. The developed technique can be applied to a wide range of systems described by the angular momentum algebra, from Rydberg atoms immersed into BEC's, to cold molecules solvated in helium droplets, to ultracold molecular ions.

  18. Relationship between body satisfaction with self esteemand unhealthy body weight management.

    Science.gov (United States)

    Daniali, Shahrbanoo; Azadbakht, Leila; Mostafavi, Firoozeh

    2013-01-01

    A favorable or unfavorable attitude about self was named self esteem. According to Maslow theory to achieve quality of life and happiness, one must reach the gradual fulfillment of human needs, including a high degree of own self-esteem. Body dissatisfaction is a negative distortion of one's body which is especially mentioned by the women. Many studies have shown links between self esteem, body dissatisfaction, health and behaviors. this study intends to determine relationship between body satisfaction, self esteem and unhealthy weight control behaviors between women. This cross-sectional study was done on 408 women employees in Isfahan University and Isfahan University of Medical Sciences during 1390. They were chosen according to the stratified random sampling method. Inclusion criteria were 1) willing to participate in the study and 2) lack of serious physical defect 3) not being in pregnancy or breastfeeding course. Exclusion criteria was filling out questionnaires incompletely. Data collection tool was a multidimensional questionnaire which comprised of 4 sections as following: demographic (5items), A self-administrative questionnaire for body Satisfaction (7 items), Rosenberg Self-Esteem Scale (10 items) and a standard Weight Control Behavior Scale (18 items). Cranach's alpha was 0.9 or higher for the different sections. Finally, collected data was analyzed with SPSS18 using the independent T-test, one-way ANOVA, Pearson correlation coefficient, regression, Spearman correlation. Frequencies of participants by weight category were 14.1% for obese, 35.3% for overweight, 47.6% for normal weight. The mean body satisfaction score in the studied women was 63.26 ± 16.27 (from 100). Mean score of self esteem was 76.70 ± 10.45. 51.5% of women had medium self esteem, 47.5% had high self esteem. Pearson correlation showed that the variables of body Satisfaction (r = 0.3, P = 0.02), BMI (r = - 0.14, P self-esteem significantly. Women with higher self esteem used higher

  19. Gibbs Measures of Nonlinear Schrödinger Equations as Limits of Many-Body Quantum States in Dimensions {d ≤slant 3}

    Science.gov (United States)

    Fröhlich, Jürg; Knowles, Antti; Schlein, Benjamin; Sohinger, Vedran

    2017-12-01

    We prove that Gibbs measures of nonlinear Schrödinger equations arise as high-temperature limits of thermal states in many-body quantum mechanics. Our results hold for defocusing interactions in dimensions {d =1,2,3}. The many-body quantum thermal states that we consider are the grand canonical ensemble for d = 1 and an appropriate modification of the grand canonical ensemble for {d =2,3}. In dimensions d = 2, 3, the Gibbs measures are supported on singular distributions, and a renormalization of the chemical potential is necessary. On the many-body quantum side, the need for renormalization is manifested by a rapid growth of the number of particles. We relate the original many-body quantum problem to a renormalized version obtained by solving a counterterm problem. Our proof is based on ideas from field theory, using a perturbative expansion in the interaction, organized by using a diagrammatic representation, and on Borel resummation of the resulting series.

  20. Exact many-body dynamics with stochastic one-body density matrix evolution

    International Nuclear Information System (INIS)

    Lacroix, D.

    2004-05-01

    In this article, we discuss some properties of the exact treatment of the many-body problem with stochastic Schroedinger equation (SSE). Starting from the SSE theory, an equivalent reformulation is proposed in terms of quantum jumps in the density matrix space. The technical details of the derivation a stochastic version of the Liouville von Neumann equation are given. It is shown that the exact Many-Body problem could be replaced by an ensemble of one-body density evolution, where each density matrix evolves according to its own mean-field augmented by a one-body noise. (author)

  1. Self-objectification, habitual body monitoring, and body dissatisfaction in older European American women: exploring age and feminism as moderators.

    Science.gov (United States)

    Grippo, Karen P; Hill, Melanie S

    2008-06-01

    This study examined the influence of feminist attitudes on self-objectification, habitual body monitoring, and body dissatisfaction in middle age and older women. The participants were 138 European American heterosexual women ranging in age from 40 to 87 years old. Consistent with previous research, self-objectification and habitual body monitoring were positively correlated with body dissatisfaction and, self-objectification and habitual body monitoring remained stable across the lifespan. While age did not moderate the relationship between self-objectification and body dissatisfaction, age was found to moderate the relationship between habitual body monitoring and body dissatisfaction such that the relationship was smaller for older women than for middle-aged women. Interestingly, feminist attitudes were not significantly correlated with body dissatisfaction, self-objectification, or habitual body monitoring, and endorsement of feminist attitudes was not found to moderate the relationship between self-objectification or habitual body monitoring and body dissatisfaction. Potential implications for older women are discussed.

  2. Total energy calculations from self-energy models

    International Nuclear Information System (INIS)

    Sanchez-Friera, P.

    2001-06-01

    Density-functional theory is a powerful method to calculate total energies of large systems of interacting electrons. The usefulness of this method, however, is limited by the fact that an approximation is required for the exchange-correlation energy. Currently used approximations (LDA and GGA) are not sufficiently accurate in many physical problems, as for instance the study of chemical reactions. It has been shown that exchange-correlation effects can be accurately described via the self-energy operator in the context of many-body perturbation theory. This is, however, a computationally very demanding approach. In this thesis a new scheme for calculating total energies is proposed, which combines elements from many-body perturbation theory and density-functional theory. The exchange-correlation energy functional is built from a simplified model of the self-energy, that nevertheless retains the main features of the exact operator. The model is built in such way that the computational effort is not significantly increased with respect to that required in a typical density-functional theory calculation. (author)

  3. Nonlocality in many-body quantum systems detected with two-body correlators

    Energy Technology Data Exchange (ETDEWEB)

    Tura, J., E-mail: jordi.tura@icfo.es [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Augusiak, R.; Sainz, A.B. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Lücke, B.; Klempt, C. [Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover (Germany); Lewenstein, M.; Acín, A. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); ICREA—Institució Catalana de Recerca i Estudis Avançats, Lluis Campanys 3, 08010 Barcelona (Spain)

    2015-11-15

    Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however, we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Tura et al., Science 344 (2014) 1256]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states—ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.

  4. On the systematic construction of convergent perturbation series

    International Nuclear Information System (INIS)

    Schmidt, C.

    1993-12-01

    Starting from the general decomposition of the many-body Hamiltonian parametrized by an operator Λwe derive the class of 'Λ-transformed' perturbation series. Aiming at practical applications we consider many-body perturbation theory of atoms and molecules in finite dimensional Hilbert spaces. Investigation of the analyticity properties of the eigenvalues and eigenstates of the Hamiltonian as functions of the coupling parameter defined by the particular decomposition of H allows for the construction of (minimal) Λoperators mapping an originally divergent series to a convergent one. There exists an operator Λ opt leading to the exact results in first order. Further improvements of the above mentioned minimal Λoperators can be achieved by approximations of Λ opt leading to fast convergent perturbation series. As the size of the remaining perturbation is given by the Λoperator chosen this method provides an a priori estimate of the convergence properties. (orig.)

  5. Many-body localization from one particle density matrix

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Soumya; Bardarson, Jens [Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); Schomerus, Henning [Lancaster University, Lancaster (United Kingdom); Heidrich-Meisner, Fabian [Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2016-07-01

    We show that the one-particle density matrix ρ can be used to characterize the interaction-driven many-body localization transition in isolated fermionic systems. The natural orbitals (the eigenstates) are localized in the many-body localized phase and spread out when one enters the delocalized phase, while the occupation spectrum (the set of eigenvalues) reveals the distinctive Fock- space structure of the many-body eigenstates, exhibiting a step-like discontinuity in the localized phase. The associated one-particle occupation entropy is small in the localized phase and large in the delocalized phase, with diverging fluctuations at the transition.

  6. Thermodynamical and Green function many-body Wick theorems

    International Nuclear Information System (INIS)

    Westwanski, B.

    1987-01-01

    The thermodynamical and Green function many-body reduction theorems of Wick type are proved for the arbitrary mixtures of the fermion, boson and spin systems. ''Many-body'' means that the operators used are the products of the arbitrary number of one-body standard basis operators [of the fermion or (and) spin types] with different site (wave vector) indices, but having the same ''time'' (in the interaction representation). The method of proving is based on'' 1) the first-order differential equation of Schwinger type for: 1a) anti T-product of operators; 1b) its average value; 2) KMS boundary conditions for this average. It is shown that the fermion, boson and spin systems can be unified in the many-body formulation (bosonification of the fermion systems). It is impossible in the one-body approach. Both of the many-body versions of the Wick theorem have the recurrent feature: nth order moment diagrams for the free energy or Green functions can be expressed by the (n-1)th order ones. This property corresponds to the automatic realization of: (i) summations over Bose-Einstein or (and) Fermi-Dirac frequencies; (ii) elimination of Bose-Einstein or (and) Fermi-Dirac distributions. The procedures (i) and (ii), being the results of using the Green function one-body reduction theorem, have constituted the significant difficulty up to now in the treatment of quantum systems. (orig.)

  7. Linearized self-consistent quasiparticle GW method: Application to semiconductors and simple metals

    International Nuclear Information System (INIS)

    Kutepov, A. L.

    2017-01-01

    We present a code implementing the linearized self-consistent quasiparticle GW method (QSGW) in the LAPW basis. Our approach is based on the linearization of the self-energy around zero frequency which differs it from the existing implementations of the QSGW method. The linearization allows us to use Matsubara frequencies instead of working on the real axis. This results in efficiency gains by switching to the imaginary time representation in the same way as in the space time method. The all electron LAPW basis set eliminates the need for pseudopotentials. We discuss the advantages of our approach, such as its N 3 scaling with the system size N, as well as its shortcomings. We apply our approach to study the electronic properties of selected semiconductors, insulators, and simple metals and show that our code produces the results very close to the previously published QSGW data. Our implementation is a good platform for further many body diagrammatic resummations such as the vertex-corrected GW approach and the GW+DMFT method.

  8. Many-body localization in disorder-free systems: The importance of finite-size constraints

    Energy Technology Data Exchange (ETDEWEB)

    Papić, Z., E-mail: zpapic@perimeterinstitute.ca [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom); Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Stoudenmire, E. Miles [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Abanin, Dmitry A. [Department of Theoretical Physics, University of Geneva, 24 quai Ernest-Ansermet, 1211 Geneva (Switzerland); Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada)

    2015-11-15

    Recently it has been suggested that many-body localization (MBL) can occur in translation-invariant systems, and candidate 1D models have been proposed. We find that such models, in contrast to MBL systems with quenched disorder, typically exhibit much more severe finite-size effects due to the presence of two or more vastly different energy scales. In a finite system, this can artificially split the density of states (DOS) into bands separated by large gaps. We argue for such models to faithfully represent the thermodynamic limit behavior, the ratio of relevant coupling must exceed a certain system-size depedent cutoff, chosen such that various bands in the DOS overlap one another. Setting the parameters this way to minimize finite-size effects, we study several translation-invariant MBL candidate models using exact diagonalization. Based on diagnostics including entanglement and local observables, we observe thermal (ergodic), rather than MBL-like behavior. Our results suggest that MBL in translation-invariant systems with two or more very different energy scales is less robust than perturbative arguments suggest, possibly pointing to the importance of non-perturbative effects which induce delocalization in the thermodynamic limit.

  9. Multiplicative renormalizability and self-consistent treatments of the Schwinger-Dyson equations

    International Nuclear Information System (INIS)

    Brown, N.; Dorey, N.

    1989-11-01

    Many approximations to the Schwinger-Dyson equations place constraints on the renormalization constants of a theory. The requirement that the solutions to the equations be multiplicatively renormalizable also places constraints on these constants. Demanding that these two sets of constraints be compatible is an important test of the self-consistency of the approximations made. We illustrate this idea by considering the equation for the fermion propagator in massless quenched quantum electrodynamics, (QED), checking the consistency of various approximations. In particular, we show that the much used 'ladder' approximation is self-consistent, provided that the coupling constant is renormalized in a particular way. We also propose another approximation which satisfies this self-consistency test, but requires that the coupling be unrenormalized, as should be the case in the full quenched approximation. This new approximation admits an exact solution, which also satisfies the renormalization group equation for the quenched approximation. (author)

  10. Quasi-Particle Self-Consistent GW for Molecules.

    Science.gov (United States)

    Kaplan, F; Harding, M E; Seiler, C; Weigend, F; Evers, F; van Setten, M J

    2016-06-14

    We present the formalism and implementation of quasi-particle self-consistent GW (qsGW) and eigenvalue only quasi-particle self-consistent GW (evGW) adapted to standard quantum chemistry packages. Our implementation is benchmarked against high-level quantum chemistry computations (coupled-cluster theory) and experimental results using a representative set of molecules. Furthermore, we compare the qsGW approach for five molecules relevant for organic photovoltaics to self-consistent GW results (scGW) and analyze the effects of the self-consistency on the ground state density by comparing calculated dipole moments to their experimental values. We show that qsGW makes a significant improvement over conventional G0W0 and that partially self-consistent flavors (in particular evGW) can be excellent alternatives.

  11. Atoms as many-body systems

    International Nuclear Information System (INIS)

    Amusia, M Ya

    2011-01-01

    Contrary to common wisdom, not everything is clear and simple in the structure of many-electron atoms. Complexity in atoms is mainly a result of interelectron interaction that leads to rather unusual behaviour. Most transparently this is manifested in photo-ionization processes of many-electron atoms and some multi-atomic objects e.g. endohedrals. Particular attention will be given to the approach describing the interaction of photons with many-electron atoms in the frame of the many-body theory based on the Feynman diagrams technique. As a suitable one-electron approximation the Hartree - Fock (HF) approach will be presented. On its ground we will include the so-called electron correlation effects and discuss the frequently used Random Phase Approximation with Exchange - RPAE. Some results of recent calculations will be presented.

  12. Atoms as many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya, E-mail: amusia@vms.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem (Israel); Ioffe Physical-technical Institute, RAS, St. Petersburg (Russian Federation)

    2011-09-16

    Contrary to common wisdom, not everything is clear and simple in the structure of many-electron atoms. Complexity in atoms is mainly a result of interelectron interaction that leads to rather unusual behaviour. Most transparently this is manifested in photo-ionization processes of many-electron atoms and some multi-atomic objects e.g. endohedrals. Particular attention will be given to the approach describing the interaction of photons with many-electron atoms in the frame of the many-body theory based on the Feynman diagrams technique. As a suitable one-electron approximation the Hartree - Fock (HF) approach will be presented. On its ground we will include the so-called electron correlation effects and discuss the frequently used Random Phase Approximation with Exchange - RPAE. Some results of recent calculations will be presented.

  13. A review of 20 Ne structure in a full microscopic self-consistent shell ...

    African Journals Online (AJOL)

    A set of single-particle energies together with a set of two-body matrix- elements derived in a selfconsistent manner from the Reid soft–core potential are used to calculate the energy levels of 20Ne. We used a harmonic oscillator wave function folded with two-body correlation functions in our calculation. It is found that the ...

  14. Similarities between Prescott Lecky's theory of self-consistency and Carl Rogers' self-theory.

    Science.gov (United States)

    Merenda, Peter F

    2010-10-01

    The teachings of Prescott Lecky on the self-concept at Columbia University in the 1920s and 1930s and the posthumous publications of his book on self-consistency beginning in 1945 are compared with the many publications of Carl Rogers on the self-concept beginning in the early 1940s. Given that Rogers was a graduate student at Columbia in the 1920s and 1930s, the striking similarities between these two theorists, as well as claims attributed to Rogers by Rogers' biographers and writers who have quoted Rogers on his works relating to self-theory, strongly suggest that Rogers borrowed from Lecky without giving him the proper credit. Much of Rogers' writings on the self-concept included not only terms and concepts which were original with Lecky, but at times these were actually identical.

  15. The importance of body satisfaction to physical self-concept and body mass index in Spanish adolescents.

    Science.gov (United States)

    Sánchez-Miguel, Pedro Antonio; González, Juan José Pulido; Sánchez-Oliva, David; Alonso, Diana Amado; Leo, Francisco Miguel

    2018-04-06

    This research examines the association between measured body mass index (BMI) and the perception of BMI by young students. Moreover, this research tests the importance of BMI and self-concept, in order to predict body dissatisfaction in high school students. The sample consisted of 2087 individuals from different high schools in Extremadura, Spain, both males (n = 1046) and females (n = 1041), ranging in age from 15 to 17 years old (M = 15.42; SD = 0.86). Initially, participants' BMIs were assessed through anthropometry. Later, all individuals were asked about their weight and height, and their self-reported BMI was calculated. Participants also answered a questionnaire about their perception of self-concept, as well as completed a test about body image perception using Stunkard images. Outcomes revealed that factors concerning self-concept and perceived BMI explained body dissatisfaction. Finally, results are discussed with the aim of improving knowledge in body dissatisfaction context. © 2018 International Union of Psychological Science.

  16. Nuclear many-body correlation dynamics--a nonperturbative approach in quantum many-body theory

    International Nuclear Information System (INIS)

    Wang Shunjin

    1996-01-01

    Based on the experimental results and theoretical experience in nuclear physics, the article has explored the basic physical ideas and theoretical methods in nuclear and quantum many-body correlation dynamics. The main theoretical results and important applications are introduced briefly. The paper addresses the fundamental ingredients and physical interpretation of theoretical results in a comprehensive way. Recent new results about correlation dynamics in quantum field theories are also presented. The perspectives of further application are viewed. (91 refs.)

  17. Alternative integral equations and perturbation expansions for self-coupled scalar fields

    International Nuclear Information System (INIS)

    Ford, L.H.

    1985-01-01

    It is shown that the theory of a self-coupled scalar field may be expressed in terms of a class of integral equations which include the Yang-Feldman equation as a particular case. Other integral equations in this class could be used to generate alternative perturbation expansions which contain a nonanalytic dependence upon the coupling constant and are less ultraviolet divergent than the conventional perturbation expansion. (orig.)

  18. Many body effects in nuclear matter QCD sum rules

    Science.gov (United States)

    Drukarev, E. G.; Ryskin, M. G.; Sadovnikova, V. A.

    2017-12-01

    We calculate the single-particle nucleon characteristics in symmetric nuclear matter with inclusion of the 3N and 4N interactions. We calculated the contribution of the 3N interactions earlier, now we add that of the 4N ones. The contribution of the 4N forces to nucleon self energies is expressed in terms of the nonlocal scalar condensate (d = 3) and of the configurations of the vector-scalar and the scalar-scalar quark condensates (d = 6) in which two diquark operators act on two different nucleons of the matter.These four-quark condensates are obtained in the model-independent way. The density dependence of the nucleon effective mass, of the vector self energy and of the single-particle potential energy are obtained. We traced the dependence of the nucleon characteristics on the actual value of the pion-nucleon sigma term. We obtained also the nucleon characteristics in terms of the quasifree nucleons, with the noninteracting nucleons surrounded by their pion clouds as the starting point. This approach leads to strict hierarchy of the many body forces.

  19. Effects of spin–orbit coupling and many-body correlations in STM transport through copper phthalocyanine

    Directory of Open Access Journals (Sweden)

    Benjamin Siegert

    2015-12-01

    Full Text Available The interplay of exchange correlations and spin–orbit interaction (SOI on the many-body spectrum of a copper phtalocyanine (CuPc molecule and their signatures in transport are investigated. We first derive a minimal model Hamiltonian in a basis of frontier orbitals that is able to reproduce experimentally observed singlet–triplet splittings. In a second step SOI effects are included perturbatively. Major consequences of the SOI are the splitting of former degenerate levels and a magnetic anisotropy, which can be captured by an effective low-energy spin Hamiltonian. We show that scanning tunneling microscopy-based magnetoconductance measurements can yield clear signatures of both these SOI-induced effects.

  20. Short history of nuclear many-body problem

    International Nuclear Information System (INIS)

    Köhler, H.S.

    2014-01-01

    This is a very short presentation regarding developments in the theory of nuclear many-body problems, as seen and experienced by the author during the past 60 years with particular emphasis on the contributions of Gerry Brown and his research-group. Much of his work was based on Brueckner's formulation of the nuclear many-body problem. It is reviewed briefly together with the Moszkowski–Scott separation method that was an important part of his early work. The core polarisation and his work related to effective interactions in general are also addressed

  1. Self-consistent radial sheath

    International Nuclear Information System (INIS)

    Hazeltine, R.D.

    1988-12-01

    The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig

  2. Effective linear two-body method for many-body problems in atomic and nuclear physics

    International Nuclear Information System (INIS)

    Kim, Y.E.; Zubarev, A.L.

    2000-01-01

    We present an equivalent linear two-body method for the many body problem, which is based on an approximate reduction of the many-body Schroedinger equation by the use of a variational principle. The method is applied to several problems in atomic and nuclear physics. (author)

  3. Many-Body Quantum Chaos and Entanglement in a Quantum Ratchet

    Science.gov (United States)

    Valdez, Marc Andrew; Shchedrin, Gavriil; Heimsoth, Martin; Creffield, Charles E.; Sols, Fernando; Carr, Lincoln D.

    2018-06-01

    We uncover signatures of quantum chaos in the many-body dynamics of a Bose-Einstein condensate-based quantum ratchet in a toroidal trap. We propose measures including entanglement, condensate depletion, and spreading over a fixed basis in many-body Hilbert space, which quantitatively identify the region in which quantum chaotic many-body dynamics occurs, where random matrix theory is limited or inaccessible. With these tools, we show that many-body quantum chaos is neither highly entangled nor delocalized in the Hilbert space, contrary to conventionally expected signatures of quantum chaos.

  4. Translationally invariant self-consistent field theories

    International Nuclear Information System (INIS)

    Shakin, C.M.; Weiss, M.S.

    1977-01-01

    We present a self-consistent field theory which is translationally invariant. The equations obtained go over to the usual Hartree-Fock equations in the limit of large particle number. In addition to deriving the dynamic equations for the self-consistent amplitudes we discuss the calculation of form factors and various other observables

  5. Many-body localization of bosons in optical lattices

    Science.gov (United States)

    Sierant, Piotr; Zakrzewski, Jakub

    2018-04-01

    Many-body localization for a system of bosons trapped in a one-dimensional lattice is discussed. Two models that may be realized for cold atoms in optical lattices are considered. The model with a random on-site potential is compared with previously introduced random interactions model. While the origin and character of the disorder in both systems is different they show interesting similar properties. In particular, many-body localization appears for a sufficiently large disorder as verified by a time evolution of initial density wave states as well as using statistical properties of energy levels for small system sizes. Starting with different initial states, we observe that the localization properties are energy-dependent which reveals an inverted many-body localization edge in both systems (that finding is also verified by statistical analysis of energy spectrum). Moreover, we consider computationally challenging regime of transition between many body localized and extended phases where we observe a characteristic algebraic decay of density correlations which may be attributed to subdiffusion (and Griffiths-like regions) in the studied systems. Ergodicity breaking in the disordered Bose–Hubbard models is compared with the slowing-down of the time evolution of the clean system at large interactions.

  6. Effects of the Eccentricity of a Perturbing Third Body on the Orbital Correction Maneuvers of a Spacecraft

    Directory of Open Access Journals (Sweden)

    R. C. Domingos

    2014-01-01

    Full Text Available The fuel consumption required by the orbital maneuvers when correcting perturbations on the orbit of a spacecraft due to a perturbing body was estimated. The main goals are the measurement of the influence of the eccentricity of the perturbing body on the fuel consumption required by the station keeping maneuvers and the validation of the averaged methods when applied to the problem of predicting orbital maneuvers. To study the evolution of the orbits, the restricted elliptic three-body problem and the single- and double-averaged models are used. Maneuvers are made by using impulsive and low thrust maneuvers. The results indicated that the averaged models are good to make predictions for the orbital maneuvers when the spacecraft is in a high inclined orbit. The eccentricity of the perturbing body plays an important role in increasing the effects of the perturbation and the fuel consumption required for the station keeping maneuvers. It is shown that the use of more frequent maneuvers decreases the annual cost of the station keeping to correct the orbit of a spacecraft. An example of an eccentric planetary system of importance to apply the present study is the dwarf planet Haumea and its moons, one of them in an eccentric orbit.

  7. The structure of conscious bodily self-perception during full-body illusions.

    Science.gov (United States)

    Dobricki, Martin; de la Rosa, Stephan

    2013-01-01

    Previous research suggests that bodily self-identification, bodily self-localization, agency, and the sense of being present in space are critical aspects of conscious full-body self-perception. However, none of the existing studies have investigated the relationship of these aspects to each other, i.e., whether they can be identified to be distinguishable components of the structure of conscious full-body self-perception. Therefore, the objective of the present investigation is to elucidate the structure of conscious full-body self-perception. We performed two studies in which we stroked the back of healthy individuals for three minutes while they watched the back of a distant virtual body being synchronously stroked with a virtual stick. After visuo-tactile stimulation, participants assessed changes in their bodily self-perception with a custom made self-report questionnaire. In the first study, we investigated the structure of conscious full-body self-perception by analyzing the responses to the questionnaire by means of multidimensional scaling combined with cluster analysis. In the second study, we then extended the questionnaire and validated the stability of the structure of conscious full-body self-perception found in the first study within a larger sample of individuals by performing a principle components analysis of the questionnaire responses. The results of the two studies converge in suggesting that the structure of conscious full-body self-perception consists of the following three distinct components: bodily self-identification, space-related self-perception (spatial presence), and agency.

  8. Self-body recognition depends on implicit and explicit self-esteem.

    Science.gov (United States)

    Richetin, Juliette; Xaiz, Annalisa; Maravita, Angelo; Perugini, Marco

    2012-03-01

    The present contribution bridges research on body image, self-esteem, and body recognition. Recent work in neuroscience indicates a superiority in the processing of self relative to others' body parts. The present contribution shows that this ability is not universal but it is qualified by individual differences in implicit and explicit self-esteem. In fact, two studies (n₁ = 41 and n₂ = 35) using two different paradigms in body recognition and direct and indirect measures of self-esteem reveal that this advantage in recognizing one's own body parts is associated with one's level of self-esteem. Moreover, it appears that measures of implicit and explicit self-esteem provide different contributions to self-body recognition abilities and that these contributions depend on how self-body recognition is assessed. Implications of these results are discussed notably in the perspective of research on body image. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. The quantum mechanics of many-body systems

    CERN Document Server

    Thouless, David James; Brueckner, Keith A

    1961-01-01

    The Quantum Mechanics of Many-Body Systems provides an introduction to that field of theoretical physics known as """"many-body theory."""" It is concerned with problems that are common to nuclear physics, atomic physics, the electron theory of metals, and to the theories of liquid helium three and four, and it describes the methods which have recently been developed to solve such problems. The aim has been to produce a unified account of the field, rather than to describe all the parallel methods that have been developed; as a result, a number of important papers are not mentioned. The main

  10. Self-consistent RPA and the time-dependent density matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Schuck, P. [Institut de Physique Nucleaire, Orsay (France); CNRS et Universite Joseph Fourier, Laboratoire de Physique et Modelisation des Milieux Condenses, Grenoble (France); Tohyama, M. [Kyorin University School of Medicine, Mitaka, Tokyo (Japan)

    2016-10-15

    The time-dependent density matrix (TDDM) or BBGKY (Bogoliubov, Born, Green, Kirkwood, Yvon) approach is decoupled and closed at the three-body level in finding a natural representation of the latter in terms of a quadratic form of two-body correlation functions. In the small amplitude limit an extended RPA coupled to an also extended second RPA is obtained. Since including two-body correlations means that the ground state cannot be a Hartree-Fock state, naturally the corresponding RPA is upgraded to Self-Consistent RPA (SCRPA) which was introduced independently earlier and which is built on a correlated ground state. SCRPA conserves all the properties of standard RPA. Applications to the exactly solvable Lipkin and the 1D Hubbard models show good performances of SCRPA and TDDM. (orig.)

  11. Four-body interaction energy for compressed solid krypton from quantum theory.

    Science.gov (United States)

    Tian, Chunling; Wu, Na; Liu, Fusheng; Saxena, Surendra K; Zheng, Xingrong

    2012-07-28

    The importance of the four-body contribution in compressed solid krypton was first evaluated using the many-body expansion method and the coupled cluster theory with full single and double excitations plus perturbative treatment of triples. All different four-atom clusters existing in the first- and second-nearest neighbor shells of face-centered cubic krypton were considered, and both self-consistent-field Hartree-Fock and correlation parts of the four-body interaction were accurately determined from the ambient conditions up to eightfold volume compression. We find that the four-body interaction energy is negative at compression ratio lower than 2, where the dispersive forces play a dominant role. With increasing the compression, the four-body contribution becomes repulsive and significantly cancels the over-softening effects of the three-body potential. The obtained equation of state (EOS) was compared with the experiments and the density-functional theory calculations. It shows that combination of the four-body effects with two- and three-body interactions leads to an excellent agreement with EOS measurements throughout the whole experimental range 0-130 GPa, and extends the prediction to 300 GPa.

  12. Self-consistent calculation of steady-state creep and growth in textured zirconium

    International Nuclear Information System (INIS)

    Tome, C.N.; So, C.B.; Woo, C.H.

    1993-01-01

    Irradiation creep and growth in zirconium alloys result in anisotropic dimensional changes relative to the crystallographic axis in each individual grain. Several methods have been attempted to model such dimensional changes, taking into account the development of intergranular stresses. In this paper, we compare the predictions of several such models, namely the upper-bound, the lower-bound, the isotropic K* self-consistent (analytical) and the fully self-consistent (numerical) models. For given single-crystal creep compliances and growth factors, the polycrystal compliances predicted by the upper- and lower-bound models are unreliable. The predictions of the two self-consistent approaches are usually similar. The analytical isotropic K* approach is simple to implement and can be used to estimate the creep and growth rates of the polycrystal in many cases. The numerical fully self-consistent approach should be used when an accurate prediction of polycrystal creep is required, particularly for the important case of a closed-end internally pressurized tube. In most cases, the variations in grain shape introduce only minor corrections to the behaviour of polycrystalline materials. (author)

  13. Use of a Cutaneous Body Image (CBI) scale to evaluate self perception of body image in acne vulgaris.

    Science.gov (United States)

    Amr, Mostafa; Kaliyadan, Feroze; Shams, Tarek

    2014-01-01

    Skin disorders such as acne, which have significant cosmetic implications, can affect the self-perception of cutaneous body image. There are many scales which measure self-perception of cutaneous body image. We evaluated the use of a simple Cutaneous Body Image (CBI) scale to assess self-perception of body image in a sample of young Arab patients affected with acne. A total of 70 patients with acne answered the CBI questionnaire. The CBI score was correlated with the severity of acne and acne scarring, gender, and history of retinoids use. There was no statistically significant correlation between CBI and the other parameters - gender, acne/acne scarring severity, and use of retinoids. Our study suggests that cutaneous body image perception in Arab patients with acne was not dependent on variables like gender and severity of acne or acne scarring. A simple CBI scale alone is not a sufficiently reliable tool to assess self-perception of body image in patients with acne vulgaris.

  14. A complete basis for a perturbation expansion of the general N-body problem

    International Nuclear Information System (INIS)

    Laing, W Blake; Kelle, David W; Dunn, Martin; Watson, Deborah K

    2009-01-01

    We discuss a basis set developed to calculate perturbation coefficients in an expansion of the general N-body problem. This basis has two advantages. First, the basis is complete order-by-order for the perturbation series. Second, the number of independent basis tensors spanning the space for a given order does not scale with N, the number of particles, despite the generality of the problem. At first order, the number of basis tensors is 25 for all N, i.e. the problem scales as N 0 , although one would initially expect an N 6 scaling at first order. The perturbation series is expanded in inverse powers of the spatial dimension. This results in a maximally symmetric configuration at lowest order which has a point group isomorphic with the symmetric group, S N . The resulting perturbation series is order-by-order invariant under the N! operations of the S N point group which is responsible for the slower than exponential growth of the basis. In this paper, we demonstrate the completeness of the basis and perform the first test of this formalism through first order by comparing to an exactly solvable fully interacting problem of N particles with a two-body harmonic interaction potential

  15. Nonlinear Quantum Metrology of Many-Body Open Systems

    Science.gov (United States)

    Beau, M.; del Campo, A.

    2017-07-01

    We introduce general bounds for the parameter estimation error in nonlinear quantum metrology of many-body open systems in the Markovian limit. Given a k -body Hamiltonian and p -body Lindblad operators, the estimation error of a Hamiltonian parameter using a Greenberger-Horne-Zeilinger state as a probe is shown to scale as N-[k -(p /2 )], surpassing the shot-noise limit for 2 k >p +1 . Metrology equivalence between initial product states and maximally entangled states is established for p ≥1 . We further show that one can estimate the system-environment coupling parameter with precision N-(p /2 ), while many-body decoherence enhances the precision to N-k in the noise-amplitude estimation of a fluctuating k -body Hamiltonian. For the long-range Ising model, we show that the precision of this parameter beats the shot-noise limit when the range of interactions is below a threshold value.

  16. Many-body Anderson localization of strongly interacting bosons in random lattices

    International Nuclear Information System (INIS)

    Katzer, Roman

    2015-05-01

    In the present work, we investigate the problem of many-body localization of strongly interacting bosons in random lattices within the disordered Bose-Hubbard model. This involves treating both the local Mott-Hubbard physics as well as the non-local quantum interference processes, which give rise to the phenomenon of Anderson localization, within the same theory. In order to determine the interaction induced transition to the Mott insulator phase, it is necessary to treat the local particle interaction exactly. Therefore, here we use a mean-field approach that approximates only the kinetic term of the Hamiltonian. This way, the full problem of interacting bosons on a random lattice is reduced to a local problem of a single site coupled to a particle bath, which has to be solved self-consistently. In accordance to previous works, we find that a finite disorder width leads to a reduced size of the Mott insulating regions. The transition from the superfluid phase to the Bose glass phase is driven by the non-local effect of Anderson localization. In order to describe this transition, one needs to work within a theory that is non-local as well. Therefore, here we introduce a new approach to the problem. Based on the results for the local excitation spectrum obtained within the mean-field theory, we reduce the full, interacting model to an effective, non-interacting model by applying a truncation scheme to the Hilbert space. Evaluating the long-ranged current density within this approximation, we identify the transition from the Bose glass to the superfluid phase with the Anderson transition of the effective model. Resolving this transition using the self-consistent theory of localization, we obtain the full phase diagram of the disordered Bose-Hubbard model in the regime of strong interaction and larger disorder. In accordance to the theorem of inclusions, we find that the Mott insulator and the superfluid phase are always separated by the compressible, but insulating

  17. Detecting a many-body mobility edge with quantum quenches

    Directory of Open Access Journals (Sweden)

    Piero Naldesi, Elisa Ercolessi, Tommaso Roscilde

    2016-10-01

    Full Text Available The many-body localization (MBL transition is a quantum phase transition involving highly excited eigenstates of a disordered quantum many-body Hamiltonian, which evolve from "extended/ergodic" (exhibiting extensive entanglement entropies and fluctuations to "localized" (exhibiting area-law scaling of entanglement and fluctuations. The MBL transition can be driven by the strength of disorder in a given spectral range, or by the energy density at fixed disorder - if the system possesses a many-body mobility edge. Here we propose to explore the latter mechanism by using "quantum-quench spectroscopy", namely via quantum quenches of variable width which prepare the state of the system in a superposition of eigenstates of the Hamiltonian within a controllable spectral region. Studying numerically a chain of interacting spinless fermions in a quasi-periodic potential, we argue that this system has a many-body mobility edge; and we show that its existence translates into a clear dynamical transition in the time evolution immediately following a quench in the strength of the quasi-periodic potential, as well as a transition in the scaling properties of the quasi-stationary state at long times. Our results suggest a practical scheme for the experimental observation of many-body mobility edges using cold-atom setups.

  18. Q-deformed algebras and many-body physics

    Energy Technology Data Exchange (ETDEWEB)

    Galetti, D; Lunardi, J T; Pimentel, B M [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Lima, C L [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    1995-11-01

    A review is presented of some applications of q-deformed algebras to many-body systems. The rotational and pairing nuclear problems will be discussed in the context of q-deformed algebras, before presenting a more microscopically based application of q-deformed concepts to many-fermion systems. (author). 30 refs., 5 figs.

  19. A Simulation Model for Drift Resistive Ballooning Turbulence Examining the Influence of Self-consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim; Joseph, Ilon

    2015-11-01

    Progress is reported on including self-consistent zonal flows in simulations of drift-resistive ballooning turbulence using the BOUT + + framework. Previous published work addressed the simulation of L-mode edge turbulence in realistic single-null tokamak geometry using the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations. The effects of imposed sheared ExB poloidal rotation were included, with a static radial electric field fitted to experimental data. In new work our goal is to include the self-consistent effects on the radial electric field driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We describe a model for including self-consistent zonal flows and an algorithm for maintaining underlying plasma profiles to enable the simulation of steady-state turbulence. We examine the role of Braginskii viscous forces in providing necessary dissipation when including axisymmetric perturbations. We also report on some of the numerical difficulties associated with including the axisymmetric component of the fluctuating fields. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory (LLNL-ABS-674950).

  20. Finite-temperature second-order many-body perturbation and Hartree–Fock theories for one-dimensional solids: An application to Peierls and charge-density-wave transitions in conjugated polymers

    International Nuclear Information System (INIS)

    He, Xiao; Ryu, Shinsei; Hirata, So

    2014-01-01

    Finite-temperature extensions of ab initio Gaussian-basis-set spin-restricted Hartree–Fock (HF) and second-order many-body perturbation (MP2) theories are implemented for infinitely extended, periodic, one-dimensional solids and applied to the Peierls and charge-density-wave (CDW) transitions in polyyne and all-trans polyacetylene. The HF theory predicts insulating CDW ground states for both systems in their equidistant structures at low temperatures. In the same structures, they turn metallic at high temperatures. Starting from the “dimerized” low-temperature equilibrium structures, the systems need even higher temperatures to undergo a Peierls transition, which is accompanied by geometric as well as electronic distortions from dimerized to non-dimerized forms. The conventional finite-temperature MP2 theory shows a sign of divergence in any phase at any nonzero temperature and is useless. The renormalized finite-temperature MP2 (MP2R) theory is divergent only near metallic electronic structures, but is well behaved elsewhere. MP2R also predicts CDW and Peierls transitions occurring at two different temperatures. The effect of electron correlation is primarily to lower the Peierls transition temperature

  1. Electronic and optical properties of phosphorene-like arsenic phosphorus: a many-body study

    Science.gov (United States)

    Shu, Huabing; Guo, Jiyuan

    2018-03-01

    By employing density functional and many-body perturbation theories, we explore the geometrics, quasiparticle band structure, and optical response of two-dimensional arsenic phosphorus (α-AsxP1-x). Calculations indicate that the α-AsxP1-x exhibits excellent stability at high temperature. The quasi-particle bandgap of α-AsxP1-x is highly tunable in a broad range of 1.54-2.14 eV depending on the composition. The optical absorption of α-AsxP1-x can cover the visible and ultraviolet regions, and is highly anisotropic. More interestingly, it is tunable to optical absorption of α-AsxP1-x when the composition continuously increased. Also, they have sizable exciton binding energies. These findings suggest that α-AsxP1-x holds great potentials for applications in high-performance electronics and optoelectronics.

  2. Recent advances in multireference-based perturbation theory

    International Nuclear Information System (INIS)

    Nakano, Haruyuki; Hirao, Kimihiko

    2003-01-01

    Accurate ab initio computational chemistry has evolved dramatically. In particular, the development of multireference-based approaches has opened up a completely new area, and has had a profound impact on the potential of theoretical chemistry. Multireference-based perturbation theory (MRPT) is an extension of the closed-shell single reference Moeller-Plesset method, and has been successfully applied to many chemical and spectroscopic problems. MRPT has established itself as an efficient technique for treating nondynamical and dynamical correlations. Usually, a complete active space self-consistent field (CASSCF) wave function is chosen as a reference function of MRPT. However, CASSCF often generates too many configurations, and the size of the active space can outgrow the capacity of the present technology. Many attempts have been proposed to reduce the dimension of CASSCF and to widen the range of applications of MRPT. This review focuses on our recent development in MRPT

  3. Self-consistent removal of sawtooth oscillations from transient plasma data by generalized singular value decomposition

    International Nuclear Information System (INIS)

    Erba, M.; Mattioli, M.; Segui, J.L.

    1997-10-01

    This paper addresses the problem of removing sawtooth oscillations from multichannel plasma data in a self-consistent way, thereby preserving transients that have a different physical origin. The technique which does this is called the Generalized Singular Value Decomposition (GSVD), and its properties are discussed. Using the GSVD, we analyze spatially resolved electron temperature measurements from the Tore Supra tokamak, made in transient regimes that are perturbed either by the laser blow-off injection of impurities or by pellet injection. Non-local transport issues are briefly discussed. (author)

  4. [Body image among obese women: consequences and degree of body dissatisfaction, relationship with low self-esteem and coping strategies].

    Science.gov (United States)

    Brytek-Matera, Anna

    2010-01-01

    Definition of factors influencing negative body image among obese women and analysis of the relationship between body dissatisfaction and personality variables. 63 patients participated in this study. The mean age of the obese subjects was 41.90 years (SD +/- 12.23) and the mean body mass index (BMI) was 37.09 kg/m2 (SD +/- 8.09). The control group consisted of 60 women with normal body weight. The Body Dissatisfaction Scale of EDI (Garner et al., 1984), the Self-Esteem Inventory (Coopersmith, 1983) and the Brief COPE (Carver, 1997) were used in the study. In the clinical sample of women suffering from obesity, we have found a correlation between body dissatisfaction and behavioural disengagement, four dimensions of self-esteem (general, social, family and professional) and coping strategies focused on planning and positive reinterpretation. The regression analysis revealed that use of emotional support, planning and general self-esteem were predictive factors for the body dissatisfaction in obesity. Body dissatisfaction seriously influences the social, professional and emotional obese women's self.

  5. Seniority in quantum many-body systems

    International Nuclear Information System (INIS)

    Van Isacker, P.

    2010-01-01

    The use of the seniority quantum number in many-body systems is reviewed. A brief summary is given of its introduction by Racah in the context of atomic spectroscopy. Several extensions of Racah's original idea are discussed: seniority for identical nucleons in a single-j shell, its extension to the case of many, non-degenerate j shells and to systems with neutrons and protons. To illustrate its usefulness to this day, a recent application of seniority is presented in Bose-Einstein condensates of atoms with spin.

  6. The impact of an implicit manipulation of self-esteem on body dissatisfaction.

    Science.gov (United States)

    Svaldi, J; Zimmermann, S; Naumann, E

    2012-03-01

    Given the theoretically postulated causal pathway from low self-esteem on body dissatisfaction, the aim of the present study was to experimentally test this linkage before and after a mirror exposure in body dissatisfied females. Thirty-six women with high body dissatisfaction (HBD) and 39 women with low body dissatisfaction (LBD) received either a positive or a negative implicit manipulation of self-esteem and participants' actual body dissatisfaction and negative emotions were assessed (T1). Following that, they underwent a one minute mirror exposure and actual body dissatisfaction and emotions were assessed once more (T2). In the HBD group no effects of the self-esteem manipulation were found prior to the mirror exposure. However, the negative manipulation of self-esteem led to a significant increase of body dissatisfaction over the course of the mirror exposure. The positive manipulation of self-esteem did not decrease body dissatisfaction over the course of the mirror exposure. No effects of self-esteem on body dissatisfaction were found in the LBD group. Formal eating disorder diagnosis in study participants was not established. Therefore, the extension of the results to an eating disordered population is recommended. The results yield evidence of a close linkage between negative self-esteem and body dissatisfaction in individuals high on body dissatisfaction. Consistent with cognitive theories, this link is only apparent when shape and weight schemas are activated, e.g. by the confrontation with one's own body. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Probing many-body localization with neural networks

    Science.gov (United States)

    Schindler, Frank; Regnault, Nicolas; Neupert, Titus

    2017-06-01

    We show that a simple artificial neural network trained on entanglement spectra of individual states of a many-body quantum system can be used to determine the transition between a many-body localized and a thermalizing regime. Specifically, we study the Heisenberg spin-1/2 chain in a random external field. We employ a multilayer perceptron with a single hidden layer, which is trained on labeled entanglement spectra pertaining to the fully localized and fully thermal regimes. We then apply this network to classify spectra belonging to states in the transition region. For training, we use a cost function that contains, in addition to the usual error and regularization parts, a term that favors a confident classification of the transition region states. The resulting phase diagram is in good agreement with the one obtained by more conventional methods and can be computed for small systems. In particular, the neural network outperforms conventional methods in classifying individual eigenstates pertaining to a single disorder realization. It allows us to map out the structure of these eigenstates across the transition with spatial resolution. Furthermore, we analyze the network operation using the dreaming technique to show that the neural network correctly learns by itself the power-law structure of the entanglement spectra in the many-body localized regime.

  8. SOCIAL COMPARISON, SELF-CONSISTENCY AND THE PRESENTATION OF SELF.

    Science.gov (United States)

    MORSE, STANLEY J.; GERGEN, KENNETH J.

    TO DISCOVER HOW A PERSON'S (P) SELF-CONCEPT IS AFFECTED BY THE CHARACTERISTICS OF ANOTHER (O) WHO SUDDENLY APPEARS IN THE SAME SOCIAL ENVIRONMENT, SEVERAL QUESTIONNAIRES, INCLUDING THE GERGEN-MORSE (1967) SELF-CONSISTENCY SCALE AND HALF THE COOPERSMITH SELF-ESTEEM INVENTORY, WERE ADMINISTERED TO 78 UNDERGRADUATE MEN WHO HAD ANSWERED AN AD FOR WORK…

  9. Body-self unity and self-esteem in patients with rheumatic diseases.

    Science.gov (United States)

    Bode, Christina; van der Heij, Anouk; Taal, Erik; van de Laar, Mart A F J

    2010-12-01

    Perceptions and evaluations of the own body are important sources of self-esteem. Having a rheumatic disease challenges maintenance of positive self-esteem due to consequences of the disease such as unfavorable sensations as pain and limited (physical) functioning. We expect that a positive experience of the own body in spite of a rheumatic disease (body-self harmony) will be associated with higher levels of self-esteem and that experiencing the body as unworthy part of the own person or as disabler for own strivings (body-self alienation) will result in lower levels of self-esteem. For this explorative study, the body experience questionnaire (BEQ) measuring body-self unity was developed and piloted. One hundred sixty-eight patients visiting the outpatient rheumatology clinic of the Medisch Spectrum Twente, Enschede, The Netherlands, completed a questionnaire on touchscreen computers to measure body-self unity (BEQ), illness cognitions (illness cognition questionnaire), pain intensity, functional limitations (health assessment questionnaire disability index), self-esteem (Rosenberg Self-Esteem Scale) and demographics. To analyze predictors of self-esteem, hierarchical regression analyses were employed. The BEQ revealed a two-factor structure with good reliability (subscale harmony, four items, Cronbach's α = 0.76; subscale alienation, six items, Cronbach's α = 0.84). The final model of the hierarchical regression analyses showed that self-esteem can be predicted by the illness cognitions helplessness and acceptance, by harmony and most strongly by alienation from the body. R(2) of the final model was 0.50. The relationship between functional limitations and self-esteem was totally mediated by the psychological constructs body-self unity and illness cognitions. This explorative study showed the importance of the unity of body and self for self-esteem in patients with a rheumatic disease.

  10. Self- Perception of Body Weight Status in Older Dutch Adults.

    Science.gov (United States)

    Monteagudo, C; Dijkstra, S C; Visser, M

    2015-06-01

    The prevalence of obesity is highest in older persons and a correct self-perception of body weight status is necessary for optimal weight control. The aim of this study was to determine self-perception of, and satisfaction with, body weight status, and to compare current versus ideal body image in a large, nationally representative sample of older people. Furthermore, determinants of misperception were explored. A cross-sectional study. The Longitudinal Aging Study Amsterdam (LASA), conducted in a population-based sample in the Netherlands. 1295 men and women aged 60-96 years. Body weight status was assessed using measured weight and height. Self-perceived body weight status, satisfaction with body weight and current and ideal body image were also assessed. Multiple logistic regression analysis was used to investigate the association of age, educational level and objectively measured BMI with underestimation of body weight status. The prevalence of obesity was 19.9% in men and 29.3% in women. The agreement between objective and self-perceived body weight status was low (Kappa 99% of obese participants desired to be thinner (ideal body image < current image). Only 4.4% of obese men and 12.3% of obese women perceived their body weight status correctly. Higher age (women), lower educational level (men) and higher BMI (all) were associated with greater underestimation of body weight status. Many older persons misperceive their body weight status. Future actions to improve body weight perception in older persons are necessary to increase the impact of public health campaigns focussing on a healthy body weight in old age.

  11. Perturbative construction of self-dual configurations on the torus

    International Nuclear Information System (INIS)

    Garcia Perez, M.; Gonzalez-Arroyo, A.; Pena, C.

    2000-01-01

    We develop a perturbative expansion which allows the construction of non-abelian self-dual SU(2) Yang-Mills field configurations on the four-dimensional torus with topological charge 1/2. The expansion is performed around the constant field strength abelian solutions found by 't Hooft. Next to leading order calculations are compared with numerical results obtained with lattice gauge theory techniques. (author)

  12. Perturbative many-body approaches to finite nuclei

    International Nuclear Information System (INIS)

    Hjort-Jensen, M.; Engeland, T.; Holt, A.; Osnes, E.

    1992-06-01

    In this work the authors discuss various approaches to the effective interaction appropriate for finite nuclei. The methods reviewed are the folded-diagram method of Kuo and co-workers and the summation of the folded diagrams as advocated by Lee and Suzuki. Examples of applications to sd-shell nuclei from previous works are discussed together with hitherto unpublished results for nuclei in pf-shell. Since the method of Lee and Suzuki is found to yield the best converged results, this method is applied to calculate the effective interaction for nuclei in the pf-shell. For the calculation of the effective interaction, three recent versions of the Bonn meson-exchange potential model have been used. These versions are fitted to the same set of data and differ only in the strength of the tensor force. The importance of the latter for finite nuclei is discussed. 67 refs., 17 figs., 7 tabs

  13. Many-body effects on the structures and stability of Ba{sup 2+}Xe{sub n} (n = 1–39, 54) clusters

    Energy Technology Data Exchange (ETDEWEB)

    Abdessalem, Kawther, E-mail: kawtherabdessalem@yahoo.fr; Habli, Héla; Ghalla, Houcine [Laboratoire de Physique Quantique, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Yaghmour, Saud Jamil [Physics Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Calvo, Florent [University of Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble (France); Oujia, Brahim [Laboratoire de Physique Quantique, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Physics Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia)

    2014-10-21

    The structures and relative stabilities of mixed Ba{sup 2+}Xe{sub n} (n = 1–39, 54) clusters have been theoretically studied using basin-hopping global optimization. Analytical potential energy surfaces were constructed from ab initio or experimental data, assuming either purely additive interactions or including many-body polarization effects and the mutual contribution of self-consistent induced dipoles. For both models the stable structures are characterized by the barium cation being coated by a shell of xenon atoms, as expected from simple energetic arguments. Icosahedral packing is dominantly found, the exceptional stability of the icosahedral motif at n = 12 being further manifested at the size n = 32 where the basic icosahedron is surrounded by a dodecahedral cage, and at n = 54 where the transition to multilayer Mackay icosahedra has occurred. Interactions between induced dipoles generally tend to decrease the Xe-Xe binding, leading to different solvation patterns at small sizes but also favoring polyicosahedral growth. Besides attenuating relative energetic stability, many-body effects affect the structures by expanding the clusters by a few percents and allowing them to deform more.

  14. The relativistic atomic many-body problem

    International Nuclear Information System (INIS)

    Brown, G.E.

    1987-01-01

    Problems connected with the infinite negative energy sea of electrons in the atomic many-body problem are discussed. It is shown that as long as one works in mean-field approximations, wave functions do not need to suffer from continuum dissociation. Various effects from virtual pairs in the wave functions are discussed. (orig.)

  15. Body conscious? Interoceptive awareness, measured by heartbeat perception, is negatively correlated with self-objectification.

    Science.gov (United States)

    Ainley, Vivien; Tsakiris, Manos

    2013-01-01

    'Self-objectification' is the tendency to experience one's body principally as an object, to be evaluated for its appearance rather than for its effectiveness. Within objectification theory, it has been proposed that self-objectification accounts for the poorer interoceptive awareness observed in women, as measured by heartbeat perception. Our study is, we believe, the first specifically to test this relationship. Using a well-validated and reliable heartbeat perception task, we measured interoceptive awareness in women and compared this with their scores on the Self-Objectification Questionnaire, the Self-Consciousness Scale and the Body Consciousness Questionnaire. Interoceptive awareness was negatively correlated with self-objectification. Interoceptive awareness, public body consciousness and private body consciousness together explained 31% of the variance in self-objectification. However, private body consciousness was not significantly correlated with interoceptive awareness, which may explain the many nonsignificant results in self-objectification studies that have used private body consciousness as a measure of body awareness. We propose interoceptive awareness, assessed by heartbeat perception, as a measure of body awareness in self-objectification studies. Our findings have implications for those clinical conditions, in women, which are characterised by self-objectification and low interoceptive awareness, such as eating disorders.

  16. Body dissatisfaction and self-esteem in female students aged 9-15: the effects of age, family income, body mass index levels and dance practice.

    Science.gov (United States)

    Monteiro, Lilian A; Novaes, Jefferson S; Santos, Mara L; Fernandes, Helder M

    2014-09-29

    This study aimed to analyze the effects of age, family income, body mass index and dance practice on levels of body dissatisfaction and self-esteem in female students. The sample consisted of 283 female subjects attending a public school with a mean age of 11.51±1.60 years and a mean body mass index of 18.72 kg/m2 (SD=3.32). The instruments used were the Body Dissatisfaction Scale for Adolescents and the Rosenberg Self-Esteem Scale, both of which showed good internal consistency (0.77 and 0.81, respectively). The tests were applied (two-factor ANOVA) to compare the students practicing and those not practicing dance; the differences in the levels of body dissatisfaction (p=0.104) and self-esteem (p=0.09) were considered significant. The results demonstrated that age negatively correlated with body dissatisfaction (r=-0.19; pbody mass index levels were associated with greater body dissatisfaction (r=0.15, p=0.016) and lower levels of self-esteem (r=-0.17, pbody dissatisfaction (F=4.79; p=0.030; η(2)=0.02), but there was no significant difference in self-esteem (F=1.88; p=0.172; η(2)=0.02). It can be concluded that female children and adolescents practicing dance have higher self-esteem, and are more satisfied with their body weight and their appearance. Moreover, results showed that self-esteem and body dissatisfaction were influenced by the body mass index levels only in the non-practitioners group.

  17. Body Dissatisfaction and Self-Esteem in Female Students Aged 9-15: the Effects of Age, Family Income, Body Mass Index Levels and Dance Practice

    Directory of Open Access Journals (Sweden)

    Monteiro Lilian A.

    2014-12-01

    Full Text Available This study aimed to analyze the effects of age, family income, body mass index and dance practice on levels of body dissatisfaction and self-esteem in female students. The sample consisted of 283 female subjects attending a public school with a mean age of 11.51±1.60 years and a mean body mass index of 18.72 kg/m2 (SD=3.32. The instruments used were the Body Dissatisfaction Scale for Adolescents and the Rosenberg Self-Esteem Scale, both of which showed good internal consistency (0.77 and 0.81, respectively. The tests were applied (two-factor ANOVA to compare the students practicing and those not practicing dance; the differences in the levels of body dissatisfaction (p=0.104 and self-esteem (p=0.09 were considered significant. The results demonstrated that age negatively correlated with body dissatisfaction (r=-0.19; p<0.01 and that higher body mass index levels were associated with greater body dissatisfaction (r=0.15, p=0.016 and lower levels of self-esteem (r=-0.17, p<0.01 only in non-practitioners. The practice of dance had a significant effect on levels of body dissatisfaction (F=4.79; p=0.030; η2=0.02, but there was no significant difference in self-esteem (F=1.88; p=0.172; η2=0.02. It can be concluded that female children and adolescents practicing dance have higher self-esteem, and are more satisfied with their body weight and their appearance. Moreover, results showed that self-esteem and body dissatisfaction were influenced by the body mass index levels only in the nonpractitioners group.

  18. The mathematical description of resonances in many-body systems

    International Nuclear Information System (INIS)

    Orth, A.

    1985-01-01

    We introduce a characterization for quantum-mechanical resonance and use it in order to detect for certain distinct physical states an especially slow decay behaviour. We apply these results to a model of the quantum-mechanical many-body problem and obtain so a mathematical description of the Auger effect (self-ionization of atoms). The class of the interaction potentials admitted for our theory is compared with other theories on resonances extremely large. We establish differentiability conditions and conditions on the fading behaviour in the infinite. Especially the Coulomb potential and the Yukawa potential belong to our class but also non-spherical-symmetric and non-analytic potentials with a Coulomb-like singularity in the origin, two- to threefold differentiable which tend to zero at the infinite. In the introduction we discuss extensively also by means of some examples the problematics of the quantum-mechanical resonance. (orig.) [de

  19. Self-consistent green function calculations for isospin asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Mansour, Hesham; Gad, Khalaf; Hassaneen, Khaled S.A.

    2010-01-01

    The one-body potentials for protons and neutrons are obtained from the self-consistent Green-function calculations of asymmetric nuclear matter, in particular their dependence on the degree of proton/neutron asymmetry. Results of the binding energy per nucleon as a function of the density and asymmetry parameter are presented for the self-consistent Green function approach using the CD-Bonn potential. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The contribution of the hole-hole terms leads to a repulsive contribution to the energy per nucleon which increases with the nuclear density. The incompressibility for asymmetric nuclear matter has been also investigated in the framework of the self-consistent Green-function approach using the CD-Bonn potential. The behavior of the incompressibility is studied for different values of the nuclear density and the neutron excess parameter. The nuclear symmetry potential at fixed nuclear density is also calculated and its value decreases with increasing the nucleon energy. In particular, the nuclear symmetry potential at saturation density changes from positive to negative values at nucleon kinetic energy of about 200 MeV. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The proton/neutron effective mass splitting in neutron-rich matter has been studied. The predicted isospin splitting of the proton/neutron effective mass splitting in neutron-rich matter is such that m n * ≥ m p * . (author)

  20. Perturbation of self-adjoint operators by Dirac distributions

    International Nuclear Information System (INIS)

    Zorbas, J.

    1980-01-01

    The existence of a family of self-adjoint Hamiltonians H/sub theta/, theta element of [0, 2π), corresponding to the formal expression H 0 +νdelta (x) is shown for a general class of self-adjoint operators H 0 . Expressions for the Green's function and wavefunction corresponding to H/sub theta/ are obtained in terms of the Green's function and wavefunction corresponding to H 0 . Similar results are shown for the perturbation of H 0 by a finite sum of Dirac distributions. A prescription is given for obtaining H/sub theta/ as the strong resolvent limit of a family of momentum cutoff Hamiltonians H/sup N/. The relationship between the scattering theories corresponding to H/sup N/ and H/sub theta/ is examined

  1. Entanglement dynamics in critical random quantum Ising chain with perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yichen, E-mail: ychuang@caltech.edu

    2017-05-15

    We simulate the entanglement dynamics in a critical random quantum Ising chain with generic perturbations using the time-evolving block decimation algorithm. Starting from a product state, we observe super-logarithmic growth of entanglement entropy with time. The numerical result is consistent with the analytical prediction of Vosk and Altman using a real-space renormalization group technique. - Highlights: • We study the dynamical quantum phase transition between many-body localized phases. • We simulate the dynamics of a very long random spin chain with matrix product states. • We observe numerically super-logarithmic growth of entanglement entropy with time.

  2. Body Image, self-esteem, and clothing of men and women aged 55 years and older

    OpenAIRE

    Hwang, Jinsook

    1993-01-01

    Although there are many studies regarding body image of younger people, there have been few studies on that of older people. Since today's culture considers the young, thin body image ideal, it is important to investigate body image of older people and the relationships between their body image, self esteem, and clothing behavior. The purpose of this study was to determine the relationships between 1) body-cathexis and self-esteem, 2) body-cathexis and clothing behavio...

  3. Ballistic near-field heat transport in dense many-body systems

    Science.gov (United States)

    Latella, Ivan; Biehs, Svend-Age; Messina, Riccardo; Rodriguez, Alejandro W.; Ben-Abdallah, Philippe

    2018-01-01

    Radiative heat transport mediated by near-field interactions is known to be superdiffusive in dilute, many-body systems. Here we use a generalized Landauer theory of radiative heat transfer in many-body planar systems to demonstrate a nonmonotonic transition from superdiffusive to ballistic transport in dense systems. We show that such a transition is associated to a change of the polarization of dominant modes. Our findings are complemented by a quantitative study of the relaxation dynamics of the system in the different regimes of heat transport. This result could have important consequences on thermal management at nanoscale of many-body systems.

  4. Body conscious? Interoceptive awareness, measured by heartbeat perception, is negatively correlated with self-objectification.

    Directory of Open Access Journals (Sweden)

    Vivien Ainley

    Full Text Available BACKGROUND: 'Self-objectification' is the tendency to experience one's body principally as an object, to be evaluated for its appearance rather than for its effectiveness. Within objectification theory, it has been proposed that self-objectification accounts for the poorer interoceptive awareness observed in women, as measured by heartbeat perception. Our study is, we believe, the first specifically to test this relationship. METHODOLOGY/PRINCIPAL FINDINGS: Using a well-validated and reliable heartbeat perception task, we measured interoceptive awareness in women and compared this with their scores on the Self-Objectification Questionnaire, the Self-Consciousness Scale and the Body Consciousness Questionnaire. Interoceptive awareness was negatively correlated with self-objectification. Interoceptive awareness, public body consciousness and private body consciousness together explained 31% of the variance in self-objectification. However, private body consciousness was not significantly correlated with interoceptive awareness, which may explain the many nonsignificant results in self-objectification studies that have used private body consciousness as a measure of body awareness. CONCLUSIONS/SIGNIFICANCE: We propose interoceptive awareness, assessed by heartbeat perception, as a measure of body awareness in self-objectification studies. Our findings have implications for those clinical conditions, in women, which are characterised by self-objectification and low interoceptive awareness, such as eating disorders.

  5. Many-Body Localization Dynamics from Gauge Invariance

    Science.gov (United States)

    Brenes, Marlon; Dalmonte, Marcello; Heyl, Markus; Scardicchio, Antonello

    2018-01-01

    We show how lattice gauge theories can display many-body localization dynamics in the absence of disorder. Our starting point is the observation that, for some generic translationally invariant states, the Gauss law effectively induces a dynamics which can be described as a disorder average over gauge superselection sectors. We carry out extensive exact simulations on the real-time dynamics of a lattice Schwinger model, describing the coupling between U(1) gauge fields and staggered fermions. Our results show how memory effects and slow, double-logarithmic entanglement growth are present in a broad regime of parameters—in particular, for sufficiently large interactions. These findings are immediately relevant to cold atoms and trapped ion experiments realizing dynamical gauge fields and suggest a new and universal link between confinement and entanglement dynamics in the many-body localized phase of lattice models.

  6. Many-body interactions in quasi-freestanding graphene

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, David; Park, Cheol-Hwan; Hwang, Choongyu; Deslippe, Jack; Fedorov, Alexei; Louie, Steven; Lanzara, Alessandra

    2011-06-03

    The Landau-Fermi liquid picture for quasiparticles assumes that charge carriers are dressed by many-body interactions, forming one of the fundamental theories of solids. Whether this picture still holds for a semimetal such as graphene at the neutrality point, i.e., when the chemical potential coincides with the Dirac point energy, is one of the long-standing puzzles in this field. Here we present such a study in quasi-freestanding graphene by using high-resolution angle-resolved photoemission spectroscopy. We see the electron-electron and electron-phonon interactions go through substantial changes when the semimetallic regime is approached, including renormalizations due to strong electron-electron interactions with similarities to marginal Fermi liquid behavior. These findings set a new benchmark in our understanding of many-body physics in graphene and a variety of novel materials with Dirac fermions.

  7. Coupled Dyson-Schwinger equations and effects of self-consistency

    International Nuclear Information System (INIS)

    Wu, S.S.; Zhang, H.X.; Yao, Y.J.

    2001-01-01

    Using the σ-ω model as an effective tool, the effects of self-consistency are studied in some detail. A coupled set of Dyson-Schwinger equations for the renormalized baryon and meson propagators in the σ-ω model is solved self-consistently according to the dressed Hartree-Fock scheme, where the hadron propagators in both the baryon and meson self-energies are required to also satisfy this coupled set of equations. It is found that the self-consistency affects the baryon spectral function noticeably, if only the interaction with σ mesons is considered. However, there is a cancellation between the effects due to the σ and ω mesons and the additional contribution of ω mesons makes the above effect insignificant. In both the σ and σ-ω cases the effects of self-consistency on meson spectral function are perceptible, but they can nevertheless be taken account of without a self-consistent calculation. Our study indicates that to include the meson propagators in the self-consistency requirement is unnecessary and one can stop at an early step of an iteration procedure to obtain a good approximation to the fully self-consistent results of all the hadron propagators in the model, if an appropriate initial input is chosen. Vertex corrections and their effects on ghost poles are also studied

  8. Pion propagator in relativistic quantum field theories of the nuclear many-body problem

    International Nuclear Information System (INIS)

    Matsui, T.; Serot, B.D.

    1982-01-01

    Pion interactions in the nuclear medium are studied using renormalizable relativistic quantum field theories. Previous studies using pseudoscalar πN coupling encountered difficulties due to the large strength of the πNN vertex. We therefore formulate renormalizable field theories with pseudovector πN coupling using techniques introduced by Weinberg and Schwinger. Calculations are performed for two specific models; the scalar-vector theory of Walecka, extended to include π and rho mesons in a non-chiral fashion, and the linear sigma-model with an additional neutral vector meson. Both models qualitatively reproduce low-energy πN phenomenology and lead to nuclear matter saturation in the relativistic Hartree formalism, which includes baryon vacuum fluctuations. The pions propagator is evaluated in the one-nucleon-loop approximation, which corresponds to a relativistic random-phase approximation built on the Hartree ground state. Virtual NN-bar loops are included, and suitable renormalization techniques are illustrated. The local-density approximation is used to compare the threshold pion self-energy to the s-wave pion-nucleus optical potential. In the non-chiral model, s-wave pion-nucleus scattering is too large in both pseudoscalar and pseudovector calculations, indicating that additional constraints must be imposed on the Lagrangian. In the chiral model, the threshold self-energy vanishes automatically in the pseudovector case, but does so for pseudoscalar coupling only if the baryon effective mass is chosen self-consistently Since extrapolation from free space to nuclear density can lead to large effects, pion propagation in the medium can determine which πN coupling is more suitable for the relativistic nuclear many-body problem. Conversely, pion interactions constrain the model Lagrangian and the nuclear matter equation of state. An approximately chiral model with pseudovector coupling is favored

  9. The flow equation approach to many-particle systems

    CERN Document Server

    Kehrein, Stefan; Fujimori, A; Varma, C; Steiner, F

    2006-01-01

    This self-contained monograph addresses the flow equation approach to many-particle systems. The flow equation approach consists of a sequence of infinitesimal unitary transformations and is conceptually similar to renormalization and scaling methods. Flow equations provide a framework for analyzing Hamiltonian systems where these conventional many-body techniques fail. The text first discusses the general ideas and concepts of the flow equation method. In a second part these concepts are illustrated with various applications in condensed matter theory including strong-coupling problems and non-equilibrium systems. The monograph is accessible to readers familiar with graduate- level solid-state theory.

  10. Transients from initial conditions based on Lagrangian perturbation theory in N-body simulations II: the effect of the transverse mode

    International Nuclear Information System (INIS)

    Tatekawa, Takayuki

    2014-01-01

    We study the initial conditions for cosmological N-body simulations for precision cosmology. In general, Zel'dovich approximation has been applied for the initial conditions of N-body simulations for a long time. These initial conditions provide incorrect higher-order growth. These error caused by setting up the initial conditions by perturbation theory is called transients. We investigated the impact of transient on non-Gaussianity of density field by performing cosmological N-body simulations with initial conditions based on first-, second-, and third-order Lagrangian perturbation theory in previous paper. In this paper, we evaluates the effect of the transverse mode in the third-order Lagrangian perturbation theory for several statistical quantities such as power spectrum and non-Gaussianty. Then we clarified that the effect of the transverse mode in the third-order Lagrangian perturbation theory is quite small

  11. Many-body physics with circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    Leib, Martin H.

    2015-01-01

    We present proposals to simulate many-body physics with superconducting circuits. The ''body'' to work with for superconducting circuits is the microwave photon and interaction is induced by the nonlinearity of the Josephson effect. We present two different approaches to simulate Bose-Hubbard physics, one based on a polariton scheme and another with nonlinear resonators. We also present a Dicke-model like simulator for ultrastrongly coupled Josephson junctions to a resonator and show a scheme for implementing long range interactions.

  12. Many-body forces and stability of the alkaline-earth tetramers

    International Nuclear Information System (INIS)

    Diaz-Torrejon, C.C.; Kaplan, Ilya G.

    2011-01-01

    Graphical abstract: Many-body forces effect. In a three-particle system, the two-body interaction energies depend upon coordinates of all three particles. The comparative study of the interaction energy and its many-body decomposition for alkaline-earths tetramers Be 4 , Mg 4 , and Ca 4 at the all-electron CCSD(T)/aug-cc-pVQZ level is performed. For study of dependence of the binding energy and the orbital population on the cluster size the corresponding dimers and trimers were also calculated at the same level of theory. In comparison with weakly bound dimers, the binding energy in trimers and, especially, in tetramers drastically increases; e.g., E b /N in Be 3 is 7 times larger and in Be 4 is 18.4 times larger than in Be 2 . This sharp increase is explained as a manifestation of many-body forces. The trimers and tetramers are stabilized by the three-body forces, whereas the two- and four-body forces are repulsive. The attractive contribution to the three-body forces has a three-atom electron exchange origin. The natural bond orbital (NBO) population analysis reveals a relatively large np-population in trimers and tetramers. The population of the valence np-orbitals leads to the sp-hybridization providing the covalent bonding. Research highlights: → The alkaline-earths trimers and tetramers are stabilized by the three-body forces. → Two- and four-body forces are repulsive for trimers and tetramers. → The attractive contribution to the three-body forces has a three-atom electron exchange origin. → The population of the np-orbitals leads to the sp-hybridization providing the covalent bonding. - Abstract: The comparative study of the interaction energy and its many-body decomposition for Be 4 , Mg 4 , and Ca 4 at the all-electron CCSD(T)/aug-cc-pVQZ level is performed. For study of dependence of the binding energy and the orbital population on the cluster size the corresponding dimers and trimers were also calculated at the same level of theory. In

  13. Universal Properties of Many-Body Delocalization Transitions

    Directory of Open Access Journals (Sweden)

    Andrew C. Potter

    2015-09-01

    Full Text Available We study the dynamical melting of “hot” one-dimensional many-body localized systems. As disorder is weakened below a critical value, these nonthermal quantum glasses melt via a continuous dynamical phase transition into classical thermal liquids. By accounting for collective resonant tunneling processes, we derive and numerically solve an effective model for such quantum-to-classical transitions and compute their universal critical properties. Notably, the classical thermal liquid exhibits a broad regime of anomalously slow subdiffusive equilibration dynamics and energy transport. The subdiffusive regime is characterized by a continuously evolving dynamical critical exponent that diverges with a universal power at the transition. Our approach elucidates the universal long-distance, low-energy scaling structure of many-body delocalization transitions in one dimension, in a way that is transparently connected to the underlying microscopic physics. We discuss experimentally testable signatures of the predicted scaling properties.

  14. Simultaneous description of conductance and thermopower in single-molecule junctions from many-body ab initio calculations

    DEFF Research Database (Denmark)

    Jin, Chengjun; Markussen, Troels; Thygesen, Kristian Sommer

    2014-01-01

    We investigate the electronic conductance and thermopower of a single-molecule junction consisting of bis-(4-aminophenyl) acetylene (B4APA) connected to gold electrodes. We use nonequilibrium Green's function methods in combination with density-functional theory (DFT) and the many-body GW...

  15. Self-similar perturbations of a Friedmann universe

    International Nuclear Information System (INIS)

    Carr, B.J.; Yahil, A.

    1990-01-01

    The present analysis of spherically symmetric self-similar solutions to the Einstein equations gives attention to those solutions that are asymptotically k = 0 Friedmann at large z values, and possess finite but perturbed density at the origin. Such solutions represent nonlinear density fluctuations which grow at the same rate as the universe's particle horizon. The overdense solutions span only a narrow range of parameters, and resemble static isothermal gas spheres just within the sonic point; the underdense solutions may have arbitrarily low density at the origin while exhibiting a unique relationship between amplitude and scale. Their relevance to large-scale void formation is considered. 36 refs

  16. Many-body effects in photoreactions of light nuclei below pion threshold

    International Nuclear Information System (INIS)

    Cavinato, M.; Marangoni, M.; Saruis, A.M.

    1983-01-01

    In the present paper it is discussed the reaction mechanism in photoabsorption of light nuclei below pion threshold in the frame of a self-consistent RPA theory with a Skyrme force. The role of both exchange currents in electromagnetic operators and two-body correlations in the nuclear wave function has been studied in the RPA formalism. Exchange currents in RPA calculations are related to the effective mass in the Hartree-Fock field. Comparison is made between the RPA formalism and the Gari and Hebach theory. The relative contribution of exchange currents and nuclear correlations to the photoreaction of 16 O is evaluated from proton threshold up to 80 MeV. E1 and E2 multipoles are included in the calculation

  17. Self-powered in-core neutron detector assembly with uniform perturbation characteristics

    International Nuclear Information System (INIS)

    Todt, W.H.; Playfoot, K.C.

    1979-01-01

    Disclosed is a self-powered in-core neutron detector assembly in which a plurality of longitudinally extending self-powered detectors have neutron responsive active portions spaced along a longitudinal path. A low neutron absorptive extension extends from the active portions of the spaced active portions of the detectors in symmetrical longitudinal relationship with the spaced active detector portions of each succeeding detector. The detector extension terminates with the detector assembly to provide a uniform perturbation characteristic over the entire assembly length

  18. Many-body localization dynamics from a one-particle perspective

    Energy Technology Data Exchange (ETDEWEB)

    Lezama Mergold Love, Talia; Bera, Soumya; Bardarson, Jens Hjorleifur [Max Planck Institute for the Physics of Complex Systems, Dresden (Germany)

    2016-07-01

    Systems exhibiting many-body localization (Anderson insulators in the presence of interactions) present a novel class of nonergodic phases of matter. The study of entanglement, in terms of both exact eigenstates and its time evolution after quenches, has been useful to reveal the salient signatures of these systems. Similarly to the entanglement entropy of exact eigenstates, the one-particle density matrix can be used as a tool to characterize the many-body localization transition with its eigenvalues showing a Fermi-liquid like step discontinuity in the localized phase. However, this analysis distinguishes the Fock-space structure of the eigenstates from the real space. Here, we present numerical evidence for dynamical signatures of the many-body localized phase for a closed fermionic system, using the one-particle density matrix and its time evolution after a global quench. We discuss and compare our results with the well-known logarithmic spreading of entanglement (a dynamical signature of this phase, absent in the Anderson insulator).

  19. Entanglement between noncomplementary parts of many-body systems

    International Nuclear Information System (INIS)

    Wichterich, Hannu Christian

    2011-01-01

    This thesis investigates the structure and behaviour of entanglement, the purely quantum mechanical part of correlations, in many-body systems, employing both numerical and analytical techniques at the interface of condensed matter theory and quantum information theory. Entanglement can be seen as a precious resource which, for example, enables the noiseless and instant transmission of quantum information, provided the communicating parties share a sufficient ''amount'' of it. Furthermore, measures of entanglement of a quantum mechanical state are perceived as useful probes of collective properties of many-body systems. For instance, certain measures are capable of detecting and classifying ground-state phases and, particularly, transition (or critical) points separating such phases. Chapters 2 and 3 focus on entanglement in many-body systems and its use as a potential resource for communication protocols. They address the questions of how a substantial amount of entanglement can be established between distant subsystems, and how efficiently this entanglement could be ''harvested'' by way of measurements. The subsequent chapters 4 and 5 are devoted to universality of entanglement between large collections of particles undergoing a quantum phase transition, where, despite the enormous complexity of these systems, collective properties including entanglement no longer depend crucially on the microscopic details. (orig.)

  20. Self-Harm Behaviour in Adolescents: Body Image and Self-Esteem

    Science.gov (United States)

    Oktan, Vesile

    2017-01-01

    This research aimed to reveal the relationship between self-harm behaviour, body image, and self-esteem, and examined whether there was a difference between the body image and self-esteem of the adolescents who exhibited self-harm behaviour and those who did not. The study was conducted with the participation of 263 high school students--143…

  1. Internet Pornography Use, Body Ideals, and Sexual Self-Esteem in Norwegian Gay and Bisexual Men.

    Science.gov (United States)

    Kvalem, Ingela Lundin; Træen, Bente; Iantaffi, Alex

    2016-01-01

    The purpose of this study was to explore the relationship between perception of own appearance, Internet pornography consumption, preferences for pornographic actors' appearance, and sexual self-esteem in gay and bisexual men in Norway. An online survey of 477 gay and bisexual men showed that, despite the prevailing muscular and lean gay body ideal, many men with less ideal bodies also preferred to watch pornographic actors with body types similar to their own. Self-perceived attractiveness, having an ideal body type, and viewing Internet pornography in longer sessions each made a unique contribution to higher self-esteem as a sexual partner. Preferring to watch pornographic actors with ideal bodies was not related to sexual self-esteem. The findings underscore the importance for gay or bisexual men of both self-perceived attractiveness and being athletic or young and fit, for a positive self-evaluation of sexual performance and competence.

  2. Gauge invariant perturbations of self-similar Lemaitre-Tolman-Bondi spacetime: Even parity modes with l≥2

    International Nuclear Information System (INIS)

    Waters, Thomas J.; Nolan, Brien C.

    2009-01-01

    In this paper we consider gauge invariant linear perturbations of the metric and matter tensors describing the self-similar Lemaitre-Tolman-Bondi (timelike dust) spacetime containing a naked singularity. We decompose the angular part of the perturbation in terms of spherical harmonics and perform a Mellin transform to reduce the perturbation equations to a set of ordinary differential equations with singular points. We fix initial data so the perturbation is finite on the axis and the past null cone of the singularity, and follow the perturbation modes up to the Cauchy horizon. There we argue that certain scalars formed from the modes of the perturbation remain finite, indicating linear stability of the Cauchy horizon.

  3. LIDT-DD: A New Self-Consistent Debris Disc Model Including Radiation Pressure and Coupling Dynamical and Collisional Evolution

    Science.gov (United States)

    Kral, Q.; Thebault, P.; Charnoz, S.

    2014-01-01

    The first attempt at developing a fully self-consistent code coupling dynamics and collisions to study debris discs (Kral et al. 2013) is presented. So far, these two crucial mechanisms were studied separately, with N-body and statistical collisional codes respectively, because of stringent computational constraints. We present a new model named LIDT-DD which is able to follow over long timescales the coupled evolution of dynamics (including radiation forces) and collisions in a self-consistent way.

  4. Self-consistent approximations beyond the CPA: Part II

    International Nuclear Information System (INIS)

    Kaplan, T.; Gray, L.J.

    1982-01-01

    This paper concentrates on a self-consistent approximation for random alloys developed by Kaplan, Leath, Gray, and Diehl. The construction of the augmented space formalism for a binary alloy is sketched, and the notation to be used derived. Using the operator methods of the augmented space, the self-consistent approximation is derived for the average Green's function, and for evaluating the self-energy, taking into account the scattering by clusters of excitations. The particular cluster approximation desired is derived by treating the scattering by the excitations with S /SUB T/ exactly. Fourier transforms on the disorder-space clustersite labels solve the self-consistent set of equations. Expansion to short range order in the alloy is also discussed. A method to reduce the problem to a computationally tractable form is described

  5. Conservation laws and self-consistent sources for a super-CKdV equation hierarchy

    International Nuclear Information System (INIS)

    Li Li

    2011-01-01

    From the super-matrix Lie algebras, we consider a super-extension of the CKdV equation hierarchy in the present Letter, and propose the super-CKdV hierarchy with self-consistent sources. Furthermore, we establish the infinitely many conservation laws for the integrable super-CKdV hierarchy.

  6. Conservation laws and self-consistent sources for a super-CKdV equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Li Li, E-mail: li07099@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2011-03-14

    From the super-matrix Lie algebras, we consider a super-extension of the CKdV equation hierarchy in the present Letter, and propose the super-CKdV hierarchy with self-consistent sources. Furthermore, we establish the infinitely many conservation laws for the integrable super-CKdV hierarchy.

  7. Self-Healing Many-Core Architecture: Analysis and Evaluation

    Directory of Open Access Journals (Sweden)

    Arezoo Kamran

    2016-01-01

    Full Text Available More pronounced aging effects, more frequent early-life failures, and incomplete testing and verification processes due to time-to-market pressure in new fabrication technologies impose reliability challenges on forthcoming systems. A promising solution to these reliability challenges is self-test and self-reconfiguration with no or limited external control. In this work a scalable self-test mechanism for periodic online testing of many-core processor has been proposed. This test mechanism facilitates autonomous detection and omission of faulty cores and makes graceful degradation of the many-core architecture possible. Several test components are incorporated in the many-core architecture that distribute test stimuli, suspend normal operation of individual processing cores, apply test, and detect faulty cores. Test is performed concurrently with the system normal operation without any noticeable downtime at the application level. Experimental results show that the proposed test architecture is extensively scalable in terms of hardware overhead and performance overhead that makes it applicable to many-cores with more than a thousand processing cores.

  8. Many body effects in the van der Waals force

    International Nuclear Information System (INIS)

    Perez, P.; Claro, F.

    1985-08-01

    A classical model of fluctuating dipoles is proposed for the evaluation of many-body effects in the van der Waals force between neutral polarizable particles. The method is applied to solid xenon giving the correct low temperature stable structure, unlike the usual two-body potential result. (author)

  9. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media.

    Science.gov (United States)

    Ma, Manman; Xu, Zhenli

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  10. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Manman, E-mail: mmm@sjtu.edu.cn; Xu, Zhenli, E-mail: xuzl@sjtu.edu.cn [Department of Mathematics, Institute of Natural Sciences, and MoE Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  11. Self-consistent calculation of atomic structure for mixture

    International Nuclear Information System (INIS)

    Meng Xujun; Bai Yun; Sun Yongsheng; Zhang Jinglin; Zong Xiaoping

    2000-01-01

    Based on relativistic Hartree-Fock-Slater self-consistent average atomic model, atomic structure for mixture is studied by summing up component volumes in mixture. Algorithmic procedure for solving both the group of Thomas-Fermi equations and the self-consistent atomic structure is presented in detail, and, some numerical results are discussed

  12. Self-consistent density functional calculation of the image potential at a metal surface

    International Nuclear Information System (INIS)

    Jung, J; Alvarellos, J E; Chacon, E; GarcIa-Gonzalez, P

    2007-01-01

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z 0 ), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z 0 , and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description

  13. Self-consistent density functional calculation of the image potential at a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Alvarellos, J E [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Chacon, E [Instituto de Ciencias de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, E-28049 Madrid (Spain); GarcIa-Gonzalez, P [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain)

    2007-07-04

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z{sub 0}), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z{sub 0}, and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description.

  14. Many-Body Quantum Theory in Condensed Matter Physics-An Introduction

    International Nuclear Information System (INIS)

    Logan, D E

    2005-01-01

    This is undoubtedly an ambitious book. It aims to provide a wide ranging, yet self-contained and pedagogical introduction to techniques of quantum many-body theory in condensed matter physics, without losing mathematical 'rigor' (which I hope means rigour), and with an eye on physical insight, motivation and application. The authors certainly bring plenty of experience to the task, the book having grown out of their graduate lectures at the Niels Bohr Institute in Copenhagen over a five year period, with the feedback and refinement this presumably brings. The book is also of course ambitious in another sense, for it competes in the tight market of general graduate/advanced undergraduate texts on many-particle physics. Prospective punters will thus want reasons to prefer it to, or at least give it space beside, well established texts in the field. Subject-wise, the book is a good mix of the ancient and modern, the standard and less so. Obligatory chapters deal with the formal cornerstones of many-body theory, from second quantization, time-dependence in quantum mechanics and linear response theory, to Green's function and Feynman diagrams. Traditional topics are well covered, including two chapters on the electron gas, chapters on phonons and electron-phonon coupling, and a concise account of superconductivity (confined, no doubt judiciously, to the conventional BCS case). Less mandatory, albeit conceptually vital, subjects are also aired. These include a chapter on Fermi liquid theory, from both semi-classical and microscopic perspectives, and a freestanding account of one-dimensional electron gases and Luttinger liquids which, given the enormity of the topic, is about as concise as it could be without sacrificing clarity. Quite naturally, the authors' own interests also influence the choice of material covered. A persistent theme, which brings a healthy topicality to the book, is the area of transport in mesoscopic systems or nanostructures. Two chapters, some

  15. Properties of exponential many-body interatomic potentials

    Czech Academy of Sciences Publication Activity Database

    Ostapovets, Andrej; Paidar, Václav

    2009-01-01

    Roč. 47, č. 3 (2009), s. 193-199 ISSN 0023-432X R&D Projects: GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : many-body potentials * elastic constants * multilayer surface relaxations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.345, year: 2007

  16. Self-schema and social comparison explanations of body dissatisfaction: a laboratory investigation.

    Science.gov (United States)

    van den Berg, Patricia; Thompson, J Kevin

    2007-03-01

    The current study was an investigation of the self-schema and social comparison theories of body dissatisfaction. The social comparison manipulation consisted of exposure to one of three levels of comparison figure: upward, downward, or no comparison. Two different imagery exercises served to prime either a participants' appearance self-schema, or a non-appearance schema. Participants completed state measures of body image and mood at pre- and posttest. Results indicated no significant interaction between priming and social comparison and no significant main effect for priming. However, there was a significant effect of social comparison, such that those in the downward comparison condition showed an increase in body satisfaction and positive mood. Results are discussed in the context of self-schema theory and social comparison, and suggestions are given for future research that might further shed light on these theoretical approaches for understanding body dissatisfaction.

  17. Energy Distributions from Three-Body Decaying Many-Body Resonances

    International Nuclear Information System (INIS)

    Alvarez-Rodriguez, R.; Jensen, A. S.; Fedorov, D. V.; Fynbo, H. O. U.; Garrido, E.

    2007-01-01

    We compute energy distributions of three particles emerging from decaying many-body resonances. We reproduce the measured energy distributions from decays of two archetypal states chosen as the lowest 0 + and 1 + resonances in 12 C populated in β decays. These states are dominated by sequential, through the 8 Be ground state, and direct decays, respectively. These decay mechanisms are reflected in the ''dynamic'' evolution from small, cluster or shell-model states, to large distances, where the coordinate or momentum space continuum wave functions are accurately computed

  18. Collective effects in isolated atoms (many-body aspects of photoionization process)

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1983-01-01

    This chapter examines outer and intermediate many-electron shells and demonstrates that photoionization is of collective nature because in the atomic reaction to the external electromagnetic field at least all electrons of the ionized subshell take part. Performs the calculation of complex atom photoionization using random phase approximation with exchange (RPAE). Explains that in RPAE the ionization amplitude is presented as a sum of two terms, describing the direct knock-out and the induced one which is connected with a variation of the self-consistent field, caused by polarization of atomic shells under the action of the external field. Discusses collective effects in outer shells; deviation from RPAE prediction in outer shells; excitations ''two electrons-two holes'' and autoionizing states; collective effects in inner shells; and bremsstrahlung. Observes a large number of many-particle effects which manifest themselves practically in all atomic processes. Finds that by correcting and improving the one-electron approximation it becomes possible even in its frame to include much of what seems to be many-electron corrections

  19. INTEGRATION OF THE ROTATION OF AN EARTH-LIKE BODY AS A PERTURBED SPHERICAL ROTOR

    International Nuclear Information System (INIS)

    Ferrer, Sebastian; Lara, Martin

    2010-01-01

    For rigid bodies close to a sphere, we propose an analytical solution that is free from elliptic integrals and functions, and can be fundamental for application to perturbed problems. After reordering the Hamiltonian as a perturbed spherical rotor, the Lie-series solution is generated up to an arbitrary order. Using the inertia parameters of different solar system bodies, the comparison of the approximate series solution with the exact analytical one shows that the precision reached with relatively low orders is at the same level of the observational accuracy for the Earth and Mars. Thus, for instance, the periodic errors of the mathematical solution are confined to the microarcsecond level with a simple second-order truncation for the Earth. On the contrary, higher orders are required for the mathematical solution to reach a precision at the expected level of accuracy of proposed new theories for the rotational dynamics of the Moon.

  20. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xufen [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, 230026 (China); Wang, Yougang [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Feix, Martin [CNRS, UMR 7095 and UPMC, Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, F-75014 Paris (France); Zhao, HongSheng, E-mail: xufenwu@ustc.edu.cn [School of Physics and Astronomy, University of St Andrews, North Haugh, Fife, KY16 9SS (United Kingdom)

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N -body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.

  1. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    Science.gov (United States)

    Wu, Xufen; Wang, Yougang; Feix, Martin; Zhao, HongSheng

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N-body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.

  2. Self-consistent finite-temperature model of atom-laser coherence properties

    International Nuclear Information System (INIS)

    Fergusson, J.R.; Geddes, A.J.; Hutchinson, D.A.W.

    2005-01-01

    We present a mean-field model of a continuous-wave atom laser with Raman output coupling. The noncondensate is pumped at a fixed input rate which, in turn, pumps the condensate through a two-body scattering process obeying the Fermi golden rule. The gas is then coupled out by a Gaussian beam from the system, and the temperature and particle number are self-consistently evaluated against equilibrium constraints. We observe the dependence of the second-order coherence of the output upon the width of the output-coupling beam, and note that even in the presence of a highly coherent trapped gas, perfect coherence of the output matter wave is not guaranteed

  3. Evidence that Self-Affirmation Reduces Body Dissatisfaction by Basing Self-Esteem on Domains Other than Body Weight and Shape

    Science.gov (United States)

    Armitage, Christopher J.

    2012-01-01

    Background: Body satisfaction interventions have typically been multifaceted and targeted at clinical populations. The aim of the present research was to isolate the effects of self-affirmation on body satisfaction in a community sample and to see whether self-affirmation works by basing one's self-esteem on domains other than body weight and…

  4. Quantum Markov processes and applications in many-body systems

    International Nuclear Information System (INIS)

    Temme, P. K.

    2010-01-01

    This thesis is concerned with the investigation of quantum as well as classical Markov processes and their application in the field of strongly correlated many-body systems. A Markov process is a special kind of stochastic process, which is determined by an evolution that is independent of its history and only depends on the current state of the system. The application of Markov processes has a long history in the field of statistical mechanics and classical many-body theory. Not only are Markov processes used to describe the dynamics of stochastic systems, but they predominantly also serve as a practical method that allows for the computation of fundamental properties of complex many-body systems by means of probabilistic algorithms. The aim of this thesis is to investigate the properties of quantum Markov processes, i.e. Markov processes taking place in a quantum mechanical state space, and to gain a better insight into complex many-body systems by means thereof. Moreover, we formulate a novel quantum algorithm which allows for the computation of the thermal and ground states of quantum many-body systems. After a brief introduction to quantum Markov processes we turn to an investigation of their convergence properties. We find bounds on the convergence rate of the quantum process by generalizing geometric bounds found for classical processes. We generalize a distance measure that serves as the basis for our investigations, the chi-square divergence, to non-commuting probability spaces. This divergence allows for a convenient generalization of the detailed balance condition to quantum processes. We then devise the quantum algorithm that can be seen as the natural generalization of the ubiquitous Metropolis algorithm to simulate quantum many-body Hamiltonians. By this we intend to provide further evidence, that a quantum computer can serve as a fully-fledged quantum simulator, which is not only capable of describing the dynamical evolution of quantum systems, but

  5. Many-body physics and the capacity of quantum channels with memory

    International Nuclear Information System (INIS)

    Plenio, M B; Virmani, S

    2008-01-01

    In most studies of the capacity of quantum channels, it is assumed that the errors in the use of each channel are independent. However, recent work has begun to investigate the effects of memory or correlations in the error, and has led to suggestions that there can be interesting non-analytic behaviour in the capacity of such channels. In a previous paper, we pursued this issue by connecting the study of channel capacities under correlated error to the study of critical behaviour in many-body physics. This connection enables the use of techniques from many-body physics to either completely solve or understand qualitatively a number of interesting models of correlated error with analogous behaviour to associated many-body systems. However, in order for this approach to work rigorously, there are a number of technical properties that need to be established for the lattice systems being considered. In this paper, we discuss these properties in detail, and establish them for some classes of many-body system

  6. Subsolar magnetopause observation and kinetic simulation of a tripolar guide magnetic field perturbation consistent with a magnetic island

    Science.gov (United States)

    Eriksson, S.; Cassak, P. A.; Retinò, A.; Mozer, F. S.

    2016-04-01

    The Polar satellite recorded two reconnection exhausts within 6 min on 1 April 2001 across a subsolar magnetopause that displayed a symmetric plasma density, but different out-of-plane magnetic field signatures for similar solar wind conditions. The first magnetopause crossing displayed a bipolar guide field variation in a weak external guide field consistent with a symmetric Hall field from a single X line. The subsequent crossing represents the first observation of a tripolar guide field perturbation at Earth's magnetopause in a strong guide field. This perturbation consists of a significant guide field enhancement between two narrow guide field depressions. A particle-in-cell simulation for the prevailing conditions across this second event resulted in a magnetic island between two simulated X lines across which a tripolar guide field developed consistent with the observation. The simulated island supports a scenario whereby Polar encountered the asymmetric quadrupole Hall magnetic fields between two X lines for symmetric conditions across the magnetopause.

  7. Self-consistent modelling of resonant tunnelling structures

    DEFF Research Database (Denmark)

    Fiig, T.; Jauho, A.P.

    1992-01-01

    We report a comprehensive study of the effects of self-consistency on the I-V-characteristics of resonant tunnelling structures. The calculational method is based on a simultaneous solution of the effective-mass Schrödinger equation and the Poisson equation, and the current is evaluated...... applied voltages and carrier densities at the emitter-barrier interface. We include the two-dimensional accumulation layer charge and the quantum well charge in our self-consistent scheme. We discuss the evaluation of the current contribution originating from the two-dimensional accumulation layer charges......, and our qualitative estimates seem consistent with recent experimental studies. The intrinsic bistability of resonant tunnelling diodes is analyzed within several different approximation schemes....

  8. Relativistic initial conditions for N-body simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Christian [Catholic University of Louvain—Center for Cosmology, Particle Physics and Phenomenology (CP3) 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Tram, Thomas; Crittenden, Robert; Koyama, Kazuya; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Rampf, Cornelius, E-mail: christian.fidler@uclouvain.be, E-mail: thomas.tram@port.ac.uk, E-mail: rampf@thphys.uni-heidelberg.de, E-mail: robert.crittenden@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: david.wands@port.ac.uk [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D–69120 Heidelberg (Germany)

    2017-06-01

    Initial conditions for (Newtonian) cosmological N-body simulations are usually set by re-scaling the present-day power spectrum obtained from linear (relativistic) Boltzmann codes to the desired initial redshift of the simulation. This back-scaling method can account for the effect of inhomogeneous residual thermal radiation at early times, which is absent in the Newtonian simulations. We analyse this procedure from a fully relativistic perspective, employing the recently-proposed Newtonian motion gauge framework. We find that N-body simulations for ΛCDM cosmology starting from back-scaled initial conditions can be self-consistently embedded in a relativistic space-time with first-order metric potentials calculated using a linear Boltzmann code. This space-time coincides with a simple ''N-body gauge'' for z < 50 for all observable modes. Care must be taken, however, when simulating non-standard cosmologies. As an example, we analyse the back-scaling method in a cosmology with decaying dark matter, and show that metric perturbations become large at early times in the back-scaling approach, indicating a breakdown of the perturbative description. We suggest a suitable ''forwards approach' for such cases.

  9. Non-Perturbative Renormalization

    CERN Document Server

    Mastropietro, Vieri

    2008-01-01

    The notion of renormalization is at the core of several spectacular achievements of contemporary physics, and in the last years powerful techniques have been developed allowing to put renormalization on a firm mathematical basis. This book provides a self-consistent and accessible introduction to the sophisticated tools used in the modern theory of non-perturbative renormalization, allowing an unified and rigorous treatment of Quantum Field Theory, Statistical Physics and Condensed Matter models. In particular the first part of this book is devoted to Constructive Quantum Field Theory, providi

  10. Classical many-body theory with retarded interactions: Dynamical irreversibility and determinism without probabilities

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, A.Yu., E-mail: Anatoly.Zakharov@novsu.ru; Zakharov, M.A., E-mail: ma_zakharov@list.ru

    2016-01-28

    The exact equations of motion for microscopic density of classical many-body system with account of inter-particle retarded interactions is derived. It is shown that interactions retardation leads to irreversible behavior of many-body systems. - Highlights: • A new form of equation of motion of classical many-body system is proposed. • Interactions retardation as one of the mechanisms of many-body system irreversibility. • Irreversibility and determinism without probabilities. • The possible way to microscopic foundation of thermodynamics.

  11. Perturbative expansions from Monte Carlo simulations at weak coupling: Wilson loops and the static-quark self-energy

    Science.gov (United States)

    Trottier, H. D.; Shakespeare, N. H.; Lepage, G. P.; MacKenzie, P. B.

    2002-05-01

    Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 34 to 164) and couplings (from β~9 to β~60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.

  12. Probing quantum and thermal noise in an interacting many-body system

    DEFF Research Database (Denmark)

    Hofferberth, S.; Lesanovsky, Igor; Schumm, Thorsten

    2008-01-01

    of the shot-to-shot variations of interference-fringe contrast for pairs of independently created one-dimensional Bose condensates. Analysing different system sizes, we observe the crossover from thermal to quantum noise, reflected in a characteristic change in the distribution functions from poissonian......The probabilistic character of the measurement process is one of the most puzzling and fascinating aspects of quantum mechanics. In many-body systems quantum-mechanical noise reveals non-local correlations of the underlying many-body states. Here, we provide a complete experimental analysis....... Furthermore, our experiments constitute the first analysis of the full distribution of quantum noise in an interacting many-body system....

  13. Transformations of the perturbed two-body problem to unperturbed harmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Szebehely, V; Bond, V

    1983-05-01

    Singular, nonlinear, and Liapunov unstable equations are made regular and linear through transformations that change the perturbed planar problem of two bodies into unperturbed and undamped harmonic oscillators with constant coefficients, so that the stable solution may be immediately written in terms of the new variables. The use of arbitrary and special functions for the transformations allows the systematic discussion of previously introduced and novel anomalies. For the case of the unperturbed two-body problem, it is proved that if transformations are power functions of the radial variable, only the eccentric and the true anomalies (with the corresponding transformations of the radial variable) will result in harmonic oscillators. The present method significantly reduces computation requirements in autonomous space operations. 11 references.

  14. Voluntary self-touch increases body ownership

    Directory of Open Access Journals (Sweden)

    Masayuki eHara

    2015-10-01

    Full Text Available Experimental manipulations of body ownership have indicated that multisensory integration is central to forming bodily self-representation. Voluntary self-touch is a unique multisensory situation involving corresponding motor, tactile and proprioceptive signals. Yet, even though self-touch is frequent in everyday life, its contribution to the formation of body ownership is not well understood. Here we investigated the role of voluntary self-touch in body ownership using a novel adaptation of the rubber hand illusion (RHI, in which a robotic system and virtual reality allowed participants self-touch of real and virtual hands. In the first experiment, active and passive self-touch were applied in the absence of visual feedback. In the second experiment, we tested the role of visual feedback in this bodily illusion. Finally, in the third experiment, we compared active and passive self-touch to the classical RHI in which the touch is administered by the experimenter. We hypothesized that active self-touch would increase ownership over the virtual hand through the addition of motor signals strengthening the bodily illusion. The results indicated that active self-touch elicited stronger illusory ownership compared to passive self-touch and sensory only stimulation, and indicate an important role of active self-touch in the formation of bodily self.

  15. Time dependent mean field approximation to the many-body S-matrix

    International Nuclear Information System (INIS)

    Alhassid, Y.; Koonin, S.E.

    1980-01-01

    Time-dependent Hartree-Fock (TDHF) calculations are a good description of some inclusive properties of deep inelastic heavy-ion collisions. The first steps toward a mean-field theory that approximates specific elements of the many-body S matrix are presented. A many-body system with pairwise interactions excited by an external, time-dependent one-body field is considered. The methods are used to solve the forced Lipkin model. The moduli of elastic and excitation amplitudes are plotted. 3 figures

  16. Holding a handle for balance during continuous postural perturbations – immediate and transitionary effects on whole body posture

    Directory of Open Access Journals (Sweden)

    Jernej Camernik

    2016-09-01

    Full Text Available When balance is exposed to perturbations, hand contacts are often used to assist postural control. We investigated the immediate and the transitionary effects of supportive hand contacts during continuous anteroposterior perturbations of stance by automated waist-pulls. Ten young adults were perturbed for five minutes and required to maintain balance by holding to a stationary, shoulder-high handle and following its removal. Centre of pressure (COP displacement, hip, knee, and ankle angles, leg and trunk muscle activity and handle contact forces were acquired. The analysis of results show that COP excursions are significantly smaller when the subjects utilize supportive hand contact and that the displacement of COP is strongly correlated to the perturbation force and significantly larger in the anterior than posterior direction. Regression analysis of hand forces revealed that subjects utilized the hand support significantly more during the posterior than anterior perturbations. Moreover, kinematical analysis showed that utilization of supportive hand contacts alters posture of the whole body and that postural readjustments after the release of the handle occur at different time scales in the hip, knee, and ankle joints. Overall, our findings show that supportive hand contacts are efficiently used for balance control during continuous postural perturbations and that utilization of a handle has significant immediate and transitionary effects on whole body posture.

  17. Is the Quilted Multiverse Consistent with a Thermodynamic Arrow of Time?

    Science.gov (United States)

    Aharonov, Yakir; Cohen, Eliahu; Shushi, Tomer

    2018-02-01

    Theoretical achievements, as well as much controversy, surround multiverse theory. Various types of multiverses, with an increasing amount of complexity, were suggested and thoroughly discussed in literature by now. While these types are very different, they all share the same basic idea: our physical reality consists of more than just one universe. Each universe within a possibly huge multiverse might be slightly or even very different from the others. The quilted multiverse is one of these types, whose uniqueness arises from the postulate that every possible event will occur infinitely many times in infinitely many universes. In this paper we show that the quilted multiverse is not self-consistent due to the instability of entropy decrease under small perturbations. We therefore propose a modified version of the quilted multiverse which might overcome this shortcoming. It includes only those universes where the minimal entropy occurs at the same instant of (cosmological) time. Only these universes whose initial conditions are fine-tuned within a small phase-space region would evolve consistently to form their "close"' states at present. A final boundary condition on the multiverse may further lower the amount of possible, consistent universes. Finally, some related observations regarding the many-worlds interpretation of quantum mechanics and the emergence of classicality are discussed.

  18. Is the Quilted Multiverse Consistent with a Thermodynamic Arrow of Time?

    Directory of Open Access Journals (Sweden)

    Yakir Aharonov

    2018-02-01

    Full Text Available Theoretical achievements, as well as much controversy, surround multiverse theory. Various types of multiverses, with an increasing amount of complexity, were suggested and thoroughly discussed in literature by now. While these types are very different, they all share the same basic idea: our physical reality consists of more than just one universe. Each universe within a possibly huge multiverse might be slightly or even very different from the others. The quilted multiverse is one of these types, whose uniqueness arises from the postulate that every possible event will occur infinitely many times in infinitely many universes. In this paper we show that the quilted multiverse is not self-consistent due to the instability of entropy decrease under small perturbations. We therefore propose a modified version of the quilted multiverse which might overcome this shortcoming. It includes only those universes where the minimal entropy occurs at the same instant of (cosmological time. Only these universes whose initial conditions are fine-tuned within a small phase-space region would evolve consistently to form their “close” states at present. A final boundary condition on the multiverse may further lower the amount of possible, consistent universes. Finally, some related observations regarding the many-worlds interpretation of quantum mechanics and the emergence of classicality are discussed.

  19. Effect of ladder diagrams on optical absorption spectra in a quasiparticle self-consistent GW framework

    Science.gov (United States)

    Cunningham, Brian; Grüning, Myrta; Azarhoosh, Pooya; Pashov, Dimitar; van Schilfgaarde, Mark

    2018-03-01

    We present an approach to calculate the optical absorption spectra that combines the quasiparticle self-consistent GW method [Phys. Rev. B 76, 165106 (2007), 10.1103/PhysRevB.76.165106] for the electronic structure with the solution of the ladder approximation to the Bethe-Salpeter equation for the macroscopic dielectric function. The solution of the Bethe-Salpeter equation has been implemented within an all-electron framework, using a linear muffin-tin orbital basis set, with the contribution from the nonlocal self-energy to the transition dipole moments (in the optical limit) evaluated explicitly. This approach addresses those systems whose electronic structure is poorly described within the standard perturbative GW approaches with density-functional theory calculations as a starting point. The merits of this approach have been exemplified by calculating optical absorption spectra of a strongly correlated transition metal oxide, NiO, and a narrow gap semiconductor, Ge. In both cases, the calculated spectrum is in good agreement with the experiment. It is also shown that for systems whose electronic structure is well-described within the standard perturbative GW , such as Si, LiF, and h -BN , the performance of the present approach is in general comparable to the standard GW plus Bethe-Salpeter equation. It is argued that both vertex corrections to the electronic screening and the electron-phonon interaction are responsible for the observed systematic overestimation of the fundamental band gap and spectrum onset.

  20. Semiclassical expansion of quantum characteristics for many-body potential scattering problem

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.; Fuchs, C.; Faessler, A.

    2007-01-01

    In quantum mechanics, systems can be described in phase space in terms of the Wigner function and the star-product operation. Quantum characteristics, which appear in the Heisenberg picture as the Weyl's symbols of operators of canonical coordinates and momenta, can be used to solve the evolution equations for symbols of other operators acting in the Hilbert space. To any fixed order in the Planck's constant, many-body potential scattering problem simplifies to a statistical-mechanical problem of computing an ensemble of quantum characteristics and their derivatives with respect to the initial canonical coordinates and momenta. The reduction to a system of ordinary differential equations pertains rigorously at any fixed order in ℎ. We present semiclassical expansion of quantum characteristics for many-body scattering problem and provide tools for calculation of average values of time-dependent physical observables and cross sections. The method of quantum characteristics admits the consistent incorporation of specific quantum effects, such as non-locality and coherence in propagation of particles, into the semiclassical transport models. We formulate the principle of stationary action for quantum Hamilton's equations and give quantum-mechanical extensions of the Liouville theorem on conservation of the phase-space volume and the Poincare theorem on conservation of 2p-forms. The lowest order quantum corrections to the Kepler periodic orbits are constructed. These corrections show the resonance behavior. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  1. Self-Face and Self-Body Recognition in Autism

    Science.gov (United States)

    Gessaroli, Erica; Andreini, Veronica; Pellegri, Elena; Frassinetti, Francesca

    2013-01-01

    The advantage in responding to self vs. others' body and face-parts (the so called self-advantage) is considered to reflect the implicit access to the bodily self representation and has been studied in healthy and brain-damaged adults in previous studies. If the distinction of the self from others is a key aspect of social behaviour and is a…

  2. Delayed Compensatory Postural Adjustments After Lateral Perturbations Contribute to the Reduced Ability of Older Adults to Control Body Balance.

    Science.gov (United States)

    Claudino, Renato; Dos Santos, Marcio José; Mazo, Giovana Zarpellon

    2017-10-01

    The goal of this study was to investigate the timing of compensatory postural adjustments in older adults during body perturbations in the mediolateral direction, circumstances that increase their risk of falls. The latencies of leg and trunk muscle activation to body perturbations at the shoulder level and variables of center of pressure excursion, which characterize postural stability, were analyzed in 40 older adults (nonfallers and fallers evenly split) and in 20 young participants. The older adults exhibited longer latencies of muscular activation in eight out of 15 postural muscles as compared with young participants; for three muscles, the latencies were longer for the older fallers than nonfallers. Simultaneously, the time for the center of pressure displacement reached its peak after the perturbation was significant longer in both groups of older adults. The observed delays in compensatory postural adjustments may affect the older adults' ability to prompt control body balance after postural disturbances and predispose them to falls.

  3. Self-consistent normal ordering of gauge field theories

    International Nuclear Information System (INIS)

    Ruehl, W.

    1987-01-01

    Mean-field theories with a real action of unconstrained fields can be self-consistently normal ordered. This leads to a considerable improvement over standard mean-field theory. This concept is applied to lattice gauge theories. First an appropriate real action mean-field theory is constructed. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean-field theory are derived. (author). 4 refs

  4. The multi-reference retaining the excitation degree perturbation theory: A size-consistent, unitary invariant, and rapidly convergent wavefunction based ab initio approach

    International Nuclear Information System (INIS)

    Fink, Reinhold F.

    2009-01-01

    The retaining the excitation degree (RE) partitioning [R.F. Fink, Chem. Phys. Lett. 428 (2006) 461(20 September)] is reformulated and applied to multi-reference cases with complete active space (CAS) reference wave functions. The generalised van Vleck perturbation theory is employed to set up the perturbation equations. It is demonstrated that this leads to a consistent and well defined theory which fulfils all important criteria of a generally applicable ab initio method: The theory is proven numerically and analytically to be size-consistent and invariant with respect to unitary orbital transformations within the inactive, active and virtual orbital spaces. In contrast to most previously proposed multi-reference perturbation theories the necessary condition for a proper perturbation theory to fulfil the zeroth order perturbation equation is exactly satisfied with the RE partitioning itself without additional projectors on configurational spaces. The theory is applied to several excited states of the benchmark systems CH 2 , SiH 2 , and NH 2 , as well as to the lowest states of the carbon, nitrogen and oxygen atoms. In all cases comparisons are made with full configuration interaction results. The multi-reference (MR)-RE method is shown to provide very rapidly converging perturbation series. Energy differences between states of similar configurations converge even faster

  5. Body image and self-esteem in somatizing patients.

    Science.gov (United States)

    Sertoz, Ozen O; Doganavsargil, Ozge; Elbi, Hayriye

    2009-08-01

    The aim of the present study was to determine dissatisfaction with body appearance and bodily functions and to assess self-esteem in somatizing patients. Body image and self-esteem were investigated in 128 women; 34 of those had diagnosed somatoform disorders, 50 were breast cancer patients with total mastectomy surgery alone, and 44 were healthy subjects. Body image and self-esteem were assessed using the Body Cathexis Scale and Rosenberg Self-Esteem Scale. The two clinical groups did not differ from one another (z = -1.832, P = 0.067), but differed from healthy controls in terms of body image (somatizing patients vs healthy controls, z = -3.628, P self-esteem (z = -0.936, P = 0.349) when depressive symptoms were controlled. No statistically significant difference was observed between total mastectomy patients and healthy controls in terms of self-esteem (z = -1.727, P = 0.084). The lower levels of self-esteem in somatizing patients were largely mediated by depressive symptoms. Depressed and non-depressed somatizing patients differed significantly from healthy controls with respect to their self-esteem and body image. Somatizing patients who were dissatisfied with their bodily functions and appearance had lower levels of self-esteem and high comorbidity of depression. In clinical practice it is suggested that clinicians should take into account psychiatric comorbidity, self-esteem, and body image in somatizing patients when planning treatment approaches.

  6. Porter-Thomas distribution in unstable many-body systems

    International Nuclear Information System (INIS)

    Volya, Alexander

    2011-01-01

    We use the continuum shell model approach to explore the resonance width distribution in unstable many-body systems. The single-particle nature of a decay, the few-body character of the interaction Hamiltonian, and the collectivity that emerges in nonstationary systems due to the coupling to the continuum of reaction states are discussed. Correlations between the structures of the parent and daughter nuclear systems in the common Fock space are found to result in deviations of decay width statistics from the Porter-Thomas distribution.

  7. Ab Initio Many-Body Calculations Of Nucleon-Nucleus Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Quaglioni, S; Navratil, P

    2008-12-17

    We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on {sup 3}H, {sup 4}He and {sup 10}Be and proton scattering on {sup 3,4}He, using realistic nucleon-nucleon (NN) potentials. Our A = 4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-{sup 4}He S-wave phase shifts. We demonstrate that a proper treatment of the coupling to the n-{sup 10}Be continuum is successful in explaining the parity-inverted ground state in {sup 11}Be.

  8. Many Body Structure of Strongly Interacting Systems

    CERN Document Server

    Arenhövel, Hartmuth; Drechsel, Dieter; Friedrich, Jörg; Kaiser, Karl-Heinz; Walcher, Thomas; Symposium on 20 Years of Physics at the Mainz Microtron MAMI

    2006-01-01

    This carefully edited proceedings volume provides an extensive review and analysis of the work carried out over the past 20 years at the Mainz Microtron (MAMI). This research centered around the application of Quantum Chromodynamics in the strictly nonperturbative regime at hadronic scales of about 1 fm. Due to the many degrees of freedom in hadrons at this scale the leitmotiv of this research is "Many body structure of strongly interacting systems". Further, an outlook on the research with the forthcoming upgrade of MAMI is given. This volume is an authoritative source of reference for everyone interested in the field of the electro-weak probing of the structure of hadrons.

  9. Genuine quantum correlations in quantum many-body systems: a review of recent progress.

    Science.gov (United States)

    De Chiara, Gabriele; Sanpera, Anna

    2018-04-19

    Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems. © 2018 IOP Publishing Ltd.

  10. Many-body quantum chaos: Recent developments and applications to nuclei

    International Nuclear Information System (INIS)

    Gomez, J.M.G.; Kar, K.; Kota, V.K.B.; Molina, R.A.; Relano, A.; Retamosa, J.

    2011-01-01

    In the last decade, there has been an increasing interest in the analysis of energy level spectra and wave functions of nuclei, particles, atoms and other quantum many-body systems by means of statistical methods and random matrix ensembles. The concept of quantum chaos plays a central role for understanding the universal properties of the energy spectrum of quantum systems. Since these properties concern the whole spectrum, statistical methods become an essential tool. Besides random matrix theory, new theoretical developments making use of information theory, time series analysis, and the merging of thermodynamics and the semiclassical approximation are emphasized. Applications of these methods to quantum systems, especially to atomic nuclei, are reviewed. We focus on recent developments like the study of 'imperfect spectra' to estimate the degree of symmetry breaking or the fraction of missing levels, the existence of chaos remnants in nuclear masses, the onset of chaos in nuclei, and advances in the comprehension of the Hamiltonian structure in many-body systems. Finally, some applications of statistical spectroscopy methods generated by many-body chaos and two-body random matrix ensembles are described, with emphasis on Gamow-Teller strength sums and beta decay rates for stellar evolution and supernovae.

  11. Perturbative expansions from Monte Carlo simulations at weak coupling: Wilson loops and the static-quark self-energy

    International Nuclear Information System (INIS)

    Trottier, H.D.; Shakespeare, N.H.; Lepage, G.P.; Mackenzie, P.B.

    2002-01-01

    Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 3 4 to 16 4 ) and couplings (from β≅9 to β≅60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported

  12. Solvable Family of Driven-Dissipative Many-Body Systems

    Science.gov (United States)

    Foss-Feig, Michael; Young, Jeremy T.; Albert, Victor V.; Gorshkov, Alexey V.; Maghrebi, Mohammad F.

    2017-11-01

    Exactly solvable models have played an important role in establishing the sophisticated modern understanding of equilibrium many-body physics. Conversely, the relative scarcity of solutions for nonequilibrium models greatly limits our understanding of systems away from thermal equilibrium. We study a family of nonequilibrium models, some of which can be viewed as dissipative analogues of the transverse-field Ising model, in that an effectively classical Hamiltonian is frustrated by dissipative processes that drive the system toward states that do not commute with the Hamiltonian. Surprisingly, a broad and experimentally relevant subset of these models can be solved efficiently. We leverage these solutions to compute the effects of decoherence on a canonical trapped-ion-based quantum computation architecture, and to prove a no-go theorem on steady-state phase transitions in a many-body model that can be realized naturally with Rydberg atoms or trapped ions.

  13. Paradeisos: A perfect hashing algorithm for many-body eigenvalue problems

    Science.gov (United States)

    Jia, C. J.; Wang, Y.; Mendl, C. B.; Moritz, B.; Devereaux, T. P.

    2018-03-01

    We describe an essentially perfect hashing algorithm for calculating the position of an element in an ordered list, appropriate for the construction and manipulation of many-body Hamiltonian, sparse matrices. Each element of the list corresponds to an integer value whose binary representation reflects the occupation of single-particle basis states for each element in the many-body Hilbert space. The algorithm replaces conventional methods, such as binary search, for locating the elements of the ordered list, eliminating the need to store the integer representation for each element, without increasing the computational complexity. Combined with the "checkerboard" decomposition of the Hamiltonian matrix for distribution over parallel computing environments, this leads to a substantial savings in aggregate memory. While the algorithm can be applied broadly to many-body, correlated problems, we demonstrate its utility in reducing total memory consumption for a series of fermionic single-band Hubbard model calculations on small clusters with progressively larger Hilbert space dimension.

  14. Parquet equations for numerical self-consistent-field theory

    International Nuclear Information System (INIS)

    Bickers, N.E.

    1991-01-01

    In recent years increases in computational power have provided new motivation for the study of self-consistent-field theories for interacting electrons. In this set of notes, the so-called parquet equations for electron systems are derived pedagogically. The principal advantages of the parquet approach are outlined, and its relationship to simpler self-consistent-field methods, including the Baym-Kadanoff technique, is discussed in detail. (author). 14 refs, 9 figs

  15. Liking for Evaluators: Consistency and Self-Esteem Theories

    Science.gov (United States)

    Regan, Judith Weiner

    1976-01-01

    Consistency and self-esteem theories make contrasting predictions about the relationship between a person's self-evaluation and his liking for an evaluator. Laboratory experiments confirmed predictions about these theories. (Editor/RK)

  16. On the structure of self-affine convex bodies

    Energy Technology Data Exchange (ETDEWEB)

    Voynov, A S [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2013-08-31

    We study the structure of convex bodies in R{sup d} that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for d = 2 by Richter in 2011. In the present paper we disprove the conjecture for all d≥3 and derive a detailed description of self-affine bodies in R{sup 3}. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument. Bibliography: 10 titles.

  17. Almost conserved operators in nearly many-body localized systems

    Science.gov (United States)

    Pancotti, Nicola; Knap, Michael; Huse, David A.; Cirac, J. Ignacio; Bañuls, Mari Carmen

    2018-03-01

    We construct almost conserved local operators, that possess a minimal commutator with the Hamiltonian of the system, near the many-body localization transition of a one-dimensional disordered spin chain. We collect statistics of these slow operators for different support sizes and disorder strengths, both using exact diagonalization and tensor networks. Our results show that the scaling of the average of the smallest commutators with the support size is sensitive to Griffiths effects in the thermal phase and the onset of many-body localization. Furthermore, we demonstrate that the probability distributions of the commutators can be analyzed using extreme value theory and that their tails reveal the difference between diffusive and subdiffusive dynamics in the thermal phase.

  18. Role of the body self and self-esteem in experiencing the intensity of menopausal symptoms.

    Science.gov (United States)

    Włodarczyk, Małgorzata; Dolińska-Zygmunt, Grażyna

    2017-10-29

    The aim of the study was to test differences in self-esteem and strength of the body self, body image, comfort with closeness with others and body protection among women reporting high and low intensity of psychological, vasomotor and somatic symptoms of menopause. The sample included 201 women aged 45-55 years. The Menopause Symptom List was used to test the intensity of menopausal symptoms, the Body Self Questionnaire was used to diagnose the body self, and the Rosenberg Self-Esteem Scale was used to examine participants'levels of self-esteem. Differences between women experiencing high and low intensity of symptoms were analyzed using Student's t-test for independent samples. Women experiencing high-intensity psychological, vasomotor and somatic symptoms of menopause showed significantly lower self-esteem and poorer body-self functioning in all its dimensions except for body protection. Women experiencing high-intensity psychological, vasomotor and somatic symptoms of menopause demonstrated poorer functioning of the body self and lower self-esteem.

  19. Probing many-body interactions in an optical lattice clock

    Energy Technology Data Exchange (ETDEWEB)

    Rey, A.M., E-mail: arey@jilau1.colorado.edu [JILA, NIST and University of Colorado, Department of Physics, Boulder, CO 80309 (United States); Gorshkov, A.V. [Joint Quantum Institute, NIST and University of Maryland, Department of Physics, College Park, MD 20742 (United States); Kraus, C.V. [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria); Martin, M.J. [JILA, NIST and University of Colorado, Department of Physics, Boulder, CO 80309 (United States); Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125 (United States); Bishof, M.; Swallows, M.D.; Zhang, X.; Benko, C.; Ye, J. [JILA, NIST and University of Colorado, Department of Physics, Boulder, CO 80309 (United States); Lemke, N.D.; Ludlow, A.D. [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2014-01-15

    We present a unifying theoretical framework that describes recently observed many-body effects during the interrogation of an optical lattice clock operated with thousands of fermionic alkaline earth atoms. The framework is based on a many-body master equation that accounts for the interplay between elastic and inelastic p-wave and s-wave interactions, finite temperature effects and excitation inhomogeneity during the quantum dynamics of the interrogated atoms. Solutions of the master equation in different parameter regimes are presented and compared. It is shown that a general solution can be obtained by using the so called Truncated Wigner Approximation which is applied in our case in the context of an open quantum system. We use the developed framework to model the density shift and decay of the fringes observed during Ramsey spectroscopy in the JILA {sup 87}Sr and NIST {sup 171}Yb optical lattice clocks. The developed framework opens a suitable path for dealing with a variety of strongly-correlated and driven open-quantum spin systems. -- Highlights: •Derived a theoretical framework that describes many-body effects in a lattice clock. •Validated the analysis with recent experimental measurements. •Demonstrated the importance of beyond mean field corrections in the dynamics.

  20. Spin-dependent electron many-body effects in GaAs

    Science.gov (United States)

    Nemec, P.; Kerachian, Y.; van Driel, H. M.; Smirl, Arthur L.

    2005-12-01

    Time- and polarization-resolved differential transmission measurements employing same and oppositely circularly polarized 150fs optical pulses are used to investigate spin characteristics of conduction band electrons in bulk GaAs at 295K . Electrons and holes with densities in the 2×1016cm-3-1018cm-3 range are generated and probed with pulses whose center wavelength is between 865 and 775nm . The transmissivity results can be explained in terms of the spin sensitivity of both phase-space filling and many-body effects (band-gap renormalization and screening of the Coulomb enhancement factor). For excitation and probing at 865nm , just above the band-gap edge, the transmissivity changes mainly reflect spin-dependent phase-space filling which is dominated by the electron Fermi factors. However, for 775nm probing, the influence of many-body effects on the induced transmission change are comparable with those from reduced phase space filling, exposing the spin dependence of the many-body effects. If one does not take account of these spin-dependent effects one can misinterpret both the magnitude and time evolution of the electron spin polarization. For suitable measurements we find that the electron spin relaxation time is 130ps .

  1. Some polarization properties of many-fermion systems for N-dimensional worlds in the framework of self-consistent renormalization

    International Nuclear Information System (INIS)

    Kucheryavy, V.I.

    1997-01-01

    Using the self-consistent renormalization we calculate five types of quantities (having the mass anisotropy in general) associated with the canonical Ward identities and reduction identities for two-point chronological fermion current correlators which describe most general polarization properties of fermionic sector for all n-dimensional quantum field theories incorporating fermions with both degenerate and nondegenerate fermion mass spectrum. The analysis of the vector and axial-vector Ward identities and the reduction ones for regular values of these quantities is carried out. The effective formulae for nontrivial quantum corrections (NQC) to the canonical Ward identities are obtained for any space-time dimension. The properties of the NQC are investigated in detail. The emphasis on the space-time dimension and the signature dependence has been made. Particular properties of the two-dimensional words are pointed out

  2. Individual Factors Affecting Self-esteem, and Relationships Among Self-esteem, Body Mass Index, and Body Image in Patients With Schizophrenia.

    Science.gov (United States)

    Oh, EunJung; Song, EunJu; Shin, JungEun

    2017-12-01

    The purposes of this study were to identify correlations between body mass index, body image, and self-esteem in patients with schizophrenia and to analyse the specific factors affecting self-esteem. This study had a descriptive design, utilising a cross-sectional survey. Participants were patients with schizophrenia who were admitted to a mental health facility in South Korea. A total of 180 questionnaires were distributed, and an appropriate total sample size of 167 valid questionnaires was analysed. Self-esteem was significantly correlated with body image, the subscale of appearance orientation, and body areas satisfaction. However, body mass index exhibited no significant correlation with any variable. The variables found to have a significant explanatory power of 21.4% were appearance orientation and body areas satisfaction. The explanatory power of all factors was 33.6%. The self-esteem of patients with schizophrenia was influenced by body mass index and body image. The positive symptoms of schizophrenia can be controlled by medication, whereas negative symptoms can be improved through education and nursing care with medication. Thus, psychiatric nurses should develop education and care programs that contribute to the positive body image and self-esteem of patients with schizophrenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The effectiveness of self-compassion and self-esteem writing tasks in reducing body image concerns.

    Science.gov (United States)

    Seekis, Veya; Bradley, Graham L; Duffy, Amanda

    2017-12-01

    This study investigated whether single-session self-compassion and self-esteem writing tasks ameliorate the body image concerns evoked by a negative body image induction. Ninety-six female university students aged 17-25 years (M age =19.45, SD=1.84) were randomly assigned to one of three writing treatment groups: self-compassion, self-esteem, or control. After reading a negative body image scenario, participants completed scales measuring state body appreciation, body satisfaction, and appearance anxiety. They then undertook the assigned writing task, and completed the three measures again, both immediately post-treatment and at 2-week follow-up. The self-compassion writing group showed higher post-treatment body appreciation than the self-esteem and control groups, and higher body appreciation than the control group at follow-up. At post-treatment and follow-up, self-compassion and self-esteem writing showed higher body satisfaction than the control. The groups did not differ on appearance anxiety. Writing-based interventions, especially those that enhance self-compassion, may help alleviate certain body image concerns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Nuclear, particle and many body physics

    CERN Document Server

    Morse, Philip M; Feshbach, Herman

    2013-01-01

    Nuclear, Particle and Many Body Physics, Volume II, is the second of two volumes dedicated to the memory of physicist Amos de-Shalit. The contributions in this volume are a testament to the respect he earned as a physicist and of the warm and rich affection he commanded as a personal friend. The book contains 41 chapters and begins with a study on the renormalization of rational Lagrangians. Separate chapters cover the scattering of high energy protons by light nuclei; approximation of the dynamics of proton-neutron systems; the scattering amplitude for the Gaussian potential; Coulomb excitati

  5. A self consistent study of the phase transition in the scalar electroweak theory at finite temperature

    International Nuclear Information System (INIS)

    Kerres, U.; Mack, G.; Palma, G.

    1994-12-01

    We propose the study of the phase transition in the scalar electroweak theory at finite temperature by a two-step method. It combines i) dimensional reduction to a 3-dimensional lattice theory via perturbative blockspin transformation, and ii) either further real space renormalization group transformations, or solution of gap equations, for the 3d lattice theory. A gap equation can be obtained by using the Peierls inequality to find the best quadratic approximation to the 3d action. This method avoids the lack of self consistency of the usual treatments which do not separate infrared and UV-problems by introduction of a lattice cutoff. The effective 3d lattice action could also be used in computer simulations. (orig.)

  6. A self consistent study of the phase transition in the scalar electroweak theory at finite temperature

    International Nuclear Information System (INIS)

    Kerres, U.

    1995-01-01

    We propose the study of the phase transition in the scalar electroweak theory at finite temperature by a two-step method. It combines i) dimensional reduction to a 3-dimensional lattice theory via perturbative blockspin transformation, and ii) either further real space renormalization group transformations, or solution of gap equations, for the 3d lattice theory. A gap equation can be obtained by using the Peierls inequality to find the best quadratic approximation to the 3d action. This method avoids the lack of self consistency of the usual treatments which do not separate infrared and UV-problems by introduction of a lattice cutoff. The effective 3d lattice action could also be used in computer simulations. ((orig.))

  7. Curricular Treatment of Body Image, Self-Esteem and Self-Concept in Spain

    Science.gov (United States)

    Rodríguez, Antonio V.; Estévez, Manuel; Palomares, Juan

    2015-01-01

    Adolescence is a period of human development in which problems with the perception of body image, self-esteem and self-concept proliferate, while the child is studying for Secondary Education. This study analyses the curricular treatment given to body image, self-esteem and self-concept in different legislative elements in the region of Valencia…

  8. Body knowledge in brain-damaged children: a double-dissociation in self and other's body processing.

    Science.gov (United States)

    Frassinetti, Francesca; Fiori, Simona; D'Angelo, Valentina; Magnani, Barbara; Guzzetta, Andrea; Brizzolara, Daniela; Cioni, Giovanni

    2012-01-01

    Bodies are important element for self-recognition. In this respect, in adults it has been recently shown a self vs other advantage when small parts of the subjects' body are visible. This advantage is lost following a right brain lesion underlying a role of the right hemisphere in self body-parts processing. In order to investigate the bodily-self processing in children and the development of its neuronal bases, 57 typically developing healthy subjects and 17 subjects with unilateral brain damage (5 right and 12 left sided), aged 4-17 years, were submitted to a matching-to-sample task. In this task, three stimuli vertically aligned were simultaneously presented at the centre of the computer screen. Subjects were required which of two stimuli (the upper or the lower one) matched the central target stimulus, half stimuli representing self and half stimuli representing other people's body-parts and face-parts. The results showed that corporeal self recognition is present since at least 4 years of age and that self and others' body parts processing are different and sustained by separate cerebral substrates. Indeed, a double dissociation was found: right brain damaged patients were impaired in self but not in other people's body parts, showing a self-disadvantage, whereas left brain damaged patients were impaired in others' but not in self body parts processing. Finally, since the double dissociation self/other was found for body-parts but not for face parts, the corporal self seems to be dissociated for body and face-parts. This opens the possibility of independent and lateralized functional modules for the processing of self and other body parts during development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Theory of many-body localization in periodically driven systems

    International Nuclear Information System (INIS)

    Abanin, Dmitry A.; De Roeck, Wojciech; Huveneers, François

    2016-01-01

    We present a theory of periodically driven, many-body localized (MBL) systems. We argue that MBL persists under periodic driving at high enough driving frequency: The Floquet operator (evolution operator over one driving period) can be represented as an exponential of an effective time-independent Hamiltonian, which is a sum of quasi-local terms and is itself fully MBL. We derive this result by constructing a sequence of canonical transformations to remove the time-dependence from the original Hamiltonian. When the driving evolves smoothly in time, the theory can be sharpened by estimating the probability of adiabatic Landau–Zener transitions at many-body level crossings. In all cases, we argue that there is delocalization at sufficiently low frequency. We propose a phase diagram of driven MBL systems.

  10. Boost Your Body: Self-Improvement Magazine Messages Increase Body Satisfaction in Young Adults.

    Science.gov (United States)

    Veldhuis, Jolanda; Konijn, Elly A; Knobloch-Westerwick, Silvia

    2017-02-01

    The verbal messages that contextualize exposure to idealized body imagery may moderate media users' body satisfaction. Such contextualizing verbal messages often take the form of social comparison motives in fashion magazines, while body dissatisfaction is an important mechanism underlying various body image-related health issues like depression and unbalanced weight status. Hence, the present study applied social comparison motives as induced through magazine cover messages. Hypotheses were tested in an experimental design with social comparison motives (self-improvement vs. self-evaluation vs. control) and recipient gender as between-subjects factors and body satisfaction as within-subjects factor (N = 150). Results showed that self-improvement messages accompanying ideal body media models increased body satisfaction, compared to control messages and baseline measures. In contrast, the self-evaluation messages did not impact body satisfaction. Results imply that inconsistencies regarding effects from exposure to idealized body imagery are explained by the context in which media images are portrayed, evoking differential social comparison motives. Moreover, the findings imply that health communication interventions can use verbal messages on body improvement as helpful tools, if they draw on social comparison motives effectively.

  11. Fifth International Conference on Recent Progress in Many-Body Theories

    CERN Document Server

    Pajanne, E; Bishop, R; Recent Progress in MANY-BODY THEORIES

    1988-01-01

    The present volume contains the texts of the invited talks delivered at the Fifth International Conference on Recent Progress in Many-Body Theories held in Oulu, Finland during the period 3-8 August 1987. The general format and style of the meeting followed closely those which had evolved from the earlier conferences in the series: Trieste 1978, Oaxtepec 1981, Altenberg 1983 and San Francisco 1985. Thus, the conferences in this series are in­ tended, as far as is practicable, to cover in a broad and balanced fashion both the entire spectrum of theoretical tools developed to tackle the quan­ tum many-body problem, and their major fields of· application. One of the major aims of the series is to foster the exchange of ideas and techniques among physicists working in such diverse areas of application of many-body theories as nucleon-nucleon interactions, nuclear physics, astronomy, atomic and molecular physics, quantum chemistry, quantum fluids and plasmas, and solid-state and condensed matter physics. A spec...

  12. Dense fluid self-diffusion coefficient calculations using perturbation theory and molecular dynamics

    Directory of Open Access Journals (Sweden)

    COELHO L. A. F.

    1999-01-01

    Full Text Available A procedure to correlate self-diffusion coefficients in dense fluids by using the perturbation theory (WCA coupled with the smooth-hard-sphere theory is presented and tested against molecular simulations and experimental data. This simple algebraic expression correlates well the self-diffusion coefficients of carbon dioxide, ethane, propane, ethylene, and sulfur hexafluoride. We have also performed canonical ensemble molecular dynamics simulations by using the Hoover-Nosé thermostat and the mean-square displacement formula to compute self-diffusion coefficients for the reference WCA intermolecular potential. The good agreement obtained from both methods, when compared with experimental data, suggests that the smooth-effective-sphere theory is a useful procedure to correlate diffusivity of pure substances.

  13. Non-perturbative power corrections to ghost and gluon propagators

    International Nuclear Information System (INIS)

    Boucaud, Philippe; Leroy, Jean-Pierre; Yaouanc, Alain Le; Lokhov, Alexey; Micheli, Jacques; Pene, Olivier; RodrIguez-Quintero, Jose; Roiesnel, Claude

    2006-01-01

    We study the dominant non-perturbative power corrections to the ghost and gluon propagators in Landau gauge pure Yang-Mills theory using OPE and lattice simulations. The leading order Wilson coefficients are proven to be the same for both propagators. The ratio of the ghost and gluon propagators is thus free from this dominant power correction. Indeed, a purely perturbative fit of this ratio gives smaller value ( ≅ 270MeV) of Λ M-barS-bar than the one obtained from the propagators separately( ≅ 320MeV). This argues in favour of significant non-perturbative ∼ 1/q 2 power corrections in the ghost and gluon propagators. We check the self-consistency of the method

  14. Diagonalization and Many-Body Localization for a Disordered Quantum Spin Chain

    OpenAIRE

    Imbrie, John Z

    2016-01-01

    We consider a weakly interacting quantum spin chain with random local interactions. We prove that many-body localization follows from a physically reasonable assumption that limits the extent of level attraction in the statistics of eigenvalues. In a KAM-style construction, a sequence of local unitary transformations is used to diagonalize the Hamiltonian by deforming the initial tensor product basis into a complete set of exact many-body eigenfunctions.

  15. On the many-body foundation of the nuclear field theory

    International Nuclear Information System (INIS)

    Bes, D.R.; Dussel, G.G.; Liotta, R.J.; Perazzo, R.P.J.; Broglia, R.A.

    1976-01-01

    The equivalence between the description of the many-body finite nuclear system in terms of Feynman diagrams involving only the fermion degrees of freedom and of Feynman diagrams involving fermion and phonon degrees of freedom is proved for intermediate states in the case of a general two-body residual interaction. (Auth.)

  16. A general-model-space diagrammatic perturbation theory

    International Nuclear Information System (INIS)

    Hose, G.; Kaldor, U.

    1980-01-01

    A diagrammatic many-body perturbation theory applicable to arbitrary model spaces is presented. The necessity of having a complete model space (all possible occupancies of the partially-filled shells) is avoided. This requirement may be troublesome for systems with several well-spaced open shells, such as most atomic and molecular excited states, as a complete model space spans a very broad energy range and leaves out states within that range, leading to poor or no convergence of the perturbation series. The method presented here would be particularly useful for such states. The solution of a model problem (He 2 excited Σ + sub(g) states) is demonstrated. (Auth.)

  17. Self-enhancing effects of exposure to thin-body images.

    Science.gov (United States)

    Joshi, Ramona; Herman, C Peter; Polivy, Janet

    2004-04-01

    This study examines the effect of thin-body media images on mood, self-esteem, and self-image ratings of restrained and unrestrained eaters. A secondary purpose was to examine whether these effects were influenced by exposure duration. Under the guise of a perception study, participants were exposed to thin-body or control advertisements (e.g., perfume bottles) for either 7 or 150 ms and then completed a questionnaire packet. Restrained eaters reported more favorable self-image and social self-esteem (but not appearance self-esteem) scores after exposure to thin-body images than after exposure to control advertisements. The self-image and social self-esteem scores of unrestrained eaters were unaffected by advertisement type, but their appearance self-esteem scores were lower after exposure to thin-body advertisements. No differences were found for mood ratings and total self-esteem. We discuss restraint status as a moderator of the effects of thin-body images on women's body image. Copyright 2004 by Wiley Periodicals, Inc. Int J Eat Disord 35: 333-341, 2004.

  18. Integrals of motion in the many-body localized phase

    Directory of Open Access Journals (Sweden)

    V. Ros

    2015-02-01

    Full Text Available We construct a complete set of quasi-local integrals of motion for the many-body localized phase of interacting fermions in a disordered potential. The integrals of motion can be chosen to have binary spectrum {0,1}, thus constituting exact quasiparticle occupation number operators for the Fermi insulator. We map the problem onto a non-Hermitian hopping problem on a lattice in operator space. We show how the integrals of motion can be built, under certain approximations, as a convergent series in the interaction strength. An estimate of its radius of convergence is given, which also provides an estimate for the many-body localization–delocalization transition. Finally, we discuss how the properties of the operator expansion for the integrals of motion imply the presence or absence of a finite temperature transition.

  19. Bell Correlations in a Many-Body System with Finite Statistics

    Science.gov (United States)

    Wagner, Sebastian; Schmied, Roman; Fadel, Matteo; Treutlein, Philipp; Sangouard, Nicolas; Bancal, Jean-Daniel

    2017-10-01

    A recent experiment reported the first violation of a Bell correlation witness in a many-body system [Science 352, 441 (2016)]. Following discussions in this Letter, we address here the question of the statistics required to witness Bell correlated states, i.e., states violating a Bell inequality, in such experiments. We start by deriving multipartite Bell inequalities involving an arbitrary number of measurement settings, two outcomes per party and one- and two-body correlators only. Based on these inequalities, we then build up improved witnesses able to detect Bell correlated states in many-body systems using two collective measurements only. These witnesses can potentially detect Bell correlations in states with an arbitrarily low amount of spin squeezing. We then establish an upper bound on the statistics needed to convincingly conclude that a measured state is Bell correlated.

  20. Photon Subtraction by Many-Body Decoherence

    DEFF Research Database (Denmark)

    Murray, C. R.; Mirgorodskiy, I.; Tresp, C.

    2018-01-01

    We experimentally and theoretically investigate the scattering of a photonic quantum field from another stored in a strongly interacting atomic Rydberg ensemble. Considering the many-body limit of this problem, we derive an exact solution to the scattering-induced spatial decoherence of multiple...... stored photons, allowing for a rigorous understanding of the underlying dissipative quantum dynamics. Combined with our experiments, this analysis reveals a correlated coherence-protection process in which the scattering from one excitation can shield all others from spatial decoherence. We discuss how...... this effect can be used to manipulate light at the quantum level, providing a robust mechanism for single-photon subtraction, and experimentally demonstrate this capability....

  1. Prethermalization in an isolated many body system

    International Nuclear Information System (INIS)

    Gring, M.

    2012-01-01

    Understanding the relaxation dynamics of complex non-equilibrium many-body quantum systems is a fundamental problem, arising in many areas of physics. However, experimental examples of non-equilibrium systems that are both controllable and suitable for detailed study are extremely rare. In this thesis one such example in the form of a coherently split one-dimensional (1d) ultra cold Bose gas in a double-well potential is studied in detail. Typical for the analysis of non-equilibrium systems, the key challenge in this study is the characterization of the complex transient states of the system. In the presented work this task is solved by employing measurements of the time evolution of the full quantum mechanical probability distribution functions (FDFs) of time-of-flight matter-wave interference patterns between the two halves of the split system. The dynamics of the FDFs reveal two distinct regimes of relaxation clearly demonstrating the multi-mode nature of 1d Bose gases. Moreover, after an initial rapid evolution, the FDFs exhibit the approach towards a thermal-like steady state of the system which however does not correspond to the true thermal equilibrium of the system. This surprising behaviour is also predicted by a recent theoretical work which puts the observations in a much broader context and classifies them as an example of prethermalization. Prethermalization is a general concept from relativistic quantum field theory and is currently the subject of intense theoretical research. Accordingly prethermalized states were recently predicted for a series of other many-body quantum systems. The work presented in this thesis represents a direct experimental observation of this phenomenon of prethermalization. (author) [de

  2. Many-Body Mean-Field Equations: Parallel implementation

    International Nuclear Information System (INIS)

    Vallieres, M.; Umar, S.; Chinn, C.; Strayer, M.

    1993-01-01

    We describe the implementation of Hartree-Fock Many-Body Mean-Field Equations on a Parallel Intel iPSC/860 hypercube. We first discuss the Nuclear Mean-Field approach in physical terms. Then we describe our parallel implementation of this approach on the Intel iPSC/860 hypercube. We discuss and compare the advantages and disadvantages of the domain partition versus the Hilbert space partition for this problem. We conclude by discussing some timing experiments on various computing platforms

  3. Structure of the many-body wavefunction for scattering

    International Nuclear Information System (INIS)

    L'Huillier, M.; Redish, E.F.; Tandy, P.C.

    1978-01-01

    We show that the scattered part of the many-body wavefunction initiated by two incoming clusters is given by a fully connected operator acting on the initial channel state. The structure of this operator suggests a division of the full wavefunction into two-cluster components. A set of coupled equations in both the differential and integral form is then derived for these components. These equations have structure and properties similar to the three-body equations of Faddeev. We demonstrate that each component has outgoing waves in a unique two-cluster partition. The transition amplitude for any final arrangement can therefore be extracted directly from the outgoing waves in the relevant components

  4. Efficient tomography of a quantum many-body system

    Science.gov (United States)

    Lanyon, B. P.; Maier, C.; Holzäpfel, M.; Baumgratz, T.; Hempel, C.; Jurcevic, P.; Dhand, I.; Buyskikh, A. S.; Daley, A. J.; Cramer, M.; Plenio, M. B.; Blatt, R.; Roos, C. F.

    2017-12-01

    Quantum state tomography is the standard technique for estimating the quantum state of small systems. But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states. Here we demonstrate matrix product state tomography, which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.

  5. Linear augmented plane wave method for self-consistent calculations

    International Nuclear Information System (INIS)

    Takeda, T.; Kuebler, J.

    1979-01-01

    O.K. Andersen has recently introduced a linear augmented plane wave method (LAPW) for the calculation of electronic structure that was shown to be computationally fast. A more general formulation of an LAPW method is presented here. It makes use of a freely disposable number of eigenfunctions of the radial Schroedinger equation. These eigenfunctions can be selected in a self-consistent way. The present formulation also results in a computationally fast method. It is shown that Andersen's LAPW is obtained in a special limit from the present formulation. Self-consistent test calculations for copper show the present method to be remarkably accurate. As an application, scalar-relativistic self-consistent calculations are presented for the band structure of FCC lanthanum. (author)

  6. Perturbation theory for water with an associating reference fluid

    Science.gov (United States)

    Marshall, Bennett D.

    2017-11-01

    The theoretical description of the thermodynamics of water is challenged by the structural transition towards tetrahedral symmetry at ambient conditions. As perturbation theories typically assume a spherically symmetric reference fluid, they are incapable of accurately describing the liquid properties of water at ambient conditions. In this paper we address this problem by introducing the concept of an associated reference perturbation theory (APT). In APT we treat the reference fluid as an associating hard sphere fluid which transitions to tetrahedral symmetry in the fully hydrogen bonded limit. We calculate this transition in a theoretically self-consistent manner without appealing to molecular simulations. This associated reference provides the reference fluid for a second order Barker-Henderson perturbative treatment of the long-range attractions. We demonstrate that this approach gives a significantly improved description of water as compared to standard perturbation theories.

  7. Social media and online self-presentation: Effects on how we see ourselves and our bodies

    NARCIS (Netherlands)

    de Vries, D.A.

    2014-01-01

    Social media are becoming more and more popular. Many adolescents and adults present themselves online through a social network site or dating profile. Such widespread engagement in self-presentation on social media may have implications for how we see ourselves and our bodies. These self-views, in

  8. Self-consistent adjoint analysis for topology optimization of electromagnetic waves

    Science.gov (United States)

    Deng, Yongbo; Korvink, Jan G.

    2018-05-01

    In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.

  9. A self-consistent theory of the magnetic polaron

    International Nuclear Information System (INIS)

    Marvakov, D.I.; Kuzemsky, A.L.; Vlahov, J.P.

    1984-10-01

    A finite temperature self-consistent theory of magnetic polaron in the s-f model of ferromagnetic semiconductors is developed. The calculations are based on the novel approach of the thermodynamic two-time Green function methods. This approach consists in the introduction of the ''irreducible'' Green functions (IGF) and derivation of the exact Dyson equation and exact self-energy operator. It is shown that IGF method gives a unified and natural approach for a calculation of the magnetic polaron states by taking explicitly into account the damping effects and finite lifetime. (author)

  10. Norm overlap between many-body states: Uncorrelated overlap between arbitrary Bogoliubov product states

    Science.gov (United States)

    Bally, B.; Duguet, T.

    2018-02-01

    Background: State-of-the-art multi-reference energy density functional calculations require the computation of norm overlaps between different Bogoliubov quasiparticle many-body states. It is only recently that the efficient and unambiguous calculation of such norm kernels has become available under the form of Pfaffians [L. M. Robledo, Phys. Rev. C 79, 021302 (2009), 10.1103/PhysRevC.79.021302]. Recently developed particle-number-restored Bogoliubov coupled-cluster (PNR-BCC) and particle-number-restored Bogoliubov many-body perturbation (PNR-BMBPT) ab initio theories [T. Duguet and A. Signoracci, J. Phys. G 44, 015103 (2017), 10.1088/0954-3899/44/1/015103] make use of generalized norm kernels incorporating explicit many-body correlations. In PNR-BCC and PNR-BMBPT, the Bogoliubov states involved in the norm kernels differ specifically via a global gauge rotation. Purpose: The goal of this work is threefold. We wish (i) to propose and implement an alternative to the Pfaffian method to compute unambiguously the norm overlap between arbitrary Bogoliubov quasiparticle states, (ii) to extend the first point to explicitly correlated norm kernels, and (iii) to scrutinize the analytical content of the correlated norm kernels employed in PNR-BMBPT. Point (i) constitutes the purpose of the present paper while points (ii) and (iii) are addressed in a forthcoming paper. Methods: We generalize the method used in another work [T. Duguet and A. Signoracci, J. Phys. G 44, 015103 (2017), 10.1088/0954-3899/44/1/015103] in such a way that it is applicable to kernels involving arbitrary pairs of Bogoliubov states. The formalism is presently explicated in detail in the case of the uncorrelated overlap between arbitrary Bogoliubov states. The power of the method is numerically illustrated and benchmarked against known results on the basis of toy models of increasing complexity. Results: The norm overlap between arbitrary Bogoliubov product states is obtained under a closed

  11. Many-body localization proximity effects in platforms of coupled spins and bosons

    Science.gov (United States)

    Marino, J.; Nandkishore, R. M.

    2018-02-01

    We discuss the onset of many-body localization in a one-dimensional system composed of a XXZ quantum spin chain and a Bose-Hubbard model linearly coupled together. We consider two complementary setups, depending whether spatial disorder is initially imprinted on spins or on bosons; in both cases, we explore the conditions for the disordered portion of the system to localize by proximity of the other clean half. Assuming that the dynamics of one of the two parts develops on shorter time scales than the other, we can adiabatically eliminate the fast degrees of freedom, and derive an effective Hamiltonian for the system's remainder using projection operator techniques. Performing a locator expansion on the strength of the many-body interaction term or on the hopping amplitude of the effective Hamiltonian thus derived, we present results on the stability of the many-body localized phases induced by proximity effect. We also briefly comment on the feasibility of the proposed model through modern quantum optics architectures, with the long-term perspective to realize experimentally, in composite open systems, Anderson or many-body localization proximity effects.

  12. Nonlinear and self-consistent treatment of ECRH

    Energy Technology Data Exchange (ETDEWEB)

    Tsironis, C.; Vlahos, L.

    2005-07-01

    A self-consistent formulation for the nonlinear interaction of electromagnetic waves with relativistic magnetized electrons is applied for the description of the ECRH. In general, electron-cyclotron absorption is the result of resonances between the cyclotron harmonics and the Doppler-shifted waver frequency. The resonant interaction results to an intense wave-particle energy exchange and an electron acceleration, and for that reason it is widely applied in fusion experiments for plasma heating and current drive. The linear theory, for the wave absorption, as well as the quasilinear theory for the electron distribution function, are the most frequently-used tools for the study of wave-particle interactions. However, in many cases the validity of these theories is violated, namely cases where nonlinear effects, like, e. g. particle trapping in the wave field, are dominant in the particle phase-space. Our model consists of electrons streaming and gyrating in a tokamak plasma slab, which is finite in the directions perpendicular to the main magnetic field. The particles interact with an electromagnetic electron-cyclotron wave of the ordinary (O-) or the extraordinary (X-) mode. A set of nonlinear and relativistic equations is derived, which take into account the effects of the charged particle motions on the wave. These consist of the equations of motion for the plasma electrons in the slab, as well as the wave equation in terms of the vector potential. The effect of the electron motions on the temporal evolution of the wave is reflected in the current density source term. (Author)

  13. Nonlinear and self-consistent treatment of ECRH

    International Nuclear Information System (INIS)

    Tsironis, C.; Vlahos, L.

    2005-01-01

    A self-consistent formulation for the nonlinear interaction of electromagnetic waves with relativistic magnetized electrons is applied for the description of the ECRH. In general, electron-cyclotron absorption is the result of resonances between the cyclotron harmonics and the Doppler-shifted waver frequency. The resonant interaction results to an intense wave-particle energy exchange and an electron acceleration, and for that reason it is widely applied in fusion experiments for plasma heating and current drive. The linear theory, for the wave absorption, as well as the quasilinear theory for the electron distribution function, are the most frequently-used tools for the study of wave-particle interactions. However, in many cases the validity of these theories is violated, namely cases where nonlinear effects, like, e. g. particle trapping in the wave field, are dominant in the particle phase-space. Our model consists of electrons streaming and gyrating in a tokamak plasma slab, which is finite in the directions perpendicular to the main magnetic field. The particles interact with an electromagnetic electron-cyclotron wave of the ordinary (O-) or the extraordinary (X-) mode. A set of nonlinear and relativistic equations is derived, which take into account the effects of the charged particle motions on the wave. These consist of the equations of motion for the plasma electrons in the slab, as well as the wave equation in terms of the vector potential. The effect of the electron motions on the temporal evolution of the wave is reflected in the current density source term. (Author)

  14. Effects of self-consistency in a Green's function description of saturation in nuclear matter

    International Nuclear Information System (INIS)

    Dewulf, Y.; Neck, D. van; Waroquier, M.

    2002-01-01

    The binding energy in nuclear matter is evaluated within the framework of self-consistent Green's function theory, using a realistic nucleon-nucleon interaction. The two-body dynamics is solved at the level of summing particle-particle and hole-hole ladders. We go beyond the on-shell approximation and use intermediary propagators with a discrete-pole structure. A three-pole approximation is used, which provides a good representation of the quasiparticle excitations, as well as reproducing the zeroth- and first-order energy-weighted moments in both the nucleon removal and addition domains of the spectral function. Results for the binding energy are practically independent of the details of the discretization scheme. The main effect of the increased self-consistency is to introduce an additional density dependence, which causes a shift towards lower densities and smaller binding energies, as compared to a (continuous choice) Brueckner calculation with the same interaction. Particle number conservation and the Hugenholz-Van Hove theorem are satisfied with reasonable accuracy

  15. Typical Relaxation of Isolated Many-Body Systems Which Do Not Thermalize

    Science.gov (United States)

    Balz, Ben N.; Reimann, Peter

    2017-05-01

    We consider isolated many-body quantum systems which do not thermalize; i.e., expectation values approach an (approximately) steady longtime limit which disagrees with the microcanonical prediction of equilibrium statistical mechanics. A general analytical theory is worked out for the typical temporal relaxation behavior in such cases. The main prerequisites are initial conditions which appreciably populate many energy levels and do not give rise to significant spatial inhomogeneities on macroscopic scales. The theory explains very well the experimental and numerical findings in a trapped-ion quantum simulator exhibiting many-body localization, in ultracold atomic gases, and in integrable hard-core boson and X X Z models.

  16. Body image and self-esteem in disorders of sex development: A European multicenter study.

    Science.gov (United States)

    van de Grift, Tim C; Cohen-Kettenis, Peggy T; de Vries, Annelou L C; Kreukels, Baudewijntje P C

    2018-04-01

    Disorders/differences of sex development (DSD) refer to congenital conditions with atypical sex development and are associated with psychosexual issues. The aim of this study was to assess body image and self-esteem across the DSD spectrum and to study the impact of diagnosis and mediating characteristics. Data collection was part of dsd-LIFE, a cross-sectional study conducted by 14 European expert clinics on wellbeing and health care evaluation of adults diagnosed with DSD. Main outcome measures in the present analyses were the Body Image Scale and Rosenberg Self-Esteem Scale. Additional data were obtained on treatments, openness, body embarrassment, sexual satisfaction, anxiety, and depression. The participating sample (n = 1,040) included 226 classified as Congenital Adrenal Hyperplasia, 225 as Klinefelter Syndrome, 322 as Turner Syndrome, and 267 as conditions with 46,XY karyotype. Many participants had received hormonal and surgical treatments. Participants scored lower on body image and self-esteem compared to control values, whereas each diagnosis showed different areas of concern. Limited openness, body embarrassment, and sexual issues were frequently reported. Overall body satisfaction was associated with BMI, hormone use, openness, body embarrassment, anxiety, and depression; genital satisfaction with age at diagnosis, openness, sexual satisfaction, and body embarrassment. Body embarrassment, anxiety, and depression predicted lower self-esteem. While each DSD showed specific issues related to body image and self-esteem, our findings indicate that the related factors were similar across the conditions. Clinical care on this subject could be improved by giving specific attention to factors like openness, body embarrassment, sexuality, anxiety, and depression. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Self-consistent electrodynamic scattering in the symmetric Bragg case

    International Nuclear Information System (INIS)

    Campos, H.S.

    1988-01-01

    We have analyzed the symmetric Bragg case, introducing a model of self consistent scattering for two elliptically polarized beams. The crystal is taken as a set of mathematical planes, each of them defined by a surface density of dipoles. We have considered the mesofield and the epifield differently from that of the Ewald's theory and, we assumed a plane of dipoles and the associated fields as a self consistent scattering unit. The exact analytical treatment when applied to any two neighbouring planes, results in a general and self consistent Bragg's equation, in terms of the amplitude and phase variations. The generalized solution for the set of N planes was obtained after introducing an absorption factor in the incident radiation, in two ways: (i) the analytical one, through a rule of field similarity, which says that the incidence occurs in both faces of the all crystal planes and also, through a matricial development with the Chebyshev polynomials; (ii) using the numerical solution we calculated, iteratively, the reflectivity, the reflection phase, the transmissivity, the transmission phase and the energy. The results are showed through reflection and transmission curves, which are characteristics as from kinematical as dynamical theories. The conservation of the energy results from the Ewald's self consistency principle is used. In the absorption case, the results show that it is not the only cause for the asymmetric form in the reflection curves. The model contains basic elements for a unified, microscope, self consistent, vectorial and exact formulation for interpretating the X ray diffraction in perfect crystals. (author)

  18. Many-body physics in two-component Bose–Einstein condensates in a cavity: fragmented superradiance and polarization

    Science.gov (United States)

    Lode, Axel U. J.; Diorico, Fritz S.; Wu, RuGway; Molignini, Paolo; Papariello, Luca; Lin, Rui; Lévêque, Camille; Exl, Lukas; Tsatsos, Marios C.; Chitra, R.; Mauser, Norbert J.

    2018-05-01

    We consider laser-pumped one-dimensional two-component bosons in a parabolic trap embedded in a high-finesse optical cavity. Above a threshold pump power, the photons that populate the cavity modify the effective atom trap and mediate a coupling between the two components of the Bose–Einstein condensate. We calculate the ground state of the laser-pumped system and find different stages of self-organization depending on the power of the laser. The modified potential and the laser-mediated coupling between the atomic components give rise to rich many-body physics: an increase of the pump power triggers a self-organization of the atoms while an even larger pump power causes correlations between the self-organized atoms—the BEC becomes fragmented and the reduced density matrix acquires multiple macroscopic eigenvalues. In this fragmented superradiant state, the atoms can no longer be described as two-level systems and the mapping of the system to the Dicke model breaks down.

  19. Efficient self-consistency for magnetic tight binding

    Science.gov (United States)

    Soin, Preetma; Horsfield, A. P.; Nguyen-Manh, D.

    2011-06-01

    Tight binding can be extended to magnetic systems by including an exchange interaction on an atomic site that favours net spin polarisation. We have used a published model, extended to include long-ranged Coulomb interactions, to study defects in iron. We have found that achieving self-consistency using conventional techniques was either unstable or very slow. By formulating the problem of achieving charge and spin self-consistency as a search for stationary points of a Harris-Foulkes functional, extended to include spin, we have derived a much more efficient scheme based on a Newton-Raphson procedure. We demonstrate the capabilities of our method by looking at vacancies and self-interstitials in iron. Self-consistency can indeed be achieved in a more efficient and stable manner, but care needs to be taken to manage this. The algorithm is implemented in the code PLATO. Program summaryProgram title:PLATO Catalogue identifier: AEFC_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFC_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 228 747 No. of bytes in distributed program, including test data, etc.: 1 880 369 Distribution format: tar.gz Programming language: C and PERL Computer: Apple Macintosh, PC, Unix machines Operating system: Unix, Linux, Mac OS X, Windows XP Has the code been vectorised or parallelised?: Yes. Up to 256 processors tested RAM: Up to 2 Gbytes per processor Classification: 7.3 External routines: LAPACK, BLAS and optionally ScaLAPACK, BLACS, PBLAS, FFTW Catalogue identifier of previous version: AEFC_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2616 Does the new version supersede the previous version?: Yes Nature of problem: Achieving charge and spin self-consistency in magnetic tight binding can be very

  20. Coupled-channel equations and off-shell transformations in many-body scattering

    International Nuclear Information System (INIS)

    Cattapan, G.; Vanzani, V.

    1977-01-01

    The general structure and the basic features of several many-body coupled-channel integral equations, obtained by means of the channel coupling array device, are studied in a systematic way. Particular attention is paid to the employment of symmetric transition operators. The connection between different formulations has been clarified and the role played by some off-shell transformations for many-body transition operators has been discussed. Specific choices of the coupling scheme are considered and the corresponding coupled equations are compared with similar equations previously derived. Several sets of linear relations between transition operators have also been presented and used in a three-body context to derive uncoupled integral equations with connected kernel

  1. Screening in weakly ionized dusty plasmas; effect of dust density perturbations

    International Nuclear Information System (INIS)

    Tolias, P.; Ratynskaia, S.

    2013-01-01

    The screening of the charge of a non-emitting dust grain immersed in a weakly ionized dusty plasma is studied on the basis of a self-consistent hydrodynamic description. The dust number density is considered large enough so that the test grain is not isolated from other grains and dust collective effects are important. Not only dust charge perturbations but also dust density perturbations are taken into account, the latter are shown to have a strong effect on both the short and long range part of the potential. The realization of collective attraction via the newly obtained potential is discussed, a mechanism that could be central to the understanding of phase-transitions and self-organization processes in dusty plasmas.

  2. Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors.

    Science.gov (United States)

    Sharma, Ankur; Yan, Han; Zhang, Linglong; Sun, Xueqian; Liu, Boqing; Lu, Yuerui

    2018-05-15

    Atomically thin two-dimensional (2D) semiconductors have presented a plethora of opportunities for future optoelectronic devices and photonics applications, made possible by the strong light matter interactions at the 2D quantum limit. Many body interactions between fundamental particles in 2D semiconductors are strongly enhanced compared with those in bulk semiconductors because of the reduced dimensionality and, thus, reduced dielectric screening. These enhanced many body interactions lead to the formation of robust quasi-particles, such as excitons, trions, and biexcitons, which are extremely important for the optoelectronics device applications of 2D semiconductors, such as light emitting diodes, lasers, and optical modulators, etc. Recently, the emerging anisotropic 2D semiconductors, such as black phosphorus (termed as phosphorene) and phosphorene-like 2D materials, such as ReSe 2 , 2D-perovskites, SnS, etc., show strong anisotropic optical and electrical properties, which are different from conventional isotropic 2D semiconductors, such as transition metal dichalcogenide (TMD) monolayers. This anisotropy leads to the formation of quasi-one-dimensional (quasi-1D) excitons and trions in a 2D system, which results in even stronger many body interactions in anisotropic 2D materials, arising from the further reduced dimensionality of the quasi-particles and thus reduced dielectric screening. Many body interactions have been heavily investigated in TMD monolayers in past years, but not in anisotropic 2D materials yet. The quasi-particles in anisotropic 2D materials have fractional dimensionality which makes them perfect candidates to serve as a platform to study fundamental particle interactions in fractional dimensional space. In this Account, we present our recent progress related to 2D phosphorene, a 2D system with quasi-1D excitons and trions. Phosphorene, because of its unique anisotropic properties, provides a unique 2D platform for investigating the

  3. Interferometric probes of many-body localization.

    Science.gov (United States)

    Serbyn, M; Knap, M; Gopalakrishnan, S; Papić, Z; Yao, N Y; Laumann, C R; Abanin, D A; Lukin, M D; Demler, E A

    2014-10-03

    We propose a method for detecting many-body localization (MBL) in disordered spin systems. The method involves pulsed coherent spin manipulations that probe the dephasing of a given spin due to its entanglement with a set of distant spins. It allows one to distinguish the MBL phase from a noninteracting localized phase and a delocalized phase. In particular, we show that for a properly chosen pulse sequence the MBL phase exhibits a characteristic power-law decay reflecting its slow growth of entanglement. We find that this power-law decay is robust with respect to thermal and disorder averaging, provide numerical simulations supporting our results, and discuss possible experimental realizations in solid-state and cold-atom systems.

  4. Self-consistency of a heterogeneous continuum porous medium representation of a fractured medium

    International Nuclear Information System (INIS)

    Hoch, A.R.; Jackson, C.P.; Todman, S.

    1998-01-01

    For many of the rocks that are, or have been, under investigation as potential host rocks for a radioactive waste repository, groundwater flow is considered to take place predominantly through discontinuities such as fractures. Although models of networks of discrete features (DFN models) would be the most realistic models for such rocks, calculations on large length scales would not be computationally practicable. A possible approach would be to use heterogeneous continuum porous-medium (CPM) models in which each block has an effective permeability appropriate to represent the network of features within the block. In order to build confidence in this approach, it is necessary to demonstrate that the approach is self-consistent, in the sense that if the effective permeability on a large length scale is derived using the CPM model, the result is close to the value derived directly from the underlying network model. It is also desirable to demonstrate self-consistency for the use of stochastic heterogeneous CPM models that are built as follows. The correlation structure of the effective permeability on the scale of the blocks is inferred by analysis of the effective permeabilities obtained from the underlying DFN model. Then realizations of the effective permeability within the domain of interest are generated on the basis of the correlation structure, rather than being obtained directly from the underlying DFN model. A study of self-consistency is presented for two very different underlying DFN models: one based on the properties of the Borrowdale Volcanic Group at Sellafield, and one based on the properties of the granite at Aespoe in Sweden. It is shown that, in both cases, the use of heterogeneous CPM models based directly on the DFN model is self-consistent, provided that care is taken in the evaluation of the effective permeability for the DFN models. It is also shown that the use of stochastic heterogeneous CPM models based on the correlation structure of the

  5. Functional integral representation of the nuclear many-body grand partition function

    International Nuclear Information System (INIS)

    Kerman, A.K.; Troudet, T.

    1984-01-01

    A local functional integral formulation of the nuclear many-body problem is proposed which is a generalization of the method previously developed. Its most interesting feature is that it allows an expansion of the many-body evolution operator around any arbitrary mean-field which takes into account the pairing correlations between the nucleons. This is explicitly illustrated for the nuclear many-body grand partition function for which special attention is paid to the static temperature-dependent Hartree-Fock-Bogolyubov (H.F.B.) approximation. Indeed, the temperature-dependent H.F.B. configuration appears to be the optimal choice from a variational point of view among all the possible independent quasi-particle motion approximations. An analytic approximation of the energy level density rho (E,A) is given using explicitly the arbitrariness in the choice of the mean-field and a possible numerical application is proposed. Finally, a new compact formulation of our functional integral that might be useful for future Monte Carlo calculations is proposed

  6. The method of rigged spaces in singular perturbation theory of self-adjoint operators

    CERN Document Server

    Koshmanenko, Volodymyr; Koshmanenko, Nataliia

    2016-01-01

    This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac δ-potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadra...

  7. Self-consistent one-gluon exchange in soliton bag models

    International Nuclear Information System (INIS)

    Dodd, L.R.; Adelaide Univ.; Williams, A.G.

    1988-01-01

    The treatment of soliton bag models as two-point boundary value problems is extended to include self-consistent one-gluon exchange interactions. The colour-magnetic contribution to the nucleon-delta mass splitting is calculated self-consistently in the mean-field, one-gluon-exchange approximation for the Friedberg-Lee and Nielsen-Patkos models. Small glueball mass parameters (m GB ∝ 500 MeV) are favoured. Comparisons with previous calculations are made. (orig.)

  8. Many-body theory of charge transfer in hyperthermal atomic scattering

    International Nuclear Information System (INIS)

    Marston, J.B.; Andersson, D.R.; Behringer, E.R.; Cooper, B.H.; DiRubio, C.A.; Kimmel, G.A.; Richardson, C.

    1993-01-01

    We use the Newns-Anderson Hamiltonian to describe many-body electronic processes that occur when hyperthermal alkali atoms scatter off metallic surfaces. Following Brako and Newns, we expand the electronic many-body wave function in the number of particle-hole pairs (we keep terms up to and including a single particle-hole pair). We extend their earlier work by including level crossings, excited neutrals, and negative ions. The full set of equations of motion is integrated numerically, without further approximations, to obtain the many-body amplitudes as a function of time. The velocity and work-function dependence of final-state quantities such as the distribution of ion charges and excited atomic occupancies are compared with experiment. In particular, experiments that scatter alkali ions off clean Cu(001) surfaces in the energy range 5--1600 eV constrain the theory quantitatively. The neutralization probability of Na + ions shows a minimum at intermediate velocity in agreement with the theory. This behavior contrasts with that of K + , which shows virtually no neutralization, and with Li + , which exhibits a monotonically increasing neutral fraction with decreasing velocity. Particle-hole excitations are left behind in the metal during a fraction of the collision events; this dissipated energy is predicted to be quite small (on the order of tenths of an electron volt). Indeed, classical trajectory simulations of the surface dynamics account well for the observed energy loss, and thus provide some justification for our truncation of the equations of motion at the single particle-hole pair level. Li + scattering experiments off low work-function surfaces provide qualitative information on the importance of many-body effects. At sufficiently low work function, the negative ions predicted to occur are in fact observed

  9. Self-consistent spectral function for non-degenerate Coulomb systems and analytic scaling behaviour

    International Nuclear Information System (INIS)

    Fortmann, Carsten

    2008-01-01

    Novel results for the self-consistent single-particle spectral function and self-energy are presented for non-degenerate one-component Coulomb systems at various densities and temperatures. The GW (0) -method for the dynamical self-energy is used to include many-particle correlations beyond the quasi-particle approximation. The self-energy is analysed over a broad range of densities and temperatures (n = 10 17 cm -3 -10 27 cm -3 , T = 10 2 eV/k B -10 4 eV/k B ). The spectral function shows a systematic behaviour, which is determined by collective plasma modes at small wavenumbers and converges towards a quasi-particle resonance at higher wavenumbers. In the low density limit, the numerical results comply with an analytic scaling law that is presented for the first time. It predicts a power-law behaviour of the imaginary part of the self-energy, ImΣ ∼ -n 1/4 . This resolves a long time problem of the quasi-particle approximation which yields a finite self-energy at vanishing density

  10. Chiral Floquet Phases of Many-Body Localized Bosons

    Directory of Open Access Journals (Sweden)

    Hoi Chun Po

    2016-12-01

    Full Text Available We construct and classify chiral topological phases in driven (Floquet systems of strongly interacting bosons, with finite-dimensional site Hilbert spaces, in two spatial dimensions. The construction proceeds by introducing exactly soluble models with chiral edges, which in the presence of many-body localization (MBL in the bulk are argued to lead to stable chiral phases. These chiral phases do not require any symmetry and in fact owe their existence to the absence of energy conservation in driven systems. Surprisingly, we show that they are classified by a quantized many-body index, which is well defined for any MBL Floquet system. The value of this index, which is always the logarithm of a positive rational number, can be interpreted as the entropy per Floquet cycle pumped along the edge, formalizing the notion of quantum-information flow. We explicitly compute this index for specific models and show that the nontrivial topology leads to edge thermalization, which provides an interesting link between bulk topology and chaos at the edge. We also discuss chiral Floquet phases in interacting fermionic systems and their relation to chiral bosonic phases.

  11. Perturbation theory for arbitrary coupling strength?

    Science.gov (United States)

    Mahapatra, Bimal P.; Pradhan, Noubihary

    2018-03-01

    We present a new formulation of perturbation theory for quantum systems, designated here as: “mean field perturbation theory” (MFPT), which is free from power-series-expansion in any physical parameter, including the coupling strength. Its application is thereby extended to deal with interactions of arbitrary strength and to compute system-properties having non-analytic dependence on the coupling, thus overcoming the primary limitations of the “standard formulation of perturbation theory” (SFPT). MFPT is defined by developing perturbation about a chosen input Hamiltonian, which is exactly solvable but which acquires the nonlinearity and the analytic structure (in the coupling strength) of the original interaction through a self-consistent, feedback mechanism. We demonstrate Borel-summability of MFPT for the case of the quartic- and sextic-anharmonic oscillators and the quartic double-well oscillator (QDWO) by obtaining uniformly accurate results for the ground state of the above systems for arbitrary physical values of the coupling strength. The results obtained for the QDWO may be of particular significance since “renormalon”-free, unambiguous results are achieved for its spectrum in contrast to the well-known failure of SFPT in this case.

  12. Measured versus self-reported body height and body mass in patients after an acute coronary syndrome

    Directory of Open Access Journals (Sweden)

    Domagała Zygmunt

    2017-12-01

    Full Text Available The basic anthropometric data describing a person in the broadest context are body weight and height, two of the most frequently analyzed somatometric parameters. The same is true I in relation to clinical patients. The aim of the present study was to compare the self-reported and actual body weight, height and BMI in patients suffering from coronary artery disease and undergoing cardiac rehabilitation. The study sample consisted of 100 patients treated for coronary artery disease. The patients were asked to state their body weight and height. At the same time a three-person study team took measurements, which were later the basis for verification and objective assessment of the data provided by the patients. Statistical analysis was performed with Statistics 11.0 PL software. The analysis of mean results for the assessed group of patients has shown the presence of statistically significant differences between declared and actual data. The differences were observed for both male and female study population. It has been proven that the subjects declare greater body height (mean value 1.697 m vs. 1.666 m and lower body weight (80.643 kg vs. 82.051 kg. Based on the data from surveys and direct measurements, the body mass index for the self-reported and actual data was calculated. A comparison of these values has shown considerable statistically significant differences. The differences between declared and actual data point to highly subjective self-assessment, which disqualifies the declared data in the context of monitoring of treatment and rehabilitation processes. The authors believe that actual data should be used in direct trial examination of patients suffering from coronary artery disease who presented with acute coronary syndrome.

  13. Body self-discrepancies and women's social physique anxiety: the moderating role of the feared body.

    Science.gov (United States)

    Woodman, Tim; Steer, Rebecca

    2011-05-01

    We explored ideal, ought, and feared body image self-discrepancies as predictors of social physique anxiety within Carver, Lawrence, and Scheier's and Woodman and Hemmings' interaction frameworks. One hundred women completed actual, ideal, ought, and feared body self-discrepancy visual analogue scales, the Social Physique Anxiety Scale and the Beck Depression Inventory-II. Moderated hierarchical regression analyses indicated that the relationship between ought body fat discrepancies and social physique anxiety was moderated by proximity to the feared fat self. Specifically, the positive relationship between ought fat discrepancies and social physique anxiety was stronger when women were far from their feared body self. The results highlight the importance of considering the feared self in order to more fully understand the relationship between body image and social physique anxiety. ©2010 The British Psychological Society.

  14. Body piercing, tattooing, self-esteem, and body investment in adolescent girls.

    Science.gov (United States)

    Carroll, Lynne; Anderson, Roxanne

    2002-01-01

    Postmodern perspectives of body piercing and tattooing interpret these as signifiers of the self and attempts to attain mastery and control over the body in an age of increasing alienation. In this exploratory study, 79 adolescent females, ages 15 to 18 (M = 16.08, SD = 1.36), completed the Coopersmith Self-Esteem Inventory (SEI; Coopersmith, 1981), the Beck Depression Inventory (BDI; Beck, 1978), the Body Investment Scale (BIS; Orbach & Mikulincer, 1998), and the State-Trait Anger Expression Inventory (STAXI-2; Spielberger, 1996). Analyses revealed that body piercings and tattoos were significantly correlated with trait anger (Angry Reaction subscale scores). A multiple regression analysis indicated that three of the dependent variables (Trait Anger-Reaction, BDI, and Feeling subscale of the BIS) were predictors of the total number of body piercings and tattoos.

  15. Uncertainty relations and reduced density matrices: Mapping many-body quantum mechanics onto four particles

    Science.gov (United States)

    Mazziotti, David A.; Erdahl, Robert M.

    2001-04-01

    For the description of ground-state correlation phenomena an accurate mapping of many-body quantum mechanics onto four particles is developed. The energy for a quantum system with no more than two-particle interactions may be expressed in terms of a two-particle reduced density matrix (2-RDM), but variational optimization of the 2-RDM requires that it corresponds to an N-particle wave function. We derive N-representability conditions on the 2-RDM that guarantee the validity of the uncertainty relations for all operators with two-particle interactions. One of these conditions is shown to be necessary and sufficient to make the RDM solutions of the dispersion condition equivalent to those from the contracted Schrödinger equation (CSE) [Mazziotti, Phys. Rev. A 57, 4219 (1998)]. In general, the CSE is a stronger N-representability condition than the dispersion condition because the CSE implies the dispersion condition as well as additional N-representability constraints from the Hellmann-Feynman theorem. Energy minimization subject to the representability constraints is performed for a boson model with 10, 30, and 75 particles. Even when traditional wave-function methods fail at large perturbations, the present method yields correlation energies within 2%.

  16. Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations

    DEFF Research Database (Denmark)

    Norman, Patrick; Bishop, David M.; Jensen, Hans Jørgen Aa

    2001-01-01

    Computationally tractable expressions for the evaluation of the linear response function in the multiconfigurational self-consistent field approximation were derived and implemented. The finite lifetime of the electronically excited states was considered and the linear response function was shown...... to be convergent in the whole frequency region. This was achieved through the incorporation of phenomenological damping factors that lead to complex response function values....

  17. Embodied prosthetic arm stabilizes body posture, while unembodied one perturbs it.

    Science.gov (United States)

    Imaizumi, Shu; Asai, Tomohisa; Koyama, Shinichi

    2016-10-01

    Senses of ownership (this arm belongs to me) and agency (I am controlling this arm) originate from sensorimotor system. External objects can be integrated into the sensorimotor system following long-term use, and recognized as one's own body. We examined how an (un)embodied prosthetic arm modulates whole-body control, and assessed the components of prosthetic embodiment. Nine unilateral upper-limb amputees participated. Four frequently used their prosthetic arm, while the others rarely did. Their postural sway was measured during quiet standing with or without their prosthesis. The frequent users showed greater sway when they removed the prosthesis, while the rare users showed greater sway when they fitted the prosthesis. Frequent users reported greater everyday feelings of postural stabilization by prosthesis and a larger sense of agency over the prosthesis. We suggest that a prosthetic arm maintains or perturbs postural control, depending on the prosthetic embodiment, which involves sense of agency rather than ownership. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Many-body Tunneling and Nonequilibrium Dynamics of Doublons in Strongly Correlated Quantum Dots.

    Science.gov (United States)

    Hou, WenJie; Wang, YuanDong; Wei, JianHua; Zhu, ZhenGang; Yan, YiJing

    2017-05-30

    Quantum tunneling dominates coherent transport at low temperatures in many systems of great interest. In this work we report a many-body tunneling (MBT), by nonperturbatively solving the Anderson multi-impurity model, and identify it a fundamental tunneling process on top of the well-acknowledged sequential tunneling and cotunneling. We show that the MBT involves the dynamics of doublons in strongly correlated systems. Proportional to the numbers of dynamical doublons, the MBT can dominate the off-resonant transport in the strongly correlated regime. A T 3/2 -dependence of the MBT current on temperature is uncovered and can be identified as a fingerprint of the MBT in experiments. We also prove that the MBT can support the coherent long-range tunneling of doublons, which is well consistent with recent experiments on ultracold atoms. As a fundamental physical process, the MBT is expected to play important roles in general quantum systems.

  19. Many-Body Theory for Positronium-Atom Interactions

    Science.gov (United States)

    Green, D. G.; Swann, A. R.; Gribakin, G. F.

    2018-05-01

    A many-body-theory approach has been developed to study positronium-atom interactions. As first applications, we calculate the elastic scattering and momentum-transfer cross sections and the pickoff annihilation rate 1Zeff for Ps collisions with He and Ne. For He the cross section is in agreement with previous coupled-state calculations, while comparison with experiment for both atoms highlights discrepancies between various sets of measured data. In contrast, the calculated 1Zeff (0.13 and 0.26 for He and Ne, respectively) are in excellent agreement with the measured values.

  20. Communication: An efficient approach to compute state-specific nuclear gradients for a generic state-averaged multi-configuration self consistent field wavefunction

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, Alexander A., E-mail: alex.granovsky@gmail.com [Firefly project, Moscow, 117593 Moscow (Russian Federation)

    2015-12-21

    We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.

  1. Communication: An efficient approach to compute state-specific nuclear gradients for a generic state-averaged multi-configuration self consistent field wavefunction

    International Nuclear Information System (INIS)

    Granovsky, Alexander A.

    2015-01-01

    We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation

  2. Communication: An efficient approach to compute state-specific nuclear gradients for a generic state-averaged multi-configuration self consistent field wavefunction.

    Science.gov (United States)

    Granovsky, Alexander A

    2015-12-21

    We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.

  3. First-principles many-body theory for ultra-cold atoms

    International Nuclear Information System (INIS)

    Drummond, Peter D.; Hu Hui; Liu Xiaji

    2010-01-01

    Recent breakthroughs in the creation of ultra-cold atoms in the laboratory have ushered in unprecedented changes in physical science. These enormous changes in the coldest temperatures available in the laboratory mean that many novel experiments are possible. There is unprecedented control and simplicity in these novel systems, meaning that quantum many-body theory is now facing severe challenges in quantitatively understanding these new results. We discuss some of the new experiments and recently developed theoretical techniques required to predict the results obtained.

  4. BOOK REVIEW: Many-Body Quantum Theory in Condensed Matter Physics—An Introduction

    Science.gov (United States)

    Logan, D. E.

    2005-02-01

    This is undoubtedly an ambitious book. It aims to provide a wide ranging, yet self-contained and pedagogical introduction to techniques of quantum many-body theory in condensed matter physics, without losing mathematical `rigor' (which I hope means rigour), and with an eye on physical insight, motivation and application. The authors certainly bring plenty of experience to the task, the book having grown out of their graduate lectures at the Niels Bohr Institute in Copenhagen over a five year period, with the feedback and refinement this presumably brings. The book is also of course ambitious in another sense, for it competes in the tight market of general graduate/advanced undergraduate texts on many-particle physics. Prospective punters will thus want reasons to prefer it to, or at least give it space beside, well established texts in the field. Subject-wise, the book is a good mix of the ancient and modern, the standard and less so. Obligatory chapters deal with the formal cornerstones of many-body theory, from second quantization, time-dependence in quantum mechanics and linear response theory, to Green's function and Feynman diagrams. Traditional topics are well covered, including two chapters on the electron gas, chapters on phonons and electron phonon coupling, and a concise account of superconductivity (confined, no doubt judiciously, to the conventional BCS case). Less mandatory, albeit conceptually vital, subjects are also aired. These include a chapter on Fermi liquid theory, from both semi-classical and microscopic perspectives, and a freestanding account of one-dimensional electron gases and Luttinger liquids which, given the enormity of the topic, is about as concise as it could be without sacrificing clarity. Quite naturally, the authors' own interests also influence the choice of material covered. A persistent theme, which brings a healthy topicality to the book, is the area of transport in mesoscopic systems or nanostructures. Two chapters, some

  5. Body image satisfaction and self-esteem in Thai female adolescents: the moderating role of self-compassion.

    Science.gov (United States)

    Pisitsungkagarn, Kullaya; Taephant, Nattasuda; Attasaranya, Ploychompoo

    2014-01-01

    Body image satisfaction significantly influences self-esteem in female adolescents. Increased reports of lowered satisfaction in this population have raised concerns regarding their compromised self-esteem. This research study, therefore, sought to identify a culturally significant moderator of the association between body image satisfaction and self-esteem in Thai female adolescents. Orientation toward self-compassion, found to be particularly high in Thailand, was examined. A total of 302 Thai female undergraduates from three large public and private universities in the Bangkok metropolitan area responded to a set of questionnaires, which measured demographic information, body image satisfaction, self-compassion, and self-esteem. Data were analyzed using correlation and multiple regression analyses. Self-compassion was tested as a moderator of the relationship between body image satisfaction and self-esteem. Although its effect was relatively small, self-compassion significantly moderated the positive relationship between body image satisfaction and self-esteem. The relationship became less stringent for those with high self-compassion. The cultivation of self-compassion was recommended in female adolescents. In addition to moderating the association between body image satisfaction and self-esteem, the benefits to health and well-being of generalizing this cultivation are discussed.

  6. Self-consistent equilibria in the pulsar magnetosphere

    International Nuclear Information System (INIS)

    Endean, V.G.

    1976-01-01

    For a 'collisionless' pulsar magnetosphere the self-consistent equilibrium particle distribution functions are functions of the constants of the motion ony. Reasons are given for concluding that to a good approximation they will be functions of the rotating frame Hamiltonian only. This is shown to result in a rigid rotation of the plasma, which therefore becomes trapped inside the velocity of light cylinder. The self-consistent field equations are derived, and a method of solving them is illustrated. The axial component of the magnetic field decays to zero at the plasma boundary. In practice, some streaming of particles into the wind zone may occur as a second-order effect. Acceleration of such particles to very high energies is expected when they approach the velocity of light cylinder, but they cannot be accelerated to very high energies near the star. (author)

  7. Extended two-particle Green close-quote s functions and optical potentials for two particle scattering by by many-body targets

    International Nuclear Information System (INIS)

    Brand, J.; Cederbaum, L.S.

    1996-01-01

    An extension of the fermionic particle-particle propagator is presented that possesses similar algebraic properties to the single-particle Green close-quote s function. In particular, this extended two-particle Green close-quote s function satisfies Dyson close-quote s equation and its self energy has the same analytic structure as the self energy of the single-particle Green close-quote s function. For the case of a system interacting with one-particle potentials only, the two-particle self energy takes on a particularly simple form, just like the common self energy does. The new two-particle self energy also serves as a well behaved optical potential for the elastic scattering of a two-particle projectile by a many-body target. Due to its analytic structure, the two-particle self energy avoids divergences that appear with effective potentials derived by other means. Copyright copyright 1996 Academic Press, Inc

  8. An approach to a self-consistent nuclear energy system

    International Nuclear Information System (INIS)

    Fujii-e, Yoichi; Arie, Kazuo; Endo, Hiroshi

    1992-01-01

    A nuclear energy system should provide a stable supply of energy without endangering the environment or humans. If there is fear about exhausting world energy resources, accumulating radionuclides, and nuclear reactor safety, tension is created in human society. Nuclear energy systems of the future should be able to eliminate fear from people's minds. In other words, the whole system, including the nuclear fuel cycle, should be self-consistent. This is the ultimate goal of nuclear energy. If it can be realized, public acceptance of nuclear energy will increase significantly. In a self-consistent nuclear energy system, misunderstandings between experts on nuclear energy and the public should be minimized. The way to achieve this goal is to explain using simple logic. This paper proposes specific targets for self-consistent nuclear energy systems and shows that the fast breeder reactor (FBR) lies on the route to attaining the final goal

  9. PHYSICAL SELF-PERCEPTIONS AND SELF-ESTEEM IN RELATION TO BODY MASS STATUS AMONG FEMALE ADOLESCENTS

    Directory of Open Access Journals (Sweden)

    Petra Dolenc

    2016-01-01

    Full Text Available The purpose of the study was to examine the physical self-concept and self-esteem in adolescent girls aged between 13 and 18 years in relation to their body mass status. The Slovenian version of the Self-Description Questionnaire (PSDQ was used to determine the multidimensional physical self-concept among participants. The results indicated that overweight girls reported greater body dissatisfaction in terms self-perceived body fat and physical appearance compared to normal-weight girls. Overweight girls also achieved significantly lower scores in the self-perceived physical abilities, as well as global physical-self and self-esteem than normal-weight peers. As expected, underweight girls reported the lowest amount of body fat. Moreover, they reported lower levels of physical activity than normal-weight peers and had less physical strength compared to the other body mass index categories. The findings has significant implications for the work with adolescent girls in terms of developing appropriate educational intervention and physical education programmes aimed towards reinforcing and increasing self-esteem and promoting active lifestyle.

  10. A reduced-scaling density matrix-based method for the computation of the vibrational Hessian matrix at the self-consistent field level

    International Nuclear Information System (INIS)

    Kussmann, Jörg; Luenser, Arne; Beer, Matthias; Ochsenfeld, Christian

    2015-01-01

    An analytical method to calculate the molecular vibrational Hessian matrix at the self-consistent field level is presented. By analysis of the multipole expansions of the relevant derivatives of Coulomb-type two-electron integral contractions, we show that the effect of the perturbation on the electronic structure due to the displacement of nuclei decays at least as r −2 instead of r −1 . The perturbation is asymptotically local, and the computation of the Hessian matrix can, in principle, be performed with O(N) complexity. Our implementation exhibits linear scaling in all time-determining steps, with some rapid but quadratic-complexity steps remaining. Sample calculations illustrate linear or near-linear scaling in the construction of the complete nuclear Hessian matrix for sparse systems. For more demanding systems, scaling is still considerably sub-quadratic to quadratic, depending on the density of the underlying electronic structure

  11. General many-body formalism for composite quantum particles.

    Science.gov (United States)

    Combescot, M; Betbeder-Matibet, O

    2010-05-21

    This Letter provides a formalism capable of exactly treating Pauli blocking between n-fermion particles. This formalism is based on an operator algebra made of commutators and anticommutators which contrasts with the usual scalar formalism of Green functions developed half a century ago for elementary quantum particles. We also provide the diagrams which visualize the very specific many-body physics induced by fermion exchanges between composite quantum particles.

  12. Many-Body Coulomb Gauge Exotic and Charmed Hybrids

    OpenAIRE

    Llanes-Estrada, Felipe J.; Cotanch, Stephen R.

    2000-01-01

    Utilizing a QCD Coulomb gauge Hamiltonian with linear confinement specified by lattice, we report a relativistic many-body calculation for the light exotic and charmed hybrid mesons. The Hamiltonian successfully describes both quark and gluon sectors, with vacuum and quasiparticle properties generated by a BCS transformation and more elaborate TDA and RPA diagonalizations for the meson ($q\\bar{q}$) and glueball ($gg$) masses. Hybrids entail a computationally intense relativistic three quasipa...

  13. Anisotropic Pressure, Transport, and Shielding of Magnetic Perturbations

    International Nuclear Information System (INIS)

    Mynick, H.E.; Boozer, A.H.

    2008-01-01

    We compute the effect on a tokamak of applying a nonaxisymmetric magnetic perturbation (delta)B. An equilibrium with scalar pressure p yields zero net radial current, and therefore zero torque. Thus, the usual approach, which assumes scalar pressure, is not self-consistent, and masks the close connection which exists between that radial current and the in-surface currents, which provide shielding or amplification of (delta)B. Here, we analytically compute the pressure anisotropy, anisotropy, p # parallel#, p # perpendicular# and ≠ p, and from this, both the radial and in-surface currents. The surface-average of the radial current recovers earlier expressions for ripple transport, while the in-surface currents provide an expression for the amount of self-consistent shielding the plasma provides.

  14. Efficient molecular dynamics simulations with many-body potentials on graphics processing units

    Science.gov (United States)

    Fan, Zheyong; Chen, Wei; Vierimaa, Ville; Harju, Ari

    2017-09-01

    Graphics processing units have been extensively used to accelerate classical molecular dynamics simulations. However, there is much less progress on the acceleration of force evaluations for many-body potentials compared to pairwise ones. In the conventional force evaluation algorithm for many-body potentials, the force, virial stress, and heat current for a given atom are accumulated within different loops, which could result in write conflict between different threads in a CUDA kernel. In this work, we provide a new force evaluation algorithm, which is based on an explicit pairwise force expression for many-body potentials derived recently (Fan et al., 2015). In our algorithm, the force, virial stress, and heat current for a given atom can be accumulated within a single thread and is free of write conflicts. We discuss the formulations and algorithms and evaluate their performance. A new open-source code, GPUMD, is developed based on the proposed formulations. For the Tersoff many-body potential, the double precision performance of GPUMD using a Tesla K40 card is equivalent to that of the LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) molecular dynamics code running with about 100 CPU cores (Intel Xeon CPU X5670 @ 2.93 GHz).

  15. Understanding many-body physics in one dimension from the Lieb–Liniger model

    International Nuclear Information System (INIS)

    Jiang Yu-Zhu; Chen Yang-Yang; Guan Xi-Wen

    2015-01-01

    This article presents an elementary introduction on various aspects of the prototypical integrable model the Lieb–Liniger Bose gas ranging from the cooperative to the collective features of many-body phenomena. In 1963, Lieb and Liniger first solved this quantum field theory many-body problem using Bethe’s hypothesis, i.e., a particular form of wavefunction introduced by Bethe in solving the one-dimensional Heisenberg model in 1931. Despite the Lieb–Liniger model is arguably the simplest exactly solvable model, it exhibits rich quantum many-body physics in terms of the aspects of mathematical integrability and physical universality. Moreover, the Yang–Yang grand canonical ensemble description for the model provides us with a deep understanding of quantum statistics, thermodynamics, and quantum critical phenomena at the many-body physical level. Recently, such fundamental physics of this exactly solved model has been attracting growing interest in experiments. Since 2004, there have been more than 20 experimental papers that reported novel observations of different physical aspects of the Lieb–Liniger model in the laboratory. So far the observed results are in excellent agreement with results obtained using the analysis of this simplest exactly solved model. Those experimental observations reveal the unique beauty of integrability. (topical review)

  16. Body size and body esteem in women : The mediating role of possible self expectancy

    NARCIS (Netherlands)

    Dalley, Simon E.; Pollet, Thomas V.; Vidal, Jose

    We predicted that an expectancy of acquiring a feared fat self and an expectancy of acquiring a hoped-for thin self both mediate the impact of body size on women's body esteem. We also predicted that the mediating pathway through the feared fat self would be stronger than that through the hoped-for

  17. Body size and body esteem in women: The mediating role of possible self expectancy

    NARCIS (Netherlands)

    Dalley, S.E.; Pollet, T.V.; Vidal, J.

    2013-01-01

    We predicted that an expectancy of acquiring a feared fat self and an expectancy of acquiring a hoped-for thin self both mediate the impact of body size on women's body esteem. We also predicted that the mediating pathway through the feared fat self would be stronger than that through the hoped-for

  18. PHYSICAL SELF-PERCEPTIONS AND SELF-ESTEEM IN RELATION TO BODY MASS STATUS AMONG FEMALE ADOLESCENTS

    OpenAIRE

    Petra Dolenc

    2016-01-01

    The purpose of the study was to examine the physical self-concept and self-esteem in adolescent girls aged between 13 and 18 years in relation to their body mass status. The Slovenian version of the Self-Description Questionnaire (PSDQ) was used to determine the multidimensional physical self-concept among participants. The results indicated that overweight girls reported greater body dissatisfaction in terms self-perceived body fat and physical appearance compared to normal-weight girls. Ove...

  19. Quantum simulations and many-body physics with light.

    Science.gov (United States)

    Noh, Changsuk; Angelakis, Dimitris G

    2017-01-01

    In this review we discuss the works in the area of quantum simulation and many-body physics with light, from the early proposals on equilibrium models to the more recent works in driven dissipative platforms. We start by describing the founding works on Jaynes-Cummings-Hubbard model and the corresponding photon-blockade induced Mott transitions and continue by discussing the proposals to simulate effective spin models and fractional quantum Hall states in coupled resonator arrays (CRAs). We also analyse the recent efforts to study out-of-equilibrium many-body effects using driven CRAs, including the predictions for photon fermionisation and crystallisation in driven rings of CRAs as well as other dynamical and transient phenomena. We try to summarise some of the relatively recent results predicting exotic phases such as super-solidity and Majorana like modes and then shift our attention to developments involving 1D nonlinear slow light setups. There the simulation of strongly correlated phases characterising Tonks-Girardeau gases, Luttinger liquids, and interacting relativistic fermionic models is described. We review the major theory results and also briefly outline recent developments in ongoing experimental efforts involving different platforms in circuit QED, photonic crystals and nanophotonic fibres interfaced with cold atoms.

  20. Intermittent many-body dynamics at equilibrium

    Science.gov (United States)

    Danieli, C.; Campbell, D. K.; Flach, S.

    2017-06-01

    The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body system. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. Long excursions arise from sticky dynamics close to q -breathers localized in normal mode space. Measuring the exponent allows one to predict the transition into nonergodic dynamics. We generalize our method to Klein-Gordon lattices where the sticky dynamics is due to discrete breathers localized in real space.

  1. Current algebras and many-body physics

    International Nuclear Information System (INIS)

    Albertin, U.K.

    1989-01-01

    Several applications of current algebras in many body physics are examined. The first is the interacting Bose gas in three dimensions. Theories for phonons, vortices and rotons are all described within the current algebra formalism. Next the one dimensional electron gas is examined within the approximation of linear dispersion so that relativistic current algebra techniques may be used. The relation with Thirring strings and compactified boson models is examined, and points of enhanced symmetry in the compactified boson models are shown to lie on phase transition lines for the electron gas. Finally, mathematical aspects of the current algebra are studied. The theory of induced representations of the diffeomorphism group are used to describe the Aharanov-Bohm effect, the thermodynamics of the Bose gas, and the Bose gas in the presence of vortex filaments

  2. Many-Body Quantum Chaos: Analytic Connection to Random Matrix Theory

    Science.gov (United States)

    Kos, Pavel; Ljubotina, Marko; Prosen, Tomaž

    2018-04-01

    A key goal of quantum chaos is to establish a relationship between widely observed universal spectral fluctuations of clean quantum systems and random matrix theory (RMT). Most prominent features of such RMT behavior with respect to a random spectrum, both encompassed in the spectral pair correlation function, are statistical suppression of small level spacings (correlation hole) and enhanced stiffness of the spectrum at large spectral ranges. For single-particle systems with fully chaotic classical counterparts, the problem has been partly solved by Berry [Proc. R. Soc. A 400, 229 (1985), 10.1098/rspa.1985.0078] within the so-called diagonal approximation of semiclassical periodic-orbit sums, while the derivation of the full RMT spectral form factor K (t ) (Fourier transform of the spectral pair correlation function) from semiclassics has been completed by Müller et al. [Phys. Rev. Lett. 93, 014103 (2004), 10.1103/PhysRevLett.93.014103]. In recent years, the questions of long-time dynamics at high energies, for which the full many-body energy spectrum becomes relevant, are coming to the forefront even for simple many-body quantum systems, such as locally interacting spin chains. Such systems display two universal types of behaviour which are termed the "many-body localized phase" and "ergodic phase." In the ergodic phase, the spectral fluctuations are excellently described by RMT, even for very simple interactions and in the absence of any external source of disorder. Here we provide a clear theoretical explanation for these observations. We compute K (t ) in the leading two orders in t and show its agreement with RMT for nonintegrable, time-reversal invariant many-body systems without classical counterparts, a generic example of which are Ising spin-1 /2 models in a periodically kicking transverse field. In particular, we relate K (t ) to partition functions of a class of twisted classical Ising models on a ring of size t ; hence, the leading-order RMT behavior

  3. Spectral statistics of chaotic many-body systems

    International Nuclear Information System (INIS)

    Dubertrand, Rémy; Müller, Sebastian

    2016-01-01

    We derive a trace formula that expresses the level density of chaotic many-body systems as a smooth term plus a sum over contributions associated to solutions of the nonlinear Schrödinger (or Gross–Pitaevski) equation. Our formula applies to bosonic systems with discretised positions, such as the Bose–Hubbard model, in the semiclassical limit as well as in the limit where the number of particles is taken to infinity. We use the trace formula to investigate the spectral statistics of these systems, by studying interference between solutions of the nonlinear Schrödinger equation. We show that in the limits taken the statistics of fully chaotic many-particle systems becomes universal and agrees with predictions from the Wigner–Dyson ensembles of random matrix theory. The conditions for Wigner–Dyson statistics involve a gap in the spectrum of the Frobenius–Perron operator, leaving the possibility of different statistics for systems with weaker chaotic properties. (paper)

  4. TD-S-HF single determinantal reaction theory and the description of many-body processes, including fission

    International Nuclear Information System (INIS)

    Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.; Kan, K.K.

    1979-01-01

    The restrictions implied for the time dependent many-body reaction theory by the (TDHF) single determinantal assumption are explored by constructive analysis. A restructured TD-S-HF reaction theory is modelled, not after the initial-value form of the Schroedinger reaction theory, but after the (fully equivalent) S-matrix form, under the conditions that only self-consistent TDHF solutions occur in the theory, every wave function obeys the fundamental statistical interpretation of quantum mechanics, and the theory reduces to the exact Schroedinger theory for exact solutions which are single determinantal. All of these conditions can be accomodated provided that the theory is interpreted on a time-averaged basis, i.e., physical constants of the Schroedinger theory which are time-dependent in the TDHF theory, are interpreted in TD-S-HF in terms of their time averaged values. The resulting reaction theory, although formulated heuristically, prescribes a well defined and unambiguous calculational program which, although somewhat more demanding technically than the conventional initial-value TDHF method, is nevertheless more consonant with first principles, structurally and mechanistically. For its physical predictions do not depend upon the precise location of the distant measuring apparatus, and are in no way influenced by the spurious cross channel correlations which arise whenever the description of many reaction channels is imposed upon one single-determinantal solution. For nuclear structure physics, the TDHF-eigenfunctions provide the first plausible description of exact eigenstates in the time-dependent framework; moreover, they are unencumbered by any restriction to small amplitudes. 14 references

  5. [Relationship between body weight status and self-concept in schoolchildren].

    Science.gov (United States)

    Gálvez Casas, Arancha; Rodríguez García, Pedro L; Rosa Guillamón, Andrés; García-Cantó, Eliseo; Pérez-Soto, Juan J; Tarraga Marcos, Loreto; Tarraga López, Pedro

    2014-11-30

    Body weight status has been linked to other health parameters. The aim of this study was to evaluate the relationship between body weight status and self-concept in a sample of 216 students (9.26 ± 1.26 years) from schools of the Southeast of Spain. BMI (Body-mass index) was used to evaluate the body weight status. Subjects were classified into normal weight, overweight and obesity according to international standards. The six dimensions of self-concept (intellectual, behavioral, physical, lack of anxiety, social and life satisfaction) were assessed using the Piers-Harris Self-Concept Scale. The results showed significant associations between BMI and intellectual self-concept, life satisfaction, global self-concept and physical self. Subjects categorized as overweight or obese were those who showed lower scores on the self-concept scale. Interventions focused on improving the body weight status are needed in order to achieve better self-concept levels and health among young people. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  6. Chiral symmetry and many-body forces in nuclei

    International Nuclear Information System (INIS)

    Nyman, E.M.; Rho, M.

    1976-01-01

    It is demonstrated that when quantum corrections are added, chiral Lagrangians need not generate strong many-body forces as they do in tree approximation. It is suggested that a physically reasonable procedure is to adjust the sigma-model parameters so as not to conflict with the current status of nuclear theory. As a consequence, the equilibrium density of abnormal states could be pushed up further, and the binding energy be considerably reduced. (Auth.)

  7. Entanglement replication in driven dissipative many-body systems.

    Science.gov (United States)

    Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F

    2013-01-25

    We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.

  8. Lattice Methods and the Nuclear Few- and Many-Body Problem

    Science.gov (United States)

    Lee, Dean

    This chapter builds upon the review of lattice methods and effective field theory of the previous chapter. We begin with a brief overview of lattice calculations using chiral effective field theory and some recent applications. We then describe several methods for computing scattering on the lattice. After that we focus on the main goal, explaining the theory and algorithms relevant to lattice simulations of nuclear few- and many-body systems. We discuss the exact equivalence of four different lattice formalisms, the Grassmann path integral, transfer matrix operator, Grassmann path integral with auxiliary fields, and transfer matrix operator with auxiliary fields. Along with our analysis we include several coding examples and a number of exercises for the calculations of few- and many-body systems at leading order in chiral effective field theory.

  9. How should we understand non-equilibrium many-body steady states?

    Science.gov (United States)

    Maghrebi, Mohammad; Gorshkov, Alexey

    : Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under non-equilibrium dynamics. In this talk, I use a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in such models. I show that an effective temperature generically emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is described by a thermodynamic universality class. In the end, I will also discuss possibilities that go beyond the paradigm of an effective thermodynamic behavior.

  10. Self-consistent descriptions of vector mesons in hot matter reexamined

    International Nuclear Information System (INIS)

    Riek, Felix; Knoll, Joern

    2010-01-01

    Technical concepts are presented that improve the self-consistent treatment of vector mesons in a hot and dense medium. First applications concern an interacting gas of pions and ρ mesons. As an extension of earlier studies, we thereby include random-phase-approximation-type vertex corrections and further use dispersion relations to calculate the real part of the vector-meson self-energy. An improved projection method preserves the four transversality of the vector-meson polarization tensor throughout the self-consistent calculations, thereby keeping the scheme void of kinematical singularities.

  11. Many-Body Effects on the Thermodynamics of Fluids, Mixtures, and Nanoconfined Fluids.

    Science.gov (United States)

    Desgranges, Caroline; Delhommelle, Jerome

    2015-11-10

    Using expanded Wang-Landau simulations, we show that taking into account the many-body interactions results in sharp changes in the grand-canonical partition functions of single-component systems, binary mixtures, and nanoconfined fluids. The many-body contribution, modeled with a 3-body Axilrod-Teller-Muto term, results in shifts toward higher chemical potentials of the phase transitions from low-density phases to high-density phases and accounts for deviations of more than, e.g., 20% of the value of the partition function for a single-component liquid. Using the statistical mechanics formalism, we analyze how this contribution has a strong impact on some properties (e.g., pressure, coexisting densities, and enthalpy) and a moderate impact on others (e.g., Gibbs or Helmholtz free energies). We also characterize the effect of the 3-body terms on adsorption isotherms and adsorption thermodynamic properties, thereby providing a full picture of the effect of the 3-body contribution on the thermodynamics of nanoconfined fluids.

  12. Strings as perturbations of evolving spin networks

    International Nuclear Information System (INIS)

    Smolin, Lee

    2000-01-01

    One step in the construction of a background independent formulation of string theory is detailed, in which it is shown how perturbative strings may arise as small fluctuations around histories in a formulation of non-perturbative dynamics of spin networks due to Markopoulou. In this formulation the dynamics of spin network states and their generalizations is described in terms of histories which have discrete analogues of the causal structure and many fingered time of Lorentzian spacetimes. Perturbations of these histories turn out to be described in terms of spin systems defined on 2-dimensional timelike surfaces embedded in the discrete spacetime. When the history has a classical limit which is Minkowski spacetime, the action of the perturbation theory is given to leading order by the spacetime area of the surface, as in bosonic string theory. This map between a non-perturbative formulation of quantum gravity and a 1+1 dimensional theory generalizes to a large class of theories in which the group SU(2) i s extended to any quantum group or supergroup. It is argued that a necessary condition for the non-perturbative theory to have a good classical limit is that the resulting 1+1 dimensional theory defines a consistent and stable perturbative string theory

  13. Moments of generalized Husimi distributions and complexity of many-body quantum states

    International Nuclear Information System (INIS)

    Sugita, Ayumu

    2003-01-01

    We consider generalized Husimi distributions for many-body systems, and show that their moments are good measures of complexity of many-body quantum states. Our construction of the Husimi distribution is based on the coherent state of the single-particle transformation group. Then the coherent states are independent-particle states, and, at the same time, the most localized states in the Husimi representation. Therefore delocalization of the Husimi distribution, which can be measured by the moments, is a sign of many-body correlation (entanglement). Since the delocalization of the Husimi distribution is also related to chaoticity of the dynamics, it suggests a relation between entanglement and chaos. Our definition of the Husimi distribution can be applied not only to systems of distinguishable particles, but also to those of identical particles, i.e., fermions and bosons. We derive an algebraic formula to evaluate the moments of the Husimi distribution

  14. Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree-Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin- and charge-density waves.

    Science.gov (United States)

    Hermes, Matthew R; Hirata, So

    2015-09-14

    One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree-Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree-Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard-Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga-Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids.

  15. Construction of exact constants of motion and effective models for many-body localized systems

    Science.gov (United States)

    Goihl, M.; Gluza, M.; Krumnow, C.; Eisert, J.

    2018-04-01

    One of the defining features of many-body localization is the presence of many quasilocal conserved quantities. These constants of motion constitute a cornerstone to an intuitive understanding of much of the phenomenology of many-body localized systems arising from effective Hamiltonians. They may be seen as local magnetization operators smeared out by a quasilocal unitary. However, accurately identifying such constants of motion remains a challenging problem. Current numerical constructions often capture the conserved operators only approximately, thus restricting a conclusive understanding of many-body localization. In this work, we use methods from the theory of quantum many-body systems out of equilibrium to establish an alternative approach for finding a complete set of exact constants of motion which are in addition guaranteed to represent Pauli-z operators. By this we are able to construct and investigate the proposed effective Hamiltonian using exact diagonalization. Hence, our work provides an important tool expected to further boost inquiries into the breakdown of transport due to quenched disorder.

  16. Action during body perception: processing time affects self-other correspondences.

    Science.gov (United States)

    Reed, Catherine L; McGoldrick, John E

    2007-01-01

    The accurate perception of other people and their postures is essential for functioning in a social world. Our own bodies organize information from others to help us respond appropriately by creating self-other mappings between bodies. In this study, we investigated mechanisms involved in the processing of self-other correspondences. Reed and Farah (1995) showed that a multimodal, articulated body representation containing the spatial relations among parts of the human body was accessed by both viewing another's body and moving one's own. Use of one part of the body representation facilitated the perception of homologous areas of other people's bodies, suggesting that inputs from both the self and other activated the shared body representation. Here we investigated whether this self-other correspondence produced rapid facilitation or required additional processing time to resolve competing inputs for a shared body representation. Using a modified Reed and Farah dual-task paradigm, we found that processing time influenced body-position memory: an interaction between body-part moved and body-part attended revealed a relative facilitation effect at the 5 s ISI, but interference at the 2 s ISI. Our results suggest that effective visual-motor integration from the self and other requires time to activate shared portions of the spatial body representation.

  17. Linearized self-consistent quasiparticle GW method: Application to semiconductors and simple metals

    Science.gov (United States)

    Kutepov, A. L.; Oudovenko, V. S.; Kotliar, G.

    2017-10-01

    We present a code implementing the linearized quasiparticle self-consistent GW method (LQSGW) in the LAPW basis. Our approach is based on the linearization of the self-energy around zero frequency which differs it from the existing implementations of the QSGW method. The linearization allows us to use Matsubara frequencies instead of working on the real axis. This results in efficiency gains by switching to the imaginary time representation in the same way as in the space time method. The all electron LAPW basis set eliminates the need for pseudopotentials. We discuss the advantages of our approach, such as its N3 scaling with the system size N, as well as its shortcomings. We apply our approach to study the electronic properties of selected semiconductors, insulators, and simple metals and show that our code produces the results very close to the previously published QSGW data. Our implementation is a good platform for further many body diagrammatic resummations such as the vertex-corrected GW approach and the GW+DMFT method. Program Files doi:http://dx.doi.org/10.17632/cpchkfty4w.1 Licensing provisions: GNU General Public License Programming language: Fortran 90 External routines/libraries: BLAS, LAPACK, MPI (optional) Nature of problem: Direct implementation of the GW method scales as N4 with the system size, which quickly becomes prohibitively time consuming even in the modern computers. Solution method: We implemented the GW approach using a method that switches between real space and momentum space representations. Some operations are faster in real space, whereas others are more computationally efficient in the reciprocal space. This makes our approach scale as N3. Restrictions: The limiting factor is usually the memory available in a computer. Using 10 GB/core of memory allows us to study the systems up to 15 atoms per unit cell.

  18. Approximate self-consistent potentials for density-functional-theory exchange-correlation functionals

    International Nuclear Information System (INIS)

    Cafiero, Mauricio; Gonzalez, Carlos

    2005-01-01

    We show that potentials for exchange-correlation functionals within the Kohn-Sham density-functional-theory framework may be written as potentials for simpler functionals multiplied by a factor close to unity, and in a self-consistent field calculation, these effective potentials find the correct self-consistent solutions. This simple theory is demonstrated with self-consistent exchange-only calculations of the atomization energies of some small molecules using the Perdew-Kurth-Zupan-Blaha (PKZB) meta-generalized-gradient-approximation (meta-GGA) exchange functional. The atomization energies obtained with our method agree with or surpass previous meta-GGA calculations performed in a non-self-consistent manner. The results of this work suggest the utility of this simple theory to approximate exchange-correlation potentials corresponding to energy functionals too complicated to generate closed forms for their potentials. We hope that this method will encourage the development of complex functionals which have correct boundary conditions and are free of self-interaction errors without the worry that the functionals are too complex to differentiate to obtain potentials

  19. Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model

    Science.gov (United States)

    Mukherjee, Sudip; Nag, Sabyasachi; Garg, Arti

    2018-04-01

    We analyze the many-body localization- (MBL) to-delocalization transition in the Sherrington-Kirkpatrick (SK) model of Ising spin glass in the presence of a transverse field Γ . Based on energy-resolved analysis, which is of relevance for a closed quantum system, we show that the quantum SK model has many-body mobility edges separating the MBL phase, which is nonergodic and nonthermal, from the delocalized phase, which is ergodic and thermal. The range of the delocalized regime increases with an increase in the strength of Γ , and eventually for Γ larger than ΓCP the entire many-body spectrum is delocalized. We show that the Renyi entropy is almost independent of the system size in the MBL phase while the delocalized phase shows extensive Renyi entropy. We further obtain the spin-glass transition curve in the energy density ɛ -Γ plane from the collapse of the eigenstate spin susceptibility. We demonstrate that in most of the parameter regime, the spin-glass transition occurs close to the MBL transition, indicating that the spin-glass phase is nonergodic and nonthermal while the paramagnetic phase is delocalized and thermal.

  20. A global bioheat model with self-tuning optimal regulation of body temperature using Hebbian feedback covariance learning.

    Science.gov (United States)

    Ong, M L; Ng, E Y K

    2005-12-01

    In the lower brain, body temperature is continually being regulated almost flawlessly despite huge fluctuations in ambient and physiological conditions that constantly threaten the well-being of the body. The underlying control problem defining thermal homeostasis is one of great enormity: Many systems and sub-systems are involved in temperature regulation and physiological processes are intrinsically complex and intertwined. Thus the defining control system has to take into account the complications of nonlinearities, system uncertainties, delayed feedback loops as well as internal and external disturbances. In this paper, we propose a self-tuning adaptive thermal controller based upon Hebbian feedback covariance learning where the system is to be regulated continually to best suit its environment. This hypothesis is supported in part by postulations of the presence of adaptive optimization behavior in biological systems of certain organisms which face limited resources vital for survival. We demonstrate the use of Hebbian feedback covariance learning as a possible self-adaptive controller in body temperature regulation. The model postulates an important role of Hebbian covariance adaptation as a means of reinforcement learning in the thermal controller. The passive system is based on a simplified 2-node core and shell representation of the body, where global responses are captured. Model predictions are consistent with observed thermoregulatory responses to conditions of exercise and rest, and heat and cold stress. An important implication of the model is that optimal physiological behaviors arising from self-tuning adaptive regulation in the thermal controller may be responsible for the departure from homeostasis in abnormal states, e.g., fever. This was previously unexplained using the conventional "set-point" control theory.

  1. Scalar meson field and many-body forces. Chapter 23

    International Nuclear Information System (INIS)

    Nyman, E.M.

    1979-01-01

    In applications of field theory to the theory of the nuclear forces, one has frequently assumed that there is a scalar meson. It will then be responsible for most of the medium-range attraction between the nucleons. According to current ideas, however, it is possible to account for the medium-range attraction without an elementary sigma meson. This approach requires a careful treatment of the exchange of interacting pairs of π mesons, such as to include those ππ interactions which are responsible for the formation and decay of the sigma meson. Recently, the scalar field in the nuclear many-body problem has begun to receive more attention. There are two reasons for this change of philosophy. One reason is the discovery of neutron stars. In neutron stars, the nucleon number density can be much higher than in nuclei. One therefore wants to derive the equation of state from a relativistic many-body theory. This forces one to deal explicitly with a set of mesons, such that in the non-relativistic limit one recovers the one-boson-exchange potential. (Auth.)

  2. Self-consistent Bayesian analysis of space-time symmetry studies

    International Nuclear Information System (INIS)

    Davis, E.D.

    1996-01-01

    We introduce a Bayesian method for the analysis of epithermal neutron transmission data on space-time symmetries in which unique assignment of the prior is achieved by maximisation of the cross entropy and the imposition of a self-consistency criterion. Unlike the maximum likelihood method used in previous analyses of parity-violation data, our method is freed of an ad hoc cutoff parameter. Monte Carlo studies indicate that our self-consistent Bayesian analysis is superior to the maximum likelihood method when applied to the small data samples typical of symmetry studies. (orig.)

  3. Consistency of the Self-Schema in Depression.

    Science.gov (United States)

    Ross, Michael J.; Mueller, John H.

    Depressed individuals may filter or distort environmental information in direct relationship to their self perceptions. To investigate the degree of uncertainty about oneself and others, as measured by consistent/inconsistent responses, 72 college students (32 depressed and 40 nondepressed) rated selected adjectives from the Derry and Kuiper…

  4. Orbitally invariant internally contracted multireference unitary coupled cluster theory and its perturbative approximation: theory and test calculations of second order approximation.

    Science.gov (United States)

    Chen, Zhenhua; Hoffmann, Mark R

    2012-07-07

    A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4

  5. Efficient numerical simulations of many-body localized systems

    Energy Technology Data Exchange (ETDEWEB)

    Pollmann, Frank [Max-Planck-Institut fuer Physik komplexer Systeme, 01187 Dresden (Germany); Khemani, Vedika; Sondhi, Shivaji [Physics Department, Princeton University, Princeton, NJ 08544 (United States)

    2016-07-01

    Many-body localization (MBL) occurs in isolated quantum systems when Anderson localization persists in the presence of finite interactions. To understand this phenomenon, the development of new, efficient numerical methods to find highly excited eigenstates is essential. We introduce a variant of the density-matrix renormalization group (DMRG) method that obtains individual highly excited eigenstates of MBL systems to machine precision accuracy at moderate-large disorder. This method explicitly takes advantage of the local spatial structure characterizing MBL eigenstates.

  6. Self-consistent electron transport in collisional plasmas

    International Nuclear Information System (INIS)

    Mason, R.J.

    1982-01-01

    A self-consistent scheme has been developed to model electron transport in evolving plasmas of arbitrary classical collisionality. The electrons and ions are treated as either multiple donor-cell fluids, or collisional particles-in-cell. Particle suprathermal electrons scatter off ions, and drag against fluid background thermal electrons. The background electrons undergo ion friction, thermal coupling, and bremsstrahlung. The components move in self-consistent advanced E-fields, obtained by the Implicit Moment Method, which permits Δt >> ω/sub p/ -1 and Δx >> lambda/sub D/ - offering a 10 2 - 10 3 -fold speed-up over older explicit techniques. The fluid description for the background plasma components permits the modeling of transport in systems spanning more than a 10 7 -fold change in density, and encompassing contiguous collisional and collisionless regions. Results are presented from application of the scheme to the modeling of CO 2 laser-generated suprathermal electron transport in expanding thin foils, and in multi-foil target configurations

  7. Self-consistent velocity dependent effective interactions

    International Nuclear Information System (INIS)

    Kubo, Takayuki; Sakamoto, Hideo; Kammuri, Tetsuo; Kishimoto, Teruo.

    1993-09-01

    The field coupling method is extended to a system with a velocity dependent mean potential. By means of this method, we can derive the effective interactions which are consistent with the mean potential. The self-consistent velocity dependent effective interactions are applied to the microscopic analysis of the structures of giant dipole resonances (GDR) of 148,154 Sm, of the first excited 2 + states of Sn isotopes and of the first excited 3 - states of Mo isotopes. It is clarified that the interactions play crucial roles in describing the splitting of the resonant structure of GDR peaks, in restoring the energy weighted sum rule values, and in reducing B (Eλ) values. (author)

  8. Health perceptions, self and body image, physical activity and nutrition among undergraduate students in Israel.

    Science.gov (United States)

    Korn, Liat; Gonen, Ester; Shaked, Yael; Golan, Moria

    2013-01-01

    This study examines health perceptions, self and body image, physical exercise and nutrition among undergraduate students. A structured, self-reported questionnaire was administered to more than 1500 students at a large academic institute in Israel. The study population was heterogenic in both gender and fields of academic study. High correlations between health perceptions, appropriate nutrition, and positive self and body image were found. The relationships between these variables differed between the subpopulation in the sample and the different genders. Engagement in physical exercise contributed to positive body image and positive health perceptions more than engagement in healthy nutrition. Nutrition students reported higher frequencies of positive health perceptions, positive self and body image and higher engagement in physical exercise in comparison to all other students in the sample. This study suggests, as have many before, that successful health promotion policy should reflect a collectivist rather than an individualist ethos by providing health prerequisites through a public policy of health-promotion, where the academic settings support a healthy lifestyle policy, by increasing availability of a healthy, nutritious and varied menu in the cafeterias, and offering students various activities that enhance healthy eating and exercise. IMPLICATIONS AND CONTRIBUTION: This study examined health perceptions, self-image, physical exercise and nutrition among undergraduate students and found high correlations between these topics. Nutrition students reported higher frequencies of positive health perceptions, and positive self and body image and engaged more in physical exercise when compared with all other students in the sample.

  9. Self-consistent nuclear energy systems

    International Nuclear Information System (INIS)

    Shimizu, A.; Fujiie, Y.

    1995-01-01

    A concept of self-consistent energy systems (SCNES) has been proposed as an ultimate goal of the nuclear energy system in the coming centuries. SCNES should realize a stable and unlimited energy supply without endangering the human race and the global environment. It is defined as a system that realizes at least the following four objectives simultaneously: (a) energy generation -attain high efficiency in the utilization of fission energy; (b) fuel production - secure inexhaustible energy source: breeding of fissile material with the breeding ratio greater than one and complete burning of transuranium through recycling; (c) burning of radionuclides - zero release of radionuclides from the system: complete burning of transuranium and elimination of radioactive fission products by neutron capture reactions through recycling; (d) system safety - achieve system safety both for the public and experts: eliminate criticality-related safety issues by using natural laws and simple logic. This paper describes the concept of SCNES and discusses the feasibility of the system. Both ''neutron balance'' and ''energbalance'' of the system are introduced as the necessary conditions to be satisfied at least by SCNES. Evaluations made so far indicate that both the neutron balance and the energy balance can be realized by fast reactors but not by thermal reactors. Concerning the system safety, two safety concepts: ''self controllability'' and ''self-terminability'' are introduced to eliminate the criticality-related safety issues in fast reactors. (author)

  10. Self-consistent theory of a harmonic gyroklystron with a minimum Q cavity

    International Nuclear Information System (INIS)

    Tran, T.M.; Kreischer, K.E.; Temkin, R.J.

    1986-01-01

    In this paper, the energy extraction stage of the gyroklystron [in Advances in Electronics and Electron Physics, edited by C. Marton (Academic, New York, 1979), Vol. 1, pp. 1--54], with a minimum Q cavity is investigated by using a self-consistent radio-frequency (rf) field model. In the low-field, low-current limit, expressions for the self-consistent field and the resulting energy extraction efficiency are derived analytically for an arbitrary cyclotron harmonic number. To our knowledge, these are the first analytic results for the self-consistent field structure and efficiency of a gyrotron device. The large signal regime analysis is carried out by numerically integrating the coupled self-consistent equations. Several examples in this regime are presented

  11. Many-body optimization using an ab initio monte carlo method.

    Science.gov (United States)

    Haubein, Ned C; McMillan, Scott A; Broadbelt, Linda J

    2003-01-01

    Advances in computing power have made it possible to study solvated molecules using ab initio quantum chemistry. Inclusion of discrete solvent molecules is required to determine geometric information about solute/solvent clusters. Monte Carlo methods are well suited to finding minima in many-body systems, and ab initio methods are applicable to the widest range of systems. A first principles Monte Carlo (FPMC) method was developed to find minima in many-body systems, and emphasis was placed on implementing moves that increase the likelihood of finding minimum energy structures. Partial optimization and molecular interchange moves aid in finding minima and overcome the incomplete sampling that is unavoidable when using ab initio methods. FPMC was validated by studying the boron trifluoride-water system, and then the method was used to examine the methyl carbenium ion in water to demonstrate its application to solvation problems.

  12. Body Image Self-Discrepancy and Depressive Symptoms Among Early Adolescents.

    Science.gov (United States)

    Solomon-Krakus, Shauna; Sabiston, Catherine M; Brunet, Jennifer; Castonguay, Andree L; Maximova, Katerina; Henderson, Mélanie

    2017-01-01

    This study examined whether body image self-discrepancy was a correlate of depressive symptoms among 556 early adolescents (45% girls; M age  = 11.65, SD = .94 years). Participants completed self-report measures of their self-perceived actual and ideal body shapes and depressive symptoms. Sex-stratified polynomial regressions were used to examine the associations between depressive symptoms and (1) agreement (i.e., similar actual and ideal body shapes); (2) discrepancy (i.e., different actual and ideal body shapes); (3) direction of discrepancy (i.e., actual > ideal or actual self-perceptions are). For both sexes, depressive symptoms were more frequent when the direction of the discrepancy was such that participants perceived their actual body was larger than their ideal body. Furthermore, depressive symptoms were more frequent when the degree of the discrepancy between actual and ideal body shape perceptions was larger. Based on these findings, body image self-discrepancy may be a risk factor for depressive symptoms among early adolescents. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  13. Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD

    DEFF Research Database (Denmark)

    Ryttov, Thomas A.

    2016-01-01

    order by order in $\\Delta_f$. We then compute $\\gamma_*$ through $O(\\Delta_f^2)$ for supersymmetric QCD in the $\\overline{\\text{DR}}$ scheme and find that it matches the exact known result. We find that $\\gamma_*$ is astonishingly well described in perturbation theory already at the few loops level...

  14. Self-imagery in individuals with high body dissatisfaction: the effect of positive and negative self-imagery on aspects of the self-concept.

    Science.gov (United States)

    Farrar, Stephanie; Stopa, Lusia; Turner, Hannah

    2015-03-01

    Cognitive behavioural models of eating disorders highlight low self-esteem as a maintaining factor. This study explored the impact of positive and negative self-imagery on aspects of the working self (implicit and explicit self-esteem and self-concept clarity) in individuals with high body dissatisfaction (an important aspect of eating disorders). The impact of these images on state body satisfaction and affect was also explored. A group of participants with high body dissatisfaction completed measures of explicit self-esteem, self-concept clarity, state body satisfaction and affect prior to completing a negative (n = 33) or positive (n = 33) self-imagery retrieval task. Following this they completed the baseline measures and a measure of implicit self-esteem. Holding a negative self-image in mind had a negative effect on explicit self-esteem, whilst holding a positive self-image had a beneficial effect. There were no effects of imagery on implicit self-esteem. Holding a negative image in mind led to a significant reduction in self-concept clarity; however, positive self-imagery did not affect self-concept clarity. Holding a negative self-image in mind led to a decrease in body satisfaction and state affect. The opposite was found for the positive self-imagery group. Implicit self-esteem was not measured at baseline. Imagery techniques which promote positive self-images may help improve aspects of the working self, body satisfaction and affect in individuals with high levels of body dissatisfaction. As such, these imagery techniques warrant further investigation in a clinical population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Many-Body Green Function of Degenerate Systems

    International Nuclear Information System (INIS)

    Brouder, Christian; Panati, Gianluca; Stoltz, Gabriel

    2009-01-01

    A rigorous nonperturbative adiabatic approximation of the evolution operator in the many-body physics of degenerate systems is derived. This approximation is used to solve the long-standing problem of the choice of the initial states of H 0 leading to eigenstates of H 0 +V for degenerate systems. These initial states are eigenstates of P 0 VP 0 , where P 0 is the projection onto a degenerate eigenspace of H 0 . This result is used to give the proper definition of the Green function, the statistical Green function and the nonequilibrium Green function of degenerate systems. The convergence of these Green functions is established.

  16. BodiMojo: Efficacy of a Mobile-Based Intervention in Improving Body Image and Self-Compassion among Adolescents.

    Science.gov (United States)

    Rodgers, Rachel F; Donovan, Elizabeth; Cousineau, Tara; Yates, Kayla; McGowan, Kayla; Cook, Elizabeth; Lowy, Alice S; Franko, Debra L

    2018-01-18

    Mobile interventions promoting positive body image are lacking. This study presents a randomized controlled evaluation of BodiMojo, a mobile application (app) intervention grounded in self-compassion to promote positive body image. A sample of 274 adolescents, mean (SD) age = 18.36 (1.34) years, 74% female, were allocated to a control group or used BodiMojo for 6 weeks. Appearance esteem, body image flexibility, appearance comparison, mood, and self-compassion were assessed at baseline, 6, and 12 weeks. Significant time by group interactions emerged for appearance esteem and self-compassion, with appearance esteem and self-compassion increasing in the intervention relative to the control group. These findings provide preliminary support for BodiMojo, a cost-effective mobile app for positive body image.

  17. Many-Body Energy Decomposition with Basis Set Superposition Error Corrections.

    Science.gov (United States)

    Mayer, István; Bakó, Imre

    2017-05-09

    The problem of performing many-body decompositions of energy is considered in the case when BSSE corrections are also performed. It is discussed that the two different schemes that have been proposed go back to the two different interpretations of the original Boys-Bernardi counterpoise correction scheme. It is argued that from the physical point of view the "hierarchical" scheme of Valiron and Mayer should be preferred and not the scheme recently discussed by Ouyang and Bettens, because it permits the energy of the individual monomers and all the two-body, three-body, etc. energy components to be free of unphysical dependence on the arrangement (basis functions) of other subsystems in the cluster.

  18. Tensor-optimized antisymmetrized molecular dynamics as a successive variational method in nuclear many-body system

    Energy Technology Data Exchange (ETDEWEB)

    Myo, Takayuki, E-mail: takayuki.myo@oit.ac.jp [General Education, Faculty of Engineering, Osaka Institute of Technology, Osaka 535-8585 (Japan); Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047 (Japan); Toki, Hiroshi [Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047 (Japan); Ikeda, Kiyomi [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Horiuchi, Hisashi [Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047 (Japan); Suhara, Tadahiro [Matsue College of Technology, Matsue 690-8518 (Japan)

    2017-06-10

    We study the tensor-optimized antisymmetrized molecular dynamics (TOAMD) as a successive variational method in many-body systems with strong interaction for nuclei. In TOAMD, the correlation functions for the tensor force and the short-range repulsion and their multiples are operated to the AMD state as the variational wave function. The total wave function is expressed as the sum of all the components and the variational space can be increased successively with the multiple correlation functions to achieve convergence. All the necessary matrix elements of many-body operators, consisting of the multiple correlation functions and the Hamiltonian, are expressed analytically using the Gaussian integral formula. In this paper we show the results of TOAMD with up to the double products of the correlation functions for the s-shell nuclei, {sup 3}H and {sup 4}He, using the nucleon–nucleon interaction AV8′. It is found that the energies and Hamiltonian components of two nuclei converge rapidly with respect to the multiple of correlation functions. This result indicates the efficiency of TOAMD for the power series expansion in terms of the tensor and short-range correlation functions.

  19. Body Esteem and Self-examination in British Men and Women.

    Science.gov (United States)

    Brewer, Gayle; Dewhurst, Anne M

    2013-06-01

    Breast and testicular cancers affect a substantial and increasing proportion of the global population. Self-examination encourages early detection and treatment of these cancers, which positively impacts on patient quality of life and survival. The present study investigated the role of body esteem in breast and testicular self-examination. Men (N = 60) and women (N = 90) recruited from a British University completed the body esteem scale and either the testicular self-examination or breast self-examination questionnaire. Logistic regression models revealed that body esteem predicted women's intention to engage in breast self-examination. Women with higher levels of sexual attractiveness and those with lower levels of weight concern were more likely to report that they would regularly self-examine in the future. Body esteem did not however, distinguish between those women that did or did not currently self-examine or predict men's current or intended testicular self-examination. The findings have implications for the promotion of self-examination and highlight an emerging area of preventive health research.

  20. Fully self-consistent GW calculations for molecules

    DEFF Research Database (Denmark)

    Rostgaard, Carsten; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2010-01-01

    We calculate single-particle excitation energies for a series of 34 molecules using fully self-consistent GW, one-shot G0W0, Hartree-Fock (HF), and hybrid density-functional theory (DFT). All calculations are performed within the projector-augmented wave method using a basis set of Wannier...... functions augmented by numerical atomic orbitals. The GW self-energy is calculated on the real frequency axis including its full frequency dependence and off-diagonal matrix elements. The mean absolute error of the ionization potential (IP) with respect to experiment is found to be 4.4, 2.6, 0.8, 0.4, and 0...

  1. Introduction to modern methods of quantum many-body theory and their applications

    CERN Document Server

    Fantoni, Stefano; Krotscheck, Eckhard S

    2002-01-01

    This invaluable book contains pedagogical articles on the dominant nonstochastic methods of microscopic many-body theories - the methods of density functional theory, coupled cluster theory, and correlated basis functions - in their widest sense. Other articles introduce students to applications of these methods in front-line research, such as Bose-Einstein condensates, the nuclear many-body problem, and the dynamics of quantum liquids. These keynote articles are supplemented by experimental reviews on intimately connected topics that are of current relevance. The book addresses the striking l

  2. Parasupersymmetry and N-fold supersymmetry in quantum many-body systems. I: General formalism and second order

    International Nuclear Information System (INIS)

    Tanaka, Toshiaki

    2007-01-01

    We propose an elegant formulation of parafermionic algebra and parasupersymmetry of arbitrary order in quantum many-body systems without recourse to any specific matrix representation of parafermionic operators and any kind of deformed algebra. Within our formulation, we show generically that every parasupersymmetric quantum system of order p consists of N-fold supersymmetric pairs with N≤p and thus has weak quasi-solvability and isospectral property. We also propose a new type of non-linear supersymmetries, called quasi-parasupersymmetry, which is less restrictive than parasupersymmetry and is different from N-fold supersymmetry even in one-body systems though the conserved charges are represented by higher-order linear differential operators. To illustrate how our formulation works, we construct second-order parafermionic algebra and three simple examples of parasupersymmetric quantum systems of order 2, one is essentially equivalent to the one-body Rubakov-Spiridonov type and the others are two-body systems in which two supersymmetries are folded. In particular, we show that the first model admits a generalized 2-fold superalgebra

  3. Social media and online self-presentation: Effects on how we see ourselves and our bodies

    OpenAIRE

    de Vries, D.A.

    2014-01-01

    Social media are becoming more and more popular. Many adolescents and adults present themselves online through a social network site or dating profile. Such widespread engagement in self-presentation on social media may have implications for how we see ourselves and our bodies. These self-views, in turn, can have important consequences for our mental health and well-being. This dissertation investigates negative as well as positive effects of social media use and online self-presentation on s...

  4. Self-consistent description of the isospin mixing

    International Nuclear Information System (INIS)

    Gabrakov, S.I.; Pyatov, N.I.; Baznat, M.I.; Salamov, D.I.

    1978-03-01

    The properties of collective 0 + states built of unlike particle-hole excitations in spherical nuclei have been investigated in a self-consistent microscopic approach. These states arise when the broken isospin symmetry of the nuclear shell model Hamiltonian is restored. The numerical calculations were performed with Woods-Saxon wave functions

  5. Introduction to perturbation methods

    CERN Document Server

    Holmes, M

    1995-01-01

    This book is an introductory graduate text dealing with many of the perturbation methods currently used by applied mathematicians, scientists, and engineers. The author has based his book on a graduate course he has taught several times over the last ten years to students in applied mathematics, engineering sciences, and physics. The only prerequisite for the course is a background in differential equations. Each chapter begins with an introductory development involving ordinary differential equations. The book covers traditional topics, such as boundary layers and multiple scales. However, it also contains material arising from current research interest. This includes homogenization, slender body theory, symbolic computing, and discrete equations. One of the more important features of this book is contained in the exercises. Many are derived from problems of up- to-date research and are from a wide range of application areas.

  6. Nonstatic, self-consistent πN t matrix in nuclear matter

    International Nuclear Information System (INIS)

    Van Orden, J.W.

    1984-01-01

    In a recent paper, a calculation of the self-consistent πN t matrix in nuclear matter was presented. In this calculation the driving term of the self-consistent equation was chosen to be a static approximation to the free πN t matrix. In the present work, the earlier calculation is extended by using a nonstatic, fully-off-shell free πN t matrix as a starting point. Right-hand pole and cut contributions to the P-wave πN amplitudes are derived using a Low expansion and include effects due to recoil of the interacting πN system as well as the transformation from the πN c.m. frame to the nuclear rest frame. The self-consistent t-matrix equation is rewritten as two integral equations which modify the pole and cut contributions to the t matrix separately. The self-consistent πN t matrix is calculated in nuclear matter and a nonlocal optical potential is constructed from it. The resonant contribution to the optical potential is found to be broadened by 20% to 50% depending on pion momentum and is shifted upward in energy by approximately 10 MeV in comparison to the first-order optical potential. Modifications to the nucleon pole contribution are found to be negligible

  7. The role of underestimating body size for self-esteem and self-efficacy among grade five children in Canada.

    Science.gov (United States)

    Maximova, Katerina; Khan, Mohammad K A; Austin, S Bryn; Kirk, Sara F L; Veugelers, Paul J

    2015-10-01

    Underestimating body size hinders healthy behavior modification needed to prevent obesity. However, initiatives to improve body size misperceptions may have detrimental consequences on self-esteem and self-efficacy. Using sex-specific multiple mixed-effect logistic regression models, we examined the association of underestimating versus accurate body size perceptions with self-esteem and self-efficacy in a provincially representative sample of 5075 grade five school children. Body size perceptions were defined as the standardized difference between the body mass index (BMI, from measured height and weight) and self-perceived body size (Stunkard body rating scale). Self-esteem and self-efficacy for physical activity and healthy eating were self-reported. Most of overweight boys and girls (91% and 83%); and most of obese boys and girls (93% and 90%) underestimated body size. Underestimating weight was associated with greater self-efficacy for physical activity and healthy eating among normal-weight children (odds ratio: 1.9 and 1.6 for boys, 1.5 and 1.4 for girls) and greater self-esteem among overweight and obese children (odds ratio: 2.0 and 6.2 for boys, 2.0 and 3.4 for girls). Results highlight the importance of developing optimal intervention strategies as part of targeted obesity prevention efforts that de-emphasize the focus on body weight, while improving body size perceptions. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Computational Nuclear Quantum Many-Body Problem: The UNEDF Project

    OpenAIRE

    Bogner, Scott; Bulgac, Aurel; Carlson, Joseph A.; Engel, Jonathan; Fann, George; Furnstahl, Richard J.; Gandolfi, Stefano; Hagen, Gaute; Horoi, Mihai; Johnson, Calvin W.; Kortelainen, Markus; Lusk, Ewing; Maris, Pieter; Nam, Hai Ah; Navratil, Petr

    2013-01-01

    The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF science results to illustrate this interplay.

  9. Effects of viewing a pro-ana website: an experimental study on body satisfaction, affect, and appearance self-efficacy.

    Science.gov (United States)

    Delforterie, Monique J; Larsen, Junilla K; Bardone-Cone, Anna M; Scholte, Ron H J

    2014-01-01

    Pro-anorexia websites portray an extreme form of thin-ideal. This between-subjects experiment examined the effects of viewing such a website on body satisfaction, affect, and appearance self-efficacy compared to viewing control websites (fashion, home decoration, automutilation). The sample consisted of 124 normal weight, young adult, Dutch women (mean age 21.2, mean body mass index 21.4). Participants did not differ on affect and appearance self-efficacy. One body satisfaction measure showed that pro-anorexia viewers were more satisfied with their bodies than home decoration viewers. Our findings suggest that viewing a pro-anorexia website might not have detrimental effects on body satisfaction and affect among normal weight young women.

  10. A new six-component super soliton hierarchy and its self-consistent sources and conservation laws

    International Nuclear Information System (INIS)

    Wei Han-yu; Xia Tie-cheng

    2016-01-01

    A new six-component super soliton hierarchy is obtained based on matrix Lie super algebras. Super trace identity is used to furnish the super Hamiltonian structures for the resulting nonlinear super integrable hierarchy. After that, the self-consistent sources of the new six-component super soliton hierarchy are presented. Furthermore, we establish the infinitely many conservation laws for the integrable super soliton hierarchy. (paper)

  11. Bringing sexy back: reclaiming the body aesthetic via self-shooting

    DEFF Research Database (Denmark)

    Tiidenberg, Katrin

    2014-01-01

    ’s ‘technologies of the self’ to analyze self-shooting (taking photos of one-self). Constricting societal norms of sexuality, body shape and body practices influence how my participants (N=20, 10 female, 9 male, 1 transgender, ages 21 - 51, average age 34) live their embodied and sexual lives. Through self-shooting...... and by negotiating the community specific issues of control, power and the gaze, they are able to construct a new, empowered, embodied identity for themselves. I look at self-shooting and selfie-blogging as a practice of reclaiming control over one’s embodied self AND over the body-aesthetic, thus appropriating what...... is and is not ‘sexy’. The NSFW self-shooting community offers a safe space otherwise so hard to find within the body/sexuality-normative mainstream culture. This makes self-shooting a collective therapeutic activity. In their self-images participants construct themselves as ‘beautiful’, ‘sexy’, ‘devious’, ‘more than...

  12. The effects of cosmetic surgery on body image, self-esteem, and psychological problems.

    Science.gov (United States)

    von Soest, T; Kvalem, I L; Roald, H E; Skolleborg, K C

    2009-10-01

    This study aims to investigate whether cosmetic surgery has an effect on an individual's body image, general self-esteem, and psychological problems. Further tests were conducted to assess whether the extent of psychological problems before surgery influenced improvements in postoperative psychological outcomes. Questionnaire data from 155 female cosmetic surgery patients from a plastic surgery clinic were obtained before and approximately 6 months after surgery. The questionnaire consisted of measures on body image, self-esteem, and psychological problems. Pre- and postoperative values were compared. Pre- and postoperative measures were also compared with the data compiled from a representative sample of 838 Norwegian women, aged 22-55, with no cosmetic surgery experience. No differences in psychological problems between the presurgery patient and comparison samples were found, whereas differences in body image and self-esteem between the sample groups were reported in an earlier publication. Analyses further revealed an improvement in body image (satisfaction with own appearance) after surgery. A significant but rather small effect on self-esteem was also found, whereas the level of psychological problems did not change after surgery. Postoperative measures of appearance satisfaction, self-esteem, and psychological problems did not differ from values derived from the comparison sample. Finally, few psychological problems before surgery predicted a greater improvement in appearance satisfaction and self-esteem after surgery. The study provides evidence of improvement in satisfaction with own appearance after cosmetic surgery, a variable that is thought to play a central role in understanding the psychology of cosmetic surgery patients. The study also points to the factors that surgeons should be aware of, particularly the role of psychological problems, which could inhibit the positive effects of cosmetic surgery.

  13. Conceptualizing body dissatisfaction in eating disorders within a self-discrepancy framework: a review of evidence.

    Science.gov (United States)

    Lantz, Elin L; Gaspar, Monika E; DiTore, Rebecca; Piers, Amani D; Schaumberg, Katherine

    2018-02-09

    Body dissatisfaction, the negative subjective evaluation of one's body, is associated with many negative psychological and physical health consequences. One conceptualization of body dissatisfaction includes an experience of discrepancy between perceived actual and ideal body shapes. This paper reviews the literature on three facets of body dissatisfaction from the framework of self-discrepancy theory: perceptions of current weight, ideal body weight, and the relative importance of conforming to ideals. We review components of body dissatisfaction among healthy individuals and eating-disordered individuals. We also address the conceptualization's relationship among body dissatisfaction, weight history, and dieting to expand the impact of body dissatisfaction research and to provide more information on the nature and treatment of eating disorders.

  14. Many-body dynamics with cold atoms and molecules in optical lattices

    International Nuclear Information System (INIS)

    Schachenmayer, J.

    2012-01-01

    Systems of cold atoms or molecules, trapped in a periodic potential formed from standing waves of laser light, provide an experimental possibility to study strongly correlated many-body lattice models, which are traditionally used in condensed matter physics. Due to the relatively weak energy scales in these ''optical lattices'' (next-neighbor tunneling energies are typically on the order of tens of Hertz), the time-scales of the dynamics in these systems is relatively slow and can be observed in experiments. Furthermore, the microscopic parameters of the models can be very well controlled by lattice laser intensities and external fields. Thus, optical lattices provide an excellent framework to study many-body quantum non-equilibrium dynamics, which on the theoretical level is the topic of this thesis. This thesis contains a study of many-body dynamics in optical lattices for both idealized isolated models and realistic models with imperfections. It is centered around four main topics: The first two topics are studies of coherent many-body dynamics. This contains explicitly: (i) an analysis of the possibility to dynamically prepare crystalline states of Rydberg atoms or polar molecules by adiabatically tuning laser parameters; and (ii) a study of the collapses and revivals of the momentum-distribution of a Bose-Einstein condensate with a fixed number of atoms, which is suddenly loaded into a deep optical lattice. The third main topic is entanglement and specifically the dynamical growth of entanglement between portions of an optical lattice in quench experiments. A method to create and measure large-scale entanglement is presented in this thesis. The fourth main topic addresses classical noise. Specifically, a system of atoms in an optical lattice, which is created from lasers with intensity fluctuations, is analyzed in this work. The noisy evolution of many-body correlation functions is studied and a method to cancel this noise in a realistic experimental setup is

  15. Self-compassion moderates the relationship between body mass index and both eating disorder pathology and body image flexibility.

    Science.gov (United States)

    Kelly, Allison C; Vimalakanthan, Kiruthiha; Miller, Kathryn E

    2014-09-01

    The current study examined whether self-compassion, the tendency to treat oneself kindly during distress and disappointments, would attenuate the positive relationship between body mass index (BMI) and eating disorder pathology, and the negative relationship between BMI and body image flexibility. One-hundred and fifty-three female undergraduate students completed measures of self-compassion, self-esteem, eating disorder pathology, and body image flexibility, which refers to one's acceptance of negative body image experiences. Controlling for self-esteem, hierarchical regressions revealed that self-compassion moderated the relationships between BMI and the criteria. Specifically, the positive relationship between BMI and eating disorder pathology and the negative relationship between BMI and body image flexibility were weaker the higher women's levels of self-compassion. Among young women, self-compassion may help to protect against the greater eating disturbances that coincide with a higher BMI, and may facilitate the positive body image experiences that tend to be lower the higher one's BMI. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Exploring one-particle orbitals in large many-body localized systems

    Science.gov (United States)

    Villalonga, Benjamin; Yu, Xiongjie; Luitz, David J.; Clark, Bryan K.

    2018-03-01

    Strong disorder in interacting quantum systems can give rise to the phenomenon of many-body localization (MBL), which defies thermalization due to the formation of an extensive number of quasilocal integrals of motion. The one-particle operator content of these integrals of motion is related to the one-particle orbitals (OPOs) of the one-particle density matrix and shows a strong signature across the MBL transition as recently pointed out by Bera et al. [Phys. Rev. Lett. 115, 046603 (2015), 10.1103/PhysRevLett.115.046603; Ann. Phys. 529, 1600356 (2017), 10.1002/andp.201600356]. We study the properties of the OPOs of many-body eigenstates of an MBL system in one dimension. Using shift-and-invert MPS, a matrix product state method to target highly excited many-body eigenstates introduced previously [Phys. Rev. Lett. 118, 017201 (2017), 10.1103/PhysRevLett.118.017201], we are able to obtain accurate results for large systems of sizes up to L =64 . We find that the OPOs drawn from eigenstates at different energy densities have high overlap and their occupations are correlated with the energy of the eigenstates. Moreover, the standard deviation of the inverse participation ratio of these orbitals is maximal at the nose of the mobility edge. Also, the OPOs decay exponentially in real space, with a correlation length that increases at low disorder. In addition, we find that the probability distribution of the strength of the large-range coupling constants of the number operators generated by the OPOs approach a log-uniform distribution at strong disorder.

  17. The mean field in many body quantum physics

    International Nuclear Information System (INIS)

    Llano, M. de

    1984-01-01

    As an introduction to the quantum problem of many bodies we present a panoramic view of the most elementary theories called mean field theories. They comprise: i) the fermions ideal gas theory which implies, in a simple manner, the stability of white dwarf stars and of neutron stars, ii) the Hartree-Fock approximation for thermodynamical systems which is presented here in the context of a liquid-crystal phase transition, and iii) the Thomas-Fermi theory which is applied to the total binding energy of neutral atoms. (author)

  18. Step Prediction During Perturbed Standing Using Center Of Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Milos R. Popovic

    2007-04-01

    Full Text Available The development of a sensor that can measure balance during quiet standing and predict stepping response in the event of perturbation has many clinically relevant applica- tions, including closed-loop control of a neuroprothesis for standing. This study investigated the feasibility of an algorithm that can predict in real-time when an able-bodied individual who is quietly standing will have to make a step to compensate for an external perturbation. Anterior and posterior perturbations were performed on 16 able-bodied subjects using a pul- ley system with a dropped weight. A linear relationship was found between the peak center of pressure (COP velocity and the peak COP displacement caused by the perturbation. This result suggests that one can predict when a person will have to make a step based on COP velocity measurements alone. Another important feature of this finding is that the peak COP velocity occurs considerably before the peak COP displacement. As a result, one can predict if a subject will have to make a step in response to a perturbation sufficiently ahead of the time when the subject is actually forced to make the step. The proposed instability detection algorithm will be implemented in a sensor system using insole sheets in shoes with minitur- ized pressure sensors by which the COPv can be continuously measured. The sensor system will be integrated in a closed-loop feedback system with a neuroprosthesis for standing in the near future.

  19. Relativistic many-body XMCD theory including core degenerate effects

    Science.gov (United States)

    Fujikawa, Takashi

    2009-11-01

    A many-body relativistic theory to analyze X-ray Magnetic Circular Dichroism (XMCD) spectra has been developed on the basis of relativistic quantum electrodynamic (QED) Keldysh Green's function approach. This theoretical framework enables us to handle relativistic many-body effects in terms of correlated nonrelativistic Green's function and relativistic correction operator Q, which naturally incorporates radiation field screening and other optical field effects in addition to electron-electron interactions. The former can describe the intensity ratio of L2/L3 which deviates from the statistical weight (branching ratio) 1/2. In addition to these effects, we consider the degenerate or nearly degenerate effects of core levels from which photoelectrons are excited. In XPS spectra, for example in Rh 3d sub level excitations, their peak shapes are quite different: This interesting behavior is explained by core-hole moving after the core excitation. We discuss similar problems in X-ray absorption spectra in particular excitation from deep 2p sub levels which are degenerate in each sub levels and nearly degenerate to each other in light elements: The hole left behind is not frozen there. We derive practical multiple scattering formulas which incorporate all those effects.

  20. A new model for gravitational potential perturbations in disks of spiral galaxies. An application to our Galaxy

    Science.gov (United States)

    Junqueira, T. C.; Lépine, J. R. D.; Braga, C. A. S.; Barros, D. A.

    2013-02-01

    Aims: We propose a new, more realistic description of the perturbed gravitational potential of spiral galaxies, with spiral arms having Gaussian-shaped groove profiles. The aim is to reach a self-consistent description of the spiral structure, that is, one in which an initial potential perturbation generates, by means of the stellar orbits, spiral arms with a profile similar to that of the imposed perturbation. Self-consistency is a condition for having long-lived structures. Methods: Using the new perturbed potential, we investigate the stable stellar orbits in galactic disks for galaxies with no bar or with only a weak bar. The model is applied to our Galaxy by making use of the axisymmetric component of the potential computed from the Galactic rotation curve, in addition to other input parameters similar to those of our Galaxy. The influence of the bulge mass on the stellar orbits in the inner regions of a disk is also investigated. Results: The new description offers the advantage of easy control of the parameters of the Gaussian profile of its potential. We compute the density contrast between arm and inter-arm regions. We find a range of values for the perturbation amplitude from 400 to 800 km2 s-2 kpc-1, which implies an approximate maximum ratio of the tangential force to the axisymmetric force between 3% and 6%. Good self-consistency of arm shapes is obtained between the Inner Lindblad resonance (ILR) and the 4:1 resonance. Near the 4:1 resonance the response density starts to deviate from the imposed logarithmic spiral form. This creates bifurcations that appear as short arms. Therefore the deviation from a perfect logarithmic spiral in galaxies can be understood as a natural effect of the 4:1 resonance. Beyond the 4:1 resonance we find closed orbits that have similarities with the arms observed in our Galaxy. In regions near the center, elongated stellar orbits appear naturally, in the presence of a massive bulge, without imposing any bar

  1. Thermodynamically self-consistent integral equations and the structure of liquid metals

    International Nuclear Information System (INIS)

    Pastore, G.; Kahl, G.

    1987-01-01

    We discuss the application of the new thermodynamically self-consistent integral equations for the determination of the structural properties of liquid metals. We present a detailed comparison of the structure (S(q) and g(r)) for models of liquid alkali metals as obtained from two thermodynamically self-consistent integral equations and some published exact computer simulation results; the range of states extends from the triple point to the expanded metal. The theories which only impose thermodynamic self-consistency without any fitting of external data show an excellent agreement with the simulation results, thus demonstrating that this new type of integral equation is definitely superior to the conventional ones (hypernetted chain, Percus-Yevick, mean spherical approximation, etc). (author)

  2. Self-consistent tight-binding model of B and N doping in graphene

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Pedersen, Jesper Goor

    2013-01-01

    . The impurity potential depends sensitively on the impurity occupancy, leading to a self-consistency requirement. We solve this problem using the impurity Green's function and determine the self-consistent local density of states at the impurity site and, thereby, identify acceptor and donor energy resonances.......Boron and nitrogen substitutional impurities in graphene are analyzed using a self-consistent tight-binding approach. An analytical result for the impurity Green's function is derived taking broken electron-hole symmetry into account and validated by comparison to numerical diagonalization...

  3. Body composition and military performance--many things to many people.

    Science.gov (United States)

    Friedl, Karl E

    2012-07-01

    Soldiers are expected to maintain the highest possible level of physical readiness because they must be ready to mobilize and perform their duties anywhere in the world at any time. The objective of Army body composition standards is to motivate physical training and good nutrition habits to ensure a high state of readiness. Establishment of enforceable and rational standards to support this objective has been challenging even at extremes of body size. Morbidly obese individuals are clearly not suited to military service, but very large muscular individuals may be superbly qualified for soldier performance demands. For this reason, large individuals are measured for body fat using a waist circumference-based equation (female soldiers are also measured for hip circumference). The main challenge comes in setting appropriate fat standards to support the full range of Army requirements. Military appearance ideals dictate the most stringent body fat standards, whereas health risk thresholds anchor the most liberal standards, and physical performance associations fall on a spectrum between these 2 poles. Standards should not exclude or penalize specialized performance capabilities such as endurance running or power lifting across a spectrum of body sizes and fat. The full integration of women into the military further complicates the issue because of sexually dimorphic characteristics that make gender-appropriate standards essential and where inappropriately stringent standards can compromise both health and performance of this segment of the force. Other associations with body composition such as stress effects on intraabdominal fat distribution patterns and metabolic implications of a fat reserve for survival in extreme environments are also relevant considerations. This is a review of the science that underpins the U.S. Army body composition standards.

  4. Perturbative search for dead-end CFTs

    International Nuclear Information System (INIS)

    Nakayama, Yu

    2015-01-01

    To explore the possibility of self-organized criticality, we look for CFTs without any relevant scalar deformations (a.k.a. dead-end CFTs) within power-counting renormalizable quantum field theories with a weakly coupled Lagrangian description. In three dimensions, the only candidates are pure (Abelian) gauge theories, which may be further deformed by Chern-Simons terms. In four dimensions, we show that there are infinitely many non-trivial candidates based on chiral gauge theories. Using the three-loop beta functions, we compute the gap of scaling dimensions above the marginal value, and it can be as small as O(10"−"5) and robust against the perturbative corrections. These classes of candidates are very weakly coupled and our perturbative conclusion seems difficult to refute. Thus, the hypothesis that non-trivial dead-end CFTs do not exist is likely to be false in four dimensions.

  5. [Does self-esteem affect body dissatisfaction levels in female adolescents?].

    Science.gov (United States)

    Fortes, Leonardo de Sousa; Cipriani, Flávia Marcele; Coelho, Fernanda Dias; Paes, Santiago Tavares; Ferreira, Maria Elisa Caputo

    2014-09-01

    To evaluate the influence of self-esteem on levels of body dissatisfaction among adolescent females. A group of 397 adolescents aged 12 to 17 years were enrolled in the study. The Body Shape Questionnaire (BSQ) was applied to assess body dissatisfaction. The Rosenberg Self-Esteem Scale was used to assess self-esteem. Weight, height, and skinfold thickness were also measured. These anthropometric data were controlled in the statistical analyses. The multiple regression model indicated influence of "positive self-esteem" (R(2)=0.16; p=0.001) and "negative self-esteem" (R(2)=0.23; p=0.001) subscales on the BSQ scores. Univariate analysis of covariance demonstrated differences in BSQ scores (p=0.001) according to groups of self-esteem. It was concluded that self-esteem influenced body dissatisfaction in adolescent girls from Juiz de Fora, MG. Copyright © 2014 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  6. Managing lifelike behavior in a dynamic self-assembled system

    Science.gov (United States)

    Ropp, Chad; Bachelard, Nicolas; Wang, Yuan; Zhang, Xiang

    Self-organization can arise outside of thermodynamic equilibrium in a process of dynamic self-assembly. This is observed in nature, for example in flocking birds, but can also be created artificially with non-living entities. Such dynamic systems often display lifelike properties, including the ability to self-heal and adapt to environmental changes, which arise due to the collective and often complex interactions between the many individual elements. Such interactions are inherently difficult to predict and control, and limit the development of artificial systems. Here, we report a fundamentally new method to manage dynamic self-assembly through the direct external control of collective phenomena. Our system consists of a waveguide filled with mobile scattering particles. These particles spontaneously self-organize when driven by a coherent field, self-heal when mechanically perturbed, and adapt to changes in the drive wavelength. This behavior is governed by particle interactions that are completely mediated by coherent wave scattering. Compared to hydrodynamic interactions which lead to compact ordered structures, our system displays sinusoidal degeneracy and many different steady-state geometries that can be adjusted using the external field.

  7. Many-body localization transition: Schmidt gap, entanglement length, and scaling

    Science.gov (United States)

    Gray, Johnnie; Bose, Sougato; Bayat, Abolfazl

    2018-05-01

    Many-body localization has become an important phenomenon for illuminating a potential rift between nonequilibrium quantum systems and statistical mechanics. However, the nature of the transition between ergodic and localized phases in models displaying many-body localization is not yet well understood. Assuming that this is a continuous transition, analytic results show that the length scale should diverge with a critical exponent ν ≥2 in one-dimensional systems. Interestingly, this is in stark contrast with all exact numerical studies which find ν ˜1 . We introduce the Schmidt gap, new in this context, which scales near the transition with an exponent ν >2 compatible with the analytical bound. We attribute this to an insensitivity to certain finite-size fluctuations, which remain significant in other quantities at the sizes accessible to exact numerical methods. Additionally, we find that a physical manifestation of the diverging length scale is apparent in the entanglement length computed using the logarithmic negativity between disjoint blocks.

  8. Many-body effects in X-ray photoemission spectroscopy and electronic properties of solids

    International Nuclear Information System (INIS)

    Kohiki, S.

    1999-01-01

    Photoemission from a solid is evidently a many-body process since the motion of each electron cannot be independent of the motions of other electrons. In this article we review the reported many-body effects in X-ray photoemission such as extra-atomic relaxation energy, charge transfer satellite and energy loss structure which are informative in relation to the characteristics of solids. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. The use of many-body expansions and geometry optimizations in fragment-based methods.

    Science.gov (United States)

    Fedorov, Dmitri G; Asada, Naoya; Nakanishi, Isao; Kitaura, Kazuo

    2014-09-16

    Conspectus Chemists routinely work with complex molecular systems: solutions, biochemical molecules, and amorphous and composite materials provide some typical examples. The questions one often asks are what are the driving forces for a chemical phenomenon? How reasonable are our views of chemical systems in terms of subunits, such as functional groups and individual molecules? How can one quantify the difference in physicochemical properties of functional units found in a different chemical environment? Are various effects on functional units in molecular systems additive? Can they be represented by pairwise potentials? Are there effects that cannot be represented in a simple picture of pairwise interactions? How can we obtain quantitative values for these effects? Many of these questions can be formulated in the language of many-body effects. They quantify the properties of subunits (fragments), referred to as one-body properties, pairwise interactions (two-body properties), couplings of two-body interactions described by three-body properties, and so on. By introducing the notion of fragments in the framework of quantum chemistry, one obtains two immense benefits: (a) chemists can finally relate to quantum chemistry, which now speaks their language, by discussing chemically interesting subunits and their interactions and (b) calculations become much faster due to a reduced computational scaling. For instance, the somewhat academic sounding question of the importance of three-body effects in water clusters is actually another way of asking how two hydrogen bonds affect each other, when they involve three water molecules. One aspect of this is the many-body charge transfer (CT), because the charge transfers in the two hydrogen bonds are coupled to each other (not independent). In this work, we provide a generalized view on the use of many-body expansions in fragment-based methods, focusing on the general aspects of the property expansion and a contraction of a

  10. The Effect of Self-Efficacy on Return-to-Work Outcomes for Workers with Psychological or Upper-Body Musculoskeletal Injuries: A Review of the Literature.

    Science.gov (United States)

    Black, Oliver; Keegel, Tessa; Sim, Malcolm R; Collie, Alexander; Smith, Peter

    2018-03-01

    Purpose Work absence can result in substantial losses to the economy and workers. As a result, identifying modifiable factors associated with return-to-work (RTW) following an injury or illness is the focus of many empirical investigations. Self-efficacy, the belief about one's ability to undertake behaviours to achieve desired goals, has been identified as an important factor in RTW for injured workers. This paper systematically reviewed the literature on the association between self-efficacy and RTW outcomes for workers with an upper-body musculoskeletal injury or psychological injury. Methods A systematic search was conducted across five databases using two main search concepts- 'self-efficacy' and 'RTW'. After removing duplicates, our search strategy identified 836 studies, which were screened for relevance using titles and abstracts. Results A two stage screening process reduced the study pool to six studies using psychological injury cohorts and three using upper-body musculoskeletal (UB-MSK) cohorts. Eight cohorts from seven prospective cohort studies and one sample from a randomised control trial (RCT) were subjected to a risk of bias assessment. Higher levels of self-efficacy appeared to have a consistent and positive association with RTW across return-to-work status and work absence outcomes, injury type and follow-up periods. Effect ratios ranged from 1.00 to 5.26 indicating a potentially large impact of self-efficacy on RTW outcomes. The relationship between self-efficacy and RTW strengthened as the domain of self-efficacy became more specific to RTW and job behaviours. Studies assessing workers with psychological injuries were of a lower quality compared to those assessing workers with UB-MSK injuries. Conclusions Higher self-efficacy had consistent positive associations with RTW outcomes. Further empirical research should identify the determinants of self-efficacy, and explore the processes by which higher self-efficacy improves RTW outcomes.

  11. Vibrational multiconfiguration self-consistent field theory: implementation and test calculations.

    Science.gov (United States)

    Heislbetz, Sandra; Rauhut, Guntram

    2010-03-28

    A state-specific vibrational multiconfiguration self-consistent field (VMCSCF) approach based on a multimode expansion of the potential energy surface is presented for the accurate calculation of anharmonic vibrational spectra. As a special case of this general approach vibrational complete active space self-consistent field calculations will be discussed. The latter method shows better convergence than the general VMCSCF approach and must be considered the preferred choice within the multiconfigurational framework. Benchmark calculations are provided for a small set of test molecules.

  12. Effect of imperfections on the hyperuniformity of many-body systems

    Science.gov (United States)

    Kim, Jaeuk; Torquato, Salvatore

    2018-02-01

    A hyperuniform many-body system is characterized by a structure factor S (k ) that vanishes in the small-wave-number limit or equivalently by a local number variance σN2(R ) associated with a spherical window of radius R that grows more slowly than Rd in the large-R limit. Thus, the hyperuniformity implies anomalous suppression of long-wavelength density fluctuations relative to those in typical disordered systems, i.e., σN2(R ) ˜Rd as R →∞ . Hyperuniform systems include perfect crystals, quasicrystals, and special disordered systems. Disordered hyperuniform systems are amorphous states of matter that lie between a liquid and crystal [S. Torquato et al., Phys. Rev. X 5, 021020 (2015), 10.1103/PhysRevX.5.021020], and have been the subject of many recent investigations due to their novel properties. In the same way that there is no perfect crystal in practice due to the inevitable presence of imperfections, such as vacancies and dislocations, there is no "perfect" hyperuniform system, whether it is ordered or not. Thus, it is practically and theoretically important to quantitatively understand the extent to which imperfections introduced in a perfectly hyperuniform system can degrade or destroy its hyperuniformity and corresponding physical properties. This paper begins such a program by deriving explicit formulas for S (k ) in the small-wave-number regime for three types of imperfections: (1) uncorrelated point defects, including vacancies and interstitials, (2) stochastic particle displacements, and (3) thermal excitations in the classical harmonic regime. We demonstrate that our results are in excellent agreement with numerical simulations. We find that "uncorrelated" vacancies or interstitials destroy hyperuniformity in proportion to the defect concentration p . We show that "uncorrelated" stochastic displacements in perfect lattices can never destroy the hyperuniformity but it can be degraded such that the perturbed lattices fall into class III

  13. General coordinate invariance in quantum many-body systems

    Czech Academy of Sciences Publication Activity Database

    Brauner, Tomáš; Endlich, S.; Monin, A.; Penco, R.

    2014-01-01

    Roč. 90, č. 10 (2014), s. 105016 ISSN 1550-7998 Institutional support: RVO:61389005 Keywords : Chiral Perturbation-Theory * Planar Galilei Group * Lagrangians Subject RIV: BE - Theoretical Physics Impact factor: 4.643, year: 2014

  14. Optical properties of body-centered tetragonal C4: Insights from many-body perturbation and time-dependent density functional theories

    Science.gov (United States)

    Tarighi Ahmadpour, Mahdi; Rostamnejadi, Ali; Hashemifar, S. Javad

    2018-04-01

    We study the electronic structure and optical properties of a body-centered tetragonal phase of carbon (bct-C4) within the framework of time-dependent density functional theory and Bethe-Salpeter equation. The results indicate that the optical properties of bct-C4 are strongly affected by the electron-hole interaction. It is demonstrated that the long-range corrected exchange-correlation kernels could fairly reproduce the Bethe-Salpeter equation results. The effective carrier number reveals that at energies above 30 eV, the excitonic effects are not dominant any more and that the optical transitions originate mainly from electronic excitations. The emerged peaks in the calculated electron energy loss spectra are discussed in terms of plasmon excitations and interband transitions. The results of the research indicate that bct-C4 is an indirect wide-band-gap semiconductor, which is transparent in the visible region and opaque in the ultraviolet spectral range.

  15. Introduction to integrable many-body systems III

    International Nuclear Information System (INIS)

    Bajnok, Z.; Samaj, L.

    2011-01-01

    This is the third part of a three-volume introductory course about integrable systems of interacting bodies. The emphasis is put onto the method of Thermodynamic Bethe Ansatz. Two kinds of integrable models are studied. Systems of itinerant electrons, forming a part of Condensed Matter Physics, involve the Hubbard lattice model of electrons with short-ranged one-site interactions (Sect. 20) and the s-d exchange Kondo model (Sect. 21), describing the scattering of conduction electrons on a spin-s impurity. Methods and basic concepts used in Quantum Field Theory are explained on the integrable (1 + 1)-dimensional sine-Gordon model. We start with the classical description of the model in Sect. 22, analyze its finite energy field configurations (soliton, anti-soliton and breathers) and show its classical integrability. The model is quantized by using two schemes: the conformal (Sect. 23) and Lagrangian (Sect. 24) quantizations. The scattering matrix of the sine-Gordon theory is derived at the full quantum level in the bootstrap scheme and is compared to its classical limit in Sect. 25. The parameters of the scattering matrix are related to those of the Lagrangian by calculating the ground-state energy in an applied magnetic field in two ways: Conformal perturbation theory and Thermodynamic Bethe Ansatz (Sect. 26). The relation of the sine-Gordon theory to the XXZ Heisenberg model, which provides a complete solution of the sine-Gordon model in a finite volume, is pointed out in Sect. 27. The obtained results are applied in Sect. 28. to the derivation of the exact thermodynamics for the (symmetric) two-component Coulomb gas; this is the first classical two-dimensional fluid with exactly solvable thermodynamics (Authors)

  16. Singular perturbations introduction to system order reduction methods with applications

    CERN Document Server

    Shchepakina, Elena; Mortell, Michael P

    2014-01-01

    These lecture notes provide a fresh approach to investigating singularly perturbed systems using asymptotic and geometrical techniques. It gives many examples and step-by-step techniques, which will help beginners move to a more advanced level. Singularly perturbed systems appear naturally in the modelling of many processes that are characterized by slow and fast motions simultaneously, for example, in fluid dynamics and nonlinear mechanics. This book’s approach consists in separating out the slow motions of the system under investigation. The result is a reduced differential system of lesser order. However, it inherits the essential elements of the qualitative behaviour of the original system. Singular Perturbations differs from other literature on the subject due to its methods and wide range of applications. It is a valuable reference for specialists in the areas of applied mathematics, engineering, physics, biology, as well as advanced undergraduates for the earlier parts of the book, and graduate stude...

  17. Understanding the many-body expansion for large systems. I. Precision considerations

    International Nuclear Information System (INIS)

    Richard, Ryan M.; Lao, Ka Un; Herbert, John M.

    2014-01-01

    Electronic structure methods based on low-order “n-body” expansions are an increasingly popular means to defeat the highly nonlinear scaling of ab initio quantum chemistry calculations, taking advantage of the inherently distributable nature of the numerous subsystem calculations. Here, we examine how the finite precision of these subsystem calculations manifests in applications to large systems, in this case, a sequence of water clusters ranging in size up to (H 2 O) 47 . Using two different computer implementations of the n-body expansion, one fully integrated into a quantum chemistry program and the other written as a separate driver routine for the same program, we examine the reproducibility of total binding energies as a function of cluster size. The combinatorial nature of the n-body expansion amplifies subtle differences between the two implementations, especially for n ⩾ 4, leading to total energies that differ by as much as several kcal/mol between two implementations of what is ostensibly the same method. This behavior can be understood based on a propagation-of-errors analysis applied to a closed-form expression for the n-body expansion, which is derived here for the first time. Discrepancies between the two implementations arise primarily from the Coulomb self-energy correction that is required when electrostatic embedding charges are implemented by means of an external driver program. For reliable results in large systems, our analysis suggests that script- or driver-based implementations should read binary output files from an electronic structure program, in full double precision, or better yet be fully integrated in a way that avoids the need to compute the aforementioned self-energy. Moreover, four-body and higher-order expansions may be too sensitive to numerical thresholds to be of practical use in large systems

  18. Massive states in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Saha Inst. of Nuclear Physics, Calcutta (India)

    1995-08-01

    It is shown that the chiral nonanalytic terms generated by {Delta}{sub 33} resonance in the nucleon self-energy is reproduced in chiral perturbation theory by perturbing appropriate local operators contained in the pion-nucleon effective Lagrangian itself. (orig.)

  19. Self-consistent cluster theory for systems with off-diagonal disorder

    International Nuclear Information System (INIS)

    Kaplan, T.; Leath, P.L.; Gray, L.J.; Diehl, H.W.

    1980-01-01

    A self-consistent cluster theory for elementary excitations in systems with diagonal, off-diagonal, and environmental disorder is presented. The theory is developed in augmented space where the configurational average over the disorder is replaced by a ground-state matrix element in a translationally invariant system. The analyticity of the resulting approximate Green's function is proved. Numerical results for the self-consistent single-site and pair approximations are presented for the vibrational and electronic properties of disordered linear chains with diagonal, off-diagonal, and environmental disorder

  20. MultiSIMNRA: A computational tool for self-consistent ion beam analysis using SIMNRA

    International Nuclear Information System (INIS)

    Silva, T.F.; Rodrigues, C.L.; Mayer, M.; Moro, M.V.; Trindade, G.F.; Aguirre, F.R.; Added, N.; Rizzutto, M.A.; Tabacniks, M.H.

    2016-01-01

    Highlights: • MultiSIMNRA enables the self-consistent analysis of multiple ion beam techniques. • Self-consistent analysis enables unequivocal and reliable modeling of the sample. • Four different computational algorithms available for model optimizations. • Definition of constraints enables to include prior knowledge into the analysis. - Abstract: SIMNRA is widely adopted by the scientific community of ion beam analysis for the simulation and interpretation of nuclear scattering techniques for material characterization. Taking advantage of its recognized reliability and quality of the simulations, we developed a computer program that uses multiple parallel sessions of SIMNRA to perform self-consistent analysis of data obtained by different ion beam techniques or in different experimental conditions of a given sample. In this paper, we present a result using MultiSIMNRA for a self-consistent multi-elemental analysis of a thin film produced by magnetron sputtering. The results demonstrate the potentialities of the self-consistent analysis and its feasibility using MultiSIMNRA.

  1. Self-consistent T-matrix theory of superconductivity

    Czech Academy of Sciences Publication Activity Database

    Šopík, B.; Lipavský, Pavel; Männel, M.; Morawetz, K.; Matlock, P.

    2011-01-01

    Roč. 84, č. 9 (2011), 094529/1-094529/13 ISSN 1098-0121 R&D Projects: GA ČR GAP204/10/0212; GA ČR(CZ) GAP204/11/0015 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * T-matrix * superconducting gap * restricted self-consistency Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  2. Fully self-consistent multiparticle-multi-hole configuration mixing method - Applications to a few light nuclei

    International Nuclear Information System (INIS)

    Robin, Caroline

    2014-01-01

    This thesis project takes part in the development of the multiparticle-multi-hole configuration mixing method aiming to describe the structure of atomic nuclei. Based on a double variational principle, this approach allows to determine the expansion coefficients of the wave function and the single-particle states at the same time. In this work we apply for the first time the fully self-consistent formalism of the mp-mh method to the description of a few p- and sd-shell nuclei, using the D1S Gogny interaction. A first study of the 12 C nucleus is performed in order to test the doubly iterative convergence procedure when different types of truncation criteria are applied to select the many-body configurations included in the wave-function. A detailed analysis of the effect caused by the orbital optimization is conducted. In particular, its impact on the one-body density and on the fragmentation of the ground state wave function is analyzed. A systematic study of sd-shell nuclei is then performed. A careful analysis of the correlation content of the ground state is first conducted and observables quantities such as binding and separation energies, as well as charge radii are calculated and compared to experimental data. Satisfactory results are found. Spectroscopic properties are also studied. Excitation energies of low-lying states are found in very good agreement with experiment, and the study of magnetic dipole features are also satisfactory. Calculation of electric quadrupole properties, and in particular transition probabilities B(E2), however reveal a clear lack of collectivity of the wave function, due to the reduced valence space used to select the many-body configurations. Although the renormalization of orbitals leads to an important fragmentation of the ground state wave function, only little effect is observed on B(E2) probabilities. A tentative explanation is given. Finally, the structure description of nuclei provided by the multiparticle

  3. Self-consistent modelling of ICRH

    International Nuclear Information System (INIS)

    Hellsten, T.; Hedin, J.; Johnson, T.; Laxaaback, M.; Tennfors, E.

    2001-01-01

    The performance of ICRH is often sensitive to the shape of the high energy part of the distribution functions of the resonating species. This requires self-consistent calculations of the distribution functions and the wave-field. In addition to the wave-particle interactions and Coulomb collisions the effects of the finite orbit width and the RF-induced spatial transport are found to be important. The inward drift dominates in general even for a symmetric toroidal wave spectrum in the centre of the plasma. An inward drift does not necessarily produce a more peaked heating profile. On the contrary, for low concentrations of hydrogen minority in deuterium plasmas it can even give rise to broader profiles. (author)

  4. Quantum Simulation with Circuit-QED Lattices: from Elementary Building Blocks to Many-Body Theory

    Science.gov (United States)

    Zhu, Guanyu

    Recent experimental and theoretical progress in superconducting circuits and circuit QED (quantum electrodynamics) has helped to develop high-precision techniques to control, manipulate, and detect individual mesoscopic quantum systems. A promising direction is hence to scale up from individual building blocks to form larger-scale quantum many-body systems. Although realizing a scalable fault-tolerant quantum computer still faces major barriers of decoherence and quantum error correction, it is feasible to realize scalable quantum simulators with state-of-the-art technology. From the technological point of view, this could serve as an intermediate stage towards the final goal of a large-scale quantum computer, and could help accumulating experience with the control of quantum systems with a large number of degrees of freedom. From the physical point of view, this opens up a new regime where condensed matter systems can be simulated and studied, here in the context of strongly correlated photons and two-level systems. In this thesis, we mainly focus on two aspects of circuit-QED based quantum simulation. First, we discuss the elementary building blocks of the quantum simulator, in particular a fluxonium circuit coupled to a superconducting resonator. We show the interesting properties of the fluxonium circuit as a qubit, including the unusual structure of its charge matrix elements. We also employ perturbation theory to derive the effective Hamiltonian of the coupled system in the dispersive regime, where qubit and the photon frequencies are detuned. The observables predicted with our theory, including dispersive shifts and Kerr nonlinearity, are compared with data from experiments, such as homodyne transmission and two-tone spectroscopy. These studies also relate to the problem of detection in a circuit-QED quantum simulator. Second, we study many-body physics of circuit-QED lattices, serving as quantum simulators. In particular, we focus on two different

  5. Quantitative verification of ab initio self-consistent laser theory.

    Science.gov (United States)

    Ge, Li; Tandy, Robert J; Stone, A D; Türeci, Hakan E

    2008-10-13

    We generalize and test the recent "ab initio" self-consistent (AISC) time-independent semiclassical laser theory. This self-consistent formalism generates all the stationary lasing properties in the multimode regime (frequencies, thresholds, internal and external fields, output power and emission pattern) from simple inputs: the dielectric function of the passive cavity, the atomic transition frequency, and the transverse relaxation time of the lasing transition.We find that the theory gives excellent quantitative agreement with full time-dependent simulations of the Maxwell-Bloch equations after it has been generalized to drop the slowly-varying envelope approximation. The theory is infinite order in the non-linear hole-burning interaction; the widely used third order approximation is shown to fail badly.

  6. Sex-related online behaviors and adolescents' body and sexual self-perceptions.

    Science.gov (United States)

    Doornwaard, Suzan M; Bickham, David S; Rich, Michael; Vanwesenbeeck, Ine; van den Eijnden, Regina J J M; ter Bogt, Tom F M

    2014-12-01

    This study investigated: (1) the prevalence and development of 2 receptive (sexually explicit Internet material [SEIM] use and sexual information seeking) and 2 interactive (cybersex and general social networking site [SNS] use) online behaviors in adolescence; (2) whether development of these behaviors predict adolescents' body and sexual self-perceptions; and (3) whether parental strategies regarding adolescents' Internet use reduce engagement in sex-related online behaviors. Four-wave longitudinal data among 1132 seventh- to 10th-grade Dutch adolescents (mean age at wave 1: 13.95 years; 52.7% boys) were collected. Developmental trajectories of sex-related online behaviors were estimated by using latent growth curve modeling. Self-perception outcomes at wave 4 and parental strategies predicting online behaviors were investigated by adding regression paths to growth models. Boys occasionally and increasingly used SEIM. Patterns for girls' SEIM use and boys' and girls' sexual information seeking and cybersex were consistently low. SNS use, however, was a common, daily activity for both. Higher initial levels and/or faster increases in sex-related online behaviors generally predicted less physical self-esteem (girls' SNS use only), more body surveillance, and less satisfaction with sexual experience. Private Internet access and less parental rule setting regarding Internet use predicted greater engagement in sex-related online behaviors. Although most sex-related online behaviors are not widespread among youth, adolescents who engage in such behaviors are at increased risk for developing negative body and sexual self-perceptions. Particular attention should be paid to adolescents' SNS use because this behavior is most popular and may, through its interactive characteristics, elicit more critical self-evaluations. Prevention efforts should focus on parents' role in reducing risky sex-related online behaviors. Copyright © 2014 by the American Academy of Pediatrics.

  7. Renormalization of self-consistent Schwinger-Dyson equations at finite temperature

    International Nuclear Information System (INIS)

    Hees, H. van; Knoll, J.

    2002-01-01

    We show that Dyson resummation schemes based on Baym's Φ-derivable approximations can be renormalized with counter term structures solely defined on the vacuum level. First applications to the self-consistent solution of the sunset self-energy in φ 4 -theory are presented. (orig.)

  8. Dancers' Body Esteem, Fitness Esteem, and Self-Esteem in Three Contexts

    Science.gov (United States)

    Van Zelst, Laura; Clabaugh, Alison; Morling, Beth

    2004-01-01

    Sixty-two college-aged, ballet and modern dancers evaluated their bodies and themselves in different dance and non-dance settings. In a self-report survey design, dancers' body esteem, fitness esteem, and self-esteem (an overall self-evaluation) were measured in three different contexts. Dancers rated their body esteem, fitness esteem, and…

  9. Control of trunk motion following sudden stop perturbations during cart pushing.

    Science.gov (United States)

    Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H

    2011-01-04

    External perturbations during pushing tasks have been suggested to be a risk factor for low-back symptoms. An experiment was designed to investigate whether self-induced and externally induced sudden stops while pushing a high inertia cart influence trunk motions, and how flexor and extensor muscles counteract these perturbations. Twelve healthy male participants pushed a 200 kg cart at shoulder height and hip height. Pushing while walking was compared to situations in which participants had to stop the cart suddenly (self-induced stop) or in which the wheels of the cart were unexpectedly blocked (externally induced stop). For the perturbed conditions, the peak values and the maximum changes from the reference condition (pushing while walking) of the external moment at L5/S1, trunk inclination and electromyographic amplitudes of trunk muscles were determined. In the self-induced stop, a voluntary trunk extension occurred. Initial responses in both stops consisted of flexor and extensor muscle cocontraction. In self-induced stops this was followed by sustained extensor activity. In the externally induced stops, an external extension moment caused a decrease in trunk inclination. The opposite directions of the internal moment and trunk motion in the externally induced stop while pushing at shoulder height may indicate insufficient active control of trunk posture. Consequently, sudden blocking of the wheels in pushing at shoulder height may put the low back at risk of mechanical injury. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Heuristic method for determining outgoing waves in many-body wave functions

    International Nuclear Information System (INIS)

    Redish, E.F.; Tandy, P.C.; L'Huillier, M.

    1975-12-01

    A new and simple method is proposed for determining the kinds of outgoing waves present in a given many-body wave function. Whether any particular wave function contains ''hidden'' rearrangement components can be determined. 1 figure

  11. Many-body calculations with deuteron based single-particle bases and their associated natural orbits

    Science.gov (United States)

    Puddu, G.

    2018-06-01

    We use the recently introduced single-particle states obtained from localized deuteron wave-functions as a basis for nuclear many-body calculations. We show that energies can be substantially lowered if the natural orbits (NOs) obtained from this basis are used. We use this modified basis for {}10{{B}}, {}16{{O}} and {}24{{Mg}} employing the bare NNLOopt nucleon–nucleon interaction. The lowering of the energies increases with the mass. Although in principle NOs require a full scale preliminary many-body calculation, we found that an approximate preliminary many-body calculation, with a marginal increase in the computational cost, is sufficient. The use of natural orbits based on an harmonic oscillator basis leads to a much smaller lowering of the energies for a comparable computational cost.

  12. Self-consistent Green’s-function technique for surfaces and interfaces

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1991-01-01

    We have implemented an efficient self-consistent Green’s-function technique for calculating ground-state properties of surfaces and interfaces, based on the linear-muffin-tin-orbitals method within the tight-binding representation. In this approach the interlayer interaction is extremely short...... ranged, and only a few layers close to the interface need be treated self-consistently via a Dyson equation. For semi-infinite jellium, the technique gives work functions and surface energies that are in excellent agreement with earlier calculations. For the bcc(110) surface of the alkali metals, we find...

  13. Traffic and related self-driven many-particle systems

    Science.gov (United States)

    Helbing, Dirk

    2001-10-01

    Since the subject of traffic dynamics has captured the interest of physicists, many surprising effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by ``phantom traffic jams'' even though drivers all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction in the volume of traffic cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize into lanes, while similar systems ``freeze by heating''? All of these questions have been answered by applying and extending methods from statistical physics and nonlinear dynamics to self-driven many-particle systems. This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic. These include microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts, such as a general modeling framework for self-driven many-particle systems, including spin systems. While the primary focus is upon vehicle and pedestrian traffic, applications to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are touched upon as well.

  14. An improved thermodynamic perturbation theory for Mercedes-Benz water.

    Science.gov (United States)

    Urbic, T; Vlachy, V; Kalyuzhnyi, Yu V; Dill, K A

    2007-11-07

    We previously applied Wertheim's thermodynamic perturbation theory for associative fluids to the simple Mercedes-Benz model of water. We found that the theory reproduced well the physical properties of hot water, but was less successful in capturing the more structured hydrogen bonding that occurs in cold water. Here, we propose an improved version of the thermodynamic perturbation theory in which the effective density of the reference system is calculated self-consistently. The new theory is a significant improvement, giving good agreement with Monte Carlo simulations of the model, and predicting key anomalies of cold water, such as minima in the molar volume and large heat capacity, in addition to giving good agreement with the isothermal compressibility and thermal expansion coefficient.

  15. Body Image and Self-Esteem in Normal Weight Women.

    Science.gov (United States)

    Gleghorn, Alice A.; Penner, Louis A.

    Research suggests that, in clinical samples, body image disturbances are related to severe eating disorders and problems with self-concept and self-esteem. There have been relatively few studies, however, which have empirically investigated the relation between body image and personality characteristics among normal women. This study investigated…

  16. Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems

    International Nuclear Information System (INIS)

    Batchelor, M T

    2005-01-01

    A key element of theoretical physics is the conceptualisation of physical phenomena in terms of models, which are then investigated by the tools at hand. For quantum many-body systems, some models can be exactly solved, i.e., their physical properties can be calculated in an exact fashion. There is often a deep underlying reason why this can be done-the theory of integrability-which manifests itself in many guises. In Beautiful models, Bill Sutherland looks at exactly solved models in quantum many-body systems, a well established field dating back to Bethe's 1931 exact solution of the spin-1/2 Heisenberg chain. This field is enjoying a renaissance due to the ongoing and striking experimental advances in low-dimensional quantum physics, which includes the manufacture of quasi one-dimensional quantum gases. Apart from the intrinsic beauty of the subject material, Beautiful Models is written by a pioneering master of the field. Sutherland has aimed to provide a broad textbook style introduction to the subject for graduate students and interested non-experts. An important point here is the 'language' of the book. In Sutherland's words, the subject of exactly solved models 'belongs to the realm of mathematical physics-too mathematical to be 'respectable' physics, yet not rigorous enough to be 'real' mathematics. ...there are perennial attempts to translate this body of work into either respectable physics or real mathematics; this is not that sort of book.' Rather, Sutherland discusses the models and their solutions in terms of their 'intrinisic' language, which is largely as found in the physics literature. The book begins with a helpful overview of the contents and then moves on to the foundation material, which is the chapter on integrability and non-diffraction. As is shown, these two concepts go hand in hand. The topics covered in later chapters include models with δ-function potentials, the Heisenberg spin chain, the Hubbard model, exchange models, the Calogero

  17. Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, M T [Department of Theoretical Physics, RSPSE and Department of Mathematics, MSI, Australian National University, Canberra ACT 0200 (Australia)

    2005-04-08

    A key element of theoretical physics is the conceptualisation of physical phenomena in terms of models, which are then investigated by the tools at hand. For quantum many-body systems, some models can be exactly solved, i.e., their physical properties can be calculated in an exact fashion. There is often a deep underlying reason why this can be done-the theory of integrability-which manifests itself in many guises. In Beautiful models, Bill Sutherland looks at exactly solved models in quantum many-body systems, a well established field dating back to Bethe's 1931 exact solution of the spin-1/2 Heisenberg chain. This field is enjoying a renaissance due to the ongoing and striking experimental advances in low-dimensional quantum physics, which includes the manufacture of quasi one-dimensional quantum gases. Apart from the intrinsic beauty of the subject material, Beautiful Models is written by a pioneering master of the field. Sutherland has aimed to provide a broad textbook style introduction to the subject for graduate students and interested non-experts. An important point here is the 'language' of the book. In Sutherland's words, the subject of exactly solved models 'belongs to the realm of mathematical physics-too mathematical to be 'respectable' physics, yet not rigorous enough to be 'real' mathematics. ...there are perennial attempts to translate this body of work into either respectable physics or real mathematics; this is not that sort of book.' Rather, Sutherland discusses the models and their solutions in terms of their 'intrinisic' language, which is largely as found in the physics literature. The book begins with a helpful overview of the contents and then moves on to the foundation material, which is the chapter on integrability and non-diffraction. As is shown, these two concepts go hand in hand. The topics covered in later chapters include models with {delta}-function potentials, the

  18. Self-esteem threat combined with exposure to thin media images leads to body image compensatory self-enhancement.

    Science.gov (United States)

    Jarry, Josée L; Kossert, Amy L

    2007-03-01

    This study examined the effect of a self-esteem threat combined with exposure to thin images on body image (BI) satisfaction and investment. Female participants (N=94) received a self-esteem threat consisting of false failure feedback or received false success feedback on an intellectual task allegedly highly predictive of academic and professional success. They then viewed media images featuring thin models or products. After viewing thin models, women who had received failure feedback declared themselves more satisfied about their appearance and less invested in it than did women who had received success feedback. These results suggest that exposure to the thin ideal may inspire women experiencing self-esteem threats to use appearance as an alternative source of worth, thus maintaining their global esteem through BI compensatory self-enhancement. Potential long-term implications of this strategy, such as a paradoxical increase in BI investment and the development of eating pathology, are discussed.

  19. Enhancement and sign change of magnetic correlations in a driven quantum many-body system

    Science.gov (United States)

    Görg, Frederik; Messer, Michael; Sandholzer, Kilian; Jotzu, Gregor; Desbuquois, Rémi; Esslinger, Tilman

    2018-01-01

    Periodic driving can be used to control the properties of a many-body state coherently and to realize phases that are not accessible in static systems. For example, exposing materials to intense laser pulses makes it possible to induce metal-insulator transitions, to control magnetic order and to generate transient superconducting behaviour well above the static transition temperature. However, pinning down the mechanisms underlying these phenomena is often difficult because the response of a material to irradiation is governed by complex, many-body dynamics. For static systems, extensive calculations have been performed to explain phenomena such as high-temperature superconductivity. Theoretical analyses of driven many-body Hamiltonians are more challenging, but approaches have now been developed, motivated by recent observations. Here we report an experimental quantum simulation in a periodically modulated hexagonal lattice and show that antiferromagnetic correlations in a fermionic many-body system can be reduced, enhanced or even switched to ferromagnetic correlations (sign reversal). We demonstrate that the description of the many-body system using an effective Floquet-Hamiltonian with a renormalized tunnelling energy remains valid in the high-frequency regime by comparing the results to measurements in an equivalent static lattice. For near-resonant driving, the enhancement and sign reversal of correlations is explained by a microscopic model of the system in which the particle tunnelling and magnetic exchange energies can be controlled independently. In combination with the observed sufficiently long lifetimes of the correlations in this system, periodic driving thus provides an alternative way of investigating unconventional pairing in strongly correlated systems experimentally.

  20. Exactly solvable models in many-body theory

    CERN Document Server

    March, N H

    2016-01-01

    The book reviews several theoretical, mostly exactly solvable, models for selected systems in condensed states of matter, including the solid, liquid, and disordered states, and for systems of few or many bodies, both with boson, fermion, or anyon statistics. Some attention is devoted to models for quantum liquids, including superconductors and superfluids. Open problems in relativistic fields and quantum gravity are also briefly reviewed.The book ranges almost comprehensively, but concisely, across several fields of theoretical physics of matter at various degrees of correlation and at different energy scales, with relevance to molecular, solid-state, and liquid-state physics, as well as to phase transitions, particularly for quantum liquids. Mostly exactly solvable models are presented, with attention also to their numerical approximation and, of course, to their relevance for experiments.

  1. Relativistic many-body theory of atomic structures

    International Nuclear Information System (INIS)

    Cheng, K.T.

    1983-01-01

    The main objective of this program is to improve our understanding of the effect of relativity and electron correlations on atomic processes. Current efforts include hyperfine structure (hfs) studies using the multiconfiguration Dirac-Fock (MCDF) technique. Atomic hfs are known to be sensitive to relativity and electron correlations, and provide important tests of relativistic atomic many-body theories. Preliminary results on the hfs of the 4f 12 3 H ground state of 68 Er 167 are shown and are in good agreement with experiment. This shows that the MCDF technique can be an efficient and powerful method for atomic hfs studies. Further tests of this method are in progress. We are also studying the absorption spectra for Xe-like ions in the region of 4d → nf, epsilonf transitions

  2. Many-body theory and Energy Density Functionals

    Energy Technology Data Exchange (ETDEWEB)

    Baldo, M. [INFN, Catania (Italy)

    2016-07-15

    In this paper a method is first presented to construct an Energy Density Functional on a microscopic basis. The approach is based on the Kohn-Sham method, where one introduces explicitly the Nuclear Matter Equation of State, which can be obtained by an accurate many-body calculation. In this way it connects the functional to the bare nucleon-nucleon interaction. It is shown that the resulting functional can be performing as the best Gogny force functional. In the second part of the paper it is shown how one can go beyond the mean-field level and the difficulty that can appear. The method is based on the particle-vibration coupling scheme and a formalism is presented that can handle the correct use of the vibrational degrees of freedom within a microscopic approach. (orig.)

  3. Body dissatisfaction, trait anxiety and self-esteem in young men

    Directory of Open Access Journals (Sweden)

    Czeglédi Edit

    2015-01-01

    Full Text Available Background and purpose: Body image dissatisfaction has recently been described as 'normative' for both men and women. Despite intense theoretical interest in a multidimensional concept of male body image, comprehensive models have rarely been assessed empirically. The aim of this study was therefore to examine the relationship between body image and self-esteem among men in a multivariate model. Methods: Participants of this cross-sectional questionnaire study were 239 male university students (mean age: 20.3 years, SD=2.78 years, range: 18-39 years. Measures: self-reported anthropometric data, weightlifting activity, importance of appearance, perceived weight status, satisfaction with body height, Body Shape Questionnaire - Short form, Muscle Appearance Satisfaction Scale, Rosenberg Self-Esteem Scale. Results: Structural equation modeling showed that after controlling for age, BMI, weightlifting activity, the importance of appearance, and trait anxiety, only muscle dissatisfaction predicted lower self-esteem (β=-0.11, p=0.033. Neither height dissatisfaction nor weight dissatisfaction showed significant association with selfesteem. Muscle dissatisfaction partially mediated the relationship between trait anxiety and self-esteem (β=-0.04, p=0.049, R2=0.05. The model explained 50.4% of the variance in selfesteem. Conclusions: The results emphasize that trait anxiety might be a background variable in the relationship between males' body dissatisfaction and self-esteem, which should be considered in future studies and in the course of therapy.

  4. Perturbations in loop quantum cosmology

    International Nuclear Information System (INIS)

    Nelson, W; Agullo, I; Ashtekar, A

    2014-01-01

    The era of precision cosmology has allowed us to accurately determine many important cosmological parameters, in particular via the CMB. Confronting Loop Quantum Cosmology with these observations provides us with a powerful test of the theory. For this to be possible, we need a detailed understanding of the generation and evolution of inhomogeneous perturbations during the early, quantum gravity phase of the universe. Here, we have described how Loop Quantum Cosmology provides a completion of the inflationary paradigm, that is consistent with the observed power spectra of the CMB

  5. Self-consistent simulation of the CSR effect

    International Nuclear Information System (INIS)

    Li, R.; Bohn, C.L.; Bisogano, J.J.

    1998-01-01

    When a microbunch with high charge traverses a curved trajectory, the curvature-induced bunch self-interaction, by way of coherent synchrotron radiation (CSR) and space-charge forces, may cause serious emittance degradation. In this paper, the authors present a self-consistent simulation for the study of the impact of CSR on beam optics. The dynamics of the bunch under the influence of the CSR forces is simulated using macroparticles, where the CSR force in turn depends on the history of bunch dynamics in accordance with causality. The simulation is benchmarked with analytical results obtained for a rigid-line bunch. Here they present the algorithm used in the simulation, along with the simulation results obtained for bending systems in the Jefferson Lab (JLab) free-electron-laser (FEL) lattice

  6. Consistently violating the non-Gaussian consistency relation

    International Nuclear Information System (INIS)

    Mooij, Sander; Palma, Gonzalo A.

    2015-01-01

    Non-attractor models of inflation are characterized by the super-horizon evolution of curvature perturbations, introducing a violation of the non-Gaussian consistency relation between the bispectrum's squeezed limit and the power spectrum's spectral index. In this work we show that the bispectrum's squeezed limit of non-attractor models continues to respect a relation dictated by the evolution of the background. We show how to derive this relation using only symmetry arguments, without ever needing to solve the equations of motion for the perturbations

  7. Many-body problem in one-dimension

    International Nuclear Information System (INIS)

    Emery, V.J.

    1979-11-01

    This work attempts to give a qualitative feeling for the more important physical ideas involved with the study of many-body systems in one dimension, and considers a particular strong-coupling model. This model provides an excellent description of the chains of mercury ions in Hg/sub 3-delta/AsF 6 ; some of the predictions of the theory can be checked by x-ray and neutron diffraction. Much of the physics of nearly one-dimensional materials is concerned with understanding the possible types of phase transition that may take place, and establishing the conditions in which one or another will be predominant. The most significant feature of purely one-dimensional systems is the dominant effect of fluctuations. The paper is organized as follows: introduction; qualitative aspects of one-dimensional systems (general survey, mathematical model, qualitative discussion of strong coupling - strong attractive U, strong repulsive U, large V); strong coupling between parallel spins (independent spin systems, coupling between opposite spins); mercury chains; electrons with arbitrary coupling; boson representations of operators; and classical Coulomb gas

  8. The role of physical activity, body mass index and maturity status in body-related perceptions and self-esteem of adolescents.

    Science.gov (United States)

    Altıntaş, A; Aşçı, F H; Kin-İşler, A; Güven-Karahan, B; Kelecek, S; Özkan, A; Yılmaz, A; Kara, F M

    2014-01-01

    Adolescence represents a transitional period which is marked by physical, social and psychological changes. Changes in body shape and physical activity especially alter and shape the psychological well-being of adolescents. The purpose of this study was to determine the role of physical activity level, body mass index and maturity status in body-related perception and self-esteem of 11-18 years old adolescents. A total of 1012 adolescents participated in this study. The "Social Physique Anxiety Scale", "Body Image Satisfaction Scale", "Physical Self-Perception Profile for Children" and "Rosenberg Self-Esteem Inventory" were administered. Physical activity level and body mass index were assessed using the "Physical Activity Questionnaire" and "Bioelectrical Impedance Analyzer", respectively. Regression analysis indicated that body mass index was the only predictor of perceived body attractiveness, social physique anxiety, body image satisfaction and self-esteem for female adolescents. For male adolescents, both physical activity and body mass index were correlated with perceived body attractiveness and social physique anxiety. Pubertal status were not correlated with self-esteem and body-related perceptions for both males and females adolescents. In summary, body mass index and physical activity plays an important role in body-related perceptions and self-esteem of adolescents.

  9. N=2 superconformal Newton-Hooke algebra and many-body mechanics

    International Nuclear Information System (INIS)

    Galajinsky, Anton

    2009-01-01

    A representation of the conformal Newton-Hooke algebra on a phase space of n particles in arbitrary dimension which interact with one another via a generic conformal potential and experience a universal cosmological repulsion or attraction is constructed. The minimal N=2 superconformal extension of the Newton-Hooke algebra and its dynamical realization in many-body mechanics are studied.

  10. Two new integrable couplings of the soliton hierarchies with self-consistent sources

    International Nuclear Information System (INIS)

    Tie-Cheng, Xia

    2010-01-01

    A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s-tilde l(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6613). Based on this method, we construct two integrable couplings of the soliton hierarchy with self-consistent sources by using the loop algebra s-tilde l(4). In this paper, we also point out that there are some errors in these references and we have corrected these errors and set up new formula. The method can be generalized to other soliton hierarchy with self-consistent sources. (general)

  11. On nonequilibrium many-body systems III: nonlinear transport theory

    International Nuclear Information System (INIS)

    Luzzi, R.; Vasconcellos, A.R.; Algarte, A.C.S.

    1986-01-01

    A nonlinear transport theory for many-body systems arbitrarily away from equilibrium, based on the nonequilibrium statistical operator (NSO) method, is presented. Nonlinear transport equations for a basis set of dynamical quantities are derived using two equivalent treatments that may be considered far reaching generalizations of the Hilbert-Chapman-Enskog method and Mori's generalized Langevin equations method. The first case is considered in some detail and the general characteristics of the theory are discussed. (Author) [pt

  12. Nonlinear field theories and non-Gaussian fluctuations for near-critical many-body systems

    International Nuclear Information System (INIS)

    Tuszynski, J.A.; Dixon, J.M.; Grundland, A.M.

    1994-01-01

    This review article outlines a number of efforts made over the past several decades to understand the physics of near critical many-body systems. Beginning with the phenomenological theories of Landau and Ginzburg the paper discusses the two main routes adopted in the past. The first approach is based on statistical calculations while the second investigates the underlying nonlinear field equations. In the last part of the paper we outline a generalisation of these methods which combines classical and quantum properties of the many-body systems studied. (orig.)

  13. Longitudinal motion in high current ion beams: a self-consistent phase space distribution with an envelope equation

    International Nuclear Information System (INIS)

    Neuffer, D.

    1979-03-01

    Many applications of particle acceleration, such as heavy ion fusion, require longitudinal bunching of a high intensity particle beam to extremely high particle currents with correspondingly high space charge forces. This requires a precise analysis of longitudinal motion including stability analysis. Previous papers have treated the longitudinal space charge force as strictly linear, and have not been self-consistent; that is, they have not displayed a phase space distribution consistent with this linear force so that the transport of the phase space distribution could be followed, and departures from linearity could be analyzed. This is unlike the situation for transverse phase space where the Kapchinskij--Vladimirskij (K--V) distribution can be used as the basis of an analysis of transverse motion. In this paper a self-consistent particle distribution in longitudinal phase space is derived which is a solution of the Vlasov equation and an envelope equation for this solution is derived

  14. ANTHEM: a two-dimensional multicomponent self-consistent hydro-electron transport code for laser-matter interaction studies

    International Nuclear Information System (INIS)

    Mason, R.J.

    1982-01-01

    The ANTHEM code for the study of CO 2 -laser-generated transport is outlined. ANTHEM treats the background plasma as coupled Eulerian thermal and ion fluids, and the suprathermal electrons as either a third fluid or a body of evolving collisional PIC particles. The electrons scatter off the ions; the suprathermals drag against the thermal background. Self-consistent E- and B-fields are computed by the Implicit Moment Method. The current status of the code is described. Typical output from ANTHEM is discussed with special application to Augmented-Return-Current CO 2 -laser-driven targets

  15. Dynamics of one-dimensional self-gravitating systems using Hermite-Legendre polynomials

    Science.gov (United States)

    Barnes, Eric I.; Ragan, Robert J.

    2014-01-01

    The current paradigm for understanding galaxy formation in the Universe depends on the existence of self-gravitating collisionless dark matter. Modelling such dark matter systems has been a major focus of astrophysicists, with much of that effort directed at computational techniques. Not surprisingly, a comprehensive understanding of the evolution of these self-gravitating systems still eludes us, since it involves the collective non-linear dynamics of many particle systems interacting via long-range forces described by the Vlasov equation. As a step towards developing a clearer picture of collisionless self-gravitating relaxation, we analyse the linearized dynamics of isolated one-dimensional systems near thermal equilibrium by expanding their phase-space distribution functions f(x, v) in terms of Hermite functions in the velocity variable, and Legendre functions involving the position variable. This approach produces a picture of phase-space evolution in terms of expansion coefficients, rather than spatial and velocity variables. We obtain equations of motion for the expansion coefficients for both test-particle distributions and self-gravitating linear perturbations of thermal equilibrium. N-body simulations of perturbed equilibria are performed and found to be in excellent agreement with the expansion coefficient approach over a time duration that depends on the size of the expansion series used.

  16. The proceedings of the 9th international conference on recent progress in many-body theories

    International Nuclear Information System (INIS)

    Neilson, D.; Bishop, R. F.

    1998-01-01

    This inaugural volume in this new World Scientific Publications series, 'Advances in Quantum Many-Body Theory' records the invited and contributed papers given at the Ninth International Conference on Recent Progress in Many-Body Theories. This conference was held in the School of Physics at The University of New South Wales in Sydney in July, 1997. The conference was also the seventh in the University's series of Gordon Godfrey International Workshop on Theoretical Physics. The style and format of the conference followed the accepted pattern for the series, focusing on the development, refinement, and important applications of many-body methods. A major aim of the series has been to foster an exchange of ideas among physicists working in such diverse areas as nuclear and subnuclear physics, quantum chemistry, complex systems, quantum field theory, strongly correlated electronic systems, magnetism, quantum fluids and condensed matter physics. A special feature of this ninth conference was a session devoted to theories for many-electron systems in zero dimensions (quantum dots), one dimension (quantum wires) and two dimensions (electron layers). These new systems are now firmly established as fertile sources of novel and challenging many-body phenomena

  17. Associations of self-esteem with body mass index and body image among Saudi college-age females.

    Science.gov (United States)

    ALAhmari, Tasneem; Alomar, Abdulaziz Z; ALBeeybe, Jumanah; Asiri, Nawal; ALAjaji, Reema; ALMasoud, Reem; Al-Hazzaa, Hazzaa M

    2017-12-27

    To examine the association of self-esteem with the body mass index (BMI), perceived body image (BI), and desired BI of college-age Saudi females. A cross-sectional study was conducted with 907 randomly selected females using a multistage stratified cluster sampling technique. Self-esteem and BI were assessed using the Rosenberg Self-Esteem Scale and Stunkard Figure Rating Scale, respectively. The prevalence of low self-esteem was only 6.1% among college females; however, this percentage was higher (9.8%) among overweight or obese participants. The total self-esteem scores showed significant negative correlations with actual BMI and perceived BI, but not with desired BI. Meanwhile, multivariate analyses revealed significant differences in total self-esteem scores according to obesity/overweight status and perceived BI group, but not desired BI group. Despite the high prevalence of overweight and obesity in Saudi Arabia, few Saudi college females have low self-esteem. In addition, body weight, BMI, perceived BI, and the BMI corresponding to the perceived BI all significantly differed between females with low self-esteem and those with normal self-esteem. Level V, cross-sectional descriptive study.

  18. Body Image, Self-esteem, and Quality of Life in Patients with Psoriasis.

    Science.gov (United States)

    Nazik, Hulya; Nazik, Selcuk; Gul, Feride C

    2017-01-01

    Psoriasis is a chronic inflammatory disease of the skin that may affect the visible areas of body. Hence, the quality of life, self-esteem, and body image can be affected in psoriasis patients. We aimed in the present study to assess the effects of psoriasis on the quality of life, self-esteem, and body image. The study included 92 patients with psoriasis, along with 98 control participants. The sociodemographic characteristics of the patients were assessed, their Psoriasis Area Severity Index (PASI) scores were calculated to determine the clinical severity of the psoriasis, and the values were recorded. In addition, Dermatology Life Quality Index (DLQI), Body Image Scale, and Rosenberg Self-Esteem Scale results were evaluated. When the control and psoriasis groups were evaluated regarding the DLQI, self-esteem, and body image, quality of life was found to be more negatively affected in the psoriasis group than the controls, which was statistically significant ( P self-esteem ( P self-esteem ( P self-esteem ( r = 0.448), however, it was negatively correlated with the body image ( r = -0.423). Psoriasis may negatively affect quality of life, self-esteem, and body image, and may also cause psychosocial problems. An assessment of new approaches on this issue may contribute to developments in the treatment of and rehabilitation from this disease.

  19. Characterizing Time Irreversibility in Disordered Fermionic Systems by the Effect of Local Perturbations

    Science.gov (United States)

    Vardhan, Shreya; De Tomasi, Giuseppe; Heyl, Markus; Heller, Eric J.; Pollmann, Frank

    2017-07-01

    We study the effects of local perturbations on the dynamics of disordered fermionic systems in order to characterize time irreversibility. We focus on three different systems: the noninteracting Anderson and Aubry-André-Harper (AAH) models and the interacting spinless disordered t -V chain. First, we consider the effect on the full many-body wave functions by measuring the Loschmidt echo (LE). We show that in the extended or ergodic phase the LE decays exponentially fast with time, while in the localized phase the decay is algebraic. We demonstrate that the exponent of the decay of the LE in the localized phase diverges proportionally to the single-particle localization length as we approach the metal-insulator transition in the AAH model. Second, we probe different phases of disordered systems by studying the time expectation value of local observables evolved with two Hamiltonians that differ by a spatially local perturbation. Remarkably, we find that many-body localized systems could lose memory of the initial state in the long-time limit, in contrast to the noninteracting localized phase where some memory is always preserved.

  20. Dynamic phonon exchange requires consistent dressing

    International Nuclear Information System (INIS)

    Hahne, F.J.W.; Engelbrecht, C.A.; Heiss, W.D.

    1976-01-01

    It is shown that states with undersirable properties (such as ghosts, states with complex eigenenergies and states with unrestricted normalization) emerge from two-body calculations using dynamic effective interactions if one is not careful in introducing single-particle self-energy insertions in a consistent manner